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Abstract

The report describes a new disk element, used for finite element analysis,
which is based on a simple, mechanical model, that causes normal stresses to
be concentrated in stringers along the element edges and shear to be trans-
ferred by a constant in-plane shear stress field.
The element has a transparent behavior very similar to the stringer method,

and the constant shear stress within each element makes it well-suited for
-analyses and design of reinforced concrete disks.

- The element has been implemented in a finite element programme. Input
and output is of a form that can easily be converted to typical reinforcement
~ detailing.

A number of test problems have been analyzed and the results compared
with various theoretical results as well as with another FEM programme. All
the problems yield very accurate results, the computational efforts taken into
account. :
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Chapter 1
Introductioh

In this report elastic disks are examined. In general, disks are plane structures
which carry external loads by in-plane actions. In the literature an}xlytical
solutions can only be found for quite simple geometries. Therefore disks are most
often designed using simplified hand calculation methods or various numerical
methods.

A commonly used hand calculation method for analyzing concrete disks in the
serviceability as well as the ultimate limit states is the stringer method. However,
this method cannot be used for calculating deformations and crack widths.
Typically reinforcement in the serviceability state is applied based on code
practice and common engineering judgement.

Among the numerical methods, the finite element methods are by far the most
prevalent today. This is due to the fact, that the finite element method is very
suitable for implementation in computer programmes. Furthermore, the
commercial FEM programmes are often coupled to advanced pre- and postpro-
cessors making them very user-friendly.

The significance of FEM programmes for analyses of complex structures is
undisputed. However, it is important to consider the basic assumptions of the
programme and the elements used, before the numerical results obtained may be
accepted as reasonable approximations to the actual conditions.

In this report a new disk finite element is described. The ¢lement is based on
a simple, mechanical model, that causes normal stresses to be concentrated in
stringers along the element edges and shear to be transferred by a constant
in-plane shear stress field. The element has a transparent behavior very analogue
to the stringer method, and the constant shear stress within each element makes
it well-suited for analyses and design of reinforced concrete disks.



'Chapter 2
The HP Disk Element

2.1 General

The HP disk element is based on a simple, mechanical model that causes normal

stresses to be concentrated in stringers along the element edges and shear to be

transferred by a constant in-plane shear stress field. In this section the stiffness

matrix for such an element will be derived. The element is defined from four

corner nodes as seen on figure 2.1. The points 4-D also seen on the figure,

define the midpoints of the four edges. The edge lengths are given by /, and ,
~and the reinforcement ratios by p,-o,.
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Figure 2.1: The HP disk element.



In each of the four cornmer nodes two translational degrees of freedom are

introduced. Thus an element has eight degrees of freedom named u,-u;, see
figure 2.2.
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Figure 2.2: The degrees of freeddm in the HP disk element.

The displacements at the midpoint of each of the four edges are referred to as
U;-U and are calculated from u,-u, as given in equation (2.1).

1 1
U, = 5'(”1 *uy), U, = 5'("2 +uy)
1 1
U, = E’(“a +ug), U, = 5'(”4 * Ug) @.1)
| .
U, = 5-(145 +u), U= —;-(uﬁ + Ug)
1 1
U, = E'.(u‘ +Uy), Ug = E-(u2 + Ug)



2.2 The Element Stiffness Matrix

An infinitesimal element limited by four sections with normals in the x- and
y-directions is considered, se figure 2.3. The disk stresses are the two normal
stresses o, and o, and the shear stress 7,,,.

dx

dy /___’X Ox
' y
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—
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e

Figure 2.3: Stresses in a disk.

In order to determine the terms in the element stiffness matrix &, the normal-
and shear stiffnesses are considered. The normal stiffnesses are concentrated in
stringers along the four edges of the element. The normal stiffness of a stringer
depends on whether the normal stress is tensile or compressive. If the normal
force in the stringer between node 1 and 2, S,,, is tensile the normal stiffness in
this stringer is determined from the reinforcement ratio p,, Young’s Modulus of
the steel E and the element edge lengths as given in (2.2).

|-

k - E-py @.2)

N |3~
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If the normal force S,, is compressive, the normal stiffness is determined from
the disk thickness #, Young’s Modulus of the concrete E, and the element edge
lengths as given in (2.3).
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Likewise the normal stiffnesses k,-k, of the other stringers S,;, S;, and S, are
* determined. It should be noted, that the stiffnesses are determined independently.
Thus it is possible for e.g. stringer S,; to be in tension while stringer S is
in compression.

