DIAB husbyening \& SBl

DIAB og SBI beskriver

Aktuelle byggerier 1983

DIAB husbygning
 Danmarks Ingeniørakademi, Bygningsafdelingen

sBI
Statens Byggeforskningsinstitut

Aktuelle byggerier 1983

Særtryk af byggeindustrien

indhold: tryk Tek-Nik, DK - 2000 F papir 95 gram
omslag : tryk Tutein \& Koch A/S
layout B.E. Carlsen, DIAB foto A.Jespersen \& Søn AS
oplag : 400
UDK-nr.: 69

Hermed foreligger igen et udpluk af dansk projekterede byggerier, 11. arshæfte med artikler om "Aktuelle Byggerier" fra tidsskriftet "Byggeindustrien".
Ârets artikler viser den store spændvidde, som er kendetegnende - ikke blot for den samlede danske byggevirksomhed, men som også ofte kendetegner de enkelte byggefirmaers indsats.

Nye erfaringer skal indhøstes i forbindelse med opretningen og forbedringen af den dårligste del af boligmassen og med byggerier i udlandet, hvor vores byggetekniske kunnen gerne skulle resultere i tilpassede og velfungerende bygninger under andre himmelstrøg end de danske. Og det beskedne hjemlige tæt lave boligbyggeri synes nu at give gode resultater i form af oplevelsesrige og varierede bebyggelser. Måske kan også denne bebyggelsesform en dag blive en bestanddel af dansk byggeeksport.
"Byggeri for milliarder" pegede i år bl.a. på værdien af at bygge på erfaringer. Måtte også disse artikler om aktuelle byggerier bidrage hertil.
for forfatterne Klaus Hansen

Indhold af årgang 1983
$A B \mathrm{nr}$ 。

75	Gro æse Bakkeby Per Kjerbye	6	78	Håndværkerparken og Holmebækhuse Klaus Hansen	24
76	216 skoler i Bagdad Henrik Nissen	12	79	Ny tappehal på Carlsberg Ejner S申ndergaard	30
77	Peblinge Dosseringen 14 Bent-Erik Carz	18	80	Marina Park Bent-Erik Carlsen	36

Grase Bakkeby

af lektor Per Kjærbye, DIAB.
Tegninger: Grete Hartmann Petersen

Beliggenhed

Vest for Græse By og ca. $3 \mathrm{~km} \mathrm{NN} \varnothing$ for Frederikssund i Nordsjælland. I øvrigt umiddelbart nord for det nye amtssygehus ved Frederikssund.

Art og omfang

Græse Bakkeby er planlagt til at omfatte 900 til 1200 boliger, afhængigt af gennemsnitsstørrelserne pà de endnu ikke projekterede etaper. Etape I er pá 175 boliger; etape II's første afdeling er pá 124 boliger. Bebyggelsen skal desuden indeholde nærbutikker og kursuscenter (V) samt skole og sportsanlæg (VI og VII). Det samlede grundareal er pá ca. $650.000 \mathrm{~m}^{2}$.

Bygherre

Boligselskabet Rosenvænget med Dansk Boligselskab s.m.b.a., 1253 K som forretningsfører; for omráde A : Boligfonden SDS.

Arkitekt

Mangor \& Nagel M.A.A., 4000 Roskilde.

Landskabsarkitekt
Muusfeldt \& Ravn, M.D.L., 2830 Virum.

Ingeniører

Modning: Viemose \& Spile, 2700 Brønshøj. VVS: A+G CONSULT, 2820 Gentofte. EL: Vagn Støttrup K/S, 1820 København V. Konstruktioner: AJS Rȧdg. ing. kontor, 2600 Glostrup.

Totalentreprenør

A. Jespersen \& Søn A/S, 2600 Glostrup.

Underentreprenør

For etape II er underentreprenører endnu ikke valgt; ved etape I anvendtes bl.a. følgende:

Betonarbejde, elementmontage, tag m.v.: AJS, 4400 Kalundborg. Jord, vej og kloak: John Ravn Christensen ApS, 4420 Regstrup. Betonelementer: AJS-Modulbeton, 3650 ØIstykke. Ydervægselementer: SHT-teglelement A/S, 7400 Herning. Badekabiner: E. Jørgensen, 8700 Horsens. Vinduer: Plastmontage A/S, 4100 Ringsted. Køk-
kener og skabe: HTH, 1850 København V. Letbeton: H + H, 2600 Glostrup. Trapper: Trygg Trapper, 3200 Helsinge. Gaskedler: Hydro-Therm, GBMH, 1656 København V.

Opførelsesdata

Etape I: pábegyndt jan. 1981, afleveret nov. 1982.

Etape II: pábegyndt dec. 1982, planlagt afleveret nov./dec. 1983.

Økonomi

$338 \mathrm{kr} . / \mathrm{m}^{2} / \mathrm{arr}$ for 1 . del af etape I, 111 huse, jan. 82.
$352 \mathrm{kr} . / \mathrm{m}^{2} / \mathrm{ar}$ for $2 . \mathrm{del}$ af etape I, 64 huse, nov. 82.
$398 \mathrm{kr} . / \mathrm{m}^{2} /$ är skønnet for etape II, 124 huse, dec. 83.

I et naturskønt, kuperet landskab nordøst for Frederikssund med udsigt over Roskilde Fjord opføres i disse ár bebyggelsen Græse Bakkeby. Som navnet antyder er der her tale om et helt bysamfund bestàende af ca. 1200 boliger, hertil et planlagt kursuscenter.
Denne gennemgang omfatter kun boligerne i etape I og II, med hovedvagten pá etape II. Etaperne III og IV samt centerfunktionerne er endnu ikke projekterede. I omráde A planlægges ialt 80 andelsboliger, hvoraf halvdelen påbegyndes primo 1983. Etape I er i skrivende
stund (dec. 1982) netop afleveret og etape II netop pábegyndt. Byens etaper og omrader er vist pả situationsplanen figur 1 .
Udlejningstakten har fulgt færdiggørelserne, og bygherren ser optimistisk på interessen for de øvrige etaper. En beboerundersagelse syntes at vise, at flere lejere arbejder i Københavnsomrádet pả trods af afstanden pà ca. 40 km . Sável vej- som jernbaneforbindelsen til hovedstadsomradet er gode. Der forventes en del arbejdspladser i forbindelse med det ny amtssygehus umiddelbart syd for Grese Bakkeby's jorder.

Plandispositioner

Sável etape I som II er opfort efter tæt/lav-tankerne som række- eller blokbebyggelser i 1 , $11 / 2$ eller 2 etager.

Etape I arbejder med en modulær, indvendig blokbredde pá 72 M ; blokkene sammensættes af 1-etapes A-typer blandet med de 2-etages B-typer. Figur 2 og 3 viser nogle af de projekterede Aog B-typer. Blokkene er placeret pá og omkring en nord-sydgáende bakkekam.

Sydøst for etape I, pả et stærkt skrånende terræn, er etape II disponeret med hustyper, der har spring i etageplanerne.

A 3.1 STUEPLANER
Fig. 2. Lejlighedsplaner, 1:200. De viste 1-etagers A-typer er fra etape 1, hvor blokkene har en indvendig bredde på 72 M .

Den modulære blokbredde er her 108 M , regnet fra indvendige vægsider. Figur 4 viser 3 planlosninger for den 1 -etages type med et spring i gulvniveau pà 1267 mm , svarende til 7 trin a 181 mm .
Figur 5 viser 2 planlasninger fra typen med 2 spring i gulvniveauer. Blokke med disse boligtyper fremtræder sảledes som 1etages huse i indgangssiden, kote 0 , og som 2-etages i havesiden; etagehøjiden er her $2,6 \mathrm{~m}$. Endnu en af disse typer, den største med en lejlighedsbredde pà 60 M , er optegnet i plan og snit på figur 6.

Bygningsdele og materialer

Etape I er udfort med høj prefabrikeringsgrad: trægitterspær pá betonsandwichelementer med frilagte teglskaller, rumhøje skillevægselementer af letbeton, og hushøjde 230 mm tykke betonelementer som lejlighedsskel, samt badekabiner. Alle blokke afsluttes nedadtil med et traditionelt terrændæk og in situ støbte rendefundamenter med 2 påmurede letbetonblokke.

Etape II planlægges med mere

Fig. 3. Lejlighedsplaner, 1:200. De 2-etages B-typer fra etape I er udført med vindfang ien træskeletkonstruktion.

B1,II
Fig. 4. Lejlighedsplaner, 1:200. Etape // opfores med en indvendig rumbredde pá 108 M . Der vises 3 typer med spring i gulvniveau. Gulvkoten i indgangen er sat tilo.
traditionelle, pladsudførte bygningsdele. Fundamenter og terrændæk er som i etape I. Ydervægge opføres som kombinationsmure med klinkerbeton, isolering og skalmur, indervægge er klinkerbetonelementer, og lejlighedsskel som i etape 1. Etagedækket er 215 mm langspænddæk, og taget er opbygget over træbjælkespær, der spænder mellem ydervægge og langsgáende 120 mm brede betonbjælker. Den langsgȧende væg, der nødvendiggares af springet i etageniveauer, pladsstøbes imel-

Fig. 5. Lejlighedsplaner, 1:200. Fra etape // vises her 2 typer med 2 spring i guivniveauer. Indgangen er markeret med pile.
lem 40 mm tykke filigranplader. Vảdrum udføres traditionelt.
Andringerne i valg af materialer og bygningsdele fra etape I til II er primært sket pá grundlag af nøje økonomiske kalkyler, endvidere er der flere variationer i facaderne, ligesom man ønsker disse bedre sikret imod de kraftige slagregnpảvirkninger, der optræder i det åbne terræn. Bag den pladsudførte skalmur etableres et ventileret hulrum pà nominelt 15 mm . Tagopbygningen overvejes udført med færdige kassetter af hensyn til hurtig lukning, men vælges kun hvis den økonomiske helhedsvurdering taler derfor.

Bygningsdelenes ydeevner

De statiske pávirkninger på tæt-lav byggeri er beskedne; blokkene i etape I er opbygget med bærende og længdeafstivende ydervægge samt tværafstivende tunge lejlighedsskel. Etape II er anordnet med bærende og afstivende lejlighedsskel, hvorved facadens statiske funktion kun bliver at overfare vindlast til fundament, etagedæk og tag.
Akustisk er lejlighedsskellet og dets samlinger med de langsgàende bygningsdele vigtige. De 230 mm massive betonvægge er tilstrækkelige, og vederlagene for bjælker og dæk er projekteret akustisk mod lydgennem-
gang. Samlingerne er udfart kompakte uden egentigt lydbrobrydende materiale.

Klimaskærmens fugtisolering, herunder diverse membraner, inddækninger og fugekonstruktioner har været underkastet nøje vurderinger. Hvad fuger angár, har man i projektet primært anvendt 1-trinsprincippet; dette stiller store krav de valgte fugemassers holdbarhed. Specielt har afslutningerne ved tagfoden og ved shedlyset i de 2-etagers typer været genstand for omhyggelig detaljering, desuden er disse samlinger udfort i en prøveopstilling pȧ stedet, salledes at fuldskalaforsøg med sável udfrrelse som ydeevne har kunnet foretages.

De brandtekniske funktionskrav til lejlighedsskellets samling med tagfladen er i dette byggeri opfyldt med en liggende brandkam mellem overside betonvæg og tagbeklædningen.

Samlinger

Figurerne 7, 8, 9, 10 \& 11 viser en rakke vigtige samlinger i etape II's boliger. Snittene kan henføres til figur 6, hvor planer og snit i type E er vist.

Figur 7 og 8 er lodrette snit i det shedlys, der indbygges ved springet i tagfladerne. Alle detaljer omkring de mange inddækninger og fuger er afprøvede i en fuldskalamodel.
Figur 9 viser sammenbygningen mellem lejlighedsskel og tagflade; detaljen skal sikre at lyd- og brandlast ikke overføres fra bolig til bolig. Endvidere skal skivelast i taget optages i lejlighedsskellet.

Figur 10 er et lodret snit i en 2etagers ydervæg. Detaljerne beskriver blandt andet indbygningen af vinduer, tagfoden samt ydervæggens fastholdelse til etagedækket. Omkring vinduerne anvendes 1-trins fuger; ydervæggen opbygges som 2 -trinskonstruktion med en udluftet spalte bag skalmuren til ekstra sikring imod indtrængen til slagregn. Ved tagfoden er undertaget ført frem til sternbrædtet, og en inddækning sørger for, at vandet effektivt føres til tagrenden. Ydervæggen fastholdes for vindlast til etagedækket med et T-profil med pásvejst styreplade for bagmurselementet; samlingen til taget foretages med fladstảl boltet til bagmur og tagrem.

