D) $1=3$ hue byenine

DIAB og SBI beskriver
Model (Mangor og Nagel)

Aktuelle byggerier 1982

DIAB husbygning

Danmarks Ingeniørakademi, Bygningsafdelingen

Statens Byggeforskningsinstitut

Aktuelle byggerier 1982

Særtryk af byggeindustrien

DIAB OG SBI BESKRIVER AKTUELLE BYGGERIER 69
af lektor, akademiingeniar Per Kjæerbye, DIAB
Konstruktionstegninger: Grete Hartmann Petersen

D.O.N.G. A/S

Hovedkontor i Hørsholm for Dansk Olie og Naturgas A/S

Beliggenhed:

Forskningscentrets omràde i Hørsholm, pả hjørnet af Dr. Neergárdsvej og Agern Allé.

Art og omfang:

Præfabrikeret kontorbyggeri i 2 etager med kælder. Første byggeetape bestod af 3 blokke, der blev taget i brug i marts máned 1981; anden etape bestár af 1 blok, der forventes afleveret i februar 1982. Blokkenes hovedmál er $12 \times 50 \mathrm{~m}$, og bruttoarealet pr. blok incl. kælder og trapperum ved gaviene er ca. $1960 \mathrm{~m}^{2}$.

Bygherre:

Dansk Olie \& Naturgas A/S.

Arkitekt:

Arkitekterne Gottlieb, Høgsted og Paludan m. a. a., 2900 Hellerup.

Ingeniører:

Konstruktioner: Nielsen
\& Rauschenberger,
Rảdgivende Ingeniører A/S, 2830 Virum. Installationer: Mogens Balslev, Rảdgivende Ingeniører A/S, 2610 Rødovre.

Hovedentreprenør:

Højgaard \& Schultz A/S, civilingeniører og entreprenører, 2920 Charlottenlund.

Underentrepriser:

Jord, vej og kloak: Alex I. Hansen \& Søns Eftf. KIS.

Beton, in situ og elementer: Højgaard \& Schultz A/S. Letbeton: $\mathrm{H}+\mathrm{H}$ Bygningsmontage A/S. Flisemurer: Nordsjællands Flisemontering I/S. Tagdækning: A/S Hotaco. Gulvbelægning: Charles Christensen A/S. Glas: Glasalstrup-Thorvald Pedersen A/S. Smedearbejde: Maskinfabrikken Treos ApS. Lette vægge og lofter: Strø Mølle Akustik A/S. Malerarbejde: V. S. Larsen A/S og Robert Rasmussen. VVS \& ventilation: Ernst Nielsen \& Co. ASS. El: Kemp \& Lauritzen A/S.

Opførelsesdata:

1. etape: 3 blokke, pảbegyndt 1980-06-01 og afle-
veret 1981-03-01. 2. etape: 1 blok, päbegyndt 1981. 08-01, forventes afleveret 1982-03-01.

Økonomi:

1. etape pá ialt 3 ens blokke kostede nøglefærdige ca. 21 mill. kr. excl. moms, grundudgifter og finansiering; beløbet inkluderer hàndværkerudgifter, tilslutningsudgifter, teknikerhonorarer samt udgifter til forcering og prisstigninger i byggeperioden. Det samlede etageareal udgør ca. 3.920 m^{2}, hertil kommer ca. $1960 \mathrm{~m}^{2}$ kælder, dvs. at prisen andrager ca. 4.285 $\mathrm{kr} / \mathrm{m}^{2}$, sảfremt kælderen sættes til halv pris. Pris niveau er januar 1981.

Dansk Olie \& Naturgas A/S etablerer sig med nyt hovedkontor pá forskningsområdet sydvest for Hørsholm by. I marts mảned i àr blev 1. etape bestående af 3 ens blokke taget i brug; hver blok er pá 2 etager plus kælder med ca. $1.307 \mathrm{~m}^{2}$ etageareal og ca. $653 \mathrm{~m}^{2}$ kælder. For ajeblikket opføres endnu en blok til aflevering i foráret 1982.

Som det fremgår af situationsplanen, figur 1 , er grunden endnu ikke fuldt udbygget, og der er da ogsá planlagt en bygning mere beliggende nord for de 4 viste; en sảdan bygning skal indeholde kontrolrum, kantine, større møderum samt andre funktioner, der kræver specielle forhold, fx. med hensyn til installationer og udstyr.

De allerede ibrugtagne blokke er forbundne langs sydgaviene med midlertidige, lette pergolaer med en midlertidig қeception øst for blok 3 ; farst med en fremtidig udvidelse skabes der en planlagt permanent sammenhæng mellem blokkene med en 2 etagers let forbindelsesbygning langs de 4 blokkes nordgavle samt den ovenfor omtalte endnu ikke päbegyndte bygning.

Nærværende byggetekniske artikel omhandler generelle byg. ningsdispositioner og ràhussystemet, herunder facadeelementet med vinduesdetaljer samt kælderydervæggen; desuden behandles detaljer ved tagafslutninger og ved trappekonstruktionerne. Afslutningsvis omtales de sekundære konstruktioner samt installationer og entrepriseform.

Fig. 1. Situationsplan, 1:2000. Pá forskningsomrádet sydvest for Horsholm bygger Dansk Olie \& Naturgas A/S nyt kontorhus; artiklen omhandler blok 4, der er under opforelse december 1981.

Bygningsdispositioner

Ved projekteringen blev der i høj grad taget hensyn til energibesparelser til bygningsopvarmning; sảledes er det gennemsnitlige varmetransmissionstab fra bygningerne $30-40 \%$ lavere end maksimalværdierne i gældende Bygningsreglement 1977. Dette er opnáet med isoleringstykkel-
ser i etagernes ydervægge på 240 mm , i kælderydervægge 70 mm og i taget 200 mm .

Endvidere har bygherren onsket at opnȧ et behageligt indeklima, sável termisk som lyd- og lysmæssigt. Dette har bl. a. medfart, at blokkene blev nordsyd orienteret, sảledes at konto-
rerne fảr enten formiddags- eller eftermiddagssol; desuden blev vinduerne indbygget bagest i de 470 mm tykke ydervægselementer, hvorved opnàs en betydelig solafskærmende virkning.
Bygningernes facader er stramme i deres disposition med 14 ens vinduesfag og med faca-

Fig. 2. Isometri at etageplan. Planen er disponeret over enkeltmandskontorer med bredden $3,6 \mathrm{~m}$. Bygningens hovedmál er ca. $12 \times 50 \mathrm{~m}$ med 2 gav/trapperum. Bemæerk de forsatte korridorer samt midterkernen, der indeholder toiletter og tekøkken.

Fig. 3. Perspekitivisk tværsnit. Alle blokke er i 2 etager med kæider. Etagedæk spænder mellem bæerende facader og et langsgȧende søjle-bjælkesystem, dog spænder tagdækket uden mellemunderstøtning fra facade til facade.
deoverflader med frilagte hvide marmorsten; øverst afsluttes facaden med et karakteristisk sort bånd, der virker som stern for det flade tag.

Blokkene har asymmetrisk korridor med det specielle i planløsningen, at korridorerne i hver ende af blokkene er forsat i forhold til hinanden, sáledes at kontordybder pá 36 M og 45 M skifter side i de 2 bygningsender,
se figur 2 og 4; desuden er der centralt i bygningen indrettet en kerne med toiletter og tekøkken. Disse særlige forhold gør, at huset indvendigt virker kortere og mere intimt, idet man kun vanskeligt kan fá et sigt igennem den 50 m lange bygning.

Blokkenes modulære længde er $14 \times 36 \mathrm{M}=504 \mathrm{M}$ med en bredde pà 120 M ; hertil kommer de 2 gavltrappehuse med en mo-
dulær grundflade pá $30 \mathrm{M} \times$ 72M.
Hovedmodullinierne i facaderne ligger 50 mm inde i facadeelementet regnet fra den udvendige overflade, hvilket giver en indvendig husbredde pá $12000 \cdot 2 \times 420 \mathrm{~mm}=11160$ mm ; i bygningens længderetning anordnes sajle-bjælkesystemer, hvis centerlinier pả hver side af kernen ligger 5360 mm hhv.

4320 mm fra facademodullinie A, se figur 4.
Projektet var oprindelig projekteret med modullinierne placeret i facadernes udvendige flugt, med en husbredde lig modulbredden 120M. En forøgelse af isoleringstykkelsen med 50 mm viste sig imidertid at forbedre støbedetaljerne i vinduesfalsene, hvilket førte til den endelige modullinieplacering, idet bygningens indvendige mál blev fastholdt.
Hovedmodullinierne i gavlene ligger 8 mm indenfor gavlelementernes indvendige overflade. Denne placering er en naturlig følge af ansket om 16 mm brede fuger ogsá mellem gavl- og facadeelementer, samt plane støbeforme for disse elementer.

Etagehøjden er 30 M , i kælderen $\operatorname{dog} 2820 \mathrm{~mm}$ svarende til den normale etagehøjde minus en trappestigning.

Rảhussystemet

Blokkene udfores som betonelementbyggeri med præfabrikerede søjler, bjælker, vægge og dæk; de eneste pladsudfarte ràhuskonstruktioner er fundamenter, kældervægge i gavle og i trappehuse samt sikringsrumsafgrænsende vægge og dæk.

Ydervægselementerne i etagerne er 3584 mm lange og 470 mm tykke, og bestar af 150 mm bagskive, 240 mm isolering og 80 mm forskive; bærende og afstivende kernevægge er 180 mm massive vægelementer. Facadee-

Fig. 4. Etageplan, 1:350. Planen er optegnet som en kombineret arkitekt-og ingeniørtegning indeholdende fra venstre: Indretningsplan, dæekopdelingsplan og fugearme ringsprincip for dækskiven. Tegningen er opbygget over planlægningsmodulet $36 \mathrm{M} \times 120 \mathrm{M}$ med angivelse af de primære elementers placering iforhold til hovedmodul linierne.
lementet med isat vindue er vist pá figur 5.

Søjledimensioner er 300×300 mm^{2}, og bjælkeelementernes tværsnit er $300 \times 650 \mathrm{~mm}^{2}$.

Dækelementerne er 215 mm tykke H\&S-langdækelementer, der overalt har et vederlag pá 65 mm med en lodret, lige afskæring, uden bæreknaster. Som det fremgàr af etageplanen, figur 4, er de indvendige breddemall for den bærende hovedkonstruktion 4790 og 6070 mm hhv. 3750 og 7110 mm i blokkenes sydlige hhv. nordlige del; dette medfører følgende tilvirkningsmål på dæklængderne: 4920, 6200, 3880 og 7240 mm . Disse skæve længdemảl medfører imidlertid ingen vanskeligheder og ingen meromkostninger i praksis, idet de lange, extruderede dækbaner blot opskæres i de ønskede længder.

Projektet blev ievrigt udbudt med modulære långspænddæk med knaster; disse kan indpasses ved at justere dybden af dækvederlagene over søjle-bjælkesystemet.

Dæk over etage 2, tagdækket, spænder uden mellemunderstøtning fra facade til facade og får således et tilvirkningsmål pà $12000 \cdot 2 \times 420+2 \times 65=$ 11290 mm .

Trapperummet i sydgavlen afgrænses af de beskrevne 470 mm tykke ydervægselementer samt af 200 mm tykke, lette facader; i nordgavlen består trappesidevæggen blot af 150 mm massive uisolerede vægelementer af beton, idet disse er forudsat inddækket af en fremtidig 2-etagers forbindelsesbygning.

Kælderydervægge er 300 mm tykke betonvægge, om sikringsrum dog 400 mm . De langsgáende ydervægge er 2384 mm lange sandwichelementer bestáende af 150 mm bagskive, 70 mm isolering og 80 mm forskive.

Elementsamlinger

De fleste samlinger i primærsystemet er udformet efter gængse, velkendte principper; i det følgende nævnes kun specielle samlingsmetoder.

De lodrette vægfuger er overalt 16 mm brede; dette medfører, at den fortandede udstøbningsfuge mả forskalles, udadtil af mineraluldstopning og indadtil af midlertidig fugesnor. Den lodrette vægfuge mellem bag-
skiverne i kælderydervæggene er udstøbt pà normal vis, mens fugerne mellem forskiverne er sat ud med cementmørtel. De ydre overflader asfalteres, og de lodrette fuger beskyttes yderligere under terræn med et lag påklæbet specialpap. Langs hele kældervæggen opstilles endvidere plader med afstandsprofiler; se et lodret snit i kælderydervæggen på figur 6.

Tagafslutninger ved gavl og facade er vist på figur 7. Dækskivearmeringerne, der i princip er vist på figur 4, er i detaljer gengivet her med forankringer. I det bærende vederlag pả facaderne bøjleforankres randarmeringen med hårnålebøjler i dæksidefugerne, mens gavienes randarmering forankres via lukkede bajler, der faststøbes i en 500 mm bred zone i næstyderste udsparingskanal. Over trapperummet oplægges 185 mm huldækplader med spændvidden $2,6 \mathrm{~m}$; fugearmeringen imellem disse plader forankres til en insert i gavlelementernes bagskive, idet armeringen gevindskæres.

Etagekrydset med det extruderede dæk er overalt projekteret med pladsudstøbte kanaler i en dybde svarende til vederlaget for at sikre en god lastoverforing. Ved udførelsen blev dette ændret, sáledes at hullerne blot lukkes med den sædvanlige plastkapsel, idet det verificeredes, at etagekrydsets bæreevne var tilstrækkelig med den reducerede udstøbningsbredde.

Blokkenes tagflader afsluttes udfor trapperummene med 935 mm høje kroneelementer, der via vinkelbeslag fastholdes til såvel dæk over trapperum som til dæk over blokkenes etage 2. Den øverste 100 mm tykke sterndel er støbt med sort overflade; ved direkte solbesträling kan der opstả temperaturforskelle mellem denne overflade og facadelementets øvrige hvide overflade, med en vis risiko for indre spændinger med eventuelle revner til følge. Et sadant farveskift i overfladen stiller iøvrigt store krav til elementproducentens viden og fordrer en omhyggelig produktionsmetode.

