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Abstract

The report describes a new shell element, used for finite element analysis,
which is based on simple, mechanical models that cause normal stresses to be
concentrated in stringers along the element edges and shear to be transferred
by a constant in-plane shear stress field. The torsional and flexural rigidities
are separated making independent specifications of these possible.

The element is neither a compatible nor an equilibrium element but is an
equilibrium element for a transformed shell consisting of a disk with in-plane
rigidity, a plate with no flexural rigidity and a grid system with no torsional
rigidity. The element is therefore called the "Hotch-Potch’ shell element or
simply the HP shell element.

The element has a behavior very similar to the stringer method and is
ideally suited for analyses of e.g. cylindrical shells with stiffeners or rein-
forced concrete shells.

In the report the geometric stiffness matrix for the element is also devel-
oped. This makes it possible to use the element for large deformation analy-
ses.

The element has been implemented in a finite element programme and a
number of test problems have been analyzed. Compared with theoretical
solutions, all the problems yield very accurate results, the computational
efforts taken info account.
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Chapter 1
Introduction

In this report elastic shells are examined for geometrical linear as well as non-
linear behavior.

In general, shells are spatially curved structures which resist external loads by
a combination of membrane and bending action. Beams and plates primarily have
a flexural resistance mechanism while arches, disks and shells primarily have an
in-plane resistance mechanism. Generally speaking, loads are resisted much more
efficient in in-plane modes rather than in flexural modes. This fact makes the
shell structure ideal for a number of applications.

Even for quite simple geometries and material properties few analytical
solutions can be found in the literature. Thus shells are most often designed using
simplified hand calculation methods or various numerical methods.

Of these numerical methods the finite element methods are by far the most
prevalent today. This is due to the fact, that the finite element method is very
suitable for implementation in computer programmes. Furthermore the
commercial FEM programmes are often coupled to advanced pre- and postpro-
cessors making them very user-friendly. '

The significance of FEM programmes for analyses of complicated structures is
undisputed. However, it is important to consider the basic assumptions of the
programme and the elements used, before the numerical results obtained may be
accepted as reasonable approximations to the actual conditions.

In this report a new shell finite element is described. The element is based on
simple, mechanical models that cause normal stresses to be concentrated in
stringers along the element edges and shear to be transferred by a constant
in-plane shear stress field. Furthermore, the torsional and flexural rigidities are



separated making independent specifications of these possible. The element is
neither a compatible nor an equilibrium element but is an equilibrium element for
a transformed shell consisting of a disk with in-plane rigidity, a plate with no
flexural rigidity and a grid-system with no torsional rigidity. The element is
therefore called the *Hotch-Potch’ shell element or simply the HP shell element.



Chapter 2

Shell Analysis

2.1 Geometry of Shells

The geometry of a shell is defined by the prescription of the middle surface and
the shell thickness in all points. A general C,; (at least one time differentiable)
surface in three dimensional space S is considered, see figure 2.1.

Figur 2.1: Arbitrary shell surface.

In each point 4 on the surface, a normal vector n will exist. An infinite number
of planes through A containing n exist. The intersection between these planes,
e.g. P, and the surface S are plane curves as e.g. the curve C. For each curve,
the curvature in 4 is called x. The two orthogonal curves containing the



maximum curvature k, and the minimum curvature «, are called the principal
sections and the curvatures are called the principal curvatures.
The product g of the two principal curvatures k, and «, is by definition called

the Gaussian curvature. On figure 2.2 different types of shell surfaces can be
seen.

g<0 g>0 g=0

Figure 2.2: Different surface types.

2.2 Internal Fo'rcés

On figure 2.3 an infinitesimal element of a shell with general geometry can be

seen. The shell curvatures are given by 1/r, and 1/r,. The following stresses are
present:

1) Normal stresses o, and o,
2) The transverse shear stresses 7,, and 7,,
3) The in-plane shear stresses 7,, and 7,,

In the design of shell structures most often the stresses are integrated across the
- shell thickness in order to obtain the shell internal forces, see figure 2.4:



mid—surface

2ofes 20|+

Figure 2.3: Infinitesimal shell element.

Figure 2.4: Internal forces in shell.

The internal forces can be sub-divided into membrane forces and bending
forces. The membrane forces are n,, n,, 1, and n, (N/m), see (2.1). The
bending forces are m,, m,, m,, (Nm/m), v, and v, (N/m), see (2.2).