Fig. 6. Planer og snit, 1:100. Det storste hus i etape /I er type E på $105 \mathrm{~m}^{2}$ fordelt på 3 niveauer. Huset udnytter det skrånende terræn med 1 etage i indgangssiden og 2 etager i opholdssiden. 1 entre, 2 toilet, 3 ophold, 4 værelse, 5 kpkken, 6 hems.

Fig. 11. Vandret snit i ydervæg ved fejlighedsskel, 1:10. 1100 mm klinkerbetonelement, 2100 mm A-batts, 3108 mm murværk, 4 fladstål, 5 udstobning.

Fig. 9. Lodret snit i leilighedsskel og tag, 1:10. 1230 mm betonelement, 245 x $200 \mathrm{~mm}^{2}$ træspær, 320 mm stopning, 4 udfyldning med brandbatts, 5 fugning i undertag, 6 sømforbindelse: lægte-betonvæg.
„Byggeindustriens« redaktion har opfordret AKTUELLE BYGGERIER's forfatterkollegium til at medtage artikler om danske udlandsprojekter i serien, og med den stigende betydning byggeeksporten har for dansk byggeri, har vi naturligvis modtaget dette ønske meget positivt. Sidste nr. af 1982-årgangen indeholdt således artiklen om kyllingefarme i Libyen, skrevet af Ejnar Søndergaard, og der er planlagt 2 artikler for 1983. Det er tanken senere at samle udlandsartiklerne i et særtryk på engelsk, bl.a. til byggeeksportformål.

Fig. 1. "Multipurpose Halls fra Baghdad-skolerne. (NB! pga fotograferingsforbud har det kun været muligt at fremskaffe fá og mindre gode billeder).

216 skoler i Baghdad

af ingeniardocent
Henrik Nissen, DIAB
Tegninger: Grete Hartmann Petersen

DIAB og SBI beskriver
AKTUELLE BYGGERIER 76

Beliggenhed

Baghdad by og omegn. (Baghdad er som så mange af Orientens byer vokset hastigt i de senere ár, og havde i 1980 ca. 3,5 mio, indbyggere).

Art og omfang

216 skoler, fordelt på 132 primary schools og 84 secondary schools, med i
alt 5.100 klasselokaler, 1.800 lokaler til værksteder, laboratorier, biblioteker etc. Etagearealet er ca. $700.000 \mathrm{~m}^{2}$, og skolerne er planlagt for ca. 200.000 elever.

Bygherre

The Governorate of Baghdad.

Hovedentreprenør

State Constructional Contracting Company, Irak, indtil 31. dec. 1980. State Contracting Company for School Buildings, Irak fra 1. jan. 1981.

Projekt og planlægning af udførelse

A + G CONSULT i samarbejde med FYNSPLA-

NEN ved arkitektfirmaet
Vagn O. Kyed og Per Kyed.

Opførelse

Fra 1981.

Økonomi

Hovedentreprisekontraktsum = Ca. 73 mio. ID (Irak Dinarer) $=$ ca. 2 mia D.kr.

Indledning

Den ärlige værdi af dansk byggeeksport har i 1981 passeret 12 mia kr ., fordelt således på følgende 3 hovedposter
byggevarer. 8,2 mia kr. entrepriser 3, 2 mia kr . rådgivning etc.1,1 mia kr.
i alt 12,5 mia kr.
se figur 2.
Det fremgå af figuren, at rảdgivningsydelserne har haft en betydelig stigning i de senere år, fx fra 1978 til 1981 således ca. 175% eller ca. 60% p.a. I det folgende beskrives en dansk rådgivningsopgave, knyttet til opfø-
relsen af de 216 skoler i Baghdad.

Baggrunden for den store opgave er det internationalt anerkendte, heje stade, dansk industrialiseret byggeri har opnáet i de senere år, kombineret med den danske tradition for udlandshandel - samt det svindende byggemarked hjemme i Danmark. Disse forhold udgør tillige en meget væsentlig del af forklaringen på, at der i dag, trods byggekrisen, kun er en meget begrænset arbejdsloshed blandt danske bygningsingeniarer.

Byggeeksportmarkederne

Med den førnævnte kraftige befolkningstilvækst i Baghdad, olierigdommen og et begrænset lokalt produktionsapparat opstảr der en typisk importsituation, hvor et samfund i hastig udvikling har behov for assistance udefra. Dermed skabes der tilsvarende en eksportmulighed, som den internationale byggeindustri kan udnytte. Men opgaverne kommer ikke af sig selv. De må opsøges, analyseres, vurderes osv, og det opsagende salgsarbejde bliver pludselig en af den rådgivende ingeniørs vigtigste jobs!

Som et forspil til dette arbejde bør ogsá nævnes The Iraqi-Danish Symposium on Industrialized Building, som blev afholdt i Baghdad i 1978, støttet bl.a. af det danske boligministerium, Byggeeksportrådet og en række danske eksperter, herunder denne artikels forfatter. Dette forarbejde, hvor det officielle Danmark gennem to-sidige aftaler tager kontakt med et potentielt eksportmarked på et højt fagligt plan har meget stor betydning for det private erhvervsliv, in casu den danske byggeindustri, ikke mindst når der som her er tale om et modtagerland, hvor væ-
sentlige dele af erhvervslivet er statsdrevet.

Konsulentopgaven

Baghdad skolerne er opført med en velkendt dansk, industrialiseret byggeteknik, baseret på modulordningen og det »ábne system«, som er karakteristisk for dansk byggeri. Det er jo netop dansk byggeindustris chance, at man nu har en færdigudviklet teknik, som er gennemprøvet, som kan tilpasses alle mulige lokale forhold, og som kan eksporteres pga sine kvaliteter og sin høje arbejdsproduktivitet. Den følgende beskrivelse af skolerne vil af samme grund blive summarisk, hvad det byggetekniske angår, og i stedet fokusere
pá planlægning, styring og tilpasningen til de lokale betingelser.
Projekteringen af de 216 skoler var i høj grad en bunden opgave for arkitekt og ingenior. Det var således på forhånd givet, at allerede indkøbte fabriksanlæg hos entreprenøren skulle udnyttes, hvilket bl.a. medførte anvendelsen af TT-plader, betonblokke og Omnia plader. Og trods Iraks olierigdomme blev der efterhånden lagt meget snævre økonomiske rammer om projektet; bl.a. på grund af krigen med nabolandet Iran. De nævnte bindinger pảvirkede uundgảeligt projektets kvalitet i negativ retning.
A $+G$ Consult og Fynsplanen's

Fig. 2. Dansk byggeeksport 1975-1981.

[^0]

Fig. 4. Montageplan for vægelementer. Bemærk elementfortegnelse og henvisninger til snittegninger.

Fig. 5. Lodret snit i præfabrikeret klasseblok. Mảl 1:100.
opgaver i denne sag har omfattet falgende ydelser - noteret i den engelske form for at undgå misforstảelser mht kontraktens begreber og indhold:

Detailed Design

covering architectural design structural engineering sanitary engineering aircooling engineering electrical engineering site planning . site services

- all for two different structural systems, a precast system and a semi precast system

Tender Documents
consisting of general technical specifications bills of quantities lists of materials

Production Planning

comprising analyses of existing resources .. assessment of batching capacities planning of extension of moulds casting and reinforcement programmes planning of stockyard areas . tender specifications for a new precast factory

Construction Planning

comprising . . detailed time schedules
.......... manhour analyses loading and delivery schedules . . analyses of transport and erection equipment
. preparation of erection manuals preparation of planning manuals . . . preparation of inspection manuals preparation of guidelines on site management

Resident Advisory Team

architectural adviser precast production specialist precast erection specialist . . . time and logistic planner

Fig. 6. Byggesystemernes grundelementer. Màl 1:50. 1. Sandwich elementer ved tag. 2. Sandwichelement ved terræn. 3. Huldæ/element. 4. Hulblok. 5. Vinduessà̀bæenk. 6. Vinduesoverligger. 7. Omnia dæk. 8. πT dækelement. 9. π Sandwich element.

TECHNICAL SPECIFICATIONS bills of Quantities

NOTE: THE BHLLS OF OUANTHES ARE COLLECTED FOR EACH TYPE OF BUHDING the moministration buldong (ab) tus eeen selected as an exampie.

Fig. 7. Oversigt over Bills of Quantities.

Som det fremgàr af ovenstàende har $A+G$ Consult og Fynsplanen haft et lokalt kontor i Baghdad, bemandet med 4 teknikere; men hovedparten af rảdgivningsarbejdet er udført i Danmark.
For at give et indtryk af det samlede projekterings- og planlægningsarbejde, kan det oplyses, at der er udført totalprojektering af 2 typer primary og 2 typer secondary schools, hver med 2 helt forskellige byggesystemer (præfabrikerede og delvis præfabrikerede) svarende til i alt 8 typeprojekter omfattende mere end 20 standardbygninger. Til hver standardbygning er projekteret fundamenter svarende til 3 forskellige bæreevner, i alt mere end 60 standard fundamentsprojekter.
Herudover er der udført individuelle afsætningsplaner og planer omfattende hovedforsyning af vand, el og kloak for samtlige 216 skoler.
Projektmaterialet er organiseret efter et særligt, logisk system, udarbejdet til formàlet af A + G Consult. Antallet af Bills of Quantities (B of Q) overstiger 200, fordelt på 30 bøger. Ved den endelige aflevering af projektmaterialet i Baghdad androg luftfragten ca . $1 / 2$ ton.
Figur 7 viser et eksempel pá organisationen af dokumenterne hørende til B of Q .
Den samlede rådgivningsindsats omfatter ca. 35 mandår.

Fig. 8. Arstemperaturer for Baghdad. 2 og 3 dagnets gennemsnitlige max. og min. temperaturer. 1 og 4 àrets gennemsnitlige max. og min. temperaturer.
vende vægge, mens dækkene er Omnia plader med in situ overbeton.
Tagfladerne er i begge systemer opbygget af (fra oven) 40 mm betonfliser med asfaltfuger, $50-125 \mathrm{~mm}$ sand, 50 mm skumplast og 30 mm asfalt. Dette er den traditionelle lokale tagkonstruktion, velegnet til det irakiske klima; men som ikke ville kunne fungere i det vàde danske klima, med de mange frysepunktspassager.
De nævnte bygningskonstruktioner anvendes fortrinsvis til skolernes klasseblokke og øvrige undervisningsrum, mens der til gymnastik- og forsamlingssale - de såkaldte >multipurpose halls« anvendes TT-plader, báde i tag og ydervægge. I ydervæg-
gene er pladerne udført som isolerede sandwich TT-plader. Samlingsdetaljerne mellem de forskellige komponenter er danske standardlasninger; der henvises herom til litt. 1 , som beskriver skoleprojekternes byggesystemer mere indgående.

Lasterne pà bygningerne er bestemt efter den engelske lastnorm, og betonkonstruktionerne er beregnet efter British Code of Practice, CP 110.

Modulplanlægning

Skolerne er projekteret over det danske og internationale standardiserede modulsystem med $12 \mathrm{M} \times 12 \mathrm{M}$ som multimoduler i planen. For at kunne vælge frit mellem de ovenfor beskrevne byggesystemer, måtte
den eksisterende lokale produktion af betonblokke omstilles til modulmàl. De nye byggeblokke er $2 \mathrm{M} \times 2 \mathrm{M} \times 4 \mathrm{M}$, og skolerne er således et eksempel pȧ den lokale byggeindustris tilpasning til et äbent byggesystem, baseret på den danske modulordning.

Varmebalance-analyser

I juli og august kan middagstemperaturen i Baghdad nå op over $50^{\circ} \mathrm{C}$, se figur 8, og selv om skolerne er lukkede i disse måneder, er det klart, at bygningernes varmebalance og det resulterede indeklima er af afgørende betydning for deres funktion.
Fra de projekterendes side var man fra starten opmærksom pá dette og foreslog bygherren en række foranstaltninger omfattende sảvel aktive som passive kølesystemer. Med konsulentbistand fra rảdgivende ingenierfirma M. Nørgaard blev de foreslàede losninger gennemregnede ved hjælp af et edb-program, baseret på P.Becher's og Bo Adamson's arbejder, udviklet af M. Nørgaard, se litt. 2 og 3.