Gavitrapperne er udført med betonelementreposer, mens lab og gelænder er udført i stål. Figur 8 viser et lodret snit gennem reposer og løb samt 3 samlingsdetaljer mellem lab, repos og kældergulv. Hoved- og mellemreposer er forankret til betonsidevæggene. Stàltrinnene er belagt med brandimprægneret kokosmåtte, pá undersiden påklæbes mineraluld.

Kompletterende bygningsdele

Vinduesindbygningen er vist på figur 9, der beskriver 2 lodrette og 2 vandrette samlingsdetaljer mellem facadeelementet og vinduets alu-karmprofiler; beliggenheden af detaljerne I, II, III og IV fremgår af figur 5. Vinduesfalsene imod syd samt øverst føres ud under 90° og afskærmer sảledes for direkte solbestråling, mens falsene imod nord samt nederst er afskảret under 45° for dels at fange maksimum af diffust lys og dels for, at de beskrevne vinduesarealer skal virke større. Alle vinduesfu-

Fig. 6. Kælderydervæg i facadelinien med tilgreensende hovedkonstruktioner, lodret snit, 1:20. 1 renselag, 2 armeret rendefundament med stikdræn, 3 kapillarbrydende lag, 4 betonsandwichelement, 5 understopning med cementmortel, 6 mineraluldstopning, 7 eks tra randisolering, 8 pàklæbet asfaltpap, 9 armeret kæ/dergulv, 10 omfangsdræn, 11 Pla ton Grundmursplade, 12 singelskasse, 13 at dækning med asfaltpap, 14215 mm extruderet forspændt huldækelement, 15 bajlefor ankret fugearmering, 16 udstabning imod mineraluidstopning. 17 facadeelement, 18 Fi . bertex páklæbet elementtá.

Fig. 7. Tagatslutninger, lodrette snit, 1:20. Til venstre vises gav/ og kroneelement samt dæk over etage 2 og dæk over trapperum; til haire vises afs/utningen i facaden. 1 gavielement i etage 2, 2 facadeelement i etage 2, 3 dæk over etage 2,4 dæk over trapperum, 5 kroneelement, 6 fugearmering, 7 varmtga/vaniseret vinkelstál med 2 M 12 bolte, 8 K 12 la sebaile, 9 stálplade med pásvejst vinkelstál forankrer kroneelement til etagedæk, 10 not for neoprenebảnd, 11 not for sort fugemasse.

(A) B (III)
ger er udført efter 1-trinsprincippet med forsegling báde i yderste og inderste snit; således er der ved svigt af den yderste forsegling ingen ekstra sikkerhed for vandindtrængen.

Detalje I viser en pladsudfort afdækning af vinduets topfals i modsætning til vinduets side- og bundfalse, hvor forskiven er trukket ind bag karmprofilerne. Årsagen til denne forskel er, at vinduet er forberedt for solafskærmende persienner, hvis oprulningsmekanisme skal kunne monteres i facadeelementet. Imidlertid har det allerede nu vist sig muligt at styre indeklimaet uden persienner.

Følgende øvrige kompletterende bygningsdele er valgt:

Gulve er antistatisk tæppe på betonafretning.

Lette vægge er gipspladebe-
klædte lægtesystemer, der udfares dobbelte omkring mødelokaler og chefkontorer. Vægoverflader er malet glasfibervæv.

Lofter udføres som perforerede aluminiumkassetter med mineraluldsindlæg.

Installationer

Varmeforsyningen sker midlertidigt ved fjernvarme fra naboen SBI, mens elektricitet leveres fra det offentlige net, NESA. I 1984-85 páregnes byggeriet tilsluttet naturgasnettet.
En del af funktionerne i den endelige udbygning skal forsynes med nødstrømsanlæg. Derfor tænkes energianlægget etableret på basis af et eller flere naturgasdrevne aggregater, der produceret el og varme. Den of fentlige el-forsyning benyttes i
dette tilfælde som supplement og nødforsyning.

Varmeanlægget er dimensioneret som lavtemperaturanlæg, og fordelingsledningerne i de enkelte rum er medregnet som varmeflade. Anlæggets fremløbstemperatur er $60^{\circ} \mathrm{C}$ med en afkoling pá ca. $15^{\circ} \mathrm{C}$. Til hver facade sendes varmt vand frem med en temperatur der tilgodeser den pägældende facades behov i afhængighed af udetemperatur, vindforhold og solindfald.

Afsluttende bemærkninger Entrepriseform

Bygherrens rádgivende teknikere udarbejdede først et reduceret hovedprojekt, som grundlag for en fremskudt licitation for ráhuset.

Ved licitationen fremkom den valgte rảhusentreprenør, H\&S med en række alternative forslag til elementkonstruktionerne, hvoraf 2 skal nævnes her: kælderydervæg opbygget af betonsandwichelementer, hvorved hele væggen effektivt isoleres; desuden et forslag til statisk samvirke mellem bjælke- og dækelementer med ekstra fugearmering over søjlerne, hvorved opnảs en kontinuert T-bjælke, med reduktion af søjleantallet til folge.

Efter valg af råhusentreprenør udarbejdede de rảdgivende et fuldt hovedprojekt med statiske beregninger under hensyntagen til rảhusentreprenørens onsker og tilbudte elementprogram, idet dog rảhusentreprenoren leverede statiske beregninger for forspændte dækelementer og

Fig. 8. Lodret snit itrapperum, $1: 60$ samt detalier, 1:10. Stâlgitterdragere med pảsveiste trin spænder mellem elementreposer og pladsstabt kæ/dergulv. Bemærk den geometriske forenkling af gitteret, der opbygges af ligesidede trekanter. Detalierne A, B og C beskriver samiingerne med hoved-og mellemrepos samt forankringen til kæ/dergulvet. Trinnene belæegges med brandhæmmende kokos og på undersiden opklæbes mineraluld.

AKTUELLE BYGGERIER 70

Boligbyggeri på Prags Boulevard

af ingeniordocent

Henrik Nissen, DIAB
tegninger:
Grete Hartmann Petersen

Interessen for det "tætte-lave« boligbyggeri har domineret dansk byggeindustri i de senere år og har ligeledes afspejlet sig i emnevalget til artikelserien AKTUELLE BYGGERIER. I nærværende artikel beskrives et etagebyggeri bestảende af 8 etagers boligblokke. Projektet er udført med bærende tværvægge af betonelementer og lette facader af snedkerpartier. Der er sáledes tale om den klassiske model fra montagebyggeriets storhedstid, og der er tilmed teknikere fra pionertiden med \mathbf{i} projektet. For læseren kan det være interessant at drage sammenligninger mellem dengang og nu, og man vil da kunne konstatere, at der er sket en betydelig raffinering af byggeteknikken, og desuden hvad der nok er endnu vigtigere - at den gamle model har vundet stærkt i bolig- og arkitekturkvalitet.

Fig. 1. Bebyggelsen set fra Vor Frelsers kirkegaard.

DIAB og SBI beskriver
AKTUELLE BYGGERIER 70

Beliggenhed
Nær Amagerbrogade ved Dalslandsgade, Prags Boulevard og Vor Frelsers kirkegaard; se figur 2.

Art og omfang
4 stk. 8-etagers boligblokke med 17 opgange, ialt 268 lejligheder. Desuden indeholder projektet 4 stk. 1-etages pavilloner med vaskerier og fæileshuse samt et parkeringsanlæg i 2 etager, se situationsplanen.

Bygherre

Danske Funktionærers Boligselskab a.m.b.a. Afdeling Prags Boulevard.

Administrator

Landsretssagfører C. Fabritius Tengnagel.

Arkitekter

P. Collin, H. Bølling, F.

Behnke, ved Peter Collin og Per Roar Stampe.

Ingeniører

Lemming \& Eriksson A/S.

El-installationer
Knud O. Engelsholm.

Projektkoordinering og byggeledelse
Stoltenberg og Rubow.

Udførende

Rảhusentreprise med 10 underentrepriser:
J \& B Byggeproduktion A/S.
Betonelementer:
Boligbeton A/S, A/S Dansk Spændbeton og EDS Beton K/S.
Lette facader:
A/S Gelsted Bygningsindustri.
Herudover 12 øvrige fagentrepriser.

Opførelse

1978-1980.

Økonomi

Byggeriet er gennemfort indenfor rammebeløbet for socialt boligbyggeri.

Fig. 2. Beliggenhedsplan, màl 1:2000. 1.4. boligblokke. 5. parkering. 6. boldbane. 7. Øresundskollegiet. 8. vaskerier. 9. fælleshuse.

Indledning

Boligbebyggelsen Prags Boulevard ligger pá et tidligere industriareal tilhørende Glud \& Marstrands fabrikker. Grunden er omgivet af ældre boligkvarterer og har Vor Frelsers Kirkegaard som nabo. Sammen med Københavns Kommune har arkitekterne Collin, Belling og Behnke udarbejdet en samlet bebyggelsesplan for området, der nu er udlagt som boligbyggeri. Som nabo til boligbebyggelsen ligger \varnothing resunds Kollegiet, der er projekteret af de samme teknikere, og som ligeledes indgár i bebyggelsesplanen. Med den nye bebyggelse er området udbygget, og det ses af situationsplanen, figur 2, hvorledes det med grønne stier og tilkørsler fra Prags Boulevard og Dalslandsgade er indpasset i omgivelserne.

Fig. 3. Stuepian 1:400. 1. opholdsareal. 2. cykler. 3. legeplads. 4. adgangssti. 5. vaskeri. 6. port. 7. parkering. 8. legeplads.

Fig. 4. Snit i boligblok 1:250.

Byggeprogram

Byggeriet omfatter 268 lejligheder, fordelt på 4 blokke i 8 etager med 17 opgange ialt. Da de omliggende boligkvarterer indeholder mange smả lejligheder, valgte man at udføre den nye bebyggelse med flest mulige større lejligheder indenfor de galdende regler for socialt boligbyggeri. Lejlighedsfordelingen fremgår af nedenstáende oversigt.

4-rums lejligheder	
	á 97
3-rums lejligheder	
225 stk. 3-rums lejligheder	
á 84,	
. 2 -rums lejligheder	

- sidstnævnte er udformet for bevægelseshæmmede beboere.
Byggeriet er gennemfort som
montagebyggeri i den velkendte teknik med præfabrikerede dæk- og vægelementer i et hovedsystem af bærende tværvægge. Ved at anvende denne teknik opnår man et rationelt projekt, som kan gennemføres på et sikkert økonomisk og tidsmæssigt grundlag. Men samtidig har det været bygherrens og de projekterende teknikeres klare målsætning at skabe et smukt boligområde med sikre arkitektoniske og miljømæssige kvaliteter. Anvendelsen af beton er derfor begrænset til dens indlysende rolle som bærende og adskillende materiale i den indvendige hovedkonstruktion og som facademateriale i gavle og elevatortårne, der er opført som sandwichkonstruktioner med en okkergul, afkostet overflade. I de øvrige facader er anvendt snedkerpartier og altanrækværker i en varieret konstruktion af glas, træ, farvet

Fig. 5. Etagekryds 1:5. 1. vægelement. 2. dækelement. 3. fugearmering. 4. masonite brik og cementmørtel. 5. plastlukke.
eternit og metalriste. Denne variation i materialevalget medforer et spil af lys og skygge over facaderne.
Og beboernes altanplanter, kombineret med bebyggelsens pergolaer og beplantninger, giver de nye huse et præg, der ligger milevidt fra 1960 'ernes stærkt kritiserede betonbyggeri. Ogsá i blokkenes form har man undgået monotoni ved at fortsætte de enkelte opgange i forhold til hinanden og ved at placere elevatorerne i særlige tårne udenfor facaderne. Springene i facaderne giver tillige bedre læforhold pà de store altaner og beskyttelse mod indblik fra naboerne.

Projektering og planlægning

Ved planlægningen af bebyggeisen har man betjent sig af en række nyere hjælpemidler. Foruden den traditionelle arkitekt-
ingeniørprojektering har bygherren anvendt konsulenter til at koordinere tidsplaner og byggeledelse. Desuden er projektet udført med fremskudt udbud, dvs. en licitationsform, baseret på et passende detaljeret forprojekt, kombineret med mængdefortegnelser, tidsplan og tilbudslister. Ved denne fremgangsmåde, som er nærmere beskrevet i litt. 1, opnås en væsentlig tidsgevinst i det samlede projektforlob, ligesom bygherren på et tidligere stadium i byggeriet får et sikkert overblik over økonomien.

Tidsplanlægningen i udbudsmaterialet er beskrevet ved hjælp af stavdiagrammer og cyclogrammer for kælderstøbningerne. Efter licitationen er der udarbejdet datotidsplaner for hver blok samt stavdiagrammer for de enkelte entrepriser i samråd med entreprenørerne.

Fig. 6. Lodret snit i altanplade og gavi, 1:10. 1. gavielement. 2. neoprene brik. 3. træbeklædning. 4. altanplade. 5. fugearmering. 6. isolering, 30 mm . 7. afløbsrende. 8. nedløbsrør, plast, $ø 70 \mathrm{~mm}$. 9. stigbøjlearmering. 10. udstøbning.

Byggesystem og -teknik

Det bærende hovedsystem består som nævnt af bærende tværvægge, simpelt understøttede dækelementer og længdeafstivende vægge af betonelementer. For at gøre planerne så fleksible som muligt, er der anvendt langdæk med spændvidder pá 66M og så få længdeafstivende vægge som muligt.

Hele den bærende hovedkonstruktion er »pakket ind«i varmeisolering med et minimum af mekaniske forbindelser til elevator- og altankonstruktionerne. Herved har dilatationsfuger i hovedkonstruktionen kunnet undgås, og der er ingen væsentlige kuldebroer i projektet.

For at undgå lydbroer i konstruktionen, som man undertiden har oplevet i projekter med 150 mm lejlighedsskel af beton, se litt. 2, er der udført lydmålinger i råhusene under opførelsen.

