Dla 3 husbygning \& $5=1$

DIAB og SBI beskriver

Aktuelle byggerier 1981

DIAB husbygning

Danmarks Ingeniørakademi, Bygningsafdelingen

SBI

Statens Byggeforskningsinstitut

Aktuelle byggerier 1981

Særtryk af byggeindustrien

Hermed foreligger 9. årshæfte med artikler om "Aktuelle Byggerier" fra tidsskriftet "Byggeindustrien". Serien omfatter nu beskrivelser af ialt 68 forskellige projekter fra nutidigt, industrialiseret byggeri.
1981 - artiklerne omhandler to boligbyggerier, et institutions- og tre erhvervsbyggerier. De to boligprojekter er baseret på typiserede løsninger, mens de \varnothing vrige projekter er helt individuelt udformet.

Som i de tidligere årgange beskrives såvel præfabrikerede som in situ udførte Iøsninger, ligesom alle gængse byggematerialer er repræsenterede.

Forfatterne takker de mange, der har leveret stof til artiklerne, og vi håber, at hæftet vil blive til nytte for byggeriets parter.

For forfatterne
Henrik Nissen

INDHOLD AF ÅRGANG 1981
$A B \operatorname{nr}$.
63 Moselodden.....
2
66 Helgeshøjparken . . 20 Mogens Buhelt

Per Kjcerbye
$64 \begin{array}{ll}\text { Vognmandsmarken } 8 \quad 67 & \text { Aalborg Medbor- } \\ \text { Bent-Erik Carlsen } & \text { gerhus } 26\end{array}$

65 Rockwool forsk-nings- og udviklingscenter 14 Klaus Hansen

68 Busanlæg for
Arhus Sporveje... 32
Ejnar S申ndergaard

DIAB og SBI beskriver AKTUELLE BYGGERIER 63

Moseloddenlavenergihuse i Ballerup

Beliggenhed:

Ved Skovvej/Egebjergvej i Ballerup.
Art og omfang:
9 lavenergi-enfamiliehuse opført med salg for øje. Heert hus er på $124 \mathrm{~m}^{2}$ bebygget areal. Hertil kommer $7 \mathrm{~m}^{2}$ udhus og $15 \mathrm{~m}^{2}$ carport. Totalt grundareal $6.744 \mathrm{~m}^{2}$, heraf parceller $4.476 \mathrm{~m}^{2}$, fællesarealer (torv, gæsteparkering, friarealer) $1.200 \mathrm{~m}^{2}$ og vej $1.068 \mathrm{~m}^{2}$.

Bygherre:

Boligfonden Bikuben

Arkitekt og hovedentreprenør:

A/S Johan Christensen \& Søn
Energikonsulent samt rảdgivende ingeniør, statik og varmeanlæg:
P. E. Malmstrøm A/S.

Rådgivende ingeniør, byggemodning:
F. J. Thorsell.

Leverandører:

Fundamentsbjælker: KH Beton A/S: Dækelementer: LemvighMüller \& Munck A/S. Bagvægselementer og indvendige vægge: $\mathrm{H}+\mathrm{H}$-Gasbeton A/S. Lette facadeelementer og lette indvendige vægge: A/S Johan Christensen \& Søn. Isoleringsruder: Glasalstrup-Thorvald Pedersen A/S. Ventilationsanlæg med varmegenvinding: Genvex Energiteknik A/S. Jordvarme units: Vølund.

Opførelsesterminer:

Påbegyndt 1. juni 1980, første hus færdigt dec. 1980, sidste hus færdigt feb. 1981.
af akademiingeniør Mogens Buhelt, SBI Tegninger: Grete Hartmann Petersen

De 9 huse, der beskrives i denne artikel, er dels højisolerede, dels særligt tætte, og dels forsynet med varmegenvindingsanlæg og jordvarmeanlæg. Der er tale om et forsøgsbyggeri, hvor man bruger en hel del penge på at samle erfaringer, både med hensyn til de byggetekniske problemer i forbindelse med ekstra isolering og tætning, og med hensyn til anlæggenes effekt og rentabilitet. Hvis beregningerne holder stik, kan foranstaltningerne forrente sig, i hvert fald på lidt længere sigt. Også på det konstruktive område omtales et par interessante løsninger, som har vist sig fordelagtige: Et præfabrikeret funderingssystem og en vindafstivning der består af forankrede letbetonvægge.

Fig. 1. Situationsplan 1:1000. De 9 huse er placeret langs vestsiden af Skovvej, der forbinder Ballerup med Lille-Værløse. Adgangen er dog fra Moselodden. Terrænet skraner fra Skovvej ned mod søen, og højdeforskellen optages primært af terrænspring langs hækkene.

Boligfonden Bikuben satser på lavenergi

Boligfonden Bikuben har bl.a. til formál at bidrage til udviklingen af byggeriets kvalitet og produktivitet. Fonden tilkendegiver dette ved bl.a. at deltage i udviklingen af lavenergihuse.

Boligfonden var i 1978 bygherre til et lavenergihus i Humlebæk, se $/ 1 /$ og $/ 2 /$. Som lavenergiforsøg betragtet var dette projekt ikke helt tilfredsstillende, fordi der kun var et enkelt hus. Det var sảledes ikke muligt at udjæune tilfældige forskelle i beboervaner osv. Tilmed blev huset kobt af en enlig, mens en familie nok ville have repræsenteret en »normalanvendelse« bedre.

Handelsministeriets lavenergihusprojekt Hjortekær bestod af 6 forskellige huse, ;om blev opført i 1978, se /3/ og /4/. Proslemet med forskelle i beboervaner blev her delvist lost ved, at husene i en forsøgspeiode »beboes« af robotter med standardraner (elektriske varmekilder med kontaktre, tidsstyrede automatiske tapventiler ssv.). Men med et enkelt hus af hver slags :r det stadig meget begrænsede erfaringer, nan fár i visse henseender.

Boligfonden Bikuben ville derfor gerne :ølge disse forsøg op med et forsøgsprojekt, ler indeholder en serie ens huse. Formalet ned projektet skulle være at:

- vurdere markedets interesse for lavenergihuse og mulighederne for at opføre lavenergihuse, der svarer til brugernes ønsker og muligheder,
- indhente byggetekniske, brugsmæssige og driftsmæssige erfaringer med lavenergihuse og installationssystemer,
- indhente oplysninger om faktiske energiforbrug i flere ens lavenergihuse med forskellige husstande, og at sammenligne disse energiforbrug med forbruget for et tilsvarende hus i Hjortekær med simuleret beboelse.

En passende grund anskaffes

Ved Skovvej, i Ballerups nordlige hjørne og lige syd for Jonstrup Vang, lả der tidligere en planteskole. Planteskolen lukkede, og kommunen købte pr. 1. januar 1979 hele arealet, ca. $22.000 \mathrm{~m}^{2}$. Størstedelen - en $\mathrm{s} \varnothing$ med mange ákander, samt søens omgivelser - blev udlagt som rekreativt omrảde i forbindelse med amtets og kommunens stisystem, mens knapt $7.000 \mathrm{~m}^{2}$ mellem s \varnothing en og Skovvej blev videresolgt til Boligfonden Bikuben.
Her valgte boligfonden at placere sit nye lavenergiprojekt, se figur 1 .

Hustypen vælges

Fonden stillede følgende krav til huset:

- det skulle fremtræde som et almindeligt hus,
- de tekniske anlæg skulle være enkle at betjene,
- der skulle anvendes standardkomponenter og -udstyr,
- de lavenergimæssige foranstaltninger skulle være rimeligt privatøkonomisk rentable.
Disse krav opfyldtes bl.a. af et af Hjortekærhusene, nemlig hus A, som var opført af Johan Christensen \& Søn med P. E. Malmstrøm som ingeniør. Boligfonden valgte at arbejde videre med denne hustype.
Huset er pà $124 \mathrm{~m}^{2}$, og er en videreudvikling af en af Johan Christensen \& Sens mest solgte typer. Planløsningen er den meget populære med indtil 3 soveværelser samlet i husets ene ende, se figur 2 . Opholdsstuen kan udvides med det ene værelse, og kan være i mere eller mindre åben forbindelse med køkkenet. De forskellige indretningsmuligheder fremgår ligeledes af figur 2.

Fig. 2. Plan ar hustypen 1:200. De punkterede dobbeltinier angiver mulige placeringer af lette, træbaserede vægge. De øvrige indvendige vægge er af gasbeton. De punkterede pile angiver mulige placeringer af dore. 1. Spisekokken. 2. Spisestue, del af køkken/alrum eller del af opholdsstue. 3. Dei af opholdsstue. 4. Værelse, T-stue eller del af opholdsstue. 5. Være/se. 6. Badevære/se. 7. Bryggers. 8. Teknikrum.

Fig. 3. Tværsnit 1:100. Ydervæggen til venstre er et tungt felt, bestảende of 110 mm skalmur, 200 mm mineraluld og 75 mm gasbeton. Den samlede tykkelse er 410 mm . Ydervæggen til højre er et let felt, bestảende af stolper, 13 mm træfiberplade, 200 mm mineraluld og 22 mm bræddebekleedning (mahogni). Vinduet har 3lags isoleringsrude. Skillevæggen er 75 mm gasbeton. Se ogsả fig. 6.

Ydervæggene i denne hustype er en kombination af lette og relativt tunge לelter. De lette felter er træbaserede vægelementer, fremstillet på virksomhedens eget snedkeri. Men størstedelen af ydervæggene bestảr af hulmurskonstruktioner med bagvægge af gasbetonelementer og formur af tegl. De fleste indvendige vægge består ligeledes af gasbetonelementer. Huset har sàledes en ret god varmeakkumulerende evne. Vinduesarealet er ret stort, nemlig ca. 20% af husets grundflade.

De anvendte materialer og den hándværksmæssige udførelse er af høj standard. Sảledes er facadeelementer, vinduer, døre og al udvendig beklædning fremstillet af massiv mahogni.

Huset gares til et lavenergihus

Hustypen er omdannet til lavenergihus, dels gennem forbedret isolering og tætning, dels gennem installation af varmegenvindingsanlæg og varmepumper.

For syv af husene pȧ Moselodden er behovet for tilført varmeenergi herved redu-ceret-til 50%, og for de sidste to huse helt ned til 25% af det »normale«.

Husene på Moselodden har 325 mm mineraluld på loftet og 200 mm i ydervæggene, foruden 75 mm gasbeton i de tunge felter. Gulvet er isoleret med 75 mm mineraluld, 160 mm Lecabetonelementer og 150 mm letklinker, der samtidig tjener som kapillarbrydende lag. Ydervæggenes 200 mm mineraluld fortsætter direkte i fundamentsbjelkernes 200 mm polystyrenisolering. Man har altså helt undgảet den sædvanlige kuldebro, se figur 3. Vinduerne er forsynet med 3-lags argonfyidte isoleringsruder, og den gennemsnitlige k-værdi for hele vinduet inklusiv ramme er herefter beregnet til $1,80 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$.

Der er stillet store krav til tætheden af alle fuger og membraner, og der er ført særligt intensivt tilsyn med udførelsen af netop disse dele. Til et tæt hus hører styret
ventilation. I dette tilfælde er der installeret mekanisk ventilation med udsugning i køkken, bad og bryggers, og med indblæsning i opholdsstue og værelser. Ventilationsanlagget er udstyret med en varmeveksler, sáledes at udsugningsluften afgiver en del af \sin varme til indblæsningsluften.

Der er i øvrigt anvendt to forskellige systemer for varmeanlæg i husene, idet

- 7 af husene er forsynet med elradiatorer, og
- 2 af husene er forsynet med jordvarmeanlæg med vand-til-vand-varmepumper og vandradiatorer.
Varmt brugsvand skaffes i alle husene ved hjælp af varmepumper. I hvert af de 7 huse med elradiatorer er der installeret en varmtvandsbeholder med en luft-til-vandvarmepumpe, som trækker yderligere varme ud af udsugningsluften fra ventilationsanlægget. I de 2 sidste huse er varmtvandsbeholderen kombineret med jordvarmepumpen, sáledes at jordvarmeanlægget også forsyner varmtvandsbeholderen med varme.

Præfabrikerede fundamenter med varmeisolering

Huset i Hjortekær udførtes med isolerende sokler, som bestod af 100 mm brede præfabrikerede sokkelbjælker for bagvæggen og for skalmuren. Bjælkerne blev oplagt pá punktfundamenter, og mellem bjælkerne blev der placeret 200 mm isoleringsmateriale. Herefter blev et terrændæk støbt på stedet.

Denne funderingsmàde er videreudviklet i forbindelse med projekteringen af Moselodden. I samarbejde med Johan Christisensen \& Søn og P. E. Malmstrøm udviklede KH Beton et enkelt system af sokkelbjælker. Det bestảr af randbjælker med Uformet tværsnit og indstøbt isolering, se figur 6 , og af indvendige bjælker med rektangulært tværsnit, se figur 3.

Mellem randfundamenter og indvendige bjælker spænder dækelementer af Lecabeton.

Præfabrikerede fundamenter kan være et godt køb

Ved ukomplicerede funderingsforhold er et traditionelt rendestøbt fundament med isolering pà indersiden og delvis kuldebroisolering med letklinkerblokke i sig selv billigere end punktfundamenter og præfabrikerede gennemisolerede sokkelbjælker. Og et terrændæk støbt pà stedet er billigere end et elementdæk. Varmebesparelsen kan ikke opveje prisforskellen, men der er en række andre fordele ved det præfabrikerede fundament, som forbedrer dets konkurrenceevne:

- større nejagtighed
- mindre afhrengighed af vejret
- hurtig etablering af »tør« platform
- mindre byggefugtmængde
- nedsat byggetid.

Ved nogle af husene pá Moselodden lá de bæredygtige jordlag ret dybt, sáledes at der mảtte ekstrafunderes. Desuden mátte der udføres en del terrænregulering pá grund af det hældende terræn. Disse forhold talte ogsȧ for punktfundering, sokkelbjælker og selvbærende terrændæk. En prisberegning viste, at denne funderingsform ville være den billigste under de pågældende forhold, og den blev derfor valgt.