Desværre besluttede bygherren at nøjes med aircooling af multipurpose-hallerne og administrationsbygningerne, mens klassefløjene blev udført uden aktive kølesystemer og uden solafskærmning for vinduerne.
Pả dette grundlag skulle der herefter vælges mellem isolerede og uisolerede ydervægge, og figur 9 viser konklusionerne pȧ de

Projektbeskrivelse

Byggeriet omfatter to skoletyper, primary- og secondary-, i det væsentlige bygget op af de samme bygningskroppe og komponenter. Se figur 5 og figur 6. Skolerne er gennemprojekterede, dels med anvendelse af en ren præfabrikeret teknik, dels med anvendelse af lokale beton hulblokke.
Begge systemer er statisk set plade-skivesystemer i den velkendte danske udgave, med bærende facader og hovedskillevægge. I det præfabrikerede system anvendes forspændte hulplader i dæk og tag, massive indvendige, bærende og afstivende vægge samt bærende sandwich facader.
I systemet med hulblokke anvendes disse i gavle, facader og indvendige, bærende og afsti-

$\begin{gathered} \text { Beregning } \\ \text { nr. } \end{gathered}$	Ventilation	Ydervagsisolering	Baldakin	Tilbagetr.vinduer	Måned	Udetemp. gr. c.	Sol	Rumtemp. k1.8-16
1	Ne j	$\mathrm{Ne}{ }^{\text {j }}$	Nej	Ne j	August	24,7-43,5	100	43,5-49,2
2	Ne j	Ja	Ne j	Nej	August	24,7-43,5	100	45,1-50,7
3	Nej	Nej	Ja	Nej	August	24,7-43,5	100	42,3-47,5
4	Nej	Ja	Ja	Ne j	August	24,7-43,5	100	43,6-48,7
5	Nej	Ja	Nej	Ne j	Januar	4,0-16,0	50	24,6-28,6
6	Ne j	Nej	Nej	Nej	Januar	4,0-16,0	50	22,3-26,1
7	Ne j	Nej	Nej	Nej	Januar	4,0-16,0	0	20,9-24,2
8	Ne j	Ja	Nej	Nej	Januar	4,0-16,0	\bigcirc	22,9-26,2
9	Nej	Nej	Ne j	Ja - 23 cm	August	24,7-43,5	100	42,6-48,3
10	Nej	Nej	Ne j	Ja - $10^{\circ} \mathrm{cm}$	August	24,7-43,5	100	42,7-48,5
11	Ne j	Nej	Ja	Ja - 10 cm	August	24,7-43,5	100	42,3-48,0

Beregning nr. 1-8: $43,2 \mathrm{~m}^{2}$ sydvendt klasseværelse med $4,7 \mathrm{~m}^{2}$ vinduesglas
Beregning nr. 9-11: 40,5 m^{2} sydvendt klasseværelse med 3,0 m^{2} vinduesglas
Fig. 9. Skema over temperaturberegninger for klasserum med varierende, passiv varmebeskytte/se.

Fig. 10. Instruktionstegning fra „Erection Manualk; samling af dæk-og vægelementer. Mäl 1:20. 1. Joint between crosswalls. 2. Recesses in slabs. 3. Continuous rein forcement in joint, 4. U-shaped stirrup placed around the continuous rebar down into the wall joint. The above reinforcement shall be placed in the joints before casting of wall joint.
varmebalanceberegninger, der blev opstillet for at bestemme de resulterende rumtemperaturer i august og januar. Det fremgår af skemaet, at løsningen med sandwichvægge (ydervægsisolering) betød en ca. $1,5^{\circ} \mathrm{C}$ højere rumtemperatur om sommeren, end den uisolerede væg ville give; mens solafskærmning med baldakiner ville medføre en ca. $2^{\circ} \mathrm{C}$ lavere rumtemperatur. Desværre valgte bygherren at udføre klassefløjene uden baldakiner - af økonomiske hensyn - og med sandwich vægge - af hensyn til vinterforholdene. - Selv om beregningerne af rumtemperaturerne for januar ligger på ca. $21-26^{\circ} \mathrm{C}$. Disse høje temperaturer ved udetemperaturer på 4$16^{\circ} \mathrm{C}$ skyldes den indre varmetilførsel fra personer og lysinstallationer m.v.

Produktionsplanlægning

Denne omfatter analyser, planlægning og detaljerede beskrivelser af fabriksanlæg og af samtlige arbejdsprocesser på elementfabrikker og byggepladser, herunder ogsá transporter, montageoperationer samt kvalitetskontrol.

Da de fleste af arbejdsprocesserne, knyttet til element- og montagearbejdet, var nye for entreprenøren, blev der udarbejdet detaljerede instruktioner, som fx »Erection Manuals«, »Planning Manuals« etc. for at sikre den korrekte udførelse af de nye konstruktioner. Disse
manualer er i betydeligt omfang forsynede med beskrivende tegninger af de forskellige delarbejder. Figur 10 viser et sådant eksempel fra skolernes Erection Manual. Bagerne, som ikke ville være nødvendige i tilsvarende omfang på en dansk byggeplads, blev udnyttet og páskønnet stærkt af de lokale montagesjak; og det er festligt at høre de danske tilsynsførendes beretninger om de irakiske formænds bestræbelser på at oversætte den moderne teknologis termer til arabisk!

Bills of Quantities, etc.

I overensstemmelse med britiske traditioner omfatter skoleprojektet komplette Bills of Quantities (B of Q), hvis nærmeste danske oversættelse er beskri-

SCCC SCHOOLS • BAGHDAD

A+G CONSULT
BILLS OF QUANTITIES

Fig. 11. Udsnit af Bill of Quantity.
vende mængdefortegnelser. B of Q blev udarbejdet for enhver bygningstype i det omfattende projekt, således at man i disse fortegnelser kan finde mængderne af enhver tænkelig arbejdsydelse og leverance for samtlige bygninger i de 216 skoler, ordnet efter SfB-systemets bygningsdelsregister. Figur 11 viser et eksempel på et udsnit af en B of Q for en klassefløj i en Primary School.

B of Q'erne blev samlede i bøger for hver bygningstype, og mangderne i hver B of Q blev herefter overfart til særlige oversigter, »Lists of Materials«, hvor mængderne er summeret, og hvorfra byggeledelsen og entreprenøren kan trække de kvantiteter af alle slags ud, som er ønskelige, fx til indkøb, transport, prissætning osv.

Fig. 12. Sternelementer fra »Multipurpose Halk under montage.

Afslutning

De 216 skoler i Baghdad udgør formentlig det største skoleprojekt, der nogen sinde er udført af danske teknikere. Kontrakten, der har strakt sig over 3 àr, er netop afsluttet med udgangen af 1982, og de danske teknikere er vendt hjem. Projektet har på mange máder været banebrydende for dansk industrialiseret byggeri: Baghdadskolerne er modulprojekterede efter dansk forbillede, og de er et praktisk eksempel på anvendelsen af »The Danish Open System Approach巛, som er blevet markedsført i mange lande ved de officielle danske byggeeksportfremstød.

Det er derfor af stor interesse at fastslá, at denne politik/fremgangsmåde har fungeret tilfredsstillende i praksis under særdeles fremmede og vanskelige vilkảr og under hård international konkurrence. Selv om krigen mellem Irak og Iran naturligvis har medført en betydelig forsinkelse af tidsplanerne, fordi de forudsatte ressourcer ikke har været til rádighed, har opførelsen af de forste skoler dog demonstreret, at arbejdet kan gennemføres i det planlagte tempo.

titteratur

1. The Fynsplan School System \& A + G Consult: 216 Schools in Baghdad. Selected Drawings.
2. Ingeniaren, særtryk 1980: Danske teknikere i de arabiske lande.
3. P. Becher: Varme og Ventilation, Bd. 1. Kbh. 1971.
4. Bo Adamson: Varmebalans vid rum og byggnader. Lund 1968.
af lektor, civilingeniar Bent-Erik Carlsen, DIAB.
Tegning: Grete Hartmann Petersen, DIAB.
Fotos: Arkitekt, m.a.a. Hans Cramer-Petersen og forfatteren.

Fig. 1. Bygningens ostfacade set fra Norre Søgade. Bemærk sætningen at tagets rygning mod nord (til hoire), foto HCP.

Peblinge Dossering 14

Beliggenhed

Peblinge Dossering 14 og Wesselgade 3, 2200 København N, matr. nr. 36 cø Udenbys Klædebo.

Art og omfang

Renovering af beboelsesejendom på 5 etager med tagetage og kælder. Bygningen indeholder ét erhvervslejemál. Ifølge BBR-bladet har bygningen følgende arealfordeling: Beboelse i 19 lejligheder med køkken og WC: $1914 \mathrm{~m}^{2}$ - erhverv:
$123 \mathrm{~m}^{2}$ og kælder: $442 \mathrm{~m}^{2}$ = det bebyggede areal. Bygningen består af 2 U formede ejendomme omkring en lukket gård, se figur 4.

Bygherre

Ejerforeningen Peblinge Dossering $14 /$ Wesselgade 3 ved en bestyrelse. Ejerforholdene er 12 ejerlejligheder og 7 udlejede.

Projektering og byggeledelse

Arkitektfirmaet Poul

Kjærgaard a-s v/arkitekt, m.a.a. Hans Cramer-Petersen.

Udfarende

ENC Entreprise ApS, Herfølge.

Opførelsesdata

Bygningen er opført i år 1900.

Tagrenovering og vinduesudskiftning påbegyndt i oktober 1982. Alle arbejder forventes afsluttet i forsommeren 1983.

Økonomi

Den samlede udgift til genopretnings- og forbedringsarbejder vil andrage ca. kr. 2.550 .000 inklusive moms. Herfra kan trækkes kr. 133.000 som tilskud til energibesparende foranstaltninger fra det offentlige, svarende til maksimalbeløbet kr. 7.000 for de 19 lejligheder. Ydermere har Københavns Kommune givet rentesikring til maks. $61 / 2 \%$ på byggelånet.

For første gang siden artikelserien startede i. 1969 har man valgt at beskrive et renoveringsprojekt i stedet for et nybyggeri.
Baggrunden herfor er naturligvis den, at bygningsrenovering udgar en voksende del af det indenlandske husbyggeri taget i videste forstand. Der er i de senere ảr skrevet mange artikler om renovering, men kun få har omhandlet konkrete, byggetekniske forhold. Ikke desto mindre må der også indenfor
dette område være behov for udveksling af erfaring mellem byggeriets teknikere.
Nảr dette er sagt, skal det med det samme tilføjes, at en sådan udveksling nok er vanskeligere ved bygningsrenovering end ved nybyggeri, fordi der ikke findes en »typisk sag«. Det enkelte, gamle hus indeholder som regel nogle overraskelser til de projekterende, hvilket bevirker, at alle sager er forskellige. Denne artikels bygning adskiller sig ikke
væsentligt fra den række renoveringer, der i øjeblikket foregảr overalt i landet.
Projekteringsforudsætninger
Iffelge en vedtagen saneringsplan for området »Peblinge Dossering-kareen« udarbejdede Det københavnske byfornyelsesog saneringsselskab et forslag, der indeholdt en bevarelse af samtlige ejendomme, idet der til den enkelte ejendom blev stillet en række genopretnings- og forbedringskrav.

Fig. 2. Renoveringsbegreber.

Fig. 3. Facaden mod soen (ost), màl ca. 1:200.

Baggrunden, for at man kunne behandle kareen på denne måde, var, at ingen bygninger var så dårlige, at en kondemnering var nødvendig. Samtidig må man glæde sig over, at »søfronten« blev bevaret intakt, når man ser bort fra enkelte nybygninger.

For en ordens skyld er de enkelte begreber i renoveringsprocessen beskrevet i figur 2. Med bygningens værdi menes den samlede brugsmæssige, komfortmæssige m.v. værdi, der ville være konstant ved en rimelig vedligeholdelse. Genopretningen er altså i virkeligheden en »rảden bod« pả fortidens manglende vedligeholdelse.

Da vore behov og ønsker er vokset i tidens lob, vil selv en konstant »brugsværdi« falde i forhold til de nugældende krav. Dette gab kan helt eller delvist udlignes ved en forbedring. Når man skelner mellem de forskellige begreber, hænger det bl.a. sammen med, at det offentlige giver tilskud til visse typer af forbedringer, f.eks. isolering, men genopretningen skal betales af bygningens ejere, hvilket for lejerne betyder, at der betales over huslejen.
I det aktuelle tilfælde blev bygningen pålagt folgende arbejder:

- Udskiftning af tegltag pả Peblinge Dossering 14 og isolering af tagrum.
- Istandsættelse af vinduer og montering af forsatsvinduer.
- Facader istandsættes og males (gård og Wesselsgade 3).
- Bitrapper istandsættes og males.
Bemærk, at arbejderne i kursiv er forbedringer.

Bygningens vedligeholdelse

Arkitektfirmaet Poul Kjærgaard a-s gennemgik bygningen og gav de enkelte dele en vurdering, som kort skal gennemgås i det følgende med kommentarer, hvor der er forhold af teknisk interesse.

Fig. 4. Normaletageplan, màl 1:200

1. Stue, 2. Værelse, 3. Køkken, 4. Bad, 5. Opbevaring. Den pá de følgende figurer omtalte kehl er i gårdens nederste, højre hjørne, idet nord er ca. til højre på planen. Màl 1:200.