The z/r-terms in (2.1-2) arise because in general the cross section is trapezoi-

dal. When small curvatures are present or when considering plane shells, this
term can be neglected.
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For a spatial structure six equilibrium equations are present. As the general
shell contains ten force resultants, it is an internally indeterminate structure. In
a shell where only membrane forces are present the membrane theory of shells
~ can be used. Using a moment equilibrium equation around the normal, it can be
concluded that n,=n,. The two other moment equilibrium equations are
identically satisfied. Thus a shell containing only membrane internal forces is
statically determinate. When membrane action is prevalent often shells are
analyzed and designed using membrane theory. Near supports, concentrated
forces and geometric discontinuities bending action is often significant and in
such cases bending shell theories must be applied. In the literature a vast number
of shell theories may be found. The theories are all founded on sets of
equilibrium, kinematical and constitutive equations accompanied by certain
boundary conditions. General shell problems are often very complex and difficult
to analyze by hand calculation methods. ‘

2.3 General Remarks

In chapter 3 the stiffness matrix for the HP shell element will be derived
analytically. The element is based on simple, mechanical models that cause
normal stresses to be concentrated in stringers along the element edges and shear
to be transferred by a constant in-plane shear stress field. Furthermore, the
torsional and flexural rigidities are separated making independent specifications
of these possible.

The following assumptions are valid for the HP shell element:

1) Transverse dimensions are small compared to lateral characteristic
dimensions.

2) Normal stresses perpendicular to the shell plane are neglected.

3) Transverse shear strains are neglected.

4) The displacements are small compared to the transverse characteristic
dimension. Thus equilibrium may be formulated with respect to the initial
undeformed geometry.

These assumptions are used in all classical theories of thin shells and were first
stated by Love, see ref [44.1].

At the present stage, the HP shell element is rectangular. Thus only shells with
zero Gaussian curvature like cylinders or box type surfaces can be analyzed.



In chapter 4 the problem of geometric non-linearity is considered. Due to the
often large ratio of curvature to shell thickness in shell structures, stability
problems and large deformation behavior is a very important factor in shell
analysis.

As the behavior of the HP shell element is very similar to the stringer method,
the element is especially suited for analyses of reinforced concrete shells.
Applications to reinforced concrete are considered in chapter 5.

Finally, in chapter 6 a number of numerical problems are analyzed.



Chapter 3

The HP Shell Element

3.1 General

A plane shell element can be regarded as a combination of a disk element
containing in-plane actions and a plate element containing bending actions. The
in-plane actions are uniquely described in terms of the in-plane displacements,
u, and u,. Similarly the bending actions are uniquely described by the out-of-
plane displacement u, and the rotations about the x- and y axes 6, and 6,. For
reasons that will be apparent later, the rotation about the z-axis is also taken into
account although this displacement does not affect the element stiffness. .

Introducing the stiffness matrix £ and arranging the degrees of freedom for an
element with N nodes in the vector u:

wl= G w w0 e e, e e G
the relationship between the load vector r and ¥ can be expressed as
ku=r 3.2)



As there is no relationship between the displacements describing in-plane and
bending actions for isotropic, linear elastic shells, the stiffness matrix k is found
by superimposing the stiffness matrix for in-plane actions k, and the stiffness
matrix for bending actions k,.

3.2 The HP Shell Element

The HP shell element is a rectangular plane element defined by four nodes, see
figure 3.1. The side lengths are /; and /,, resp., and the thickness is ¢.

4 3
yl_r
VA X b2
1 5
) 2 ,

Figure 3.1: The HP Shell Element.

In each node 6 degrees of freedom are present, thus the element contains 24
degrees of freedom, see figure 3.2. ‘

The stiffness contributions from the in-plane actions are taken from the HP disk
element, ref [94.1]. This disk element has the following characteristics:

The element is rectangular and has 4 corner nodes

The element has 8 degrees of freedom (x- and y-displacements in each
node) ’ .

Normal forces are concentrated in stringers along the element edges
The in-plane shear force is constant within each element

The side lengths are /; and /,, resp., and the thickness is ¢

10



Figure 3.2: Degrees of freedom in the HP shell element.

Arranging the displacements in the vector 4,

T 1 1.2 2 33 -4 4
w, =, Wy, Uy Uy Uy, By U W) 3.3)

the element stiffness matrix &, is given by:

kitks  ky ~kytks -k ks -k, ks k,
ky  kyks Kk ks -k kg ~ky kg
_kl ks Ky ky+ks -k, ‘ks k, ks k,
-k, ks “ky Ktk k ckks Kk ks 3.4

ks ks -k ks ko ktks K kytks -k,
& ks ko ktkg ko Ktk kg kg
ks -k ks ko kks ko Ktk ok
ky  ckgtkg K ks -k ke ko Kk |

where the constants k,-k, are given by equation (3.5). E is the Young’s Modulus
and G is the shear modulus.

11
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The stiffness contributions from the bending actions k, are taken from the HP
plate element, ref [93.1]. Like the HP shell and disk elements the element is
rectangular, has 4 corner nodes, side lengths /; and /, and thickness ¢. The
physical model of the plate element can be described as a plate coupled to a grid
system, see figure 3.3.

||||||||||||||||||||||||||||

x

Figure 3.3: The HP plate element.
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The grid system consists of four beams connected in four nodes and from each
node a connection to the plate is present. The grid system represents flexural
stiffness and the plate carries torsional stiffness. The mechanical model is shown
on figure 3.4.

Figure 3.4: Mechanical model of the HP plate element.

