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Abstract

This text represents a series of lectures given by the author
in August-September 1988 during a visiting professorship at the
Technical University of Denmark, Department of Structural Engi-
neering. The subject is stochastic averaging methods in random
vibration, a field initiated in the early sixties and through
subsequent refinements it has provided very powerfull tools in
random vibration analysis. The main requirement of the method is
that the "memory" of the system considered is much larger than the
"memory" present in the random excitation. In terms of a linear
oscillator this corresponds to a narrow band transfer function
(i.e. small damping) compared to the excitation spectrum. The
subject is treated from the viewpoint of an engineer relying on
physical rather than mathematical arguments so even readers un-
familiar with random vibration analysis may find the text usefull.

Chapter one contains a brief introduction to random vibration
analysis giving examples of physical systems where nonlinearities
play a significant role. Some frequently used solution methods are
briefly discussed. In chapter two attention is directed towards
the basic averaging method for single degree of freedon systens
with nonlinear damping and/or parametric excitation. In chapter
three the averaging method is extended to multi-degree of freedom
systems, non-stationary excitation and response and systems with
non-linearities in the stiffness term. The first-passage problem
is adressed in chapter four, discussing first-passage problems in
general and the different solution techniques and closing with a
more extensive treatment using the averaging approximation. In
chapter five two practical examples are studied. The first is roll
motion of a ship in random waves where damping and stiffness
non-linearities and parametric effects are present. Secondly
hysteretic oscillators are treated and for both examples the
averaging method is shown to be very efficient.

References are listed at the end of each chapter and in addi-
tion to some of the most accepted basic references in random
vibration, a large number of references considering stochastic
averaging are provided. For a more detailed treatment of the
topics covered in this text, the author often refers to publica-
tions of his own.



Resumé

Denne rapport er skrevet som supplerende materiale til en
forelasningsserie presenteret af forfatteren i august-september
1989 under et ophold som gasteprofessor ved Danmarks Tekniske
Hojskole, Afdelingen for Bzrende Konstruktioner. Emnet er metoder
til "stokastisk midling" indenfor stokastisk dynamik. Fremgangs-
méden blev foresldet forst i 60’erne og er siden generaliseret og
har resulteret i meget effektive analysevarktojer indenfor stoka-
stisk dynamik. Den vasentligste forudsztning for metodens anvende-
lighed er at "hukommelsen" i det betragtede dynamiske system er
lzngere end "hukommelsen" 1 den stokastiske belastning. For en
simpel oscillator er dette ensbetydende med en smalbandet
frekvensresponsfunktion (dvs. 1lille dampning) set i relation til
belastningsspektret. Forfatteren anvender en ingenigrs synsvinkel,
hvor de fysiske argumenter vagtes hojere end de matematiske, si
selvom lazseren ikke har indgdende kendskab til stokastisk dynamik
vil nazrvazrende tekst vise sig interessant, forstdelig og nyttig.

I kapitel 1 gives en kort introduktion til stokastisk dynamik
med eksempler pd aktuelle fysiske systemer, hvor ulineariteter er
af betydning. I denne sammenhzng gives en kort oversigt over de
mest anvendte analysemetoder. I kapitel 2 gives en grundig rede-
gprelse for "stokastisk midling" i sin simple oprindelige form,
hvor der betragtes et 1-frihedsgradssystem med ulinezr dampning
og/eller parametrisk belastning. I kapitel 3 udvides metoden til
fler-frihedsgrads systemer, ikkestationzrt respons og/eller be-
lastning samt systemer med ulinear stivhed. F¢rste-passage proble-
met behandles i kapitel 4, hvor der indledningsvis gives en gene-
rel introduktion til emnet og de szdvanlige analysemetoder, hvor-
efter anvendelsen af stokastisk midling gennemgdas mere detail-
leret. Afslutningsvis gives der i kapitel 5 to eksempler pa prak-
tiske problemer, hvor Ystokastisk midling” er bragt i anvendelse.
Det fgrste drejer sig om krangningsbevagelser af skibe i swgang,
hvor dampning og stivhed er ulinezre og der endvidere kan fore-
komme parametrisk belastning. Det sidste eksempel er oscillatorer
med hystereseeffekt i tilbagefwringskraften enten i form af bi-
line®r hysterese eller en mere realistisk differentiabel hyste-
resekarakteristik. I begge tilfzlde viser "stokastisk midling" sig
meget effektiv.

Referencerne er opgivet i slutningen af hvert kapitel og
foruden nogle vesentlige grundlzggende varker om stokastisk dyna-
mik, er der her listet en lang rzkke artikler specielt om stoka-
stisk midling. Se¢ges en grundigere redeggrelse for resultaterne
angivet i denne rapport, henviser forfatteren ofte til egne publi-
kationer.



CONTENTS

CHAPTER ONE: AVERAGING VIBRATION PROBLEMS:
SOURCES OF NON-LINEARITY, METHODS OF SOLUTION

1. GENERAL STATEMENT OF THE PROBLEM

1.1 Linear systems
Non-linear systems

w

Applications
2. THE GENERAL EQUATIONS OF MOTION

Inertial forces
2.2 Restoring forces

Dissipative forces
2.4 Combined results

2.5 Linear approximation
for small amplitude motion

2.6 Equations for nonlinear motion
3. EXAMPLES OF NON-LINEAR CONSERVATIVE RESTORING FORCES

3.1 Motion in a gravitational field

3.2 Hydrostatic restoring forces

3.3 Geometric non-linearities

3.4 Strain-displacement non-linearities
3.5 Non-linear elasticity

4. EXAMPLES OF NON-LINEAR DISSIPATIVE FORCES

4.1 Material damping
Approximate modelling of material forces
4.3 Coulomb damping
4.4 Hysteretic damping
4.5 Fluid-Structure interaction

5. ANALYTICAL METHODS

5.1 Markov methods
5.2 Equivalent linearisation methods
5.3 Equivalent non-linearisation

page

1.9
1.10

1.11
1.14
1.14
1.16
1.21

1.26
1.29
1.29
1.30
1.36

1.38
1.45
1.46



5.4
5&5

Closure methods
Perturbation methods and functional series

5.6 Simulation

References

CHAPTER TWO:

THE STOCHASTIC AVERAGING METHOD

1. INTRODUCTION
2. OSCILLATORS WITH NON-LINEAR DAMPING
2.1 Transformation of variables
. Averaging the dissipation term
2.3 Averaging the excitation term
2.4 The Stratonovich-Khasminskii limit theorem
2.5 Application of the limit theorem
. The FPK equations
2.7 Btationary solutions
2.8 Linear-plus-power law damping
3. OSCILLATORS WITH PARAMETRIC EXCITATION
Equations of motion
. The FPK equations
. Linear damping
. Non~linear damping
3.4.1 Purely parametric excitation
3.4.2 Combined excitation
References

CHAPTER THREEK: GENERALISATIONS AND EXTENSIONS OF

1.

2.

STOCHASTIC AVERAGING

INTRODUCTION

MULTI-DEGREE OF FREEDOM SYSTEMS

2'1

Applications

page

1.49
1.51
1.52

2.5

2.9

2,12
2.19
2.21
2.25
2.26
2.30

2.38
2.40
2.41
2.43
2.44
2.45



NON-STATIONARY EXCITATION AND RESPONSE

°

Non-stationary excitation of oscillators
Non-stationary exact solutions
Approximate analytical solutions

Random walk numerical method

AVERAGING THE ENERGY ENVELOPE

.

Averaging the energy dissipation term
Averaging the energy input term
Complete equation for E(t)

Stationary solution

Non-stationary solutions

Parametric excitation

Non-white excitation

References

CHAPTER FOUR: APPLICATION OF THE STOCHASTIC AVERAGING

METHOD TO THE FIRST-PASSAGE PROBLEM

INTRODUCTION

FIRST~PASSAGE STATISTICS

SPECIFIC FIRST-PASSAGE PROBLEMS

THE "EXACT" APPROACH

4.1

4.3

4.5

Diffusion equations

Boundary conditions

Exact analytical solutions
Approximate analytical solutions
Numerical solutions

STOCHASTIC AVERAGING APPROXIMATIONS

5.1 Boundary conditions

5.2
503

Exact analytical solutions
Semi-analytic solutions and approximations

page

3.6
3.7
3.10
3.11

3.18
3.19
3.28
3.29
3.31
3.34
3.34

4.6
4.9
4.10
4.13
4.13

4.16
4.19
4.25



6.

5.4 Numerical solutions

5.5 Use of the energy envelope

5.6 Oscillators with parametric excitation

5.7 Non-stationary problems

CONCLUSIONS

References

CHAPTER FIVE: APPLICATION OF THE STOCHASTIC AVERAGING
METHOD TO SPECIFIC ENGINEERING PROBLEMS

1.

2.

INTRODUCTION

ROLL MOTION OF A SHIP IN RANDOM WAVES

2.1 Equation for roll motion
2.2 Application of the energy envelope method

2.3 Theoretical modelling

2.3.1
2.3.2
2.3.3
2.3.4
2.3.5

Coupling with other motions
Restoring moment

Damping moment

The complete equation of motion
Wave moment spectrum

2.4 Computing the roll distribution

2.4.1
2.4.2
2.4.3
2.4.4

2.5.1
2.5.2
2.5.3

Damping function B(E)
Fourier coefficients s, and ¢,
Evaluation of w(E)

Evaluation of DZ(E)

"2.5 Experimental validation

Conversion to roll moment spectra
Standard deviation of roll response

Cumulative probabilities of roll
peak amplitudes

HYSTERETIC OSCILLATOR RESPONSE TO WIDE-BAND
RANDOM EXCITATION

3.1 The extended differential model
3.2 Application of the averaging method

page

4.26
4.29
4.32
4.34

5.2
5.3
5.5
5.6
5.8
5.8
5.9
5.10
5.12
5.12
5.13
5.14
5.14
5.15
5.16
5.19



Calculation of the backbone
3.4 Calculation of the area of the loop
3.5 Calculation of T(E), C(E) and Dz(E)
The loss factor
3.7 The case 3 = 0
3.8 Comparisons with simulation results

References

bage

5.25
5.26
5.27
5.29
5.29
5.31






AVERAGING METHODS IN RANDOM VIBRATION

J. B. Roberts

CHAPTER ONE

Random Vibration Problems: Sources of

Non-linearity, Methods of solution

1. General statement of the problem

In this text we will be concerned with dynamic systems
driven by an excitation process, X(t) ; this results in a
response process, ¥Y(t) , as shown in Fig. 1.1. It will be
assumed that sample functions of X(t) are complex functions of
time, such that X(t) is best modelled as a stochastic (or
random process). It follows that Y(t) is also a stochastic
process, with complex sample functions.

The general random vibration problem may be stated as
follows:

To predict analytically, the probabilistic behaviour of the
response from a knowledge of

(a) The statistics of the excitation, and
(b) the equation of motion.

1.1 Linear svstens

If the system is linear, and the excitation is Gaussian,
then the response is also Gaussian. It is then sufficient to
relate the mean and covariance of the response to the mean and
covariance of the input (e.g. see Lin (1967)). Standard theory
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Fig. 1.1.

exists for this purpose and may be found in numerous text-books
(e.g. Crandall and Mark (1964), Robson (1963), Lin (1967),
Newland (1978), Nigam (1983), Yang (1986)).

The problem is more difficult if the excitation is
non-Gaussian. It is possible to develop a set of moment equations
relating the excitation to the response, from which the distri-
bution of the response may be studied, using expressions such as
the Gram—~Charlier series (e.g. see Stratonovich (1964)). However,
it is worth remarking that lightly damped systems have a tendency
to transform a non-Gaussian process into a more closely Gaussian
process, as can be seen through an application of the Central
Limit Theorem. Thus, in most cases, response processes can be
treated as Gaussian, to a good approximation if the system is

linear.



1.2 Non-linear systems

When non-linearities are present in the system, the
probability distribution of the response can be highly
non-Gaussian. For example, a "hardening" spring can inhibit the
growth of large amplitude response, resulting in large departures
from Gaussianity in the "tails" of the distribution. The effect
is illustrated in Fig. 1.2, which sketches a typical comparison
between a Gaussian probability density function (plotted on a
log-linear basis) and a corresponding typical non-Gaussian

function, relating to a response process.

In many practical applications one is concerned with
estimating reliability statistics. For example one may wish to
estimate the probability that the response stays within some safe
region, during some specified interval of time (this 1is the
so-called "first-passage problem", which will be discussed in
some detail, in a later lecture). Such reliability statistics are
intimately connected with the behaviour of the probability
distribution of the response, at large amplitudes. Clearly, then,
to obtain meaningful reliability estimates it is vital to account

for the deviations from Gaussianity, due to non-linearity.

1.3 Applications

The problem of predicting the response of non-linear systems
to random excitation, with a view to designing such systems to
operate reliabily, and safely, occurs in many fields of engineer-
ing. Here we list a few of the main areas of application.

(a) response of aero-space vehicles to atmospheric turbu-

lence, jet noise, etc.

(b) response of civil engineering structures, such as
buildings, bridges, dams, etc., to earthquake excita-

tion, and to wind loading.
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(c) response of marine vehicles and offshore platforms to

wave excitation and to wind loading.

(d) response of land vehicles (e.g. trains, cars, etc.) to
irregularities in the ground surface on which they

travel.



2. The general equations of motion

To begin with, we consider the formulation of the equations
of motion of a system which has been discretised (in a suitable
fashion) into an n-degree of freedom, lumped-parameter system. It
will be assumed throughout that the system 1is stable and

time-invariant.

Let the motion be described by n generalised coordinates,
Ayr Gyrever 9 - The displacement vector, g , may be defined as

T
g = [qllqzl““lqn] (l)
A small, virtual displacement of the system can be described by
6g - The forces acting on the systenm (including inertial forces)

will do a certain amount of work, OW , during this displacement.
Thus,

&w = goF bg (2)

where Q 1is the n-vector of generalised forces corresponding to

g . By the Principle of Virtual Work

W = o0 (3)
It follows that

Q. = 0 (i =1,2,...,n) (4)

where Qi are the elements of 9 . Equation (4) represents the
equations of motion of the system.

It is convenient to decompose Q as follows:



Q = @+ Q¥+ QP+ Qf (5)

where
QI - inertial force vector
QR - restoring force vector
gD - dissipative (or damping) force vector
QE - external (applied) force vector

The equations of motion can now be written as

I R D E _ -
Qi + Qi + Qi + Qi = 0 (1 = 1,2,...,n) (6)

2.1 Inertial forces

I

Qi can be found from the kinetic energy function T , using

the usual Lagrangian expression (e.g. see Whittaker (1937)). Thus

Qi”’%{[aﬂ“*grq (7)
aq. i
i
In general T is a quadratic function of the generalized
velocities; thus
_ 1 .2 -2 .2 . .
T’ = 2(allq1 + a,,9, + ... 4 a nd, + Zalquq2 + . )
(8)

where the coefficients agq etc., in general depend on g . In

matrix form
1 . .
T =59 Ag (®)

where A is the nxn "inertia matrix".



Substituting into equation (7) from equation (8) gives
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1 Kk -
+3 ) ) a 4% (10)
j:l =1
2.2 Restoring forces
For conservative ( i.e., path independent) forces one can

introduce the potential energy function
V = V(qqu2:-°-rqn) (ll)
and it is easy to show that

R v (12)

2.3 Dissipative forces

The dissipative forces, Q? , can be decomposed into the sum

of two components; thus

D _ D¢ *

Qi - Q i + Ql (13)
where

D#¢ . .

Q i - linear viscous component

Qz -~ other types of damping.

For linear viscous damping it is useful to introduce the
Rayleigh dissipation function



total rate of energy loss

Nl

1 .2 .2 . .
= = (h
5 (Jilq1 + b22q2 + .. 2b12q1q2 + ...) (14)
or, in matrix form,
_ 1 -7 .
D = 39 Bg (15)

where B 1s an nxn "damping matrix" of constants. Q?e may be

derived from D as follows:

QRf = -2 (16)
3qi
Hence
n
D¢ _  _ .
Q)" = ) big 4y (17)
J=1
More generally
n
D - - . %
Q) = ) by a5+ Qf (18)
j=1

2.4 Combined results

Collecting the above results one has

Oa. .

n
) 7, G%

I
Y
[,
e
Qe
e
+
N8

1.8



n noog n v

1 ik . . . * _ E
-5 ) 2 q; Y%7 ) Pigdy = Q4 *fagr = (13)
This is a set of n coupled, non-linear differential

equations. Sources of non-linearity are

(a) dependency of inertial coefficients, a on g

ij !
(b) form of non-viscous damping forces, Q;
(c) form of the potential energy function, V .