Funderingsforholdene er fundet i orden med kun få sætninger mod søen. Dette er bemærkelsesværdigt, idet andre huse i

Fig. 5. Bygningens nordøstlige kehl, set tra gảrden. Bemærk sætningen af tagryggen og den brede skotrende, der skyldes en dobbelt kehlkonstruktion på grund af kvisten i hjernet, foto HCP.
området har endog meget store fundamentssætninger.
Derimod var tagkonstruktionen på Peblinge Dossering 14 i en elendig tilstand med stærk råd, der bl.a. skyldes dårlig vedligeholdelse af skotrenderne, et hyppigt overset forhold. Dette behandles nærmere i det felgende.

Iøvrigt skal det for orienteringen nævnes, at Peblinge Dossering 14 er teglhængt, se figurerne 1 og 3-5, mens Wesselsgade 3 har »københavnertag« med pap på den vandrette del og skifer på de skrå flader. Sidstnævnte tag er her kun omtalt, hvad angår varmeisoleringen.
Vinduernes og kvistenes vedligeholdelse har ikke været tilstrækkelig, hvorfor alle vinduer udskiftes med nye med termoruder, og kvistene repareres og isoleres, - herom senere.

Installationerne er nok gamle, men de fungerer acceptabelt, og kun varmeanlægget skal repareres, idet en del rør i tagetagen er deformeret kraftigt ved tagsætningerne.

Alt i alt har bygningen været vedligeholdt rimeligt godt, og arkitekterne foreslår kun enkelte videregáende arbejder ud over det pålagte.

I det følgende beskrives en række teknisk relevante processer, idet de banale er udeladt. Figur 3 viser facaden mod søen, og figur 4 viser en normal etageplan.

Tagreparationen

Reparationen af tagkonstruktionen mod Dosseringen og søen indeholdt to konstruktive - statiske problemer, som kan have almen interesse: Kehlspærsætningen (se figur 1), der skyldes rådsvækkelse og spærfødderne i begge sider af Peblinge Dossering 14, der ligeledes var angrebne.

Figur 5 viser skotrenden i bygningens nordøstlige hjørne set fra gården. Foruden den føromtalte sætning af rygningen viser figuren en hjørnekvist, der, som det senere skulle vise sig, har bidraget til problemet. Forholdet er nemlig det, at kvisten medfører, at det normale kehlspær under skotrenden nu må udføres som et dobbeltspær. Da disse to spær foroven må have vederlag på gavlen tæt ved hinanden, og kvisten samtidig skal have parallelle flunker, må de to kehlspær »ændre retning« i ni-

Fig. 6. Den dobbelte kehlkonstruktion i det nordastlige hiorne efter fjernelse af tagdækning, foto HCP.
veau med hanebåndet, hvilket netop er tilfældet her, se figur 6. Begge kehlspær og en del af de tilstødende tagspær var stærkt angrebne af råd p.g.a. utætte
skotrender, hvor vandet har kunnet sive i árevis, - et desværre hyppigt forekommende problem, der skyldes manglende tilsyn med bygningen.

Deformationerne var ved sagens start sà store, at vederlagene for kehlspærene på brandmuren var ca. -20 mm (!). Man havde dog forhindret nedfald ved at placere et par stolper op ad muren, - sandsynligvis for 10-20 år siden.
Til yderligere forværring af problemets konstruktive del kom, at en opmåling af de eksisterende konstruktioner afslørede, at der ikke - hvis man skal bruge moderne termer - kunne findes en statisk model, der kunne føre egen- og snelast ned i den underliggende konstruktion. Det har konstruktionen imidlertid aldrig »vidst« og sikkerheden har været varetaget af bræddevægge m.v.
Figurer 7 og 8 viser løsningen pả dette konstruktive problem. Mellem den nordlige brandmur og tværvæggen i hovedtrapperummet (se etageplanen på figur 4) er oplagt en ca. 8 meter lang $225 \times 225 \mathrm{~mm}$ træbjælke, hvis sider følger taghældningen 45° til optagelse af lasterne i dette hjorne af bygningen. Selv om bjælken har et - efter normale forhold - stort tværsnit, vil den få en maksimal nedbøjning på ca. 100 mm for fuld last.
Dette betyder, at bjælken automatisk bliver aflastet af hanebảndene (se figur 9) i den grad disses styrke- og stivhedsforhold tillader det. En detailberegning har vist, at en statisk mulig lastoverførsel kan ske i »samarbejde« mellem bjælke og de mange hanebånd ved en totalnedbøjning i de enkelte punkter på ca. 7 mm svarende til ca. 2 mm for

Fig. 7. Bygningens nordøstlige hiorne med flajen mod Dosseringen til hajre. Det lyse tammer under pressenningen er den oplagte forstærkningsbjælke, foto BEC.

Fig. 8. Detalje at figur 7. Bemærk, at den hajre del af den gamle kehl-konstruktion er fjernet, foto BEC.
nelast alene med partialkoeffiienter $=1,0$. Af hensyn til ineniørerne blandt læserne kan ævnes, at hanebåndet er blevet eregnet som en tværbelastet rykstang med en mindre overkridelse af trænormens krav (3. dgave).
Problemet med spærfødderes vederlag på murkronen (geimsen) er søgt illustreret på fiur 10. En del træstykker og pærender var rådnet bort, og lle samlinger er blevet forstær. et, som vist, for at de kan overøre den vandrette reaktionsraft til bjælkelaget.
Bemærk på figur 10, at den amle konstruktion ikke havde ogen rem. Dette medførte konentrerede laster på gesimsens aurværk, der var revnet en del teder. Den nu oplagte rem skul\geq forhindre sådanne revner remover.

【vistene

Figur 11 viser arkitekternes rincipskitse for isolering af en :vist. De fleste af kvistene havde nurede $1 / 2$-stens flunker, hvilket kke er unormalt for købenavnske bygninger fra 1800-talat. Stenene er fjernet og flun:erne er blevet isoleret med 75 nm mineraluld.
Denne isoleringstykkelse er :un ca. det halve af den i BR orlangte, men flere forhold taer for at »nøjes« med denne solering: Ifølge skemaet over jygningens varmetab i næste afnit er bidraget fra kvistene kun a. 2% af bygningens samlede ab efter isolering, - vinduerne
i kvistene ikke medregnet.
Det underskud, der er i forhold til BR, kan opvejes ved f.eks. at lægge 225 mm isolering pả hanebảndsloftet.
Som et tredie argument for den udforte losning skal fremhæves den arkitektoniske, idet kvistene er bibeholdt i deres oprindelige udseende med ret smalle lodrette partier udenfor de yderste vinduer, - flunketykkelsen. Mange københavnske kviste har i varmebesparelsens navn fået nogle store »ఱrevarmere«, der på uheldig måde har ændret bygningens arkitektur.

Varmeisoleringsarbejder

Saneringsselskabet havde forlangt isolering af tagrum og montering af forsatsvinduer.

Enhver isoleringsplan for en bygning bør dog indledes med en overslagsmæssig beregning af varmetabet gennem de enkelte bygningsdele til vurdering af en isolerings økonomiske gevinst. Hermed er ikke sagt, at det alene er varmebesparelsen, der styrer prioriteringen af isoleringsarbejderne. Man kan f.eks. tænke sig, at et københavnertag skal have nye brædder og pap. I så fald ville det vare urimeligt ikke at nedlægge mineraluld mellem bjalkerne. I det foreliggende tilfælde lả pappen på et zinklag, og taget var tæt, hvorfor man monterede 130 mm PIR-skum og pap ovenpá.

Omvendt kan det være, at varmetabet gennem ydervæggene er relativt stort, men at en isolering er en stor gene for be-
boerne og uforholdsmæssig dyr, - som i det foreliggende tilfælde. Jvf. også SBI-rapport nr. 113 vedrørende tilbagebetalingstider m.v.
I det aktuelle tilfælde foretog man isoleringsarbejder på steder, hvor man alligevel skulle udføre bygningsarbejder. Dette har vist sig at fere til et rimeligt varmeøkonomisk resultat, jvf. skemaet i figur 12.
Skemaets punkter A-D omhandler tage og kviste, hvor isolering var blevet påbudt. Varmetabet er for disse grupper nedbragt fra ca. 90 MWh til ca. 10 MWh.
Samtidig har arkitektens rảd
om at montere termoruder overalt undtagen i trapperum nedbragt tab gennem vinduer fra ca. 95 til 34 MWh, d.v.s. ca. en trediedel.
Det samlede varmetab er blevet regningsmæssigt reduceret med ca. 40%, men da man ikke har isoleret ydervæggene bortset fra brystningerne - er bidraget herfra steget fra ca. 35% til 50% relativt. Dette betyder blot, at den neste rentable operation bør være en ydervægsisolering. Når dette ikke er foretaget nu, skyldes det, at en indvendig isolering er dyr og giver store beboerproblemer, og at en udvendig isolering enten er

Fig. 10. Spærfodder pà gesims, her vist efter opmåling mod søen. Den skrảtliggende biælke havde tilsyneladende ingen trækforbindelse til selve etagebiælken og kan derfor ikke have kunnet overtøre de regñingsmæssige kræfter.

1. Spær, 2. "Skrábjælke«, 3. Etagebjælke, 4. Vederlag med variabel længde, 5. Ny rem, 6. Asfaltpap, 7.16 mm bolte med stjernejern, 8. Forstærkninger 175×50, hvor spær er ráddent, 9. Trækbánd 50×5. Mål 1:20.
dyr eller af mange (arkitekter m.v.) anses for arkitektonisk uacceptabel.

Forhold til myndighederne

Da der er tale om genopretningsarbejder suppleret med nogle forbedringer i form af isoleringsarbejder, er der ikke etableret byggesag i kommunen. Kun hvad angår de statiske beregninger af tagkonstruktionen er Bygge- og Boligdirektoratet indblandet, idet de skal godkende disse. Udformning og beregning af forstærkningskonstruktionerne er udført af forfatteren.

Brandforhold

Da bygningen er opfert àr 1900 har den ikke skulle brandsikres i henhold til »Stengadeloven«, men der er tidligere foretaget nogen sikring af f.eks. entredare.

Når Byggestyrelsens $» B e-$ kendtgørelse om brandsikring af beboelsesbygninger opfort àr 1900 og senere« træder i kraft, skal bygningen naturligvis gennemgås. Der er ikke i forbindelse med de nu udførte arbejder taget hensyn dertil, og der vil heller ikke blive tale om arbejder, der sả bliver overflødige eller som skal laves om.

Afsluttende bemærkninger

Renoveringsprocessen har været uden starre problemer, bortset fra at omfanget af tagreparationerne blev væsentligt større, mere omfangsrige, end man kunne have forudset.

Udover det her beskrevne kunne der nævnes en række detaljer, som kunne gives positive og negative kommentarer med pă vejen. Skal der til slut fremhæves et konkret konstruktivt forhold, bør det være arkitekternes opretning af tagfladerne på Peblinge Dossering 14, hvor der på de gamle spær, der kunne genanvendes, er påforet endog ret store stykker træ. Det kan umiddelbart virke urimeligt, at påforingerne har samme dimension som spærene, men det er korrekt. Et forsøg på at rette konstruktionen op med f.eks. donkraft bør generelt frarådes, idet det i reglen medforer revner eller brud andre steder i bygningen.

Fig. 11. Principskitse for renovering af en kvist.

1. Gipsplade, 2. Dampspærre, 3. 75 mm mineraluld, 4.100 mm mineraluid, 5.12 mm vandfast træplade, $6.2 \mathrm{Zink}, 7.75 \mathrm{~mm}$ stolpe, 8. Underlagsplanke, 9.10 mm liste, 10. Icoboard, 11. Bly, 12. Trykimprægneret dækbrædt. Mál 1:10.

Bygningsdel	(1) $k_{\text {for }}$ $\mathrm{W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}$	(2) F m^{2}	(3) $Q_{\text {for }}$ MWh	$\begin{gathered} \stackrel{(4)}{Q_{\text {eft }}} \\ \% \text { af (3) } \end{gathered}$	(5) $k_{\text {eft }}$ $\mathrm{W} / \mathrm{m}^{2} .^{\circ} \mathrm{C}$	(6) $Q_{\text {eft }}$ MWh	(7) $Q_{\text {eft }}$ \% af (3)	(8) $Q_{\text {eft }}$ $\%$ af (6)
A Loft pả hanebånd (PD 14)	2,8	150	29	6,8	0,19	2	0,5	0,8
B Fladt tag (W 3)	2,8	130	25	5,8	0,26	2	0,5	0,8
C Skråt skifertag (W 3)	2,8	50	10	2,3	0,29	1	0,2	0,4
D Kviste (u. vinduer) a)	2,8	130	25	5,8	0,40	4	0,9	1,5
E Ydervægge b)	1,9	1150	148	34,6	1,70	133	31,1	50,5
F Vinduer og yderdøre	7,0	200	95	22,2	2,50	34	7,9	12,9
G Trappevinduer	7,0	30	14	3,3	7,00	10	2,3	3,8
H Dæk over kælder	0,9	440	17	4,0	0,40	12	2,8	4,6
J Luftskifte $n=0,4$	-	-	65	15,2	-	65	15,2	24,7
lalt	-	-	428	100	-	263	61,4	100

a) gennemsnit for tag og flunker
b) gennemsnit for vægtykkelse mellem $1 / 2$ og $21 / 2$ sten.