Herved har man sikret sig mod fejl i form af utætheder i fuger og sammenstabninger m.v., som kunne give anledning til lydbroer; og den færdige konstruktion opfylder dermed bygningsreglementets krav til lydisolation, (efter BR 72).
Fleksibiliteten i planens opholdszone er udnyttet ved anvendelse af skydedøre mellem opholdsstue og altaner/terrasser samt mellem spisekøkken og opholdsstue. Herved bliver det muligt for beboerne at kombinere eller adskille hele dette område af boligen efter behov; se stueplanen figur 3.
Byggeriet er modulprojekteret efter de velkendte regler for det aktuelle byggesystem med centrisk placering af de bærende tværvægge, modulære dækelementer og ekscentrisk placering af længdevægge og gavle, Se litt. 3, kap. 8, m.fl.

Fig. 7. Lodret snit i altanplade, dæk og let facade, 1:10. 1. altanplade. 2. let facade. 3. Spanmax hulplade.

Installationer

Bebyggelsen er forsynet med fjernvarme fra Københavns Kommune og et normalt, vandopvarmet radiatorsysterm. Baderummene er opbygget af lette, præfabrikerede klinkerbeton vægge, opstillet på en fugefri baderumsplade monteret på neoprene brikker ovenpå det normale dæk. De lette vægge er forsynet med glasfibervæv, malet med acrylmaling.

Elevatorerne er installeret i særlige elevatortårne med direkte forbindelse til hovedreposer og entredøre. Herved bliver der gode adgangsmuligheder for beboere i kørestole. Desuden undgås støjproblemer i lejlighederne. Da elevatorerne indgår i det opvarmede adgangsareal, er de udført med varmeisolering i sandwichkonstruktion. De udvendige forplader i elevatorskakten støbes på fabrik i enkel-
telementer, som derefter på fabrikken opstilles som styreforskalling ved udstøbning af de indvendige skaktvægge til ét rumstort skaktelement. På byggepladsen monteres de etagehøje skaktelementer i takt med den øvrige råhusmontage.

I elevatorskaktene er der indbygget nedfaldsskakte, som ender i kælderen, hvor affaldet samles i særlige containere og undgår en komprimering, inden det afhentes af renovationsvæsenet.
Som det ses af figur 4, er husets kæeldre udført med dobbeltgulv og indskudsdræn af hensyn til den høje grundvandsstand i området. Parkeringskældrene er delvist støbt på stedet, med pladsstøbte søjler overdækket af bjælker og præfabrikerede dobbelt T-plader, med armeret overbeton, broisolering og asfaltbelægning. Parkeringskældrene er

Fig. 8. Vandret snit lige over altanplade, màl 1:10. 1. gavl. 2. udstobning. 3. altanplade. 4. bgiler. 5. knastarmering. 6. altannedlab. 7. tagplade. 8. isolering. 9. stabeskel.
velforsynede med dagslys og virker derfor åbne og behagelige.

Samlingsdetaljer

I det følgende gennemgås et lille udvalg af samlingsdetaljer, som beskriver det anvendte byggesystem, specielt forholdene omkring altankonstruktion og ydervægge.

Figur 5 viser et lodret snit i etagekrydset mellem de 150 mm tykke tværvægge og de 220 mm tykke langdæk. Af hensyn til spændvidden på $6,6 \mathrm{~m}$ er dækvederlagene udformet, som det fremgår af figuren, med oplægning på 8 mm skiver af hảrd masonite. Efter placering af en fugesnor mellem dæk og væg udløbes vederlagene med cement-
mørtel 1:1 i en tykkelse pả ca. 18 mm . Herved sikres en god understøbning af samtlige bæreknaster. Efter afbinding af mørtelen og placering af fugearmering udstøbes etagekrydset med beton, der vibreres. Herefter fortsætter montagen som normalt, og der udføres den viste understopning af næste etages vægelement. Med den viste fremgangsmáde opnảs ikke blot en sikker statisk funktion i etagekrydset, men tillige den tæthed, der er afgørende for den tidligere beskrevne lydisolation.
Figur 6 viser lodret snit i samlingen mellem sandwichgavl og altanplade med afløb. Dækvederlaget er udstabt, som beskrevet under figur 5 , dog her med neoprene brikker, som tillader

Fig. 9 Vandret snit i hiarne ved gavl, mảl 1:10. 1. gavl. 2. let facade. 3. lægter pr, 300 mm. 4. støbeskel.
vinkeldrejninger mellem altanplade og væg. Der er desuden placeret 30 mm varmeisolering mellem altandæk og gavlvæg, som vist, hvilket også sikrer altanpladens bevægelighed.
Mellem vægelementerne i to etager er udfart en træksamling (»stigbøjle«) til sikring mod den i lastnormen omtalte ulykkeslast; ogsả samlinger mellem altandæk og væg er udført med trækoptagende armeringsbøjler. Det ses i øvrigt, hvorledes hele den bærende gavlvæg er pakket ind i varmeisolering.
Figur 7 viser lodret snit i samlingen mellem altanplade og let facade. Den lette facade, udført af Gelsted Bygningsindustri, er isoleret med 100 mm mineraluld efter kravene i BR 72, som huset er bygget efter. På altanpladen er der udført tværfald mod en rende ved altanens forkant, renden afvandes med længdefald til altannedleb placeret bag altanbeklædningen, som vist på figur 6.

Figur 8 viser vandret snit umiddelbart over en pudsealtan. Figuren supplerer nr. 6 og 7 og viser bl.a., hvorledes altanpladens aflob er udformet.

Figur 8 og 9 viser hjørneudformning af beton sandwichgavle. Trods de geometriske forskelle i de to lesninger er det lyk-
kedes at opnå ensartede tilslutninger báde i gavl og facade mellem de tunge og de lette elementer, med samme breddemál, 490 mm , pá gavlenes yderflig overalt i projektet. Yderfligen blev præfabrikeret først, nedlagt i formen og sammenstøbt med resten af gavlelementet, bl.a. for at opnå ensartet udseende af de afkostede overflader.

Erfaringer fra byggepladsen

Byggetiden for bebyggelsen omfatter to vinterperioder, hvor det har været nødvendigt at gennemføre omfattende vinterforanstaltninger. En særlig omstændighed ved de valgte vinterforanstaltninger skal omtales kort her. I kældrenes sikringsrum blev der opstillet varmeanlæg med kaloriferer, som producerede varm luft, der førtes gennem bygningens ventilationskanaler op i etagerne. Efterhảnden som montagen skred frem, og de enkelte etager kunne lukkes, blev der sat varme pà disse, hvorefter det var muligt at udtorre etagerne og fortsætte med de indvendige arbejder, selv om det permanente varmeanlæg endnu ikke var udført. Den valgte fremgangsmåde viste sig effektiv i de temmelig hårde vintre, som faldt indenfor projektets byggeperiode.

Afsluttende bemærkninger

Projektet på Prags Boulevard viser, hvorledes det gennem en konsekvent arkitektonisk planlægning er muligt at fremstille et etageboligbyggeri med den kendte, effektive teknik af betonelementer og alligevel opná et resultat, der ikke kan kritiseres med de ofte hørte, stærkt følelsesladede udtryk fra de senere års debat om betonen. Man kunne ønske sig, at denne bevidste og vellykkede indsats fra teknikernes side også var kommet tidligere tiders betonbyggeri til gode. I så fald havde dette byggemateriale i dag lettere kunnet indtage sin naturlige plads som et tidssvarende materiale med en høj ydeevne og en lang række gode kvaliteter.

Litteratur:

1. Lemming, Erling og Eriksson, Owe:

Fremskudt udbud. Byggeindustrien 1976, nr. 4.
2. Kristensen, Jørgen: SBi-rapport 101. Lydisolation i betonbyggeri. 1977.
3. Nissen, Henrik: Modul og Montagebyggeri. Polyteknisk Forlag 1975.

Fig. 10. Bebyggelsen set fra vest.

Lystoftevaenget

af civilingeniar Klaus Hansen, SBI
detailtegninger. Grete Hartmann Petersen
fotos: Lizi Allesen Holm

Tæt-lave boligbebyggelser udgør i dag en stor andel af sảvel ejer- som udlejningsboligbyggeriet. Begge kategorier er presset af nybyggeriets stramme økonomiske vilkår, men er ogsả samtidigt præget af ny erkendelse vedrørende byggetekniske forhold, samt af skærpede krav om reduceret energiforbrug.

Det er derfor nok værd at se pȧ et tidstypisk eksempel, selv om det kan være svært alene her ud fra at drage konklusioner om forholdet mellem de økonomiske og de kvalitetsmæssige krav og forventninger, der i dag er styrende for det almennyttige udlejningsbyggeri.

Boligbyggeriet pá Lystoftevænget er typisk ved sin beherskede størrelse, sin bebyggelsesplan, sine levende facader og den anvendte byggeteknik; men nok utypisk, hvad angår boligudformningen.

Det er tillige af interesse, at en undersøgelse af de solvendte vinduesarealers betydning for energiforbruget er iværksat med støtte fra BUR.

Beliggenhed:

Lystoftevænget i Lyngby.

Art og omfang:
Tæt lavt boligbyggeri i 11/2-2 etager, 94 lejligheder pá i alt $7.109 \mathrm{~m}^{2}$ etageareal, 94 udhuse pȧ i alt $350 \mathrm{~m}^{2}$, og et $104 \mathrm{~m}^{2}$ fælleshus, grundareal pá $17.674 \mathrm{~m}^{2}$.

Bygherre:

Lyngby almennyttige Boligselskab, Afdeling Lystoftevænget
v/ Dansk Almennyttig Boligselskab.

Arkitekter:

Hvidt \& Mølgaard, arkitektfirma

Klint \& Lund Sørensen, Landskabsarkitekter M.D.L.

Ingeniører:
A/S Dominia

Hovedentreprenør:

Rasmussen \& Schiøtz A/S.

Underentreprenører:
Tømrer- og snedkerarbejde:
Tomrermester Henry Pedersen, Glostrup.
Murerarbejde:
A/S Otto P. Nedergaard, Ishøj.
El-installationer:
Kemp \& Lauritzen A/S, AIbertslund.
VVS-installationer:
K/S F.B. VVS,
v/ Ringsted VVS ApS, Ringsted.
Ventilationsarbejdet:
Carl Petersen, Ventilation
A/S, Ballerup.
Tagdæknings- og blikkenslagerarbejde:
A/S Phønix, Herlev.
Montage af gasbeton:
L.M. Letbetonmontage ApS, Vester Sȧby, Hvalsø.

Fig. 1. Indgangspartiet giver et karakteristisk billede af tæt lavt boligbyggeri i dag. En levende facade beklædt med træ og murværk.

DIAB og SBI BESKRIVER AKTUELLE BYGGERIER 71

larmesterarbejde:
IS A. Guhle \& Søn, Klammborg.

:verandører:

Betonelementer:
arsen \& Pedersen A/S, lostrup.
;a tagplader:
ansk Leca, Glostrup.
iglelementer:
-T Teglelementer A/S, эrning.
asbeton:
ico-Træ, Herlev.

pførelsesdata:

Byggeriet startede 15. arts 1981 og afsluttes ed indflytning 1. maj 182.

ronomi:

Byggeriet er gennemit indenfor rammebelot for socialt boligbygge-

Godt beliggende
 bebyggelse

Midt i et ellers udbygget omrade og tæt op ad nærbutikcenter, Brede station, borneinstitutioner, skole og Molleá-dalen ligger Lystoftevangets 94 boliger. En ideel beliggenhed, som yderligere bestyrkes af den korte afstand til Lyngby.
Adgang til bebyggelsen sker fra Granasen ad en lokal boligvej med tilknytede parkeringspladser. Vej- og parkeringspladser er adskilt fra nabobebyggelsen mod øst med et 10 m beplantet balte.
Boligblokkene er placeret omkring en opholdsgade med legeplads og anbragt saledes, at der omkring denne gade med torve, pladser, stier og haver, legepladser m.m. vil være skabt mulighed for god kontakt imellem beboerne.
Byggeriet fremtreder i $1 / 2-2$ etager, for at tage de starst mulige hensyn til den omliggende bebyggelse, der ligeledes er opfort i $11 / 2$ og 2 etager.
Bebyggelsen, der opfores af Lyngby almennytige Boligselskab, består af 10 blokke med i alt 94 boliger i starrelsen 2 rum og 3 rum , et fælleshus, som bl.a.

Fig. 2. Bebyggelsesplanen viser de opbrudte og forskudte boligblokke omkring gangstreget, som er adskilt fra tilgangsvejen og parkeringspladseme.
indeholder beboerrum med køkkenfaciliteter, samt et møntvaskeri.

Boliger med balkon

Adgangen til boligerne sker gennem smả forhaver. Boligerne har alle forstue, køkken, bad og opholdsstue istueplan og enten 1 eller 2 værelser på 1 . sal, se figur 3 og 4.
Antallet af boliger og et onske om, at alle boliger havde direkte adgang til terran, medforte, at boligerne blev ret smalle og dybe. En intern trappe i stuen giver adgang til værelser pà 1 . sal. Den interne trappe fylder meget, men giver ogsả sammen med balkonen et indtryk af rummelighed. I andre tilsvarende bebyggelser er i stedet valgt en udendors trappe og boliger over hinanden.
Bebyggelsens gode beliggen-
hed og manges ansker om at blive boende i Lyngby-Tárbak kommune har medfort, at alle boliger er udlejet, inden de stár fardige.

Overflader og materialer .

Udvendigt prages husene af papbekledte tage, feltopdelte facader af tra og mursten samt murede gavle, se fotos. Udhuse og plankeværker er udfert af trykimprægneret tra.
Hensigten har veret at tilpasse sig nabobebyggelsens tilsvarende materialevalg. Tagpappen er forsynet med listedrakning og springene i tagfladen er trabekledte. Facadernes vinduer, murvark og trabeklædninger er indrammet af fuger og inddækninger, som tilsammen giver væggene en let og venlig karakter.
Veje, p-pladser og stier er som

Fig. 3. Tværsnit i de to boligtyper, 1:200. Tværsnittet illustrerer tydeligt boligens opdeling indenfor det volumen, som sadeltaget afstikker.