For the special case of a single degree of freedom system

(n=1) , equation (19) reduces to (omitting subscripts)
- 1 da -2 . * ov E
a(q)g + 5 g 4 * bg - Q + 50 = Q (20)

2.5 Linear approximation for small amplitude motion

For small amplitude motion about a position of static

equilibrium (g = 0) , useful approximations can be made.

The elements of the inertia matrix may be treated as
constants, if the amplitude of motion is sufficiently small.

Thus, expanding all(g) about g = 0 one has
all(g) = all(g) + higher order terms (21)

A linear approximation is to replace all(g) by all(g) , and
similarly for all the other elements of A .

The potential energy function V can also be approximated.

Thus

1 2 2
V(g) = 2(kllq1 + k22q2 & S 2k12q1q2 + ...)

+ higher order terms in ql,qz,etc. (22)



If the higher order terms in V(g) are neglected one has

i T
v =39 Kdg (23)
where K 1is an nxn wstiffness matrix", the elements of which
are constants.
Hence
n
R == .
Qi = z kij qj (24)
j=1
. . . *
and, c¢ollecting vresults, and 1ignoring Q. , one has the

i
well-known matrix egquation of motion

Ag+Bg+KkKg = Q (25)

" "~

where the superscript E has now been dropped.

2.6 Egquations for non-linear motion

If the non-linear contributions to the inertia, stiffness
and damping components are not neglected (i.e. large amplitude
motion prevails) then instead of equation (25) one can write

Ag+Bg+kKg+ 39 = Q (26)

where @®(g,9,9) is derived from all the sources of non-linear-

ity.
In some problems ¢ depends on the history of the motion,

and one can not just treat it as an instantaneous function of

g, é and é (as indicated above). This occurs when the restor-
ing force is hysteretic in nature. Methods of dealing with
hysteretic systems will be discussed later.

1.10



3. Examples of non-linear conservative restoring forces

We now discuss briefly a number of specific examples, where

non-linearity occurs in conservative restoring forces.

3.1 Motion in a gravitational field

A very simple example is furnished by the pendulum, execut-
ing planar motion. If 6 is the angular displacement from the
equilibrium position (see Fig. 1.3(a)) then

V = mgl(l - cosf) (27)

and g% = mgl siné (28)

Thus applying equation (20), one has (in the case of no damping)

m1%)d + mgl sind = o (29)

for free vibration. A linearised approximation is to replace
sinf by 6 (see Fig. 1.3(b)). However, this approximation is
unjustifiable for large amplitude motion.

It is noted that, in the phase-plane (see Fig. 1.3(c)),
there is only a finite region where oscillatory motion is
possible. This poses some difficulty if the system is excited by
stationary random excitation, since the response will eventually
exit from the oscillatory region. Thus care must be taken when
dealing with systems where the non-linearity in stiffness is of
the softening type. This matter will be returned to later, in the
context of ship roll motion.
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3.2 Hydrostatic restoring forces

Consider « ship in its position of stable equilibrium, as
shown in Fig. 1.4(a). Here the line of action of the weight of
the ship, W , coincides with the line of action of the buoyancy

force, B .

If the ship is given a displacement, 6 , as shown in Fig.
1.4(b), such that the buoyancy force remains constant, then there
will now be some distance, r say, between the lines of action
of B and W . r is usually called the *"righting lever", and
for small angles of roll is given by GM sinf , where GM is the
"metacentric height" - i.e. the distance between the "meta-
centre", M , and the centre of gravity, G . A typical variation
of the righting lever with 6 is shown in Fig. 1.4(c). It is
seen that there is a critical angle, # , at which the righting
lever, and hence the restoring moment, reduces to zero. This is

the position of incipient capsize.

For very small angles of roll a linear approximation for the
r-8 characteristic is appropriate. However, if one wishes to
study the probability of capsize, using a dynamic model, then it
is obviously essential to model the highly non-linear behaviour

of the r-0 curve, at high roll amplitudes.

3.3 eometric non~linearities

An overall non-linear force-displacement characteristic can
occur in situations where linear springs are arranged in certain
geometrical ways. An example is shown in Fig. 1.5(a). Here the
mass m 1is restrained by a spring of stiffness k , and if the
amplitude of motion is less than ‘a’ , the combined stiffness is

Zkl . However, if the amplitude of motion exceeds ‘a’ , the
springs of stiffness k2 become active and here is an abrupt
transition to the overall stiffness of 2k1 + 4k2 . Thus, as
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shown in Fig. 1.5(b), the overall restoring force =~ versus

amplitude characteristic is only piece-wise linear.

This type of non-linearity occurs whenever "elastic stops"
are used in an attempt to limit the amplitude of motion of the
mass in a system. A practical example occurs in the situation
where a ship is moored to a dock wall by means of cables. To stop
the ship impacting the wall, fenders are usually introduced, as
indicated in Fig. 1.5(c). Thus for motion in a direction ortho-
gonal to the wall the net restoring force is highly non-linear in
character. It has been shown that the motion, due to wave action,
of such moored ships can exhibit many of the classical non-linear

phenomena - i.e., subharmonic resonances, junmps, etc.

Non-linear restoring forces can also occur in the case of
marine vessels, or offshore platforms, moored in the open sea, as
indicated in Fig. 1.6(a). Through non-linear interaction between
the wave motion and the floating body, the wave force experienced
by the body has a very low frequency content, commensurate with
the natural frequency of drift motion. Due to the geometry of the
mooring cable configuration the restoring force characteristic
can be highly non-linear, as indicated in Fig. 1.6(b). If one
allows for the ability of the cables to stretch elastically then
the degree of non-linearity is somewhat reduced, but often by no

means eliminated.

3.4 Strain-displacement non-linearities

Non-linear strain-displacement relationships <can often
result in overall non~linear restoring force characteristics,
even in situations where the material stays within the 1linear
elastic regime (i.e. the constitutive stress-strain law of the

material is linear).

A simple example of this occurs when a plate, which is
rigidly restrained at its perimeter, is loaded transversely, as
indicated in Fig. 1.7(a). Due to the effect of the membrane
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A very simple model can be used to demonstrate this type of
non-linearity. Fig. 1.8(a) shows a mass, m , restrained by two
springs, of stiffness k , with an initial tension Ty - If x
is the transverse displacement due to a transverse load, F , then
the F-x characteristic is as shown in Fig. 1.8(b). For small
displacements the restoring force 1is approximately 1linear.
However for larger amplitudes of displacement the system exhibits
either a hardening, or softening characteristic (depending on the
values of Ty and k ) before asymptoting towards linear
behaviour again (but with a new stiffness) at very large dis-
placements. This non-linearity occurs even though the individual

springs are assumed to behave in a linear fashion.



(b)

Fig. 1.8.

A slight modification of this simple system can be used to
illustrate the non-linear phenomenon of "snap-through", which
occurs when shallow shells (see Fig. 1.9(a)) are subjected to
transverse loading. At a critical value of the load the shell
will ‘"snap-through" to a new position, as indicated in the
figure. The simple spring-model shown in Fig. 1.9(b) exhibits
this phenomenon. It is a simple matter (e.g. see Thompson & Hunt
(1973)) to work out the force-displacement characteristic, as
shown in Fig. 1.9(c). The section of the curve labelled BCD can
be shown to be unstable. Thus loading in a positive direction



results in the path ABE , where reversal of loading results in
the path EDF . Snap-through occurs from B to E , and from D
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3.5 Non-linear elasticity

Some materials behave with non-linear stress-strain consti-
tutive laws, but still remain (approximately) conservative. For
example, mild steel has the stress-strain behaviour indicated in
Fig. 1.10(a). In the small range between the "proportionality"
limit, P and the "elastic 1limit", E , the material behaves
non-linearly, but elastically. Thus the same path is taken
between E and P , irrespective of the direction of loading. If

1

stress
E
O \
strain
(3)
A
stress
. —
0 | strain
(b)
Fig. 1.10,



the loading is increased beyond E , and then reversed, then a
new path is followed, as shown in the figure, and, under cyclic
loading, one has the phenomenon of hysteresis, with associated

dissipation of energy.

Some materials, such as elastomers, exhibit highly
non-linear stress~strain curves, as indicated by Fig. 1.10(b). To
a rough degree of approximation such materials can be modelled in
terms of conservative forces of a non-linear type, although some
degree of energy dissipation is always present (as indeed it is

in all materials under cyclic loading).

4. Examples of non-linear dissipative forces

Damping forces are often measured experimentally, from the
free~decay of single-degree-of-freedom system, due to the
inherent difficulty of deriving mathematical models from basic
principles, in most applications. The discussion of the represen-
tation of damping, given here, will therefore start with the
means of extracting suitable information from free-decay tests.

With no external force acting, the general eguation of
motion of an oscillator with non-linear damping may be written as

(assuming that the inertial term is linear)

aé+% = -gP (30)

If one defines a total energy function, E , as

E = 3ad +v(a) (31)
where the first term is the kinetic energy contribution and the
second term is the potential energy contribution, then equation

(30) can be re-expressed as



dE

aE = - L(E) (32)

where

L(e) = o ¢ (33)

The function of E , L(E) , will be called here the "loss func-
tion", Strictly this function depends on time, as well as E ,
but, as will be shown later, can be treated as a function of E
only, to a good approximation, for lightly damped systenms.

It is useful to define a non-dimensional damping function,

Q(E) , associated with L(E) , as follows:
- L(E)
0
where @y is the frequency of small oscillations. Q(E) is

proportional to the fractional loss of energy per cycle due to
damping - i.e. the ratio of the energy lost per cycle to the
total energy in that cycle.

In the special case of linear damping the damping function
Q(E) is independent of amplitude, as measured by E . In fact
one finds that

Q(E) = (¢ (35)

where ( is the usual non-dimensional damping factor (¢ =1
for critical damping).

The loss function L(E) and the damping function, Q(E) ,
can be estimated fairly easily from free-decay data. Suppose one
has a free-decay record, as illustrated in Fig. 1.11(a). The
amplitudes of the peaks, Ai = x(ti) , Wwhich occur at times ti ,

may be converted into corresponding energy values, E,

i’ through

the relationship (see equation (31))
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E, = V(&) (36)

If E. is plotted against time, as indicated in Fig. 1.11(b),

and a curve fitted through the data, one can form an estimate of

L(E) from the gradient of the curve, at various values of E



(see equation (32)). Hence Q(E) can be evaluated, according to

equation (34).

It will be shown later that, when applying the method of
stochastic averaging, it is not required to have an explicit
mathematical model of the dissipative forces. All that is
required is a knowledge of fractional energy loss per cycle, as
expressed by the function Q(E) . Thus experimental information
on damping, as expressed by Q(E) , can be directly incorporated
into the mathematical analysis. This feature represents one of
the major advantages of the stochastic averaging method.

If, however, an explicit, parametric representation of
damping is required then this can be derived fairly readily.
Suppose, for example, that one assumes that the damping force,

QD ; can be represented by

o = ax + B3 (4 = x) (37)

One can evaluate L(E) from the use of equations (33) and (37).
Thus

L(E) = (o4 + Ba°)q (38)

Now, if the damping is 1light, the oscillatory behaviour of the
right-hand side of equation (38) can be "ironed-out" by treating
the energy level as constant, during one "cycle", provided that
the damping is 1light (this is an extended version of the
Krylov-Bogoliubov averaging method). Thus one can write

T(E) 3.
LE) = w0y JO (aq + A3°)§ at (39)

where T(E) is the period of undamped, free oscillations, as

given by



b
T(E) = 4 J dx (40)
0

|

2
[2(E-V(x))]
where V(b) = E . On evaluating the integrals one finds that
L(E) can be expressed as

L(E) = a A(E) + (8 B(E) (41)

where A(E) and B(E) are known functions. Equation (41) can
now be matched to an experimentally determined L(E) versus E
characteristic, in some optimum way (e.g. least squares) to yield

estimates of the parameters a and (.

4.1 Material damping

A wide variety of mechanisms, at the microscopic level, have
been identified (e.g. Lazan (1968)) which contribute to energy
dissipation in materials (both uniform and composite) under
cyclic 1loading. However, current information is not wusually
sufficient to allow one to predict energy loss functions quanti-
tatively, for basic physical principles, except in certain very

special cases.

It is usual to rely on experimental measurements of the loss
function, as pointed out earlier. An example is the study of
Roberts and Yousri (1978), where Q(E) was determined for two
small cantilevered beams. Fig. 1.12 gives a sketch of the
results. For the beam made of steel the function Q(E) was found
to be sensibly independent of amplitude, suggesting that a linear
model of damping was adequate. However, for the other beam, made
of a copper-alloy, Q(E) was found to increase sharply with
amplitude, when the latter exceeded a critical 1level. This is
strong evidence of non-linearity, and is typical of many
materials loaded cyclically at high amplitudes.

Energy loss functions can be cast into a more generally

useful form by introducing the "specific damping function®, D,
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This is defined as the energy loss per unit volume of material
per cycle. Ds can be easily related to L(E) , if the mode of
vibration is known, because the instantaneous stress amplitude
distribution is then known. Since D is a function of stress
amplitude it is a simple matter to convert a stress distribution
into a distribution of D, . One can then obtain L(E) by
integrating over the volume of the structure.

Fig. 1.13 sketches a typical variation of D with 0/0q
where ¢ 1is the stress amplitude and Og is a reference stress,
defined as the fatigue strength of the material at 2x107
cycles. The band shows the spread covered by about 20 different
materials. At low amplitudes D varies (approximately) with

S

o/0 in a guadratic fashion, as indicated by the mean line. This

e
is the result obtained from a simple linear viscous model,

suggesting that this type of modelling is adequate at low vibra-
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tion amplitudes. At a value of o/0  ~ 1 there is sharp break in
the variation of DS with a/ae , and for higher stress D,
increases very rapidly with stress level. In this regime the
fatigue 1life is fairly short. The mean variation of Ds with
a/ae _is represented reasonably well by the relationship (Lazan

(1968))

ofe)]

where a, 0 and n are material constants and n >> 2 . The
second term of the above represents the non-linear contribution

to damping.



4.2 Approximate modelling of material forces

The total force resulting from material deformation can be

modelled, approximately, as the sum of

(a) a conservative restoring force (with an associated
potential energy function,
(b) a zero memory velocity dependent dissipative force.

Thus
o = P+ R (43)
where
D . . .
Q - dissipative
QR - conservative

A simple parametric form for QD may be chosen - e.qg.

Q® = oq + B0 (44)

The parameters a , £ and n can be found by matching the energy
loss function resulting from equations (43) and (44) to the
experimentally determined specific loss function, DS , variation

with amplitude.

This non-hysteretic approach to modelling is usually suffi-
ciently accurate, for practical purposes, if the damping is very
light.

4.3 Coulomb damping

Coulomb type damping occurs whenever there is dry, (i.e
unlubricated) contact between two surfaces in relative, sliding
motion. Thus, as in Fig. 1.14(a), the movement of a mass, m , on
a rigid horizontal surface, with velocity v , is resisted by a
friction umg , where 4 is the coefficient of friction. For
idealised Coulomb damping the frictional force is independent of
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the magnitude of the velocity, and hence has the characteristic
shown in Fig. 1.14(b). Actual friction characteristics are rather

smoother, and there is a "hump", near |v| = 0 , associated with
ngtatic friction". Once movement commences the frictional force
tends ‘to drop slightly - i.e. dynamic friction is usually a

little less than static friction. Various "improved" models of
dry friction have been proposed, and used in the modelling of

drill strings occurring in oil wells.

4.4 Hysteretic damping

As indicated earlier, the restoring force resulting from
deforming materials is never exactly conservative. If a material



Fig. 1.15.

is subjected to cyclic loading then, during one cycle, the load
displacement characteristic will appear as indicated in Fig.
1.15. Due to the hysteretic nature of the material there is
"loop" in the characteristic and it is easy to see that the
energy dissipated per cycle is directly proportional to the area
of the loop.

Such loops exist even in situations where the material is
stressed within its elastic limit, and the stress-strain law is
very closely modelled by straight line (as in the case, for
example, of mild steel). Of course, in this case the dissipative
force are, relatively, very small; hence the loops are very slim,
and may be difficult to detect experimentally.

At the other extreme, when materials are loaded well beyond
their elastic limit, or there is some relative sliding between



the components of composite structures, the energy dissipation
can be, relatively, very large and the loops become very "fat".