Varmetabet er beregnet som q $=\mathrm{k} \cdot \mathrm{F} \cdot 24$ (timer) $\cdot 2829$ (graddage) $\cdot 10^{-6} \mathrm{MWh}$
Fig. 12. Oversigt over bygningens varmetab i et referenceár, for og efter isolerings arbejderne.

Håndvaerkerparken og

af civilingeniør Klaus Hansen, SBI
tegninger: Grete Hartmann Petersen
Muret byggeri kontra elementbyggeri giver ofte anledning til diskussion brancherne imellem og til mytedannelser hos bygherrer og bygningsbrugere. Der kan derfor være god grund til en parallel byggeteknisk gennemgang af to ensartede byggerier opført henholdsvis som muret og som betonelementbyggeri.

Håndværkerparken og Holmebækhuse er to tæt-lave almennyttige boligbebyggelser tegnet af samme arkitektfirma. Bebyggelserne rummer begge $250-300$ boliger, og bygherrerne er to boligselskaber, som begge aktivt og kvalificeret har deltaget i planlægningen.

Håndværkerparken er opført i Aarhusområdet som muret byggeri, og Holmebækhuse i Københavnsområdet som betonelementbyggeri. Hovedemnet for artiklen er de forskelle, som valget af byggeteknik har givet anledning til i forbindelse med disse byggerier.

Beliggenhed
 Bjødstrupvej i Holme.

Art og omfang

Tæt-lavt boligbyggeri i 1 og 2 etager, 294 boliger pà ialt $25.055 \mathrm{~m}^{2}$ etageareal, udhuse på ialt $1.612 \mathrm{~m}^{2}$ og fælleshuse pả ialt 612 m^{2}, grundareal pả 113.000 m^{2}.

Bygherre

Hajbjerg Andelsboligforening.

Arkitekter

Arkitektgruppen i Aarhus A/S ved Ole Nielsson, Landskabsarkitektfirma Sven Hansen ApS.

Ingeniarer

Rådgivende ingeniør Ivar Lykke Kristensen AS.

Entreprener
Murerarbejde: Ejner Mikkelsen.

Tømrerarbejde: Martinsen \& Co. I/S.

Facadearbejde: Svend Andresen AS.

Blikkenslagerarbejde: Sven Erik Laursen A/S.

Fugearbejde: Århus Fuge-og Entreprenørfir ma ApS.

VVS: Edvard Lobner ApS.

El: A/S Eifa.

Opførelsesdata

Byggeriet startede oktober 1981, og afsluttedes juni 1984, første indflytning april 1983.

Økonomi

Byggeriet er gennemfort for ca. 5\% under rammeløbet for socialt bolig byggeri.

Fig. 1. Hándværkerparken i Holme. Billederne viser lave havefacader ud mod Hol me Bjerge og haje indgangsfacader ind mod pladsdannelse og hovedstier. Bemærk lodret forskydning og knæk i husrækkerne, de inddækkede udvendige trapper til 1. sals leiligheder og portàbningen.

Holmebakkhuse

Beliggenhed
Holmebækvej i Herføl- ge.

Art og omfang

Tæt-lavt boligbyggeri i 2 og 3 etager, 258 boliger pà ialt $20.490 \mathrm{~m}^{2}$ etageareal, udhuse pả ialt $1.848 \mathrm{~m}^{2}$ og fælleshuse og varmecentral på ialt $714 \mathrm{~m}^{2}$, grundareal på $72.342 \mathrm{~m}^{2}$.

Bygherre

Køge Almennyttige Boligselskab, v/ Dansk almennyttigt Boligselskab af 1942 S.m.b.A.

Arkitekter

Paludan og Ramsager, Arkitektgruppen i Aarhus A/S ved Lars Due, Sjællandstegnestuen.

Ingeniarer
Viggo Michaelsen A/S.

Hovedentreprenør
Højgaard og Schultz AS.

Underentreprenører

Tomrer og snedker: A. Jespersen \& Søn A/S.

Fugearbejde: F. L. Isolering ApS .

VVS: Ernst Nielsen \& Co. A/S.

El: Jan Bryde Christiansen A/S.

Opførelsesdata

Byggeriet startede september 1980 og afsluttedes med indflytning februar 1982.

Økonomi

Byggeriet er gennemført inden for rammebelobet for sociait boligbyggeri.
»Der er ingen tvivl om, at de smukkeste og mest spændende byggerier er dem, der bygges af mursten. Men vi har ikke råd til disse byggerier længere, og derfor má vi ty til elementbyggeriet«, sagde Knud Rasmussen fra KBI under en høring arrangeret af Murersvendenes Fagforening.

Om det første synspunkt er rigtigt vil jeg overiade til arkitekter og brugere at dømme om. I hvert fald er der tydelige forskelle i udformningen af de to her omtalte byggerier. Om det andet synspunkt har de nuværende markedsvilkảr oftest givet anledning til, at i det mindste bagvægge og dæk er udføres af elementer.

Bebyggelser og boliger

Tæt-lavt boligbyggeri, som det fremstår i dag, stiller sine egne krav til byggeteknikken, sảledes at de færdige bebyggelser giver de enkelte beboere:

- direkte kontakt med egne og
fælles udearealer,
- mulighed for at overskue og identificere sig med sit miljø, samt
- mulighed for at præge og påvirke sit miljø i overensstemmelse med egne behov.
De to her beskrevne bebyggelser udspringer af de involverede boligselskabers og arkitekters mangeårige arbejde med tætlavt boligbyggeri, af tendenser i tiden og af boliglovgivningens krav til lejlighedsstørrelser og akonomi.
Begge bebyggelser er præget af bymæssige gangstrøg og pladsdannelser, intime stiforleb og overgange til store gronninger, som i Holmebækhuse omsluttes af bebyggelsen og i Hảndværkerparken åbner sig ud mod Holme Bjerge, som rejser sig bag bebyggelsen. Boligbebyggelserne er begge tæt knyttet til mindre bysamfund, Herfølge og Holme. Holmebækhuse ligger i Herfølge, og Håndværker-

Fig. 2. Holmebækhuse i Herføige. Billederne viser 2 og 3 etagers indgangsfacader ud mod torv og stier i bebyggelsen. Bemærk udvendig trapper til 1. sals leiligheder og altanen, som er ophængt i bagvæggen i everste etage og stotter sig til etagedækket.

Fig. 3. Håndværkerparken. Tværsnit i 2 etages bolig med stuekarnap, 1:100. Taget (1) er teglbeklædt med undertag og loftet beklædt med træfiberplader. Etagedækket (2) bæres af tværgáende betonhuldæk, som i forbindelse med karnappen bæres af betonbiælker (3). Gulve er klinkebeklædte i entré (5) og baderum og ellers af bogeparket. Terrændækket (4) hviler pả 180 mm leca.

Fig. 5. Hăndværkerparken. Plansnit i over-og underetage af 2 etagers bolig med stuekarnap, 1:100. Murede vægge i lejlighedsskel, 35 cm (1), ydervægge, 35 cm (2), og indervægge (4) i underetagen. Karnappen (3) er omsluttet af lette træskeletvægge med muret sokkel. Indervægge (5) pà 1. sal er udført af væghoje letbetonelementer.

Fig. 4. Holmebækhuse. Tværsnit i 2 etages bolig med stuekarnap, 1:100. Taget (1 og 2) er beklædt med betontagsten. Loftet under spærfaget er beklædt med gipsplader. Etageadskillelsen er i forbindelse med karnappen understøttet af en bærende indervæg (5). Gulve er klinkebeklædte i entré (7) og baderum og ellers af bøgeparket. Terrændækket hviler pả 150 mm leca og er dækket af 45 mm mineral-

Fig. 6. Holmebækhuse. Plansnit iover- og underetage af 2 etagers bollg med stuekarnap, 1:100. 23 cm betonelementer i leilighedsskel (1). 35 cm betonsandwichvægge (2) omkring nederste etage, og betonbagvægge med udvendig isolering og træbeklædning omkring karnapper og 1. sal (3). Bærende betonindervæg (4) i underetagen i forbinde/se med trappen og ellers letbetonindervægge (5).
parken har ikke navn efter byggemetoden men efter gadenavnene i bebyggelsen.

Bebyggelserne er via bebyggelsesplan, bygningsudformning og farvevalg pá udvendige træoverflader opdelt i mindre botiggrupper. Til disse herer visse fællesfaciliteter, ligesom der i begge bebyggelser er beboerhus og fællesvaskeri(er). I Hảndværkerparken er fællesrummene udvendigt markeret med malede pudsede overflader.

Husene er hovedsageligt opbygget som smalle stamhuse med mulighed for stuekarnapper til havesiden og tilbyggede udhuse samt udvendige trapper pá indgangssiden. I HP (Håndværkerparken) er husene i en og to etager, i HH (Holmebækhuse) ito og tre etager. Det smalle stamhus muliggør, at også små lejligheder kan fá en have af en vis bredde. Det skal desuden mævnes, at husene i HP indeholder betydeligt flere afvigelser fra \#normalhuset< end i HH - afvigelser i form af knæk pả bygningsstokkene, lodrette forskydninger, ændrede dør- og vinduesplaceringer m.m. Men begge bebyggelser fremtræder som oplevelsesrige og varierede.

Bebyggelserne indeholder begge ca. 10 meget forskellige boligtyper på $36-106 \mathrm{~m}^{2}$ indeholdende 1-5 værelser i en, to, og i HH tillige tre etager. Nogle stuelejligheder er gjort egnede for ældre og handicappede; men ingen af bebyggelserne rummer umiddelbart en fleksibilitet med hensyn til muligheder for at ændre lejlighedsstørrelser. Specielt HP rummer en række boliger af mere individuel karakter.

Af hensyn til de byggetekniske sammenligninger er der her udvalgt to ensartede boligtyper, se figur 3-6.

Overflade og materiaier

Bebyggelserne fremtræder udwendigt med flammede gule mure henholdsvis afrevne gule betonoverflader, forskelligt farvede træoverflader på karnapper, udhuse og i HH tillige pá overetagerne, samt lyse tagflader belagt med henholdsvis tegl- og betontagsten.

Indvendigt anvendes bøgeparket på gulvene i køkken, stue og værelser samt klinker i entréer og badeværelser. Fodlisterne er i HH fastgjort til gulv og ikke til vægge. I HH er letbetonvæggene
fuldspaltede og tapetserede ligesom betonelementvæggene. I HP er de murede vægge vandskurede og malede. Indvendige trapper er udført af fyrretræ.

Byggesystem

Fundamenterne er udført som rendefundamenter under ydervægge, lejlighedsskel og bærende indervægge. I HP afsluttes randfundamentet med to skifter letbetonelementer, og i HH med betonelementer yderst, således at udstøbningen af terrændækket har kunnet foregå uden brug af særskilt yderforskalling.

Udvendige vægge og lejlig. hedsskel er hovedsageligt udført som tunge vægge, se figur 5 og 6. I HP er ydervægge omkring karnapper og udvendige trapper udfart som lette træskeletvægge, og i HH er karnapper og øverste etage udfort med tung bagvag og let yderbeklædning. Lejlig. hedsskellene er massive vægge, i HP 35 cm murværk og i HH 23 cm beton. De tunge ydervægge er i HP udført som 35 cm hulmur og i HH som 35 cm betonsandwichelementvæg.
Ørige indervægge er i HP udført af murværk i underetagen og i overetagen af letbeton. I HH er alle indervægge i boligerne udfort af letbeton. Trappevæggen, som understøtter denne og etagedækket er dog udført af beton.
Etagedækkene er udført af betonhuldæk, som spænder på tværs af husene og understøttes af ydervæggene. Taget spænder ligeledes på tværs af husene og er båret af træspærfag.