Fig. 4. Plansnit i de to boligtyper, 1:200. Boligindretning: 1 gang, 2 stue, 3 kakken, 4 badevæerelse, 5 være/ser og 6 balkon. Vægge: 7 afstivende betonelementvæg, 8 bærende teglelementer ag 9 ikke-bærende lette elementer med vinduer.
ved nabobebyggelsen belagt med farvede klostersten.

Indvendigt er vægge, lofter og inventar holdt i lyse farver. Gulvene er belagt med askeparket, og der er fliser i badeværelserne. Balkonen og loftrummet over denne fár sit lys fra store glaspartier i toppen af de tilstødende værelsers vægge.

Byggesystem med haj grad af prefabrikation

Fundamenterne er udfart som rendefundamenter under ydervægge og bærende indervægge. Bunddækket er udført som terrændæk med en kanal til langsgáende hovedinstallationer.

Lejlighedsskellene og gavlene er bærende og opbygget af betonelementer, som er tilpasset tagprofilen og variationerne heri. Vægtykkelsen i lejlighedsskellene er 250 mm af hensyn til lydisolationen og i gave og tagforsætninger 150 mm . Vægelementerne er hovedsageligt 24 m brede for at holde elementvag-
ten under 6 tons, idet elementhøjden nogle steder bliver op til godt 5 m på grund af tagprofilen.

Etagedækket bestár af 185 mm tykke betonhuldæk, som spænder pá langs af blokkene og bæres af tværvæggene samt af de bærende bagvægge i facadernes teglelementer. I mange andre rækkehusprojekter med mindre husdybde og større boligbredde ses lige sȧ ofte tværspændende dæk. I den ene boligtype bæres et tværgáende balkondæk af de tilstødende dækelementer, se figur 7.

Gavle og tagforsætninger er isolerede og dækket af henholdsvis skalmure og træbeklædninger.
Som det ogsá klart kan aflæses af byggeriets facader, se figur 1, er disse opbygget af en kombination af lette og tunge præfabrikerede vægelementer. De lette elementer er bræddebeklædte træskeletelementer, som ogsá indeholder vinduer og døre. De tunge elementer er teglele-

menter med bærende letbeton-bagvæg. Typiske samlinger mellem tunge og lette elementer er vist på figur 8.

Taget er dækket af to lag tagpap, isoleret med 150 mm poly. sterol og bảret af 160 mm tykke lecadækelementer, som via armering i fugerne danner en sammenhængende skive.

Indervæggene er dels bærende betonelementvægge, som afstiver tværvæggene, se figur 8 , dels enkelte ikke bærende vægge. Disse er i stueetagen udført af stagehøje gasbetonelementer og pȧ 1. sal udført som karlitpladebeklædte træskeletvægge.

Opførelsen af byggeriet er gảat glat. Dette skyldes formentlig, tels at projektet på forhånd var sennemdrøftet med den formodede hovedentreprenør, dels at åhuset stod færdigt, inden vineren satte ind.

Lydforholdene er dimensionşivende

De valgte 250 mm beton er lødvendige i lejlighedsskellene, ıár lydisolationen skal klares af in massiv konstruktion. Flanietransmissionen i facaden er mødegảet ved afbrydelsen af kalmuren, se figur 8. Denne afrydelse er en naturlig følge af invendelsen af teglelementer.
I tagfladen medvirker Leca-lækkenes højere massefylde i lækenderne til at sikre lydisolaionen. Herudover er det nødendigt med fuld udstøbning af lle samlinger i lejlighedsskellere. Men ogsá dette giver den 25 m tykke væg god baggrund for. En øget stramning af kravene il lydisolation vil formentlig aedføre en oget anvendelse af lobbeltvægge, som tillige vil ledsætte generne ved bankelyle.
Internt i boligen bidrager speielt den tunge afstivende væg til n rimelig lydisolation imellem ummene.

raditionelle installationer

Varmeforsyningen sker via gen gasfyret varmecentral i fælshuset. Sável rorene i det totrengede varmedistributionssytem som varmtvandsledningen remfores gennem en utilgængeg kanal i terrændækket. Dog er lle samlinger og koblinger tilængelige i forbindelse med udiget til de enkelte boliger, og

Fig. 6. Tværsnit af tagdæk og leilighedsskel, 1:10. De langsgáende 160 mm lecadækelementer (2) bæres af 250 mm tykke betonvægge i lejlighedsskellene (1).

Fig. 7. Tværsnit i etagedæk, 1:10. De tvergàende balkondæk (2) bæres af langsgáende, forstærkede huldækelementer (1) og af lejlighedsskellene. Balkondækket er oplagt pà neopreneplader:

Fig. 8. Vandret snit i bærende vægge og facader, 1:10. Det 250 mm tykke leilighedsskel(1) afstives af 120 mm tykke vægge (2). Facaden er opbygget af en kombination at tagelementer (3) med bærende letbetonbagvæg, lette elementer (4) og dørpartier (5).

Fig. 9. Solvendte facaders vinduesareal er varieret for at vurdere dettes indflydelse pà energiforbruget. Vinduesarealet indfluerer herudover pà indeklima-, dagslys-og indbliksforhold.
varmtvandssystemet er helt igennem udført af kobberrør.

Vaskeri forefindes i fælleshuset, hvorimod der ikke er indlagt installationer i badeværelserne til individuelle vaskemaskiner.

Vinduer og energiforbrug

I BR 77 er angivet, at vinduesarealet i nye bygninger skal begrænses til 15% af bruttoetagearealet, uden hensyntagen til, at solvendte vinduer såvel afgiver som indfanger varme. Dette er baggrunden for, at BUR har givet tilskud til en undersøgelse i praksis af dette forholds betydning for energiforbruget. Denne undersagelse foregár i samarbejde med SBI

Der indbygges varmemálere \mathbf{i} alle 94 boliger. Heraf har et antal sydvendte og vestvendte boliger vinduesarealer pá $15,22,5 \mathrm{og}$ 30% af bruttoarealet. De resterende ca. 50 boliger i bebyggelsen anvendes til at bedømme den almindelige spredning på mảleresultaterne alene som følge af forskelle i brugervaner. Hidtidige undersøgelser heraf viser, at nogle husstande har dobbelt sá stor energiforbrug som dem, der har det laveste energiforbrug.

Det overvejes herudover at gennemføre en interviewundersøgelse med henblik pá at vurdere brugernes oplevelse af de forskellige vinduesarealer. Dette kan bl.a. gælde dagslys-, ind-bliks- og indeklimaforhold.

Beregninger af energiforbrugets variation med solvendte vinduesarealers størrelse viser, at indeklimaet påvirkes negativt som følge af overskudsvarme pá solrige dage. I det aktuelle byggeri forventes det, at det store
volumen og anvendelsen af tunge vægge og dæk vil reducere dette problem.

Energiforbruget i boligerne anslás til ca. $40 \mathrm{kWh} / \mathrm{m}^{2}$ árligt. De smalle dybe boliger har en relativt lille overflade. Til gengæld bevirker den store rumhøjde i stuen en vis overtemperatur under taget og dermed en øget varmeafgivelse gennem dette.

Afsluttende bemarkninger

Som det er fremgảet af det foregående, fremstár byggeriet som et tiltalende og byggeteknisk sundt byggeri. Den udstrakte anvendelse af præfabrikerede komponenter har heller ikke i dette byggeri resulteret i en uniform og oplevelsesfattig bebyggelse.

Men hermed er ikke sagt, at vi ikke bar fastholde en diskussion om afvejningen af krav og onsker til boligbyggeriets kvalitet. Dette gælder bl.a. krav vedrørende drift og vedligeholdelse samt fleksibilitet overfor fremtidige kravændringer. Under stramme økonomiske forhold træder det tydeligere frem, hvor der má spares, og hvor der ikke mȧ.

Litteratur

Anker Nielsen: Vinduets betydning for enfamiliehusets energiforbrug. Energiministeriets varmelagerprojekt, rappọt nr . 7 . 1980.

Hans Skifter Andersen: Forbrugeradiærdens betydning for varmeforbruget I boliger, litteraturstudier og analyse af varmeforbrugsdata. SBl-meddelelse 12, 1982.

Klaus Hansen og Niels F. Vording: 10 nye forsagsbyggerier. Byggeindustrien 3, 1981.

Ornesten Borneinstitution mod 0-energi-olementer

DIAB og SBI beskriver AKTUELLE BYGGERIER 72
af akademiingeniar Mogens Buhelt, SBI Tegninger: Grete Hartmann Petersent

Oenergielementet er nu en almindeligt anerkendt og anvendt byggekomponent. Elementet har - foruden isoleringsevnen - en række gode statiske egenskaber. Det har báde plade- og skiveegenskaber, og samlingerne er effektive, nemme at udføre - bȧde plane og i alle mulige vinkler - og enkle at beregne. Samtidig har elementerne en lav egenvægt. 0-energielementerne giver derfor en række arkitektoniske muligheder, bl.a. muligheder for at lave egentlige skivekonstruktioner.

Pá minussiden har man, at elementerne ikke kan klassificeres som brandsikre bygningsdele (men som BD-bygningsdele 60 eller 90), og at lydisoleringsevnen er dàrlig. Elementernes hovedanvendelse er derfor bærende eller ikke bærende klimaskærm i bygninger med en eller to etager.

Ørnesten er den første børneinstitution, hvortil 0 -energielementer er anvendt i bảde ydervægge og tage. Byggeriet udviser spændende eksempler pá nogle af de nye arkitektoniske muligheder.

Artiklen fokuserer især pȧ forhold vedrørende det bærende system og samlingerne, men kommer ogsȧ ind pá emner som vinduesmontering og varmegenvinding.

Beliggenhed

Marbækvej/Østersvej i den sydlige del af Frederikssund.

Art og omfang

Daginstitution med 40 fri tidshjemspladser og 20 børnehavepladser. $365 \mathrm{~m}^{2}$ $+85 \mathrm{~m}^{2}$ kælder $+70 \mathrm{~m}^{2}$ udhus.

Bygherre

Frederikssund Kommune.

Projekterende

Arkitekt: Ole Brøndum m.a.a., Frederikssund. Ingeniør: Johs. Jørgensen A/S, Frederikssund, Helsingør og Virum.

Udforende

Jord, beton og murer: Horns Herred Huset aps, K. Hyllinge.

Snedker og tømrer: Chris

Kristensen aps, Frederikssund.

Leverandører

Ydervægs- og tagelementer: Superfos Glasuld A/S, Vedbæk.
Facadetegl: Frederiksholm.
Betontagsten: Wævers teglværk.

Udbudsform
Fagentrepriser.
Opfarelsestid
Start medio august 1981. Aflevering ultimo februar 1982.

Økonomi

Hándværkerudgifter inkl. udhuse og anlægsgartnerarbejde: 2.036 .000 kr . Teknikerhonorarer, inkl. geoteknisk undersøgelse samt landmáler: 329.000 kr.

It nyt byggemateriale er

 Idviklet0 -energi-elementet har nu ,verstået forsøgsstadiet og kan 'el siges at indgà i byggeriet som in normalt anerkendt byggeiomponent. Derfor kan det nu 'ære et passende tidspunkt at reumere udviklingshistorien og at ;ennemgà de vigtigste samlingsletaljer og bæreevneprincipper, om de ser ud idag.
Udviklingshistorien er i grove ræk vist i figur 1 . Mere detaljeede oplysninger kan findes i de itallige artikler og rapporter, ler er blevet offentliggjort unlervejs, se fx. litt. /1/, /2/ og '3/.
Bảde Rockwool og Glasuld leltog i udviklingsprojektet. zockwool har dog valgt at holde in lav profil, mens Superfos Ilasuld har startet en egentlig roduktion og en kraftig marredsføring.
Den følgende beskrivelse af lementudformning og bæreevleprincipper refererer derfor til juperfos Glasulds standardudørelse.
Den grundlæggende ide bag 0 -:nergi-elementet var i starten andwichelementets kombinaion af en bæreevnemæssigt set ,ptimal udnyttelse af materiale:genskaber og en effektiv varneisolering uden kuldebroer. Ved at vende mineralulden sáleles, at fibrene ligger vinkelret på langerne, opnár man sá stor orskydningsstyrke og -stivhed i nit parallelt med flangerne, at le normalt forekommende bøjlingspảvirkninger pà elementet can optages ved rent træk og ryk i flangerne og ren forskydring i mineralulden.
I løbet af udviklingsprocessen or anvendelse af det rene sandwichprincip dog blevet modifi:eret.
Alle elementer er nu forsynet ned kantskot langs alle fire siler. Disse kantskot består af crydsfinerplader i samme bredle som isoleringstykkelsen, iomlimet til flangerne via $45 \times 45 \mathrm{~mm}$ kantlister, se figur 6 , 7 og 8.
ξ-tudformningen med kantikot og lister tjener en lang ræk«e formàl, bl.a.

- giver gode og enkle samlinger
- beskytter mineralulden under transport og montage

1973, april Hans Nielsen og Knud Prebensen (COWlconsult) far 15.000 kr . fra Træfonden til forundersegelser vedr. limede sandwichkonstruktioner.

1974 De forste fugt og belastningsforseg udfores pá SBI, hhv. Instituttet for Husbygning, DtH.

1972-1974 Oenergihuset pá DtH projekteres og opføres. Her anvendes sandwichelementerne for forste gang til opforelsen af et hus.

1975 Forste anvendelse til et like-forsogshus: kke bærende facadeelementer I forretningscenter I Hundige.

1975
De farste brandforsøg udføres pà Statsproveanstalten.

1976, marts Bevilling fra Teknologirádet pá 620.000 kr , til produktudvikiling.

1977 Tillægsbevilling fra Teknologirádet pá 105.000 kr .

1976-1979 Forsog vedr, styrke og stivhed (Instituttet for Husbygning), forsøg vedr. forskellige pladebeklædningers fugtmessige egenskaber (SBi) samt udvikling af samlingsdetalier (COWIconsult). Rockwool A/S og Superfos Glasuld als deltager og leverer materialer.