There are two basic types of hysteresis loop, as sketched in
Fig. 1.16. Elliptical loops are associated with linear damping
mechanisms and are characterised by the fact that the energy loss
per cycle is proportional to the square of the amplitude of
oscillation, A . Non-elliptical loops can occur in a wide variety
of shapes but usually have sharp corners, as indicated in the
figure. For such loops the energy loss is not proportional to the
amplitude of oscillation squared and the underlying dissipative

mechanism is non-linear in nature.

Recently there has been considerable interest in the repre-
sentation of hysteretic loops by means of differential equations
(although such an approach does, in fact, have quite a 1long
history (Lazan (1968))).

linear non-
(elliptical) linear

(a)

Fig. 1.16.



Elliptical loops can be modelled very simply as the sum of a
linear restoring force and a viscous, linear damping term

- j.e. =

F(t) = ax + bx (44)

where a and b are constants. The difficulty with this repre-
sentation, however, is that the energy loss per cycle is fre-
quency dependent, whereas actual energy loss functions are
usually relatively insensitive to the frequency. of excitation.
However, if one is dealing with a system with a single, dominant
resonance then one is primarily concerned with energy dissipation
at the resonant frequency, and a and b in the above can be
chosen to give the correct energy loss at this frequency. Errors
in representation at other frequencies are then relatively
insignificant.
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An example of the occurrence of a non-elliptional loop is
furnished by the mass~spring system shown in Fig. 1.17(a). Here
the spring k , is in series with a Coulomb damping element. If
the mass undergoes harmonic motion, of sufficient amplitude then
the force-displacement characteristic dis of the ‘"bilinear
hysteretic" kind shown in Fig. 1.17(b). This is piece-wise linear
and there are two slopes of relevance - that corresponding to no
sliding and that corresponding to sliding motion in the Coulomb
damping element. A special case of such hysteresis is
"elasto-plastic" hysteresis, where the secondary slope is zero,

as shown in Fig. 1.17(c).

A general differential form for a hysteretic force, z , is

z = G(x,2) (45)

where =z 1is the force and x 1is the displacement. As a specific

example, if the hysteresis is elasto-plastic one has

G(x,z) = X[1 - U(x) U(z-1) - U(~x) U(-2-1)] (46)
where U( ) is the unit step function.

Equation (43) may be combined with the differential equation
of motion for the system - e.qg.

X+ O + ax + (1-a)z = f(t) (47)

where o 1is a constant, would be appropriate for an oscillator
with some degree of hysteresis. Combining equations (45) and (47)
one has a third-order system which can be treated by normal,

"non-hysteretic" methods.

Other forms of G(x,3z) are possible. For example, one has
the Bouc-Wen model (Bouc (1967), Wen (1980))
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G(x,2) = =-v|klz|z|™t - vx|z|® + ax (48)

where v, v, A and n are "loop parameters", which control the
shape and magnitude of the loop. Some typical shapes of loop
which can be represented by equation (48) are sketched in Fig.
1.18.



4.5 Fluid-Structure interaction

Many engirnsering problems involve the dynamic interaction

between moving objects and a surrounding fluid.

As an example, consider a ship rolling in waves, as sketched
in Fig. 1.19(a). It can be shown by experimental studies dating
back over one hundred years to the pioneering work of Froude (see
Froude (1955)) that the dissipative moment, MD(t) , during roll
motion is well represented by a linear-plus-quadratic form. Thus

Q{t)

B
s

roll amplitude
Fig. 1.19. (b)



My(t) = af + 3|0|0 (49)

where a and [ are constants. The second,; quadratic term here
arises from flow separation effects, with associated vortex
shedding. The typical variation of the damping function, Q(E) ,
with roll amplitude is shown in Fig. 1.19(b). This shows that the
linear contribution, as given by the intersect on the vertical
axis, is relatively small and at moderate angles of roll the
principal contribution to damping is from the quadratic term.

Quadratic damping occurs frequently in problems involving
fluid-structure interaction. As another example, consider the
case of the fluid forces acting a vertical cylinder, such as
occur in offshore oil production platforms. Numerous workers have
shown that the fluid force, f(t) , on a cylinder moving with
velocity v , is well represented by Morison’s equation (Morison
(1950)). This is given by

1

£(t) = pAvV + CIPA(V-%) + 5 CppD|v=x]| (v-x) (50)
where

o, = fluid density

A = Ccross-sectional area, normal to the flow

D = diameter of cylinder

CI = added mass coefficient

CD = drag coefficient

The first two terms in the above expression are linear, inertial
terms. The 1last term is a quadratic, drag component, and is

non-linear.



5. Analytical methods

"We now review, briefly, the various analytical approaches
which are available for solving non-~linear random wvibration
problens.

5.1 Markov methods
The general equations of motion of an n degree of freedom

system, as given by equation (26) are conveniently written in
state space form. Introducing the state variable vector

z = { g } (51)
g

one can rewrite equation (26) as

gz = alz) + E-Y(*t) (52)
where
a(z) = [ g ] (53)
-a"'Bg - a'kg - 2778

and

z=[9 9 Y = 9] (54)
g at Q

Note that it will be assumed here that F can not contain terms
dependent on 2z - i.e. parametric excitation is absent. For a
discussion of parametric excitation effects, see Ibrahim (1985).

If the elements of Y(t) are broad-band in character they
can, in many cases, be satisfactorily approximated in terms of
white noises. Thus



Y(t) = K {(t) (55)

where K is a 2nx2n matrix. £(t) 1is a 2n-vector of independ-
ent, unit white noises, with a correlation matrix

E(L(t) £ (t+r) ) = I &(7) (56)
where I is a 2nx2n unit matrix.

Equation (52) can now be written as

z = a(z) + B £(t) (57)
where

B = EX (58)

Equation (57) must be carefully interpreted. For example, g
exists almost nowhere (see, for example, Sobczyk (1985)). One
suitable interpretation, and that adopted by many authors, is to

treat equation (57) as an Ito equation; it may be written in
standard form as (Sobczyk (1985))

dz = a(z)at + B ay (59)
where W is a 2n-vector of unit "Wiener processes", such that
(formally)

ay
) = £ (60)

When the excitation is modelled in terms of white noises it
follows that z is a 2n-dimensional Markov process, with a
transition density function, p(z]zo;t) governed by the follow-
ing diffusion equation (see Sobczyk (1985)):



% - 1p (61)

where
2n 2n 2n
_ ) 1 5
L = 2 Hzi[ai(g)'} * 32 2 z D5 0z ; 0z, (62)
i=1 i,9=1 J
and
P = [Py = B B" (63)

Equation (61) is generally known as the Fokker-Planck-Kolmogorov
(FPK) equation - sometimes it is known alternatively as the

"forward Kolmogorov" equation.
The initial condition for p(g|go;t) is usually of the form

lim p(z|z,it) = 6(z-2) (64)
t~0

This simply states that one knows the position of the system
(z = 50) at time t = 0 - a deterministic start condition.

If the system is stable and time-invariant a "stationary"
solution to the FPK equation usually exists, provided that the
white noises do not have time-varying strengths - this is
implicit in the analysis so far, (see equation (56)). Thus, as
time elapses, p(g]go;t) becomes independent of the initial
condition and asymptotes towards a stationary density function,

w(z) ; i.e.

w(z) = 1im p(zlz,it) (65)
t-00
w(z) may be obtained as the solution of eguation (61) with

Op/0t = 0 . Thus

Iw = 0 (66)



A general closed-form solution to equation (61) has yet to
be found, for an arbitrary value of n . However, a series
solution can be found in terms of eigenfunctions. If the operator
L has a discrete set of eigenfunctions, vj(g) , and correspond-

ing eigenvalues, Ai , that satisfy
(L+ A)vy = 0 (67)

then the transition density function is given by

(e8]
""A-t
1 *
P(glzoit) = ) e ' vi(z)vi(z,) (68)
i=0
The set of eigenfunctions, vz(g) ; relate to the adjoint of L
and are orthogonal to the set Vi(E) ; thus
Y(z)az = & 69
—oovi(’%) Vj (z)dz = ij (69)

where 5ij is the Kronecker delta.

In the above AO = 0 and vo(2) = w(z) , the stationary

solution (v;(g) = 1) . In some applications the spectrum of
eigenvalues is not completely discrete, as assumed above. There
is a continuous portion and equation (68) must be modified
accordingly (Atkinson (1973)).

When m=2n = 1 the system is of first-order and the

series expansion solution

~Ait vi(z)v,(z

- )
p(z]zO;t) = 2 e TN 0
1i=0

(70)
o)

Analytical expressions for vi(z) and Ai have been found in
only a few special cases (Atkinson (1973), Karlin and McGregor



(1960), Caughey and Dienes (1961), Atkinson and Caughey (1968),
Wong and Thomas (1962), Payne (1968)). However, a general expres-
sion for the stationary density function can be easily found from
equation (66), where

2
d B® 5%
L = - ag[a(Z)‘] -+ 5“ ““5 (71)
Oz
The result is (e.g. see Stratonovich (1967))
z
, C 2
w(z) = —3 eXP[—g J a(ﬁ)dé] (72)
B B 0
where ¢ is a normalisation constant, chosen so that
fm w(z)dz = 1 (73)
-0

When n = 1 one has a second order system, or oscillator. A

general form of equation of motion for such oscillators is

X + g(x,%x) = KE(t) (74)

where g( ) is . an arbitrary, non-linear function of the

displacement, x , and velocity, X . K is a constant.

Equation (74) can be cast into the standard state~variable

[ Z., ] (75)
’g(zlrzz)

form, given by equation (57), if
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and

Y(t) = [ 0 ] (76)
KE (t)



and F is a unit matrix. Hence, from equations (61) and (62) one
finds that the appropriate FPK equation is

2
Bon ol o £
1 2 822

A complete, exact solution to this equation has been found only
for the linear case.

If, however, attention is restricted to the stationary

density function, w(z) , then there is a well-known result for
the case of linear damping and arbitrary non-linear stiffness. If

g = [z, + h(zy) (78)

then the stationary solution may be written as

w(z) = ¢ exp(-9E) (79)
where
¥ = gg (80)
K

and ¢ is another normalisation constant. E is the total energy
oscillator - i.e.,

2 z
Z 1
E = 53+J0 h(&)ag (81)

Equation (81) has been obtained independently by many authors
(Andronov et al. (1933), Kramers (1940), Oliver and Wu (1958},
Chuang and Kazada (1959)).

For non-linear damping in oscillators, exact solutions exist
only in certain very special cases. If

g = ﬁ?zz H(E) + h(z (82)

1)



then it can be shown that (Caughey (1964))

o~

E
w(z) = o exp{-7 Jo H(&)dE) (83)

This is clearly a generalisation of equation (79).

For higher order systems very few exact solutions are
available. It is possible to generalise the result given by
equation (83) to apply to a certain very specific class of
multi-degree of freedom system, but the applicability of this
result is very limited (see Fuller (1969) for an interesting

discussion).

In view of the paucity of exact solutions there have been
numerous attempts to develop approximate analytical methods, and
numerical methods combined with analytical methods. These include
iterative methods (Mayfield (1973)) series expansion methods
(Atkinson (1973), Stratonovich (1964), Bhandari and Sherrer
(1968), Wen (1973)), the use of random walk analogies (Toland and
Yang (1971), Roberts (1978,1986)) finite element methods (Langley
(1985), Bergman and Spencer (1985)) and the application of
path-integral methods (Wehner and Wolfer (1983), Kapitanik
(1985) ).

An inmportant class of approximate methods ¢goes under the
title of stochastic averaging methods, and will form the basis
for much of the discussion in the remaining text. At this point
therefore, it is sufficient to point out that this powerful
methodology, due originally to Stratonovich (1964), is applicable
when the response processes of interest are narrow-band in nature
and the excitation processes are broad-band. The approach can be
regarded as a generalisation of the deterministic averaging
procedure due to Bogoliubov and Mitropolsky (see Roberts and
Spanos (1986)).



Advantages of the stochastic averaging method may be summarised

as follows:

(a) the dimension of the FPK equation is reduced (generally
by a factor of two); this considerably simplifies the

ensuing analysis,

(b) non-linear damping can be handled very easily, and
effectively,

(c) effects of parametric excitation are easily incor-
porated - stability criteria can be derived in such

cases,
(d) exact closed form solutions for the reduced FPK equa-

tions are, in many cases, obtainable (at least in the

case of stationary response).

5.2 Eguivalent linearisation methods

Because linear systems are so much easier to analyse than
non-linear ones, a natural approach to attacking non~linear
problems is to replace a given set of non-linear equations by an
equivalent set of linear ones; the difference between the sets is

minimised, in some sense (usually a least-square sense).

The method originated in the work of Booton (1954) and
Caughey (1963). For reviews of recent developments see Roberts
(1981, 1984), Roberts and Dunne (1988), Spanos (1981). Much
interest recently has centered on its use in the analysis of
hysteretic structures, where differential formulations of
hysteresis are combined with the normal equations of motion.

Numerous studies have shown that equivalent linearisation
can give good estimates of the mean and mean square of the
response. However, since it is inherent in the method to assume
that the response is Gaussian, no information on the departures



from Gaussianity, due to non-linear effects, can be gleaned from

this approach.

5.3 Equivalent non—linearisation

Instead of replacing the original set of non-linear
differential equations with an equivalent linear set, one can
choose a replacement set of non-linear equations, which belong to
a class of problems which can be solved exactly. This approach is
referred to "equivalent non-linearisation". The basic idea is due
to Caughey (1986).

As an example of this method, consider an oscillator with

the following equation of motion:

X + b(x,X) + g(x) = £(t) (84)

where f(t) 1is a zero-mean, stationary white noise process. One

can replace this with

X + x H(E) + g{x) = F(t) (85)

An exact solution exists for equation (85), as shown earlier. The

error between (84) and (85)

€ = b(x,x) - x H(E) (86)

may be minimised in a least-square sense, as in normal stati-

stical linearisation.

One needs to choose the function H(E) in an appropriate

way. One approach, suggested by Caughey (1986)), is to set

H(E) = < H,(E) (87)



where HO(E) is a suitably chosen function of E , and ¢ 1is a
constant, to be determined by the minimisation condition

2
dE{e”} = 0 (88)

dec

It is easy to show from this that

E{x Hy(E) b(x,x))
c = 35 (89)
E{x" H_(E))

It is noted that, with HO(E) = 1 , the above reduces to

E{x b(X,%))

c .2 (90)
E{x")

which is the usual statistical linearisation result.

If the damping is of the power-law form

° r os .

b(x,x) = brplx x” | sgn(x) (91)

then a suitable form for H, (E) is
r+s-1

Hy(E) = (2E) °2 (92)

This ensures that X H(E) is of the same order in X as

b (x,X)

Calculations are much easier in the case of linear stiffness
- i.e., non-linearity in damping only. Specific examples are
given by Caughey (Caughey (1986)) .

An alternative approach is possible which is appropriate
when the damping is 1light - i.e. the energy dissipated per
"cycle", due to damping, is, on average, a small fraction of the



average energy in a cycle of oscillation. This implies that
Q(E) << 1 . In this situation one can treat the total energy, E ,
as approximately constant, over one cycle of oscillation, T(E) ,
where T(E) is given by equation (40). Returning to the expres-
sion for the ~-uation error, given by edquation (86), then the

error integral

T(E) | T (E) L "
I = J e“dt = J [b(x,x) - x H(E)]"dt (93)
0 0
can be minimised with respect to H(E) , where the latter is

treated as a constant. This yields

T(E) .,
b(x,x)xdt
0

H(E) = (94)

T(E)
J x%at
0

or

o]

b(x,JZ[E—V(x)])dx
0

b
j JZ[E—V(X)]dx

0

where the upper limit, b , is given by V(b) = E , as before. A
combination of equation (95) with the exact solution of equation

(85), as given by equation (83), now gives a solution to the

(93)

H(E) =

original problem.

One can expect that this solution will become increasingly
accurate if the magnitude of the damping is progressively
reduced. It will be shown later that this result is in exact
agreement with a result obtained by the method of stochastic

averaging.

The integrals in eguation (95) can be evaluated, either

analytically, or numerically, for specific functions, b(x,%)



and g(x) , in the equation of motion. The basic result can also

be obtained by an energy balance method.

5.4 Closure methods

Suppose that the equations of motion are written in the
state variable form given by equation (57). As pointed out
earlier, this form is appropriate if the excitation processes can

be modelled adequately as white noise processes.

If g(z) 1is a scalar function of z one has an important
result from Markov process theory (see Jazwinskii (1970)), as
follows)

E{g(z)) = E(b'a) + %+ tr E(DH) (96)

NI

where

(97)

iy
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I
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and

H = [52—2%5—] (98)
j

is the Jacobian matrix of second partial derivatives of g . D

is the diffusion matrix defined by equation (63).