Bærende konstruktioner

Traditionelle murede huse kendetegnes af massive mure, tunge tage, mange afstivede vægge, lodret gennemgảende vægge og smalle ábninger heri. Byggeskikken har ændret sig, og murede vægge må derfor i dag i vid udstrækning forstærkes ved anvendelse af kalkcement mertel samt med indlagte betondragere og stålsøjler, og lette tage mȧ forankres dybt ned i væggene, se figur 8. Skillevæggene på 1. sal i HP er udfart af letbetonelementer, fordi væggene ikke er lodret gennemgáende, og udvendige trapper er udført som selvbærende konstruktioner.
Anvendelsen af det industrialiserede etageboligbyggeris be-

Fig. 7. Havefacaden af toetages boliger med stuekarnap. Endeknasten foroven giver et ekstra værelser til boligen vist pà fig. 4 og 6 . Bemærk brystningerne pà karnapperne, se fig. 12 og 13, og de nudvendigea vinduer pà det murede hus.
tonelementer til lavt byggeri giver modsat en rakke nye konstruktive muligheder, fordi bæreevnen af de massive vægelementer er rigelig stor. I HH bærer ydervæggen på 1 . sal som skive henover den ábning, der optræder i forbindelse med knaster på huset, se figur 4 og udvendige altaner på de tre etages huse er ophængt i ydervæggen, se figur 2.

Såvel i mur- og betonvægge er indboringsankre anvendt til fastgørelse af tagspær m.m. Disse fastgørelser medvirker til at begrænse antallet af elementvarianter og til at simplificere elementerne, når der anvendes betonelementer.

Lyd-, brand- og varmeisolering

Sảvel murværk som beton har gode egenskaber med hensyn til varmeakumulering og isolering mod luft-lyd og brand, men dårlige egenskaber med hensyn til
varme- og trinlydsisolering. Dảrlige egenskaber som relativt enkelt kan imødegas af dobbeltkonstruktioner med isolerende mellemlag. Sáledes kunne de vandrette lejlighedsskel forbedres yderligere ved udlægning af 50 mm mineraluld mellem strøerne. Lejlighedsskellene er af brand- og lydhensyn fortsat op i tagrummene.
Kuldebroer forekommer kun enkelte steder i forbindelse med fastgarelse af udvendige konstruktioner, og isoleringsevnen er af konstruktive grunde reduceret i forbindelse med vinduer, fundamenter og tagfoden, hvor pladshensyn i begge projekter har resulteret i en kompakt og kompliceret konstruktion, se fig. 8 og 9 .

Udvendige overfladers holdbar-

 hedDrift, vedligeholdelse og ikke mindst bygningers og bygnings-

Fig. 8. Hándværkerparken. Tværsnit af tagfod og ydervæg, 1:10. Udluftningen af tagrummet og styringen af undertaget (1) sikres af et særligt tagfodselement (2) udfort af 2 lag vandfast krydsfiner og afstandslister. Taget er forankret til hulmuren med et galvaniseret fladiernsanker (3), som griber fat i báde for- og bagmur.

Fig. 10. Hảndværkerparken. Tværsnit af ydervæg og tils/utningen af taget over karnappen, 1:10. Tagspærret (1) er fastgiort med stàlbeslag og indboringsankre til den betonbjælke (2), som tillige bærer etagedækket, se fig. 3. Hulrummet mellem isoleringen og undertaget er ventileret ved hiæip af en miniventil (3), og sàlbænken (4) under vinduet er udfart af eternit.
deles holdbarhed er i focus for øjeblikket. Men det har været lettest at pápege fortidens forsyndelser og sværere at skønne over de fremtidige besparelser, som gode materialer og gode byggetekniske løsninger måtte resultere i, og rammebeløbet for socialt boligbyggeri er fortsat uafhængigt af driftsøkonomien.
Begge de foreliggende projekter rummer ikke specielt udsatte beton- og murværkskonstruktioner. Men det er nok karakte-
ristisk, at tegltaget har større hældning end taget med betontagsten, og at teglydermure er beskyttet af beton- og eternitsålbænke forsynet med vandnæser. Men det er også karakteristisk, at disse sålbænke relativt let kan udskiftes. Særligt udsatte overflader pả betonvæggene er skrả, men har ikke vandnæser og kan ikke udskiftes.

Installationer \mathbf{i} terren

I begge projekter er alle ho-

Fig. 9. Holmebækhuse. Tværsnit at tagfod og ydervæg, 1:10. Undertaget (1) ledes frem til tagrenden af en skràtskảret planke og afsluttes med fodblik i zink. Ualuftningen af tagrummet sikres af lcoboard 20 fastholdt af træ/ister (2). Taget er forankret til betonbagvæggen (3) med stálbeslag og indboringsankre.

Fig. 11. Holmebækhuse. Tværsnit af ydervæg og tilslutning af taget over karnappen, 1:10. Tagspærret (1) er via den udvendige træskeletkonstruktion fastboltet til betonbagvæggen (2) med stálbeslag (3) og indboringsankre.
vedledninger placeret i terræn. Tilgængelige ingeniørkanaler under bygningerne er normalt kun anlægsøkonomisk rimeligt i forbindelse med etageboligbyggeri.

Opvarmningen foregảr via fjernvarme og anvendelse af Re dan varmeunits. Varmeforbruget opgøres for hver enkelt bolig via kaloriemåler. HH har egen varmecentral, som anvender svær fuelolie.

Ventilation af boligerne fore-
går via spalteventiler og vinduer, som kan åbnes. Teknikerne mener, at mange beboere fortsat ik ke har erkendt behovet for en vis ventilation af nybyggeriets tætte boliger.

Planlægning

Planlægningen af begge byggerier var præget af et godt og nært samarbejde mellem boligselskaber, arkitekter og ingeniører. Således har Hojbjerg Andelsboligforening været på stu-

Fig 12. Håndværkerparken. Tværsnit at brystningsvæg på karnappen, 1:10. Hulmuren (1) hviler af ρ å isolerende letbetonblokke (2), som afslutter fundamentet. Den ovenstȧende træskeletvæg (3) er forankret til hulmuren ligesom taget, se fig. 8. Betonsảlbænken (4) hviler af på for-og bagmur via galvaniserede fladjern.

Fig. 13. Holmebækhuse. Tværsnit af brystningsvæg pä karnappen, 1:10. Betonydervægselementet er ophængt (3) i og stottet (4) af betonbagvæggen, som fort sætter op bag denn udvendige træbeklædning.
dierejser i ind- og udland samnen med teknikkerne. Og begge эrojekter var detaljeret gennemarbejdet, inden der blev indhenet priser og tilbud på projektudførelsen.

Valget af byggeteknik stod ænge delvis ábent i begge projekter. I HP krævede boligsel;kabet muret byggeri, men der ndhentedes tillige priser på anvendelse af letbetonbagvægge. I HH indhentedes tillige priser pá ;kalmure med betonelementbag vægge.

HP blev udbudt i indbudt fagicitation, og HH i indbudt horedentreprenørlicitation, se (1). Jet er arkitekternes indtryk, at lette er udtryk for en karakteriitisk forskel på bygherreholduingen og branchestrukturen i〈øbenhavnsomrảdet og i Jyland.
HP skal senere udbygges til at umme 600-700 boliger. Boligoreningen har derfor, udover at ,pføre to provehuse forud for 1. tage af byggeriet, været inforitået med at afprove smảæniringer af enkelte huse af hen-
syn til planlægningen af de efterfolgende etaper. Endvidere har Byggeriets Udviklingsråd givet økonomisk støtte til, at en repræsentativ gruppe af Boligforeningens nuværende beboere aktivt kan deltage i planlægningen af et af de kommende afsnit af bebyggelsen, se (2).

Udfarelsesmæssige forhold

En af fordelene ved anvendelse af præfabrikerede råhuselementer angives normalt at være, at bygningen hurtigt bliver lukket, sảledes at de efterfølgende byggearbejder kan foregá uden gener fra vejrliget. Der er heller ingen tvivl om, at råhuset blev lukket og tørret hurtigere i elementprojektet end i det murede, selv om den hándværksmæssige udførelse af tagene over stuekarnapperne virkede forsinkende.
Men trods meget dårligt vejr pågik alle typer byggearbejder hele áret rundt i det murede byggeri - bortset fra byggemodningen. Dette medførte i visse perioder forøget byggefugt, hvorfor forste mảneds varmeregning i
særligt våde dele af byggeriet blev betalt af boligselskabet for at sikre den nødvendige efterudtørring.

Afsluttende bemærkninger

Målet med artiklen har ikke været at fremlægge en egentlig analyse af kvalitetsforskellene mellem de to byggerier, men at fremholde de forskelle, som umiddelbart udsprang af en byggeteknisk gennemgang af disse. Altså skal der ikke her opsummeres en række meget håndfaste konklusioner.
Murværk har ikke hidtil givet anledning til meget omfattende og dyre byggeskader. Ikke fordi murværk er specielt holdbart, men nok fordi man godt har vidst dette og derfor normalt har beskyttet udsatte overfader med afdækninger, som kan udskiftes, hvis de nedbrydes. Beton kan udføres så det i højere grad kan modstå vejrliget og andre ydre pávirkninger og har derfor fristet til for dristige konstruktioner.

Sundhedsmæssigt er beton-
byggeriet nok uretmæssigt blevet tillagt en række skavanker, fordi det har fảet sin store udbredelse samtidig med indførelsen af en lang række nye byggematerialer, som ogsá anvendes i det murede byggeri, og samtidig med at bygninger generelt er gjort tættere.

Derimod er det nok fortsat sảdan, at anvendelse af murværk giver arkitekten friere spillerum med hensyn til udformningen af bygningerne, selv om betonelementbyggeriet via accept af mindre serier ens elementer og en øget adskillelse af bygningsdelene har bødet herpå.

Litteratur

(1) Saren Kampmann: Prisdannelse og ent repriseform i dagens Danmark.
Byggeindustrien 9, 1982.
(2) Kan vi blive klogere af at bygge.

Byggeorientering 3, 1983.
Elementbyggeri pany i modvind.
Byggeri 9, 1983.
Hándvarkerparken
Tegl. 2, 1983.
Dansk nár det er bedst.
Aarhus Stiftstidende 31.3. 1983, tillæg om hus og have.

Tegninger: Grete Hartmann Petersen, DIAB Fotos: Lizzi Allesen-Holm

Ny tappehal på Carlsberg

Beliggenhed

Syd for Ny Carlsberg
Vej, øst for kedelhuset.

Art og omfang

Tappehal med en kapacitet på 78.000 pilsnere pr. time.

Tappehal, incl. besøgsgang: ca. $5.000 \mathrm{~m}^{2}$

Læsse/lossehal: ca. $600 \mathrm{~m}^{2}$

Birum: ca. $2.620 \mathrm{~m}^{2}$
Ingeniørgange: ca. 650 m^{2}

Kældre incl. sikringsrum: ca. $2.450 \mathrm{~m}^{2}$

Bygherre

De forenede Bryggerier AS.

Projekterende

Hovedrådgiver: Danbrew Consult Ltd.

I samarbejde med bl.a.:
Arkitekt Steen Hajby Rasmussen m.a.a.

Cowiconsult, Rådgivende ingeniører AS, rådgivere for bygningskonstruktioner og mekaniske forsyningsanlæg, byggeog montageledelse.

Ingeniørfirmaet P. A. Pedersen, rådgivere for
elektriske forsyningsanlæg.

Udførende

Betonentreprise: H . Hoffmann \& Sønner ASS. Stålentreprise I (stål i bygningskonstruktioner); HEAS maskinfabrik A/S.

Stålentreprise II (rørbroer, dæk, trapper, ventilationsskorsten): Christiani \& Nielsen A/S.

Murerentreprise: Einar Kornerup AS.

Lukningsentreprise: H . H. Robertson Nordisk A/S. Døre og vinduer: A/S H. S. Hansens fabrikker.

Opførelsesdata

Byggeriet påbegyndt november 1982.

Montage af tagkonstruktion april 1983.

Bygningen lukkes ulti= mo 1983.

Idrifttagning juli 1984.

Økonomi

Bygningsanlæg 64 mill. kr.

Ingeniargange, tunneler, veje, pladser 6 mill. kr.

Som led i en planlagt række af fornyelser af Carlsberg Bryggeriernes produktionsanlæg opføres for tiden en ny tappehal, Tap H 1. Tappekolonnen, der opstilles i Tap H 1, vil fá en kapacitet pà 78.000 pilsnere pr. time. Til sammenligning kan nævnes, at kapaciteten af hver kolonne pá Fredericia Bryggeri er på 45.000 enheder pr. time.

Den nye tappehal opføres på arealet syd for Ny Carlsberg Vej mellem kedelhuset og Jerichausgade. På arealet lả før nogle gamle hestestalde, garager og en eksportbygning. Disse bygninger var overflødige på grund af andre ændringer og kunne derfor sløjfes.

Bygningsanlægget

Den centrale del af Tap H 1 er selve tappehallen med en bredde på ca. 43 m og en længde på ca. 106 m , ialt ca. $4.600 \mathrm{~m}^{2}$ søjlefrit areal. Syd for tappehallen og som en forlængelse af denne er placeret en læssehal, hvori installeres en speciel pallekran, der kan læsse og losse bryggeriets sættevogne med 3 paller af gangen. Langs tappehallens nordlige ende er placeret en lavere tilbygning, der rummer en besøgsgang.

