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SYNOPSIS

It is well known that the load carrying capacity of reinforced
concrete slabs with horizontal restraints can be several times
that found by the yield line theory.

The way in which the theory 6f perfectly plastic materials can -
be used to derive expressiohs for the load carrying capacity
for reinforced concrete slab‘strips with hérizontai restraints
at the edges will be demonstratéd here.

For slab strips, the deflection at maximum load is a very impor-
tant parameter. A simple expression for the deflection as a
function of the slenderness of the slab is derived.

The theory is compared with test results and the agreement is
found to be satisfactory.
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Distance from support to load.or half the slab length.
width of slab strip. '

Effective depth for the bottom reinforcement.
Effective depth for the top reinforcement.

Uniaxial compressive strength of concrete
(measured on 150 x 300 mm cylinders).

Yield strength of reinforcement.
Depth of slab. '
Load factor.

Slab  length.

Dimensionless moment.

Moment, my = thzfc .
Dimensionless membrane moment.
Membrane moment my = m h*f_ .
Dimensionless moment of reduction.
Uniform load.

Line load.

Increment of the deflection.
Deflection at mid-span.

Cross-sectional area of the bottom reinforcement.
Cross-sectional area of the top reinforcement.
Horizontal force.

Total load on slab.

Total load obtained in test.

Total theoretical load carrying capacity.

Total load carrying capacity,according to the yield
line theory.

Total membrane load carrying capacity.

Total reduction in the load carrying capacity.
External work.

Internal work.

The ratio between the bottom reinforcement in
compression and that in tension.

The ratio between the top reinforcement in
compression and that in tension.




Relative effective depth for the bottom
reinforcement, vy = d/h .

Relative effective depth for the top
reinforcement, y' =4'/h .

. Relative deflection at mid-span, §=w/h.

Slenderness of slab A = &/h .

-Effectiveness factor.

Compressive .zone relative to the depth h . A f

Mechanical degree of bottom reinforcement ¢ =T%?Z'

' ) ) A'f
Mechanical degree of top reinforcement ¢'= WEEX .
c



2. INTRODUCTION

In normal first-order calculations based on the theory of plasti-
city, the changes in geometry are not taken into account. As is
known, this normally gives good results when comparing theory
with test results. Since slabs are often flexible structures,

the changes in geometry sometimes have a considerable effect

on the load carrying capacity. This is known as the membrane
effect. For small deflections, the compressive membrane effect
predominates, and for larger deflections, it is the tensile
membrane effect which predominates. In a simply supported slab,
only tensile membrane action is normally considered, but in a
slab with horizontal restraints along the edges, depending on
the size of the deflection, both compressive and tensile membrane
actions may be present.

A simple explahation of the compressive membrane action is pre-
sented here. In pure bending of reinforced concrete with small
steel ratios, the neutral axis is at failure, very close to the
'compressive surface of the concrete. This means that pure bending
is accompanied by extensions of the centroid. If the support con-
ditions are such, that these deformations cannot take place (hori-
zontal restraints), failure corresponding to pure bending cannot
occur. The neutral axis must be forced down towards the controid
of the section, which requires that large compressive membrane
forces must be supplied by the support. The compression zones in
this case are of the order of half the slab thickness, and the ul-
timate moment, and therefore the total load is very high.

A slab strip, having horizontal restraints along the supports,
typically has a load carrying capacity, which is from 3 to 6

times the normal yield line strength. If the ultimate strength
due to membrane action could be taken into account in a simple
way, it would be possible to utilize these large reserves. Expres-
sions for the total load carrying capacity of a slab strip with
horizontal restraints along the supported edges will be attempted
to be found in this paper.




3. BASIC ASSUMPTIONS

The theory of plasticity is appliéd. In the calculations, the
lower and the upper bound theoremsare used to develop expressions
for the ultimate load carrying capacity. In the upper bound cal-
culations, the yield line concept for plane stress. is uséd to find
the dissipation.

The concrete is assumed to be a rigid,plastic material. Coulomb's
failure criterion, together with a limitation of the temnsile strength,
the modified Coulomb failure criterion, is used as yield condition.
The tensile strength is considered to bevzero.