Man opnảede sảledes en byggeteknisk tilfredsstillende losning, idet man undgik kuldebro, sætningsproblemer og byggefugt, samtidig med at man fik en geometrisk nøjagtig basis for den følgende montage. Det viste sig, at metoden passede godt til firmaets máde at bygge på i øvrigt. Montagen af sokkelbjælkerne blev udført nøjagtigt og uden problemer, og firmaet regner med at have sparet omkring 100 mandtimer pr. hus pá byggepladsen. Firmaet vurderer derfor, at man havde valgt rigtigt, og man vil nok ikke betænke sig på at anvende samme funderingsform i andre projekter, hvor terrænforholdene ikke er meget gunstige.

Huset rejses.

Forst kommer trækomponenterne

Johan Christensen \& Søn har gennem ârene udviklet en særlig byggerytme, som bl.a. tilgodeser det forhold, at snedkerpartier fremstilles og monteres med snævrere måltolerancer end mange andre konstruktioher. Komponenterne over terrændækket monteres i følgende rækkefølge:

- Lette facadeelementer rejses og afsværtes.
- Midlertidige træstolper langs resten af facaden rejses og afsvoertes.
- Remme ($90 \times 225 \mathrm{~mm}$) oplægges pà facadeelementer og midlertidige stolper.
- Spærfag oplægges på remmene og forbindes til dem med sømbeslag.
- Murremme pȧsømmes spærføddernes

Fig．4．Forste fase i husets rejsning：Lette facade－ elementer．
undersider langs alle tunge ydervægges bagvægge．
Bagvægge af etagehøje gasbetonele－ menter rejses，kiles op mod murremme－ ne，fastsømmes hertil ovenfra，og un－ derstoppes med cementmørtel．
－Midlertidige stolper fjernes og kan gen－ bruges．
－Tagbeklædningen，dvs．lægter og eter－ nitbølgeplader，udføres．Resten af montagen foregàr i torvejr．
－Løsholter（ $40 \times 55 \mathrm{~mm}$ ）fastgøres med sømbeslag mellem spærfødderne i de omràder，hvor indvẹndige vægge skal opstilles．Herunder sømmes murrem－ me．
－Indvendige gasbetonvægge rejses，kiles op mod murremmene，fastsømmes her－ til ovenfra，og understoppes med ce－ mentmertel．
－ 125 mm mineraluld fastklemmes mel－ lem spærene；herunder monteres damp－ spærre og spredt forskalling samt loft－ plader af Karlit．
-2 gange 100 mm mineraluldbatts opstil－ les uden pà gasbetonbagvægge og fast－ holdes af murbinderne，som er specielt udformet med henblik herpá． 2 gange 100 mm mineraluld udlægges pá loftet．
－Skalmur opmures mellem sokkelbjælke og rem．

Fig．5．Snit A－A，1：20．Vandret snit i samling mellem let og tungt ydervægsfelt．Vedrorende tallenes be－ tydning henvises til fig．6．Tætning af samlingen med fugemasse er ikke vist．

Membraner og mineraluld styrer byggerytmen

Det ville egentlig være enklere at monte－ re loftets dampspærre og spredte forskal－ ling，inden de indvendige gasbetonvagge opstilledes．Der er flere grunde til，at denne rakkefølge ikke er valgt．
Det ene lag mineraluld i loftet skulle monteres nedefra，simpelthen fordi der ik－ ke var plads til oplagring af al mineralulden i det lave tagrum，hvis man ogsá skulle ha－ ve plads til at lægge den ud．Men ogsá for at fả en korrekt udførelse af isoleringen i den yderste del af loftet ved facaden，hvor der ikke er megen plads i højden．Damp－ spærre og forskalling skulle altsá monteres efter forste lag mineraluld．Hvis man der－ efter skulle montere indvendige gasbeton－ vægge，mảtte man fjerne noget af mineral－ ulden igen for at kunne sømme væggenes oversider fast til forskallingsbrædderne．
En anden grund var，at med den anvend－

Dampspærren er kun gennembrudt af ven－ tilationskanaler samt af en faldstammeud－ tilationskanaler samt af en faldstammeud－
luftning．Ventilationskanaler for indblæs－ ning i opholdsrummene er placeret over et forsænket loft i gangen．
færdige med hele loftskonstruktionen i én arbejdsgang．
En tæt，gennemgáende dampspærre i loftet blev da opnáet pá følgende mảde：
－Ved opsætning af murremme placere－ des en bane plastfolie mellem murrem og spærfødder，hhv．løsholter，se figur 60 g 7.
－Senere opsattes dampspærre i de enkel－ te rum i form af baner af plastfolie．
－Alle baner blev klæbet sammen med ta－ pe．
－Langs alle ydervægge blev banerne bukket ned langs bagsiden af bagvag． gen og klemt fast i fugemasse bag en li－ ste．

Der er ingen el－installationer i loftet．
te fremgangsmảde kunne tømrerne gøre sig
 te fremgangsmade kunne tømrerne gøre sig

Fig．6．Snit B－B og C－C，1：20．Lodrette snit itungt ydervægsfelt og i samingen set mod let ydervægsfelt．Fi－ guren skal primært vise de bærende konstruktioner，og varmeisoleringen pă loftet er derfor kun vist antyd－ ningsvis．I virkeligheden er der gjort meget ud af isoleringen ved samlingen ydervæg／spær．Isoleringsmát－ terne er skảret i smig，og for at bryde kuldebroen er der lagt mineraluld ind over spærhovedet i dette område． Det bærende system er lidt kringlet．Ved det lette felt hviler stolperne（10）på et udkraget U－profil（9）．Stol－ perne bærer remmen（7），som igen bærer spærfagene．Ved det tunge felt bærer letbetonbagvæggen（6） spærene，hvori remmen（7）hænger．Vinduer og døre er primært fastgjort til remmen．

1．Præfabrikeret betonfundament．2．Polystyren．3．Letklinker．4．Dækelement af letklinkerbeton．5．Damp－ spærre，plastfolie．6．Vægelement af porebeton．7．Rem．8．Mineraluld．9．Konsol for bærende stolpe，UNP 120．10．Bærende stolpe， $144 \times 44 \mathrm{~mm}$ ．11．Páforing， $95 \times 44 \mathrm{~mm}$ ．12．Mahognibeklædning， 22 mm vandret－ te brædder med vandafvisende fals． 13.13 mm træfiberplade．

Fig. 7. Gasbetonvagge og deres tilsiutning til tagkonstruktionen. Til hojre lidt af facaden, til venstre lidt af en indvendig veg. De såkaldte murremme er sømmet til væggenes oversider og til tagkonstruktionens underside. Mellem murremme og spærfødder/losholter er indlagt en bane plastfolie, som senere skal sikre tilslutningen af loftets dampspærre.

Dampspærren i gulvkonstruktionen blev monteret over Leca-dækket, men under mineralulden i overensstemmelse med SBI's anbefalinger. For at beskytte plastfolie og mineraluld mod overlast, monteredes rørinstallationer i gulvet, før foliebanerne udlagdes.
Banerne blev samlet med tape, og langs væggene blev folien klemt fast i fugemasse bag fodlisterne.

Det kræver omhu at bygge tæt

Dampspærren skal dels forhindre kondens i konstruktionerne, dels sikre at huset er tæt, sả den ukontrollerede ventilation bliver minimal. Ved det første hus kneb det i første omgang med at fả helt tætte samlinger overalt. Der er jo tale om en betydelig ændring i forhold til etableret praksis, og det kræver naturligvis en vis indkøringstid og en særlig indsats fra alle sider. Men efter at håndværkerne havde erkendt vigtigheden af en tæt membran, og havde fáet tilstrækkelig instruktion i , hvordan tætningerne skulle udføres, kunne de også udføre dem korrekt uden større problemer.

Vindafstivningen klares af gasbetonvæggene

Husets vindăfstivende system er baseret pá, at ydervæggenes gasbetonbagvægge samt nogle af de indvendige gasbetontværvægge er afstivende.

Alle disse vægge er forbundet med loftskonstruktionen ved hjælp af sømning ned i væggenes oversider, således at kræfterne kan overføres både fra de vindpåvirkede ydervægge til loftskonstruktionen og fra loftskonstruktionen til de afstivende vægge. Loftkonstruktionens skivevirkning er sikret ved bảndjernsdiagonaler.

Der har ikke været de store problemer med at sikre de afstivende vægges egen stabilitet. Taghældningen er kun 20°, sả den samlede vandrette last pả huset er temmelig lille. Der er endvidere rimeligt mange lange vægge i begge retninger, som kan dele denne last.

For næsten alle væggenes vedkommende giver egenvægten alene tilstrækkelig sik-
kerhed mod væltning; kun de to stumper gavlvæg i husets køkkenende màtte forankres. Denne forankring er udført med lodrette bándjern.

Væggenes egenvægt alene var dog ikke tilstrækkelig til at hindre deres glidning hen over Leca-dækket, idet der er regnet med en friktionskoefficient pad 0,2 . Alle afstivende vægge i tværretningen er derfor forsynet med modhold i begge ender. Disse modhoid består af vinkeljernsbeslag, boltet fast til Leca-dækket ved hjælp af skrue og dybel.
I længderetningen regnes kun facadebagvæggene afstivende. De pàvirkes, foruden af deres egenvægt, af lodret last fra tagkonstruktionen. Med dette bidrag er normalkræfterne, og dermed friktionskræfterne, tilstrækkelige til at hindre glidning. I den forbindelse kan det være interessant at bemærke sig, at egenvægten af mineralulden pá loftet yder et væsentligt bidrag til husets stabilitet. Den samlede lodrette last fra tagkonstruktionen (egenlast - vindsug) er 42 kN ; heraf udgør mineraluldens egenlast 19 kN . Til sammenligning er de afstivende længdevægges samlede tyngde 40 kN .

Det er første gang, Johan Christensen \& Søn har udnyttet gasbetonelementvæggene som forankrede afstivende vægge. Hidtil har firmaet anvendt indspændte stålsøjler i væggene, nár man blev stillet over for krav om eftervisning af, at vindnormen var overholdt.

Stálsøjler i væggene udgør dels en ekstra omkostning, dels et antal kuldebroer. Endelig ville de være vanskelige at forene med det valgte funderingssystem. Firmaet er derfor godt tilfreds med det nye princip for vindafstivning.

Energibalancen - hvor meget energi kan der spares?

Nu er det jo energiforbruget, der er det mest interessante ved et lavenergihus. Et relevant sammenligningsgrundlag er et tilsvarende hus, som netop opfylder varmeisoleringskravene i bygningsreglementet, BR 77.

Der er beregnet energibalancer for et al-
mindeligt BR 77-hus og for de to hustyper pá Moselodden: Huset med el-varme og huset med jordvarme. Beregningerne er foretaget ved hjælp af edb-programmet BA4, som er udviklet ved Laboratoriet for Varmeisolering ved DTH. Dette program opstiller, pá grundlag af bl.a. Referenceárets vejrdata, husets varmebalance for hver halve time áret rundt. På denne máde kan man bl.a. beregne, hvor stor en del af gratisvarmen (solstråling, personers varmeafgivelse og varme fra husholdningsforbrug), der kan udnyttes, og hvor stor en del der forekommer pá tidspunkter, hvor der ikke er brug for den.
De vigtigste resultater af disse beregninger er vist pá figur 8. Der er for alle tre huse forudsat et luftskifte pá $1 / 2$ gang pr. time. Enheden er overalt $k W h / a ̊ r$. For at fả den enkleste sammenligning er der regnet med, at BR 77-huset er el-opvarmet.
Man kan bemærke sig, at den mængde elektrisk energi, der skal tilføres husene ud over husholdningsforbruget, i runde tal er: - $16.000 \mathrm{kWh} /$ år for BR 77-huset

- $8.000 \mathrm{kWh} /$ år for lavenergihuset med »fuld« varmegenvinding og elvarme
- $4.000 \mathrm{kWh} / \mathrm{ar}$ for lavenergihuset med varmegenvinding og jordvarme.

Men et er teori, et andet praksis. Den virkelige energibalance vil vise sig at være forskellig fra den beregnede. For at skaffe erfaringer til bl.a. forbedring af beregningsmetodernes forudsætninger, er husene udstyret med måleudstyr i form af el-bimảlere, timetællere, vandmảlere mv. Det er planlagt at màle forbrugene over en to-ärig periode med normal beboelse.
En lidt mere udførlig redegørelse for de energimæssige aspekter og de planlagte fors \varnothing findes $\mathrm{i} / 5 /$.

Kan de energibesparende

foranstaltninger betale sig?
Det ser ud til, at de energibesparende foranstaltninger (ebf), der her er anvendt, kan forrente sig, i hvert fald pá lidt længere sigt.

Regnskabet for de to hustyper ser sáledes ud:

	elvarme	jordvarme
Ekstra isolering og tætning	27.000 kr .	27.000 kr .
Ventilationsanlæg med varmeveksler	13.000 kr .	13.000 kr .
Varmtvandsbeholder med varmepumpe	7.000 kr .	-
Komplet jordvarmeanlæg	-	60.000 kr .
Samlet investering i ebf	47.000 kr .	100.000 kr .
Energibesparelse	$8.000 \mathrm{kWh} /{ }^{\text {a }}$, ${ }^{\text {r }}$	$11.800 \mathrm{kWh} / \mathrm{ar} \mathrm{r}$
Svarer til, ved elprisen 54 øre/ kWh	4.320 kr / /år	6.370 kr./år
Serviceudgift	200 kr . /år	600 kr //år
Nettobesparelse	$4.120 \mathrm{kr} . / \mathrm{a} \mathrm{a}$	5.770 kr./år
Tilbagebetalingstid $=$ investering/besparelse	11 år	17 ar

Moselodden, jordvarme

Fig. 8. Beregnet energibalance for et $124 \mathrm{~m}^{2}$ hus, der netop opfylder varmeisoleringskravene i BR 77, og for de to hustyper på Moselodden. For overskuelighedens skyld er der foretaget visse simplifikationer. For eksempel afgiver det varme brugsvand i og fro varmtvandsbehoideren en del af sin varme til huset, inden det havner i kloakken.
Beregningsresultaterne skal senere verificeres gennem mallinger af bl.a. det virkelige elektricitetsforbrug og dets fordeling. Alle energimangder er angivetikWh/år.

