Dla $=$ husbyenine \& $5=1$

DIAB og SBI beskriver

Aktuelle byggerier 1986

DIAB husbygning

Danmarks Ingeniørakademi, Bygningsafdelingen
SBI
Statens Byggeforskningsinstitut

Danmarks Ingeniørakademi og Statens Byggeforskningsinstitut har i 1986 fortsat serien "Aktuelle Byggerier" med teknisk beskrivende artikler i tidsskriftet "Byggeindustrien". Årets ialt 6 artikler udkommer samlet i dette hefte, HB-notat 41 .
Som tidligere er der medtaget eksempler på såvel boligbyggeri som erhvervsbyggeri, herunder den ny hovedbanegårdi $i \not \subset j e-$ Tastrup.

Artikelserien rundede i året 1986 artikel nr. 100 med det aktuelle byggeri: Charlottenlund Park. Forfatterkredsen var tilfreds med, at netop dette byggeri tegnede jubilæet, idet de projekterende arkitekter og ingeniører her har skabt et spændende og stærkt arkitektonisk udtryk med anvendelse af de velkendte standardiserede betonkomponenter, samt ved tilsætning af ekstra form og farve. Den industrielle byggeskik er i dag færdigudviklet og kan nu bruges til mere spændende huse.

Forfatterkredsen, der i dag bestar af civilingeniør Klaus Hansen, SBI, samt lektorerne H. E. Hansen, Per Kjærbye og Ejnar Søndergaard, DIAB, er alle indstillet pa i endnu nogle å at opfylde Byggeindustrien's ønske om fortsat at beskrive aktuelle danske byggerier i ind- og udland.
for forfatterne
Per Kjærbye

Indhold af årgang 1986
96 Frederiksen, V. Trier:
H \& S Kontorhus i Sorgenfri....................................... 4
97 Kjærbye, Per: VIBE 4 i Virumgårdsbebyggelse....................... 10
98 Søndergaard, E.: IBM Allerød... 16

100 Kjærbye, Per: Charlottenlund Park.................................. 28

H\&S Kontorhus i Sorgenfri

Beliggenhed:

Lyngby-Tårbæk Kommune mellem Sorgenfri Stogsstation og omfartsmotorvejen.

Art og omfang:

Administrationsbygning ito fløje med forbindende mellembygning, ialt ca. $5600 \mathrm{~m}^{2}$ heraf $1200 \mathrm{~m}^{2}$ parkeringskældre og sikringsrum.

Bygherre:

Højgaard \& Schultz A/S.

Projekterende:

Arkitekter: Jørn Langvad og Søren D. Schmidt ApS. Ingeniører: Konstruktioner: Højgaard \& Schultz A/S.
VVS: Hansen, Carlsen og Frølund A/S.
El-installationer: Mogens Balslev A/S.
Akustikkonsulenter: Johs. Jørgensen A/S.

Udførende:

Af disse kan nævnes:
Totalentreprenør: Råhus og elementer, Højgaard \&
Schultz A/S, Charlottenlund.
Lette vægge og lofter: Deko A/S, Ishøj.
Tømrer- \& snedkerarb.: C.J. Christensen \& Søn A/S, Herlev.
Ventilation: Semco A/S, Glostrup.
VVS: Brøndum KIS, Viborg.
El: Kemp \& Lauritzen A/S, Albertslund.
Vinduer: Centrum Vinduer A/S, Struer.

Opførelsesdata:

Byggetilladelse: December 1984.
Jordarbejdet påbegyndt: December 1984.
Montage påbegyndt: Maj 1985.
Råhus færdig til indvendig aptering: Juli 1985.
Forventet indflytning: Februar 1986.

Fig. 2. Etageplan med eksempel på forslag til skillevægsplacering på en del at arealet

Projekteringsforudsætninger

Det ny kontorhus, som Højgaard \& Schultz har bygget i Sorgenfri, ligger mellem S-banen til Hillerød, Hummeltoftevej og omfartsmotorvejen, hvorfra de to blokke og den karakteristiske hvælvning, der hæver sig over mellembygningen, opleves af trafikerende på vej mod København.

Grunden mellem de tre trafiklinier var ikke helt ligetil at bebygge, idet der - foruden hensynet til trafiklinierne - er et vascintigi terrænfald fra Hummeltoftevej mod sydest. Her har DSB funktionærboliger, hvortil der under byggeriet skulle være uhindret tilkørsel. Endvidere forudsatte lokalplan nr. 34 i Lyngby-Tårbæk kommune, at bygningskroppene skulle orienteres parallelt med jernbanelinien, - det havde sandsynligvis været bedre med en orientering parallelt med motorvejen, hvilket ville have givet mere ensartet lysfordeling i kontorerne og bedre betingelser for uderummene ved kantinen.

Hoveddisposition

Bygningen er disponeret i to parallelle blokke, forbundne af en mellembygning, indeholdende indgangsparti og kantine. Desuden en parkeringskælder i parterreplan syd for den nordligste blok 1 og vest for den sydligste blok 2. (Se fig. 2).

Blok 1 er i tre etager, parterre med parkering, kontorer i stuen og 1 . sal, mens blok 2 er i fire kontoretager foruden halv kælder til
teknik/arkiv- og sikringsrum. Blokkene er forskudt i forhold til hinanden, så de nærmeste gavle ligger på en linie, der skærer facaderne under 45° smig. Den spidse vinkel mellem gavle og facader er givet en blød runding med radius $1,2 \mathrm{~m}$.
Når man ankommer til bygningen, ledes man af den skrå gavl med et cirkulært vindue som et kyklopøje i fladen - ind mod indgangen, hvis skrå tag sammen
med gavlfladen med runding og den hvælvede lanternin over mellembygningen giver den ankommende en arkitektonisk dramatisk oplevelse.

Ved at forskyde blokkene og afskære gavlene skråt er indbyrdes indblik i kontorerne fra den ene blok til den anden »over gården< forhindret, således at der fra alle kontorer er udsigt over det omgivende terræn og ikke ind på den anden bloks vinduer.

Vinklen mellem blokkene mod øst er overdækket med et skråt tag, der går fra dækket over stue i mellembygningen ud over parterreplanen. Her er med udsigt mod øst gennem en glasvæg placeret en kantine, der betjenes af køkkenfaciliteter i blok 2. Der er projekteret en støjvold ud mod motorvejen og dennes nedkørselsrampe, så have/terrasse ud for kantinen beskyttes mod trafikstøj.

Fig. 3. Facadeelement, lodret snit 1:10. 1. uafdækket murkrone. 2. klem/iste. 3. EPDM dug. 4. 30 mm nøddesten. 5.240 mm polysteren. 6. udstøbning. 7.265 mm langdæk.

Konstruktioner og elementer

Bygningen er (skont projekteret først) en efterfølgende pendant til Dakopatts hus i Ejby, der indbragte sine fædre både betonelementprisen 1984 og Cembureau Award 1985 for »Concrete in today's industrial Buildings<<. En gennemgående målsætning for elementformgivningen har været at bryde traditionen for facadeelementer og skabe spil i facaderne, dels med lys sandstenslignende overflade dels ved at arbejde med skrå afskæringer og rundinger. I Dakopatts' bygning går afrundingen igennem i lodrette snit, medens affasningen viser sig i vandrette snit. I kontorhuset i Sorgenfri ses brugen af rundingen der-
imod i de vandrette snit i facadernes pilastre og fasen i de lodrette snit ved sålbænke.
Blok 1 og 2 er med en dybde på 5 moduler á $2,40 \mathrm{~m} \sim 12 \mathrm{~m}$ enkle i konstruktionen med forspændte 285 mm langdækelementer, spændende mellem bærende facadeelementer. Dette giver fuldstændig fleksibilitet i plandisponeringen af kontorarealer med lette skillevægge. Konstruktioner, stabiliserende for tværkræfter, findes kun i gave, omkring trapper og i et par teknikrum i midten af komplekset, hvor ventilationsinstallationerne føres op i etagerne.
Parkeringskælderen, som i parterreplan er placeret vest for blok-
kene, er udført som søjle/bjælke konstruktion med elementdæk, spændende 4.8 og 6 m i blokkens længderetning. Dækket over parkeringskælderen danner i stueplan et adgangsplateau til hovedindgangen. Søjle/bjælke systemer er fraveget et enkelt sted, idet der indenfor indkørselsporten til P-kælderen findes en $2.6 \mathrm{~m} \times 0.4$ m væg i søjlerækken, tilsyneladende en obstruktion for parkeringssøgende, - men nødvendig til bæring og stabilisering af det afrundede gavlhjørne på blok 2, der rager ud over - og hviler på - kælderdækket.

Kælderen under blok 2, der tjener som teknik- og sikringsrum, er udført med 250 mm pladsstøbte yder- og skillevægge samt filigrandæk.

Tage består af forspændte 265 mm langdækelementer, isoleret med 240 mm polystyren og forsynet med en EPDM dug, dækket af 30 mm nøddesten. Afslutningen ved facadeelementernes opragende uafdækkede murkrone, er udført ved, at dugen er ført 150 mm op og kun fastholdes med en påskruet klemliste, som fuges til murkronen med fugemasse. (fig. 3). - (En løsning pả tætheden, der kan tænkes at ville kræve omhyggelige periodiske eftersyn).

Facadeelementerne, der i bredden følger hovedmodulet $2,4 \mathrm{~m}$, har 80 mm forplade, 200 mm iso-
lering og 80 mm bagplade (se fig. 4). Ved forskydningsfugerne i facader er ikke kun bagpladens tykkelse forøget til 180 mm , men forpladen har en konveks, afrundet forggelse, sluttende ved fugen i en mindre konkav. Det visuelle indtryk af facaden bliver en række af runde pilastre med rektangulære felter imellem. Selve fugen aftegner en lodret linie midt i pilastrene.

Feltinddelingen accentueres af skyggenoter overalt mellem vinduer/vægfelter og pilastre. Elementerne er støbt i hvid cemen med glat overflade, der efter afsyring står som lys sandsten. En del af gavlelementerne har i modsætning til facadeelementerne og andre gavlelementer helt plan yderside, der med feltinddeling giver et indtryk af en traditionel betonelementvæg.

Der er gjort meget ud af facadeelementernes finish, som stå helt glat og ensartet ude og inde Elementerne er støbt uden særli yderlagsbeton, men med en ho mogen blanding med største frak tion 16 mm og med et sandtilslag, der er sammensat af flere typer både af hensyn til kornkurven og til overfladens farve og tekstur efter afsyring. Kun et par enkelte steder afsløres de sædvanlige vanskeligheder med en ensartet afsyring; - forhåbentlig vil også afsyringsprocesser i fremtiden kun-

「ig. 4. Facadeelement, vandret snit, 1:10. 1. Forplade med halv pilaster. 2. 200 mm isolering. 3. 100 mm isolering. 4. Bagplade 80 mm med ribbesøjle 180 mm .
e styres lige så effektivt som de vrige processer, der betinger en -nsartet finish i høj kvalitet.

varme og ventilation

Der er flere årsager til at hæfte sig ved varmen/ventilationen. Anlægget er med både radiator- og ventilationsvarme delvis et forsøgs- og udviklingsanlæg, der nøje overvåget skal vise i hvor høj grad, man kan nøjes med ventilationsvarmen. Der er også her et af de bemærkelsesværdigt få eksempler på, at kanalerne i dækelementerne udnyttes til fremføring af ventilationsluften. Endvidere udnyttes betondækkenes akkumuleringsevne til fordeling og udnyttelse af graitisvarmen.
I modsætning til traditionelle anlæg, hvor ventilationen hovedsagelig bortskaffer overskudsvarmen, er denne udnyttet her dels ved akkumulering og dels ved 75 80° genanvendelse via roterende varmevekslere. Radiatorerne bruges til spidsbelastninger og til at eliminere koldluftnedfald ved vinduer.