It is seen, that the connection between the grid system and the plate can be
regarded as a pendulum with hinges in the ends. The length of the pendulum is
infinitely small. This mechanical model makes it possible to specify bending and
torsional rigidities independently. The element is neither a compatible nor an
equilibrium plate element but is an equilibrium element for a transformed plate
consisting of a plate with no flexural rigidity and a grid system with no torsional
rigidity. The stiffness matrix for the HP plate element k, is given by (3.6-7).
I, and I, are the flexural stiffnesses in the x- and y-direction, resp.

13



¢ +P

-C

-c,~P

_cl

-c,~P 0
0 0
N 0
c+P ¢,
G G
[ 0
-¢,~P -c,
c
¢ =
0 0
P 0
0 0
0 0

-¢;,-P ¢,
Cs

- he]

2 2

0 0

P 0

0 0

0 0
-c,-P 0
0 0
-C, 0
c+P ¢
€ G
-, 0

3.6)

14



1 l12
3-E-1
¢, = 5 2
L
I I
¢, = 6E|L + 2
3 3 3
L5
6:E-1,
¢, = n
L 3.7
2°E-L
€ = ———
l?.
2-EI
C =
ll
6-E-1,
c7 = —2
L
3
polp
6 Il

The stiffness matrix for the HP shell element can now be found by combining
the stiffness matrixes for the HP disk and the HP plate element, (3.4) and (3.6).

15
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Due to the constant in-plane shear force within each element and the fact that
bending stiffnesses in two orthogonal directions and torsional stiffness can be
specified independently, this new element is ideally suited for analyses of e.g.
cylindrical shells with stiffeners or reinforced concrete shells. Applications for
reinforced concrete shells are considered in chapter 5.

The element is neither a compatible nor an equilibrium element but is an
equilibrium element for a transformed shell consisting of a disk with in-plane
rigidity, a plate with no flexural rigidity and a grid system with no torsional
rigidity. The element is therefore called the "Hotch-Potch’ shell element or
simply the HP shell element.

3.3 Assembly of Elements

Equation (3.8) yields the element stiffness matrix in the local element coordina-
te system. In order to assemble the system stiffness matrix, the element matrices
have to be transformed to the global coordinate system and then added together.
The method proposed by Zienkiewicz, ref. [71.1] section 11.3 is used.

When not all elements joining at a certain node are co-planar, the transfor-
mations to global coordinates in such a node require the inclusion of an
additional degree of freedom. This is why the rotation 6, was introduced.
However, if all elements joining at a node are co-planar, numerical difficulties
will occur as this introduces equations of the form 0=0 in the governing
equations. This problem is solved by introducing an arbitrary stiffness in such
nodes. This has no effect on the solution, as 6, is uncoupled from all the
equilibrium equations.

3.4 Sectional Forces
After the displacements have been determined the sectional forces can be
calculated. The normal forces and bending moments in each element are found

by multiplying the element stiffness matrix by the nodal displacements in the
element.

The in-plane shear force is constant in each element and given by, ref [94.1]:

3.9

17



where ¢, is the shear strain given by:

b = Yig Y Mo My T Uy Uy Ty~ Uy~ Uy (3.10)
» 2, 2,

The shear force in each stringer is constant and given by (3.11):

Am,
e T Ax
3.11
Am (3.11)
vy = y
¥y Ay

Finally, the torsional moment in each element can be calculated by (3.12), see
[93.1]:

m = -l le Tt T " s (3.12)

18



Chapter 4
Large Deformations of Shells

4.1 General

Structures may under certain loading conditions become unstable for loads of
several orders of magnitudes below the loading causing material failure.
Especially in the case of shells, the phenomenon of buckling is of great
significance due to the prevalent in-plane forces and the fact, that shell structures
are often very -thin compared to the typical dimensions of the structures.

Generally, a body can become unstable in two ways: Bifurcation of equilibrium
or Limitation of equilibrium.

4.1.1 Bifurcation of Equilibrium

In bifurcation of equilibrium a body subjected to increased loading will, at a
certain stage, have two possible paths of equilibrium. An example of this
behavior is the straight elastic column subjected to axial loading. In the beginning
the axial shortening is proportional to the applied load, see figure 4.1.

At a certain load P,,, the well-known Euler load, the path splits into two, as
now two states of equilibrium are possible. In reality the structure choses the
path that yields the minimum elastic energy of the system. The point at which the
load path bifurcates is called the bifurcation point and the corresponding load is
called the stability load. ’

19



Equilibrium path 1

Per]  Equilibrium path 2

Bifurcation
point

Axial shortening

Figure 4.1: Loss of stability by bifurcation of equilibrium.

4.1.2 Limitation of Equilibrium

Loss of stability by limitation of equilibrium is characteristic for structures
which carry the transverse loading mainly by compressive axial forces. The
load/deformation path is continuous with certain maximum and minimum points.
The stability load corresponds to one of these points. An example of a structural
system with this behavior can be found in the so-called snap-through problem,
see figure 4.2.

In the following sections solution methods for the HP shell element for both
types of stability loss are developed.