1. Solindfald gennem vinduer, vægge og tag. 2. Etforsyning. 3. Varme fra personer. 4. Husholdningsel: Belysning, elektriske apparater. 5. „Gratisvarmerr. 6. Ventilatorer. 7. Radiatorer. 8. Varmeflade i forbindelse med Genvex varmeveksier. 9. Jordvarmeslange.
2. Vand-til-vand-varmepumpe med varmtvandsbeholder, Vølund Q707. 11. Luft-til-/uft-varmeveksler, Genvex. 12. Varmtvandsbeholder med luft-til-vandvarmepumpe og elektrisk varmelegeme, Vanvex. 13. Varmtvandsbeholder med elektrisk varmelegeme. 14. Varmt brugsvand. 15. Frisk luft ind. 16. Brugt luft ud. 17. Transmissionstab. 18. Fugetab. 19. Ventilations- og fugetab. 20. Overskudsvarme, som má ventileres bort, samt bortledning af varmt vand fra vaskemaskine m. v.

Imidlertid er tilbagebetalingstiden et meget groft udtryk for, om en ebf kan betale sig. En mængde faktorer spiller ind, sásom renteniveau, skatteprocent, inflation, anlæggets levetid og reparationsomkostninger samt energiprisernes stigning.

SBI har for Boligfonden beregnet rentabiliteten af ebf'erne i de to hustyper over anlæggenes forventede levetid (20 år). I forudsætningerne indgår dels et skøn over levetider og udskiftningsomkostninger for kompressorer, pumper og ventilatorer, dels en række forskellige antagelser om inflation og energiprisstigninger.

Et eksempel pá resultaterne af disse beregninger er, at ved 10% árlig inflation og 10% årlig el-prisstigning er rentabiliteten af de ebf i husene uden jordvarme $14,0 \%$, mens den i husene med jordvarme er $8,9 \%$. Disse tal skal sammenlignes med den rente, man má betale for at lảne pengene, minus skattefordelen.

På langt sigt kan begge anlægstyper altsả svare sig, hvis el-prisen stiger bare 10% om áret. For køberen kan 1. års rentabilitet (det reciprokke af tilbagebetalingstiden), sammenlignet med den effektive rente efter skat, dog være nok så aktuel; det handler om den kontante besparelse eller ekstra udgift det første år. Her er der balance for husene uden jordvarme, mens der for husene med jordvarme bliver et underskud pá omkring 3.000 kr . det første år.

BUR giver statte til projektet

Projektet er et forsøgsbyggeri, og der er lagt et anseligt ekstra arbejde i planlægning, forundersøgelser, ekstra tilsyn, information og forberedelse af málinger, lige som der skal lægges adskillige arbejdstimer i opfølgning og rapportering. Til delvis dækning af de hermed forbundne udgifter har Byggeriets Udviklingsrád - af puljen til forsøgsbyggeri - bevilget 545.000 kr .

Som projektleder og som planlægger af forsøgets gennemførelse fungerer firmaet P. E. Malmstrøm A/S. Desuden er Boligfonden Bikuben og A/S Johan Christensen \& Søn parter i forsøget. Endelig er Laboratoriet for Varmeisolering pá DTH inddráget som konsulent.

PS. To af husene vil være ảbne for almindelig besigtigelse i forbindelse med udstillingen Byggeri for Milliarder i slutningen af februar.

Litteratur

/1/ SBI-Lavenergihus model 79 - med 410 mm hulmur. Konstruktive og statiske forhold. Owe Eriksson. Byggeindustrien nr, 1, 1980.
$12 /$ SBI-Lavenergihus model 79 - med 410 mm hulmur. Klaus Blach og Børge Kjær. SBl-rapport 121, 1980.

13/ Lavenergihuse i Hjortekær. Jørgen Gullev. Byggeindustrien nr. 1, 1979.
/4/ 6 lavenergihuse i Hjortekær. Statusrapport 1. Laboratoriet for Varmeisolering, DTH. Meddelelse nr. 84. Juni 1979.
/5/ Lavenergihuse i teori og praksis. Boligfonden Bikuben, december 1980.

DIAB og SBI beskriver

Vognmandsmarken
 af lektor, civilingeiniar Bent-Erik Carisen, DIAB.

Beliggenhed:

Bebyggelsen, der består af 11 blokke grupperet om 4 grønnegårde, er begrænset af Hans Knudsens Plads, Vognmandsmarken, Kildevældsparken og Borgervænget, København \emptyset.

Art og omfang:

De 11 blokke, der har 5 beboelseslag, indeholder ialt 297 boliger fordelt på ialt 28 typer. Hertil kommer 8 supplementsrum. Lejlighederne varierer i størrelse fra 2 rum med $78 \mathrm{~m}^{2}$ til 4 rum med $120 \mathrm{~m}^{2}$.
Grundens areal er $21.532 \mathrm{~m}^{2}$ og det samlede etageareal er 25.488 m^{2}

Bygherre:

Kommunefunktionærernes Boligforening, der administreres af Arbejdernes Andels Boligforening.

Projektering og udførelse:

Kooperativt Byggeindustri AS i totalentreprise.

Elementleverancer:

Højgaard \& Schultz A/S (vægge og dæk).
K. Hindhede A/S (trappeelementer).

Råhusmontage:
$J \& B$. Byggeproduktion A/S
Andre udførende:
Murersvendenes Aktieselskab.

Tømrersvendenes Aktieselskab
Bygningssnedkernes Aktieselskab
Blikkenslagersvendenes Aktieselskab
A/S Alliance (el)
AS Foreningen Socialt Boligbyggeris Malerselskab.

Opførelsesdata:

Byggetilladelse udstedt 1979-07-27. Byggeriet påbegyndt 1979-08-01. Første indflytning december 1980.

Økonomi:

Samlede udgifter kr. 111 mill. kroner.

Den gamle bebyggelse »Vognmandsmarken« var kendt af alle Københavnere som noget af det værste slum, vor hovedstad kunne fremvise. De 2-etages grønne rakkehuse blev opført til husvilde i tiden efter første verdenskrig, og de mange problemer, som myndighederne i tidens løb har haft med bebyggelsen, er kendt fra dagspressen.
Det har længe været helt klart, at området skulle saneres, og det var ligesom også givet, at omrảdet skulle bebygges med boliger.

Projekteringsforudsætninger

Allerede siden september 1976 havde KBI arbejdet med forslag til bebyggelse af området »Vognmandsmarken«. Fra november 1976 til juli 1977 blev der i samarbejde med de kommunale myndigheder under Magistratens 4. afd. om bebyggelsens principielle udformning, således at KBI i august 1977 officielt kunne anmode Magistratens 4. afd. om at udforme lokalplanforslag på grundlag af et foreliggende skitseprojekt.
I marts 1978 fremlagde Magistraten forslag til lokalplan, der blev vedtaget samme sommer i Borgerrepræsentationen.
Bebyggelsens placering i udkanten af det egentlige byområde medførte naturligvis nogle overvejelser vedrørende højden. Som det kan ses blev resultatet en bebyggelse af samme højde som de øvrige karréer i kvarteret.
En anden væsentlig projekteringsforudsxtning var planerne om en ydre ringvej den såkaldte »Godsbaneringen« - en 6 -sporet motorvej, der skulle forbinde Nordhavnen med det eksisterende motorvejsnet. Dette medførte, som der senere skal gøres rede for, nogle akustiske problemer i den del af bebyggelsen, der vender ud mod Borgervænget. Se iøvrigt si-
tuationsplanen på figur 1.
Bebyggelsens lidt besynderlige form er således direkte affødt af de afstandskrav, der blev pålagt fra myndighedernes side. Kun blokken, der vender mod Hans Knudsens Plads, er trukket tilbage fra byggelinien.

Byggeprogram

Som det fremgår af figur 1 , består bebyggelsen af 11 blokke, der omspænder 4 store gårdrum, hvoraf de 2 åbner sig mod »Vognmandsmarken«. Bebyggelsen indeholder ialt 297 lejligheder fordelt på 28 typer, som der ikke skal redegøres for her. Fordelingen af de enkelte lejligheder efter størrelse fremgår af ovenstående skema. Oversigten indeholder ikke de 8 supplementsrum. Det kan yderligere nævnes, at $7,4 \%$ af lejlighederne er større end $100 \mathrm{~m}^{2}$

Antal rum	Andel \%	Areal $m^{2} \star$)
2	0,3	76
3	67,4	80
4	32,3	96

*) i gennemsnit
Den nuvarende husleje varierer fra ca . kr . 2.200 ,- for en 2 -rums lejlighed til kr. 3.100 ,- for en 4 -rums lejlighed. Hertil kommer á conto varme, der varierer fra kr. 100,- til kr. 150,-.
I bebyggelsen er der 4 kerner med elevatorer, der betjener 44 lejligheder, med særlig adgang for bevægelseshæmmede. Desuden indeholder bebyggelsen 2 be-

[^0]Vognmandsmarken
Fig. 1. Situationsplan, mál 1:1000.

Fig. 3. Lejilighedsplan fra trappeopgang mod Borgervanget, mål 1:200.

Fig. 4. Udsnit af dækelementplan mal 1:300.
boervaskerier, beboerlokaler og selskabslokaler. Desuden er der 5 cykle- og barnevognsrum, 3 varmeveksler- og beholderrum samt $1.400 \mathrm{~m}^{2}$ pulterrum.

Byggesystemet

Råhuset er opført »traditionelt" med bærende facader og bærende langsgảende skillevæg. I de 4 blokke mod Borgervænget er der dog ingen indvendig bærende væg, idet bygningsdybden kun er $5,8 \mathrm{~m}$. Det traditionelle er dog kun tilsyneladende, idet de bærende ydervagge er opført af teglstenselementer, udført som prafabrikeret betonfacadeelementer, hvor der i forstøbningen er indlagt tegistensskaller i forbandt, se figur 5, der viser et facadeudsnit. Byggesystemet er således et almindeligt montagebyggeri uden andre specielle forhold end den senere omtalte tagkonstruktion.
Opbygningen af facadeelementerne og deres sammenbygning fremgår af moduldetaljerne på figur 6.
Figur 7 viser et lodret snit i de \varnothing verste etager i en normal blok (bredhus i modsætning til de smalle bygninger mod Borgervænget). Da tagkonstruktionen er 45° og teglhængt, ville det vare naturligt at udføre den som en hanebåndskonstruktion. På grund af den store husdybde ville dette imidlertid give meget store spardimensioner, hvorfor tagkonstruktionen er udført på følgende noget specielle måde:
\emptyset verste betondæk på figuren er udført som langspænd betondæk med vendt spændretning, dvs. hvilende på trappesidevægge og lejlighedsskel. På dette betondæk er opført en almindelig spærkonstruktion, der afleverer sin last i 4 punkter. Den nederste del af tagkonstruktionen er udført som et »bærende fir-tal«, hvis statiske model fremgår af figur 8 . På denne måde har man kunnet holde spærdimensionen nede pá $50 \times 100 \mathrm{~mm}$.
Det er i denne forbindelse unødvendigt at omtale, at varmeisoleringen naturligvis overholder kravene i BR 77.

Installationer

Opvarmningen foregår ved fjernvarme, der føres ind i midterblokken mod »Vognmandsmarken«. Her bliver tilførselen fordelt til 3 varmevekslerrum, hvorfra et 2 -strenget system fører til de enkelte lejligheder. Indenfor lejligheden er varmeforsyningen en 1 -strenget sløjfe.
Alle lodrette føringer foregår i installationsvaggen mellem bad og køkken, se lejlighedsplan på figur 3.
I betondelen af installationsvæggen er monteret 3 ventilationsrør, der varetager udsugningen fra køkken og bad. Endvidere betjener de centrale ventilationsanlæg en del af de 5 skarnkasserum. Ventilationen sidder på taget, mens varmerørene føres frem i en krybekælder, der af forskellige grunde er $1,90 \mathrm{~m}$ i højden (!). Dette

Fig. 5. Facdeudsnit.

Fig. 6a. Moduldetalier vedrørende teglfacadeelementer og deres samfinger, mål 1:20.

Fig. 6b. Moduldetaljer vedrørende tegifacadeelementer og deres samlinger, máa 1:10.
skyldes dels, at der i bebyggelsen er 6 terrænspring og dels, at Arbejdstilsynet har skærpet kravene i forhold til tidligere praksis.

Overflader

De udvendige overflader er som tidligere omtalt tegl. Farven er ensartet rød (som ikke kan gengives her), og facaden frem-
træder som en ærlig elementfacade uden forsøg på at lave kunstigt forbandt i samlingerne, se figur 5 . Alle indvendige overflader er enten beton eller 13 mm gips, der således tilfredsstiller brandkravene.

Lydforhold

På grund af planerne om at lave en 6-sporet motorvej er facaderne mod Borger-
vænget udført med meget små vinduer, se lejlighedsplanen på figur 3.
Endvidere stillede kommunens miljøtekniske kontor det krav, at facaderne mod Hans Knudsens Plads skulle have en lydreduktion på mindst $45-50 \mathrm{~dB}(\mathrm{~A})$.
Dette krav blev tilfredsstillet ved, at man monterede KBI-lydvinduer samt forsatsruder.

Fig. 7. Lodret snit i qverste etager af bredhus, mål 1:150.
 spær, tænger og fod $50 \times 100 \mathrm{~mm}$. 2: langspænddæk med vendt spændretning. 3: normalt tvarspændende dækelement. 4: nedre tagkonstruktion under langspænddæk bestảende af $75 \times 200 \mathrm{~mm}$ spær, vindtæt pap, 175 mm varmeisolering mineraluld type A, diffusionstart membran, 13 mm gipsplade. 5: skunkvæg bestående af 13 mm gipsplade, spredt forskalling $25 \times 100 \mathrm{~mm}$, diffusionstæt membran, 150 mm fastholdt mineraluld type A, vindtæt pap.