Bygningerne opvarmes af en varmecentral med to gasfyr i kælderen under blok 2. Herfra føres ventilationsluften i separate kanaler til hver etage. Indblæsningskanalerne er isolerede, så de kan anvendes til køling om sommeren. På etagerne fordeles luften over langs i midten af hver blok over gangarealet, hvorfra den føres op i en af udsparingskanalerne i
hvert dækelement, i hvilken den fordeles til hver side og blæses ned til kontorerne gennem to anemostater i hvert andet element. Dækelementerne er blottet på undersiden, og nedhængte lofter i form af hængende »flåder« optager kun 50% af arealet, medens resten har fri strålingsafgivelse til rummet. De blotlagte lofter giver en større hastighed i aflevering hhv. akkumulering af overskudsvarme. Fra hvert kontormodul går
luften gennem uisolerede kanaler tilbage til varmecentralen. Der er kun lydsluser på udsugningen, medens støj i indblæsningen absorberes i betonelementerne, hvor lufthastigheden er omkring 0,9 m / s. Luftskiftet er $3 \mathrm{~h}-1$.

Ved opstart køres der med 100% recirkulation, indtil ønsket temperatur er opnået og derefter med direkte friskluft og genanvendelse af varmen i udkastluften. Hvis indetemperaturen om
natten skulle falde under 17°, blæses der ligeledes med varm ventilationsluft og fuld recirkulation. Anlægget er ikke udstyret med køling, istedet indblæses der med kølig natteluft om sommeren.
Anlægget styres med rumtermostater, der melder til et edbanlæg, et sảkaldt CTS anlæg for central tilstandskontrol og styring. På CTS anlægget kan indlægges forskellige programmer,

Fig. 5. Eksempel på edb udtegning af temperaturforlab i uge 3. tu: udelufttemperatur. top: den operative temperatur i kontor. o: middelværdi af indelufttemperatur og overfladetemperatur.

der ved konsekvensstyring giver optimering af brug af gratisvarmen.

Temperaturforløbet i kontorhuset er beregnet ved hjælp af TSBI-programmet med standard vejrdata fra det danske referenceår TRY. På fig. 5 vises temperaturforløbet for uge 3 , hvor nattemperaturen indendørs ikke kommer under 20°, hvilket svarer til, at varmeanlægget er stoppet om natten. Den varme, der akkumuleres i huset om dagen, er altså
tilstrækkelig til at holde huset varmt om natten. Generelt viser beregningerne, at radiatorerne kun er i drift mellem 5 og 10% af nattetimerne i januar.

Akustiske forhold

Med en motorvej på den ene side og en jernbane på den anden side er grunden ikke umiddelbar ideel til et kvalitetsbyggeri, som dette. Støj udefra reduceres dog noget, ved at der findes en del bevoksning mellem bygningen og

jernbanen, som også ligger noget lavere end bygningen, og at motorvejen i nogen grad afskærmes af tilkørselsrampen, der fører ned fra Hummeltoftevej.
Som afgrænsning af haveanlægget mod øst er der projekteret en beplantet støjvold, der vil reducere støjen fra rampe og motorvej yderligere. Vinduer er Panofon med tre lag glas af forskellig tykkelse, effektiviteten konstateres let i kontorerne, hvor der faktisk ikke høres støj udefra.

Afsluttende bemærkninger

Kontorhuset i Sorgenfri er et eksempel på, at når viljen, fagkundskaben og ressourcerne (!) er til stede, er det muligt at få ny kvalitet ind i det ofte kritiserede betonbyggeri. Det gælder ikke mindst formgivningen af elementer og den arkitektoniske bearbejdning, men også mulighederne i at anvende avanceret teknik, gå nye veje og udføre forsøg m.h.t. energibesparelser indenfor indeklimaet i vore bygninger.

VIBE 4 i Virumgårdbebyggelsen

Virumgårdbebyggelsen

Et 37 ha stort område i Lyngby-Tårbæk kommune er under bebyggelse med tæt-lavt boligbyggeri i 1,2 og 3 etager. Området er opdelt i 19 boliggrupper, der samles i 5 bebyggelsesafsnit samt et ple-
jehjem/dagcenter med kollektive boliger. Fuldt udbygget rummer alle afsnit ca. 600 boliger. Et af disse afsnit har kaldenavnet VIBE 4, hvorom denne artikel handler.

VIBE 4

Bebyggelsesafsnittet omfatter 2 boliggrupper, C2 og B5, der består af hhv. 35 og 44 boliger med $2,3 \mathrm{og}$ 4 rum og opført i 1, 2 og 3 etager. Fordelingen af de 79 boliger er: 33 stk. 2-rums på $70 \mathrm{~m}^{2}, 13$ stk. 3 -rums på $80 \mathrm{~m}^{2}$, 22 stk. 3 -rums på $85 \mathrm{~m}^{2}$, 1 stk. 3-rums på 90 $\mathrm{m}^{2}, 9$ stk. 4 -rums på $96 \mathrm{~m}^{2}$ og 1 stk. 4 -rums på $111 \mathrm{~m}^{2}$.

Beliggenhed

Virumgảrdens arealer er beliggende nord for Sorgenfri S-bane station mellem jernbanen, Lyngby Omfartsvej, Virumvej og Hummeltoftevej mod syd.

Art og omfang

Tæt-lavt boligbyggeri opført med betonvægge og dæk i elementer, og med facader i dels skalmuret beton, dels lette træbaserede partier. Tagdækningen er tegl, - over trapperum i nogle afsnit profilerede metalplader.

Bebyggelsen detailprojekteres og udføres i henhold til lokalplanen, som er udformet ud fra vinderforslaget i en offentlig arkitektkonkurrence, som Lyngby-Tårbæk kommune udskrev i 1977 for bebyggelsesplan for området.

Bygherre

ISP, Ingeniør-Sammenslutningens Pensionskasse, Nicolaj Plads 23, 1067 København K.

Bygherrekonsulenter

H.E.S. Byggestyring ApS samt Steensen \& Varming.

Arkitekt

Arkitekttegnestuen Virumgård
ved arkitekterne Søren Bangsbo, Ulla Poulsen og Jørgen Raun, Kompagnistræde 14, 1208 København K.

Ingeniører

Konstruktioner:
Rasmussen \& Schiøtz A/S, Datavej 26, 3460 Birkerød.
Installationer:
Birch \& Krogboe K/S, Teknikerbyen 34, 2830 Virum.

Landskabsarkitekt:

Samuelsen \& Ulfstedt, Bagsvæerdvej 4A, 2800 Lyngby.

Totalentreprenør:

Rasmussen \& Schiøtz A/S, R+S Boliger, Datavej 36, 3460 Birkerød.

Leverandører:

Beton: KH Beton A/S. Betonelementer: A/S K.L. Larsen \& E.C. Pedersen. Mursten mv.: Kalk- \& Mørtelværkerne A/S. Porebeton: Siporex. Trapper: EDS-Beton KIS. Filigranelementer: C.C. Brun Betonelementer ApS. Vinduer og døre: A/S Vip-let. Tyndplader: H.H. Robertson Nordisk A/S.

Montage:

Porebeton: LJ Gasbetonmontage ApS. Tømrer og snedker: A. Jespersen \& Søn A/S. VVS: Poul Sejr Nielsen ApS og GL-VVS ApS. Elektriker: D+P Electric ApS. Blikkenslager John Tidemann. Montage af tyndplader: P.H. Byg. Fugearbejde: P.H. Isolering ApS.

Byggetid:

Byggeriet VIBE 4 blev påbegyndt 1. maj 1985, og boligafsnittet er klar til indflytning i efteråret 1986.

Fig. 2. Planer fra forskellige byggeafsnit, 1:250. 1 Entre. 2 Ophold. 3 Værelse. 4 Køkken. 5 Bad/toilet. 6 Garderobelbirum.

Fig. 1. Situationsplan, 1:8000. Bebyggelsen Virumgård ligger mellem S-banen, Lyngby Omfartsvej og Virumvej. 1 Gronning. 2 Boldbaner. 3 Nyttehaver. 4 Stojvold. 5 Regnvandsbassin. 6 Eksisterende erhverv. 7 Nyt erhverv. 819 boliggrupper. 9 Plejehiem, dagcenter og kollektive boliger. 10 Politiog retsbygning. 11 Jernbane. VIBE 4 er skråskraveret.

TYPE 20 e
Fig. 3. Tværsnit i boligtype 20e, 1:75. Af plantegningen på figur 2 fremgår, at huset har en knopskydning i facaden med stort glasparti i ydervæg og tag. Den dybe stue får herved et godt dagslys.

På Virumgårds arealer mellem Lyngby og Virum er bl.a. boliggrupperne C 2 og B 5 for tiden under opførelse. Andre af ialt 19 grupper er enten færdige, under udførelse eller endnu ikke påbegyndt. C2 og B5 har som arbejdstitel VIBE 4 og bestå af 1, 2 og 3 etagers huse i en tæt-lav bebyggelse. Den overordnede bebyggelsesplan er vist på figur 1 , hvorpå VIBE 4 er skråskraveret, mens figur 4 viser en detaljeret disposition af arealet med 1 -etages huse mod vest og 2 - og 3 -etagers blokke langs vejen mod øst.

Indledningsvis er der på figurerne 2 og 3 vist planer og snit i hustyper fra andre boliggrupper, der bla. udnytter arealernes terrænspring, se fx type 12 på figur 2. Man går ind i »øverste« etage 2

Husene har spændende facadeudtryk, her type 20e, der i plan og snit er vist på figur 2 og 3.

og har ophold og køkken i etage 1 samt birum mod »kældervæg《.

Artiklens øvrige figurer 4-13 incl. er alle fra byggeriet VIBE 4. Dette projekt komi stand gennem et samarbejde mellem ISP og R \& S, der i 1984 traf aftale med Lyng-by-Tårbæk kommune om at erhverve to af boliggruppearealerne på Virumgård til byggeri af ialt 79 boliger.

I samarbejde med arkitekttegnestuen Virumgård blev der udarbejdet et detailprojekt for bebyggelsen, der opfyldte de lokalplanmæssige krav samt tilgodeså bygherrens ønsker til kvalitet, indretning og størrelser.

Af hensyn til artiklens omfang er beskrivelsen yderligere indskrænket til kun at omfatte blok E, som på figur 4 er markeret med mørkere raster.