I bygningsanlægget indgảr endelig 10 mindre sidebygninger placeret med 5 langs vest- og 5 langs østfacaden. Sidebygningerne rummer folkerum, værksteder, administrationskontorer og forskellige funktioner, der indgår i produktionsanlægget. Under læssehallen og de vestlige sidebygninger er der etableret kældre.

Taget over tappehallen har en shedagtig form, idet der på tvars af bygningen er anordnet 4 trapezformede tagryttere med vinduesbảnd i de nordvendte skrå flader. En tilsvarende, men bredere tagrytter udgør taget over læssehallen. De lavere sidebygninger er med fladt tag.

Hovedtagdragere

Hovedkonstruktionen i taget over tappehallen udgøres af 4 store rumlige gitterdragere, der spænder $42,80 \mathrm{~m}$ på tværs af hallen. Gitterdragerne, der er placeret ide ovenfor nævnte tagryttere, har en bredde ved basis pá $8,64 \mathrm{~m}$ og en højde på 3,20 m . Dragerne er opbygget af cirkulære rør. Flangerørene har en diameter pả $298,5 \mathrm{~mm}$ og en største godstykkelse på 14,2

Fig 1. Situationsplan, 1:2000.

Fig. 2. Hovedtagdragerne I tappehallen bestâr af rumlige rorgitterdragere med trapezformet tvarsnit. I hojre side er det nedhængte akustikloft færdigmon-
teret. Af den bærende tagkonstruktion bliver kun hovedtagdragerne synlige under loftet. Synd næsten, at der skal ophænges to store ventilationsrar I
tagrytteren - tagkonstruktionen havde tált at blive set utildækket!

mm . Gitterudfyldningen i de skrå flader er et V -gitter med en rørdiameter pá $219,1 \mathrm{~mm}$ og en største godstykkelse pá 12,5 mm . Den mere sekundære gitterudfyldning i oversiden af gitterdrageren er et N -gitter med
| Fig. 3. Tagplan, 1:500. For sidebygningernes vedkommende er vist grundplan. Med kraftig streg er vist hovedtagdragerne og med tyndere streg langsgảende hovedáse og tværgàende sekundære àse. Tyndpladeásene itag rytterne er ikke indtegnet. Besøgsgan gen er placeret mellem modullinierne 1 og 2, læssehallen mellem 11 og 12. Den totale vægt af konstruktionsstál i byggeriet er 500 t.
rørdimensionen $133 \times 4 \mathrm{~mm}$. Der er ingen gitterudfyldning i bunden af gitterdrageren, men der er anbragt vertikaler svarende til de nederste knudepunkter af V-gitteret i de skrả flader. Alle væsentlige rar i gitterdragerne er af St 52.3.
Knudepunkterne i de skrà gitterflader er udformet med knudeplader. Knudepunktsdetaljen er interessant, idet knudepladerne ikke - som det normalt er tilfældet - er anordnet i gitterets plan, men vinkelret herpả. Knudepladen for enderne af hver gitterudfyldningsstang dan-
ner en sadel, der går ind over det pågældende flangerør. Losningen giver gitteret en elegant silhuet, idet stangtilslutningen fremtræder som en spinkel »hals«, i modsætning til den gængse velkendte knudepladelasning med en tung og noget klodset silhuet. I øvrigt har løsningen vist sig ogsá at være økonomisk fordelagtig.
Samme knudepunktsløsning er benyttet for vertikalerne i undersiden af gitterdrageren, mens N -gitteret i oversiden er udført med knudepladefrie knudepunkter, hvor rørene svejses di-

A
Fig. 4. Udsnit af facade og længdesnit, 1:200. 1. Hovedtagdrager. 2. Langsgåㅇ ende hovedàse og tværgàende sekundære áse. 3. Facademur fort op over taget. 4. Pudsevogn. 5. Tværgáende rarbro. 6. Langsgảende rarbro. 7. Vin due mod haveanlæg. 8. Hovedsøile, beton.
rekte sammen.
På grund af gitterdragernes størrelse var det nødvendigt at udfare dem i mindre sektioner i værkstedet og samle dem pá byggepladsen. Af samme grund blev kun den grundlæggende korrosionsbeskyttelse udført inden ankomsten til byggepladsen. Samlingen af gitterdragerne

4 Fig 5. Længdesnit gennem tagkonstruktion, 1:40. 1. Flangerar $298,5 \times$ $14,2 \mathrm{~mm}$. 2. Diagonaler $219,1 \times 12,5$ mm. 3. Langsgảende hovedàs IPE 550. 4. Asestreng fort op som rammer af HE 240 A. Rammerne muliggor, at akustikloftet kan fores hen over hovedtagdragerne. 5. Sekundær às UNP 160, her dobbeltàs anordnet som vierendeel konstruktion, idet den indgàr som flange i vindgitter. 6. Sekundær às af tyndpladeprofil. 7. Stáltagp/ader DFT 35. 8. /solering, samlet tykkelse 200 mm, 3-lags papdækning. 9. Ophængt rarbro. 10. Ophængt ventilationsrar. 11. Nedhængt akustikloft.
og den afsluttende malerbehandling blev udfart på jorden i 2 opvarmede telte.

Montagen af de enkelte gitterdragere foregik i ét løft med den største kran fra BMS.

Da de rumlige gitterdragere ikke har gitterudfyldning i undersiden og ikke er forsynet med afstivende tværskot, vil de ikke umiddelbart kunne optage usymmetrisk last. Der er derfor i tagfladen mellem to nabogitterdragere indlagt et afstivningsgitter med krydsende, forspændte diagonaler til optagelse af kraftkomposanter i tagets plan.

I den bredere tagrytter over læssehallen udgøres hovedkonstruktionen af rørgitterspær, der spænder $12,70 \mathrm{~m}$ mellem betonsajler anbragt i linie 11 og 12. Afstanden mellem gitterspærene er $5,35 \mathrm{~m}$, og største rørdimension er $168,3 \times 6,3 \mathrm{~mm}$.

Tagkonstruktionen i øvrigt

Som tagảse er benyttet valsede profiler i stålkvalitet St 37 B . Hovedåsene spænder $14,40 \mathrm{~m}$ i tappehallens længderetning, simpelt understattede pá underflangerne af de trapezformede hovedgitterdragere. Åsene er IPE 550, og afstanden mellem àsene er $5,35 \mathrm{~m}$, svarende til knudepunktafstanden i hovedgitterdrageren. Åsestrengene er ført op og henover hoveddragerne som trapezformede 2-charni-ers-rammer udfort af HE 240 A , se i øvrigt figur 5 .

Vinkelret på åsene - dvs. på tværs af tappehallen - er anordnet et system af sekundære tagåse af UNP 160 med en indbyrdes afstand på 1900 mm . Oversiden af disse flugter med hovedásene, og i kroppen af de sekundære àse er udstandset 2 rækker aflange huller, der giver mulighed for vilkårligt ophæng af installationer. Som det fremgår af tagplanen i figur 3, er de sekundære ảse, der indgár som

Fig. 6. Detalie af vederlag for hovedtagdrager. Bemærk diagonaltils/utningen, hvor knudepladen som en sadel gàr ned over flangeraret. Til venstre ses overste hiorne af rergalge, hvori langsgáende rarbroer er ophængt.
flanger i vindgitre i taget, udformet som dobbeltáse med tværforbindelser - altsả som vierendeeltrykstænger. Grunden til, at der er benyttet UNP 160 som sekundære àse i stedet for mere økonomiske koldformede tyndpladeprofiler, er den kraftige perforering af kroppladen, der ville have svækket letprofilet utilladeligt. I tagrytterne, hvor der ikke er behov for at ophænge installationer i de sekundære áse, er benyttet koldformede profiler.

Tag- og loftbeklædning

Tagbeklædningen er trapezkorrugerede stảlplader af typen DFT 35. Profilhøjden er 35 mm , og pladetykkelsen er $0,75 \mathrm{~mm}$. Pladerne spænder $1,90 \mathrm{~m}$ mellem de sekundære áse og forlober således i tappehallens længderetning. Tagopbygningen over stảlpladerne består af fugtspærre, 45 mm Rockwool A-underlagsplade, 110 mm polystyrol, 45 mm Rockwool A-tagplade og en 3-lags papoverdækning, hvoraf det ene lag i forvejen er påklæbet A-tagpladen.

Stáltagpladerne indgår i en vis udstrækning i stabilisering af bygningen. De murfelter i facaderne, der er beliggende ud for sidebygningerne - dvs. ud for de lave tagflader mellem tagryt-

terne - er afstivet for vindkræfter pá facaden af et indmuret stảlskelet, der afleverer vindkræfterne til den yderste hovedàs. Herfra fordeles vindkræfterne gennem de sekundære áse som en jæunt fordelt last til tagskiven. Tagpladerne overfører dercfter ved skivcvirkning vindkræfterne til foden af hovedtagdragerne, hvorfra kræfterne gennem hovedtagdragerne og betonsøjlerne føres til fundamentet.

Under tagkonstruktionen er anbragt et nedhængt akustikloft, der af de bærende konstruktioner kun efterlader ho-

vedgitterspærene synlige nede fra hallen.

Facader og hovedsajler

Facaderne udføres som 420 mm mur med moccafarvede, blødstragne, massive facadesten og blank indermur med moccafarvede maskinhulsten. Murværket begyndes og afsluttes med standerskifter. Facaderne er ført op over tagfladen og forsynet med murkroner af halvcirkulære betonelementer oplagt pả standerskiftet. Isoleringen i muren er Glasuld murfilt type A i 100 mm tykkelse. Alle hule mure afstives af et indmuret stálskelet, der fastholdet murene mod hovedsøjler og tagkonstruktion.

Hallens hovedsøjler, hvorpå hovedtagdragerne er oplagt er præfabrikerede betonsøjler indspændt i fundamenter. Søjlerne har rektangulært tværsnit med dimensionerne $850 \times 480 \mathrm{~mm}$. Der er anvendt direkte fundering.

Afslutning

Interiøret i tappehallen præges i høj grad af et omfattende system af rørbroer, der tjener til fremføring af forsyningsledninger og installationer.

Langs begge facader er i hele hallens længde anordnet rerbro-

Fig. 7.1 murerentreprisen indgik opmu ring af en provemur med blandt andet standerskifte, zinkkanter og betonelementer pà murkrone. Standerskiftet er ikke helt symmetrisk omkring den skrá vinkelhalveringslinie - denne detalje er bragt i orden i selve bygningen!
er, báret af rørgalger fastgjort til hovesøjlerne. Broerne bæres af gitre anordnet i rækværket. Pả tværs af tappehallen forlaber ialt 9 rørbroer ophængt i tagkonstruktionen.

Til byggeriet har der været stillet store kvalitetskrav - ikke alene vedrørende normmæssig sikkerhed, men også til sikring af holdbarhed, lave vedligeholdelsesomkostninger og udseende. Cowiconsult, der har haft bygge- og montageledelsen, har gennemført en stram kvalitetsstyring, hvor kontrollen med værksted og byggeplads har været lagt tilrette efter firmaets kvalitetssikringsmanual.

Carlsberg Bryggerierne har lagt stor vægt pá, at den nye tappehal skal være ikke alene rammen om et effektivt produktionsanlæg, men ogsả et behageligt og indbydende bygningsanlæg for de ansatte. Primært er der stillet store krav til det generelle milj \varnothing. Eksternt vedrører det for eksempel krav til støj og lugt fra ventilationsafkast samt trafikstøj. Internt er kravene rettet mod gode dagslysforhold og ikke mindst mod støj fra maskinog transportanlæg, hvilket De forenede Bryggerier har forsket meget i. På arealerne mellem sidebygningerne indrettes haveanlæg, og ud for disse er tappehallens store vinduespartier fort helt til gulv. Fremmende for miljøet er også bygningsanlægget i sig selv i kraft af høj kvalitet og smukke detaljer.

Af lektor, civilingeniør Bent-Erik Carisen, DIAB.
Tegninger: Grete Hartmann Petersen, DIAB. Fotos: AJS og forfatteren.

Marina Park

Fig. 1. - Modelfoto af kontorbygningen set fra nordøst (AJS).

Beliggenhed:

Ved den nordlige indgang til Københavns Frihavn på hjørnet af Sundkrogsgade og Kalkbrænderihavnsgade i København, matr. nr. 2915 Udenbys Klædebo kvarter, grundareal $21.000 \mathrm{~m}^{2}$.

Art og omfang:

Kontorhus i 5 etager på ialt 23.000 etagemeter. 3 etager er fuldt udbyggede, mens etage 1 er parkering og etage 5 er delvis bebygget, se modelfoto på figur 1.

Bygherre:

Pensionsforsikringsanstalten A/S.

Totalentreprise:

A. Jespersen \& Søn A/S.

Arkitektprojektering:

Arkitekt M.A.A. Bent Saks ApS.