Generally, the change of angle ¢,, is given from the following expression:

ou, Ou
,¢xy = g + -é;l 2.9

As the shear stress and thus the change of angle within one element is assumed
to be constant, the two terms in (2.4) are determined from the mean displace-
ments U;-Uy:

au, ~ Us; - U,

% LI @.5)
a U-Y

ox ll

Combining '(2.1), (2.4) and (2.5), the change of angle can be determined from
the nodal displacements u,-u; by:

u5+u,,—ul—u3+u4+u6—u2—u8

24, 24,

¢, = 2.6

In the following section, the contributions to the element stiffness matrix from
the shear stiffnesses will be determined. The term k; is determined as the load
corresponding to the degree of freedom i, that must be applied in node i in order
" to obtain a deformation of 7 in the direction of the degree of freedom j.



First, the contributions to k; are determined. The following virtual displacement
condition is chosen:

u =1

2.
0, =0, i=[23..,8] @7

The contribution from the constant in-plane shear stress is concentrated in the
nodes as the forces P,-P;, see figure 2.4.

Figure 2.4: Definition of P,-P,.
Combining (2.6) and (2.7), the change of angle ¢,, is given by (2.8):

P
b =5 2.8)



The external work 4, is determined by the force P; and the displacement u,:

A, =Pl 2.9)

while the internal work 4, is a function of the disk thickness ¢, the shear stress
7,y and the change of angle ¢,

A =t fo o dxdy @.10)
el

However, 7,, can also be expressed as:

T, = 6, G @.11)

where G is the shear modulus which is assumed constant in each element.
Combining (2.10) and (2.11) the internal work A; can be expressed as:

A =t [ ¢, dxdy
el .
=t ¢, G-, dxdy @.12)
el

= tG- ¢, dxdy
el

By combining (2.8), (2.9) and (2.12), P, can be determined by putting the
internal work equal to the external work:

(2.13)



In order to determine P;, P; and P,, the equations (2.14)-(2.16) are used. The
sum of the forces equals zero:

‘ P, +P, +P;+P, =0 (2.149)

Equilibrium in section 1-1 (in the x-direction), see figure 2.4:

P, + Py =v -lt= —E-G-t'— @2.15)

P+ P =0 2.16)

I
P, = lera
4 I,

1

P, --lgp 2.17)

4 1

1

P, - -l

4 1,

In order to determine P,, P,, P; and Py, only three equations (2.18)-(2.20) are
available. The sum of the forces is zero:

P, +P, +P,+P, =0 (2.18)

Equilibrium in section 1-1 (in the y-direction):



Py +P, =0 2.19)

16 2.20)
2 ,

1
P, = -Gt
2 4
P, = -1
‘1* 2.21)
P, = -——-Gt
¢ 4
P, - Lg:
4

Similar to the above method, the contributions from the shear stiffnesses to the
elements ky, ky, ..., kg are found.
* The element stlffness matrix for the HP disk element can now be determined,
see equation (2.22-23).

kitks ko ckrks ok ks kg ks k, 1
k  ktks K ks ko ks Tk Kk

ktks ko Ktk ko ks ko ks k,
k& ks ko Ktk ko ke K ke 2.22)

10



1 2 1 A
k. = —-E -2 V&k = =E-t+2
1 2 s p1 ll 1 2 © ll
1 L 1 A
= _+E-p.-—V = ZF-pr L
k2 2 s p2 12 k2 2 c lz
1 l 1 L
k., = —E- _V = —«F «f- =
3 2 s p3 l1 k3 2 (3 ll
1 L 1 L 2.23)
k,==E‘p,—-Vk ==E-t-2> )
4= 5 s Pa I, 4 = 5 e A :
l
.
4 L
I
k=L
4 A
k7 = _i_.G.t

2.3 Sectional Forces

From the nodal displacements, the sectional forces defined on figure 2.5, can
be found.

e oA

X

——>ny,
/ Dy

o

X

Nyy

Figure 2.5: Definition of sectional forces.
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The normal forces are found by multiplying the element stiffness matrixes by
the element nodal displacements. This yields the normal forces in each element
node.

The shear force n,, is given by (2.24). The change of angle ¢,, is given by
(2.6).