Blok E er udført med parkeringskælder samt 2 og 3 beboelsesetager, som beskrevet på figur 5 , med opstalt af indgangs- og altanfacader på figur 6 samt i lodret snit på figur 7 .

Kælderkonstruktionerne er pladsstøbt beton til og med det 200 mm tykke dæk over kælder.

Etagerne herover er udførte af 150 mm betonvægge, dog 180 mm ved trapperum, og med anvendelse af 215 mm tykke huldækelementer til spændvidden $5,52 \mathrm{~m}$ mellem systemlinierne. Bemærk, at $55,2 \mathrm{M}$ ikke er helt multiplum af planlægningsmodulen 3M. Pá tværsnittet ses endvidere, at dækbredden på $9,765 \mathrm{~m}$ opbygges med 7 standarddæk à $1,2 \mathrm{~m}$ samt specialdæk langs facaderne på hhv. 500 og 865 mm .

Husets indgangsside har lette højisolerede facader med tykkelse 210 mm samt en påsat altan- og udhuskonstruktion i træ, der med sine tage og søjle-rækværksopbygninger giver et afvekslende og rustikt indtryk.

Blokkens vejside, østfacaden, samt gavlene er projekteret som tunge ydervægge med isolerede betonelementer og $1 / 2$-stens skalmur.

Tagkonstruktionen er opbygget over stoleunderstattede træspær med spring i tagfladerne med en lodret »tagpande《-opbygning beklædt med profilerede metalplader. Tagdækningen er i øvrigt vingetegl, og taghældningen er 20°.

Fig. 4. Bebygge/sesplan for VIBE 4, 1:1500. Denne artikel beskriver blok E, som er markeret i planens østlige side mod tilkorselsvej og stojvold. Se også den samlede situationsplan på figur 1.

Fig. 5. Kælderplan og etageplaner fra blok E, 1:300. Den modulære bygningsbredde er 9540 mm . I kæ/deren indrettes bilparkering med ind- og udkorsel i gaviene. Etagerne er indrettet med: 1 Entre. 2 Ophold. 3 verelse. 4 Kokken. 5 Bad/toilet. 6 Garderobe. 7 Udhus. 8 Altan.

Fig. 6. Opstalt af altan-og indgangstacade tra blok E, 1:300. Facadepartierne er lette træbaserede konstruktioner, langs hvilke træaltaner med udhuse er opstillet.

Fig. 7. Tværsnit i blok E, 1:100. Tegningen redegor for husets tvær- og højdemål. Husets modulbredde på $9,54 \mathrm{~m}$ opnầs med 7 standarddæk plus specialbredder langs facaderne. Tagfladerne udfares forsat med opbygning af lodret tagpande.

Detaljer

Artiklens øvrige illustrationer, figur 9-13, beskriver alle byggetekniske detaljer fra den omtalte blok E i VIBE 4-bebyggelsen.

Figur 9 er et vandret snit i et gavl-facade hjorne og viser disse hovedbygningsdele og deres samlinger samt murværksmål for hjørnets opmuring. Da gavlens totaltykkelse, 430 mm , ikke er murværksmodulær, må der tildannes en 70 mm -sten. Havde gavilykkelsen været $\mathrm{n} \times 60 \div 12$ mm, fx 408 eller 468 , kunne ommuringen været foretaget med $1 / 1+3 / 4$-sten eller $2 \times 1 / 1$ sten, altsả standardformater.

De to lodrette og det vandrette snit på figur 10 beskriver forholdene omkring vinduesisætningen i husets tunge facade. Efter opkiling og ydre fugning placeres tilsætningspaneler of træ og vinduespladen af marmor; som tætning bag disse indfatninger foretages en opskumning. Isoleringsteknisk synes vinduets placering at være ca. $50-100 \mathrm{~mm}$ for langt ude, med et for stort spring mellem termoglassets og facadens isoleringsplaner. Dette resulterer i en mindre kuldebro langs karm og indfatning.

Den svære tagfodsdetalje er vist i lodret snit pá figur 11. En 200 mm høj gesims af bredsten afslutter ydervæggen og inddækker spærkonstruktionen. Undertag, lægter og tegl er oplagt korrekt i tilslutning til tagrenden. Imellem spærene er der indlagt et tagfodselement, der sikrer den nødvendige vidluftning langs sternlinien. Elementet er opbygget af 19 mm vandfast finer med $25 \times 25 \mathrm{~mm}$ afstandslister pr. 500 mm .

Tagfodens udluftningsdetalje er fulgt op i tagets kipkonstruktion, der i lodret snit vises på figur 12. Denne tegning beskriver den lodrette tagpande, forårsaget af det omtalte spring i tagfladerne. Omhyggelige papindlæg og afslutning af undertag sikrer tæthed mod vandindtrængen og tillader udluftning af tagrummet. Forneden inddækkes med bly, foroven med træstern og pap.

Trapperummets tag er lavere end taget over boligarealerne. Dette giver anledning til specialudførelse af trappens sidevægge over tag samt af tætning af skot-

2 Fig. 10. Vandret og lodrette snit mellem tung ydervæg og vindue, 1:5.1 Ydervæg bestående af betonvæg, isolering og skalmur. 2 Sảlbæk. 3 Tegloverligger. 4 Udadgàende vindue. 5 Tilsætningspanel. 6 Marmorplade pả opkiling. 7 IIlmodbảnd, stopning og opskumning.

Fig. 8. Tværsnit i trapperum i blok E, 1:150. Trapperummet er trukket lidt tilbage fra facadelinien, og taget er sænket en smule, jvf. ogsà figur 13.

Oversigtsbillede fra færdig boliggruppe.

Fig. 9. Vandret snit i gavlfacadehiorne, 1:10. 1 Betonelement. 2 Skalmur. 3 Let facadeparti. 4 Specialsten. Fugen mellem facade og gavl udfores med tæiningsbånd yderst, stopning og inderst en forsegling.

Fig. 12. Lodret snit i tagpande, 1:5. 1 Spærfag. 2 Undertag. 3 Vandfast finer. 4 Vingetegl. 5 Blyinddækning. 6 Lægter, $50 \times 50 \mathrm{~mm}$. 7 Pap. 8 Profileret metalplade.

Fig. 11. Lodret snit i facade ved tagfoden, 1:5. 1 Tung ydervæg. 2 Dækelement, bredde 865 mm .3 Spærhoved og -fod. 4 Isolering, 250 mm .5 Tagfodselement for udluftning af tagrum. 6 Undertag.

rende; byggeteknikken er vist på figur 13. Bæring af skalmuren sker traditionelt via påboltet vinkelstål. Skotrenden derimod er mere kompliceret opbygget og forekommer sårbar. Pap og vandfast finer er indlagt som underlag for inddækningsprofiler og kantlægte, hvorefter tæetheden til slut alene beror på holdbarheden af en elastisk fugning itag-væg-hjørnet. Det skal medgives, at fugen har tagfald $=20^{\circ}$, men sikkerheden imod vandindtrængen forekommer at være tæt på 1,0 .

Afsluttende bemærkninger

Som det fremgår af artiklen, vokser der i disse år mange hundrede spændende boliger op på Virumgårds arealer. Et besøg på byggepladsen giver allerede nu spændende arkitektoniske oplevelser i husenes form, farver og materialer, og det store område inddeles i klare, veldefinerede afsnit og grupper. Byggeteknik og håndværksmæssig udførelse virker solidt med mange velloste detaljer og kun få klaringer, der endnu har mulighed for bearbejdninger.

Fig. 13. Lodret snit i tag over trappe og itrappesidevæg, 1:5. 1 Tag over trapperum. 2 Trappesidevæg. 3 Træbjælke, $75 \times 125 \mathrm{~mm} .4$ Stålprofil L $180 \times 180 \times 16 \mathrm{~mm} .5$ Pap. 6 Taglægte. 7 Vandfast finer. 8 Zinkprofil. 9 Kantlægte. 10 Inddækningsprofil. 11 Elastisk fuge. 12 Metaltagplade.

DIAB og SBI beskriver Aktuelle Byggerier 98

Af lektor, civilingeniør
Ejnar Søndergaard, DIAB
\section*{Tegninger.}
Grete Hartmann Petersen
Fotos: Finn Christoffersen

Bygningen set fra luften. Nord er opad i billedet, og til hojre ses Kongevejen mod Hillered. Sortemosevej ses nederst i billedet. Den store floj til haire med ovenlysene er produktionsflojen. Bemærk den fille atriumgård. Flojen til venstre rummer hovedsagelig kantine og servicerum. Midt i forbindelsesflojen ses hovedindgangen. Det store ovenlys her dækker over det smukke receptionslokale. Bemærk de nord/sydgående lange hvæ/vede ovenlys over de gennemgående forbindelsesgange ito etager.

Navn: EPL - European Program Library.

Beliggenhed: Sortemosevej, Allerød.

Art og omfang: Center for produktion og vedligeholdelse af EDB-programmer. $16.700 \mathrm{~m}^{2}$ etageareal fordelt på kontor og møderum: $3.500 \mathrm{~m}^{2}$, produktion: $9.000 \mathrm{~m}^{2}$, kælder: $2.000 \mathrm{~m}^{2}$, teknik og service: $2.200 \mathrm{~m}^{2}$.

Bygherre: IBM Danmark A/S.

Rådgivere: Arkitekt: Palle Leif Hansens Tegnestue A/S. Konstruktioner: Cowiconsult AS. VVS-installationer: Birch \& Krog. boe K/S. El-installationer: Mogens Balslev A/S.

Entreprenører og leverandører: Hovedentreprise: Rasmussen \& Schiøtz A/S. Af underentreprenører og leverandører kan nævnes: Tagdækning: A/S Phønix Contractors. Facader: H.H. Robertson Nordisk A/S. Alu-stål-glas: A/S H.S. Hansens Fabrikker. Solafskærmning: Blendex A/S. Tømrer og snedker: Dansk Montageselskab ApS og Ecoterm A/S. Betonelementer: Højgaard \& Schultz A/S, AJS Modelbeton A/S, Dansk Spændbeton A/S, EDB-Beton, C C Brun Betonelementer ApS og Jydsk Betonelementfabrik A / S. Ventilation: Glent \& Co. A/S. El-installationer: Kemp \& Lauritsen A/S.

Opførelsesterminer: Start på byggeriet: oktober 1984. Første fase af indflytning: december 1985. Indvielse: juni 1986.

Økonomi: Samlet hovedentreprise ca. 100 millioner kr. excl. moms.

Bygningen set fra vest fra Ny Allerod gaard og med Kongevejen i baggrun den. Bag de hoje vinduesflader ligger kantinen med plads til 750 personer. Den buede vinduesflade er trukket tif bage i forhold til den rektangulære grundplan, sáledes at de yderste at de cirkulære sajler stàr et stykke uden for glasvæggen, og hvorved der dannes et overdækket udeareal. Til venstre de kontorer, der er placeret i den vestlige side af østflejen. Den lave bygning til hoire er et cykelskur. Denne er beklædt med Formawall som det avrige byg ningskompleks.