4.2 The Initial Stability Problem

The general finite element formulation of an incremental large displacement
problem is of the following form, ref [71.1], section 19.2.

20



Py

cr

Axial deflection

Figure 4.2: Loss of stability by limitation of equilibrium.

K - K, - K)-du = dR @.1n
&-K-K)

K is the stiffness matrix, K, the geometric stiffness matrix and K, the large
displacement matrix. The geometric stiffness matrix contains forces correspon-
ding to the additional loads which the in-plane stresses cause due to out-of-plane
deformations. The large deformation matrix represents the non-linear effects of
the strain/displacement relationship which occur in a large displacement problem.

In order to determine the stability load in an elastic bifurcation problem, an
eigenvalue problem, the so-called initial stability problem, occurs, ref [71.1]
section 19.2.

(K - AEyu=0 4.2)

This formulation is only valid when the deformations found in the static
solution cause all components of the large deformation matrix to be zero. This
is the case in problems of the type seen in figure 4.1.

The geometric stiffness matrix k, for the HP shell element will now be derived.
Contributions are present from the in-plane nodal forces.

21



 On figure 4.3 stringer 1-2 is considered. -

Figure 4.3: Determination of contributions from normal forces.

The normal forces in node 1 and 2 are referred to as #, and n;, resp. The mean
normal stress in the stringer, 7n;,, causes a moment about the y-axis which equals
the difference in transversal displacements between node 1 and 2 multiplied by
the normal force. This moment is equivalent to the moment caused by the
vertical forces P;, on figure 4.3, see equation (4.3).

[}
P, = —'mz'l_z'(”s - ) @.3)

Similarly, the vertical forces P,;, P;, and P, due to the normal forces in the
other three stringers are given by:

o~

1
Pyy = —onyy =y — Ug)
2 2
Py =t b - @.4)
T Ay 7 (uy; = uy5) .
1
1 I
Py = ‘2“”41'71'("3 - Uy)
R
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The geometric stiffness matrix for the HP shell element can now be
formulated. In equation (4.5) all non-zero components of k, can be seen:

k(33) = K, + K,

k99) = K, + K,

k(15,15) = K, + K,
= +

k2121) - K, + K, “s

k3.9) = k,9.3) = K,

k3.21) = k(213) = K,

k(9.15) = k(159) = K,

k(1521) = k(21,15) = -K,

The values of K;-K, are given by (4.6):

4.6)

~ I‘»—*N o~ |.NN -~ |‘_N o~ | S

D= N = =
N

In order to solve the general initial stability problem, the following
calculation process is adapted:

1) Load is applied

2) Linear finite element calculation is performed

3) Normal forces and in-plane shear forces are calculated
4) Geometric stiffness matrix is calculated

5) The eigenvalue problem is solved using Lanczo iteration

In most cases only the lowest load factor will be of interest. The Lanczo

method is capable of calculating any number of eigenvalues from the lowest and
upwards (up to the number of degrees of freedom in the system).

23



4.3 General non-linear deformation Path

As mentioned, the solution method described in the previous section can only
be used for problems where the large deformation matrix K, is identically zero.
When this: is not the case, the entire load/deformation path must be followed
using a load incrementation method.

In order to determine the path from zero to a given value, either loads or
deformations are prescribed stepwise and the increments in deformations/loads
are found. For each step equation (4.1) must be solved. However, the effect of
the matrix K; can alternatively be obtained by in each step adjusting the nodal
coordinates in the calculation of the stiffness matrix. Thus (4.1) is reduced to

@.7):

(K - K,)du = dR @7

The stresses must be known in order to find Kg. These can be found in two
ways: .

1) The stresses are adjusted incrementaly so that in each step the increments
in stresses due to the increment in deformations are added to the stress
state in the previous step.

2) In each step the stresses are calculated directly from the strains. This is
possible by using Green’s strain tensor which yields valid strains whether
the deformations are small or large.

As the geometric stiffness matrix depends on the stresses and these depend on
the deformations in the step that is being solved, equation (4.7) must be solved
by an iterative process. The following solution method has been used in order to
determine the load/deformation path for a general elastic geometrically non-linear
shell problem using the HP shell element.

1) Load increment is applied

2) Stiffness matrix is determined from present nodal coordinates

3) Displacement increments are determined by LU-factorization and
back-substitution

24



4)

5

6)
7

8)

9

The total stresses are determined by adding the stress increments of the
present load step to the total stresses at the last load step or directly from
the total displacements using Green’s tensor

Geometric stiffness matrix is determined from total stresses and present
nodal coordinates

Stiffness matrix is corrected by subtracting geometric stiffness matrix
New displacements increments are determined by LU-factorization and
back-substitution

Difference between old and new displacement increments is calculated.
If the difference is larger than a user-specified value go to 5) using new
displacements

Correct nodal coordinates are found by adding displacements, go to 1).