1978, sept. Idekonkurrence om Glasuld-baserede sandwichkonstruktioner udskrives.

1979 Superfos Glasuld starter markedsforingen med prasentation af elementerne pá »Byggeri for miliiardera, De forste anvendeiser af tagelementer og bærende vegelementer i huse, som ikke er egentlige forsogsobjekter. Elementproduktionen foregar hos Superfos Glasuld I Kastrup.

1980, efterár Superfos Glasuld starter fabrik I Allered, specielt for fremstilling af Denergielementer.

1981, februar Byggestyrelsens godkendelse af bærende vægelementer udstedes.

1982, februar Byggestyrelsens godkendelse af tagelementer udstedes.

Fig. 1. De vigtigste milepæle ; O-energielementets udviking.

- giver en stivere forskydningsforbindelse mellem de to flanger og giver dermed elementerne starre bøjningsstivhed
- giver mulighed for at nejes med én bærende flange, idet
yderflange og kantskot danner et TT-profil. Dette har interesse i en brandsituation, idet inderflangen ret hurtigt brænder væk. Endvidere giver det mulighed for et friere valg af indvendig flange og dermed indvendig overflade.

Mineraluldens funktion i bæreevnemæssig henseende er herefter at fordele koncentrerede laster og at stabilisere flangerne mod foldning.

Superfos Glasuld markedsfører især ydervægselementer og tagelementer, medens dækelementer og indervægselementer endnu lever en mere tilbagetrukket tilværelse.

I ydervægselementer består yderflangen og kantskottene af 12 mm vandfast canadisk konstruktionskrydsfiner. Inderflangen, som aldrig medtages i bæreevneberegningerne, kan være fx . krydsfiner, træfiberplade, cementbunden spánplade, fibergipsplade eller almindelig gipsplade. Det aktuelle plademateriale má bl.a. vælges under hensyntagen til kravene til overfladens brandklasse.
Da den lodrette last regningsmæssigt er koncentreret i yderflangen, kan fundamentsbredden vælges mindre end vægtykkelsen, se fx. figur 8.
I tagelementer består yderflangen og kantskottene ligeledes af 12 mm vandfast konstruktionskrydsfiner. Ved større spændvidder medregnes inderflangen ved beregning af bæreevne og stivhed; i disse tilfælde består inderflangen af 12 mm krydsfiner. BR 77 stiller ikke krav til branddrajheden af tagelementer i boliger og mindre institutioner. Ved mindre spændvidder medregnes kun yderflangen og kantskottene; inderflangen kan da være af de samme materialer, som er nævnt under ydervægge.

Mineralulden er en glasuld type GP 55 med rumvægten 55 $\mathrm{kg} / \mathrm{m}^{3}$.

Arkitektkonkurrence om Ørnesten

I december 1980 indbad Frederikssund Kommune 4 arkitektfirmaer til at deltage i en arkitektkonkurrence om en barneinstitution ved Marbækvej i den sydlige del af Frederikssund. Navnet Ørnesten er overtaget fra den gård, pả hvis jorder institutionen ligger.
Vinderprojektet var det eneste af de fire deltagende projekter, der var baseret pá anvendelsen af 0 -energi-elementer. Der er tale om en utraditionel bygning, som udnytter nogle af de mulig-

AKTUELLE BYGGERIER 72

Fig．4．Snit A－A，1：100．Tværsnit gennem fællesrum og værksted．Vedrarende detail 2 og 3，se figur 7 og 8.
raleafdelingen og fællesrummet．
Alle indvendige vægge er op－ ygget som dobbelte，pladebe－ dædte træskeletvægge．Plade－ jeklædningerne er mod forgan－ зe，trapperum og vàde rum et ag 15 mm fibergips，og ellers et ag 12 mm hárd træfiberplade．
Den brede længe er i den syd－ ige del opdelt af en bærende ængdeskillevæg midt mellem fa－ ：aderne．Over forgangen og fæ1－ esrummet er der i forlængelse af denne væg monteret en limtræ－ jjælke，som dels hviler pá væg－ зen，dels pà en stålsøjle i hjørnet ved lederkontoret．Tagelemen－ ：erne over den brede længe ipænder fra den bærende skille－ væg og limtræbjælken til begge facaderne．
Tagfladens hjørnesammen－ skæring er udfart sâledes，at den skrá tagflade over den smalle lange er fort helt igennem til vestgavlens inderside．Oven over et hjorne af denne tagflade er den brede længes østlige tagflade ført videre fra den isolerede nordvæg i fællesrummet til keh－ len．Denne ekstra tagflade er ud－ ført af＂0－energi－elementer« uden isolering og med skrà af－ skæring i den ene ende．

Modulforhold

Bygningen er ikke modulpro－ jekteret i nogen større udstræk－ ning．Ydervæggenes indvendige flugter er udnævnt til modullini－ er．

De indvendige hovedmål er alle delelige med 300 mm ，og de to bærende skillevægge ved linie （3）og ved linie（B）danner en
slags 150 mm brede neutrale zo－ ner．

Placeringen af ydervægsstum－ perne i linie（B）i forhold til den bærende skillevæg ved samme li－ nie er betinget af，at den øst－ vendte tagflades afslutning ved ydersiden af skalmuren i begge ender af den brede længe skal flugte med tagkippen i midten af denne længe．

Udvendige flader

Som tidligere nævnt er hoved－ bygningskroppen skalmuret． Skalmuren er forankret til ele－ mentvæggen ved hjælp af Refus

II－bindere af plast，som er søm－ met til kantlisterne（gennem la－ ske og yderflange）i de lodrette samlinger．Da den vandrette af－ stand mellem binderkolonnerne er op till $1,2 \mathrm{~m}$ ，placeres binderne med en lodret indbyrdes afstand pȧ kun to skifter $=133 \mathrm{~mm}$ ．
Hulrummet mellem 0－energi－ element og skalmur er 50 mm ， og ventilationen er sikret ved，at hver 4．stødfuge i næstnederste skifte er kradset ud．For oven sker ventilationen gennem áb－ ningen mellem øverste skifte og tagudhængets underside．
Taget er beklædt med gule tagsten af beton．De er oplagt pá
vandrette lægter，som er sømmet til tagelementernes kantlister gennem laskerne，der forbinder tagelementerne．Laskerne løfter lagterne fra yderflangen，sále－ des at ventilationen er sikret． Rygningsstenene er ikke lagt i mortel，sá der er mulighed for udluftning her．

Gode muligheder for at lave kraftoverfarende samlinger

Samlingen mellem kælder－ dæk／fundament og ydervæg er udført som vist pá figur 8．Fun－ damentsbredden er 300 mm ．Pá fundamentets overside er fast－

Fig．5．Snit B－B，1：100．Tvæersinit gennem bornehavens toilet og forgang，hiv．boilerrum og sikringsrum．Vedrørende detail 1 og 2，se figur 6 og 7 ．
boltet en $45 \times 145 \mathrm{~mm}$ fodrem med en 13 mm bred not.

Vægelementets underside har en tilsvarende not i den yderste kantliste. Før opstillingen af vægelementet placeres en sløjfe af 12 mm krydsfiner i fodremmens not. Denne sløjfe styrer vægelementet og giver en vis tætning. Der foreligger ingen meldinger om monteringsproblemer med denne samling.

I vægelementernes lodrette kantlister er der ingen noter. Her pásommes en udvendig laske af krydsfiner, 12 mm tyk og 100 mm bred, i hele fugens længde. Lasken, som sømmes mod kantlisterne, gár ned foran fodremmen, hvortil den ogsá sømmes. Lasken sikrer bl.a., at der kan overfares lodrette forskydningskræfter fra element til element, og giver ogsả en vis forankring til fodremmen. Hvor starre forankringskræfter skal overfores til fodremmen, suppleres med en BMF-hulplade.

De indvendige flanger forbindes tilsvarende med en laske af hảrd træfiberplade, som sømmes til kantlisterne. Pá denne side udføres samlingen dog planforsænket, idet elementernes indvendige træfiberplade kun nảr frem til midten af kantlisten.

Ved hjarner benyttes tilsvarende samlinger; ved et udadgàende hjorne pásømmes dog kun en krydsfinerlaske, og ved et indadgảende hjørne kun en forsænket laske af træfiberplade.

Tagelementernes yderflanger er samlet indbyrdes ved hjælp af krydsfinerlasker, mens inderflangerne ikke er mekanisk samlet.

I samlingerne mellem ydervægge og tag er kantlisten ved væggens yderflange forsynet med en not som ved fundamentet. Pá tagelementets underside er somlimet en anden liste, som ogsá er forsynet med not. Samlingen udfares da i farste omgang ved hjælp af en krydsfinerslejfe, analogt med fundamentsamlingen. Hvor tagelementet ender i plan med væggens yderside, som til venstre pá figur 5 og 6 , sikres kraftoverfarslen ved pásomning af en krydsfinerlaske til kantlisterne. Hvor der er tagudhæng, som pà figur 4, udfares den mekaniske samling ved hjælp af BMFuniversalsømbeslag, som søm-

Fig. 6. Detail 1, 1:10. Lodret snit i tag over udbygning. 1. Vægelement, 235 mm . 2. Tagelement 235 mm . 3. Bjz/keelement, 235 mm. 4. Liste, $45 \times 95 \mathrm{~mm}$, sømlimet til biælkeelement. 5. Liste, $45 \times 45 \mathrm{~mm}$, samlimet til tagelement. 6. Krydstinerlaske. 7. Fugebánd, $20 \times 20 \mathrm{~mm}$. 8. Skalmur, 108 mm . 9. Brictec sokkelbjæ/ke. 10. Afstivning at bjælkeelementets yderflange. 11. Spærtag for halvtag, fastgiort med sombeslag. 12. Stolpe, $100 \times 100 \mathrm{~mm}$. 13. Lægte, sammet til stolpe. 14. Klinklagte brædder, sammet til lagte.

mes pá langsiden af hvert tagelement inden monteringen af det næste, og pà forsiden af vægelementerne.

Tætning af samlinger

Tætningen udfares pá den varme side, altsá i inderflangens plan. Umiddelbart før opstillingen monteres forkomprimeret fugebảnd (Illmod $20 \times 20 \mathrm{~mm}$) pá indvendige kantlister langs alle samlinger. Fugebredden er overalt 10 mm .
Endvidere anbringes der 60 mm tykke glasuldstrimler langs alle elementkanter mellem kantlisterne.

Vinduer

Alle vinduer og yderdare er 9 M brede; nogle steder er der anbragt tofags vinduer, sáledes at ábningen i væggen er 18 M bred, og et enkelt sted er der et trefags 27 M vindue.

Vinduerne forekommer i to højder, nemlig 9 M og $12 \mathrm{M}, \operatorname{og} \mathrm{i}$ to typer, nemlig oplukkelige (med bred ramme) og uoplukkelige (uden ramme).

Det samlede vinduesareal er ikke overvældende, men da alle vægge er malet hvide, og da alle primære rum (grupperum og fællesrum) fảr lys fra flere sider, er der en meget behagelig belysning i rummene.
Alle vinduer er monteret helt foran bagvæggens yderflange, sáledes at de næsten ligger ude i skalmurens plan, se figur 7. Herved har man fảet nogle meget dybe indvendige vinduesfalse, hvilket jo for tiden er meget yndet. Endvidere har man kunnet fastholde murstensformatet med bredden 108 mm , ogsá rundt om vinduet.

Vinduet er fastholdt til bagvæggens yderflange ved hjæip af 4 vinkelbeslag. Tætning langs undersiden og de lodrette sider er foretaget med en trekantliste, og med fugebảnd mellem trekantliste og yderflange, hhv. vindueskarm.
Tætning samt afledning af nedsivende vand ved vinduets overside sikres ved hjælp af den viste zinkinddækning, som er lagt i siliconefugemasse. Tre-
kantlisterne langs de lodrette sider støder op til inddækningen, som er lidt bredere end vinduet. Mellem inddækning og stàlteglbjelke er der en luftspalte af hensyn til ventilationen i hulrummet over vinduet.
Under vinduet findes ikike en tilsvarende ventilationsspalte; der er derimod lukket med asfaltpap inderst og med fugebånd mellem sálbænk og vindue. Her má luften sage ud til vinduets sider. Sảlbænken er udført som et skråtliggende rulskifte, hvor det øverste hjørne er skȧret af sienene. Asfaltpappen sikrer, at det vand, der evt. siver gennem sàlbænken, afledes til skalmurens yderside.

Gulve og lofter

Gulvkonstruktionen er opbygget over et terrændæk, som bestár af 100 mm singels, 50 mm polystyrenskum (Sundolitt type G-1) og 80 mm beton. Herover ligger en plastfolie som fugtspærre, 65 mm afretning (Knauf tor-granulat), 25 mm polystyrenskum (Sundolitt G-1), 25 mm gipspladeundergulv (Knauf F 141) og vinyl.

Vand-, varme- og el-ledninger er placeret i afretningslaget. Det oprindelige projekt havde 15 mm tørafretning og 75 mm polystyrenskum over fugtspærren, og det var meningen, at der skulle skæres ud i polystyrenskummet for rørene. Denne lasning blev imidlertid opgivet af praktiske grunde.

Gipspladeundergulvet, som

ᄃjg. 7. Detail 2, 1:10. Lodret snit i ydervæg ved vindue. Vinduet er fastgiort til bagreggen med vinkelbeslag. 1. Vægelement, 235 mm . 2. Vindue. 3. Stàltegl. 4. Rulikifte. 5. Trekantliste, $45 \times 45 \mathrm{~mm}$. 6. Zinkinddækning, lagt i fugemasse. 7. FugeJảnd. 8. Forkomprimeret fugebånd. 9. Asfaltpap.

Jestår af 3 lag 8 mm gipsplade, ar blandt andet valgt af lydmæsiige grunde. Det har da også vist iig at have udmærkede lyddæmsende egenskaber.
En anden lyddæmpende forinstaltning er, at loftet overalt ir beklædt med 25 mm træbeconplader, som er sømmet til agelementernes krydsfinerunlerflanger. Træbetonpladerne ar sprojtemalet pá stedet.