EPL - European Program Libra ry - er den korrekte firmamæssige betegnelse for IBM's nye bygning i Allerød. EPL dækker imidlertid over andet og mere end et »bibliotek «. Det står i virkeligheden for produktionen og vedligeholdelsen af de programmer, der kører på IBM-maskiner i næsten 90 lande i Europa, Mellemøsten og Afrika. EPL har midlertidigt haft til huse i IBM's hovedkvarter i

Lundtofte, siden det i 1983 blev flyttet til Danmark fra Frankrig.

Byggeriet blev kendt, før det overhovedet var påbegyndt, idet dets placering nær naturskønne områder på en grund, der skulle overføres fra landzone til byzone, gav anledning til megen debat. Byggeriet blev indviet i juni 1986, og efter færdiggørelsen har der vist ikke lydt kritiske røster. Arkitekturanmelderne i bladene har

Figur 1. Oversigtsplan over bygningen Sidelinien i modulnettet er $7,20 \mathrm{~m} .1$. Hovedindgang. 2. Reception. 3. Konto rer. 4. Kantine. 5. Pauserum. 6. Teknik rum. 7. Lager, pakning og forsendelse 8. Produktion. 9. Atriumgård
været positive i deres vurdering af byggeriet.

Byggeriet er på ca. $17.000 \mathrm{~m}^{2}$ etageareal, mens grundarealet er på ca. $110.000 \mathrm{~m}^{2}$. Allerede under byggeriet blev etagearealet forøget med ca. $4.000 \mathrm{~m}^{2}$ til de nuværende $17.000 \mathrm{~m}^{2}$, og der forventes yderligere udvidelser i fremtiden. Gennem placeringen på grunden og byggeriets udformning er sikret, at bygningen kan udvides til $40.000 \mathrm{~m}^{2}$ etageareal.

Bygningskonstruktionerne

IBM har ikke de bedste erfaring fra hidtidigt byggeri, hvad angår betonfacader og skalmurede facader. For det nye byggeris vedkommende blev det derfor prioriteret højt, at vedligeholdelsesarbejder ikke skulle blive aktuelle mange år frem i tiden. Arkitekten har løst opgaven ved at bygge et »tørt< hus. Bortset fra kældergulve, terrændæk i halområdet og et sprinklerreservoir under terræn består samtlige bærende dele i bygningen af betonelementer. Og som facadebeklædning er benyttet en curtain-wall, der tilfredsstiller de høje krav til holdbarhed.

Som det fremgår af grundplanen har bygningen form som et H med ulige store ben. Det korte vestlige ben, midterpartiet og den vestligste strimmel af det store højre ben er i to etager plus kæl-

der. I kælderen i midterpartiet er placeret et sprinklerreservoir på $300 \mathrm{~m}^{3}$. Den øvrige del af H'ets store ben er et halområde i én etage med dobbelt etagehøjde. Her er der kælder i den sydlige halvdel. Midt i halområdet er placeret en atriumgård.

Bygningens plan er baseret på et grundmodul på $1,20 \mathrm{~m}$.

Betonkonstruktionen

For den del af bygningen, der er i 2 etager plus kælder, består betonkonstruktionen i hovedtrækkene af pladeelementer oplagt på vægelementer og facadeelementer. Pladeelementerne er 220 mm

Det sydvestlige hiorne af produktionsflojen med mellembygningen i baggrunden. Alle udadgảende hjorner af bygningen dannes af afrundede Formawall elementer, hvilket understreger det indtryk af whigh techu, bygningen giver. Etageadskillelsen mellem stue og forste sal er markeret med en bred lysegron fuge. Denne forlober rundt om hele bygningen og binder komplekset sammen.

Glaspartiet til hoire er atslutningen pà den ca. 135 m lange forbindelsesgang i to etager i den vestlige side af produktionsfløjen. Dækket på 1. sal i gangbroen er kun i halv bredde, idet det er udkraget som en altan. Herved kan lyset fra det huælvede ovenlys nå ned ogsă i gangen i stueetagen.
tykke huldæk med en største spændvidde på $7,20 \mathrm{~m}$. Vægelementerne er 180 mm tykke, kælderydervægelementerne dog 250 mm. Facadeelementerne er etagehøje og $3,60 \mathrm{~m}$ brede svarende til bredden af et standardkontor. Elementerne er forsynet med tre vinduer. Pladetykkelsen er 180 mm , ribberne mellem vinduerne og langs randene er 230 mm høje.

Kantinen, der er placeret i det nordvestlige hjørne af bygningen, har dobbelt rumhøjde. Her bæres taget af 7 m høje søjleelementer med en indbyrdes afstand på 7,2 m. Søjlerne har cirkulært tværsnit med et tværmål på 360 mm .

Halområdet, der arealmæssigt udgør den største del af byggeriet, er overdækket med TTS-tagplader med spændvidden $14,4 \mathrm{~m}$, dvs forspændte dobbelt-T-plader med saddelform og en hældning 1:40. Bredden af elementerne er $2,4 \mathrm{~m}$, højden i kippen er 600 mm , og hver tredie element er forsynet med fire ovenlys på $2 \times 1 \mathrm{~m}$. Tagpladerne spænder i øst/vest retning mellem konsolbjælker, der i nord/syd retning spænder $7,2 \mathrm{~m}$ mellem rektangulære betonsøjler med kvadratisk tværsnit $420 \times 420 \mathrm{~mm}$. Søjleafstanden i halområdet er således $7,2 \mathrm{~m}$ i nord/syd retning og $14,2 \mathrm{~m}$ i øst/ vest retning.

Dækket over kælderen i det sydlige halområde består af TT-elementer, der spænder $7,2 \mathrm{mi}$ nord/syd retning mellem konsolbjælker, der ligeledes spænder $7,2 \mathrm{~m}$ i øst/vest retning. Søjleafstanden i kælderen er således 7,2 m i begge retninger. TT-elementerne er 300 mm høje og $1,2 \mathrm{~m}$ brede. Facaderne i halområdet er lodret orienterede elementer i fuld højde - ca. 6 m høje og $2,4 \mathrm{~m}$ brede. Bruttotykkelsen er 180 mm , i »spejlet<< er tykkelsen 80 mm . I gavlene er anordnet vandrette betonelementer, der spænder $3,6 \mathrm{~m}$. Højden af elementerne er typisk $1,2 \mathrm{~m}$ og tykkelsen er 90 mm .

Som det fremgår er betonkonstruktionen traditionel. Elementer og samlingsdetaljer i det rå hus er typiske for betonelementbyggeriet i dag.

Facadebeklædningen

Er råhuset traditionelt er imidlertid facaden en nyhed på vore hjemlige breddegrader. Facadesystemet har haft sin nordeuropæiske debut i det foreliggende byggeri og i en $7.000 \mathrm{~m}^{2}$ nybygning for Meadox Surgimed i Stenløse, der er opført i samme periode. Robertson Formawall har været benyttet i USA i godt en halv snes år, og med opførelse af en fabrik i Holland er produktet nu introdu-

Figur 2 Sinit gennem facade, 1:40. 1. Robertson Formawall 3000. 2. Bredere fugeprofil, der indgàr i Formawall systemet. Profilet danner et lysegrent bånd rundt om bygningen i niveau med etageadskillelsen. 3. Sokkelplade af aluminium. 4. 125 mm Rockwool Super A. 5. Faste persiennelameller. 6. Kassette, der danner magasin for regulerbare persienner. 7. Betonfacadeelement. 8. Betondækelement.

ceret af Robertson på det europæiske marked. Robertson Formawall 3000 er en curtain-wall bygget op efter honeycomb-princippet og er helt igennem af aluminium. Panelelementet, der udgør selve beklædningspladen, er i IBM-byggeriet typisk 600 mm eller 1.200 mm bredt og spænder vandret typisk 3.600 mm . Systemet kan i $\emptyset v r i g t ~ l e v e r e s ~ m e d ~ e l e-~$ menter i op til 2.500 mm bredde og 6.100 mm længde. Panalet består af en $1,5 \mathrm{~mm}$ tyk forplade og en $1,0 \mathrm{~mm}$ tyk bagplade af aluminium med et indbyrdes mellemrum på 12 mm , som er udfyldt med en aluminium honeycomb. Dækplader og honeycomb er limet sammen ved en speciel tek-
nik. Honeycomb lamellerne er perforerede med mikroskopiske huller for at udligne damptrykket i elementet.

Langs randene er for- og bagplade samlet med ekstruderede aluminiumprofiler. Disse er udformet således, at to paneler kan samles i en fugelås, idet der efterlades en tilbageliggende fuge. Bredden af fugen kan afpasses efter arkitektens ønsker. Tætheden af fugen tilvejebringes ved tretningslister af neopren. I det ekstruderede profil langs panelets øvre kant er indbygget en kondensrende. Eventuel kondensfugt ledes ud til ydersiden gennem spalter anbragt ud for de lodrette fuger. Facadebeklædningen er
ophæengt i betonkonstruktionen ved hjælp af rustfrie stålbeslag.

Honeycomb-konstruktionen giver panelerne stor stivhed, og den udmærker sig ved høj grad af planhed. Afvigelsen fra det plane er mindre end $0,1 \mathrm{~mm}$ over en målelængde på 600 mm , og krumningen af elementet er under 1 mm målt over 2 m . I virkeligheden er elementerne mere plane end trukket glas.

Det særlige ophængningssystem gør, at ikke alene det enkelte honeycomb-element men også facaden som helhed udmærker sig ved stor planhed. Og planheden bibeholdes uafhængig af skiftende temperaturforhold. Som det fremgår af snittet gennem ele-
mentet, er det enkelte element fastgjort til betonkonstruktionen foroven, mens det forneden er dilaterende styret af det underliggende element. Ophængningen er således statisk bestemt, og der kan ikke opstå temperaturspændinger i elementet. Ydermere medfører aluminium-honeycomben, at temperaturen stort set er den samme på forsiden og bagsiden af elementet, hvorfor krumning af elementet ved ekstreme temperaturer undgås. Ved facademontagen er afmærkningen foregảet ved hjælp af laserlys.

På ydersiden er panelerne belagt med PVF_{2}-Kynar 500, der er en polyvinylfluorid med sæerdeles gode egenskaber hvad angår vejr-

Figur 3. Snit visende princippet i Robertson Formawall 3000, 1:2. 1. Honey-comb-elementet. 2. Langs randen af sluttes elementet med pålimede ekstruderede aluminiumprofiler. 3. Ekstruderet profil, der er fastgjort i det nedre element og dilaterer i det ovre. Profilet danner bunden af fugen. Bemærk kondensrenden. 4. Ophængningsprofil fastgiort til 5. Rustfrit stålbeslag fastgiort til betonkonstruktion. 6. Ekstruderet profil hvormed vægelementet clipses til ophængningsprofilet 4.

bestandighed, holdbarhed og formbarhed. Kynaren er påført i to lag vådt i vådt til en samlet tykkelse på $40 \mu \mathrm{~m}$. I byggeriet er valgt en lys elfenbensfarve til selve panelerne, mens fugerne er farvet \gg lvory green< - en turkisgrøn farve, der matcher panelerne.