2.29)

2.4 Comparison with Consistent Element Formulation

In table 2.1 the corner forces P,-Pg (us=1, u;=0, u=[1..8] | 5) are compared
with the equivalent consistent forces found by energy principles and using the
displacement field (2.25) (coordinate system defined on figure 2.2):

u, = o 2.25)
u, = 0
HP element formulation Consistent element formulation
P, 1/3-L/l,-E-t+1/3-1,/l, Gt I/2-L/, E-t+1/4-1,/1,Gt
p, 1/4-G-t 1/4-G-t
P, -1/3-1/1,-Et-1/6-1,/1,-Gt 172:L/ B+ /4L /LGt
P, - -1/4-Gt ' -1/4-G-t
P, -1/6-L/1,-Et-1/6-1,/1,:Gt -1/4-1,/Ly Gt
P, -1/4-Gt ‘ -1/4-G-t
P, 1/6-L/1,-E-t-1/3-1/1, Gt -1/4-1,/1,Gt
P, /4Gt 1/4-G-t
Table 2.1: Comparison of nodal forces. v

12



If the element is given a pure axial or a pure shear deformation, the nodal
forces of the HP element are equivalent to the nodal forces of the consistent
element. Only in cases of combined normal and shear deformations, differences
are present.

In section 4.4 a comparison between the HP element and a standard four node
consistent element is presented.

13



Chapter 3

Implementation in FEM Programme

The HP disk element has been implemented in a FEM programme. In this
chapter, the fundamentals of this programme will be described. The description
is not intended as a documentation of the programme, but as a general
explanation of the methods used.

For each element the reinforcement ratios in both sides and both directions,
Young’s Modulus for the concrete and the disk thickness can be specified. The
element stiffness matrices are then found and the global stiffness matrix
assembled.

As the stiffness of each element depends on whether the stringers are in tension
or compression, the final solution is found by an iterative process:

1y

2)

3)

4)

The user can specify whether the programme assumes all stringers to be
in tension or in compression in the first iteration. The element stiffness
matrices are then calculated and assembled to a global stiffness matrix.
The global equations are solved by LU-factorization and back-sub-
stitution. Based on this solution the normal strain in each stringer is
calculated. :

For each stringer it is now examined whether the initial assumption of the
stress field (tension/compression) is correct. If this assumption is not
correct for all stringers, the assumptions are reversed for the stringers
with a stress field being in disagreement with the first solution and a new
calculation is performed based on the new stress-field.

The process of iteration continues until all assumptions are found to be
correct. The user can specify a maximum number of iterations.

14



In each node, displacements and sectional forces are given as results. Further-
more, the element sectional forces and the node mean sectional forces are
calculated. Finally the reactions at supported nodes are given.

15



Chapter 4

Numerical Examples

The element has been tested for isotropic, linear elastic material behavior in a
number of problems. These will be described in the following sections. The
problems examined are:

1
2)
3)
4)

5)

Fixed I-girder loaded by shear force

Fixed I-girder loaded by bending moment

Fixed solid girder loaded by shear force _

Fixed solid girder loaded by bending moment - comparison between HP
and consistent Element

Disk loaded by splitting force

Multiple span deep beam

In all of the examples the value of Young’s Modulus and the disk thickness is 1.

4.1 Fixed I-girder loaded by Shear Force

As the HP disk element concentrates the normal stiffnesses in stringers along
the element edges it must be expected to represent box-girders, 1-girders and
stiffened panels accurately, as the moment of inertia in such girders are
concentrated along the edges.

Two different fixed I-girders with the following characteristics are examined.

The depths & of both beams is 1

The lengths [ of the two beams are 8 and 4, resp.
The finite element mesh is in both cases (N,M}=(I ,8)
The girders are fixed in one side

The load P is 10

16



Geometry, element mesh, supports and load can be seen in figure 4.1.

T =

Figure 4.1: Fixed box-girder loaded by shear force.

On figure 4.2 and 4.3 the calculated deflections are compared with the exact
solution for a shear beam. The maximum errors are in both cases below 0.40
percent.
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Figure 4.2: Deflection of I-girder, I/h=38.

17



h ' 1 1 1
E ! [ |

] 1 ! | (

] ' | 1 '

i 1 1 | '

B0+ ----—-- P | i I g |

] ! | 1 t

3 ! x#xak HP—dlement ! !

3 :!-_“_' Exact solution : :

4 ) [ ' 1

80+ - ~—---- P S | S | AU 1

1 o [ ' |

1 i i ' 1

o] ] t i t !

b t t ' 1

p ' i | |

403 - - —— -~ S b e e |

b i ' [ 1

] ' | 1 !

3 f ! 1

4 1 [ 1 l

4 1 | | |

204+ - -~ == — do L . U [ U {

h ! | [ 1

] 1 ) [ 1

3 | ) 1

a ¥ i i i

] t [ l !

0 e e

0 4

X

Figure 4.3: Deflection of I-girder, I/h=4.