Projektering:

Konstruktioner: A. Jespersen \& Søn A/S. Installationsprojektering: Semco AS, landskabsarkitekt: Arkitekt, M.D.L. Jørgen Vesterholt.

Råhusmontage:

A. Jespersen \& Søn (Jord-, Beton- og Elementmontage).

Per Aarsleff A/S: Pilotering.

AJS-Modulbeton og Dansk Spændbeton: Betonelementer.

Andre udførende:

Viktoria Facader AS: Vinduer og lukning. Blendex A/S: Solafskærmning.

Jens Villadsens Fabriker: Tagdækning.

Murermester Umberto Londero: Klinker og fliser. Nordia System A/S: Lette skillevægge.

Siemens A/S: Elevatorer.

Semco A/S: VVS og andre tekniske installationer.

Endvidere medvirkede bl. a. Stjerneisolering,

Dansk Storkøkkenindretning, malermester Christian Ishøy \& Søn samt A.O. Tæpper.

Opførelsesdata:

Programmeringen af projektet blev igangsat i november 1980, lokalplan godkendt i juni 1982 og byggestart i august 1982. Byggeriet skal efter planen afleveres 1. februar 1984.

Økonomi:

Den samlede byggeudgift er beregnet til kr. 170 mill. uden moms. I beløbet indgår ikke udgiften til grunden.

Fig. 2. - Situationsplan. Màl: 1:800.

Projekteringsforudsætninger

I forảret 1980 fik AJS en aftale med Københavns Havnevæsen om en forkøbsret på arealet. Med det formål at belyse arealets anvendelsesmulighed blev der herefter afholdt en arkitektkonkurrence, der resulterede i, at man besluttede at arbejde videre med et kontorhus på ca. $23.000 \mathrm{~m}^{3}$ pá grundlag af projekt fra Bent Saks' Tegnestue.

Herefter blev der mellem AJS og Pensionsforsikringsanstalten A/S indgået en rammeaftale, vedrorende det samlede byggeri, såfremt dette kunne gennemfores uden hindringer i form af fx . lokalplaner.
Problemerne vedrarende lokalplan, byggesagsbehandling m.v. er detaljeret beskrevet af Christian Gjedde i litt. (1), og skal derfor ikke yderligere omtales i denne artikel.

En brugsmæssig projekteringsforudsætning var onsket om i størst muligt omfang at kunne anvende flytbare skillevægge i kontorarealerne for at opnå en stor fleksibilitet i indretningen og mulighed for at gennemføre ændringer i takt med behovet.
Dette medforte, at de eneste faste bygningsdele er trapper og toiletkerner, hvorimod alle etagearealer er søjlefri udtagen storrum, se fig. 3.

På basis af brugerønsker har man indrettet báde traditionelle cellekontorer, større kontorlandskaber og endelig den nye kontorform, kombikontoret, der i princippet bestảr af mindre cellekontorer med glasvægge til større og lyse fællesarealer.

Materialer og konstruktioner

Bygningens konstruktive princip fremgår af det lodrette konstruktionssnit pá fig. 5.

Idet der begyndes nedefra, kan det nævnes, at det ved som så mange andre byggerier i Ko benhavn har været nodvendigt at pilotere grunden. Efter udgravning af kælder blev der rammet ialt 14.649 meter jernbetonpæle af Per Aarsleff A/S, der i en periode havde 3 rambukke i arbejde samtidig.
Som det fremgàr af foto på fig. 3 og fig. 5 , er etage 1 helt áben og friholdt til bla. parkering. I denne etage er den bærende konstruktion de ovale sejle-

Fig. 3. - Fotos fra byggepladsen. 1. Interiorbillede fra gảrd med ventilationshus pà taget. 2. Nærbillede af ydervæg med teg' og ovale vinduer i trappetảrn. 3. Fremtidigt kontorlandskab med store glasvinduer mod havnen. 4. Udsyn fra kontor mod nnaboufacade, bemærk solafskærmningerne, der opereres manuelt indefra. (BEC).
elementer, der er gennemgáende til etage 2 , se fig. 6.

Loftet i parkeringsarealet er udført af trapezprofilerede stålplader med bagvedliggende mineraluldsisolering.

Alle etageadskillelser er udført med forspændte betonribbeplader, med frit spænd svarende til bygningskroppens samlede bredde på op til 12 m . Som det fremgár af fig. 5 er der herpå støbt en overbeton på 60-80 mm. I kærneomrảderne er etageadskillelserne dog udfort som huldæk. Facaderne i etage 2 er normale betonsandwichelementer, der hviler pá en betondrager i søjlernes midte.

Facadeelementerne i etagerne 3 og 4 fortjener en mere detaljeret omtale, idet der her ikke er tale om et traditionelt facadeelement. Facaderne er opbygget af to separate betonelementer, der monteres hver for sig, hvorefter der indblæses mineraluld i hulrummet. Undersøgelser, udført
efter montagen og indblæsningen, har vist, at den anvendte metode giver en fuldstændig udfyldning af hulrummet ved isoleringsmateriale.
Facadens forplade er udvendigt beklædt med kvadratiske teglstensfliser i rødbrun farve, hvilket desværre ikke kommer til udtryk i fotografierne i fig. 3.
Med en modultakt på 3 M i teglstensbeklædningen er det lykkedes arkitekten at få en fin tilpasning mellem fliser og elementfuger.

Alle vinduer er solide aluminiumsvinduer med termoruder, monteret i facadeelementerne på byggepladsen.

Vinduerne er forsynet med aluminiumsinddækninger,
sảlbænke og -drypbakker til at lede eventuelt kondensvand bort fra bygningen.
Da bygningskroppene på grund af ønskerne om en fleksibel plan kun har trappekernerne som vandrette, afstivende ele-
menter, har det været nedvendigt for konstruktionsingeniørerne at udføre en omhyggelig design af skivearmering m.v. Se fx . stringearmeringen i øverste højre hjørne på fig. 5.
En detalje af teglforpladens montage på bagvægselementets konsolophæng er vist pá fig. 7, og fig. 8 viser som samlingsdetalje ophængningen af betonforpladen med rustfrie Frimedafacadeankre.
De to detaljer er gode eksempler pá, hvor gennemarbejdet projektmaterialet er.
Om tagkonstruktionen skal siges, at den er udført som en tagpapspecifikation på PIRskumplast, og at den er udført med fald min. 1:40, hvilket bør indføre en ny æra i danske tagpaptage, uden lunker med vand og deraf følgende issprængninger!
Afdækningen af betonfacadernes top er udført som en sikker løsning med en kile af isole-

Fig. 4. - Etagepian af vestlige del af nord-blok. Mảl 1:400. 1. Kontorer. 2. Gang. 3. Trappetảrn med trappe og 4. garderobe. 5. Toiletter. 6. Tekøkken. 7. Eirum. 8. BS 60 skakt til VVS installationer.
ringsmaterialet, hvorved man undgàr skarpe knæk i tagpappen. Selve kronen er afdækket med en aluminiumskapsel, der er skruet pả en indstabt liste.
I komplettering af bygningens indre, hvormed menes vægge, gulve og lofter, har man ikke forsøgt at eksperimentere med nye ting. Der er tale om gennemprøvede skillevægselementer med to lag 13 mm gips, nedhængte glasuld-lydisoleringslofter og gulvtæpper. I de våde rum har man ligeledes holdt sig til det traditionelle: røde klinker pá gulvene og hvide fliser pá væggene.

Modulforhold

Som det fremgår af fig. 2 er planerne opbygget over et modulnet med maskevidden 12 M , idet nettene dog er afbrudt af store »neutrale zoner« på 117 M ved samtlige trappekerner. Ligesom pả de øvrige byggetekniske og bygningsfysiske omrảder er byggeriet her i fuld overensstemmelse med BR 82.

Installationer

Semcos projektering og udførelse af VVS installationerne mả ogsá siges at være ret traditionelle, idet opvarmningen foregár ved et almindeligt vandradiator-
system, og ventilationen foretages ved udsugning fra samtlige rum ved varmegenvinding kombineret med varmeflader på ventilationsanlægget, se ventilationshuset på foto, fig. 3.
Det bør dog nævnes, at både opvarmnings- og ventilationssystemet er centralt overvåget i alle funktionerne, og at bygningens edb-central har en speciel styring af indeklimaet.
Herudover er der installeret en hel del automatik m.v. som f.x. adgangskontrol, flextidssystem, porttelefon, antenneanlæg samt de senere omtalte brandtekniske installationer.

Brand- og lydforhold

Såvidt dẹt kan registreres på grundlag af en gennemgang af bygningen, er denne i fuld overensstemmeise med bygningsreglement 1982 afsnit 6.16, der er et af reglementets nye afsnit omhandlende kontorlokaler. Af brandteknisk interesse kan det nævnes, at der er udført en BS 60 installationsskakt i hele bygningens højde, se planen på fig. 2. Adgangen til disse skakte sker i alle tilfælde gennem en branddør i et toilet. Installationerne rør og kanaler - er anbragt meget overskueligt og er nemme at komme til for eventuelle repa-

Fig. 5. Lodret snit i 4-etagers bygning mellem modullinierne 3 og 4. Màl: 1:150 1. Oval betonsojle, se ogsá fig. 6. 2. kantbjæ/ke. 3. $\Pi 40$ forspændt dækelement. 4. $60-80 \mathrm{mmm}$ overbeton med armering. 5. Betonsandwichfacadeelement i etage 2. 6. Betonkantbiæ/ke mellem etage 2 og 3. 7. Indvendig plade af betonelementfacade letagerne 3 og 4. 8. Forplade i betonelementfacade med tegisten. 9. Tagpapspecifikation pá mineraluld med fald 1 pá 40. 10. Stringearmering 2K16. 11 Solato skærmning.
rationer. Selv om der er tale om en stor bygning, foregår der ikke nogen overskridelse af brandsektionsgrænsen på $600 \mathrm{~m}^{2}$ med deraf udløsning af krav om sprinkleranlæg, brandalarmering m.v.

Bảndarkiv, telefoncentral og maskinstue er forsynet med Halon-anlæg med alarmoverføring til brandvæsenet, og alle sektioneringsdøre har automatisk dørlukningsanlæg.
Vedrarende det bygningsakustiske gælder det generelt, at man i kontorlokaler bør have så lille en efterklangstid, som muligt, og at det i første række er et spargsmall om at dæmpe loftet for at undgá en umiddelbar tilbagekastning af staj fra kontormaskiner m.v. Med de føromtalte valg af loftbeklædning og gulvbelægning, má disse krav siges at være fuldtud tilfredsstillede.

Afsluttende bemærkninger

Selvom arkitektoniske forhold falder udenfor denne byg
getekniske gennemgang, bør det dog nævnes, at arkitekten har formáet at skabe en lettilgængelig bygning uden det orienteringsbesvær, man tit finder i lignende store byggerier. Dette skyldes sandsynligvis bygningens opdeling i et øst-vest gảende hovedstrøg og centrering om tre àbne gảrdarealer pả samme måde, som det blev anvendt ved Teknikerbyen i Virum.

Rent byggeteknisk indeholder projektet ikke de store nyskabelser, men det er til gengæld oploftende at se et solidt montagebyggeri, der både har en stor detaljeringsgrad i projektet, en høj grad af præfabrikation, og som samtidig virker skræddersyet. Det er svært i dette byggeri at få øje pả sàrbare punkter, der senere kan give anledning til byggeskader.

Litteratur

(1): Gjedde, C.: $23.000 \mathrm{~m}^{2}$ kontohus ved Ko benhavns Frihavn hviler pà sejler. DPA. btadoí n. 2; 1393.

Fig. 6. - Elementtegning at oval sajle i etagerne 1 og 2. Màl: 1:50.

Fig. 7. - Samlingsdetalie, ophængning af betonforplade. Màl 1:10. 1. Variabelt ele mentmàl. 2.5 mm Neoprene. 3.16 mm stàlplade. 4.6 mm stálplade. $5 . \mathrm{M} 20$ bolt. 7. M 20 motrikker. 8.5 mm jernplade. 9.8 mm fladjern. 10. Frimeda facadeankre. 11.

Fig. 8. - Understotning at teglforplade pả bagvægselement. Mảl 1:10. 1.15 mm Polystyren. 2. Indblæst mineraluld. 3. Udsparing, der udstabes efter inspektion. 4. Mellemlag af Neoprene. 5. M 16 sætskrue. 6. Opklodsning at stàl/neoprene/stál. 7. M 16 sætskrue. 8. Rustfrit beslag. 9. M 16 insert.

[^0]: Fig. 3. Situationsplan af typisk Primary School. Mảl 1:500. GR. Guardroom. LO. Lobby. AB. Administration Block MH. Multipurpose Hall. CB. Classroom Block. TB. Toilet Block. SC-CA. Sports Complex - Canteen. WS. Workshop.