Fig. 8. Detall 3, 1:20. Lodret snit i samtingen fundamentlydervæg. 1. Vægelement, 235 mm . 2. Rendefundament at beton støbt pà stedet. 3. Fodrem, $45 \times 145 \mathrm{~mm}$, trykimprægneret. 4. Kantisolering, 75 mm .5 . Skalmur. 6. Asfaltpap.

Hvis tagelementernes tykkelse havde været noget større, havde man kunnet spare et lag krydsfiner og anvende træbetonen som ikke-bærende underflange. At denne losning - som ville have givet større isoleringstykkelse til samme pris - ikke blev valgt, skyldes formentlig en misforståelse eller en fejltagelse på et tidligt tidspunkt af projektet. Senere var det for besværligt at ændre elementtykkelsen.

Traditionel rumopvarmning energibesparende varmtvandsforsyning

Institutionen skal pả et senere tidspunkt tilsluttes byens fjernvarmenet, og der er derfor afsat et særligt boilerrum i kælderen for varmevekslere, ventiler mv.

Da der endnu ikke er ført fjernvarme frem til omrảdet, er der umiddelbart over boilerrummet etableret et midlertidigt fyrrum med en oliefyret kedel. Fyrrummet er en påbygning uden på 0 -energi-element-bygningen.

Det varme brugsvand kommer fra to luft-til-vand-
varmepumper, som er placeret i de to største toiletrum. Indtagsluften til disse varmepumper kommer dels fra emhætter og tørreskabe, dels fra den almindelige udsugning af brugt rumluft. Indsugning af frisk rumluft sker gennem utætheder ved døre og vinduer. Afkastluften fra varmepumperne er ført gennem. taget.

0 -energi-element-huset i daglig drift

De mest karakteristiske brugsmæssige egenskaber ved et 0 -energi-element-hus er nok:

- Højt varmeisoleringsniveau
- Stor tæthed
- Lille varmeakkumuleringsevne i ydervægge og tag.
K-værdien for ydervægs- og tagelementerne er $0,17 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Bygningen er altså væsentlig bedre varmeisoleret end krævet i BR77, hvori kravene som bekendt er $\mathrm{k} \leqq 0,30 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ for lette ydervægge og $\mathrm{k} \leqq 0,20$ $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$ for tagkonstruktioner.

Kommunen kan altså forvente en relativ lille varmeregning på denne børneinstitution, som er kommunens - og vist nok også landets - første 0-energi-element-børneinstitution.

0 -energi-element-huse er ofte meget tætte. Teknologisk Institut har udført mảlinger på to sádanne huse i Skive 79-bebyggelsen. Det utilsigtede luftskifte var her nede pà $0,1-0,2$ gange i timen. Dette forhold er naturligvis især fordelagtigt, hvor der er ventilationsanlæg med luft til luft varmegenvinding, og hvor det gælder om at fả en stor del af indsugningsluften gennem varmegenvindingsanlægget.

På Ørnesten tages luften ind gennem de utilsigtede utætheder. Her kan det mảske blive nødvendigt at åbne et vindue for at fả tilstrækkeligt med frisk luft.

Om natten samt i week-enden, hvor institutionen er helt eller næsten affolket, er ventilationsbehovet minimalt, sả pả disse tider kan man i hvert fald udnytte tætheden til varmebesparelse.

Rummenes varmeakkumuleringsevne er lille, da de indvendige vægge er træskeletvægge, og da der er 25 mm isolering over beton og afretning i gulvkonstruktionen. Dette kan nok være en ulempe på visse årstider, hvor varmetilskuddet fra solindfald og personer om dagen kan være større end behovet. Varmeøkonomisk set opvejes denne ulempe formentlig af den høje isoleringsevne, selv om al overskudsvarmen om dagen må ventileres bort.

Selv i begyndelsen af juni 1982, hvor det i en uge var usædvanlig varmt, kunne rumtemperaturen holdes nede på et rimeligt niveau ved hjælp af åbne vinduer og døre. En medvirkende årsag hertil har naturligvis været ydervæggenes og tagets store varmeisoleringsevne samt de smả vinduer.

Litteratur

11/ Historien om udviking af et byggeelement. 1972-1976. Erik Lyngsøe-Petersen. Udgivet af Superfos Glasuld a/s juni 1976.
/2/ Mineraluldbaserede sandwichetementer. Hovedrapport. Egil Borchersen. Instituttet for Husbygning, DtH. Rapport 132, sept. 1979.

13/ O-energi-elementer - en fleksibel byggekomponent. Lauritz Rasmussen. Bygge industrien 8/1980.

Fig. 9. Montage af tagelementer pá den brede læenge. Træbetonen ses som det morke felt $\rho \stackrel{a}{c}$ elementets underside. Til venstre ses den bærende laengdeskillevæg og limtræbjælken.
af lektor, civilingenior Bent-Erik Carisen, DIAB Tegninger: Grete Hartmann Petersen, DIAB

Model (Mangor og Nagel)

Frederikssund Amtssygehus

Beliggenhed

I den østlige udkant af Frederikssund pá den $350.000 \mathrm{~m}^{2}$ store grund matr. nr. 14 Ude Sundby med flere, Dybendal, Frederikssundsvej 30.

Art og omfang

Amtssygehus pȧ 18 bygninger i 2 à 3 etager pá tilsammen $36.579 \mathrm{~m}^{2}$.

Bygherre

Frederiksborg Amtsrȧd.

Projektering

Totalrádgivningsgruppen:

Mangor og Nagel
m.a.a. Arkitektfirma A/S Birch \& Krogboe - Rȧdgivende Ingeniørkontor KIS

Konsulent

H. Lundsgaard - Bygningsbrandteknik.

Landskabsarkitekter

A. Muusfeldt og I. Ravn.

Rǎhusmontage

(råhus-etape 2)
Poul Larsen, Rønne a/S (beton og kloak)

Anton Jürgensen, Murerentreprise ApS (mur og element montage)
AJS Modulbeton A/S (elementleverance)

Andre udførende (etape 2)

Tømrermester Mogens V. Zeltener ApS (tag)

Dansk Velux - Dansk Lukningsentreprise A/S (lette facader)

Tømrermester Svend Pedersen (indvendige facader)

Ernst Hansen \& Co. A/S (lette skillevægge)

EBS Isolering A/S
Elendco Byggefirma A/S (døre)

KS F.B. VVS v/Ringsted VVS ApS (sprinkler)
E.S. VVS-konsortiet (vand - varme - sanitet)
E. Klink A/S (ventilation)

Opførelsesdata

1978-08-02 Amtsborgmesteren gravede det første spadestik

1979-09-20 Start rảhusentreprise 1

1980-10-21 Start rảhusentreprise 2

1981-07-02 Forbrændingsanlæg taget i brug

1982-02-01 Start rảhusentreprise 3

1987-10-01 Forventet ibrugtagning af det ny sy. gehus.

Økonomi

Samlede udgift kr. 450 mill. inklusive moms (med indeks 390).

Fig. 1. Situationsplan. Mál ca. 1:1500. 1. Operation. 2. Skadestue - modtagelse. 3. Rontgen. 4. Ambulatorium. 5. Fysioterapi. 6. Ergoterapi. 7. Kedelcentral. 8. Intensiv afdeling. 9-10. Sekretariat. 11. Opvágning. 12. Akut modtagelse. 13. Journal. 14. Klinisk laboratorium. 15. Blodbank. 16. Sekretariat. 17-18. Vagtområde. 19. Kantine. 20. Forhal. 21. Hovedindgang. 22. Administration.

Projekteringsforudsætninger

Den vigtigste projekteringsforudsætning for Amtssygehuset i Frederikssund har været et behov for erstatning for de forældede sygehuse i området, herunder naturligvis det gamle sygehus i Frederikssund. Vedtagelsen af udflytningen af det eksisterende sygehus til Dybendal's jorde blev faktisk foretaget allerede i 1967, og et dispositionsforslag til et 360 senges sygehus blev udarbejdet i 1969.

Pá grund af koordineringen af Hovedstadsregionens samlede sygehusvæsen skulle der gá ca. 10 àr, før man fik formuleret forudsætningerne for dette ak:uelle byggeri.
I mellemtiden havde landet oplevet en energikrise, hvilket aaturligvis medførte, at en af כrojekteringsforudsætningerne var en højisolering, og den alnindelige konjunkturnedgang lavde medført, at man satsede já et mindre prætentiøst projekt end ved tilsvarende store hospialsprojekter i Hovedstadsregiolen. Bl.a. kan nævnes, at sygeuuset i Frederikssund ikke har rogen spildplads if form af store oyerer m.v. På den mere tekniike front har det givet sig udslag en begrænsning af ventilatioien for at nedbringe bygningerles samlede energiforbrug. Heril kommer som senere omtalt, it kedelcentralen og forbrænlingsanlægget, der forsyner complekset med energi, i vid udtrækning anvender affald.
Af figur 1 , der viser en plan af let samlede kompleks, fremgår, it byggeriet er udført i 3 etaper:
Etape 1 pá $6.300 \mathrm{~m}^{2}$ omfatter redelcentral og forbrændingsinlæg, centralkøkken og teknisk entral samt fysiurgisk afdeling. Jenne etape er næsten færdig, g enkelte bygninger er taget i rug.
Etape 2 pả $15.300 \mathrm{~m}^{2}$ omfat er ambulatorium, laboratorier, øntgen, dagafsnit, skade- og nodtagerafdeling, intensivafdeing, operationsstuer, kapel og entraldepot. Denne etape er ander udførelse i øjeblikket.

N

Fig. 2. Lodret snit i mellembygning mellem modullinierne \varnothing og A. Màl 1:50. 1. Betongesimselement. 2. Stern. 3. Tagisolering min. 200 mm . 4. Betondæk. 5. Nedhængt loft. 6. Dørparti. 7. Let facadeparti. 8. Betondæk. 9. Etage 1 (bemærk terrænspring pá modelfoto). 10. Betondæk. 11. Kælder.

Etape 3 pá $14.500 \mathrm{~m}^{2}$ omfatter senge og fødeafdelinger, administration og kontorafsnit samt forhal med kiosk og cafeteria. Etape 3 er netop pábegyndt med grundudgravning og fundamentstøbning.

Materialer og konstruktioner

Som det fremgår af planen pả figur 1, har man fra arkitekternes side bevidst valgt at arbejde med smả bygningskroppe, og som det fremgảr af de følgende snittegninger med påskrevne materialer, har man valgt stort set at holde sig til de mere traditionelle konstruktionstyper.

Bygningernes bærende hovedsystem bestảr af jernbetonsøjler, hoveddragere og dæk. I etape nr. 1 blev de fleste dæk støbt pȧ stedet på tradtionel vis, hvorimod etageadskillelserne i etape 2 udføres som filigrandæk, hvorved forstås en halvpræfabrikeret betondæk, hvor den nederste, blivende del udgar forskallingen med færdigmonteret armering og siksakforskydnings-armering. Udover nævnte dæk og enkelte gesimselementer og »stræ-
bepillerne« er alle konstruktioner støbt pả stedet.
Søjlerne er placeret i et modulnet pá $72 \mathrm{M} \times 108 \mathrm{M}$.

Facaderne udføres som skalmure i røde mursten og er isoleret med 125 mm mineraluld.

Facade- og vinduespartier udføres i standardiserede enheder, der er isolerede og fugede i overensstemmelse med BR 77. Facadeelementerne er udført i eloxseret aluminium med brystningsglas jvf. figur 5.

Tagkonstruktionen er opbygget pá betondækket med træspær og isoleret med 200 mm mineraluld. Taget er dækket med en 3-lags tagpapdækning.

Bygningerne stabiliseres i øst/vest-retningen af jernbeton - gavlvæggens vinduesfrie hjørnefelter, og i nord/syd-retningen optages de vandrette kræfter af ventilationsskaktvæggene i modullinie y ved korridoren. Pá grund af linie y's asymmetriske placering opstảr der et vridningsmoment, der optages i de førnævnte hjørnefelter i gavlene.

De fleste indvendige vægge er udført som ikke-bærende stål-skelet-gipsvægge med isolering, idet dog en del vægge omkring våde rum, operationsstuer, køkken m.v. er udført som bredstensteglvægge.

Lofterne er udført på en del forskellige måder afhængige af de funktionskrav, der var til stede i de pågældende rum. Her
skal nævnes, at der i kedelcentral og teknikerarealer anvendes sprojtet beton, i sekundære arealer træbeton, og i toiletter og baderum m.v. gipslofter. I primærrummene, d.v.s. sengestuer og kontorer, opholdsarealer m.v. er lofterne udfort som aluminiumskassetter med indbygget lysarmatur.

I et byggeri som dette må der naturligvis være en række specielle forhold; her skal kun nævnes, at stråleafskærmning udføres med byplade, der er limet pȧ spånplade og anbragt mellem to stảlskeletvægge.

Installationer

I et byggeri som dette má installationerne nødvendigvis være mange og komplicerede. Da det samtidig falder udenfor denne artikels rammer at give en detaljeret beskrivelse af installationerne, skal disse blot nævnes summarisk i det følgende.

Byggeriet opvarmes af et kedelanlæg (se figur 1), der er placeret i en særskilt bygning. Anlægget omfatter kedler, fyringsanlæg, affaldsforbrænding, kontrol- og manøvretavler.

I fyringsanlægget anvendes svær fuelolie og dieselolie. Som supplement til varmeforsyningen har man monteret et affaldsforbrændingsanlæg, der kan forbrænde almindeligt husaffald, sygehusaffald og patologisk affald fra sável dette som nærliggende sygehuse. Varme-
anlægget er udført som et bygningsopdelt radiatoranlæg, hvor blandingsarrangementerne styres af udetemperatur-, sol- og vindfølere.