25



Chapter 5

Applications to Reinforced Concrete

In the following chapter, the HP Shell Element will be developed specifically for
calculation of reinforced concrete structures in the serviceability limit state. This
involves introduction of relevant material parameters as well as the inclusion of
additional iterative steps in the solution methods described in the previous
chapter. :

5.1 Introduction of relevant Material Parameters
5.1.1 Disk Behavior

For description of the disk behavior, the following material parameters are
used: '

1) The reinforcement ratios p in each direction
2) Young’s Modulus for steel E

3) Young’s Modulus for concrete E,

4) The shell thickness ¢

5) The shear modulus for concrete G,

The normal stiffness for each stringer depends on whether the stress-state in the
stringer is tensile or compressive. The constants k,-k, in (3.5) are therefore given
by one of two possible expressions of the following type (5.1):

L !
Eop2Vk=tE12 5.1
S l} 2 ll » .

k=1
2

An iterative process has. to be applied in order to determine the correct
stiffnesses, see section 5.2.

26



5.1.2 Plate Behavior
The following material parameters are used for describing the plate behavior:

1) The reinforcement ratios p in top and bottom in each direction
2) Young’s Modulus for steel E,

3) Young’s Modulus for concrete E,

4) The shell thickness ¢

5) The effective depths A, of all reinforcement layers

The bending stiffness D for a cracked reinforced concrete section can be
calculated by (5.2), see ref. [93.1]. .

D =

) 5.2)

The stiffnesses can be calculated independently for each stringer and then used
in the expressions for c¢;-c; in (3.7). ,

The torsional stiffness D,, of an isotropically reinforced concrete slab is
calculated by the following expression, see ref. [93.1].

Xy
k=2 k| |1 Lo (5.3)
2 2k
E, :
ky, = p'F‘

This expression is used in the calculation of P in equatioxi 3.7).
Generally, the flexural stiffness of each stringer depends on the sign of the
bending moment at this position. Therefore and iterative process has to be used.

27



5.2 Changes in the Solution Method

As the normal and bending stiffnesses depend on the sign of the normal stresses
and bending moments resp., additional iterative procedures have to be
introduced in the solution method, see sections 5.2.1 and 5.2.2.

5.2.1 Linear Static Analysis

The signs of the normal stresses and bending moments are assumed. From these
assumptions the element stiffness matrixes are calculated and the deformations
are found. It is then checked whether the assumptions are correct. If just one
fails, a new calculation is performed according to the actual stress states in the
previous calculation. The iterative process stops when all assumptions have been
found correct or after a given number of iterations specified by the user.

5.2.2 Geometrically non-linear Analyses

In an initial stability problem first the linear static calculation is performed as
described in section 5.2.1. On the basis of the sectional forces the geometric
stiffness matrix is calculated and the stability loads are found by the eigenvalue
technique described in section 4.2. ,

In the general geometric non-linear problem, iteration procedures as described
in section 5.2.1 have to be performed in each load step. In order to reduce the
calculation time, as an approximation, the stress-states in the previous load step
can be used to determine Kg.

28




Chapter 6

Numerical Examples

In order to test the performance of the element, the HP Shell element will be
used for analyses of a number of different problems. These are:

1)
2)
3)
4)
5)
6)
7)

Linear analysis of a cylindrical vault

Linear analysis of liquid retaining cylindrical shell
Stability load of a rectangular disk

Stability load of a bridge arch

Stability load of an axially loaded perfect cylinder
Snap-through problem ‘

Stability load of a cylinder with imperfections

6.1 Linear Analysis of a Cylindrical Vault

On figure 6.1 a circular cylindrical roof with radius r loaded by its weight p is

shown.

In order to analyze this problem a cylinder coordinate system is used. Figure
6.2 shows an infinitesimal section of a circular cylindrical shell and the quantities
necessary for fomulating the membrane and bending equilibrium equations.

The membrane force functions are, see ref. [92.1]:

ng = 1P,
1 on,
ng = - (pe + ;a—;]dx 0 6.1)

1 0n,
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Figuyre 6.1: Cylindrical vault.

The functions f; and f, depend on the boundary conditions of the particular
problem.

In the two ends the roof is supported by diaphragms which are able to resist in-
plane deformations but unable to resist out-of-plane deformations. The roof is
also supported in the four corners and on the longitudinal edges in the x-
direction. Thus shear force n,, can be transferred here. Apart from the areas near
the diaphragms where some bending will occur, the displacement field in such

a structure will be pure membrane. Thus the problem is suited for analyzing the
membrane behavior of the HP shell element.

The components of the weight loading are:

Dy = p'sinb

6.2
p, = -p-cosb ©-2)
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Shell forces

Shell moments

Figure 6.2: Infinitesimal element of circular, cylindrical shell.
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As n,=0 in the ends, (6.1) reduces to:

ng = ~p-r-cos@

ng = -2'p-x-sinf 6.3)
P .2 2

n, = ———(* - 4-x%-cosb

* 4-r ¢ )

Assuming Poisson’s ratio »=0 and combining the constitutive and kinematic

relations for a linear elastic, isotropic circular cylindrical shell, the following
relations are obtained:

1 du
€ = —'n, = —
* Et Y &
1 1 (v
e - L., 1w, 6.4)
T Es T (ae W)
b, =2p, =X, 10
®Er® & r o0

Here u is the longitudinal displacement, v the tangential displacement and w the
transverse displacement.