The well known fact that concrete is not perfectly plastic is taken
into account by reducing the uniaxial compressive strength fc by
the effectiveness factor v . The effective plastic strength is then

taken to be fcp = vfc .

The reinforcement is assumed to be rigid-plastic and to carry only
longitudinal stresses. Thus, dowel effects are not taken into account.

4. THEORETICAL LOAD CARRYING CAPACITY

The load carrying capacity of a slab strip with horizontal re-

straints along the supported edges is found by using both the lower
and upper bound theorems.

In connection with the lower bound calculations, the concept of "mem-
brane moment" is defined.

4.1 Lower bound solution

A plain concrete slab strip with a line. load and horizontal re-
straints at the edges is considered, see figure 4.1.1.
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Pigure 4.1.1: Slab strip with horizontal restraints and loaded with a
line load. The deflection is zero.

A lower bound solution in this case can be found to be

a[/1+(§)2—1] (4.1.1)

where the geometrical parameters x, , a and h are shown in

P = vfcxo = vfc-

[N

figure 4.1.1. The same solution is found for beams without shear
reinforcement, see Nielsen [84.1].

For h/a << 1, (4.1.1) can,with good approximation,be written as

2
vE, h® . : (4.1.2)

Y
FSEN

P =

If the width of the slab strip is b , (4.1.2) can be rewritten as

o, =bk.1 2
P = pb = 27 vfc h ' F4.1.3)

(4.1.3) is based on the assumption that the deflection w under
the line load of the slab is zero. If the deflection is other than

'zero, the load Carrying'capacity can be found by replacing h- by



the effective depth (1-8)h , where 6§ = w/h is the relative
deflection under the line load, see figure 4.1.2.
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Figure 4.1.2: Slab strip with the deflection w = &h under' the line load.

The expression for the loaa carrying capacity as a function of the
deflection 6 = w/h , is then found to be

P = pb =

alg

1 201 _58)2
) vfc11 (j §) (4.1.4)

Introducing the membrane moment, m

M,as

f

my, = vfch2(1-6)2 ' ‘ . © (4.1.5)

the expression for the total load éarrying capééity (4;1;4)'can be
written as

M “(4.1.6)



The expression for the membrane moment (4.1.5) can be rewritten as
I 1
my = (jh('l 6))\ch- (—2*h(1—5)) (4.1.7)

It can be seen that stresses in two cross sections give rise
to the membrane moment. The compression zones have a depth of
%h(1 - §) and the distance between the resultant forces is

ha -6 .

Figure 4.1.3: The load carrying capacity for a plain concrete slab strip
with horizontal restraints at the edges, as a function
of the relative displacement under the line load.

In figure 4.1.3 the load carrying capacity (4.1.6) is given as a
function of the relative displacement & . The load carrying capa-
- city approaches zero,when the relative displacement, § , approaches
one. This is because the effective depth of the crosszsection ap-

.proaches zero, whereby a compression arch cannot be established.

4.2 Upper bound solution

A slab strip similar to that in the previous section is considered,
but now it is assumed that the slab is reinforced with tension and



compression reinforcement , see figure 4.2.1.

The load is assumed to be symmetrical about the centre line of
the slab, but otherwise arbitrary. A failure mechanism with

yield lines along both edges and along the centre line is con-
sidered.

T

Figure 4.2.1: Slab strip with a deflection w= Sh in the middle and tension
“and compresston reinforcement. ,

Giving the deformed slab, shown in figure 4.2.1, an incremental

deflection, w , at mid-span the internal work dissipated in

the structure can be written as
= 2 _V_‘i .1_ P 2 7- - L [
_WiFth fc a[z\)(ﬂ E-8)2+E?) + (y-1+E+8)0+ (v £)e

+ (y—1+g)aq>+(y'—£—a)6<i>'] (4.2.1)

The symbols used, can be found in figure 4.2.1, where it is as-
" sumed that the reinforcements, a & and BR®' are alWays in com-—
- pression zones, S ;

_By minimizing thevinternél work with respect £qfthé_}él§tivé-depth of
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the compression zone £ , the optimal value for & 1is found to be
-1 o1 ;
LE=5(1=8-0((1+a)e = (1+8)8")) (4.2.2)