Facadeentreprisen er på ca. 9 mill. kr. excl. moms, hvori er medregnet 125 mm Rockwool Super A-isolering. Det er således en relativ dyr facade. For pengene har man fået en facade, der udstråler kvalitet og nogternt design, og som formentlig ser ligesådan ud om 20 år. Ved en helhedsvurdering er prisen for facaden derfor måske ikke så høj endda.

Interioret

Der er lagt et stort arbejde i at udforme kontorer og øvrige ar-bejds- og opholdsrum så hensigtsmæssigt og smukt som muligt. Interiøret er karakteriseret ved lette skillevægge af gips, nedhængte gipspladelofter og vinduesbrystninger af bukket plastlaminat pålimet spånplade.

Belysningen af det $17 \mathrm{~m}^{2}$ store standardkontor er tilrettelagt under hensyntagen til, at arbejdet i rummet hovedsageligt foregår ved skærmterminal. Belysningsarmaturet er konstrueret specielt til dette byggeri i samarbejde med Louis Poulsen \& Co. A/S. Armaturerne er asymmetriske og forsænkede i loftet tæt ved vinduerne. Dette sammen med en placering af arbejdspladsen et stykke væk fra vinduet medvirker til at generende reflekser på EDB-skærmen undgås.

Belysningsintensiteten er lavere end normalt, nemlig ca. 300 lux mod normalt ca. 500 lux, hvilket giver en mere behagelig arbejdsbelysning, når der arbejdes ved skærmterminal. Lyset fra vinduerne kan styres individuelt gennem et persiennesystem.

Solafskærmningen består af et sæt faste lameller foroven og et sæt regulerbare lameller forneden, der elektrisk kan indstilles individuelt.

Til opvarmning af kontorerne er der placeret radiatorer under

Billede fra 1. sals niveau til de to pauserum, der er beliggende i umiddelbar til knytning til kantinen. Adgangen til kantinen er til hojre fra pauserummet i stuen. Fra 1. sals pauserum er der en vinduesvæg ud mod kantinen. Bag væggen af glasbygningssten er indrettet thekøkken.
vinduerne. Luftfornyelsen sker mekanisk, idet vinduerne kan og må - ảbnes.

Bygningens opvarmningssystem er baseret på udnyttelse af overskudsvarmen fra EDB-anlæggene. Med en varmepumpe transformeres spildvarmen fra de store computeres kølevand til rumopvarmningssystemet. Ned til en udetemperatur på ca. minus $10^{\circ} \mathrm{C}$ er bygningen selvforsynende med varme. Forst ved lavere temperaturer træder et naturgasfyret opvarmningssystem i funktion.

TEKNISK UDSTYR:

Kolemaskiner:
Varmepumpe: Gaskedel:

Byggeriet er totalsprinklet: Kontor, pakkeri og lager: EDB-rum:
Sprinklerreservoir:
Ventilation:
Computerarealer:
Kontorer:
Mødelokaler m.m.:

2 stk. à 650 kW (EDB-maskiner) 1 stk. à 550 kW (opvarmning) 1 stk, à 750 kW

Vảdt system
Tort system
$300 \mathrm{~m}^{2}$

Koling via fan-coils
Mekanisk ventilation uden keling Mekanisk ventilation med koling

Hoje-Tåstrup Station

Af civilingeniør Klaus Hansen
SBI
Tegninger:
Grete Hartman Petersen og de projekterende.
Høje-Tåstrup stations markante hvælv behøver næppe nogen nærmere præsentation. Heller ikke at stationsbygningen indgår som et af hovedelementerne - arkitektonisk og funktionelt - i den nye »købstads-bebyggelse«, som nu er under opførelse. Men at bygningen også rummer interessant og gennemtænkt byggeteknik er emnet for denne artikel, som specielt vil redegøre for hvælvenes opbygning og konstruktive virkemåde.
$»$ Høje-Tåstrup med de store linier«er nu slogan for udviklingen af Høje-Tåstrup kommune. »De store linier« linier refererer dels til regionplanens transportkorridorer gennem kommunen, dels til den nye stationsbygnings iøjenfaldende profil, som har været afbildet overalt - også på frimærke, og som er blevet modtaget med en bredere entusiasme end næsten noget andet dansk nybyggeri.

Det må derfor også have interesse at dykke ned i byggeteknik-

DIAB og SBI beskriver

 AKTUELLE BYGGERIER 99ken bag denne nye stationsbygning.

Bygningen er centralt placeret i et nyt boligområde, som skal danne center og sammenhæng i den hidtil meget spredte bybygning i kommunen. Byområdet er planlagt som en helstøbt by, som omfatter boliger, butikker, arbejdspladser, institutioner m.m. placeret tæt op ad hinanden eller i de samme bygninger. Også disse nye »byhuse« kunne det være værd at skrive om.

Art og omfang

Bygningerne indeholder stationshal, servicebygninger for passagerer og personel, samt trafikveje for passageromstigning, samlet areal $6000 \mathrm{~m}^{2}$.

Bygherre
DSB, Bygningstjenesten.
Arkitekter
DSB, Bygningstjenesten.

Jacob Blegvad Arkitektkontor A/S.

Ingeniører, konstruktioner

 DSB, Rådgivende Ingeniørkontor.B. Hojlund Rasmussen Rådgivende civilingeniører.

Entreprenorer

Beton: Helge Hansen Aps.

Stål: M.J. Grønbeck og Sønner A/S.

Tagdækning: KBK Tagentreprise A/S og Svend Eckerot Entreprise A/S.
Facadekomplettering:
Dansk Lukningsentreprise A/S.

Opførelsesdata

Projekteringen startede pri-
mo 1981 og byggeriet medio 1985.

Indvielsen fandt sted den 31. maj 1986.

Økonomi

Den totale entreprisesum eksklusive moms andrager knap 35 mill. kr., heraf udgør stålentreprisen ca. 14 mill. kr.

Fig. 1. Den nye banegård danner samtidig bro mellem to nye bydele, som tilsammen skal udgare et nyt centrum i Heje Tåstrup. Bydelene er planlagt som fortættede bebyggelser med karakterfulde gader og pladser omgivet af bygninger, som rummer såvel boliger som butikker og erhverv.

Fig. 2. Stationsbygningens allerede velkendte former er domineret af cylinderskalssegmenter, portaler over buskorebanen og en langsgående ramme, som understotter toppen af hvæ/vene. De tilstodende gule byhuse forekommer lidt stive i deres klassicistiske udtryk, medens mellembygninger og halvtage fremstår mere anonyme.

Fig. 3. Plan over stationens centrale ude- og inderum. Det store hvælv spænder savel over stationshallen som over busgaden, se figur 2, de små hvæelv alene over stationshallen. De tilstodende byhuse er ogsả funktionsmæssigt knyttet sammen med selve stationsbygningen, idet stationskontorer, -butik og minibar er placeret i disse.

Fig. 4. Lodret snit i hovedhvælv, 1:250. Som det ses bæres hvælvene af en række buer båret af gitterdragerne og betonoverliggere som via stål- og betonsøjler afleverer den lodrette last til den underliggende betonbro. Langsgȧende vindlast optages i gitterkonstruktion, som følger hvelvet, og overføres hovedsageligt til betonsøjlerne, som er indspændt i brobanen. Detaljerne $E^{2} 4$ og $E^{2} 1$ er vist pà figur 5, 6 og 7, som tillige redegor for betonportalens opbygning.

Planlægningsforløbet forud for de nu opfarte bygninger er bl.a. beskrevet i (1) og (2). Regionsplanen fra 1972 og Jacob Blegvads tegnestues vinderprojekt fra 1978 i konkurrencen om udformningen af en ny by omkring den kommende banegård er vigtige faser i dette forleb, hvor man i et samlet greb med mange samarbejdspartnere har arbejdet sig frem mod de bygninger, der nu vokser frem. Jacob Blegvads arkitekter og DSB bygningstjenesten har et fælles ansvar for stationsbygningen, som tillige er en del af broen over banelegemet og er forbundet - ogsả funktionsmæssigt - med nabobygninger på begge sider af broen, se figur 1-3.

Klassicistisk arkitektur

Set med ingeniørbriller er stationsbygningerne opbygget af enkle velkendte konstruktionselementer - betonportaler, stålramme og cylinderskalssegmenter, som sammen med store glaspartier og flade tage danner markante rammer om stationsbygningens ydre og indre rum, se figur 2 . Betonportalerne fremstår pudsede, stålrammen er malet blả og cylinderskallerne beklædt med rustfrit stål udvendigt.

Indvendigt er stationen meget anderledes end de sidste års nye S-togsstationer. Det tunge sort rø-
de image er erstattet af lette, lyse lofter udført af trapez-stålplader, der sammen med to lysspalter langs rammeoverliggeren omslutter Henning Damgaard Sørensens »skyformationer« over escalatorerne.
Ovenlysene i toppen af hvælvene kan tillige anvendes til at ventilere stationshallen. Luftindtaget foregår via de permanente åbninger omkring escalatorerne. Kraftig ventilation kan være nødvendig, dels i forbindelse med høje varmegrader som følge af de store viduesarealer, dels i forbindelse med brand, hvor gangarealerne skal holdes fri for røg.

Lette stålbygninger båret af bro

Fundamentet for stationsbygningen består af fire parallelle forspændte betonpladebroer, som spænder kontinuert over 5 fag. Broens totale bredde er ca. 60 m , dog udvidet til ca. 75 m i den ene ende, og længden er ca. 115 m .
Selve stationsbygningen er hovedsageligt udfart som stålkonstruktioner i kombination med lette glasfacader og tagdækninger for at reducere lasten på broen. Hertil medvirker også, at betonportalerne er udført af hule søjler og overliggerne af ribbekonstruktioner, se figur 6 og 7 .

I forbindelse med projekteringen er der anvendt nye principper
for beskrivelsen af stålkontruktionerne, hvilket blandt andet indebærer en grundig og mere skematiseret behandling af kontrolforanstaltningerne.

Den bærende konstruktion

 udnytter alle formelementerDet store hvælv spænder over godt 17 m på tværs og 14 m på langs over stationshallen, de små hvælv godt 10 m og 14 m .

Cylinderfladerne er udfort af trapezstálplader, som spænder på langs. Disse understøttes af en række stålbuer, hvoraf nogle få hovedbuer føres ned til brodækket. De øvrige sekundære stålbuer understattes af gitterkonstruktioner, som er placeret i de nederste lodrette flader i hvælvkonstruktionen, og af betontrugbjælker, som indgâr i portalkonstruktionerne, se figur 4 og 6 . Det vandrette sidetryk fra stålbuerne optages af HE 280 B stål-bjælker og af betonbjælkerne, som overfører kræfterne til søjler og til trækstænger i sprossekonstruktionerne i de store vinduesflader. Den langsgående rammekonstruktion, som understotter toppen af hvælvene, medvirker ved optagelsen af lodret last, men er ikke et nødvendigt led heri.