Med hensyn til ventilationsanlægget er hvert bygningsafsnit forsynet med sit aggregat, anbragt i selvstændigt teknikrum. Anlæggene styres med varmegenvinding i videst muligt omfang. Ved kedelbygningen og køkkenbygningen udføres genvindingsanlægget med væskekoblede varmeflader, som ved hjælp af en cirkulationspumpe overfører varme fra udsugningsluften til friskluften. Ventilationsanlæggene er udstyret med elektrisk-og elektronisk virkende automatik.

Med hensyn til installationerne iavrigt henvises til figur 6, der viser et lodret snit i tekniktunnelen, der er placeret mellem modullinierne y og z. Denne tunnel indeholder alle de for et hospital nødvendige væsker og luftarter samt hovedledningerne til sprinkleranlægget. De brandtekniske forhold er nærmere omtalt i følgende afsnit.

Brandforhold

Da bygningsreglementet, der indeholder generelle bestemmelser om almindelige bygninger, naturligvis ikke kan give detaljerede retningslinier for den brandtekniske projektering af et sygehus, har behandlingen af dette funktionskrav været en

iig. 3. Lodret snit i tag over administrationsbygning mellem modullinierne 33 og 34. Mál 1:50. 1. Ovenlys. 2. Trætagopbygning. 3. Nedhængt loft, 4. Brystning med betontesimselement og ekstra isolering. 5. Betondrager. 6. Facadebeton med skaimur i røde sten, klasse-A-murværk.

Fig. 4. Fotos fra byggepladsen: 1. Skalmur ved indgangsparti, klasse A med dilatationsfuger. 2. Montage af lette skillevegge. 3. Vinduesparti ilet facade med elpanel. 4. Let køkkenarrangement i personalerum.
selvstændig projektering i samarbejde med de kommunale myndigheder og H. Lundsgaard, bygningsbrandteknik. Med erfaringerne fra flere storre og alvorlige sygehusbrande kan man sige, at det ikke er et spøgsmad om at tilfredsstille de konstruktive krav og overfladekravene, men primært et spørgsmål om at tilfredsstille kravene om personsikkerheden, især da der i vid udstrækning er tale om immobile personer.

I det følgende skal derfor omtales hovedtrækkene i de projekterede, aktive brandsikkerhedsforanstaltninger.

Bygningerne er totalt sprinklet i overensstemmelse med brandvæsenets krav svarende til normal risikoklasse 2. Da en sprinkling i visse teknikrum med høj installationstæthed kan gøre mere skade end gavn, har man enkelte steder erstattet sprinklingen med alarmanlæg, der er styret af røgdedektorer. Alle hulrum over nedhængte lofter er sprinklet i overensstemmelse med reglerne for Statens Brandinspektion, sȧfremt der er placeret ror for luftarter.

Sprinklercentralen er placeret under fysiurgisk afdeling, og vandforsyningen sker fra hospitalets ringforbundne hovedledning, idet der i sprinklercentralen anbringes en tryktank og trykforøger-pumpe.

Under hensyntagen til hospitalets brandsektionering er an-

Fig. 5. Lette facader i opstalt og snit. Màl 1:50. 1. Solafskærmningskasse (gardin-og automatik ikke vist pá snit). 2. Fast glas $(4+12+4)$. 3. Brystning af alu-profil med udvendigt brystningsglas, ventilation, internit, isolering og indvendig finerbeklædning. 4. Dor med glas.

lægget opdelt i 8 sektioner med hver \sin alarmventil.

Herudover er der anbragt slangeskabe i overensstemmelse med BR og efter aftale med brandvæsenet samt brandhaner i terræn.

Som ofte ved sprinklede bygninger har man kunnet »file« på de passive konstruktionskrav. Her kan f.eks. nævnes, at glaspartierne i sektionslinierne er behæftet med kravet F30-konstruktion.

Der er installeret varslingsanlæg i alle sengeafsnit, intensivafsnit, modtagerafsnit og opvågningsafsnit. Da varslingsanlægget ikke svarer til et normalt anlag i f.eks. en skole eller et hotel, hvor folk påregnes at være mobile, må aktiveringen af anlægget ikke medføre paniksituationer. Det er derfor tanken, at anlægget skal operere med optisk signalering og ikke som traditionelt med klokker eller horn ud fra den betragtning, at mange patienter ikke har brug for denne information. Det optiske signal kan føres til et tableau i de lokale vagtrum, der herefter meddeler personalet. Varslingen

Fig. 6. Lodret snit i tekniktunnel nord-syd ved modullinie 33. Màl 1:50. 1. Afkølet koldt vand tilbage fra ventilationsanlæg. 2. Fremløb af afkølet vand. 3. Tilbageløb af varmt vand til ventilation og radiatorer. 4. Fremlab af opvarmet vand. 5. Koldt brugsvand. 6. Otte sprinklerledninger. 7. Blødt, koldt vand. 8. Trykluft. 9. Sug (vacuum). 10. Ilt. 11. Kvæ/stofilte. 12. Sprinkler til tekniktunnel. 13. Varmt brugsvand frem. 14. Varmt brugsvand tilbage. 15. Koldt brugsvand. 16. Stærkstrom. 17. Svagstrom.
aktiveres af sprinkleranlægget.
Nød- og panikbelysning er monteret overalt efter reglerne i bygningsreglementet.
ABDL-anlæg (automatiks branddørlukning) er udført overalt i byggeriet på den måde,
at selvlukkende dørpartier i den normale driftstid fastholdes med elektromagneter i àben stilling. Disse døre lukker automatisk, sáfremt de nærsiddende jondetektorer pảvirkes af røg. Som det ogsả har været tilfældet ved
en rakke andre byggerier, giver udløsning af ABDL-anlægget kun melding til de lokale brandmeldeskabe, uden at meldingen automatisk går videre til brandvæsenet. Dette ville evt. kunne medføre en række unødige udrykninger.

Endelig skal nævnes, at ventilationsanlægget er forsynet med stop med jondetektor-indikering, og at særlige områder som f.eks. operationsstuerne er forsynet med katastrofeudsugning i BS 60-konstruktionsskakte.

Afsluttende bemærkninger

Selv om byggeriet ikke er færdigt, og kun enkelte dele af det er taget i brug, efterlader et besøg pá byggepladsen det indtryk, at amtets intentioner om at bygge et »lav-pris sygehus« er søgt ført ud i livet af totalrádgi-ver-gruppen. Man har det indtryk, at der i alle faser af projekteringen er tænkt pà besparelser af energi og ressourcer ved valg af konstruktioner og materialer. Det bliver spændende at se, om man fär det samme indtryk, når byggeriet er helt færdigt og i drift i 1986-87.

Kyllinge-09 kvegfarm i Libyen

af lektor, civilingeniør Ejnar Søndergaard, DIAB Tegninger: Grete Hartmann Petersen, DIAB

Beliggenhed:

Wadi el Hira, ca. 65 km
syd for Tripolis, Libyen.

Art:

Integreret kyllinge- og kvægfarm.

Areal:

Totalt $135.000 \mathrm{~m}^{2}$, heraf kyllingefarme $100.000 \mathrm{~m}^{2}$.

Bygherre:

Den libyske stat.

Totalentreprenør:

Danfarm Contractors, Charlottenlund.

Danfarm Contractors er et konsortium bestaiende af Højgaard \& Schultz A/S og A/S Atlas.

Underentreprenører
 på

 kyllingefarmene:Blandt underentreprenørerne kan nævnes:

Stȧlkonstruktioner: Torben Ivarsson A/S, Åbenrá.

Tag- og facadebeklædning, isolering, døre, por-
te: Nordisk Byggemontage A/S, København.

Klimaanlæg: Nordisk Ventilator Co. A/S, Næstved.

Vand og sanitet: Bruun \& Sørensen A/S, Århus.

Elinstallationer: Intertec Contracting A/S, Åhus.

Foderudstyr: Funki Maskinfabrik A/S, Hammerum.

Økonomi:

Total entreprisesum: 1,3 milliarder d.kr.

I Libyen, 65 km syd for Tripolis, opføres for tiden af danske firmaer en kyllinge- og kvægfarm, der er det starste danske landbrugsprojekt nogensinde. Projektet er interessant - ikke alene ved \sin størrelse, men geografisk beliggenhed, klimatiske forhold og omstændighederne i øvrigt har resulteret i et anlæg, der fremviser mange bemærkelsesværdige træk.

Som det fremgå af situationsplanen, er projektet bredt ud over et større område og omfatter bygninger af mange forskellige typer. Hensigten med at udforme anlægget som spredte bygningsgrupper er at mindske risikoen for smittespredning.

Fig. 1. Situationsplan, 1:200.000.
$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \mathrm{~km}$

Det samlede bebyggede areal er på ca. $135.000 \mathrm{~m}^{2}$ fordelt rundt regnet med $100.000 \mathrm{~m}^{2}$ på kyllingefarme og $35.000 \mathrm{~m}^{2}$ til andre formàl: kvægstalde, mejeri, fodermalle, fjerkræslagteri, beboelse, service m.m. Projektet omfatter ogsá hele områdets infra-
struktur omfattende veje, afløb, vandforsyning, bygninger til sociale formål, faciliteter og værksteder til vedligeholdelse af hele aniægget og hvad der iøvrigt er nødvendigt for at gøre anlægget til en selvforsynende enhed.

Udviklingen af projektet

Danfarm Contractors fik kontrakten på det totale projekt i maj 1981. Projektet blev opdelt i henved 100 forskellige leverancer, og disse blev ultimo 1981 udbudt til adskillige inden- og udenlandske leverandører. Dan-
ske firmaer viste sig her at være konkurrencedygtige, og ca. 95% af det samlede projekt faldt på danske hænder.
Under tilbudsfasen i begyndelsen af 1982 foregik en projekttilpasning, hvorunder det viste sig hensigtsmæssigt at opføre

Fig. 3. Tværsnit af bygning i kyllingefarm, 1:100.

1. Korrugerede aluminiumplader, Alulite A33, pladetykkelse $0,6 \mathrm{~mm}$. 2. Koldbukket Z-ás, høide 150 mm . 3.100 mm glasuld. 4. Svejst plastmembran. 5. Korrugerede aluminiumplader, Aluilte A33, pladetykkelse $0,7 \mathrm{~mm} .6$. Tyndpladeramme at koldbukket hatprofil. 7. Koldbukket C-rigel. 8. Betonelement, $h \times b=800 \times 150 \mathrm{~mm} .9$. Pladsstøbt betongulv.

Fig. 4. Ramme, 1:10. Beklædningsplader og isolering ikke vist. Tyndpladerammen er den afgarende nyskabelse i projektets bygningskonstruktioner. Tungeste element vejer kun 90 kg , hvorfor montering og montage pà byggepladsen kan foregà ved hàndkraft uden loftegrej. Svejsning forekommer ikke ikonstruktionen - kun samlinger med bolte og selvskærende skruer. Den forzinkede overflade kræver ikke yderligere overfladebehandling eller vedligeholdelse. Og genanvendelsesværdien af konstruktionen er høj, da den relativt nemt kan demonteres og rejses pàny.

1. Koldbukket hatprofil, pladetykkelse $2,3 \mathrm{~mm}$. 2. Koldbukket hatprofil, pla detykkelse $2,5 \mathrm{~mm}$. 3. Bolte, 8 stk. M12 i begge sider. 4. Charnierbolt, 1 stk. M12 i begge sider. 5. Bolte, 3 stk. M12 1 begge sider. Indlagt et koldbukket Cprofil. 6. Koldbukkede Z-ȧse, $h=150$ $m \mathrm{~m}, t=1,3 \mathrm{~mm}$, samlet ved overlap. 7 . Asestol af C-profil fastgiort med 6,3 mm selvskærende skruer. 8. Koldbuk kede C-rigler, $h=150 \mathrm{~mm}, t=1,3$ mm , samlet med laskeplade. 9. Betonelement $h \times b=800 \times 150 \mathrm{~mm} .10$ Bolte M16 og stàlskinne til fastholdel se af betonelement. 11. C-profil fast gjort med selvskærende skruer.
en >mock-up<< - en model i fuld størrelse - af kyllingefarmene, der jo omfatter langt den største del af bygningsmassen. Mock-up'en, der er opført i Viby ved Roskilde, omfatter tre fag af bygningstypen og afspejler alle faser i den endelige bygnings opførelse og drift. Formålet med mock-up'en var at overbevise alle implicerede parter bygherre, rådgivere og leverandører - om, at konstruktionen var i orden og fungerede efter hensigten. Den udgør således en fuldt færdig bygningsenhed komplet monteret med klimaanlæg, fodringsanlæg og alle øvrige installationer, og alt prøvekøres her, før den endelige produktion starter.

Projekteringsforudsætninger

Målt med dansk alen er grundlaget for at bygge i Libyen naturligvis ekstraordinært. De klimatiske forhold er ret sả barske - temperaturen er om sommeren på op til $45^{\circ} \mathrm{C}$ og kan om vinteren komme ned i nærheden af frysepunktet. Bygningsanlægget skal dimensioneres for en vindhastighed på $140 \mathrm{~km} / \mathrm{h}$, og der skal regnes med en støv-eller sandlast på tagene på 0,3 $\mathrm{kN} / \mathrm{m}^{2}$. Endvidere skal der regnes med en vandret jærdskælvslast pả 6% af lodret last.

Endelig skal den bærende bygningskonstruktion dimensioneres for last fra fodringsanlæg og \emptyset vrige installationer, som er ophængt i hovedkonstruktionen.

Beregningerne skal efter kontrakten primært baseres på British Standard.

Bygningerne

Til de $100.000 \mathrm{~m}^{2}$ kyllingefarme er benyttet et nyudviklet byggesystem - alt i alt indgảr dette system i $8,1 \mathrm{~km}$ bygning. Byggesystemets bærende konstruktion bestående af rammer, åse og rigler er helt igennem af tyndplade.

Af de resterende bygninger er $20.000 \mathrm{~m}^{2}$ udført med bærende konstruktion af svejste stålrammer af mere konventionel type. Endelig er de resterende 15.000 m^{2} overvejende udført pả traditionel vis af betonblokmurværk med trægitterspær.

Det er især den nyudviklede tyndpladekonstruktion, der beskrives nøjere i denne artikel.