Fig. 8. Statisk model for det „bərende fir-talu.
For facaderne vendende mod »Vognmandsmarken« var lydkravet mindst 37 dB (A), der er klaret med en lydrude alene uden forsats. I facaderne er der indbygget lydisolerede friskluftventiler.

Statiske forhold

De statiske funktionskrav er tilfredsstillet på ret traditionel vis. Her skal dog omtales 2 forhold af mere speciel karakter.
Selv om der ikke var et dokumenteret behov for dilatation i bebyggelsen, er alle 4 smalhuse forsynet med 2 bevægelsesskel i fjerdedelspunkterne. Dette bevirker, at smalhusene må klare deres egen tværstabilitet uden anvendelse af bredhusene. Dette er løst ved at forsyne hvert smalhus med 4 tværvægge, armeret med 4 T 20 i hver side.
Et andet interessant statisk problem er de yderste langspænddæk i bredhusene (se figur 7 med tilhørende tekst), idet disse elementer på grund af tagets valm ikke kan få noget vederlag. Problemet er løst ved at udføre de yderste langsgående, bærende elementer som stålrammer. Disse er brandisoleet med gipsplader.

Konstruktionen er designed på grundlag af bl.a. studium af Ejdersted-gården på Frilandsmuseet.

Afsluttende bemærkninger

Uden at komme ind på diskussionen om hvorvidt vi skal sanere mere i vor hovedstad, eller om vi skal bruge vores krefter på en renovering af den eksisterende bygningsmasse, bør man mene, at den nye bebyggelse på »Vognmandsmarken« er et godt eksempel på et moderne byhus. En af projekteringsforudsætningerne var jo netop en sanering af den eksisterende bebyggelse.

Rockwool forskningsog udvilklingscenter

Beliggenhed:
Hovedgaden 501 i Hedehusene.

Art og omfang:

Een etages kontorbygning, 2.800 m^{2}, med parkeringskælder, 4000 m^{2}.

Bygherre:
Rockwool International A/S.

Arkitekter:

Leif Eriksen \& Vagn Thorsmark, arkt. M.A.A.

Ingeniører:

Hauch \& Tvilstegaard, rȧdg. civiling. F.R.I.

Udiørende og leverandører:

Betonelementer: Dansk Spændbe-
ton A/S, Hedehusene. Betonentreprise: Entreprenør Gustav Nielsen A/S, Hedehusene. Rảhusentreprise, overbygning: Tømrermester Renan Hansen ApS., Hedehusene.
Tagelementer: Fárevejle Byggeelementer ApS. Isolering, indervægselementer, lofter m.m.: Rockwool A/S.
Maler: Robert Rasmussen, København.
Vinduer: Rational Vinduer.
Tæpper: Tæppeland. El: Semco A/S.
Limtræ: Lami Limtræ, Snoldelev. VVS: Albertsen \& Holm A/S, Roskilde. Fugning: Termofuge Køge.

Opførelsesdata:

Byggeriet igangsat i oktober 1979 og indflytning i november 1980.

300 mm mineraluld som tag. dækning uden regnskærm og 200 mm mineraluld som bærende undergulv er to af de nye byggetekniske løsninger som Rockwool afprøver i sit nye forsknings- og udviklingscenter: En let højisoleret énetages kontorbygning, hvor indeklimareguleringen foretages individuelt i de enkelte kontorer.

Hidtil er erfaringerne gode. De næste års erfaringer må vise, hvilke af de nye løsninger, der skal have en større udbredelse i byggeriet de kommende år.

Forsagshyggeri som led i produktudvikling
Energiforbrugets øgede betydning og den store interesse for et bedre indeklima gor Rockwools nye forsknings- og udviklingscenter til et interessant byggeri. Specielt fordi bygherren som storproducent af mineraluld har valgt at afprove en række nye byggetekniske løoninger, som meget vel vil kunne overføres til normal praksis inden for de næste àr. Ogsá pá indeklimareguleringen er der ofret stor opmærksomhed, da det drejer sig om let byggeri.

Byggeprogram

Bygningen er forste led i en storre udbygningsplan for omradet, hvorfor der i forbindelse med planiægningen blev lavet lokalplan for dette. Bygherrens væsentligste krav til den nu opforte bygning var:

- kontorer m.v. til 120 medarbejdere,
- lavt byggeri med

Figur 1. Stueplan. Med indgangen (1) placeret centralt i et system af krydsende bygningsflaje omkring atriumgàrde. (2) er der korte kommunikationsveje og mulighed for at lave storkontorer i hele bygningsdybden. Væg gen mod nord (3) er midlertidig at hensyn til den videre udbygning af centret.

Figur 2. Tværsnit i ydertioj, 1:100. Oven pá en betonplatform opbygget af præfabrikerede betonsøjer, bjælker og tt-plader er kontorbygningen opført af lette ribbe-og sandwichelementer báret af et rammesystem af limtræe. Over de vandrette limtrædragere er skillevæggen udfort af glas.

Figur 3. Planudsnit, 1:100. Planen karakteriseres af gode kontorsterrelser og lidt smalle, men korte gange. Brandadskillende og afstivede vægge (1) er udfart som faste pladebeklædte skeletvægge. Øvrige indvendige vægge er opbygget af let flytbare vægelementer, se figur 10 og 11.

- een indgang,
- nem adgang til P-plads,
- korte interne kommunikationsveje,
- udbygningsmulighed for kantine, laboratorier m.m.,
- lavt energiforbrug, og
- udbredt anvendelse af egne produkter

Leif Eriksen og Vagn Thorsmark har medvirket som arkitekter også i forbindelse med udarbejdelse af lokalplanen.

Bygherren deltog i projekteringen

Projekteringen blev foretaget i et samarbejde mellem arkitekter, ingeniører og bygherre, som tillige styrede byggeprocessen. Hauch \& Tvilstegaard medvirkede som ingeniører og har specielt medvirket ved udformningen og dimensioneringen af limtrækonstruktioneme.

Bygherredeltagelsen udsprang af den forsøgsmæssige anvendelse af firmaets produkter og af tilstedeværelsen af særlig kompetence. Herudover blev medarbejderne inddraget og fik indflydelse pȧ valg af kontorstørrelser, vinduesstorrelser, indeklimaregulering og gulvbelægning.

Bebyggelsesplan

Som tidligere nævnt er bygningen det første led i en større bebyggelse, hvorfor nordvæggen er en midlertidig væg, som delvist kan fjernes, nảr senere tilbygninger skal iværksættes, se figur 1. Parkeringsarealerne under bygningen fảr sidelys og ovenlys fra huller i atriumgårdene. Hullerne ventilerer parkeringskælderen i tilfælde af brand.

Adgangen til bygningen sker centralt fra parkeringsarealet under bygningen. Der er kun denne ene indgang til centret. Fra det søjlefri centralrum er der via fire gange kort afstand til alle bygningens kontorer og maderum. Bygningerne udnyttes indvendigt i deres fulde højde med ovenlys fra forsætningen mellem tagene, se figur 2 og 5 . I mellemflgjene er der vandret tag over gangen.

Kontorstarrelsen 3 m gange godt 4 m giver gode enkeltmandskontorer og den store fleksibilitet, som de letflyttelige skillevægge indebæ-
 elementopdelte skillevægge.
rer er allerede udnyttet. Derimod er muligheden for storkontor i bygningens fulde dybde endnu uudnyttet. Brandvægge og afstivende vægge er ikke flytbare. Disse vægge er placeret i tilknytning til krydsningspunkterne mellem bygningsflajene.

Let overbygning bàret af betonplatform

Bygningen er markant ved sin klare opdeling i en tung underdel, som bærer en helt igennem let overbygning, se figur 2.

Underdelen består af et pladsstøbt betondæk båret af præfabrikerede tt-plader, betonbjælker og -sejler. Ved funderingen er der anvendt præfabrikerede fundamentsklodser. Ogsá indgangsbygningen under dækket er udfort af beton. Denne bygning tjener tillige som sikringsrum og som afstivende element for underbygning.

Den lette overbygning, som artiklen i evrigt vil koncentrere sig om, bestảr i hovedsagen af lette præfabrikerede elementer, som bæres af et rammesystem af limtrasøjler og -dragere.

Overflader og materialer

Udvendigt fremtræder de listedækkede mineraluldstage allerede nu med en varm grálig overflade. Facaderne fremstảr med lyse glasalflader indrammet af morke inddækninger af søjler og samlinger. Atriumgärde og altangange er flisebelagt. Underbygningens grove betonkonstruktioner dæmpes nok med tiden no-
get ned af den kommende bevoksning omkring bygningen. Også atriumgårdene bliver tilplantet.

Indvendigt ses limtrædragere og -sajler samlet med enkle redmalede stallbeslag. Skillevæggene er lyse med mat overflade. Kun magnetophængene raber stảlpladebeklædningen. Ovenlysene i gangene og de hajt placerede ruder i alle vægge bidrager til en god lysfordeling, og til at de ret smalle gange opleves bredere end de er. Gulvene er dækket af tæpper, som ikke skulle kunne give anledning til problemer med statisk elektricitet, da de er med indvævet kobbertrád.

Bærende konstruktioner

Hovedkonstruktionen består af limtræbjælker og -søjler, som bærer taget og omslutter alle inder- og ydervægge. Limtræet i brandvæggene er brandisolerings-impregneret og anvendes hovedsageligt i dimensionen $115 \times 115 \mathrm{~mm}$. De synlige samlinger er efterspændt efter at bygningen er taget i brug. I det spjlefri centralrum er nogle af limtræbjælkerne forbundet med tre vierendeldragere, som bærer de øvrige limtræbjælker.
Taget bæres af ribbeelementer som spænder pá tvers af huset. Udkragningen ud over gangen i yderflgjene gav visse konstruktionsmæessige problemer for vinduesbàndet mellem de to tage.

Afstivningen af overbygningen sker via ski-
vevirkning i tagflader og enkelte faste pladebeklædte skeletvægge, som er fastboltede til betondækket.

Omvendt tag

300 mm mineraluld uden regnskærm som tag over knap $3000 \mathrm{~m}^{2}$ kontorer udfares ikke uden forudgàende forsag og ikke uden en vis betænkelighed hos de involverede teknikere. Der er derfor for en sikkerheds skyld indlagt en plastfolie mellem de to nederste lag mineraluld, se figur 8. Særskilte vanddryp fra denne vil vise om taget ikke holder tæt.
Hidtidige forsøg viser at vandet kun trænger ganske lidt ind idet yderste lag mineraluld og erfaringerne med dette tag má danne baggrund for en eventuel videre udbredelse af denne nye udfarelse af nstrátages. I sà fald vill samlingerne mellem de yderste batts formentlig ændres bort fra de plane langsgáende samlinger, som nu er anvendt.
De to nederste lag mineraluld er indlagt i præfabrikerede tagelementer udført af krydsfinerplade med hovlede træribber, se figur 6. De to yderste lag mineraluld er udlagt på stedet og fastholdt af dæklister, som er fastskruet til ribberne i tagelementerne.
Inddækningen af tagfladen voldte visse problemer, fórdi det forst anvendte materiale krollede på grund af for stor temperaturfolsomhed. Der blev derefter anvendt butylgummi, som har fungeret tilfredsstillende.

Figur 6. Tversnit at tag, 1:10. Samlingen mellem to tagelementer er vist. De to nederste lag, 75 mm Rockwool A-batts $\left(40 \mathrm{~kg} / \mathrm{m}^{3}\right.$ er pà forhànd lagt i ribbeelementerne. Herpá lægges 80 mm Rockwool-A-Underlagsplader ($140 \mathrm{~kg} / \mathrm{m}^{3}$), og overst 70 mm Rockwool Atagplader ($180 \mathrm{~kg} / \mathrm{m}^{3}$). En plastfolie (1) er indlagt mellem de to nederste lag mineraluld.

Figur 7. Vandret snit i yderveeg, 1:10. Sojlerne er via paforinger trukket frem til facaden. Som et gennemfort princip er alle fuger (1) udfort tæette indadtil og alene stoppet med mineraluld udadtil.

Sandwichelementer i ydervaggene

Ydervæggene er udfart som lette udfyldningsvægge, idet sajlerne via páforinger er trukket frem i facaden, se figur 7 . Vinduerne er faste med to lags termoruder i træramme. Ved siden af vinduerne er isolerede oplukkelige skodder.
Brystninger og faste vægge er udfort af 250 mm Rockwool lamelelementer, som hviler pá betondækket og fastholdes af limtræssøjlerne. Lamelelementerne er sandwichelementer uden fast forbindelse mellem for- og bagplade. Fiberretningen er vinkelret pà flangefladerne.

Alle samlinger er udført tatte mellem de indvendige beklædninger og udadtil stoppet med mineraluld uden udvendig afdækning, se figur $7,8,9$ og 10 . Dette gelder dog ikke samlingen mellem gulv og ydervæg.

Hajisolerede gulve og stålvægge

Ogsá under gulvet er man gảet ud over normal praksis, idet der er anvendt 200 mm Rockwool lamelgulve i modsætning til normalt max. 100 mm . Herpá er lagt 22 mm spánplade med limede not og fjer samlinger, se figur 9. Gulvene er behageligt blede at gá på. Den kommende brug mad vise om reoler og andet tungt inventar giver storre blivende nedbajninger.

Af hensyn til den ønskede fleksibilitet er Rockwool TNF-elementer anvendt som indvendige skillevægge, se figur 12 og 13. Disse paneler er sandwichelementer af mineraluld omsluttet af tynde stålplader med en samlet lydreduktion pá 44 dB . TNF-elementerne har indtil nu udelukkende været anvendt i skibe.