Vindlast på langs af hvælvene optages i første omgang af vinduessprosserne med rammesøjlen
som hovedsprosse. Hvælvene har indbyggede gitterkonstruktioner, som fører den langsgående vandrette last ned til stålsøjlerne og specielt til de stive betonsøjler, som indgår i betonportalerne. Alle søjler er indspændt i brodækket.
Vindlast på tværs af hvælvene optages af trapezplader og stålbuer og afleveres primært til de tre opsprossede vinduesgavle, dels af den nederste langsgảende stảlbjælke, dels ved skivevirkning i trapezpladerne i den øverste næsten vandrette del af hvælvene. Sprosserne i glasgavlene danner komplicerede rammer, som helst ikke må fả for store deformationer af hensyn til glasudfyldningerne. Vindkryds og gitterkonstruktioner iøvrigt er ikke anvendt i denne forbindelse.

Herudover bør det nævnes, at de vandrette deformationer som nødvendigvis må forekomme i og imellem betonbroerne optages af stålsøjlerne under hovedbuerne, og at portalscjlerne er dimensioneret til at kunne modstå en påkørselslast på 730 kN .

Konstruktionselementer og -samlinger

Stålbuerne er, hvor det har været muligt, udfort af eftervalsede standardprofiler og i de resterende tilfælde af opsvejste I-profiler.

Fig. 5. Detalie af samling mellem diagonal, rigel og hovedbue, 1.10. Bemærk isæer udformningen af diagonalens tils/utning til knudepunktet. Diagonalen forløber retlinet mellem de krumme tag-og loftsbeklædninger, som ikke er indtegnet, se figur 6.

Fig. 6. Lodret snit i betonportalbiælke og stảlhvælv, 1:50. Betonportalerne indgàr som et integreret led i den bærende konstruktion, se figur 4. Trugbjælkerne (1) bærer såvel „frontispicerne« (3) som to sekundære stålbuer (2), som er fastholdt af indstabte bolte i tværribber i trugbjælken. Af hensyn til letheden er betonkonstruktionerne udfort at tyndvæggede ribbekonstruktioner.

Fig. 7. Vandret snit i betonporta/søjle, 1:50, og lodret snit i samling mellem denne og den vandretliggende hovedbjælke (1), HE 280 B, 1:10. Betonsøjlen har kerner af polystyrol (2) for at nedbringe egenvegten. De indstobte bolte i samlingen er placeret iindstobte hule rør, som muliggor korrektion af evt. storre lodrette og vandrette målatvigelser. Rorene injiceres med cementmortel efter montagen at stålbjælken.

Fig. 8. Vandret snit i hiørnesøjle, rammesøjle og glasfacade, 110. Hjørnesøjlerne (1), HE 400 B, er indkapslet af 6 mm faconbukket stålplade (2). Rammesøjlerne (3) er opsvejst af to RHS $250 \times 250 \times 8$ forbundet med 8 mm stålplade. Glasfacadens (4) sprosser er udført af RHS-profiler svejst sammen i sektioner, som så på byggepladsen er boltet sammen indbyrdes og til hiørne- og rammesøjler.

Fig. 9. Tværsnit i hovedbue og tagkonstruktion, 1:10. Den udvendige beklæedning af 0,4 mm stålplade (1) leveres iruller, "falsesu på byggepladsen og svejses sammen - samt med bindere - ved hiælp af en særlig somsvejsemaskine. 2. 50 mm mineraluld. 3.70 mm trapezstålplade. 4 . hovedbue, $200 \times 280 \mathrm{~mm}$ opsvejset stålprofil. 5.48 mm perforeret trapezstålplade, indvendigt beklaedt med glasvlies. 6. glasvæg mellem stationshal og busgade, se figur 10.

Aktuelle byggerier 99

Fig. 10. Stålhvælvene har stil- og konstruktionsmæssige relationer til tidigere tiders mere udstrakte brug heraf, bla. til Crystal Palace fra 1851. Her er de bærende konstruktioner et synligt led i arkitekturen, hvilket stiller storre krav til detaljeringen og til beskyttelsen af udvendige overflader.

Hovedbuerne som dels viser sig i vinduesgavlene, dels ender i synlige søjler i stationshallen, er af statiske og udførelsesmæssige grunde udført som de nævnte I-profiler, men fremtræder af arkitektoniske grunde i en rektangulær iklædning, som svarer til de RHS-profiler, som sprosserne er lavet af.

Alle montagesamlinger er udført som boltesamlinger og alt svejsearbejde altsá udført på værksted. Dette indebærer bla. at »sprosserammerne« i glasgavlene indeholder en kombination af svejste momentstive samlinger og af boltede charnier-samlinger Særligt hårdt belastede svejste samlinger kontrolleres særskilt.

De afstivende gitterkonstruktioner mellem stålbuerne rummer særlige geometriske problemer, idet de retlinede diagonaler dels skal holde sig indenfor det krumme mellemrum mellem loftbeklædning og den bærende yderbeklædning, og dels skal fæestnes til knudepunkterne på en sådan
måde, at der ikke opstår unødige tvangsspændinger i dem, se figur 5.

Samlingerne mellem stål- og betonkonstruktioner er udført på forskellig vis. Hovedbuernes søjler er indspændt i brodækket via direkte indstøbning i på forhånd udførte udsparinger heri. Andre samlinger er udført ved hjælp af indstobte bolte. Dette er for samlingen mellem de vandretliggende hovedbjælker, HE 280 B se figur 4, og søjlerne i betonportalerne foregået på en sådan måde, at der under montagen kunne optages ganske betydelige målafvigelser i alle retninger, se figur 7 .

Rustfri udadtil
 og lyddæmpende indadtil

Loft- og tagkonstruktionens opbygning er vist på figur 6 og 9 . Klimaskærmen er alene isoleret for at undgå kondensdannelse.
Den udvendige beklædning af $0,4 \mathrm{~mm}$ rustfri stâlplade har været anvendt på en række byggerier i Sverige, men endnu ikke meget
herhjemme. En særlig monta-ge-metode muliggør, at beklædningen kan udføres således at de stående false følger hvælvenes krumning. Den beskedne pladetykkelse medfører desværre også, at specielt de plane pladeafsnit slår sig i forbindelse med vekslende temperaturpåvirkninger. Pladerne blev monteret om vinteren i frostvejr.

Loftskonstruktionen er den eneste lyddæmpende flade i ventesalen, som via escalatorerne står i direkte åben forbindelse med perronerne. Dæmpningen er opnảet ved at perforere den tilbageliggende del af trapezpladerne, ved en bagvedliggende pålimet glasvlies og ved tilstedeværelsen af hulrum mellem loftsplade og klimaskærm. Herudover har det været overvejet at udføre særskilte lyddæmpende foranstaltninger direkte over escalatorerne og at dæmpe støjen på perronerne, ved at lyddæmpe soklerne ud mod sporlegemerne. V. L. Jordan har været lydteknisk konsulent.

Afsluttende bemærkninger

Høje-Tåstrup station bryder i nogen grad med den ærlighed og det mådehold som siges at karakterisere dansk arkitektur. De enkle næsten symbolske konstruktionselementer som former bygningen fortæller ikke tydeligt hvordan bygningen bæres, som fx i Crystal Palace, se figur 10 , - til gengæld er stålkonstruktionerne i vidt omfang beskyttet mod vejrligets påvirkninger. Og bygningens udtryk er umådeholdent stærkt og virkningsfuldt. Men er man først indenfor, opleves stationsbygningen venlig og næsten beskeden i størrelse.

Litteratur

(1) Jargen Hegner Christiansen: wHovedba negảrden i Høje Tåstrup - et fatamorgana på heden«.
Arkitekten, nr. 141986
(2) Foul Erik Skriver: "Forste station på vejen til en ny by". Ingenigren, nr. 23, 1986.
(3) Poul Erik Skriver:"Ping pong om æren" (om ingeniørernes rolle i bygningskunstens hi storie).
Ingeniøren, nr. 25, 1986.

Charloftenlund Park

Beliggenhed

På 5 tidligere villagrunde i Charlottenlund mellem Fredensvej og Kystbanen.

Art og omfang

Aldrevenligt almennyttigt boligbyggeri, bestående af 5 3-etagers blokke med 4 lejligheder på hver etage, ialt 60 lejligheder fordelt på $4.200 \mathrm{~m}^{2}$ bruttoetageareal.

Bygherre

Gentofte Almennyttige Boligselskab, v/ Dansk Almen-
nyttigt Boligselskab, Frederiksberg.

Projekterende

Arkitekt Søren D. Schmidt, Hørsholm. Ingeniør for konstruktioner og VVS: Birger Lund A / S, Rødovre. Ingeniør for el-installationer: Vagn Støttrup K/S, København V. Havearkitekt Morten Klint og Knud Lund-Sørensen, København K.

Hovedentreprenor

Højgaard \& Schultz A/S,

Bolig- og Institutionssektionen.

Leveranderer, råhus

Beton: 4K. Betonelementer: Højgaard \& Schultz A/S's betonelementfabrikker. Porebeton: $\mathrm{H}+\mathrm{H}$ Gasbeton A / S. Trapper. EDS-Beton. Vinduer og døre: Hamo.

Opforelsesdata

Jordarbejde påbegyndt i maj 1985, montage påbegyndt i oktober 1985, råhus færdig til indvendig aptering januar 1986, indflytning i juni 1986.

Som emne for artikel nr. 100 DIAB/SBI-serien Aktuelle Byg gerier faldt valget på et 3-etage boligbyggeri, opført af de velkendte standardiserede betor komponenter, projekteret enke og rationelt, men samtidig si spændende og rigtigt til bygherrens $ø$ nsker og krav, at en omtale er berettiget.

De projekterendes opgave var at formgive og producere en etagebybyggelse, der i størrelse og udseende kunne indpasses i et villamiljø, altså erstatte ældre villabyggeri og være nabo til eksisterende herskabelige villaer. Den nye bebyggelse er opført på 5 tidligere villagrunde i Charlottenlund og er udformet som 5 3-etagers blokke med 4 lejligheder pr. etage. Artiklens fotos samt situationsplanen på figur 1 redegør for byggeriets hoveddispositioner.

Planlosningen

Figur 2 viser en etageplan med vandrette hovedmål/modulmål. Planen er opbygget over en adgangskerne på $8,8 \mathrm{~m} \times 39 \mathrm{M}$ samt 4 grungenheder på $9,65 \mathrm{~m} \times$ 60 M .

Adgangskernen indeholder 2-lobs trappe og elevator samt skarnrum i etage 1 , naturgasfyr i etage 2 og spilrum i etage 3 . Desuden føres el og målerskabe op langs affaldsskakten, hvorefter kablerne føres til krybekælderen, hvorfra fordeling til lejlighederne sker i installationsskakte placeret i baderummene.