Combining (6.3-4), the deformations (&,v,w) can be found, see equation (6.5).

Etr\3 )
g2 _ 4.2
v = P .(12 - 4.x2>. u + 4| sin® 6.5)
8-E-t 24-r?
g2 2
w=-—2 .2 4x2)-5l X7 1 4l ocosd - 2T cosd
8:E-t 24-r?

A FEM-calculation has been made with the following data:

- Young’s Modulus E=1
- Shell thickness t=0.25
- Length of roof =40

- Radius r=10
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- Due to symmetry only one half of the structure has been modelled (one
quarter of a cylinder). Finite element meshes of (10x10) and (I5x15) have
been used.

On figures (6.3-5), w- and u-displacements at 6=0 and v-displacements at
0==/2 found by (6.5) and by the HP shell element, resp., are compared. The
agreement is seen to be good.
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Figure 6.3: w-displacements at §=0.
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6.2 Linear Analysis of a Liquid Retaining Cylindrical Shell

A liquid retaining cylindrical shell is examined, see figure 6.6.

b
x

‘Figure 6.6: Liguid retaining cylindrical shell.

The pressure from the liquid with unit weight + is given by (6.6):

p, =7 H-x) 6.6)

The following governing differential equation is assumed, see ref. [92.1]:

g3 4 .
Et q_yy.dw , Et

= 6.
o o = w=p, 6.7

E is Young’s Modulus, z is the shell thickness, v is Poisson’s ratio and w is the
transverse displacement.
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Combining (6.6) and (6.7) the following general solution for the transverse
displacement w is obtained, see ref [92.1}:

w = eD-f-(cl-cos(B'x) + cz'sm(ﬁ‘x)) + e ey cos(Bex) + ¢, sin(Brx)) + ‘Y.(}g.?.rz
(6.8)
where:
2\
_ (3-(1-v ))4 6.9)
r2,H2

Assuming that the container is so high, that the constraints at the base will not
be felt at the top, we may set ¢;=c,=0. Furthermore, using the edge conditions
(6.10) at the base:

w=0, forx=0

dw 0, forx =0 : 6.10)

&

the following solution for the radial displacement is obtained (6.11):

w = YE—';Z[H -x - e'”""(ﬁcos(ﬁ'x) + (H - %)-sin(ﬁ'x))} (6.11)

The hoop stress n, and the bending moment m, of the cylinder, see ﬁgure 6.2,
can be derived from (6.11):

ng = y-r-[H -x - HePrcos(P-x) + (% - H)-e"""-sin(ﬁ-x)]

yrt [(_é_ - Hy-eP*cos(p-x) + H-e"""‘sin(ﬁ‘x)]

Vi2-(1 - v®

6.12)
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A FEM-calculation has been made with the following data:

- Young’s Modulus E=1

- Poisson’s ratio v=0

- Shell thickness t=0.25

- Unit weight of liquid y=10

- Height of container H=40, radius r=10

- Due to symmetry only one quarter of the cylinder has been modelled.

For determining the hoop-stresses, a finite element mesh of (10,15) in the -
and x-direction, resp., has been used. All elements have the same size.

In figure 6.7 the results for the hoop stresses obtained by the HP shell element
are compared to (6.12). The agreement is seen to be fine.
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Figure 6.7: Comparison of hoop stresses.
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For determining the bending moments m, the same number of eclements has
been used, but the size in the x-direction has been varied so that the elements
near the base are smaller, see figure 6.8.

10

10

L os
0.5

0.5
los
Los
0.5

1838

Figure 6.8: Element mesh used for calculation of bending moments.

In figure 6.9a and 6.9b the results for the bending moments m, obtained by the

HP shell .element are compared to (6.12). The agreement is again seen to be
good.
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6.3 Stability Load of a Rectangular Disk
The stability load of a plane, rectangular disk, see figure 6.10, is determined.

- The in-plane dimensions (a,b) are (8,8)

- The disk thickness t=1

- Young’s Modulus E=1

- The line load p=1

- An element mesh of (4x8) HP shell elements is used
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Figure 6.10: Stability load of rectangular disk.

The structure looses its stability by bifurcation. The large deformation matrix
is identically zero until the disk buckles. Thus the buckling load is found by an
eigenvalue calculation as described in section 4.2.

The critical load g, is found to be 0.050534. The theoretical value found in ref.
[61.1] is 0.051404, corresponding to an error of 1.9%.

6.4 Stability Load of a Bridge Arch

The stability load for the arch structure seen in figure 6.11 is determined.
For low arches the internal forces in the structure are primarily in-plane and only
small bending moments are present. Thus the large deformation matrix can be
assumed identically zero, and an eigenvalue analysis is performed in order to
determine the stability load.

In ref [45.1] Engelund determines the stability load for a bridge arch as a
function of the arch length » and the radius of the arch r, see (6.13). The normal
force is assumed constant.
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Figure 6.11: Bridge arch.