Figur 8. Lodret snit I tag og ydervæg, 1:10. Bemærk plastfolien (1) imellem de to nederste lag mineraluld i tage: Folien skal sikre mod nedsivende regnvand og fungerer ikke som dampspæerre. Fugeme (2) er udfart af tokorr ponent fugemasse, Tioflex 600 . Alle vinduer er forsynet med udvendige persienner (3) alle lofter er beklæ口 med Rockwool Akustikplader (4).

Installationer

Vandinstallationer knytter sig alene til toiletter i forbindelse med centralrummet og i hjørnerne af bygningen. Disse installationer fares lodret af terran til de págældende rum i inddækkede og isolerede kasser med indlagte varmekabler.

El-installationer fares i aluminiumsklemkasser under vinduerne og i kontorerne er alle kontakter alene placeret her, hvorved elinstallationer i flytbare skillevægge undgás. Denne losning er mulig fordi gangbelysningen via ruderne i gangvæggene giver orienteringslys i kontorerne.

El-installationen er suppleret med svagstromsinstallationer, som anvendes if forbindelse med den individuelle indeklimaregulering, central tænding af rengoringslys og visse kontrolfunktioner, se figur 11.

Energimæssige forhold

Det tilstrebte lave energiforbrug er som det er fremgáet primært søgt opnáet gennem haj isolering og god tæthed af klimaskærmen. Derimod er vinduesarealet efter anske fra medarbejderne ikke reduceret.

Figur 9. Lodret snit i ydervæg og gulv, 1:10. Ydervægge bestár af 250 mm Rockwool lameleiementer (1) og gulvet af 200 mm Rockwool Lamelgulv (2) dækket at en 22 mm spánplade og tæppe. Af hensyn til byggefugten er der indskudt en plastfolie mellem spànplade og lamelgulv. Alle el-ledninger er placeret i en vandretgàende klemkasse (3) under vinduerne.

Figur 10. Lodret snit itagkip, 1:10. Forsætningen mellem tagene udnyttes til vinduer og de viste ventilationsanlæg. Ventilationsluften trækkes gennem lydabsorberende Rockilt-kanaler (1) Inddækningen af tagfladerne er udfort af butylgummi (2). Isoleringen er lkke markeret pá tegningen.

Varmebalanceberegninger udført hos Birch \& Krogboe har dannet baggrund for valg af lysarmaturer og el-ovne. Varmetilfarelsen er kalkuleret till $50-60 \mathrm{kwt} / \mathrm{m}^{2}$ ärligt. Temperaturen sænkes med $5^{\circ} \mathrm{C}$ om natten.

For at sikre et godt indeklima i denne lette bygning, har hver medarbejder individuelt mulighed for:

- at benytte udvendig persienne,
- at åbne skodder,
- at igangsætte eget ventilationsanlæg, og
- at tænde for egen el-ovn.

Et kontrolpanel i forbindelse med kontorets elkontakter indikerer igangsatte foranstaltninger og sikrer bl.a. at el-ovnen ikke er tendt samtidig med at ventilationsanlægget er igangsat.

Udferelse

Byggeriet blev igangsat i oktober 1979. Vinteren 1979-80 forsinkede naturligt nok rảhusmontagen. Ellers er opforelsen sket planmæssigt.
Særlige hensyn blev taget for at overholde de tolerancekrav, som udsprang af anvendelsen af præfabrikerede indervægge, facader og tagelementer samt af trethedskravene til samlingerne i klimaskærmen. Der blev afholdt et særskilt kursus om tolerancer, og al afsætning blev foretaget af en landinspektor.

Erfaringer skal fortsat indhentes

Netop for byggerier som dette, som pá en række punkter klart adskiller sig fra normal praksis, er en bevidst indsamling af de efterfølgende erfaringer af stor interesse.
Rockwool mener selv, at de har lært ganske meget af selv at deltage i projekteringen. Udførelsen viste, at specielt monteringen af taget og af de flytbare skillevægge gik overordentlig hurtigt.
Brugserfaringerne har hidtil været positive med hensyn til energiforbrug og med indeklimaet samt med gulv, tag og flytbare skillevægge. Men en mere langsigtet erfaringsindsamling er nødvendig for at bedømme kvaliteten og levetiden af de nye byggetekniske løsninger. Ligesom en varm solrig sommer má vise om indeklimareguleringen er i orden.

Afsluttende bemærkninger

Nytænkning er et nadvendigt led i byggeriets udvikling - og værdifuld, nảr satsningen er bevidst og de nødvendige erfaringer indhøstes.

Det hidtidige arbejde med dette byggeri tyder pá, at den vảgnende branchemæssige og offentlige interesse for planlagte forsog inybyggeri er rigtig. Herudover kan det kun være til støtte for en virksomheds produktudvikling, at virksomhedens medarbejdere er direkte brugere af egne produkter.

Figur 12. Vandret snit i inderveg, 1:5. TNF. Elementerne er normalt 600 mm brede og væghaje og har en lydreduktion pá 44 dB. Produktet har hidtil kun veret anvendt i forbindelse med skibsbygning.

Figur 13. Lodret snit i incervæg, 1:5. Flytbare skillevægge er udfort af 70 mm Rockwool TNF.Elementer (1) bestảende af mineraluldslameller oms/uttet af tynde stálpiader. Disse fastholdes til gulv og IImtrædragere af stà/profiler.

Figur 11. Betjenings- og kontrolpanel for individuel regulering af lys, varme og ventilation.

Litteratur

Forsknings. og udviklingscenter med nye isoleringsiorsøg. Brochure fra Rockwool.
Luis Nørgaard: Varmetabet pa Rockwool A-tagplader, anvendt som omvendt tag. Sofus-Byg: Minisymposium om fla de tagkonstruktioner, Ebeltoft 15.-16. september 1980.
Klaus Hansen og Niels F. Vording: 10 nye forsøgsbyggerier. Byggeindustrien 3, 1981.

Helgeshøjparken, kvadrant F.

Helgeshoiparken

DIAB og SBI beskriver AKTUELLE BYGGERIER 66

af lektor, akademiingeniar Per Kjæウye, DIAB.
Tegninger, Grete Hartmann Petersen.

Beliggenhed:

I Tástrup Vest, umiddelbart øst for Teknologisk Institut, langs Roskildevej og Hveen Boulevard.

Art og omfang:

Institutions- og erhvervsbyggeri disponeret som 8 bygningskvadranter A - H incl. med et samlet etageareal på ca. $66.000 \mathrm{~m}^{2}$, heraf ca. $12.750 \mathrm{~m}^{2}$ kælder; teknik- og sikringsrum udgør herudover 2.300 m^{2} og $3.500 \mathrm{~m}^{2}$. Kvadrant D er 1 etages, resten er 3-etages bygninger med 35° 's tage med betontagsten.
Kvadrant F har et bruttoetageareal pá ca. $3 \times 2.130 \mathrm{~m}^{2}$ samt et kælderareal pá ca. $2.130 \mathrm{~m}^{2}$, heraf er ca. $420 \mathrm{~m}^{2}$ sikringsrum og ca. $305 \mathrm{~m}^{2}$ teknikrum, ialt i kvadrant F ca. $8.520 \mathrm{~m}^{2}$.

Bygherre:

Dansk Totalentreprise a.s., 2600

Glostrup, og for kvadrant F: Værdipapircentralen.
Kvadrant E er udlejet af Dansk Totalentreprise a.s. til Københavns Amtskommune.

Arkitekt:

Jacob Blegvad Arkitektkontor A/S, 9000 Álborg i samarbejde med arkitekt Ole Hagen's tegnestue, 1879 V.

Ingeniører:

Konstruktioner: midtconsult aps, 7400 Herning.
Installationer i kvadrant F: Birch \& Krogboe K/S, 2830 Virum.

Totalentreprenør:

Dansk Totalentreprise a.s., 2600 Glostrup.

Underentreprenører:

For kvadrant F bl.a.: Søjle-, bjælke-
dæk- og vægelementer: A/S K. L. Larsen \& E. C. Pedersen, A/S Dansk Spændbeton, C. C. Brun A/S. Trappeelementer: EDS-Beton KIS. Lette træfacader: Age Jensen Maskinsnedkeri I/S. Aluminiumsfacader: K. E. Monrad A/S. Solafskærmning: Blendex as. Tagdækning: Enemærke \& Petersen. Ventilation: Luft-Entreprise ApS. Elevatorer: TS-Lifton.

Opførelsesdata:

For kvadrant F: pábegyndt 1980-0701 og afleveret 1981-04-27.

Økonomi:

Entreprisesummen for kvadrant F for apteret ráhus er ca. 40 mill. kr.; særlige konstruktioner for installation og sikring af edb-udstyr, ca. 20 mill. kr. Begge beløb er excl. moms, der udgør ca. 13 mill. kr., alle priser en henført til februar 1981.

Fig. 1. Situationsplan 1:4000. Kvadrant E og F er opført, og kvadrant B er pábegyndt.

Dansk Totalentreprise a.s. har i samarbejde med arkitekt m.a.a. Jacob Blegvad's tegnestue udviklet et byggesystem, der bl.a. er egnet til institutions- og erhvervsformảl. Systemet, der markerer sig med gennemgàende facade- og gavlaltaner, synlig bærende hovedkonstruktion samt karakteristiske tagformer, er første gang anvendt i forbindelse med Odense Toldkammer's nye domicil.

I Tástrup indgår byggesystemet i en større bebyggelsesplan i et kommende parkomráde, Helgeshøjparken, der er udlagt til institutionsog erhvervsbyggeri for eksempelvis virksomheder, der beskæftiger sig med forskning, undervisning og rảdgivning samt administration og lagerfunktioner af særlig karakter. Dansk Totalentreprise har her på en ca. $133.000 \mathrm{~m}^{2}$ stor grund disponeret en bebyggelse bestảende af ialt 8 bygningskvadranter A - H incl., alle formet over det udviklede systemhus. Situationsplanen pà figur 1 viser den aktuelle bebyggelse med indtegnede skel og byggelinier samt parkeringsarealer og omgrænsende vejnet.

Helgehøjsparken er desuden trafikalt velbeliggende, kun ca. 1500 m fra Tåstrup S-station og med gode forbindelser til sável kollektiv bustrafik, ca. 12 HT-ruter, som individuel trafik, Køgebugt-, Holbæk- og Helsingørmotorvejen samt Ringvej B IV.
Den disponerede bebyggelse opferes i takt med efterspargslen fra lejere eller kabere; i juli 1980 blev kvadrant E færdigbygget for Københavns Amtskommune, og kvadrant F er nu færdiggjort for Værdipapircentralen, mens kvadrant B pábegyndes den 1981-08-01 til aflevering den 1982-02-01 for Toldvæsenet.

Nærværende artikel beskriver byggesystemet generelt, - dog er enkelte oplysninger, fx under \nsim konomi, opførelsesdata og underentreprenører, hentet fra Værdipapircentralens kvadrant F .

Rảhuskonstruktioner

Helgeshojparkens standardhus er en 2-og 3etages betonelementbygning med kælder og
35°-tage med betontagsten. Byggesystemets skelet er 1,2 og 3 -etages søjler med 3 langsgáende bjælkelinier (i etage 3 dog kun de 2 facadebjælker), hvorpà oplagges TT-plader, hvis ribber udkrages for facadealtaner; etagepladerne sammenstøbes med armeret overbeton. I gavlene bæres altanerne af udkragede bjælker i de langsgáende modullinier. Kældervægge er massive betonelementer, sikringsrumsvagge støbes imod dobbelt forskalling af 2 stk. stáende Filigranplader; dæk over kæider udfares som Filigrandæk med tynde elementplader og pladsstøbt overbeton. Imellem facadesøjlerne opstilles højisolerede, træbaserede facadeelementer, mens standardhusets gavle opbygges af skalmurede eller eternitbeklædte betonvægelementer med hulrumsisolering.

Byggesystemets standardhuse friholdes af》ette" mellembygninger med tilbagetrukne glasfacader indsat i aluminiumsprosser; disse bygninger indeholder indgangspartier med vindfang samt 2 -labstrapper udfort af betonelementer understøttet pá bjælker langs TTpladernes forkant samt et sajle-bjælkesystem i trappens bagside. Elevatorinstallationer er forberedt i standardhusene, trot op af mellembyg. ningerne.

Systembygningerne er projekteret over et modulnet pá 60 M , dog er den indre sojlebjeikelinie forskud 900 mm , sáledes at TTpladernes modulære spændvidder bliver 51M hhy 69 M . Altanernes modulære bredder er 12 M , og modulmálene for mellembygningerne er $60 \mathrm{M} \times 96 \mathrm{M}$. Etagehøjden er $3,06 \mathrm{~m}$ med en normal rumhøjde pá $2,52 \mathrm{~m}$ under nedhængte lofter. Etagedæk er dimensioneret for en karakteristisk nyttelast pả $5,0 \mathrm{kN} / \mathrm{m}^{2}$.
Figur 2 viser en oversigtsplan for en kvadrant, mens figur 3 er et tvarsnit i standardhuset.

Bærende og afstivede system

Vertikallaster føres fra gitterspær til facadebjælker, og fra etagedæk til facade- og midterbjælker, hvorfra lasten videreføres af pendulsøjler til punktfundamenter; kælderydervægge linieunderstotter dæk over kælder og liniefunderes. Lasten pá trapperne føres fra repos og løb til bjælker, der understattes pà dels mellembygningens betonsidevægge, dels pá 4 etages betonsajler, der anordnes indspændte i sajlekasser under kældergulv.
Horisontallaster fores fra tag og facader gennem skivevirkninger i loft over etage 3 og i de tunge etagedæk til mellembygningernes sidevægge. Disse vægge, der modtager lodret etagelast, er tilstrækkelige til at optage horisontallasten i kvadrantens 2 hovedretninger.
De bærende bygningsdele, bjælker og sajler ligger synlige fremme i facaden og er sałledes klimabelastede fra fx variationer i temperatur med tilhorende bevagelser. Desuden udsættes disse elementer og deres samlinger for nedbrydning fra vejrlig, UV-stråling etc.; de dybe altankonstruktioner modvirker dog i nogen grad dette forhold.