With appropriate choices for the function g , a set of
moment equations can be generated from equation (96). It is found
that the differential equation for a moment of any order general-
ly involves moments of higher-order, due to the presence of
non-linearities. Thus, to obtain a soluble system of equations it
is necessary to introduce a "closure scheme", This is the famous
"closure problem" in stochastic non-linear mechanics. Two possi-

bilities are



(a) cumulant closure
(b) quasi-moment closure

where cumulants and quasi-moments, of any order, may be related
to the ordinary moments

N ki

= E I z. {99)
. i
i=1

K = k3 +k, + ..o + Ky (100)
is the Yorder" of the moment (see Stratonovich (1964)).

Closure  methods involve setting all cumulants (or
quasi-moments), above a specified order, to zero. Considering
quasi-moment closure, for example, if all gquasi-moments of order
greater than M (say) are set to zero, the probability density
function for 2z may be expressed as (Stratonovich (1964))

fy(g) =
M N
1 ]
{1 - ) &F ) g S8 SUUUS L 8 S ‘5‘§’} fel2)
s=3 k. ,k, ..., k_=1 s s
1’72 s
(101)
where ‘fG(g) is the Gaussian density function
_ 1 _1.T -1
fG(g) = N exp{ 5 2o v 50} (102)
2
(2m* ||
20 = 2~ 01 (103)
m = E{2} (104)



and

_ T
Y = E{z, 2y} (105)
is the covariance matrix. In equation (101) bk kM are the
1Q.Q
quasi-moments - for low orders (K £ 5) they are identical to
cumulants.

Gaussian closure consists of setting all quasi-moments (or
cumulants) of order greater than two equal to zero - i.e. it is
second order closure. For non-parametric systems Gaussian closure
coincides completely with normal statistical linearisation. Thus
closure at an order greater than two represents a dgeneralisation
of normal statistical linearisation and can be expected to yield
an improvement in accuracy. If sufficient moments of the response
are generated then it should be possible to use an expansion of
£(z) , such as that given by equation (101) to estimate the
behaviour of the distribution in the tails, with special regard
to the influence of non-linearities. Unfortunately, however, the
convergence properties of such expansions, at large values of
lz| , are such that it is not easy to obtain accurate results by
this approach.

5.5 Perturbation methods and functional series

If non-linearities in the system are sufficiently weak then
it is possible to generalise the usual perturbation method for
non-linear systems to the stochastic case (e.g. see Roberts
(1981)), to yield estimates of the influence of the non-linear
terms on response statistics. However the work involved in
computing the terms in the perturbation expansion can be prohibi-
tive, and it is usual to compute only the first, non-linear term

in the expansion.



sions can become prohibitive and results obtained so far by this

approach are of rather limited scope.

5.6 Simulation

Finally, mention is made briefly of the method of digital
simulation. Here one generates sample functions of the excitation
process and corresponding sample functions of the response, by a
numerical solution of the equation of motion. Statistical
processing of the output process then yields the required infor-
mation. Lengthy processing is needed to reduce the statistical
uncertainty to acceptable limits. The method is simplified for
stationary, ergodic processes, because only one input (and
output) sample function, of sufficient duration, need be generat-
ed. For non-stationary problems an ensemble averaging procedure

is necessary.

Simulation methods have the advantage of being very flex~
ible; complex problems, which are impossible to study by analy-
tical methods, can be tackled. However, this approach yields no
physical insight into the problem under investigation and in some
cases can lead to prohibitive computational requirements.
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AVERAGING METHODS IN RANDOM VIBRATION

J. B. Roberts

CHAPTER TWO

The_ Stochastic Averaging Method

1. Introduction

It was pointed out in the first chapter that, whilst Markov
methods offer a powerful general methodology for tackling random
vibration problems of the non-linear kind, unfortunately it is
possible to find exact solutions in only a few special cases.
Numerical solutions are, of course, possible but these tend to
involve considerable computing effort.

In this cChapter a powerful approximate technique is intro-
duced, which is particularly suitable when the damping in the
system is light. This condition frequently occurs in practical
non-linear vibration problems. The method was originally proposed
by Stratonovich (1964) as a mean of obtaining results for
non-linear, self-excited oscillations in the presence of noise.
It has subsequently been examined mathematically by wvarious
workers (Khasminskii {1966,1968), Papanicolaou (1973),
Papanicolaou and Kohler (1974)), with a view to establishing a
rigorous basis. The essence of the mnethod is embodied in the
so-called ¥Stratonovich-Khasminskii 1limit theoren®, which will be
introduced later in this Chapter. The technigque may be viewed as
an extension to the stochastic case of the well-known Bogoliubov
and Mitropolsky method for approximately solving deterministic
non-linear vibration problems {see Bogoliubov and Mitropolsky
(1961)).



As a means of providing a simple introduction to the method,
with a minimum of mathematical complexity, we will first consider
the case of an oscillator with non=-linear damping and linear
stiffness. It will be shown that, if the damping is sufficiently
light, and th~ excitation is broad-band, then the amplitude
process, a(t) , of such an oscillator can be modelled as a
one~-dimensional Markov process. The solution of the FPK equation
yields the distribution of a(t) , and, more importantly, the
joint distribution of displacement and velocity of the response.
From this wvarious statistics of the response, relevant to
reliability, such as level crossing rates, can be computed fairly

easily.

Following this discussion it will be shown that the method
can be extended fairly easily to oscillators with parametric

excitation, and to multi-degree of freedom systems.
It is noted that the application of stochastic averaging to

mechanical and structural random vibration problems has Dbeen

reviewed recently by Roberts and Spanos (1986).

2. Oscillators with non~-linear damping

The simplest systems of concern in engineering are oscilla-
tors with a single degree of freedom. Consider the following
equation of motion of a randomly excited non-linear oscillator:

%+ efh(x, )+ wlx = £(t) (1)
For € =0 this equation reduces to that of an undamped
oscillator, with a natural fregquency of oscillation, Wy - The

scaling parameter, 62 , is introduced here as a means of guanti-

fying the strength of the non-linear term, h(x,k) »



It will be assumed that f£(t) is a stationary, broad-band
process, with 2zero mean, which bossesses a power spectrum,

Sf(w) . Here Sf(w) is defined by

Sf(w) = %; Jf;wf(T)coszdT (2)

where We(T) is the correlation function for f(t) , defined by
Wo(T) = E{E(t)E(t+7)) (3)

Attention will now be restricted to the situation where the

damping is light - i.e., €2 is small. Moreover, it will be

assumed that the standard deviation of the stationary response,
o , is such that
o = O(e_l) (4)

This is certainly true in the linear case, as can easily be shown

by standard linear theory. Thus, if

h(x,x) = x (5)

then
2 Sf(w)dw
o = 2 > 2 13 (6)
-0 I(wo—w ) + ie“w]
2
and as €“ = 0
TS (Ww,)
02 - ——5—59~ (7)
€ wy

Equation (4) also appears to be generally true in the non-linear
case, although a rigorous proof seems to be difficult. It is
noted, however, that the form of the damping function will not



influence the order of the response, with respect to € , so one
can expect equation (4) to be generally valid.

It follows from equation (6) that

o - as € = 0 (8)

For analysis purposes this is inconvenient, since the limiting
behaviour of the response, as the magnitude of the damping tends
to zero, will be of concern here. It is desirable, therefore, to
scale the excitation so +that the level of the response, as

nmeasured by ¢ , is of order eo . This implies that the excita-

tion spectrum should be of order 62 - i.e.,

Sup(S.(w)} = o(e?) (9)
over w

This scaling can be made explicit by introducing the process
z(t) , where

f(t) = ez(t) (10)

The equation of motion now becomes

% + €2h(x,x) + ng = ez (t) (11)
It is important to appreciate that this step does not imply
any restrictions on the "strength" of the excitation process.

When €2 is small the level of the excitation will normally be
weak compared with the maximum level of the response: in other
words, for light damping, the response will grow until its level
is large, in some sense, compared with the level of the excita-
tion. The scaling in egquation (10) simply makes this feature

appear explicitly.



2.1 Transformation of variables

Consider the total energy of the oscillator, E(t) , defined
by ‘

E(t) = %- + (12)

where the first term on the left-hand side of this equation is
the kinetic energy, and the second term is the potential energy
(see also section 4 of Chapter 1). If equation (11) is multiplied

throughout by x one has

X% + €2xh(x,x) + wgkx = exz(t) (13)

Moreover, differentiating equation (12) throughout with respect

to time gives

B o=k + wlix (14)

On combining equations (13) and (14) one has

E = Pin(t) = Pyig(t) (15)
where

P, (%) = exz(t) (16)
and

Pyis(t) = e&h(x,%) (17)

Equation (15) is simply a power balance equation. In words,
it states that the rate of change of the total energy of the
oscillator, with fespect to time, is equal to the power input due
to the random excitation, Pin(t) , minus the power dissipation

due to the damping mechanism, Piig(t) - Since € 1is here taken

to be small, it follows from equation (15) that E will also be
small - i.e. sample functions of E(t) will be varying slowly
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with time, as illustrated in Fig. 2.1(a). This may be compared
with a sample function of x(t) , which will be oscillatory, due
to the narrow-band character of this process, see Fig. 2.1(b).
{Strictly, E(t) sample functions may be only slowly varying in a
macroscopic sense; at a more detailed level, mnicroscopic irre-
gularities‘may appear. Fortunately this feature need not concern

us here).



| The principal objective of the stochastic averaging method
is to average both Pin(t) and Pdis(t) over time, using the
fact that, for small € , E(t) 1is approximately constant over a
period of time corresponding to the natural period of oscillation

T = 2w/w0 (18)
We shall see that such an averaging procedure 1leads to a
one-dimensional Markov model for E(t) , and hence to an FPK

equation for the transition density function of this process.

In the present example it is convenient to work with an

amplitude process a(t) , rather than E(t) , where a(t) is
defined by
E(t) = V[a(t)] (19)

and V(-) is the potential energy function of the oscillator
here given by

W2
V(x) = — (20)
Hence
w2a2
E(t) = 5 (21)
a(t) has the same dimensions as x(t) and, when ¢ is small,
will "follow" the peaks of the response process, x(t) . Clearly,
from equation (19), if E(t) is slowly varying then so is
a(t) : hence the latter process can be averaged using the concept

previously described in connection with E(t) .

Associated with a(t) is a phase process, ¢(t); both a(t)
and ¢(t) may be related to x(t) through the following "van
der Pol transformation®:
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a(t)cos(wot + @)

e ’

f

—a(t)wosin(wot + @)

from this definition of
is consistent with equation (21).

Y

(22)
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When € is small, both a(t) and o(t) are slowly
varying. This can be seen by rewriting the original equation of
motion in terms of a and ¢ (see equation (11)). This gives

2

a = < h(acosd,-aw sind)sind - €2(Y) oing (24)
W 0 Wy
. 62 €z (t
p = YN h(acos@,-awosiné)cos@ - —gé—L cosd (25)
0 0
where
¢ = wit+ ¢ (26)

The right-hand sides of equations (24) and (25) depend not
only on a(t), ¢(t) and z(t) but also explicitly on time,
through the "oscillatory" terms sin® and cos® . These terms
produce small, relatively rapid fluctuations superimposed on
relatively large, but slowly varying fluctuations in a(t) and
#(t) , as illustrated in Fig. 2.2.

The basic idea of the stochastic averaging method is to
eliminate the fluctuational terms by performing suitable time
averaging. In this way one can simplify equations (24) and (25)
very considerably, as we shall now demonstrate.

2.2 Averaging the dissipation term

Consider the special case where the excitation is absent

(z(t) = 0) . Equations (24) and (25) reduce to
. 62
a = - h(acos®,~aw,sind)sind (27)
wo 0
. 62
¢ = 5@; h(acos@,~aw051n@)cos¢ (28)



The right hand sides of these equations can be averaged by
assuming that a and ¢ vremain approximately constant, over one
cycle, of period T , as given by equation (18). If

2m
F(a) = -~ %; J h(acos@,-awosin@)siné ad (29)
0
and
1 27
G(a) = = 5= J h(acos@,—awosinQ)COSQ ad (30)
0

then the averaged equations, corresponding to (27) and (28) may

be written simply as

2
s = - &
a = g F(a) (31)
. 62
b= - am @ (32)

It can be seen that, in the simplified equations, the
equation for a(t) is uncoupled from that of ¢(t) . Thus the
first order equation for a(t) can be solved independently :
this, as will be seen, is a basic feature of the averaging method
and still applies when the excitation is present. In many cases
the damping is an odd function of velocity, such that G(a) is

zero; then ¢ = 0 , implying that ¢ is a constant.

As a specific example, consider the case of an oscillator

with linear damping. Then

®h(x,%) = 2Cwyx (33)

where ( is the usual non-dimensional damping factor, and it

follows from eguation (29) that
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2§w0 27
F(a) = - 57 J (—awosiné)sin@ ad (34)
0
Hence
2
F(a) = Cwoa (35)

Combining equations (31) and (35), and solving one obtains
a(t) = a(O)exp(—Cth) (36)

This solution is sketched in Fig. 2.3. It can easily be demon-
strated, through the exact transient solution for a linear
oscillator, sketched in Fig. 2.3, that a(t) is an extremely
good representation of the envelope of the free-decay response to
some initial disturbance.

It is noted that, since a is proportional to 62 , the

error involved in treating a and ¢ as constants, over a



period T , is of order 62 . Thus equations (31) and (32) are

correct to order 62 , with an error of order 64 .

Returning to the more general case where excitation is
present (see eguations (24) and (25)) it is noted that the first
terms on the right hand side may be averaged in the manner
indicated above, whether or not random excitation is present.
Thus partially simplified forms for equations (24) and (25) are
as follows:

2 ,
i = - £ F(a) - €28 ging (37)
w W
0 0
. 62 €z (t)
p = = o~ G(a) - —4 cos® (38)
0 0

2.3 Averaging the excitation term

So far the averaging method corresponds exactly with the
deterministic method of Bogoliubov and Mitropolsky. The next
step, however, which involves applying averaging to the last
terms in equations (37) and (38), is rather more difficult. The
correct procedure for averaging those excitation terms is due to
Stratonovich (1964). Here we give a simplified apprecach to the
averaging method which, although not rigorous, does give a
physical insight into the nature of the approximations involved.

The basic difficulty in averaging the terms

= 1 :
yl(t) = g z(t) sind (39)
z(t)
Yz (t)y = ""“"""‘"‘a(t) “’0 cos$® (40)

which appear in equations (37) and (38) lies in the fact that the
phase process, ¢(t) , is correlated with z(t) . Thus the means



of yl(t) and yz(t) are generally non-zero, even though the

processes 2z(t) and ¢(t) have zero mean.

Suppose that the excitation process z(t) has a correlation
time scale, Toor ' which is so small that one can define a time
interval At , such that the following two conditions are satis-

fied, simultaneously:

(1) At >> Toor
(ii) a(t) and ¢(t) do not change appreciably from t to
t + At .

It is noted that these conditions are always met if € is
sufficiently small, for then the correlation time scale asso~
ciated with the response will always become large, compared with
that of the excitation. Put another way, the bandwidth of the
response will become small, compared with that of the excitation.
From a practical viewpoint, however, it is desirable that the
excitation should have a large band-width (so that Teor is,
alsolutely, small), otherwise ¢ may have to be extremely small
(and maybe unrealistically so) in order that the above require-

ments be met.

If the above conditions hold then, with an error of order

(A¢)2 , one can write

sin(w0t+¢) = sin(wot+¢l) + cos(w0t+¢l)A¢ (41)
where
¢1 = ¢(t-At)
= ¢(t) (42)
A

If this expression is substituted into equation (39) one obtains



vy, (£) = %G 2(t) [sin(wyt+d)) + cos(w,t+)Ad] (43)

Now, since ¢1 is uncorrelated with z(t) , At >> Toor
the average value of z(t)sin(wot+¢l) is zero. Hence the mean of

¥, (t) is given by
E{y,(t)) = %5 cos (wyt+p,) E(z(t)Ad) (44)

An expression for A¢ can be found by integrating the phase
equation, as given by equation (38). Thus

2 t
Ap = -~ EG G(a)At - =5 z (T) cos(wor+¢)d7 (45)

AWy Je-At

where we have used the fact that a(t) and ¢(t) are sensibly
constant over the interval At . A combination of equations (44)
and (45) now gives

t
E{yl(t)} = =€ J E(z(t)z(T)}cos(w0t+¢)cos(w07+¢)d7

awg t-At
(46)

With a change of variables
u = 7-t (47)

equation (46) can be re-expressed as

0
E{yl(t)} = —62 J wz(u) cos(w0t+¢)cos(wot+wou+¢)du
awy ~00
(48)
where
wz(T) = E{z(t)z(t+7)} (49)



is the correlation function for z(t) , and the bottom limit of
the integral, At , has been replaced by - , since the correla-
tion function 1is effectively =zero when u = At (Tcor << At ,

again).