De 4 grundenheder er placeret rundt langs kernen på en sådan måde, at alle facadelinier brydes. Hvis fremspringet ved indgangspartiet medregnes, er der ialt 14 hjorner i én blok: 9 udadgående og 5 indadgående. Med hjørnelosninger under 45° i betonsandwichelementerne har dette ikke været væsentligt fordyrende. To af enhederne, III og IV, udgør hver ét lejemål med 2 rum samt køkken og bad, hvorimod de to andre, II og I, danner en 1-rums og en 3 -rums lejlighed. Lejligheder i etage 1 har terrasse og haveanlæg, mens lejlighederne i etage 2 og 3 indrettes med påhæengte altaner.

Bygningsdele

Råhuset opføres som nævnt af standardiserede betonkomponen-

Fig. 1. Situationsplan, 1:1000. De 5 ens 3-etagers boligblokke A - E er placeret mellem Fredensvej og kystbanearealet mod øst langs støjskærmen (4). Langs tilkørslen, Sophus Claussensvej, er der etableret 60 parkeringspladser, én pr. lejlighed. I områdets nordøstlige hiørne er én af de oprindelige villaer bevaret. 1. Adgangsstier. 2. Nyttehaver. 3. Solkroge. 4. Støjskærm i skellet mod kystbanen.

Fig. 2. Etageplan, modeloversigt, 1:200. En 3-etagers blok er opbygget over en adgangskerne på $8,8 \mathrm{~m} \times 39 \mathrm{M}$ samt 4 grundenheder pà $9,65 \mathrm{~m} \times 60 \mathrm{M}$. Lejlighed I er en 3-mands type, II en 1 -rums, mens III og IV begge er 2 -rums lejligheder. 1 . Adgangskerne med trappe, elevator og installationsrum. 2. Entre, gang. 3. Stue. 4. Køkken. 5. Værelse. 6. Bad. 7. Altan.
ter: 215 mm huldækelementer med spændevidde $60 \mathrm{M}, 150 \mathrm{~mm}$ vægelementer samt hvide afsyrede betonsandwichfacader med specielle hjømesamlinger, sternkanter samt vindues- og derindfatninger, se figur 6 .

Trappehusenes facader og dets halvcirkelformede tag er udformet over RHS-profilrammer, med isolering, plast og beklædningsplader samt en regnskæerm af profilerede blå stålplader, som på indgangssiden er skråtstillet under 45°, se f.eks. facadeopstalten på figur 3. Særlige stålrammer med påsvejste vandafledningsprofiler danner indfatning for indgangsparti og vindue i kernen.

Tagkonstruktionen er: betondæk, kileskåret trykfast isolering og EPDM-tagmembran. Oven på denne egentlige tagopbygning er der på hver af de 4 grundfelter opstillet små telttage: saddeltage på 45° af hvide profilerede stålplader med skråtstillede profiler i »gavlene«. Sammen med kernens buede tag giver disse konstruktioner husene et karakteristisk og et mere traditionelt udseende og er med til at udjævne de ellers markante forskelle mellem ældre villabyggeri og højt industrialiserede boligprojekter.

Råhuset forsynes endvidere med påhængte altaner, der næermere beskrives \mathbf{i} det følgende afsnit. Indvendigt færdiggøres med 75 mm etagehoje porebetonvægge; gulve er trægulv på strøer og blode brikker.

Altankonstruktionen

Figurerne 4 og 5 omhandler den anvendte altanløsning, der tillige ses på opstalt og fotos.

Altanens hovedmål er $1,4 \times 2,5$ m , og dens konstruktive opbygning er baseret på en massiv $120 / 180 \mathrm{~mm}$ tyk betonplade, der

Fig. 3. Opstalt af nordfacade, 1:200. Tagformer, facadematerialer og altankonstruktionen er forhold, der medvirker til at gore bebyggelsen forfriskende anderledes: blå metalplader pả adgangskernens facade og halvcirkelformede tag, hvide saddeltage, hvidmalede bræedder pá ophængte altaner, og hvide afsyrede betonsandwichfacader.

Fig. 6. Vinduesdetaljer, 1:20. Lodret og vandret snit i vindueskonstruktionens indbygning i betonsandwichfacaden. Forstærkning sribberne i forpladen udgor sàlbænk og indfatning, samt modhold for vinduets side- og topkarm. Pà betonoverfladen markeres vindueshullet af et $12 \times 60 \mathrm{~mm}$ glat indfatningsbånd. 1. Sandwichelement. 2. Vindue. 3. Aluminium glasliste. 4. Damptæt forsegling. 5. Diffusionsảben tætning. 6. Hvid neoprene profil. 7. Vinduesplade.
understøttes i 4 punkter: 2 dorn-understøtninger på betonfacadens bagplade samt 2 ophængningspunkter i pladens forreste del, hvor trækbånd i fladstål $15 \times$ 60 mm understøtter pladen.

Dornene er, som figurerne viser, indstøbt i en pladeknast, der i geometri svarer til udsparringen i facadeelementet for altandøren. Dornen understøttes på mørtelpude, stålmellemlæg og neoprene, hvorefter etagekrydset udstøbes.

Samlingen mellem altanpladen og trækbåndet udføres med rustfri M20 bolt i rustfri insert RME med længde 200 mm . Trækbăndet monteres under en vinkel med lodret på ca. 50° og fastgøres i en udsparret reces i facadens bagplade. Trækbåndets længde, og hermed altanpladens hældning, ju-
steres i samlingen ved hjælp af pladeklip under en ståldorn gennem fladstålet. Alt brandeksponeret stål males til en klassification som BS 60 konstruktionsdel.

Altanerne færdiggøres med bræddebeklædte brystninger i stảlrammer, fastgjort til hængestænger og håndlister i varmtgalvaniserede $\oslash 48$ svære gevindrør.

Vinduesindfatninger

Figur 6 viser i lodret og vandret snit, hvorledes betonfacaden er udformet omkring dør- og vindueshuller. Forskiven forstærkes lokalt omkring åbningen, og der markeres en indfatning på elementets overflade med en dybde på 12 mm og en bredde på 60 mm . vinduets forside er rykket ca. 170 mm tilbage fra facaden. I side- og

Fig. 4. Lodret snit i altan, 1:20. Figuren er afbrudt ved snit i facaden: छverst ses detalier ved forankring af fladstàl, nederst ses dorhullets sidefals. Altanpladen af beton understottes via 2 ståldorne pà facadens bagplade og ophænges i 2 stàlbảnd, der boltes til pladens side. Justering at pladens placering toretages itræekbändets øverste samling med pladeklip under ståldorn. 1. Betonfacade. 2. Altanplade. 3. Forstærkningsarmering omkring reces. 4. Indstøbte ståldorne, Ø50 rusttrie. 5. Bøjler fra tacade og plade. 6. Lảsestảl. 7. Trækbånd $15 \times 60 \mathrm{~mm}$ for altanophreng. 8. Reces for forankring af trækbånd.
topfalsen er forskiven trukket 20 mm ind i vindues-(dør)hullet, således at karmkonstruktionen kan ligge an her, mod et elastisk fugebånd. Alle fuger langs vinduer og døre færdiggøres som 2 -trins opbygninger.

Afsluttende bemærkninger

Med det beskrevne byggeri er der skabt endnu et godt eksempel på de rige arkitektoniske virkemidler, der ligger i den traditionelle byggeskik med standardiserede betonelementer, nảr blot der ofres lidt ekstra kræfter ved udformningen af planløsningen og ved valg af form og materiale. Og som sådan er det et godt emne for vor jubilæums artikel nr. 100.

Boligerne er ældrevenlige: ingen niveauforskel fra fortov via Pplads og stisystem til husenes nederste etage, - elevator i alle adgangskerner, - brede skydedøre uden dørtrin til kokken og bad, bordovn i køk kener - m.m. Ingen tvivl om, at mange ældre Gentofteborgere, tidligere villaejere, vil være interesserede i disse moderne etageboliger skabt til og lagt i et herskabeligt villakvarter.

[^0]Fig. 5. Vandret snit i altan, 1:20. Fladstålets forankring i betonfacaden er kun vist på altanens ene side. Figuren beskriver pladens understotningspunkter og deres primæere armeringsforbindelser i form af placering af skjulte bjælker. Pladeknasten svarer i geometri til dørudsparringen i facaden. 1. Betonfacade. 2. Altanplade, krydsarmeret. 3. Armeringszoner for skjulte bjælker. 4. Indstobte ståldorne, 050 rustfrie. 5. Bojler fra facade og plade 6. Låsestål. 7. Trækbånd 15×60 mm for altanophæeng. 8. Reces for forankring af troekbånd. 9. Udstobning efter altanmontage.

Bøgehusene

Ideen, med at udforme boligen i zoner med differentieret opvarmning for at spare på energien, er så selvfølgelig, at den er praktiseret hver gang, der har været energikriser.

Men i forsøgsbyggeriet Bøgehusene er det første gang, man på vore breddegrader har iværksat en videnskabelig undersøgelse af hvad zonedeling og udnyttelse af passiv solvarme betyder for energiforbruget.

Bøgehusene fortsat

Bøgehuseneer realiseringen af det projekt, der vandt 2 . præmien i den arkitektkonkurrence, som KAB i 1980 udskrev om fremtidens boligbyggeri. Projektets hovedidé er at udvikle en zonedelt boligtype, hvor energiforbruget kan minimeres. Ideen er ikke ny, det er snarere en ny form for luksus at opvarme hele boligen til samme høje temperaturniveau. For et par generationer siden måtte man nøjes med at opvarme ét rum, ofte kokkenet, i hvis nærhed sovestederne var indrettede, medens resten af huset var uopvarmet /1/. Mange kan endnu huske, at
energiknapheden under 2 . verdenskrig tvang os til kun at have varme i ét rum.

I vinderprojektet har man $ø \mathrm{n}$ sket at få afprøvet, hvordan man ved zoneopdeling og moderne teknik kan skabe en velfungerende bolig, der er tilpasset årstiderne, så der opnås et minimalt energiforbrug. Figur 6 viser konkurrenceprojektets idégrundlag for, hvordan boligen udnyttes i afhængighed af klimaforholdene.

Forundersagelse

KAB fandt projektet sả spæendende, at man ønskede at afprøve ideernes berekraft og fik udarbejdet et skitseprojekt til en almennyttig boligbebyggelse, og søgte og fik tilsagn fra BUR om støtte til at
gennemføre projektet indenfor forsøgsbyggeriordningen.

Den væsentligste nyskabelse ved projektet er den gennemgående glaszone mod syd. For at indhoste og udnytte den viden, der allerede findes om væksthuses anvendelsesmuligheder og brugsmæssige og energimæssige indflydelse på resten af boligen, blev det besluttet at gennemfore en forundersøgelse af udvalgte eksempler på klimatilpassede byggerier i Nordeuropa. Denne registrering er udførligt beskrevet i /2/ Energibesparende boliger

1. delrapport.

For at opfylde de arealmæssige og \varnothing konomiske krav til almennyttigt boligbyggeri blev det nødvendigt med en omprojektering. Det medførte en ændring af den byg-
getekniske og modulære opbygning, og at de tre oprindelige boligtyper blev noget mindre.

For at klarlægge boligens hovedform er der udarbejdet modeller i 1:50 og 1:20 og detailudformningerne er udført i skala $1: 1$ på fuldskalalaboratoriet på Lunds tekniske højskole.