Inserting (4.2.2) into (4.2.1), the internal work can be written
.as

= w 1+a Pyt =3B 6

Wi~:2bh2 fca[(1+a)¢(y-v 55— 0) + (1+B)0' (v -5+ ¢")
B L i4ta 1 . 148 .,
-5(1+o)&(1 = 75 Q)—5(1+B)<I> (1 =—=—2")

2v

+36((1-a)0+ (1= 8)8") + 55 (1 +0) (1 +8)00"

+%(1-6)2] ' (4.2.3)

Definin m m
efining T L and I as

. ‘ 1 '
mo= ey - va (v = Eh 4 ar(yt - 3oy ger (v - B

+ T(a+ )00 ~ (a0 +BO) | (4.2.4)

m, = 2—1\)(1 fcx)H +B)<I>CI>"+%—(S((1 -a)d+ (1 -B)CD')v

-1 i ro)e, 1 vpA1tBg)er
5(1+0a)o (1 55 ) —g(1+8)e (1 5y )
) v 220 .

+ 08 (1 = 3) +B8' (1 -=5) . . (4.2.5)

m = %(1 -68)2 - . (4“.2>.'6)

m

(4.2.3) can be transformed into the more compact form.



= 2¢ W .
wi— 2bh fc a[m+mn+mm] (4.2.7)
As can be seen from (4.2.4), m is the normal bending yield moment
and, as in the previous section, m. represents the membrane mo-
ment, according to (4.1.5). m can be interpreted as a reduction,

caused by the combined bending and membrane actions.

Thekéiéernal work is
W= L.pw (4.2.8)

e kﬂ.

where the load factor kz is shown in figure 4.2.2 for some com-

mon arrahgements of loading.
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Pigure 4.2.2: Examples of load factor k, for different arrangements'df loading.

Using the upper bound theorem,the expression for the total load

carrying capacity can be written as

b . :
T me+mn-+mm] (4.2.9)
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(4.2.2)-(4.2.7) and (4.2.9) are only valid when & > 0 . From this

condition, we find, using (4.2.2) that

s<1-t(rrare-(1+pe) - (4.2.10)

Minimizing (4.2.9) with respect to § , and inserting o = B = 0
for simplicity, we find

5:1_%m+¢w (4.2.11)

which corresponds to the minimum value for the load-deflection
relationship.

Inserting (4.2.11) into (4.2.5) and (4.2.6), m and m are gi-
ven by

mm=-;t}n=;11;(<1>+d>')2 L (4.2.12)
The only term ieft'in the expreesion'(4.2.9) is m. Using 8 determined
from (4.2.11), the depth of the compression zones at mid-span and at
the edges are found to be

-g-om=2n , em=%n (4.2.13)

<|e

This corresponds to pure bending in the middle and the edge sections,
respectively. Therefore this is the same solution as obtained by a
normal yield line calculation.

The load carrying capacity, (4.2.9), is shown as a function of the
relative deflection, § , for some cases in figures 4.2.3 and 4.2.4.

The solution shown, can also be found by using a three dimensional
method introduced by Calladine [68.1]. The three dimensional method
is used in Andreasen [85.1] and Andreasen & Nielsen [86.11.
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Figure 4.2.3: The load carrying capacity as a function of the relative
deflection & . Curves for different values of & .
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Figure 4.2.4: The load carrying capacity as a function of the relative
deflection & . Curves for different values of Vv .
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5. THEORY COMPARED WITH TESTS

The theoretiqéitégpféssions for the load carrying capécity from
the previous‘éeéﬁion cin be compared with results of tests on
slap strips. Only7the main results of this analysiszill be gi-
ven here. A more thoroﬁqh description is given‘iannareasen
[85.1]. )

The tests are reported in Roberts [69.1] and Birke [75.1]. From
Birke only test series 2 is included in the analysis.