The product of the two cosines in equation {48) can be

written as

% cos(wou) + oscillatory terms, with frequency W (50)

Substituting this into equation (48) gives

0
E{y, ()} = —62 J w,(u) cos(wyu)du + oscillatory terms
2aw -0
0

(51)

The oscillatory terms, will, when averaged over the period, T ,

be zero. Moreover, the power spectrum, sz(w) , of z(t) , 1is
defined by
= 1
Sz(w) = 37 Jf;wz(u) cos (wu) du (52)

It follows that

- —ewsz(wo)
Y3 = E{y;(t)} = —F5— (53)

Zawo

Next, the correlation function of the zero mean process

yl = yl = yl (54)

will be found. Since the second term on the right-hand side of

equation (43) influences only the mean value, §1 ; one need only
consider the contribution from the first term, in evaluating the

correlation function of Yy o Thus



* [
Yy = z(t) 51n(wot + ¢1) (55)

and

£
3
]

* *
E(y; (£) ¥, (£+7))

I

E{z(t)z(t+T)sin(w0t+¢)sin(wot+w07+¢)} (56)

where the fact that ¢ is sensibly constant, over an interval
where the correlation function of z(t) 1is significant, has been

used.

Now since T cor is much smaller than the correlation time

*
scale of the response, the process Y,y behaves approximately
like an uncorrelated white noise process. Thus one can approxi-

mate wy () as
w., (1) = I () (57)

where the "strength" of the white noise process is given by

00
I = J w,_ (7)dr (58)
~00 yl

Combining equations (56) and (58) one has

: 00
I = J wz(T)sin(wot+¢)sin(wot+w07+¢)d7 (59)
-0
1 ¢ 9]
= EJ wZ(T)cos(wOT)dT + oscillatory terns (60)
-0

Once again, the oscillatory terms will disappear if averaging is
carried out, over the period T . Also, the interval in the above
expression can be related to the power spectrum, S Z(w) , of

z(t) . Thus, from eguations (52) and (60)



I = wsz(wo) (61)

The above analysis has shown that the process yl(t) can be
approximated as a white noise process, with a strength I given
by equation (61) and a non-zero mean, given by equation (53).
Hence one can express yl(t) as

ewsz(wo) %
y,(t) = - “Taw, - (7S, (W) 17 &, (%) (62)
where §l(t) is a zero-mean white noise process, with unit

strength. Combining equations (37), (39) and (62) one obtains

1
2 2 2
2 €“nS_(w,) [e"mS, (wn)] '
a = - Fa) v —2 0 o £, (%) (63)
0

W
0 Zawo

This is the final, "simplified equation" for a(t) .

A similar analysis can be carried out for the phase process,
#(t) , to show that

1
2 2
2 [e"mS_(w,)]
b o= € z'0
¢ = - agy () + 2w £, (t) (64)

where {2 is another white noise process, with zero mean and
unit strength, independent of §1 . It is observed that the mean
of the process yz(t) + defined by equation (40) is zero.
Equation (64) is the "simplified equation" for o(t) .

From equation (10) it follows that the spectrum of f(t) is
given by

Sc(w) = ezsz(w) (65)



Thus, in terms of Sf(w) , one can write the simplified equations

as

1
2
2 S (W, ) [7S o (wnr) ]
A = - pa) + 20 4 £ 0 gy (66)
Yo 2awg Yo 1
1
] 2 (754 (wg) 12
g = - au, G(a) + o, £, (t) (67)

Written rather more formally, as Itg equations, equations
(63) and (64) become (see Chapter 1)

dx = e’a(x)dt + ¢ B AW (68)
where
x = [ % ] - { a } (69)
| x, ¢
8 = a4 (%) } ’ B = { Byp Bya ] (70)
L 2, (%) By1 B2
aw = { aw, } (71)
aw,,
and
7S_(wa)
a(x) = -, 2 2 (72)
0 2aw
0
a,m = - 3 (73)
al.do



1

2
(7S, (w,) ]

B11 = —~——7Z;~——— = a B22 (74)
and 812 = B21 =0 . W1 and W2 are independent Wiener proces-
ses, and formally

aw aw

1 _ 2
& - & ' at = & (75)

It can be shown (see Stratonovich (1964)) that the approxi-
mations involved in averaging the stochastic terms, as outlined
above, are entirely consistent with the approximations inherent
in averaging the dissipation term. In fact the averaging approxi-

mation is, overall, correct to order ez .

Since X , as defined by equation (69) is governed by a
first-order equation, with white noise excitation, it follows
(see Chapter 1) that the joint process [a(t),d(t)] 1is (at least
approximately) a Jjoint Markov process. Strictly, [a(t),d(t)]

converges to a Markov process as 62 tends to zero. Thus one can

regard the simplified equations for a(t) and $(t) as asympto-
tically exact, as € —= 0 . The mathematical basis for this result
is contained in the Stratonovich-Khasminskii 1limit theoremn.

2.4 The Stratonovich-Khasminskii limit theorem

This theorem is applicable to stochastic differential
equations of the following form

X = €2L(X,t) + eglX,t,¥(t)] (76)

Here X(t) is an n-vector stochastic process, usually relating
to the response, and Y(t) is an m-vector stochastic process,
usually relating to the excitation. The elements of Y(t) are
broad-band processes, with zero-means, and the vectors £ and g
satisfy certain requirements (Khasminskii (1866)) which are



almost invariably met in practice. It can be shown that X(t)

may be uniformly approximated over a time interval of order e_l

by an n-dimensional Markov process, which satisfies the Tto
equation

dX = ea(X)dt + eB(X)aW (77)

Here the symbols v denotes an n-vector of independent unit
Wiener processes and a and B are, respectively, the "drift
vector", and "diffusion matrix". In fact, according to the limit
theorem, X(t) converges weakly to a Markov process as € = 0 .
Hence the approximation of X(t) as a Markov process, governed
by equation (77), is asymptotically exact, as € - 0 .

The quantities a and B can be evaluated according to the

following expressions

0 %
av
a = T [E{g} + j E{[ ] (9) }dT] (78)
s T%) Rt
and
T av [® T
B B = T J E{gt gt+T}dT {79)
=00
Here T2' is a time-averaging operator, defined by
t +T
av 1 °
T (-} = 1lim T J {-}dt (80)
T-00 t 0

the integration being performed over explicit t only. Also the
subscripts t and t+7 in the above indicate that the appropri-
ate quantities are to be evaluated at those times. In evaluating
the expectations in equations (78) and (79) the elements of X(t)
are treated as constants.



It is noted that, if the expected quantities in equations
av

(78) and (79) are periodic, with period T0 , say, then T is
just on averaging operation over one period; i.e.,
av N tO+T0
O | (-)at (81)
0 tO

and the result is independent of tO

2.5 Application of the limit theorem

The 1limit theorem, as stated above, may be used as an
alternative means of deriving the simplified equations for af(t)
and ¢(t) .

Returning to the original, exact equations for a and ¢ ,
as given by equations (24) and (25), it is seen that they can be
written in the form of equation (76), if X is defined in
equation (69). Here

£ = [flJ : g = {glJ (82)
t, 92
where

= 1 - . .
f1 = g h(acos?, aw051n®)51n® (83)

1 ,
f2 = 558 h(acos?®, ~awos1n¢)cos® (84)

R .
g, = g z(t)sind (85)

_ 1
9, = 555 z(t)cosd (86)



It follows, immediately, from the limit theorem that, asymptotic=-

ally, as € = 0 , X(t) is governed by the Tto equation, as given

by equation (68).

The elements of a and B may be found through an applica-
tion of equations (78) and (79). Thus, from equation (78),

_ av
a; = T E{fl}

s [0 g %3 (9,) + 09, (9.) ar (87)

% 917 t4+r X 920 tar
-0 1-t 2°t

In the first term on the left~hand side of the above equation the

excitation, z(t) , is not present explicitly, so that this term

reduces to

av _ 1
TO {fl} = wo F(a) (88)

where F(a) is given by equation (29), and use has been made of
the fact that cyclic averaging, as indicated by equation (81), is
required here. From the fore-going definitions of 94 and g,

one has
3g1 3gl
® = = = (89)
g g
3}.(_21. - %_1_ = %az(t)cosé (90)

Hence the second part of the right-hand side of equation (87) may

be written as

0
1
—=3 Tav[ [ E{z(t)cos@t z(t+¢)cos®t+T}d7]
awy -



0
_ 1
= =5 Tav[ J wz(T)cosétcos®t+TdT] (91)
aw -0

0

It can be seen that, apart from a factor e , this expression is
identical to that found earlier, for E{yl(t)} (see equation
(48)): thus, averaging as before to remove the oscillatory terms,

one has, from equations (87), (88) and (91),

)
a. = - %— F(a) + —¥ 0" (92)
0

in agreement with equation (72).

The term a is also easily evaluated from equation (78).

2
Thus
_ av
a, = T, E(f,)
0 Og og
e [ o[, e [, e oo
-0 1°t 2’ t
Now
av - .1
Ty E(f,) = 7 G(a) (94)

where G(a) is defined by equation (30). Moreover,

o9, g, B 1 N &
6§I = == = - 2 z(t)cos (95)
0
and
5g2 _ ag2 _ 1 i n®
8)—(—2— = Za = - ‘é—a(—) z(t)sin (986)



Hence the second part of the right-hand side of equation (93)

becones

0
1 .
- =5 Tgv [ J wz(’r)ss.n(‘it + @t+T)d7]

=Q0

0
T [51n2¢t jﬂwwz(7)51n(w07)d7

0
+ cosz<I>t J_me(T)cos(on)dT} (97)

Now both terms in the square brackets will vanish, when the
averaging operation is carried out. Thus one finds that a, is
simply given by

1

%2 T T aw, G(a) (98)

in agreement with equation (73).

Finally, the elements of B can be evaluated by the use of
equation (79). Here this gives the following three equations for

the elements of B :

av
2 2 To @ . . 3
By, *+ Bl, = -5 J wz(7)51n¢t31n t+TdT (99)
) =00
0
oV
B, By t B,,B,, = —3 jw wZ(T)51n®tcos¢t+TdT (100)
aw:, Y=o
0
and
av
2 2 To & cosd
821 + B22 = 53 wz(T)ccs £ oS t+Td¢ (101)
a“wy Y-



Solving one obtains B12 = B21 = 0 and B11 and B22 in
agreement with equation (74).

2.6 The FPK equations

It has been shown that the joint process [a(t),d(t)]

A
converges to a Markov process, with the variables governed by Ito

equations, in the form of equation (68). It follows from the
results given in Chapter One that [a(t),¢(t)] has a transition
density p(a,¢|ao,¢o;t) , such that p(a,¢|a0,¢0;t)dad¢ is the

probability that a < a(t) < a+da, ¢ < ¢(t) < ¢+d¢ , at time t ,
given by a = ag, ¢ = ¢0 at t =0 . The transition density
function is governed by the following FPK equation (see equations

(1.61) and (1.62))

B - Gl Ee - T f] st 2

7S (w,) 2 2
+ —L 20 [ 9 £+ lg Q~§ ] (102)
2awy e} a“ 9¢

An inspection of the differential equations for a(t) and
#(t) (see equations (66) and (67) shows that the amplitude
process, a(t) , is uncoupled from the phase process, ¢ (as in
the deterministic case, where the excitation is absent). It
follows that a(t) is a one-dimensional Markov process. The
transition density function for a(t) , p(alao;t) , 1s governed

by the following FPK equation.

9 { e2Fa) (@) } mSe(Wy) 52y
= - p| + (103)
gg BE[ “o 2awg ] 2wg da>

Equations (102) and (103) must be solved subject to the

following initial conditions: as t - 0



p(a[aoﬁt) - 5(a~ao) (104)

and
p(a,dlay, d,:t) - blaay) 5(g-¢,) (105)
It is noted that, in the case where ezh(x,i) is a linear
damping tern, ezh(x,k) may be written, as before, in the form

of equation (33). One then has F(a) = nga (see equation (35))

and G(a) = 0 . More generally, if h(x,x) is a function of x
only then, from equations (29) and (30), it follows that

F(a) 0 . Similarly, if  h(x,x) depends on ¥ only, then

G(a)

i

2.7 Stationary solutions

Since the excitation is assumed here to be stationary, the

response will approach stationarity as time elapses - i.e.

lim p(a,dlay, ¢ it) = w(a,d) (106)
£t

where w(a,¢¥) is the stationary density function for a(t) and

fd(t) . Similarly

lim p(a,ao;t) -+ w(a) (107)
t-0

where w(a) is the stationary density function for af(t) .

Equations for w(a,¢) and w(a) may be obtained by setting
Op/8t = 0 in equations (102) and (103). Hence, for w(a,¢) ,



2
0 2awO awo
S (w,) 2
v L0 [5¥+%~—3ZW} (108)
2awy Oa a® O¢
and for w(a)
_ A [f €®rra)y TSglwg) mSelWy) 42y

0 = da o - 5 wi| + 5 5 (109)

0 2aw0 2w0 da

A comparison of equations (108) and (109) reveals that the
stationary density function, w(a,¢) , must be related to w(a)
as follows

v(a,§) = - u(a) (110)

Here the factor 1/27 arises from the normalisation condition

27T oo
Jw w(a)da = j J w(a,¢)dad¢g = 1 (111)
0 0 0

Equation (110) shows that, when stationarity is reached, the
phase angle ¢ is uniformly distributed between 0 and 27 .

Through a transformation from a,¢ variables to the
original X, X variables, an expression for the stationary

density function of x and X% , w(x,%) can be deduced from
equation (110). Thus

w(x,x) = w(a) (112)

1
27rwoa

where



[T

2 %2
a = [x + =5 ] (113)
“o
and w(a) ig the solution of equation (109). This solution is
readily found to be (see equation (1.72))
262w0 a
w(a) = Ca exp{~ ;g;Tagy o F(&)d¢ } (114)

where C 1is a normalisation constant.

In the linear case ( e2h(x,X) = 2Cw0i ) , eguations (112)
and (114) lead to the following results:

2
w(a) = 95 exp{— 9—5 } (115)
o 20
and
: 1 1 [.2, %
wi{x,x) = — exp{- —5 [x + =5 J} (116)
27w 0 20 W
0 0
where
TS (W,)
o -§—§9~ (117)
2Cwo
An appropriate integration involving w(x,x) , as given by

equation (116), reveals that ¢ , as given by equation (117) is
the stationary standard deviation of x . In the special case of
white noise excitation, where Sf(w) = SO , a constant, equations
(115) to (117) agree with the well-known exact results for this
case (Crandall and Mark (1964)). According to eguation (115),
a(t) has a Rayleigh distribution whereas, from equation (116),

the joint distribution of x and x is Gaussian.



It is also of interest to compare the above approximate
solutions with known exact solutions for non-linear oscillators
excited by white noise. One such exact solution exists for the

case where the non-linearity is of the form

?h(x,x%) = 2Cwyx + e2q(x) (118)

(see equations (1.78) to (1.81)). In this case one finds that

ezF(a) = anz (119)

0
just as in the case of linear stiffness - i.e. equations (115) to
(117) still hold. Thus, according to the stochastic averaging
theory, the small nonlinear stiffness term does not contribute to
the stationary response distribution. However, as one would
expect, the exact solution for white noise excitation (see
equation (1.79)) shows that the non-linearity in stiffness can
markedly affect the distribution of the response. This apparent
anomaly is easily resolved when it is recalled that the stochas-
tic averaging solution is an approximation which is only correct

to order 62 . If the exact solution is expanded in powers of

€2 » and terms of order higher than €2 are discarded, then one
finds that the non-linear stiffness does indeed vanish. Thus the
stochastic averaging approximation is consistent with the exact

solution.

As noted earlier, in Chapter One, an exact solution exists
for a special type of non~linear damping (see equations (1.82) to
(1.83)) when the stiffness is linear, the appropriate form of
damping is

€ h(x,x) = &2 pla)x (120)

where p(a) is some arbitrary function of a . For this kind of
damping one finds, from equation (29), that



woap(a)

Fla) = —5— (121)

Hence, from equations (116) and (117),

2 2
€

exp {— ;§;T;§7 JZ p(a)da } (122)

wx,x) = T
0
This is in complete agreement with the exact solution (see

equation (1.83)).