Fig. 2. Plan af bygningskvadrant 1:400. Typiske kælder-og etageplaner med indtegnede planlægningsmoduler. Kun én blok er vist med forslag till kontoropdeling. Snittene henviser til artiklens detaltegninger.

Samlinger i råhuset

Byggesystemets primærsamlinger er traditionelle og skal derfor kun beskrives kortfattet.
Sajler opstilles simpelt understettet med centreringsplader og understopning pà punktfundamenter; kun trappesgjler indspændes i ca. 1 m høje armerede betonfundamenter af》lysestager-typen.
Bjælker med udragende bajler i oversiden oplægges simpelt understettet pả søjlekonsoller eller -toppe med neopreneplader i vederlagene; alle samlinger sikres ved omstrbning af dorne i udsparede huller i sejler og bjælker.

Vægelementer i kælder opstilles pà rendefundamenter via pàskudte montagebolte og samles til kældersøjler med udstobte lodrette
fuger og ved sammensvejsning af indstøbte plader forankret til vægarmeringen; se figur 4, der viser vægsamlinger i bygningshjarne og ved sikringsrum. Vægelementer i etager samles indbyrdes med montagebolte og lodrette fortandede fuger.
Dæk over kælder udføres af 40 mm tykke Filigranplader med 160 mm armeret overbeton, der láses til udragende armering fra oversider af vægge og bjælker; figur 5 viser samlingsprincipperne.
Etagedæk udføres af $1,2 \mathrm{~m}$ brede TT-30 forspændte plader med 80 mm armeret overbeton, der láses til afstivende vægge ved udragende bøjler omkring montagebolte. I vederlaget mellem TT-pladernes ribber og de bærende
vægge og bjælker indlægges stállejeplader; figur 6 viser bærende og ikke-bærende dækvederlag.

Gitterspærene forankres til $100 \times 100 \mathrm{~mm}$ remme, der med ekspansionsbolte fastholdes til bjælke- og vægoversider i etage 3 ; figur 9 viser en detalje af tagudhæng med samlingen indtegnet.

Altankonstruktionerne

Helgeshajparkens byggesystem er karakteristisk med sine dybe facade- og gavlaltaner, der beskrives i artiklens figur 7 og 8 .
Altanopbygningen i facaden bestar af 60 M lange præfabrikerede betonelementer, der understøttes på udkragede ribber fra etagedæk-
kets TT-plader, ialt 6 ribber pr. fag. I vederlagene mellem altanplade og ribber indlægges neoprene for dels at kunne optage pladens temperaturbevagelser, dels at sikre kraftoverføring i alle vederlag.

Gavialtanen udfores af 2 plader med spændene 51 M og 69 M . Da det langsgáende bjælkesystem afbrydes af de bygningshøje gavlsøjler, kan gavlaltanerne ikke understattes direkte pá udkragede hovedbjælker; i stedet páspændes 12M-lange bjælker til de 3 gavisejler, og disse bjælker danner vederlag for altanpladerne, se figur 8.

Altankonstruktionerne forsynes med betonbrystning, hvortil boltes et stảlrækværk.

Tagkonstruktionen

Tagopbygningen udføres af fritspændende trægitterspær med en hældning på 35°. Udhænget anordnes over et 15°-stikspær, sáledes at tagfladen fär et knæk i facadelinien; dette syner som om hele tegltaget krummer. Tagfladen er i \sin helhed vist pá tværsnittet, figur 3, og udhænget i detaljer pả figur 9 .
Gaviene afvalmes under 40° og med 15° 's knæk i gavllinien som ved hovedspærene. Gavifladen afsluttes ca. 1 m under kippen, og tagrummet udluftes gennem de lodrette tremmebeklædte gavitrekanter. De. særprægede tagformer er gennemfort til mindste detalje, säledes ogsà pá cykelparkeringens smâhuse.

Kompletterende bygningsdele og installationer

Heigeshøjparkens kontorhuse fremtræder ogsá i det udvendige materialevalg og udstyr som et brugsvenligt og funktionsrigtigt systembyggeri.

Gulve i etagerne er klinker og kokosmátter i vindfang samt tæppebelægning pá trapper, reposer og i kontor- og gangarealer; i toiletter legges klinker eller marmorsplit, og i køkkener og spiserum vinyl, linoleum eller tæppe. Betonafretning pá kældergulve behandles med støvbindingsmiddel.

Loftet udføres som nedhængte lyddæmpende lofter i standardsystem; rumhajden er 2,52 m i kontorer, dog $2,80 \mathrm{~m}$ når loftspladerne monteres imellem dækelementernes ribber. Rumhojden i gange og i vảde rum er $2,20 \mathrm{~m}$ grundet fremforing af installationer.

Skillevægge er glasfibervævbeklædte gipspladevægge med mineraluldisolering. For ubrudte vægge er der i bygningerne màlt falgende værdi for luftlydisolationen: $I_{2}=45 \mathrm{~dB}$ i lejlighedsskel, $\mathrm{I}_{\mathrm{a}}=40 \mathrm{~dB}$ mellem kontorer og $\mathrm{I}_{\mathrm{a}}=35 \mathrm{~dB}$ mellem kontorer og gang.

Standardhusene tilbydes med falgende installationer:

Opvarmning til $20^{\circ} \mathrm{C}$ i kontorerne sker ved termostatstyrede radiatoranlæg, forsynet med udetemperaturferler samt ur til nat- og weekendsænkning af rumtemperaturen; varmtvandsforsyning sker elektrisk. Ventilationsanlagget sikrer $1-2 \times$ luftskifte pr. time i kontorer og møderum, desuden suges fra spisestuer og toiletrum.

Fig. 3. Tværsnit i standardhus fra kvadrant F 1:150. Kæ/dergulv er 150 mm singels, 30 mm polystyrol og 100 mm maskinglittet beton med støvbingsmiddel. Dæk over kæider er 40 mm Filigranplader med 160 mm overbeton. Etagedæk er $\Pi 1$ 30-elementer med 80 mm overbton. Loftskonstruktion er 13 mm gips pá $22 \times 100 \mathrm{~mm}$ forskalling, alukraft og 200 mm mineraluld type A samt nedhæengt akustikloft. Taget er betontagsten pà lægter og trægitterspæerfag.

Fig. 4. Kæ/dervegssamiinger, detalje I og II, vandrette snit 1:20. 1 Sefleelementer, 2 Vægelementer, 3 pásvejste L-stal, $I=160,4$ Filigranplader, 5 in situ beton, 6 plastisk fugebeton, 7 cementmartel, 8 opklæbet mineraluld.

Fig. 6. Vederlag for TT-plader, detalie V, lodret snit 1:20. 1 sidevæg i mellembygning med udskæringer for dækribber, 2 los stàlplade, $3 T T \cdot 30$ ribber, 420 mm polystyrol, 540 mm overplade, 6 armeret overbeton.

Telefon samt stark- og svagstrøm fremfores i en ca. 300 mm bred vinduesbænk med las marmorplade; på vinduesbænkens front placeres de nødvendige udtag.
Belysningen er dimensioneret til folgende begyndelsesværdier målt 850 mm over gulv: 275 lux i arbejdsrum, 110 lux i gange og 100 lux i sekundære rum.
Faste branskabe med fyldte slangevinder opsettes i overensstemmelse med myndighedernes krav ved den normale anvendelse af de forskellige lejemål.
1 hver kvadrant installeres normalt 2 stk. hydrauliske elevatorer udfart for enten 10 kN gods eller 12 personer; hastighed $0,3 \mathrm{~m} / \mathrm{sek}$.

Afstuttende bemærkninger

Inden Værdipapircentralens valg af domicil faldt på Helgeshøjparken, havde byggesystemet været underkastet indgáende analyser på lige fod med andre systemhuse. Allerede i sommeren 1979 bad centralen det rảdgivende ingeniorfirma Birch \& Krogboe om at definere fremtidige lokalebehov og at finde frem til hensigtsmæssigt byggeri i en geografisk rigtig placering. Efter en vurdering af byggemuligheder pá ialt 13 forskellige placeringer, blev Helgeshøjparken valgt som det byggeri, der opfyldte, eller med simple virkemidler kunne bringes til at opfylde, Værdipapircentralens mangeartede krav til beliggenhed, funktion, forsyningssikkerhed og ikke mindst tidsplanen.
Dansk Totalentreprise blev bedt om at foretage de nødvendige konstruktive ændringer af standardhuset primært af hensyn til omfattende edb-installationer, hvis særinstallationer blev styret af Birch \& Krogboe. Den 1980-0627 blev totalentreprisekontrakten underskrevet, og Dansk Totalentreprise opfyldte kontrakten med en byggetid på præcis 10 måneder med overdragelse af kvadrant F den 1981-04 27.

Fig. 9. Tagudhæeng, detalje VIII, lodret snit 1:20. 1 facadebiæike, 2 tagrem boltes til bjælke, 3 gitterspærfag, 4 udhængsspær, 5 eternit pá forskalling, 6 gipsplader, forskalling, dampspærre, 200 mm A-batts mod vindbrædt, 7 isolering, dampspærre, beklædning, 8 nedhængt akustikloft.

Medborgerhuset i Aalborg er et spændende eksempel pȧ en ny dansk arkitektur, med ubehandlede beton- og murflader báde ude og inde. Projektet er desuden et eksempel pá indpasning af en moderne funktionel bygning i et gammelt byområde med deraf følgende tekniske og byplanmæssige bindinger. Selvom interessen således samler sig om projektets arkitektoniske egenskaber, har "Byggeindustrien" alligevel fundet det væsentligt at medtage huset i serien "Aktuelle Byggerier« og dermed bringe en byggeteknisk beskrivelse af projektet.
af ingeniordocent Henrik Nissen, DIAB tegninger: Grete Hartmann Petersen

DIAB OG SEI BESKRIVER AKTUELLE BYGGERIER 67

H 0 \%

Beliggenhed

Mellem havneomrȧdet og Nørregade - Nytorv i Aalborg.

Art og omfang

Byggeriet omfatter et moderne hovedbibliotek med udlảns-og læsesale, musik- og kunstbibliotek, børnebibliotek, studiekredslokaler, mødesal, cafeteria mv., samt en byrȧdssal med tilhørende udvalgsværelser. Det samlede etageareal er $12.822 \mathrm{~m}^{2}$; bygningen er i 3 etager.

Bygherre

Aalborg kommune. Arbejderbo har fungeret som bygherrens administrator.

Arkitekter

Hans Dall og Torben Lindhardtsen.

Ingeniører

Carl Bro A/S

Konsulenter

Akustik: Civ. ing. A. E. Wiuff
Beplantning: Landskabsarkitekt
Ole Ubbesen.

Udførende

Rảhusentreprise: Entreprenørfirmaet Rasmussen og Stisager A/S. Stảlkonstruktioner: V.S.B. Industriog Stȧlmontage ApS.
Glaspartier: Viktoria Facader A/S.

Opførelsesdata

Pilotering pábegyndt 1. april 1978, rảhusentreprise 1. august 1978. Byggeriet var afsluttet i juni 1980 og blev taget i brug 15. september 1980.

Økonomi

Samlede udgifter til byggearbejder, inventar og omkostninger incl. moms, ca. 75 mio. kr.

Indledning

Byggesagen Aalborg Medborgerhus startede med en arkitektkonkurrence i 1973, som blev vundet af arkitekterne Hans Dall og Torben Lindhardtsen med rảdgivende ingeniørfirma Carl Bro som konsulenter. Konkurrencen er beskrevet i »Arkitekten< 1974 13; se litt. 1.

I samme periode, dvs midt i 1970'erne, vandt Dall og Lindhardtsen konkurrencen om Aalborg Universitetscenter, og opførelsen af dette anlægs første etaper blev påbegyndt. Der er et tydeligt slægtskab i arkitektur- og materialevalg mellem de to projekter, og der henvises til litt. 2 for yderligere oplysninger herom.

Byggeprogrammet

Projektet, som er kaldt et »medborgerhuss omfatter to funktioner, nemlig bibliotek og byradssal. Et moderne hovedbibliotek er i dag en omfattende institution med et stort antal funktioner. Til biblioteket i Aalborg hører säledes følgende - se figur 2: Udlán, læsesal, kunst- og musikafdeling, børnebibliotek, bibliografisk afdeling, teknisk afdeling, mødelokaler og cafeteria mv. Denne del af medborgerhuset omfatter 10.781 m^{2}.

Byrådsafdelingen omfatter en byrådssal, incl. balkon, pà $420 \mathrm{~m}^{2}$ samt diverse udvalgsværelser og møderum mv. Byrádsafdelingen omfatter ialt $1.075 \mathrm{~m}^{2}$.

Mellem de to afdelinger findes en overdækket gágade eller arkade, og desuden er der under stueplanen i biblioteket ført en busgade, som forbinder Nytorv med Narregade. Med disse arealer kommer det samlede etageareal op pá $12.822 \mathrm{~m}^{2}$.

Bygningen er beliggende i en bydel, hvor der gennem årene er foretaget betydelige indgreb i den gamle bystruktur. Det har varet et onske med projektet at give omrảdet en helhedskarakter og forbinde den ældre bydel med havneomrảdet. Projektet har dannet basis for en lokalplan for omradet.

Projektering og planlægning

Det samlede projekteringsforløb er planlagt pá basis af den fra honorarreglerne kendte fasemodel med budgetansvar:

1. Konkurrenceprojekt
2. Programprojekt (revideret konkurrenceprojekt)
3. Projektforslag med økonomi og teknik
4. Forprojekt med bygningsdelsoverslag
5. Hovedprojekt
6. Licitation
7. Udførelse med byggeledelse og projektopfalgning.
Heer af ovennæunte faser er afsluttet med et rojektmateriale, som bygherrens byggeudralg har taget stilling til og godkendt. Alle de :nkelte aktiviteter, herunder de der krævede ,ygherrens medvirken og beslutning, er regitreret pá en hovedtidsplan med nøjagtig an;ivelse af datoer og sammenhængende belutningsrækkefølger.