4.2 Fixed I-girder loaded by Bending Moment

A fixed girder is loaded by a pure bending moment. This causes constant
stringer forces and a constant curvature k. When using the HP disk element for
such a problem, the curvature will be exactly determined compared with
Bernoulli beam theory and thus the deflection as a function of x, the distance
from the support, is given by (4.1):

Ty M 2 @.1)
2 El

where M is the bending moment and / the moment of inertia of the beam.
As expected, the calculated solution has been found to be in exact agreement
with the theoretical solution.

18



4.3 Fixed solid Beam loaded by Shear Force

A solid, rectangular beam with the following characteristics is examined, see
figure 4.4:

N8 |

~

Figure 4.4: Solid beam fixed in one end.

- The depth % is 5 and the length [ is 20

- An element mesh of (N,M)=(8,10) is used
- The beam is fixed in one end

- The load P is 10

As the HP disk element concentrates the normal stiffnesses in stringers along
the element edges the element unavoidably leads to an error in the representation
of the moment of inertia of the beam. A section of a solid quadratic beam
divided into N layers in the depth (same thickness) is seen on figure 4.5.

The local moment of inertia with respect to the local center of gravity for one
layer is given by (4.2). '

2
1 =26t [t @.2)
oe 2-N \2'N

The distance 4, to the center of gravity of layer / is given by (4.3).

19



*
i=N
d;
= h
i=2
i=1
. b .
Figure 4.5: Beam section divided into N layers.
d - (—g - -;’71] . 2le . i€[1,2,..,N] - @3)

([ﬁ ] _h_.,~] . ;)’.%.b \ 2-b-—h—-(—’l;)2] @.4)

For the examined problem, the moment of inertia calculated by (4.4) is
I=10.625. The true moment of inertia is ,=10.4166 so the error introduced is
two percent. On figure 4.6 are shown deflections found by the FEM calculation
compared with the theoretical deflections for a shear beam. The maximum error
is 1.7 percent.

20
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Figure 4.6: Deflection along solid beam fixed in one end.

4.4 Comparison between HP and Consistent Element

In order to examine the behavior of the HP element and a standard four node
consistent element, a solid beam is examined.

- The depth 4 is 1 and the length / is 8
- The beam is fixed in one end
- The load is a moment load of 1 at the free end

Two analyses are performed:

- M=10is kept constant, N={5,10,20,49}
- N=40 is kept constant, M={1,2,6,8,10}

N and M are defined on figure 4.4.

21



The deflection at the free end divided by the theoretical deflection for a
Bernoulli beam 7, as a function of the number of elements for the HP element
and the consistent element, resp., can be seen on figure 4.7 (M constant) and

~ figure 4.8 (N constant)

1.00 _ "
] - -
0.75 ¥
~
-
~
-
~
-~
- ~
- *xxkx HP element
£ 0.50 - P *%¥%x Consistent element
0.25
0.00 T T T T T v T )
L] 7 8 ° £ 3 4
10 N

Figure 4.7: Deflection at free end, M=10.

On figure 4.7 it can be seen that for the HP element, any number of elements
in the longitudinal direction yield the same result. The error is equivalent to the
expected one, see section 4.3. The results from the consistent element strongly
depend on the number of elements in the longitudinal direction.

For a constant number of elements in the longitudinal direction, it can be seen
from figure 4.8 that the number of elements in the depth has no significance for
the results yielded by the consistent element. This is due to the fact that the
displacement field (2.25), like in Bernoulli beam theory, assumes linear strain
distribution. For decreasing values of M, the solution found by using the HP
element is seen to converge against the solution that would be correct, if the
beam was of box- or I-profile type, see section 4.2.
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Figure 4.8: Deflection at free end, N=40.

From the results it is seen, that compared to the standard consistent element,
the HP element is well suited for analyses of stringer type problems.

4.5 Disk loaded by Splitting Force

A quadratic disk is subjected to tensile stresses by applying compressive forces

on two opposite edges, see figure 4.9. The problem is defined by the following
parameters:

- The side length [ is §

- Due to symmetry only a quarter of the disk is modelled
- The disk is loaded by the two forces P=2

- An element mesh of (N,N)=(6,6) is used

Splitting tests are used to determine the splitting tensile strength of concrete
cylinders. A typical section of the arrangement of a splitting test of concrete

cylinders can be seen in figure 4.10.

23
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Figure 4.9: Disk loaded by splitting force.
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Figure 4.10: Splitting test with concrete cylinder.