2 '
N, - (4_“ B} L).E., ©6.13)

E is the Young’s Modulus and I the moment of inertia of the bridge section.
If the term 1/ is neglected, equation (6.14) is obtained. This is seen to be

similar to the Euler load for a straight elastic column subject to axial loading.

n2E

E —( b)z' : (6.14)

The problem in figure 6.11 has been analyzed with the following parameters:
- The dimensions (I,h) are (/50,10+/50)

- The width of the arch is 10
- The shell thickness t=1
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- Young’s Modulus E=1
- The line load p=2
- An element mesh of (I1x8) HP shell elements is used

The variation in normal force along the arch is found to be n=16.45-20.64 and
the critical load factor is found to be A=0.00743043. Thus the variation in the
normal force at the critical load is n=0.1222-0.1534.

The theoretical critical load found by (6.13) is #=0.125. As expected, this is
seen to be almost similar to the lowest normal force found in the FEM-
calculation.

The buckling mode is identical to the buckling mode of an straight elastic
- column subject to axial loading.

6.5 Stability Load of an Axially Loaded Perfect Cylinder

An axially loaded perfect cylinder is analyzed with respect to buckling, see
figure 6.12.

-
e

|
N
T
~.. '/
S —

Figure 6.12: Axially loaded perfect cylinder.
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Assuming that the cylinder is long, that the shell thickness is small and that a
symmetrical sinus buckling form occurs, the critical stress of a perfect cylinder
is according to ref. [61.1] given by (6.15)

o, = —=L 6.15)

y3:(1-v?)
-. The length of one wave is given by (6.16):

! = 2-n-(_’i)4 (6.16)
121

A cylinder with the following characteristics is analyzed:

- The dimensions (r,h) are (20,21.3508).

- The shell thickness ¢=2.

- Young’s Modulus E=1.

- Due to symmetry only one quarter of the cylinder is modelled An
element mesh of (8x16) HP shell elements is used.

The height H=21.3508 corresponds to one wavelength according to (6.16). The
theoretical critical stress according to (6.15) is o,,=0.057735. The result from
the FEM analysis is ¢,=0.058671 which corresponds to an error of 1.6%.

6.6 Snap-through Problem

The beam on figure 6.13 is loaded by the force P. The beam cross-section area
is A, the initial position is given by z and the displacement by w. The initial

length of the beam is / and in the deformed state the length is ’.
~ The structure looses its stability by limitation of equilibrium and is an example
of a snap-through problem, se section 4.1.2. The problem will be examined in
order to check the behavior of the HP shell element for such a problem.

By vertical equilibrium the relation between P and the normal force N is given
by (6.17):
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Figure 6.13: Snap-through problem.

pP=NZW W 6.17)

.(2]2 (6.18)
]

Assuming the material to be linear elastic, the normal force N can be found as:

N =¢eEA (6.19)

By combining (6.17-19), the following relation between the force P and the
displacement w is obtained. :
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P- _E_‘ﬁ‘--(w-zz 2w s —-wa) (6.20)

The problem has been calculated .using the following data:

- The dimensions (L,z) are (8,8/10)
- - The shell thickness r=1
= The width of the beam is y=10
- Young’s Modulus E=1/
- An element mesh of (2x8) HP shell elements is used
- Stresses are calculated iricrementally
- Load is applied as incrementally prescrlbed displacements up to w=8/10

On figure ,6'14 the results obtained for N=10, N=20 and N=40 load steps,
resp., are compared to the theoretical result (6.20). It is seen, that the maximum
load is predicted quite accurately using even the large load steps.

" If the rotation terms in (6.18) are neglected, the following load/displacement
path is obtained (6.21):

E-A

p==4
ZS

(2w + 2 w?) - (6.21)

- The sigﬁiﬁcance of the rotation terms in (6.18) is quite important. The
maximum value of (6.21) is aimost 30% too large. This clearly demonstrates the
effect of the large deformation matrix, see equation (4.1).

6 7 Stablllty Load of a Cylinder with Imperfections

Determining the stability load of thin steel cylinders has been the subject of
many investigations. Generally it is observed, that even very small imperfections
result in much lower stability loads than the theoretical values for perfect
- cylinders. The stability loads of test-specimens are typically below 50% of the
theoretical values.

In 1933 Lundquist and Donell made an extensive series of tests on thin
cylindrical shells, ref [61.1] pp. 468. None of the test specimens showed a
stability load above 60% of the theoretical value. Furthermore, in these tests it
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Figure 6.14: Results for three different number of load steps compared to (6.20).

~ was found that the stability load decreases slightly with increased ratio between
the radius 7 and the shell thickness 7. This was explained as being due to the
bending which occurs on account of the inevitable initial deformations and a
theory accounting for this behavior was developed.