Byggesystem og -teknik

Medborgerhusets hovedkonstruktioner er udfort i jernbeton og stál. I udlánssalen, hvor de største spændvidder findes, er tagkonstruktionen udformet som et stålpladetag, báret af et system af primære og sekundære stålgitterbjælker, der hviler pà stâlsøj. ler, sammensat af 4 ligesidede vinkeljernsprofiler; se figur 3 og 6.

Den øvrige hovedkonstruktion, bestáende af søjler, etagedæk, trappehuse mv er udført i jernbeton stabt pà stedet. Etagedækkene er bjælkeløse pladedæk, paddehatkonstruktioner, dog med randbjælker langs facaderne, se fig. 4. I byrádssalen med sine $18 \mathrm{~m} \times 18 \mathrm{~m}$ spændvidde er tagdækket udført som pladedæk, understøttet af store synlige krydsende jernbetonbjelker. Alle bærende jernbetonkonstruktioner i hovedsystemet er støbt pá stedet; mens indmurede betonindfatninger om vinduer og dare og alle murkroner er udført af prefabrikerede betonelementer; se fig. 4 og 5 .
Husets facader og hovedparten af de indvendige vægge er udfort som udfyldningsmurværk mellem dæk og søjler.

Huset fremtræder med robuste, vedligeholdelsesfrie materialer. Facader og skillevægge er opmurede i rødbrune, blødpressede teglsten med skrabefuger. I stueetagen og i byrádssalen stảr alle indvendige vægge som blank mur; mens murede vægge i mindre rum er filtsede og hvidmalede.

Facademurværket er opdelt i felter, og mellem disse er der udfort glasfacader indsat i mark, eloxeret aluminium. Aluminiumrammerne er udført med brudt kuldebro, og der er isat 3-lags termoglas. For enderne af arkaden er glasfacaderne dog udfort af malet profiljern med et enkelt lag glas.

Tagdækningen pả bygningens flade tage er udført med 4-lags built-up pà en isolering af 200 mm isoleringsplader.

Ovenlysbảnd i udlảnssal, i byrảdssal, i karnapper, i facader mv udføres som 3-lags termoglas i markt eloxerede aluminiumrammer med brudt kuldebro. Der er etableret udvendig solafskærmning ved ovenlys i facadekarnapper.

Udvendige døre udføres som malede stálpladedøre i stålkarme. Vinduer er trykimprægnerede trævinduer, i reglen indadgảende drejekipsystem. Der er 3-lags termoglas i faste rammer og 2 -lags i gående.

I arkaden er udført belægning med betonfliser svarende til belægningen i den ny gajgade, Nørregade. Gulvene inde i bygningen er hovedsagelig udfart med teglklinker, linoleum, og i byrȧdssal, udvalgsværelser mv med bouclevævet kokostæppe. I børnebiblioteket er gulvbelægningen korklinoleum. I bogmagasiner og gange i parterreplan er gulvene udført med støbeasfalt.

Udlảnssalens loft udgøres af profilerede stảlplader, som hviler pá stálgitterdragerne. Disse plader har perforerede flangekanter og indlæg af mineraluld for lydregulering
af rummet. De fleste gvrige rum i bygningen har lofter af nedhængte, perforerede og malede stálplader med mineraluldsindlæg for lydreguiering. I byrảdssalen er der udført lydregulering ved opmuring af en ekstra skal af mangehulsten med bagvedliggende mineraluld; se figur 5.

Modulplanlxgning

Bygningen er projekteret over et planlægningsmodulnet pả $60 \mathrm{M} \times 60 \mathrm{M}$. Modulnettet kan findes som konstruktionsmodul i byrådssalen, i børnebiblioteket, i den store udlảnssal og i flere af kontorafsnittene. På grund af tilpasningen til skelgrænser og naboejendomme mv kommer planlægningsmodulet ikke til udtryk i facaderne. Og da bygningen primært er opfort af pá stedet støbte og murede konstruktioner, ses modulet ogsá kun undtagelsesvis i bygningens få elementer. Modulnettet, der er nummereret med koordinaterne $\mathrm{X} 0, \mathrm{X} 5, \mathrm{X} 10 \ldots$ pà den ene led og Y0, Y5, Y10 ... pà den anden led genfindes pà sável planer som snit og detailtegninger i hele projektet. Se figur 2, 4, 5 og 6 .

Koordinationssystemet har ogsả været anvendt ved màlafsætningen pả byggepladsen, og projektet er sáledes et godt eksempel pá nytten af modulkoordinering i projekter, hvor der kun anvendes fá præfabrikerede komponenter.

Installationer

Medborgerhuset er forsynet med traditionelle installationer for VVS-anlæg, el og aflob. Horisontale ledningsføringer er næsten overalt tilgængelige, idet de fremfores over de nedhængte lofter. Hvor skjult rerforing undtagelsesvis er pàkrævet, fx. i toiletrum, anvendes præisolerede kobberror.

Bygningen opvarmes med fjernvarme fra Aalborg kommune. Varmeanlægget er opdelt i 6 zoner svarende til funktionsomrảderne parterre-nord, udlănssal, teknisk afdeling og administration, parterreplan-syd samt børnebibliotek og kantine, studiekredse og byrådsafdeling samt cafeteria. Hver zone styres med automatik, og alle radiatorer og konvektorer er forsynet med termostatventiler.

Ventilationsanlægget er opbygget af 2 luftbehandlingscentraler placeret i henholdsvis teknikrum-nord, der i det væsentlige forsyner bygningen nord for busgaden og teknikrum-syd, der bl. a. forsyner byràdssalen mv. Anlægget er zoneopdelt efter samme princip som varmeanlægget, sàledes at indblæsningen til de enkelte zoner kan stoppes helt eller delvis i perioder, hvor de pàgældende omràder ikke benyttes.

Anlæggene er forsynede med varmegenvindingsenheder, sáledes at en væsentlig del af varmeindholdet i afkastningsluften kan overfares til den indtagne friskluft.

Fig. 2. Stueplan, mál 1:500. 1. Byrảdssal. 2. Udvalgsværelser. 3. Forhal. 4. Skranke. 5. Udlänssal. 6. Kontorer. 7. Børnebibliotek. 8. Læsesal. 9. Bibliografisk afdeling. 10. Arkade med torv. 14. Foredragssal. 17. Cafeteria.

Fig. 3. Typisk tværsnit i ualánssal mellem modullinier Y25 og 30. Mâl ca. 1:200.

Brandforhold

Bygningen er fuldsprinklet, idet sektionsarealerne overstiger de tilladte $600 \mathrm{~m}^{2}$. Endog i arkaden er der installeret sprinkleranlæg, dels fordi nabobygningerne kun ligger 4 m fra hinanden, dels fordi der i arkadeomrádet kan tænkes arrangeret udstillinger, boder og andre arrangementer med stor brandbelastning.

Bygningen er i øvrigt opdelt i brandsektioner efter nærmere forhandlinger med brandmyndigheden, og der er installeret nød- og panikbelysningsanlæg samt røgdetektoranlæg incl. automatik for lukning af branddøre.

Den bærende hovedkonstruktion af stall i udlănsomrảdet, se figur 6, er udført med brandbeskyttende maling, således at konstruktionen kan godkendes som BS 60.

Bygningen er i øvrigt med sine mur,fra myndighederne.

Erfaringer fra byggepladsen

Fig. 4. Lodret snit i ydervæg og ovenlys ved udlánssal. Màl 1:20. 1. Ovenlys. 2. Murkrone af beton. 3. Isolering, 200 mm . 4. Hulmur, 410 mm .5 . Vinduesindfatning af beton. 6. Trævindue.

beton- og stálkonstruktioner næsten 100% opfort af ubrændbare materialer; men brandbelastningen i de forskellige biblioteksog udstillingslokaler mv kan være særdeles høj. Der er derfor udfart et omhyggeligt arbejde med bygningens brandsikring, og det kan nævnes som et kuriosum, at bygningen med dens relativt begrænsede areal indeholder ialt 25 trapper; hvoraf flere er udfart som brandtrapper og nødudgange efter krav

Rảhusentreprisen pàbegyndtes som nævnt 1. august 1978, og dette betad, at hovedparten af betonarbejdet blev udfort i vinteren 1978/79. Denne vinter var hárd, og det var nødvendigt at udfore ret omfattende vinterforanstaltninger. Der stabtes beton ned til udetemperaturer omkring minus 15°; men
det kunne ikke undgảs, at vinteren medfarte en betydelig forsinkelse.
Hele betonkonstruktionen er udført uden dilatationsfuger efter onske fra arkitekten. Pá grund af støbeskel og den relativt lange tid, der forlab mellem stabningen af bygningens nord- og sydafsnit, en strækning pá ca. 120 m , er hovedparten af betonens svind àbenbart overstáet, inden opmuringsarbejdets påbegyndelse. Det er i hvert fald et faktum, at man i den færdige bygning kun har fundet helt ubetydelige svindrevner i murværket. Det rustikke, blanke murværk skjuler nok mindre bevægelser; men til gengæld er de filtsede, hvidmalede murflader, der findes i hovedparten af væggene pà første sal, særdeles afslørende for svind- og temperaturbevægelser. Alligevel er der kun observeret fá og helt ubetydelige revner i murværket.

Fig. 7. Interior fra udlànssal.

Afsluttende bemærkninger

Arkitekterne Dall og Lindhardtsen har fortsat succesen fra Aalborg med endnu et bibliotek, som netop er blevet færdigt i Holstebro. Ogsả i denne bygning dominerer det rustikke murværk, mens betonen er forsvundet fra facaderne. Der går sáledes en klar linie fra AUC-projektet over Aalborg Medborgerhus til biblioteket i Holstebro: På AUC indrammes facademurværket af søjler og bjælker i beton; på Medborgerhuset ses betonen kun som indramning af vinduer og døre, og Holstebrobiblioteket fremtræder som et rent muret hus.

LITTERATUR

1. Arkitekten 1974 nr .13 : Konkurrence om hovedbibliotek

Aalborg
2. Arkitektur 1978 nr. 8: Aalborg Universitetscenter.

af lektor, civilingeniar Ejnar Søndergaard, DIAB tegninger. Grete Hartmann Petersen

Busamlaeg for Ârhus Sporveje

Beliggenhed:

Jegstrupvej ved Skanderborgvej i Hasselager, sydvest for Arhus.
Art:
Busanlæg bestáende af værkstedsbygning, klargøringsbygning og opstillingshal samt brændstofanlæg.
1 bygningerne indgảr forskellige servicerum, værksteder, folkerum, kantiner m. v.
Størrelse:
Værkstedsbygning : $3.318 \mathrm{~m}^{2}$
Klargøringsbygning : $2.085 \mathrm{~m}^{2}$
Opstillingshal $: 8.068 \mathrm{~m}^{2}$
Brændstofanlæg : 6 olietanke

Bygherre:

Arhus sporveje

Arkitekt:

C. F. Møllers Tegnestue, Århus

Rádgivende ingeniør:

Rambøll \& Hannemann, Rádgivende ingeniører A/S, Arhus.

Entreprenører:

Jordarbejde:
Jord \& Beton A.m.b.A., Ârhus

Beton- og murer:
A/S V. Knudsen, Arhus
Stảlkonstruktion:
BCV-Stál ApS, Viborg
Tag-og ydervægge:
A.E. Stálmontage Aalborg ApS Støvring
Porte:
Crawford Door A/S, Brabrand Tømrer og Snedker:

Hustømrernes A/S, Arhus
Maler:
Sjøreen \& Co. A/S, Arhus
VVS:
Beder Blikkenslager, vand-
varme-og sanitetsforretning A/S, Beder
Sprinkier:
Svend Erik Laursen A/S, Viby
Ventilation:
TUBO TEC A/S, Århus
El:
Nordelektro A/S, Højbjerg
Olielager: Ludvigsen \& Hermann A/S, Viby

Opførelsesdata:

Jordarbejde pảbeg. 13. aug. 1979
Hovedlicitation 22. oktober 1979
Anlægget afleveret 21. juni 1981

Økonomi:

Total entreprisesum:
32,7 mill. kr. excl. moms og omkostninger.
Heraf jordarbejde:
1,4 mill. kr.
beton-og murer:

$$
11,0 \text { mill kr. }
$$

stálkonstruktion: 3,4 mill. kr.
tag-og ydervægge:
7,5 mill. kr.
porte:
0,6 mill. kr.
tomrer- og snedker:
1,2 mill. kr.
maler:
0,4 mill. kr.
VVS:
2,0 mill. kr.
sprinkler:
1,0 mill. kr.
ventilation:
1,4 mill. kr.
el:
1,5 mill. kr.
olielager:
0,8 mill. kr.

Det kommunale busselskab Århus sporveje har i de senere ár udvidet busparken betydeligt, dels pá grund af den almindelige vækst i passagertallet i den kollektive trafik, og dels pa grund af overtagelsen af tidligere privat drevne ruter. Århus sporveje råder i dag over ca. 230 busser.

Selskabets anlæg pá Gustav Holms Vej i den nordige del af Ȧrhus omfattende værksteds-, klargørings- og opstillingshaller samt administrationsbygning er kun beregnet til en buspark pá 120 , og det har derfor været nødvendigt at bygge et nyt supplerende anlæg. Dette anlæg er valgt placeret i Hasselager ved Skanderborgvejen i den sydvestlige del af byen. Det nye anlæg har ligeledes en kapacitet pà 120 busser.

Det nye busanlæg omfatter 3 bygninger: En værkstedsbygning, der er 83,4 m lang og $32,4 \mathrm{~m}$ bred, en klargøringsbygning, der er $62,4 \mathrm{~m}$ lang og max $36,6 \mathrm{~m}$ bred samt en opstillingshal med længden $134,6 \mathrm{~m}$ og en max. bredde på $65,5 \mathrm{~m}$. Den anførte bredde af klargøringsbygning og opstillingshal inkluderer sidebygninger.