The cylinder is loaded by a line load on two opposite sides. If the width a of
the loading plate is less than about one tenth of the diameter d, the tensile
stresses o, in the section through the two line loads caiculated by linear elastic
theory is within 1 percent given by (4.5), see /6/:
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In the middle part, the results from splitting tests with cubic test specimens

must be expected to be almost identical to the results from cylinders.

On figure 4.11 the results from the FEM calculation is compared with equation
(4.5) and results found by the commercial FEM programme ANSYS. The results

are almost identical ({=d).

0.0 ;
4 1
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-0.2 ] !
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] 19
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- 3 175
0.6 3 I&
E I
1 o
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0.10 o .20 C.30
X

Figure 4.11: Comparison of tensile stresses o, in a splitting test (x=0).
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4.6 Multiple Span Deep Beam

A multiple span deep beam loaded by an uniformly distributed load is
examined, see 4.12.

NN NNy

2t 2, 2 ., 2t

Figure 4.12: Multiple span deep beam.

If the ratio between beam depth and span is less than 2/5, results using the
Navier’s formula yields quite accurate results, see ref. /3/. For larger ratios, the
effects of the shear strains will result in substantional errors, and such a structure
should be analyzed as a plane stress problem.

Generally, a plane stress problem for an isotropic disk can be reduced to one
4th order partial differential equation (4.6) by introduction of Airy’s stress
function F. The stresses are obtained by deriving F with respect to x and y, see
@.7).

FF ., FF | FF _

+ OF (4.6)
ax4 ax2ay2 ay4

The solution of the compatibility equation (4.6) must fulfill certain boundary
conditions. The problem can be solved using Fourier transformations. This was
first done by Bay, ref. /1/ and Dischinger, ref. /2/. In /3/ Theimer used the
solution method proposed by Dischinger to obtain solutions for a number of
problems of the type shown in figure 4.12.
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The problem shown in figure 4.13 has been analyzed using the HP disk
element.

L n-10 &
|

—_— —

M=20
.I
A
K ¢ ~—t Fp—al’
e

Figure 4.13: Disk problem.

The following data was used:

- h/l-ratios of 1 and 2/3, resp., are examined

- A line load of p=1 is applied along the bottom face edge
- The b/l-ratio is 1/10, the ¢/l-ratio is 1/10

- Due to symmetry only one half of one span is modelled
- The total number of elements is 200 (N,M) = (10,20)

On figures 4.14 and 4.15 the normal stresses o, in the vertical section in the
mid of the span found by the HP disk element are compared with the theoretical
solutions by Theimer. As seen there is a good agreement between the results.

On figures 4.16 and 4.17 o, in the vertical section through the middle of the
support is shown. Again there is a good agreement between the results.
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Chapter 5

Conclusion

In this report a new FEM disk element called the HP disk element has been
presented. The element is based on an extremely simple, mechanical model that
“causes normal stresses to be concentrated in stringers along the element edges
and shear to be transferred by a constant in-plane shear stress field. An analytical
element stiffness matrix has been derived so that numerical integration is
avoided. ‘ :

The element is particularly well-suited for the design of reinforced concrete
disks. The behavior is very similar to the stringer method and thus input/output
is of a form that can easily be converted to typical reinforcement detailing.

For each element the following input data are given: reinforcement ratios in
both sides and both directions, the disk thickness and Young’s Modulus for
concrete. As results reactions, displacements, normal forces (unit N/m) and in-
plane shear force (unit N/m) are given. The sectional forces are given for each
element and as node mean forces.

The programme has been tested in a number of numerical examples and the
results compared with various theoretical results as well as with another FEM
programme. All the examples yield very accurate results compared with
theoretical solutions taking the computational efforts into account.
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Notation

Width
External work
Internal work
Width
Diameter
Distance to layer i
Young’s Modulus of the concrete
Young’s Modulus of the steel
Airy’s stress function
Shear Modulus of the concrete
Depth of beam
: Moment of inertia
~ Moment of inertia
'Element stiffness matrix
Terms in element stiffness matrix
Length
Edge length of element
Edge lenght of element
Bending moment, integer value
Integer value
Normal force in x-direction
Normal force in y-direction
Shear force
- Line load
Concentrated load
s - Nodal forces
Deflection
Displacement in x-direction
Displacement in y-direction
Degrees of freedom in element »
Displacements at midpoints of the four element edges
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<R ™ U

Normal force in stringer
Disk thickness
Coordinat direction

Coordinat direction

Curvature

Shear strain

Reinforcement ratio in stringer 1-4
Stress in x-direction

Stress in y-direction

Shear stress
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