Projektbeskrivelse

Boligbebyggelsen Bøgehusene, der består af 6 boliger med 3 typer på henholdsvis, 61, $97 \mathrm{og} 127 \mathrm{~m}^{2}$, ligger på hjørnet af Dønnergårds alle og Greve Centervej. Indkørsel, parkering og udhuse ligger mod nord. Mod syd ligger haver ud til en fæelles grenning, der skærmes af en jordvold mod Greve Centervej.

På figur 1 er vist planer af boligen på $97 \mathrm{~m}^{2}$. Hver af de tre zoner har en bredde på 42 M . Zone A og B har tag med tosidigt fald på 25° beklædt med bølgeeternit B6. Det har været prioriteret højt, at alle indvendige overflader er varmeakkumulerende, og at alle klimaskærmens dele, undtagen sydvæggen mod væksthuset, er højisolerede ($\mathrm{k}<0,2 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$).

Den bærende hovedkonstruktion består af bærende lejlighedsskel af 250 mm betonelementer og 215 mm huldækelementer som dæk og skråt tag spændende mellem lejlighedsskellene dog med en mellemunderstøtning i stueetagen for den største lejlighedstype. Nordfacaden og gavlene er lette træskeletkonstruktioner med 195 mm A-batts isolering og beklædt
med mørke vandrette brædder med indbyggede vandrette lister med drypnæse, så vandet afvises. (Se figur $3 \mathrm{og} / 4 /$).

Lette skillevægge er 65 mm gipscellevægge. Væksthuset er udført af standard Aluminium-drivhusprofiler med ét lag glas for at holde prisen neden. For at undgå overophedning om sommeren er der store oplukkelige felter forneden og foroven, og under glastaget er monteret lette hvide gardiner.

Glasfacaden mellem zone B og C er udført af en lamineret trækonstruktion med isoleringsruder. Udvendigt er facaden forsynet med isolerende skodder, så man kan »lukke den indfangne solvarme inde«, nár det er koldt i væksthuset.

Gulvbelægningen i zone A er i begge etager bøgeparket (dog fliser i bad). I zone B er gulvet beton, opdelt i felter, og i væksthuset er lagt betonfliser i sand. Trods de meget hårde vægoverflader er der en overraskende behagelig akustik i zone B, hvilket må skyldes rummets form, tag og gulv er ikke parallelle, den store glasfacade, og at betonvaggen mellem zone $A \operatorname{og} B$ er lyddæmpet med to dekorative bånd af diagonalstillede brædder (se figur 2).

Som brandadskillelse mellem rækkehusene er der i glaszonen en 150 mm betonmur inddækket over glastaget, se figur 5. Ved nordfacaden, der er træbeklædt i to etager, er der bag træbeklædningen opsat en 8 mm internite 1 m til hver side fra lejlighedsskel.

Indeklima/installationer

Hvert hus er forsynet med en gaskedel Apollo og en 60 I varmtvandsbeholder VBF 60, begge fabrikat H.S. Tarm.

Varmtvandsbeholderens størrelse synes i underkanten for de største boliger, men har i praksis ikke givet anledning til klager. Ideen med zonedelingen er, at temperaturen i stueetagen på zone A under alle forhold kan holdes på $20^{\circ} \mathrm{C}$. For at sikre et stabilt indeklima er volumenet holdt nede, man har fået dispensation til en rumhøjde på kun $2,2 \mathrm{~m}$. Konstruktionerne er indvendigt tunge, men udvendt velisolerede. Vinduerne, der vender mod nord, er mindst mulige. Rumopvarmningen sker ved gulvvarme. 1. sal i

Fig. 3. Lodret snit i nordfacade ved tagfod, 1:10. 1 Dækelement. 2 Isolering. 3 Eternit B6. 4 Undertag. 5 Fugleklods. 6 Afstandsliste $19 \times 50 \mathrm{~mm} .7$ Fodblik. 8 Vindtæt pap. 9 Af standsliste 22 mm. 10 Bræddebeklædning 22 mm .11 Lasholter ved vin. due. 12 Zinkinddækning. 13 Vinduesindfatning. 14 Udadgående vindue.

Fig. 4. Lodret snit I nordfaca de ved fundament, 1:10. 1 Bøgeparket pá streer 22 mm .2 Klaplag 80 mm . 3 Isolering 100 mm. 4 Kapil. larbrydende lag. 5 Fundament. 6 Lecablok. 7 Randisolering 50 mm .8 Vindtæt pap. 9 Eter. nitplade. 10 Bræddebeklædning 22 mm. 11 Murpap. 12 Fugefilt. 13 Træskelet $45 \times$ 120 mm .14 PE . folie, $0,15 \mathrm{~mm}$.

Fig. 5. Vandret snit i facade mellem zone B og $\mathrm{C}, 170.1 \mathrm{Be}$. tonvæg i lejlighedsskel. 2 Brandadskillelse mellem væksthuse af 150 mm beton. 3 Bærende stålsøjle af IPE 120. 4 Svejst beslag for montage af vinduesfacade. 5 Oplukkelig isolerende skodde. 6 Inddækning. 7 Forseglet fuge. 8 Indad oplukkeligt vindue. 9 Fast vindue af isoleringsrude med 15 mm glasafstand.
zone A er værelser og soveværelser, her kan opvarmes efter behov med radiatorer.

Det høje rum i zone B er et alrum, der kan inddrages i opholdsarealet, når udeklimaet tillader det. Det er opvarmet med gulvvarmeslanger, der er opdelt i to dele, en vindueszone og en centralzone. Herudover er der i klart vejr et kraftigt solindfald gennem glasfacaden ud mod væksthuset i zone C . For at udnytte den varme, der vil samle sig under loftet i den høje zone B, er der opstillet et 100 mm »varmerør« med en ventilator, der kan transportere noget af dem varme luft til gulvet i zone B eller ved et sjæld lukkes ind i zone A. »Varmerøret<< synes dog noget underdimensioneret. Ventilatorens ydeevne er $80 \mathrm{~m}^{3} / \mathrm{h}$, det giver kun en varmetransport på 30 W pr. ${ }^{\circ} \mathrm{C}$ temperaturforskel. Dette må dog ses som en konsekvens af den meget stramme økonomi. Varmeanlægget er styret af en nyudviklet kedeleconomizer, fabrikat Danfoss type BEM 4000, for at sikre den optimale udnyttelse af kedelanlægget.

Dagslys

Teknikkerne har ikke overladt noget til tilfældighederne. Da man ønsker at minimere energiforbruget, er vinduesarealerne i zone A holdt på det mindst mulige. Men for at sikre rimelige lysforhold er der udfert dagslysberegninger, der har bestemt vinduernes udformning og størrelse. Alligevel virker de lavloftede nordvendte rum i stueetagen for skumle og huleagtige. Til gengæld er dagslyset i det højloftede rum i zone B blændende selv på en halvskyet dag i oktober.

Forsøgsprogram

BUR har støttet byggeriet dels ved at yde tilskud til glastilbygningen, skodder, solgardiner og "varmerør<. Men herudover er der ydet tilskud til forundersøgelsen om væksthuse og til et omfattende forsøgsprogram, der strækker sig over en to-årig periode frem til sommeren 1987. I samarbejde med de projekterende og TI udføres der beregninger, mảlinger og ikke mindst interviews af beboerne. Disse skal registrere boligty-
pens brugsværdi, specielt den praktiske anvendelse af zonedeling og årstidstilpasning og betydningen for indeklima og energiforbrug.

Ved en boligudformning som Bøgehusene, der i funktion adskiller sig så stærkt fra traditionelt boligbyggeri, er det klart, at beboernes vaner, udnyttelse af de forskellige zoner og energibesparende foranstaltninger, er afgørende for resultaterne. Derfor er alle beboerne før indflytningen informerede om projektets idé og har fảet en udvidets brugs- og vedligeholdelsesvejledning.

Figur 7 viser et foreləbigt resultat af målinger af energiforbruget i vinteren 1985/86. Det ses, at energiforbruget i en yderlejlighed A er storre end beregnet, medens en midterlejlighed D har et lavere forbrug. Forklaringen er, at beboernes energibevidsthed (læs betjening af skodder, varmeanlæg m.v.) har en afgørende betydning for energiforbruget. Det stemmer godt med svenske undersøgelser, der viser, at hvis beboerne bliver så glade for deres væksthus, at de udvider brugstiden ved at opvarme det, medfører det et forøget energiforbrug.

Det er dog alt for tidligt at give en endelig vurdering af resultaterne fra Bøgehusene, da der endnu mangler data fra den kommende vintersæson og den endelige bearbejdning af alle undersøgelserne.
Det bliver spændende at se, om den afsluttende rapport om Bøgehusene svarer til forventningerne fra idékonkurrencen. Om denne boligtype med zonedeling kan tilføre boligbyggeriet nye kvaliteter, og hvor store besparelser der kan opnås ved at udnytte passiv solvarme.
Endnu for resultaterne fra forsøgsbyggeriet er kendt, er KAB begyndt at bygge et større rækkehusk varter med glastilbygninger i Herlev. Der har netop været rejsegilde på Tubberupvænge I, og der planlægges flere etaper.

Her fungerer glastilbygningerne som indgangsparti og fællesareal for $4-5$ familier. For at få en idé om energitilførslen fra glashusene er der i samarbejde med Laboratoriet for Varmeisolering pá Danmarks tekniske Højskole udfort beregninger med et stort edb-program BLAST, der via centernettet er tilgængeligt på RECAU, regnecentret på Århus

Fig. 6. Konkurrenceprojektets idégrundlag: zonedeling og årstidstipasning.

Fig. 7. Energiforbrug. Må/inger over gasforbruget for fyringssæsonen 1985/86. Det ser ud tilat beboerne i bolig A ikke benytter boligen så ảrtidstilpasset som beboerne i bolig D.

Universitet. De forskellige EDBberegningsmetoder er beskrevet i en artikel af civilingeniør J.E. Christensen i VVS nr. 12/86/6/.

Litteraturliste

11/ Energi, boliger, byggeri: Erik Reitzel og Hans Friis Mathiasen, Fremad, Kobenhavn, 1975.

121 Energibesparende boliger. Delrapport 1 BUR. Forsøgsbyggeri for KAB , Kaben havn, oktober 1983.
13/ Deres hjem er opdelt i zoner. Helge Møller Berlingske Tidende (15. december 1985).
14/ Træbeskyttelse. Lektor, civ.ing. Preben Hoffmeyer, DTH, civ.ing. Knud Prebensen Cowiconsult, Byggeindustrien, marts 1986.
/5/ Passiv solvarme i projekteringen. Enwin Poulsen, Teknologisk Institut, VVS nr. 9 1986.
(6) Edb-programmer for energi og indeklma. Jørgen E. Christensen, Laboratoriet for Varmeisolering, VVS nr. 1, 1987.

[^0]: illustrationstortegnelse
 Foto, fraH\&S:

 1. Attansiden, 2 blokke
 2. Indgangssiden, 1 blok
 3. Nærbillede af altan