The load carrying capacity (4.2.9) can be written as

_ T (5.1)
P = PJ+PN+PM
where
P P P
J b N b M b
=k, = m , =k, - m , =k, T m (5.2)
h2f ‘ L hzf 2 % "n h2f 2 T .
c S Te c
The load carrying capacity obtained in the tests, Ptest ; is com-
pared with P in (5.1). The mean value and the standard deviation

of the ratio test/theory were about 1.00 and 0.11, respectively.
To calculate Ptheory' the relative deflection obtained in each test
was used. The effectiveness factor, v , as a function of the uni-

axial compressive cylindrical strength fc was taken to be

Vv =é'8

©

+ 0,16 (fc in MPa) (5.3)

o

The 58 tests (36 from Roberts and 22 from Birke), covered the

following range df parametefs:‘ ) ’
- fc between 14 and 45 MPa
-0 between 0O-and 0,192
- & between 0,08 and 0,31
- A betwéén?ioiana'ZQ‘

- o =.B =9¢' =0

As the theoretical expression is complicated,.an éttempt to sim-
plify it has been made. Expression (5.1) is modified as



-5 -

P=P_+P S e ey (5.4)

where (5.2) Stlll is valld.

In (5.4) the term which takes into account the comblned bendlng
and membrane actions, 1s‘dlsregarded. Thus the effectiveness factor
v must be reduced, compared to the value in the theoretically

. correct anal§51s. PN is therefore 1ncluded in the reduced v
value. When comparing (5. 4) with the test results, the reduced
value Vv can be calculated from

v = a + 0.14 (fc in MPa) : . (5.5)

(5.5) is identical with expression (5.3), multiplied by 0.9.

~Using (5.4) as the theoretical load carrying capacity, where v

- is determined from (5.5), the mean and the standard deviations. of
the ratio test/theory were 1.01 and 0.14, respectively. The re-
sults from the two analyses are almost identical.

Christiansen & Frederiksen, [83.1] and [83.2], showed by means of

an empirical analysis that the load carrying capacity of slabs
horizontally restrained along. the edges could be found by an expres-
sion similar to (5.4). The contribution from the membrane action,

PM , is, in their expression, a constant multiplied by h f . The
constant depends on the-degreevof horizontal restraint. .

From expression (4. 2'6), it can be seen that the membrane moment
m amongst other thlngs, depends on the relative deflection § .
As m, 1s a functlon of (1- 6) , a change in § results in a re-
latlvely large change in L when & . lies between 0 and 0.5.
Since the deflection of slab strips at maximum load normally lies
within that interval, it is important, that the deflection can be
‘determined very accurately This problem is dealt with in the next
sectlon.
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6.  THE RELATIVE DEFLECTION

The relative deflection, § , is, as we have just seen, a very im-
_portant parameter for determining the membrane moment. In this "’
séction a simple method for determining & - will-be shown.

The slabsbaré,diéided into two group: ohe'group having "rigid"
horizontal restraints and the other group having "normal" hori-
zontal restraints. A"rigid"restraint is a restraint which prevents
any horizontal displacement at the edges; and a"hormal"restraint

is a restraint which does not prevent horizontal displacements,

but still offers resistance to the vertical displacement. A slab
with normal restraint is comparable to slabs built in normal prac-
tice. The slabs having rigid horizontal restraints are dealt with
first.

Many of the tests from Roberts [69.1] and Birke [75.1] analysed in
the previous section, had rigid horizontal restraints. For these test
and for test series ']l from Birke, the relative deflection §, as a

function of the slenderness ratio X = &/h is shown in figure 6.1.

As - _

0.3 :

. _ | | | /””,”'
1 s

Pl

o +ROBERTS [69.1]

S « BIRKE, SERIE 2 [75.1]

o ' o BIRKE, SERIE 1 [751] N

4___—00’ l . | I
5 10 15 20 25 30

041

P

Figure 6.1: The relative deflection as a function of the slenderness ratio for
tests with rigid horizontal restraints.
The curve showm, is derived from (6.8), inserting p = 0.0035.
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Besides the test results, a theoretical curve is shown in figure

6.1.. The derivation of this curve is presented in the following.

The slab strip is assumed to be deformed, as shown in figure 6.2.

B

~)-
o
e

: Ton
h : ‘ .

Ah
=

—— e

Figure 6.2: Slab part with deflection &h in the middle and a horizontal
displacement Ah at the edges.