Fig. 5. Facadeudsnit, 1;100. Klimaanlæggene præger billedet af facaderne. I begge facader er skiftevis i hvert andet fag anordnet udsugningsventilator og indtag for kølesystemet.

Tyndpladekonstruktionen

Kyllingefarmene består af 10 grupper à 5 bygninger, hver med længden $124,8 \mathrm{~m}$. Herudover er tyndpladesystemet benyttet i 16 bygninger med længden $110,4 \mathrm{~m}$ og 4 bygninger med længden 33,6 m. Den bærende konstruktion bestå af 3 -charniers rammer af tyndplade med spændvidden $12,3 \mathrm{~m} \mathrm{og}$ anbragt med indbyrdes afstand $4,80 \mathrm{~m}$. Der er også anbragt rammer i gavllinierne, og i de 50 bygninger med længden $124,8 \mathrm{~m}$ er indskudt en ekstra ramme midtvejs i bygningerne i forbindelse med indretning af en servicesektion. Alt i alt indgår der således ikke mindre end 1816 rammer i denne del af projektet. Højden af rammerne er $3,20 \mathrm{~m}$ ved rammehjørnet og $4,95 \mathrm{~m}$ ved kippen. Taghældningen er 15°.

Den sekundære konstruktion består af tyndplade Z-åse i taget og tyndplade C-rigler i facaden. Tag- og facadebeklædningen er korrugerede aluminiumplader.
Tyndpladekonstruktionen til kyllingefarmen er udviklet af Torben Ivarsson A / S i samarbejde med Beton- og Konstruktionsinstituttet, BKI. Dette institut dannedes sommeren 1982 ved sammenlægning af BKF-centralen (Byggeteknisk Konstruktionsforskning) og ADB-centralen (Automatisk Databehandling). Udviklingsarbejdet udførtes således af instituttet under dets tidligere navn: BKF-centralen.

BKF-centralen havde siden sommeren 1980 kørt et produkt-
udviklingsprojekt for Torben Ivarsson A/S vedrørende optimering af traditionelle stålrammebygninger med tyndpladebeklædning. Ideen om at udvikle en bygningstype med ogsả den bærende hovedkonstruktion af tyndplade dukkede op i forbindelse med de stærkt stigende priser på varmtvalsede profiler i efteråret 1981. Omkring årsskiftet var systemet sȧ gennemarbejdet, at det kunne indgà som tilbudsgrundlag i Danfarm projektet, og i de første mảneder af 1982 blev der gennemført laboratorieforsag med byggesystemet i fuld skala til verificering af systemets bæreevne. Herefter udformedes endeligt i samarbejde med Danfarm Contractors og Nordisk Byggemontage A / S den komplette bygning til kyllingefarmene, og systemet kunne således indgå i mock-up'en i Viby, der opførtes i marts 1982.

Som nævnt var det et krav, at man ved projekteringen i videst muligt omfang benyttede engelske normer. Beregningen af tyndpladekonstruktionerne er imidlertid baseret pả den nye danske norm for tyndpladekonstruktioner, DS446. Denne norm benytter de beregningsprincipper, der i disse år præger normudviklingen pá tyndpladeområdet i Europa.

Rammer

Det afgørende nye i bygningskonstruktionen er tyndpladerammerne. Tyndplade er næppe tidligere herhjemme benyttet til bærende konstrukti-
onsdele af en størrelse og i et omfang, som det her er tilfældet.

Rammen består af 4 hovedelementer: 2 rammebjælker og 2 rammesøjler. Elementerne er bredest ved rammehjørnet og spidser til mod rammefod, henholdsvis rammekip. Profilhøjden i rammehjørnet er ca. 400 mm , og højden ved fod og kip er ca. 70 mm .

Rammens tværsnit er et hatprofil. De udbukkede flige i profilet er yderligere forsynet med en kantafstivning, og flangen i den lukkede ende af profilet er forsynet med en mellemafstivning i form af en rillebukning. Åbningen i hatprofilet vender opad for rammebjælkens vedkommende og indad for rammebenets vedkommende. Den udvendige bredde af shatten< i rammebjælken svarer til den indvendige bredde af »hatten< i rammebenet, hvorved bjælken kan skydes ind i benet i rammehjørnet. Samlingen kan herefter udføres som en dobbelt boltesamling mellem kroppene indbyrdes, der sørger for momentoverførslen i rammehjørnet.

Typisk for mange tyndpladekonstruktioner er, at profiltværsnittene ikke kan udnyttes fuldt ud på grund af lokal udbuling af profildelene i de trykkede dele af profilet. I de foreliggende rammer er hattværsnittene proportioneret netop sådan, at profilet er fuldt udnyttet. Samtidig er der ved den tilspidsede form af rammen mod rammefod og kip opnået en tilpasning til moment-
kurven, der sikrer en optimal udnyttelse af materialet. Dette demonstrerer netop fordelene ved tyndpladeprofiler: Man er ikke bundet af et snævert sortiment af standardprofiler, men kan opbygge profilerne individuelt til den enkelte opgave. At der ikke er mange overflødige kilo i tyndpladerammerne, afspejles også af, at man har kunnet udføre hatprofilet i rammebjælken af tyndplade, der er 0,2 mm tyndere end tyndpladen i rammesøjlen, nemlig $2,3 \mathrm{~mm}$ mod $2,5 \mathrm{~mm}$ i rammesøjlen.

Udgangsmaterialet for rammerne er St E 350 efter ASTM A 446 - Grade D, flydespændingen er således $350 \mathrm{~N} / \mathrm{mm}^{2}$. Materialet, der er forzinket, leveres i coils fra det hollandske værk Estel Hoogovens BV og bukkes til profiler hos Ib Andresen, Langeskov. Den tilspidsede form af rammedelen medfører ikke noget ekstra materialespild, da de trapezformede udgangsplader kan udskæres parvis ved diagonaludskæring af coilmaterialet.

Forzinkningen er en sendzimirforzinkning pả $350 \mathrm{~g} / \mathrm{m}^{2}$ regnet pr. dobbeltside. Metoden medfører et meget tyndt oplegeret grænselag mellem den rene zink og stålet, hvilket igen bevirker, at pladen kan koldbukkes uden ødelæggelse af forzinkningen.

Bukningen foregàr i et kantbukningsanlæg og kan udføres med særdeles små tolerancer. Koldbukkede profiler er oftest betydeligt mere præcise end varmvalsede profiler. I det foreliggende tilfælde kan man sảledes bore de nødvendige huller for bolte og lignende, før man bukker hatprofilerne.

Detaljerne ved rammefod og kip er enkle. I fundamentet er indstøbt et forzinket koldbukket C-profil med materialetykkelse 4 mm og fremstillet af konstruktionsstål Grade 43B efter BS 449. C-profilet passer ind i hatprofilet, og selve charnieret udgøres af 2 M12 bolte. Detaljen i kippen er helt analog hermed. Det indskudte vandrette C-profil der dog her er $2,3 \mathrm{~mm}$ tykt - er fastgjort med to bolte til den ene rammebjælke og med een bolt til den anden, hvorved charniervirkningen fremkommer.

Vægten af en ramme er 270

Fig. 6. Interior.
kg , idet en rammebjælke vejer 90 kg og en rammesøjle 45 kg . Der er sảledes ingen elementer i byggesystemet, der er tungere, end at de kan laftes af to mand, der tager fat i hver sin ende. Montagen kan i gvrigt foregå bekvemt, idet en rammehalvdel indledningsvis kan opstilles med fodcharnieret monteret og kippen hvilende på jorden. Derefter kan rammedelen bringes på plads ved drejning om charnierbolten.

Tag, facader, gavle

Tagbeklædningen er korrugerede aluminiumplader oplagt på ảse pr. $1,65 \mathrm{~m}$. I kippen er anordnet dobbeltåse. Åsene er 150 mm høje koldbukkede Z-profiler - randåsene dog C-profiler - som spænder $4,80 \mathrm{~m}$ mellem

Fig. 7. Rammehiørne.
rammerne. Materialekvaliteten er den samme som i rammerne, men materialetykkelsen er kun $1,3 \mathrm{~mm}$, og zinkbelægningen udgør her $275 \mathrm{~g} / \mathrm{m}^{2}$ dobbeltside.

Ăsene er fastgjort til rammebjælken med bolte M8. 2 åse på hver tagflade er dog fastgjort til en åsestol i form af en stump Cprofil, der er stukket ned i rammebjælkens hatprofil og fastgjort til kroppen af denne med $6,3 \mathrm{~mm}$ selvskærende skruer. Àsestolene sikrer, at taglastens komposant parallelt med tagfladen føres ned i rammebjælken.

I facaderne er der ligesom itaget benyttet korrugerede aluminiumplader, der spænder lodret mellem rigler af 150 mm høje C profiler. Riglerne er i øvrigt hvad angår materiale og proportioner helt analoge med Z-åsene.

Bemærkelsesværdigt er det, at facadekonstruktionen er anordnet på rammebenenes inderside, rammebenene er med andre ord rykket uden for facaden. Man opnår herved at få et helt ugeneret fritrum. Dette har været af særlig betydning her, hvor man af hensyn til den maskinelle udmugning har ønsket vægge uden generende fremspring. Ligeledes af hensyn til udmugning og robusthed er den nederste del af facadekonstruktionen opbygget af 150 mm tykke betonelementer, fastboltet til rammebenene.

De udvendigt placerede rammeben giver i øvrigt de lange facader en vis karakter. Yderligere opnås et naturligt tagudhæng uden brug af særlige stikspær.

Udvendige og indvendige beklædningsplader i tage og vægge er korrugerede aluminiumplader af typen Alulite A 33 fra Alusuisse. Pladerne har en karakteristisk bredbundet profilering, hvor den brede bund er forsynet med en mellemafstivning. Profilhojden er 33 mm , og pladetykkelsen er $0,6 \mathrm{~mm}$ for den udvendige beklædning og $0,7 \mathrm{~mm}$ for den indvendige. Den større tykkelse af de indvendige plader er efter bygherrens ønske valgt for at opnad større robusthed. Pladerne er Stucco-plader, dvs at der i det plane materiale er præget et nupret mønster. Denne type er valgt for at dæmpe solreflektionen fra de store bygningsflader.

I tag og vægge er indlagt 100 mm glasuld, og der er anordnet en svejst plastmembran på isoleringens indvendige side.
Som et eksempel pả den projekttilpasning, der er sket under udviklingen af projektet, kan nævnes, at loftpladerne er anbragt under åsene for at opnȧ en jævn loftflade og dermed min. dre turbulens ved ventilering af bygningerne.

Klimaanlæg og fodringsanlæg

Klimaanlægget i kyllingefar. mene skal sikre, at der uafhængigt af de extreme temperatur. forhold på stedet holdes en konstant temperatur i bygningerne på $32^{\circ} \mathrm{C}$.

Anlægget er et undertryksanlæg. I hvert bygningsfag er i facaden anordnet en udsugningsventilator samt et evaporativt kølesystem, der afkøler den indgående luft.

Til opvarmning af farmene i den køligere årstid er der indret-

Fig. 8. Detalie at charnier ved rammefod.
tet varmtluftanlæg med separat oliefyr for hver bygningshalvdel. Klimaanlægget er computerstyret.

Klimaanlægget stiller store krav til bygningernes tæthed, hvorfor det er vigtigt, at den indlagte plastmembran er effektiv. Systemets effektivitet er eftervist ved forsøg på mockup'en.

Fodringsanlægget er fuldautomatisk og ophængt i tagkonstruktionen i wirer. Hele anlægget kan hejses op under loftet, så udmugning og desinficering af farmene kan foregå uhindret.

Afslutning

Libyen-projektets store omfang har gjort det muligt for firmaet Torben Ivarsson A/S at udvikle et nyt byggesystem, der skulle være et konkurrencedygtigt alternativ til de halsystemer, der i øvrigt findes på markedet i dag. Man agter at lagerføre
tyndpladerammer svarende til spændvidderne 12,14 og 16 m og facadehøjderne 3 og 4 m . Ønskes spændvidder eller højder mellem disse standardmål, kan dette nemt opnås ved at skære et passende stykke af den spidse ende af nærmest større rammeelement.
Systemet er patentanmeldt og er ved at blive indført på det tyske marked.
Med de fordele systemet har i kraft af billig transport, nem montage og ringe vedligeholdelsesudgifter, skulle det have gode chancer for at vinde udbredelse.

Kyllingeprojektet

1 fire bygninger med 6000 bedsteforældredyr produceres 6.700 æg pr. uge. Æeggene transporteres til et udklækningsanlæg, der udklækker forældredyr. Forældredyrene transporteres til 8 farmenheder, hver bestáende af 2 bygninger. Denne del af anlægget rummer 96.000 forældredyr, der producerer 146.000 æg pr. uge. Æggene transporteres th et udklækningsaniæg, der udklækker slagtekyllinger.

Slagtekyllingerne transporteres til 10 farmenheder, hver bestảende af 5 bygninger. Den árlige produktion ide 10 farmenheder er 5.500 .000 slagtekyllinger. Kyllingeslagteriet er fuldautomatisk og har en kapacitet pá 3000 slagtekyllinger pr. time og en lagerkapacitet pá 630 tons frosne kyllinger.

Kvægprojektet

Kvægfarmen rummer 600 malkekøer foruden ungdyr, ialt 1.500 dyr. Kapaciteten af det tilhorende mejeri er 12.000 liter mælk pr. dag. Grovfoder dyrkes pá 210 ha opdyrkelig land, hvoraf halvdelen overrisles. I fodermailen produceres ca. 30.000 tons kvæg-og kyllingefoder pr. ár.

Projektel 1 gurigt

Laboratorier til kontrol af foderstoffer og til veterinærkontrol. Uddannelsescenter, By til de beskæftigede i projektet omfattende 40 enfamiliehuse og 60 lejligheder for enkeltpersoner. Fritidscenter med klubhus, swimmingpool og tennisbaner indgári byanlægget. Værksteder til vedigeholdelse af alt udstyr og alle installationer. Projektet skal være en selvforsynende enhed.