The principal advantage of the approximate solutions given
by equations (115) to (117) is that they give explicit results
for general types of non-linear damping, where exact results do
not exist, even for the case of white noise excitation. Various

useful statistics can be computed from w(x,x) , as given by
equation (116), including level crossing rates. Specific results
have been obtained for the following types of non-linear damping:
linear-plus-power law (Roberts (1977)), van der Pol (Spanos
(1978,1980)), Rayleigh (Spanos (1978)), and Coulomb (Brouwers
(1982)). Generally the results are in very good agreement with
corresponding digital simulation results, when the damping is
light.

2.8 Linear-plus-power law damping

Suppose that a specific form of non-~linear damping is now

considered - i.e.

hx,x) = x(1 + Alx|™ (123)
so that the eguation of motion is

%o+ e2x(1 + Ax|™ + ng = € z(t) (124)



It has been shown, earlier, that this form of damping can be used
to model the dissipation forces arising from the internal fric-

tion of metals.

From equations (29) and (30) it is found that, for this type
of damping, one has

1 2 +1
F(a) = 3 aw, + ;—-(awo)n In+2 (125)
where
/2 n
I = J cos 646 (126)
n 0

Hence, from equations (112) and (114), one obtains an expression
for the stationary joint density function of the non-dimensional

variables
« = X(t) _ ()
o ! Y O W
0 070
where 7y is the standard deviation of the response in the
linear case () = 0) ; from equation (117), noting that here
€2 = 2Cw0 , one has
7S (w,)
ag = ——§~§9— (127)
€ wy

in agreement with linear theory (see equation (7)). The result is
(see also Roberts (1977))

n+2
wix,y) = Cuw (x,y) exp{- anA*{%(x2+y2)] 2 } (128)

where



2= AP (128)

0%
Vo (X,¥) = 3= expl- F(x°+y%)] (129)

and
a = [8(2)n/2/(n+2)W]In+2 (130)

C 1is a normalisation constant, such that

Jw Jm w(x,y)dxdy = 1 (131)
-0 =00

. * s . . . .
It is noted that A is a non-dimensional non-linearity para-

meter and wo(x,y) is the (Gaussian) result when 2¥ = (noting

that € = 1 when e* = 0) C may be expressed as
-1
c = [ Jw exp[-Q(v)]dv] (132)
0
where
n+2
* 2
o(v) = Vv + anA v (133)

From the basic result given by equation (128) one can
evaluate various statistics of the response process, x(t) . For

*
example, the moments of the response are, correct to order A ,

given by
mt2
xen™ o In? i T® 4+ 1yr-A*a_1 + o(A*?) (134)
00 - m (2 L nm]
where



_ 2 _ n+4
Am = an{ NEE F[;§~J} (135)
2

When m = 2 , equation (134) gives the mean square response,
02 = E{xz(t)} . In this case

02 * *2

=5 = 1 - AT[(ntl) (n=1)...(1)] + O(A %) (136)

g

0

if n 1is even, and

\%)

= 1 - A*j% [(n+1) (n-1)...(2)] + O(A*?) (137)

o

if n 1is odd. These results are identical to those obtained by
Crandall et al. (1964), using the perturbation method.

The above result for the mean square response can also be
compared with that obtained by the equivalent 1linearisation
method. If equation (124) is replaced by

% + ok + ng = € z(t) (138)

then ﬁgq can be chosen to minimise the mean square of the

difference between the two equations. The optimum value of ﬁgq
is

c n+2
yéi = 62[ 1+ ) 2 X. } ] (139)

Assuming a Gaussian distribution for x , With standard deviation

o’ , equation (139) leads to the result
1
. n+2-+ 2
Bog = 62[ 1+ Ao D {ZW J F[Egé} ] (140)



For the linearised oscillator

o = Woo = MOUO(ZELJ (141)

eq

and equations (140) and (141) may be solved iteratively to find

2
ﬂéq , and hence 0° .
*
Fig. 2.4 shows the variation of 02/05 with A, as
predicted by the stochastic averaging method (denoted SA theory),
for n =2 . For this value of n the mean sqgquare response can

be evaluated analytically (Roberts (1977)). The result is

SA theory

~N O 0-6
b
~
“
0-5
EL theory
0-4 —
03 -
Perturbation
theory
02 -
01 -
. | 1 | ! i
0 o4 05 06 07 08
)t’
Fig. 2.4.



2 2 -1
95 = 29{ {¢F; e (1 - erf@)} -0 } (142)
(22
0
where
1
0 = 17322 (143)

Also shown in Fig. 2.4 is the corresponding perturbation solution

AV

= 1 - 32¥ (144)

ol

(see equation (136)). For n = 2 equations (140) and (141) can
be solved explicitly to yield the equivalent linearisation

solution (EL Theory)

= [ J 1+120* - 1] / 6A* (145)

VAN

Fig. 2.4 shows that the EL solution is very close to the saA

result, over the range of A* shown. It is noted that both the
SA and the EL results agree with the perturbation solution when

A* is small, to order A*

Digital simulation estimates, also shown in Fig. 2.4, are
seen to be in excellent agreement with the SA theory. As one
would expect from the approximations inherent in the SA theory,
the agreement is less satisfactory for the higher damping factor,

(noting that 2 = ZCwO) although the discrepancy is quite small.
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Fig. 2.5.

Fig. 2.5 shows a typical result for the probability density
functions of x(t) , obtained by integrating w(x,y) , as given

by equation (128). Here A* =1 and n = 2 . The full line shows
the variation of w(x) with x , according to stochastic averag-
ing, whereas the broken line shows the corresponding Gaussian
density function, with the same mean-square value. It is observed
that there is a very pronounced deviation from the Gaussian form



in the tails of the distribution. Simulation results are seen to
be in excellent agreement with the stochastic averaging result.

The expected frequency of up~-crossings, v of some fixed

level, a , can also be calculated from a knowledge of w(x,y) .
One has Rice’s formula

2 ijw(n,y)dy (146)

where 179 = a/aO is a non-dimensional amplitude. For n = 2 an
analytical expression for v may be found

2
2 1 - exp|f + ﬂ%ﬂ]
PR P B R (R
v, exP[z ] [1 - expd] (147)
where Yy is the 1linear result (A* = 0) . When 7 = 0 this

result reduces to

AN
]
A
i
|

(148)

o
N
3

Fig. 2.6 shows the computed variation of vyvo with 7 ,

*
for n=2, and A = 0,05, 0.10 and 0.20 , according to
stochastic averaging. The simulation estimates of u ; Shown in
this figure, are in very good agreement with the SA theory.

3. Oscillators with parametric excitation

Random parametric excitation frequently occurs in engineer-
ing vibration problems. It has been demonstrated by many authors,
following Stratonovich’s pioneering work, +that the averaging
method is particularly effective in assessing the stability of
systems with this type of excitation.
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Fig. 2.6.

Here the case of an oscillator with non-linear damping and a
random, parametric term will be used to illustrate the method of

deriving stability criteria.

3,1 Egquations of motion

Consider an oscillator with the following equation of

motion:

% + e2h(x,x%) + ng[l +oeg(t)] = ez(t) (149)



Here q(t) 1is the parametric excitation, other terms retaining
their previous meaning. The non-parametric excitation is scaled,
as before, by ensure that the response magnitude is of order

60 . It can be shown (e.g. Roberts (1982)) that the parametric

excitation must be similarly scaled, as above, to ensure the

. 0
response remains of order ¢~ .

Introducing the van der Pol transformation, as before, (see
equations (22) and (23)) one can express the equation of motion
as a pair of first order, coupled equations for a and ¢ .
Hence, applying the Stratonovich-Khasminskii limit theorem one
obtains the following "simplified" Ité equations:

1
da = (ezFl(a) + -g—‘?fa + %)dt + (,3+aa2)2dwl (150)
1
dp = ~dt + (% +oa+ 6)2dW2 (151)
a
where
a = wsp(zwo)/z;wg (152)
B = wsf(wo)/wg (153)
1 .
¥ o= = jw w_(7)sin2w,. 7dTr 154
=5 | vp(nsinzug (154)
0
_ 2
6 = 7rSp(0)/2w0 (155)

and Sp(w), Sf(w) are, respectively, the power spectra of the
processes p(t) and f£(t) , where

p(t) = eq(t) , £(t) = ez(t) (156)



Similarly, wp(T) is the correlation function of ©p(t) . The
function Fl(a) is (apart from a constant factor) equal to the
function ¥F(a) defined by equation (29) (here G(a) = 0 ). Thus

F,(a) = - - F(a) (157)

Clearly when the parametric term is absent, a = 6 = 0 and
equations (150) and (151) reduce to equations (66) and (67).

3.2 The FPK equations

From equations (150) and (151), describing the asymptotic

(62 - 0) Markov model for the joint process a(t), #(t) , an

appropriate FPK equation is easily derived. Generalising (102)

one has

%g = - gg[ [ezFl(a) + E%a + é%]p ]

2
- G300 + 3 %;; [(8 + aa?)p)

+%QZ-[ [%+a+5]p} (158)

a

for the transition density p(a,¢]a0,¢07t) . This function must
satisfy the initial condition given by equation (105).

As in the non-parametric case, al(t) is uncoupled from
$(t) , as 1is evident from equation (150). Thus a(t) is a
one~-dimensional Markov process, with a transition density func-

tion governed by

%% = - gg[ [ezFl(a) + %ga + g%]p ]

1 &

+ 3 S51(B + aa®)p (159)
2 aaz



The conditions under which a stationary solution to these
equations, as indicated by equations (106) and (107) exists
depends on the form of the damping.

3.3 Linear damping

If ezh(x,k) = ZCwO& , then

2 -
€"F,(a) = - Cwoa (160)

and, with dp/0t = 0 , the stationary density function of
a(t), w(a) , must satisfy (see equation (159))

14

2 da2

91Q
o

(8 + aa®)w] - 2

[ [—Cwoa + 3% 4 g%]w ] = 0

(161)

The solution to this equation is

w(a) = ——32%&Q§1—— (162)

(Braa?) /2

where

(Cwy=)
A= (163)

This solution will only exist if X > 0 - i.e.

S, (2w,)
S __E_g_g_ (164)
4wo
It has been shown by Ariaratnam and Tam (1979) that the
inequality of equation (163) gives the condition for sample
stability for the approximate amplitude process governed by its

simplified equation, and they have given some justification for



the assumption that it also gives the condition for sample
stability of the original system.

It is interesting to note that the stability criterion
stated above | - not affected by the presence of the non-para-
metric excitation process, f(t) . In fact the critical damping
factor depends only on the natural frequency of oscillation, Wy
and the value of the power spectrum of p(t) , at twice the
natural frequency. This is not unexpected since it is well known
that the stability boundary for a linear system excited by a
periodic, parametric input has a minimum when the excitation
frequency is twice that the natural frequency. The stability
criterion of equation (164) was first deduced by Stratonovich and
Romanovskii (1958).

From equation (162) it is a simple matter to evaluate the
moments

E(an) = Jm w(a)anda (165)
0

One finds that

. A1 (142 T (A-D)
E{a} —73 (166)
2 / I'(A+1)
The nth moment exists if
A > n/2 (167)

Hence, for example, for stability of the second moment one has

7S_(w
¢ > __2%9_), (168)

2w0



Returning to equation (162) it is observed that, when
stability exists, the amplitude distribution is of a power-law
type, rather than Rayleigh. However, using the standard formula

i

linm (1+vx)V =  exp(x) (169)
-0

one can show that equation (162) does indeed approach the

Rayleigh form as a - 0 . Thus

2

w({a) = 25 exp{— 3—5} (170)
o 20
where
7S o (w,)
o2 = __f£ 0 (171)
3
ZCwO

As in the non-parametric case, the joint distribution of a

and ¢ is given by equation (110), and for x and x one has
equation (112) again. Hence various distributions, such as that
for x(t) , can be computed (see Roberts (1982)).

3.4 Non-linear damping

To illustrate the effect of non-linear damping, consider the

specific form

ezh(x,k) = ZCwOi + p|x|x (172)

This represent linear-plus-quadratic damping, often to be found
in fluid-structure interaction problems (see Chapter One).

For this type of damping one finds, from equations (29) and
(156) that



ezFl(a) = - woa[c + %% pa} (173)

Substituting this result into the FPK equation for a(t) one

obtains the stationary solution

1 1
2 2
ca 1 -1
w(a = —>TIX expsi—- = a - tan a
(174)
where ¢ 1is a normalisation constant and
3ma
po= (175)
8pw,

3.4.1 Purely parametric excitation

For linear damping it has been seen that the motion is
stable if A > 0 . When this condition is satisfied, the response
level is determined by the level of the excitation process. When

f(t) 1is absent, the response is zero.

When non-linear, quadratic damping is included in the

theoretical model the motion is still stable for A >0, of
course. However, if X < 0 , it is possible for the non-linear
damping to limit the amplitude of motion - in other words, it is

possible for the roll motion to reach a stationary condition,
with a non-zero standard deviation. This is analogous to the
phenoménon of limit cycling, which is well known in deterministic
non-linear vibrations. In physical terms the motion, which is
unstable for A < 0 , (according to linear theory) will build up
until the mean rate of energy dissipation due to damping is equal
to the mean rate of energy input from the parametric excitation.

If f(t) is assumed to be zero it follows that (= 0 .
Hence the stationary density function, given by equation (174),

reduces to



c a
w(a) = W exp{-—/—j—] (176)

where the normalisation constant is given by

c = Pt (-2y (177)
This solution is valid for \ < o .

The stationary joint density function for a(t) and ¢(t)
is again given by equation (110) and, through integration,
various response statistics can be found. For example (see
Roberts (1982))

® = A(2x-1) 42 (A < 0) (178)

The analysis clearly shows that linear and quadratic compo-
nents of damping have different effects, so far as stability is
concerned. In the absence of the excitation brocess, f(t) , there
is a critical value of ¢ above which the motion is stable, when
the damping is linear. When non-linear damping is introduced the
motion is stable for all possible values of ) , from 0 to -1
(see equation (162)).

3.4.2 Combined excitation

From equations (112) and (174), the joint density of x and

X can be found, in the case where both f(t) and p(t) are
present. Hence one can obtain statistics such as the mean-square
response. Analysis is not easy in the case of
linear-plus-quadratic damping, since the required integrals are
not easy to evaluate analytically. Explicit results can, however,
be found in the case of linear-plus-cubic damping (Roberts
(1982)).
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AVERAGING METHODS IN RANDOM VIBRATION

J. B. Roberts

CHAPTER THREE

Generalisations and Extensions of

Stochastic Averaging

1. Introduction

In the preceeding Chapter the "standard" method of stochas-
tic averaging was introduced and applied to the case of an
oscillator with non-linear damping; the cases of purely non-para-
metric excitation and purely parametric excitation were con-
sidered in some detail, and explicit results obtained for some

specific cases.

In this Chapter it will be shown, initially, that the
standard averaging method has a much wider range of application.
Firstly it will be demonstrated that it is possible to analyse
multi-degree of freedom systems, with parametric excitation, and
to derive stability criteria (at least in the linear case) .
Combined external and parametric excitation may also be con-
sidered with this approach; unfortunately, in many cases the FPK
equations which result from an application of the 1limit theorem
are very difficult to solve analytically. Secondly, it will be
shown that it is possible to allow for non-stationarity in the
excitation, without a great increase in complexity. Again the FPK
equations become more difficult to solve but results can be
obtained fairly readily for oscillators with non-linear damping,
by semi-analytical, or wholly numerical methods.

As pointed out in Chapter Two, a disadvantage of the
standard averaging method is that it does not enable one to



examine the influence of non-linearity in stiffness on the
probability distribution of the response. In the second half of
this Chapter it will be demonstrated that this difficulty can be
overcome completely, in the case of single degree of freedonm
systems, by using the energy envelope process, rather than the
amplitude process, as the basis for the averaging procedure.

2. Multi-degree of freedom gystens

Applications of stochastic averaging to multi-degree of
freedom systems have been mainly concerned with situations where
parametric excitation is present. Assessment of stability is then

of major concern.