The relationship between the horizontal displacement, Ah , and
the vertical deflection, 6h , is found to be '

Ah"—"2——-6h=%-6h (6.1)

If the slab has a rigid restraint, this displacement can not take
place. The horizontal displacement is therefore taken as a defor-
mation inside the slab. The internal horizontal deflection,,Aih ,
for half the slab can be determined by

1, B
Ash = EA

N 2

(6.2)

N

H is the horizontal force (per unit length)v
E is an effective modulus of elasticity (elastic-plastic)

is an effective cross-sectional area necessary for carrying

the horizontal force.
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The horizontal force can be written as
H = E'h.vfc . . ©(6.3)

where &' is the relative depth of the compression zone, disregar-
ding the influence of the possible reinforcement.

Inserting = (6.3) into (6.2), and using A = T+h , yields

- Vfc
Ash = =g «Ah - &' (6.4)

Equating (6.1) and (6.4) the following expression for the relative
depth of. the compression zone is found

26
g'= ohT - (6.5)
where
T (6.6)

The internal‘momént per unit length M can be written as ~

EE;‘F=E'(1—5'-6) | (6.7)
£' determined from (6.5) should not be éonfused.with the expres-
sions for £ in section 4. The relative compression zone § is
determined from the plastic calculations, while £' takes into
account the elastic-plastic behaviour. :

‘The value of § = 60 , which gives the maximum internal moment, can
be found by differentiating M with respect to ¢ , and making this
éxpression .,equal to zero. Using this and taking &' from (6.5) ,

§ as a function of XA can be found to be

- _ )t
§=246,= 20r2 + 4 (6.8)

Comparing (6.8) with test results, it is found that p can, with
. sﬁfficient aécuracy, be taken to be a constant equal to 0.0035. Ex-
pression (6.8) is, together with test results, shown in figure 6.1
for p = 0.0035.
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Birke [75.1] used a similar method to find the moment/deflection
relationship, but using his assumptions, it is not possible td find
an expression as simple as (6.8) for the relationship between -§

and ). The expression (6.8) was developed by Andreasen [85.1] who
also dealt with the problem by means of the plastic theory, assuming
the concrete to be an elastic-plastic material. This method of sol-
ving the problem is similar to the method used by Brastrup & Morley
[80.1] in dealing with circular slabs.

Comparing (6.8) with the more complicated expressions mentioned, it
is found that the relationship between 6 and A 1is described
with sufficient accuracy by (6.8), see Andreasen [85.1].

For slabs with normal horizontsl restraints, the deflection can'be
calculated by using (6.8) combined with a term which takes into ac-
count the displécement at the édges. Hence the total relative deflec-
tion can be written as

8§ = 8, +3g - (6.9)

where 60 is the deflection from the flexibility of the slab and
65 is the deflection from the horizontal displacement at the ed-
ges (flexibility of the supports). GS can be found by considering
figure 6.2 to be

S_h =

s - A h (6.10)

S

| =
ol

The horizontal displacement Ash can be found by subjecting the
supports to the horizontal force from the slab and calculating
the deflection for this force. The horizontal force can be deter-

mined by

H = &h -vfc ©(6.11)

where the relative depth of the compression zone, § , can be taken
from (4.2.2). A  is then found as a function of H .

Expressions (6.8) and (6.9) were compared with test results.
Instead of using the relative deflection obtained in the tests,
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§ is calculated in the way described. For slabs with rigid, as
well as those with normal horizontal restraints, the method is

found to be satlsfactory.

Comparing the results of tests on slab strips with rigid horlzon—

tal restraints by Roberts [69.1]1 and Birke [75.1], using (6.8) to
calculate the relative deflection, the mean and standard deviations
of the ratio test/theory were 1.04 and 0.10, respectively, when the
theoretical strength was determined by (5.1). Using (5.4) as theo-
retical strength, the corresponding values obtained were 1.04 and

0. 13 As it is seen, the results from these analyses are almost 1den—
tlcal to the results obtained from the analysis in section 5, where
the relative deflectionh measured in the individual tests was used.