Another important contribution within this field was given by Kdrmdn, ref.
[41.1]. Kdrmdn assumed that the conditions of equilibrium between the stresses
acting in the middle surface of a thin shell can approximately be expressed by the
equations for flat plates. Introducing Airy’s stress function F, substituting the

‘large strain compability equations and the elastic stress/strain equations into F
and assuming a function of the radial displacements, the total strain energy of the
buckled shell can be obtained. The energy of the external compressive force is
then calculated, and the parameters in the assumed function for the radial

48



displacements can be calculated by minimizing the total energy of the system.

The behavior of the HP shell element has been tested by determining stability
loads for cylinders with different imperfections. The following problem has been
examined: '

- The dimensions (k,r)=(4.27016,20), see figure 6.12. The height A
corresponds to the length of one wave according to (6.16).

- The shell thickness t=0.08, thus the r/t-ratio is 250

- Young’s Modulus E=1

- An element mesh of (16x8) in the (x,0)- dlrectlons resp., is used

- Stresses are calculated incrementaly

- Imperfections have been applied in the form of one sinus-wave with ratios
between the amplitudes d and the shell thickness ¢ of %4, 1, 2 and 3, resp.

On figure 6.15 the results of the FEM analysis are compared with the results
obtained by Kdrmdn and Koiter, ref[73.1]. These results have been taken from
[79.1]. P°, is the stability load of a perfect cylinder. The results from the FEM
calculatlon are seen to be between the two sets of theoretical results.

The effect of different r/t-ratios has also been examined. If has been found, that
different ratios yield the same results as in figure 6.15.
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Chapter 7

Conclusion

In this report a new FEM shell element called the Hotch-Potch shell element has
been developed. The element is neither a compatible nor an equilibrium element
but is an equilibrium element for a transformed shell consisting of a disk with in-
plane rigidity, a plate with no flexural rigidity and a grid system with no
torsional rigidity. The element is- based on a simple, mechanical model that
makes it possible to specify bending stiffnesses in two orthogonal directions and
torsional stiffness independently. Similar to the stringer method, the element has
a constant in-plane shear force. The element is ideally suited for analyses of e.g.
cylindrical shells with stiffenners or reinforced concrete shells.

In the report the geometric stiffness matrix for the element is also developed.
This makes it possible to use the element for large deformation analyses.

The stiffness and geometric stiffness matrices have been derived analytically so
that numerical integration is avoided.

The element has been implemented in a FEM programme. The programme is
capable of performing static and eigenvalue analyses as well as general large
deformation analyses by a load increment method. The user may specify bending
stiffnesses in two orthogonal directions, the shell thickness and Young’s
Modulus. The results consist of deformations, reactions, bending moments,
torsional moments, out-of-plane shear forces, in-plane shear forces and normal
forces. Sectional forces are given for each element separately and as node mean
forces. In eigenvalue analysis the user may specify the number of eigenvalues to
be calculated and the maximum number of iteration vectors that should be used
in Lanczo’s method. The results consist of the critical load factors and the
displacement modes. In large deformation-analyses, the user may specify the
number of load steps and results may be obtained for each step.
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The programme has been used for calculating a number of numerical examples.
The membrane and bending behavior of the element has been tested, analyses
have been performed on a flat plate, a bridge arch and a perfect cylinder. The
non-linear load/deformation path of a snap-through problem has been determined
and the influence of different sizes of initial imperfections in circular cylinders
with respect to stability load has been analyzed. All the examples yield very
accurate results, the computational efforts taken into account.
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Notation

b Arch length

d Amplitude

D Bending stiffness

E Young’s Modulus

E, : Young’s Modulus of the concrete
E, : Young’s Modulus of the steel

F : Airy’s stress function

G : Shear modulus

G, : Shear modulus of the concrete
h : Arch height

H : Height

I : Moment of inertia

I, : Moment of inertia in x-direction
I, : Moment of inertia in y-direction
k : Element stiffness matrix

k, : Element geometric stiffness matrix
k, : Stiffness matrix for in-plane actions
k, : Stiffness matrix for bending actions
K : System stiffness matrix

K, : System geometric stiffness matrix
K, : System large displacement matrix
I : Length

I’ : Length in deformed state

I; : Side length

l, Side length

m, : Bending moment about y-axis

m,, . Torsional moment in xy-plane

m, : Bending moment about x-axis

n, Normal force in x-direction

n, Normal force in y-direction

n,, : Shear force in xy-plane

N; : Euler load
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Force

Force in x-direction

Force in z-direction

Force in #-direction
Concentrated force

Euler load

Element load vector
System load vector
Thickness

Displacement vector
In-plane displacement vector
Longitudinal displacement
Displacement in x-direction
Displacement in y-direction
Displacement in z-direction
Tangential displacement
Shear force in yz-plane
Shear force in xz-plane
Transverse displacement
Axis direction

Axis direction

Axis direction

Unit weight

Axis direction

Rotation about x-axis

Rotation about y-axis

Rotation about z-axis

Critical load factor

Poisson’s ratio

Reinforcement ratio

Critical stress

Normal stress in x-direction
Normal stress in y-direction
Transverse shear stress in xz-plane
Transverse shear stress in yz-plane
Radius

Shear strain
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