A fairly general form for the equations of motion of a
linear system, with purely parametric excitation, and n degrees
of freedom, is as follows:

=
e

. 2 2 . _

1 j=1

i
i

(i =1,2,...,n)

Here x, are principal coordinates and the coefficients ﬁa

kij
undamped system, with no excitation.

ji
are constants; wy are the natural frequencies of the

The application of the stochastic averaging method in this
case is a natural extension of that used for single-degree of
freedom systenms (see Chapter Two). Thus, new variables,
ai(t),¢i(t) are introduced by means of the transformations

X4 (t) a; (t)cosd, (t) (2)

ii(t) = -a; (t)w;sind, (t) (3)

3&2



where

@i = wit + ¢i (4)
The equations of motion, when cast in terms of ai(t) ,¢i(t)
variables, are of the standard form required by the
Stratonovich-Khasminskii limit theorem (see section 2.4). Hence,
applying this theorem, a set of Ité equations for ai,¢i can be
derived. These are of the form

n
= 2 a
dai = € mi(a) + € z aijdwj (5)
j=1
n
= 2 ¢
d¢j = €'n;(a) + € .z “ijdwj (6)
J=1

Here W?,Wf (3 =1,2...,n) are independent unit Wiener processes

and m;,n,; and O srhbs s (i,3 = 1,2,...,n) are drift and

J'71)
diffusion coefficients, respectively.

It is found that the equations for amplitude are uncoupled
from those of phase and hence ai(t) (i=1,2,...,n) is a
diffusive n-vector Markov process, with an appropriate FPK
equation. The problem of solving the FPK equation can be circum-

vented by using the Ité differentiation rule (Sobczyk (1985(1)))
to derive a set of differential equations for the moments of
a; . Thus, the second moments

_ 2
M, = E{aj(t)) (7)

are governed by differential equations of the form

n
= e Y a.M (8)



where the coefficients Aij can be expressed in terms of the
drift and diffusion coefficients. A necessary and sufficient
condition for second moment stability is that all the eigenvalues
of the coefficient matrix A = [aij] have negative real parts.
For specific systems, this enables stability conditions to be

formulated fairly easily, using the Routh-Hurwitz criteria.

The results of this approach show that second moment stabil-
ity depends only upon the values of the excitation spectral
density near twice the natural frequency, and the combination

frequencies |w; * wj] - i.e.
Sq(zwi) i=1,2,...,n
Sq(lwi = wjl) ilj =1,2,...,0N i :# j (9)

This method of analysis can be extended to include situa-
tions where external, non-parametric excitation is also present
(Dimentberg (1980,1983(a), 1983(b))). For example, Dimentberg
(1983 (b)) has analysed the case of a pair of coupled oscillators,
with combined external and parametric excitation. It is also a
fairly simple matter to consider the effect of harmonically
varying parametric excitation (Dimentberg and Isikov (1977),

Ariaratnam and Tam (1977)).

Whilst it is relatively easy to obtain expressions for the
moments of the response, it is much more difficult to obtain
results for the probability density functions. Some limited
results, for specific systems, are given by Dimentberg (1983(b))
and Dimentberg and Isikov (1977). As in the case of a simple
oscillator with parametric excitation (see Chapter Two), these

density functions are of the power-law type.

For non-linear multi-degree of freedom systems very limited
results exist at present. One principal difficulty here is that
the moment equations form an infinite hierachy, which requires
the imposition of some closure scheme to obtain a solution (see
Chapter One). Some results for the probability density functions



of two degree of freedom systems have been reported by Schmidt
(1977) and Schmidt and Schultz (1983).

2.1 Applications

Nemat-Nasser (1972) and Ariaratnam and Srikantiah (1978)
have analysed the flexural-torsional stability of a simply
supported beam subjected to stochastically varying end couples.
By considering the fundamental modes of bending and torsion the
equations of motion can be written in the form of a pair of
coupled, ordinary differential equations, of the form of equation
(1). sSimilarly, the flexural-torsional stability of a bean
subjected to a transverse load at its mid-span can be analysed
(Ariaratnam and Tam (1977)). Other two degree of freedom struc-~-
tural systems have been considered (Ariaratnam and Tam (1973))
including a gyroscopic system consisting of a rotating shaft,
with unequal flexural rigidities, subjected to a randomly varying
axial thrust (Ariaratnam {1972)).

Coupled motion arising from fluid-structure interaction has
also been investigated by Lin and Holmes (1978), in connection
with wind loading on structures, and by Fujimori et al. (1979)
and Prussing and Lin (1982,1983), in connection with the coupled
flapping~torsion and flapping-lag motion of helicopter rotor
blades.

3. Non-stationary excitation and response

If the excitation process, f£(t) say, is non-stationary, and
with zero-mean, it can be described in terms of an "evolutionary
power spectrum", S(w,t) . The evolutionary spectrum can be

expressed in the form

Se(w,t) = |at,w)|? 5 (w) (10)



where A(t,w) and §f(w) are appropriate functions and the
symbol | | denotes the modulus of the complex function (see
Priestley (1967)).
In the spoocial case where the process w(t) is stationary,
Se(w,t) = Sg(w) (11)
independent of t , where Sf(w) is the usual power spectrum. If
f(t) = a(t)n(t) (12)
where a(t) is a deterministic modulating function and n(t) is

a stationary random process, with power spectrum Sn(w) , then it

can be shown that

Se(w,t) = o® (t)s_(w) (13)

This is obviously a generalisation of equation (11) (here
a=1) . If n(t) 1is a white noise process then

Se(w,t) = az(t)so (14)

where S is a constant spectral level.

0

3.1 Non—-stationarv excitation of oscillators

Consider again the simple oscillator governed by

x + €2h(x,%) + wPx = ez(t) (15)

0

where f(t) = €z(t) , as before, but now z{t) is non-sta-

tionary, with power spectrum Sz(w,t) .

Applying the usual stochastic averaging theory one finds the
following Itd eguations for the amplitude process, a(t) , and



phase process, ¢(t)

1
.2 7S¢ (W, t) (7S¢ (wgy,t) 12
da = - = F(a)dt + ————— dt + -~ dw, (t)
0 2aw0 0
(16)
1
2
e? (TS p(wy,t) ]
d¢ = = - G(a)dt + = aw,, (t) (17)
0 0
In the case of stationary excitation
Selwy,t) = Selwy) (18)

and equations (16) and (17) reduce +o the equations given
earlier, in Chapter 2 (see (2.66) and (2.67)). Hence, the FPK
equations for a,¢ can be obtained from (2.102) and (2.103) by
simply replacing Sf(wo) by Sf(wo,t) .

3.2 Non-stationary exact solutions

A complete solution to the FPK equation for a(t) is
available, so far, only for the linear case. Tt can be shown (see
Spanos (1983), Spanos and Solomos (1983) and Solomos and Spanos
(1984) that the transition density function for a(t) is given

by

p(a,tla, t;)

-2Cw, T -Cw, t
a’+a’e 0 aa.e 0
= & expy - 1 I '——}——-«——-—“ (19)
c(t,, t) 2¢(t,,t) ol TSt %)

Here



t
c(tl,t) = £§ exp(aZCwot) J exp(zgwof’)S(wo,T’)dT’
wo tl

and the symbol I, denotes the modified Bessel function, of zero

order. 7T = t=tl

Equation (19) can be written in the form

0 2

2 a
a1 - a® %1) J2n
p(a,tla;,t) = 2 An[zc] Ln[?,cJ P (20)
n=0

where

c, = c¢(t,0) , c = c(0,t) (21)
and

c

2 - 1 -

pe = 5= exp(-2(wy7) (22)
Here p2 < 1 and is a measure of the correlation of the process
az . In equation (20), Ln denotes the Laguerre polynomial of

order n , defined by the eguation

n
L. = lT e? Q—H[e—zsz (23)

and the function Al is defined by

a2 a a2 a2
An l}):‘é"} = E eXp [" '2—‘6] Ln [“2—5} (24)

The transition density function can be used to derive the
joint and marginal probability density functions. For example,
with a, = a at t = t, = 0 , the distribution of a at time

1 0 1
t 1is given by the density function



~2Cwot ~Cw0t

a ~a2+aoe aaoe
p(a,t) = o exp{ 55 } IO{ —e } (25)

Expressions can also be obtained for the transition density
of the joint process a(t),¢(t) , by solving the FPK equation for

this process. The result is (Spanos (1983), Solomos and Spanos
(1984))

A ag+a
p(a,¢,t|al,¢l,tl) = 5%5751757 exp[ ”{EETEITET} ] (26)
where
~CwOT
a, = acos(w0t+¢) - alcos(w0t1+¢1+w07)e (27)
~Con
a, = aSLn(th+¢) - alsln(wotl+¢l+w07)e (28)
Furthermore, by using relationships between a,¢,%x and x , the
joint density for x(t) and the scaled velocity vy(t) = i/wo is
found to be
2, 2
a_ +a
T S - X Y
POLY L% ¥y t) = ity e {ZC(tl,t)}J (29)
where
-Cw. T
a, = X -e (xlcoson + ylslnwOT) (30)
—Cwor
ay = y - e (“XISlnwOT + ylcoson) (31)

It is noted that the variances of both x and y are equal to
c(tl,t) , at time t , and that, according to equation (29), the
joint distribution of x and y is Gaussian.



One important fact emerges fairly readily from equation
(26). If the system is initially at rest (a, = 0) then a and
¢ are statistically independent. Moreover, the phase distribu-
tion is uniform. Hence the marginal density function for (a,¢)

is given by

1
p(a,¢,t) = Sz p(a,t) (32)
where ©p(a,t) is given by equation (25). This is a generalisa-

tion of the result given earlier, in Chapter Two, for the sta-

tionary case.

3.3 Approximate analytical solutions

For non-linear oscillators the general analytical solution
of the FPK equations for a(t) alone, and a(t),¢(t) combined,
appears to be difficult. Work in this area has concentrated on
determining the marginal density function ©p(a,t) , for the case
where a, = 0 at € = 0 . Equation (32) then still holds and so

1
p(a,¢,t) may be determined from a knowledge of p(a,t) only.

One approach is to use a Galerkin technique in which the
basis functions are selected by using the corresponding solution
for the linear oscillator. Thus, refering to equation (20), the

following expansion may be introduced (see Spanos 1981 (a) and
(b))

- o ~

pEE) = ) Ft) A (3] (33)

n=1

where
a = ass” (34)

and S* is a scaling constant. N 1is an appropriate integer and
Fn(t) are functions of time, to be determined. Substituting



equation (33) into the FPK equation for a(t) , and taking into

account the following orthogonality property of the Ai( )
functions,
0 AiA. -
J' —d gz = 6., (35)
o %o +J

one can derive a set of ordinary differential equations for
Fn(t) » which may be solved numerically. Alternatively, for small
degrees of non-linearity, they can be determined analytically,
using a perturbation technique.

3.4 Random walk numerical method

The FPK equation governing a(t) , in the non-stationary

case, can be written in the standard form

2
0 190
B - - %{A(a,t)p} + 35 ———§{B<a,t>p} (36)
da
where
2 "8 (w,,t)
Afa,t) = - E£E(a) £\'%% (37)
W 2
0 2aw
0
S (w,,t)
B(a,t) = __g__g_n_ (38)
“o
A{a,t) and B(a,t) are related to the "infinitesimal
moments” of a(t) , defined by
a (a,t,At) = E{[a(t) - a(t-At)]") = E(ha") (39)
where Aa is the change in a(t) , during an interval of time
At . Using the transition density function p(aft]al,tl) ;oo

can be expressed as



a_(a,t,At) = deé(é-a)n p(¢,t]a, t-At) (40)

From standard #arkov process theory one can show that, if a(t)

is a Markov process,

a, (a,t,At)
A(a,t) = 1lim S e (41)
At-0
and
az(a,t,At)
B(a,t) = lim — At (42)
At—0
whilst
a (a,t,At)
lim AT = 0 for n > 2 (43)
At-0

It is possible to find a variety of discrete random proces-
ses which possess the same infinitesimal moments in the limit
where the time step approaches zero - i.e. which converge to &
continuous diffusion process, described by the FPK equation given

by equation (36).

Suppose that R(tj) is a random walk process, such that it
can only assume the discrete anmplitudes 8y where ay, = k5a
(k = 0,1,..., ) » If it is in the state (ak,tj) then it will be
assumed that it can only move to state (ak+1'tj+1) with pro-
bability rkj k-l’tj+l) with probability
qkj = 1mrkj . This is illustrated in Fig. 3.1(a). A typical
sample function of R(tj) is shown in Fig. 3.1(b). The moments

, or to state {a

of this process are
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tj,At) = (r )Aa (44)
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rkj(Aa)2 + qkj(Aa)2

(Aa)? (45)

The limiting random walk process, as At - 0 , can be arranged to
have the same infinitesimal moments as a(t) by setting

(rkj—qkj)Aa = A(ak,tj)At (46)
2

Aa® = B(ak,tj)At (47)

It is noted that, in the present application,

B(a,t) = B(t) , independent of a , then from equation (47) (if
Aa is fixed in advance) At may be computed at every time step,
and will, in general, vary as the diffusion process evolves.
Since rkj = lmqkj , equation (46) can be used to calculate rkj
and qkj at any time tj « Thus, from equations (46) and (47)

[~ A(a ,t-)

rkj = %_1 + B?tj) a} (48)
[~ A(q rt')

ey = %_1 - ““E%E;%‘ a] (49)

In implementing the random walk scheme one is essentially
diffusing probability "mass®™, over a discrete mesh of space and

time. With a deterministic start condition, a(t) = ay (say), at
t =0, one begins with a unit probability mass, located at
(aki0) , and diffuses this mass forward in time, using the scheme

illustrated in Fig. 3.1(a). Special care needs to be taken at
a = 0 , since the expressions for rkj and qkj become singular
here (Roberts (1978(a))). This difficulty can be overcome by
treating a = 0 as a reflecting barrier; thus probability mass
is reflected off this barrier, ensuring that there is no diffu-



sion of mass into the region a < 0 . One should also be careful
in the choice of Aa and At , to ensure that rkj and x5
remain positive, and hence that the random walk process remains

physically meaningful.

The random walk scheme can easily be shown to be equivalent
to a particular finite difference approximation of +the FpPK
equation. Thus, if p(k,j) is the probability of being in state
ak’tj , one has (see Fig. 3.1(c))

p(klj+l) = p(knlrj)rk_l’j + p(k+llj)qk+1'j (50)

This can be rearranged as (using equations (48) and (49))

p(k,j+1)-p(k,])
At

. 1+A .Aa . 1-A .Aa .
Elk“l,]) k-1 3 P(k+llj) k+1rj - kK,
28t [ ' } HEY.v [ ] At

B, B.
J J
(51)
where
A, . = A t. H .= t.
X, (3. j) Bj B( j) (52)
Rearranging again gives (using equation (47) - i.e. Aa? = BjAt)
E(k,j+l)=p(k,j)
At
- 1 . _ _ .
= - shslpoe g, - LAy ]
B.
+ ;ﬁ [p(kﬂ.,j) - 2p(k,3) + p(k-—l,j)] (53)
a

In the 1limit, as At, Aa - 0 , the left hand side of the above
approaches the limit Jp/8t . The first term on the right hand
side approaches



- 9-(a(a, t)p] (54)

and the last term approaches

1 &1
5 B(t) »»% ‘ (55)
Oa
Since here B(a,t) is independent of a , it follows that

equation (53) approaches, in the limit, the FPK equation given by
equation (36).

4, Averading the enerqgy envelope

We now consider an oscillator with light, non-linear damping

and a non-linear restoring force. The eqguation of motion is

x + €2h(x,%) + g(x) = ez(t) (56)

where, as in Chapter Two, the excitation is scaled with respect
to € , to ensure that the response displacement process, x(t) ,

is 0(60) . As before, we are interested in developing an asymp-
totic approximation, valid as € - 0 , and accurate when ¢ is
small, but finite. However, unlike the analysis based on the
standard stochastic averaging method, presented in Chapter Two,
it will not be assumed here that ¢(x) 1is a linear term, plus a

non-linearity of order € . Instead, the analysis will be based
on the assumption that the function g(x) is a strongly
non-linear term. z(t) will be assumed to be a stationary random

process, with zero mean, and a large band-width.