Expresszon (6.8) has also been tested on masonry slab strips. The
correspondence between test and theory is alsc here found to be
satisfactory, see Yde [87.1] or Nielsen & Yde [87.2].

A similar principle to that shown in (6.9) has been used by Chri-
stiansen [63.1], but his final expressions are rather complicated.

7.  LOAD-DEFLECTION CURVE: THEORETICAL AND-EXPERIMENTAL

The theoretical load-deflection relationship derived from the expres-
sions in section 4 will not be the same as the load-deflection curve
obtained in a test.

In figure 7.1 two examples of theoretical and experimental load-
deflection relationships are shown.

P
| Rt
04 -

Theoretical Birke [75.1] 04

. Roberts {69.1]
Test no.15(Serie 2) ™~ Test no 181

'\ ‘

f Theoreﬁccl
! /] k‘? ~| |
/ . i" perimental

03

03

02

0.2

P ose— — e~
[ R
. I 1 &

01 02 03 X 07 " \ 01  Beare. 02 ¢ 03 -
. . . . CooLE oo

—:0 10 01

1
.0 e

o

Figure 7.1: Theoreticdl and experimental load-deflection velationships. The
theoretical curve is determined by using parameters derived from
the tests and a value of Vv which approximately get the theo-
retical and experimental curves to intersect at the experimental
maximum point.




As can be seen from the figure there is agreement between the
theoretical and experimental curve in a small area only. This is
partly caused by the descending branch of the stress-strain rela-
tionship for concrete in uniaxial compression after the maximum
load is reached. This is also caused because the theoretical curve
is determined by using the same assumption for all values of § ,
which is correct only for a small interval.

The same situation isialso found in other cases, where the load
bearing capacity is strongly influenced by the concrete strength.
Examples of this are pure bending in an overly reinforced section

and shear in beams. -

8. DESIGN RECOMMENDATIONS FOR ONE-WAY SLABS

The theoretical expressions from section 4 can be used, but they are
complicated. As shown in section 5, the agreement obtained between
test results and theory is found to be quite good, even if the theo-
retical expressions are modified. It appears from the analysis that
the membrane action’can be taken into.account by adding a membrane
moment, Wy s to the normal.positive‘bending‘moment. The nofmal nega-
tive bending moment, m& , is unchanged. The moments are givep by

d_2¢

— - Y. 2 . L K X .
my = 8 (3 -o5)« hf, ‘ . (8.1)
n! = qa'(ii-ﬁ'- - ‘12’\'))- B2f | (8.2)
m, = +h2vE_ - (1-6)2 L (8.3)

whére the effectiveness factor Vv and the relativé‘deflection §

can be determined by

(f, in Mpa) N R

A

§ = m+6s ’ P = 0.0035 (8.5)
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The constant 0.14 in the expression for the effectiveness ifaciur
(8.4) is, for reasons of simplicity, delited here.

The calculations are carried out as a normal yield line calcula-
tion. The yield line pattern is determined for a one-way slab.
without membrane action. When the yield line pattern is fixed, the
positive bending moment, m. , is replaced by the sum of the posi-

J

tive bending moment and the membrane moment. The sum mJ~+mM is
used instead of m in the otherwise normally used expressions for

the load carrying capacity.

The relative deflection &g in (8.5) ‘can be determined according
to the expressions in section 6.

9. CONCLUSION

In many cases the theory of plasticity gives a good descrip-

tion of the ultimate strength of concrete structures, in spite

~ of the limited concrete ductility. Using a rigid plastic material
model for concrete, modification factors must be used for taking
into account the lack of ductility. The membrane action in rein-
forced concrete slab strips are dealt with by this model and
encouraging results are obtained.

Expressions for the ultimate strength of reinforced concrete slab
strips with horizontal restraints at the supports were derived.
Comparison between the theoretical expressions and the test results
gives good agreement. Since the expressions are too complicated for
practical use, they were simplified. The modified expressiéns were
also compared with test results and the agreement is quite good.

It turns out that the membrane action can be taken into-account by
adding a membrane moment to the normally used positive bending mo-
, ment and considering the sum as the ultimate positive moment. The
”negative bending moment is unchanged. The calculations are then car-
ried out as a normal yield line calculation.
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