I værkstedsbygningen er vedligeholdelsesarbejdet pá busserne baseret pá en ligelig fordelt anvendelse af grave og to-sejlede vognløftere. Endvidere er indrettet anlæg
for undervognsrens samt diverse værksteder og servicerum.
Klargeringsbygningen omfatter tre vaskeog rengøringsbaner for busser, anlæg for brændstofpȧfyldning og kontrol af olie og vand, diverse varksteder og folkerum samt kedelcentral. Ved klargøringsbygningens østgavl er placeret et brandstoflager bestáende af 6 lodretstáende cylindriske staltanke , der hver rummer $75 \mathrm{~m}^{3}$. Fem af tankene er for motorgasolie, mens den sjette er for fyringsgasolie til opvarmningsformảl.
I opstillingshallen er der plads til garagering af 100 busser. Hallen er proportioneret efter busser af størrelsen $12 \times 2,5 \mathrm{~m}$. I gulvet er der indrettet kanaler med spalter for udsugning af udstødningsgasser. Ind- og udkørsel foregàr gennem 4 stk. 8 m brede automatisk virkende hejseporte. I en sidebygning til opstillingshallen er indrettet kontorer og opholdsrum m. v. for det kerende personale samt et undervisningslokale.

Bygningernes hovedkonstruktion

Den bærende hovedkonstruktion for de tre bygninger er pà flere máder utraditionel. Hovedsystemet udgøres af rumlige gitterrammer af Corten stàl anordnet uden for bygningen. Det er pudsigt at bemærke, at
bygningerne pá Århus sporvejes ældre anlæg pà Gustav Holms Vej ligeledes har de bærende hovedkonstruktioner uden for bygningen. Mange byggefolk vil huske professor Hannemann's busgarage med de elegante udvendige betonbuer og de skrát anordnede hængestag. Ogsá de noget nyere bygninger pà Gustav Holms Vej har den bærende konstruktion anbragt udvendigt - der er her benyttet en rammekonstruktion i forspændt beton
Der er flere grunde, der kan motivere, at den bærende hovedkonstruktion er placeret udvendigt ogsá i det nye Hasselageranlæg. I vore energiknappe tider er det en indlysende fordel, at loftshøjden i bygningerne ikke er større end nødvendigt, säledes at man undgàr opvarmning og ventilation af overflødigt bygningsvolumen. Endvidere har myndighederne stillet krav om en begrænsning af bygningernes højde. Og endelig har det været arkitektens onske, at bygningerne skulle fremtræde som lave, lette bygninger.

Gitterrammerne er udformet med trekantet tværsnit og opbygget af rør i Corten stall. Rammerne er anordnet sáledes, at trekanten i tværsnittet har to flanger nærmest bygningen og en flange væk fra bygningen.
Corten er et stàl, der er rusttrægt og som

Fig. 1. Situationsplan 1:2000. 1. Værkstedsbygning. 2. Opstillingshal. 3. Klargøringsbygning. 4. Brændstofanlæg. Pá bygningerne er vist de udvendige gitterrammer, der er orienteret nord-syd, samt de tværgàende ovenlysbànd.

Fig. 2. Tværsnit at opstillingshallen. 1:400.

Fig. 3. Tværsnit af tagffacade. 1:50. 1. Gitterramme at Corten stàl. 2. Yderste flangerør er ikke ført heit til fodpladen, hvorved opnàs charniervirkning ved rammefoden. 3. Sekundær tagbjælke RHS $200 \times 200 \times 10.4$. Langsgảende RHS-profil $200 \times 200 \times 6,3.5$. Korrugerede tagplader Plannia TRP 200. 6. Mineraluldisolering med papdækning. 7. Stå/pladekassetter med 100 mm mineraluid. 8 . Galvaniserede Z-tyndprofiler, $h=55 \mathrm{~mm} .1 \mathrm{mel}$ lemrummet her er inclagt 50 mm mineraluld. 9. Facadeplader Robertson BR 36. 10. Bastion.
derfor kan stả uden korrosionsbeskyttelse. Det benyttede stả har en flydespænding pá $340 \mathrm{~N} / \mathrm{mm}^{2}$ og en trækstyrke pá 480 $\mathrm{N} / \mathrm{mm}^{2}$. Stal med tykkelse over 13 mm er normaliseret, og alt Corten stảl er leveret med garanti for slagsejhed ved $\div 20^{\circ} \mathrm{C}$.

I alle tre bygninger er gitterrammerne orienteret nord-syd, se situationsplanen. Dette medfører, at rammerne over værkstedsbygningen spænder $»$ på den lange led«. Imidlertid er rammerne i denne bygning understøttet af betonsøjler anbragt omtrent i femtedelspunkterne svarende til mellemunderstotning pr. 15 m . I klargøringsbygningen er rammerne mellemunderstøttet i 2 punkter af stảlsøjler udformet som gitterág. Endelig er rammerne i opstillingshallen understøttet af . betonsøjler i midtpunktet. Dette svarer til et frit spænd pá ca. 30 m .
Hvor bygningerne er forsynet med lavere tilbygninger, er der anordnet tilsvarende lavere partier af gitterrammerne.

Rammeafstanden er 10 m i værksteds- og klargøringsbygningen og 12 m i opstillingshallen. Gitterkonstruktionen er udført med direkte svejste knudepunkter uden anvendelse af knudeplader. Rammerne er i statisk henseende anordnet med fodcharnierer. Dis se er konstruktivt udført ved, at kun de flanger, ved hvilke gitterudfyldningen slutter forneden, er ført til fundamentet. De øvrige flanger slutter lidt over fundamentet og er kun fort med ned i det sidste gitterfag af hensyn til gitterets udseende. Alle flangerar er 127 mm rør, mens gitterudfyldningen er $76,1 \mathrm{~mm}$ rør. Godstykkelsen af rørene varierer afhængigt af stangkræfterne i gitteret.

Fundmenterne for bygningerne er overalt direkte funderede.

Den sekundære tag- og
 facadekonstruktion

Direkte under hver gitterramme er anordnet et RHS-profil $200 \times 200 \times 10$, som udgør den sekundære tagkonstruktion. RHSprofilerne er via stảlstropper ophængt i gitterrammerne, idet stropperne er ført gennem tagbeklædningen og op til knudepunkter i

Opstillingshallens stálkonstruktion under montage. De tre gitterrammer i forgrunden er forlænget ud over en lavere tilbygning. I skillevæggen understottes rammerne af pendulsø/ler udformet som gitterảg. De sekundære tagbjæ/ker (RHS-profiler) er ophængt i gitterdrageren i stà/stropper. Pà RHS-profilerne er monteret stole for de korrugerede tagplader. Et langsgàende RHS-profil ved overgangen til det skrá stykke skal understøtte sekundære facadesøiler i fagenes trediedelspunkter. Disse søiler er ikke monteret pá billedet. Et montagestad i rammeoverflangen er endnu ikke svejst. Som det ses, er tagpladerne fort ud over vederlagsbjæikerne og stodt et stykke ude i faget, med andre ord er der benyttet en gerberkonstruktion. Klargaringsbygningen i baggrunden er færdigmonteret- Foto. Thomas Pedersen og Poul Pedersen, Arhus.
den øverste gitterflange, se figur 5. RHSprofilerne har ved facaderne en skrả afslutning, der svarer til den afvalmede form af taget og er forbundet til skundære facadesøjler af RHS $200 \times 100 \times 5$.
I facaderne er yderligere anordnet sekundære søjler i trediedelspunkterne af hovedfagene. I opstillingshallen, hvor afstanden mellem hovedrammerne er 12 m , er der sáledes sekundære facadesøjler pr. 4 m . Disse mellemsejler understattes foroven af et langsgáende RHS-profil $200 \times 200 \times 6,3$, der spænder 12 m mellem hovedlinierne og er anbragt pả de tværgảende RHS-profilers skrá stykke.

Tag-og facadebeklædning

Som det fremgár af ovenstáende er afstanden mellem de nedhængte RHS-profiler itaget 12 m (i værkstedsbygning og klargøringsbygning dog 10 m). Der er ingen langsgáende áse i bygningerne - tagpladerne spænder
de fulde 12 henholdsvis 10 m mellem RHSprofilerne.
Som tagplader er anvendt galvaniserede korrugerede stảlplader af typen Plannja TRP 200, hvis maksimale spændvidde netop er 12 m . Pladerne er »dobbelt-korrugerede«, idet der er en kraftig langsgáende korrugering med bred overflange og smal underflange. Den brede overflange er igen forsynet med en svagere korrugering i tværretningen. TRP 200 kan i og for sig opfattes som en plade, hvor korrugerede tagplader og letáse er integreret i en enhed. Pladerne krever, at vederlagsbjælkerne - her RHS-profilerne forsynes med specielle stole til afstivning af profilkroppene mod foldning fra vederlagsreaktionen. I værksteds- og klargøringsbygningen er monteret TRP 200 med perforering for akustisk regulering.
Over tagpladerne er udlagt mineraluldsisolering, bestáende af nederst 30 mm pladebatts nr . 3, derover 90 mm A-tagplade og
gverst 100 mm lameltagplade. Over opstillingshallen er der dog kun oplagt de 100 mm lameltagplade. Under isoleringen er placeret en damptæt membran med en PAM-værdi pà min. 10.000 . Hvor der er benyttet tagplader med akustisk perforering, er membranen dog anbragt 30 mm oppe i isoleringen af hensyn til den dæmpende effekt. Det samlede isoleringslag er fastgjort mekanisk til stålpladetaget med stålstifter.
Tagopbygningen er afsluttet med tagpapdækning. Første lag pap er pảklæbet lameltagpladerne fra fabrikken.
Tagfladen er ikke forsynet med hætter for ventilering af isoleringen; idet strop-gennemføringerne virker som ventilering.
I tagfladerne er indlagt et antal EVERLITE dobbelte, hvælvede PVC-lyspaneler mac en bredde pá 150 cm . I en del af lyspanelerne er etableret 'ragventilation, idet de págældende sektioner ved en rumtemperatur pà $90^{\circ} \mathrm{C}$ àbnes og giver fri roggennemgang.

Fig. 4 Tværsnit af gitterramme ved mellemunderstatning. 1:20. 1. Gitterramme med flangeror, $D=127$ mm og diagonatrer, $D=76,1 \mathrm{~mm}$. 2. Charnier med dorn \varnothing 36. 3. Understøtningság af rबr, $D=127 \mathrm{~mm}$. 4. Fodplade, $t=20 \mathrm{~mm}$, med 4 bolte M 24. 5. Overside af betonkonsol pà mellemsajle.

I vaggene er der inderst anbragt vandrette stàlpladekassetter udfyldt med 100 mm mineraluld og understøttet af de ovenfor omtalte sekundære facadesøjler.

Udenpá kassetterne er pàsat lodrette galvaniserede 55 mm Z -profiler pr. 90 cm , og herpá er yderbeklædningen fastgjort. Denne bestár af korrugerede plader af typen Robertson $B R 36$ og er anbragt med korrugeringen vandret. I mellemrummet mellem kassetter og yderbeklædning er indlagt 50 mm mineraluld, dog ikke i opstillingshallen.

Diverse bygningsarbejder

Alle tre bygninger er udstyret med sprinkleranlæg (vàdt anlæg) udført efter »Normal risikoklasse, gruppe 3, nr. $3 \ll$. Der er anvendt konventionelle sprinklere. Anlægget er udover akustisk alarm forsynet med direkte alarm til »Falck« Ȧrhus.

Til gulvet i opstillingshallen og som belægning pà udvendige veje og pladser er benyttet SF-sten. Gulve i værkstedsbygning og i klargøringsbygning er betongulve.

[^1]

Fig. 5. Tværsnit af gitterramme ved opstropning af sekundær tagbiælke. 1:20. 1. Gitterramme. 2. Strop af ror $76,1 \times 5 \mathrm{~mm}$. 3. Sekundær tagbjæike RHS 200 $\times 200 \times 10.4$. Emnergr med $1 / 1 / 2^{\prime \prime}$ WG og pinolskrue M 8. 5. Afstandsrer, $76,1 \times 11 \mathrm{~mm} .6 .11 / 2^{"}$ rundstà med $11 / 2$ " gevind.

Afsluttende bemærkninger

Corten stal har været kendt og benyttet herhjemme i snart mange âr, sável til egentlige bærende konstruktioner som til beklædningsplader.
Der er ogsả gjort mange bitre erfaringer med materialet, idet afsmitning pá tilgrænsende og især underliggende konstruktioner undertiden har været meget skæmmende.
I det foreliggende tilfælde virker det umiddelbart dristigt at placere gitterrammerne op ad og henover de heit lyse facadeplader. Imidlertid kan det konstateres, at der i dag, over et ár efter montagen af pladerne, ikke er nogen som helst afsmitning at se på facaderne, og at den særlige udformning af gitterrammerne og den skrá tagafslutning sáledes har vist sig at være hensigtsmæssig.
Byggeriet viser, at ogsá bygninger til et prosaisk formàl kan gives en spændende og forfriskende udformning og dog samtidig være konkurrencedygtige overfor mere traditionelle lasninger.

Udsnit af facade i opstillingshallen. Langs alle facader er der i fundamentslinien opfort "bastioneru i form af betontruge fyldt med søsten. Bastionerne tjener primært som veern mod pakarsel af facadiden. Bastionerne, den udvendige spinkle hovedkonstriktion, den skrà tagalslutning og den vandrette korrugering at de lyse facadeplader giver ifælesskab indtryk at en lavog elegant bygning. Foto: Thomas pedersen og Poul Pedersen, Arhus.

[^0]: STUEETAGEN

[^1]: En mellemunderstatning i værkstedsbygningen. Betonsallen er foroven afsluttet med en dobbeltkonsol, hvorpà understatningskonstruktionen er anbragt, se figur 4. De sekundære nedhængte RHS-profiler er afbrudt ved mellemunderstatningen og boltet ind pà si den af denne.