The energy envelope, E(t) , may be defined by
}22
E(t) = 5+ V(x) (57)



wvhere V(x) is the potential energy function (see also Chapter
One and Two). Thus here

X
V(x) = Jo g(€)dag (58)

Following an argument similar to that given in Chapter Two, it
can easily be shown from equations {56) and (57), that

E = P (€) = Pg. (%) (59)
where

P, (t) = ez(t)x (60)
and

Pais(t) = €*h(x,%)x (61)

These expressions are identical to those given earlier, in
Chapter Two, for the case of snall non-linearity in g(x) , and

Pin(t) and P t) have the meaning described earlier.

dis(
Equation (59) is one of a pair of first-order equations
which can be used to describe completely the behaviour of the
oscillator, as an alternative to equation (56). For the other
nmember of the pair there are various possibilities, depending on
ones choice of a process, W(t) say, to complement E(t) .
Ideally one would like to find a process, W(t) , which is also
slowly varying, when ¢ is small, such that the joint vector
process, ¥ 1is governed by an equation of the form of (2.76) . The
Stratonovich-Khasmingkii theorem would then be applicable, to
show that X(t) converges to a Markov process. Unfortunately, in
the case of arbitrary non-linear stiffness, does not seen pos-
sible to find a slowly varying process, with a direct physical
significance, which can be used to complement E(t) .



The difficulty will be overcome here by allowing W(t) to
be rapidly varying and by suitably generalising the standard
averaging procedure to deal with this departure from the standard
form of equation (2.76). Here W(t) is identified as the phase
process, ®(t) “fafined by

VG(X) = Jg cos® , x = = 2E sind (62)

It is noted that this specification of E(t) and &(t) uniquely
defines the position of the oscillator in the phase plane. The
appropriate first~order equations for E(t) and &(t) are now

£ = €?n(E,8) y2E sind - e/E sind z(t) (63)
3 ezh(E,@)cos@ _ ecos®z(t) + g(E,d) (64)

Jgg Vgg vgg cos®

where h(E,8) = h(x,%), g(E,8) = g(x)

In the particular case where the restoring force is linear,

i.e. g(x) = ng ;, then

$(t) = wyt + 4(t) (65)
where (L) is slowly varying. Equations (63) and (64) then

become equivalent to the equations for a(t) and ¢(t) , given
in Chapter Two (see (2.24) and (2.25)).

4.1 Averading the enerqgv dissipation term

Pdis(t) may be averaged by simply time-averaging over one
period of oscillation, on the assumption that E(t) does not
change appreciably over such a time interval. The appropriate
period to choose here is the period of free oscillation, without



damping, T(E) , as given by equation (1.40). The averaged

Pyis(t) , denoted §dis(t) , is given by

t+T(E)

Pyjs(t) = - TfE) Jt h(E,d) ygg sin® dt (66)

and may be written alternatively as

Byig(t) = - ;f;) fz hix,y2(E-V(x))]dx = e2B(E) (67)
where
V(b) = E (68)
and
. b
BE) = - 5% jo nix,v2(E-V(x))] dx (69)

Comparison of these expressions with those given in section
4 of Chapter One (see equations (1.39) and (1.40)) shows that

B(E) is, apart from the scaling factor 62 , the loss function,

L(E) . Thus

L(E) = €° B(E) (70)

4.2 Averaging the energy input term

To average Pin(t) it is necessary to generalise, somewhat,
the argument given in Chapter Two, in connection with the

standard stochastic averaging method (see section 2.3).

It will be assumed here that a time interval, At , can be
found such that



(1) At >>
z(t)

o where T is the correlation time scale of

T
CcO cor

(2) E(t) and &(t) do not change appreciably from t to
t+At .

This last requirement, with respect to & , is more restrictive
than that imposed earlier, in Chapter Two. It effectively means

that Tor must be appreciably less than the periods of oscilla-
tion which occur in realisations of x(t) - i.e.
Toor << Min{T(E)} (71)
over E

This condition may be compared with that implied in the normal
stochastic averaging method, where it is sufficient that Toor
be much less than the correlation time scale of the response -

i.e. (see Stratonovich (1964)(1))

1
Teor << N (72)

0
where, as before, Wy is the undamped, linear natural frequency.
To average Pin(t) , with the above restrictions on z(t) ,

the mean and correlation function of this process will first be
evaluated, and then time averaged, using T(E) , as before, as
the appropriate averaging period.

From equations (60) and (62) one has

P, (t) = €B(E,8) z(t) (73)
where

B (E, &) = - J2E sind (74)
Hence



Qﬁl op
Pin(t) = €(B))p_ppz(t) + e[[gﬁw]t-AtAE + {Bﬁl]t—At A@}z(t)
+ higher order terms in AE,A¢ (75)
where
AE = E(t) - E(t-At) (76)
AP = &(t) - B(t-At) (77)

and At is an interval of time which satisfies the requirements
stated above. The expansion of ﬂi about its value of t-~At is
similar to the expansion employed earlier, in connection with the
standard stochastic averaging method (see equation (2.41) to
(2.43)).

In the first term on the right hand side of this equation,
z(t) is now statistically independent of the value of L& at
t-At , by virtue of the condition that A7 >> Teor ¢ hence the
statistics of this term can be readily evaluated. With regard to
the second term, one can obtain AE and A® by integrating

equations (63) and (64), respectively. Hence

t t
AE = &2 J al(E,@)dT + € J ﬁ&(E,@) z(7)ar (78)
t-At t~-At
and
5 t t
Ad = ¢ J az(E,Q)dT + € j ﬁé(E,@) z(T)Yar
t-At t-At
t
+J Y(E,®)dar (79)
t-At
where



a (E,8) = h(E,8)v2E sind (80)
a,(E,8) = h(E,&)cosd/y2E (81)
,BZ(E,Q) = - cos@/‘/zz (82)
7(E,8) = g(E,Q)/(«/ZE cos®) (83)

The functions a, £ and v 1in equations (74), and (80) to
(83), can be expanded about their values at t-At . Thus

@) [E(7),8(7)] = a [E(t-At),8(t-At)]

[ﬁal] A 6a2
v E_ + [ ] AG
OE At T o5 EeAt T

higher order terms (84)

and similarly for [, ay ﬁé and 77 . AET = E(7)-E(t-At) and
A@T = @ (7)=-%(t-At) can be found by integrating equations (63)
and (64) again. This process can be continued to yield a pertur-
bation series expansion for AE and A® , in power of € . If
one assumes that terms of order At are negligible, the result-

ing expansions are

t
AE = €(B.) 2(T)dT + 0(€?) (85)
1) t-At Jt_At
and
t
AS = e(B.) 2(T)AT + 0(e?) (86)

Hence, from equations (75), (85) and (86)



a8 B
‘ _ 2 1 1
Pin(t) = (Bl pe2(E) + € [33*5 A+ [W} ﬁg]t«-At\

t 3
x J z(t)z(n)dr» + 0(e”) (87)
t-At

The mean of Pin(t) can now be evaluated by taking the
expectations of both sides of eguation (87). Using the fact that

gglﬁl+g§-1-ﬁ2 - [lsli’l?i] [u@sir@]

y
+ [w y@g cos@][:99§g] = 1 (88)

2E
and that E{z(t)}) = 0 , one obtains
2 At 3
E{Pin(t)} = € jo wz(u)du + 0(e™) (89)
where WZ(T) is the correlation function of z(7) - i.e.,
Wz(T) = E{z(t)z(t+7)} (°0)

Since A7 >> Toor 7 the upper limit in the integral in equation
(89) can be replaced by o . Then, on neglecting terms of order

e or higher (using the basic assumption that e is small) one
can write equation (89) as

E(P, (t)) = ezvrSZ(O) (91)

where Sz(w) » the power spectrum of z(t) , is given by

F v, (ryei®ar (92)
=00

wir—-‘
e

S, (w) =



In the special case where 2z(7) is an ideal white noise one
can write

w, (1) = I6(T) (93)
where I 1is the "strength" of the process. Hence
SZ(O) = I/27m (94)

and equation (21) becomnes

E(P, (t)} = €%1/2 (95)

It can be shown (Roberts (1978(b))) that this result is exact if
z(t) 1is a Gaussian white noise. For the linear case this result
has previously been derived, in a different way, by KXarnopp
(1967), who conjectured that it is generally true for non-linear

oscillators.
The correlation function of Pin(t) is defined by
wo(T) = E(P; (E)Py, (£47)) (96)

By using equation (87) again the following expression for wp(r)

is obtained:

= 2 2 3
Wo(T) = €“B((B))) w,(7) + 0(e) (97)
where the statistical independence of (ﬁ&)t—At and z(t) has
been used, together with the fact that /%. does not change
appreciably over an interval At . On neglecting terms of order

63 , and higher order, as in the evaluation of the mean of
Pin(t) , and substituting for ﬁ%. from equation (74), one has
the result
2 . 2
Wp(T) = €“E{2E(t)sin @(t)}wz(f) (98)



with an error of order 63 .

Since Teor is very much smaller than all the other time

constants relevant to the oscillator, it is permissable to make
the substitution

WZ(T) = §(71) Jw WZ(T)dT = 27 Sz(0)5(T) (99)

e o]

Hence equation (98) may be written as
w (1) = I_ 6(7 100
p(7) p °(7) (100)
where

I, = e? an 5,(0) E{2E(t)sin?®(t)) (101)
It is now evident that, for sufficiently small values of ¢ and

T , P t) behaves effectively as a white noise process, with

cor in(
a "strength function® given by equation (101).

The expression for Ip given above can be simplified by
using the fact that BE(t) does not change appreciably over any
one cycle in the response. If the conditional expectation of

2E(t)sin®d(t) , given that E(ty) = E , is denoted

E{2E(t)sin2®(t)}E(tO) = E)

and the probability density function of E(to) is denoted

P(E) , then one can write

E(2E(t)sin®d(t)} = Jw E{2E(t)sin2®(t)|E(tO) = E} p(E)dE
0
(102)



The conditional expectation can be approximated by averaging over
a period of free oscillation, T(E) , (as in the case of
Pdis(t) , discussed earlier); thus

E(2E(t)sin 3 (t) |E(t,) = E)

t,+T (E)
~ TlE) E{zE(t)SiHZQ(t)lE(to) = E}dt (103)
to

Since E(t) changes slowly, one can assume that E(t) ~ E , over
the integration range in equation (103). Hence

E{ZE(t)sinZQ(t)lE(to) = E)
t_+T (E)
0
E{ J sin%® dt} = C(E)

%

(104)

where

C(E) = é%%T J: VE=V(x) dx (105)

=3

This last step is achieved by noting that, from equations (62),

2Esin®® = %° and that x°dt = xdx = y2(E-V(x)) dx . On combining

equations (102) and (104) one has the approximate result

E{2E(t)sin’d(t)}) = Jm C(E)p(E)dE = E{C[E(t)]} (106)
0
and it follows that a good approximation to Ip is
I, = 622ﬂSZ(0) E{C[E(t)]) (107)

The fact that Pin(t) can be represented approximately as a
white noise process, with mean value given by equation (91) and a

3.26



strength function given by eguation (107), suggests that the
exact Pin(t) brocess can be approximated by an averaged process
of the form

Pin(t) = €®A[B(£)] - en[E(t)]€(t) (108)
where £(t) is a white noise process of unit strength - i.e.,
E{C(E)E(t+T)} = &(7) (109)

A and 4 in equation (108) must be chosen such that P, (t)

has the correct mean and correlation strength function.

From equation (108), following an analysis similar to that
described earlier for Pin(t) ; one obtains

2

E(Pin(t)) = &“BA(E)) + £ 53 (110)
and

w(n) = ®B(i?)s(n) (111)
Hence one nust set

1
# = [C(E)27S,(0))> (112)
A = ms_(0) - %[g% ,u] (113)

It is noted that the last terms in equations (110) and (113)
arise because {(t) is being interpreted here as a “physical"
pbrocess; thus the differential eguation for Pin(t) ; given by
equation (108) is intepreted in the Stratonovich sense (e.g. see

Sobczyk (1985(1))° If equation (108) is written in Ité form -
i.e.



dp, = €°Adt - eudw (114)

then wp(T) is given by (111), as before, but now
E(P; (t)} = €’E(A(E)) (115)
The difference between equations (110) and (115) is the

"Wong~-Zakai¥ correction term, and arises because the diffusion
coefficient, 1 1is here dependent on E .

4.3 Conplete equation for E(t)

The exact equation for the energy envelope process, E(t) ,
can now be replaced by

B = €%H(E) - eJ(E)&(t) (116)
where

H(E) = - B(E) + 75,(0)[1 - C’(E)/2] (117)
and

J(E) = (278, (0)c(®)1? (118)

Here equation (116) is a stochastic differential equation in the
Stratonovich sense. In the Itdé sense it has the same form, but

now
H(E) = = B(E) + 75,(0) (119)

Equation (116) shows that, when suitably averaged, the
energy envelope is a one-dimensional Markov process. Let
p(EIEO;t) be the transition probability density function for
E(t) . Then using standard methods (see Chapter One), the FPK
equation governing p(E|E0:t) is given by



g% = 9 (2B(E)) - 75 (0 + 7S_(0 2 C(E
T GECTBE) - e (001p) + 7500 Tremp)

(120)

where Sf(w) = ezsz(w) is the spectrum of f(t) = e€z(t) , the
right hand side of equation (56) .

4.4 Stationary solution

Since it has been assumed, so far in this discussion, that
the excitation is a zero-mean stationary random process, it
follows that a stationary solution

lim p(EIEO;t) = w(E) (121)
t-00

will exist, where w(E) is the stationary density function for
E(t) . On setting Jp/8t = 0 in equation (120), the following
solution for w(E) is obtained

2
w(E) = XT(E)exp(- ;giTET Q(E) ) (122)
where
E g
Q(E) = J —i-gldg (123)
o €8
and k is a normalisation constant. In the case of linear

stiffness, this result reduces to that found earlier, in Chapter
Two, using the standard stochastic averaging method (see equation
(2.144)).

The relationship between w(a) and w(x,%) , given by
equation (2.112), can also be generalised. By a variety of



physical arguments (Stratonovich(l)(l964), Roberts

(1977(2),1981)) it can be shown that

wix,x) = ?%g— (124)

Hence, from equations (122) and (124),

w(x,é) = k exp{w %giéﬁy Q[%E + V(x)]} (125)

It is interesting toc note that, in the case where h(x,x)
is of the form

h(x,x) = =x f(E) (126)

(which includes the case of linear damping) eguation (125) agrees
with the exact result due to Caughey (see equation (1.82)). In
the more general case of arbitrary non-linear damping, eguation
(125) can be obtained by the nmethod of eguivalent non~linearisa-
tion, as described in Chapter One (see eqguations (1.83) and
(1.95)). The agreement between eguation (125) and the result from
equivalent non-linearisation, based on Caughey’s exact solution,
is due to the fact that, as € = 0 , the exact form of damping
becomes unmaterial; all that matters, as far ag the distribution
of the response is concerned, is the energy loss function, L(E) .
Thus the averaging method leads to an expression for the
distribution of the response in which the contribution from
damping is only through the energy loss function. It follows that
any exact e€olution for a particular form of damping will also
yield an asymptotically exact solution for any form of non-linear
damping. All that is necessary is to match the energy loss
function of the particular form to that of the regquired form.
This is, of course, the basisz of the equivalent non-linearisation

procedure, described in Chapter One.



4.5 Non-stationarv solutions

For the special case of linear damping (ezh(x,k) = szoﬁ)
and non-linear stiffness, with the power-law form

g(x) = k|x|V sgn(x) (127)

it is possible to obtain an analytical solution for the transi-
tion density function p(E]Eoit) of E(t) . For this class of
oscillators it is found that

€’B(E) = 2¢w, 0E (128)
C(E) = oE (129)

where
@ = Z(Xilsl) (130)

Thus the FPK egquation becomes (from equation (120))

g’g = %:-[{zgwan - WSf(O)]p] + mas ¢ (0) ?—ZE—Z— (Ep) (131)

It is convenient to introduce the non-dimensional energy

variable
x(t) = fi{;{—l— (132)
TKO
where
v+1
- X [pf1), pf))? (133
T = v v+1 / v+1 )



and o is the stationary standard deviation of x(t) . The
transition density, p(xlxoyt) is found, from equation (131) to
be given by (Roberts (1981))

o
2 XtXxa4d 2{xx,q
. _ 1 - 0 0
PlxlXoit) = g [}f&] e"p{ 1-q } Ip{ 1“'(1}
where
p = -1 (134)
_ -Zanot
q = e (135)

and Ip( )} is the modified Bessel function of the first kind, of
order p .

In studying the transient vresponse to suddenly applied
stationary random excitation only the marginal probability
density function, p{x,t) , 1is required. For an initially
gquiescent oscillator one obtains, from equation (134),

_ 1 X
plx,t) = x° exp|~ & (136)
T (1+p) (1-q) 1P { 1 é}

From this result, by integration, it is easy to find expressions
for the moments of x(t) . For example, the mean square of the

response is given by

2

E?(t)) = oi(t) = Pt (137)

For the case of non-stationary excitation a possible repre-

sentation is

£(t) = ez(t) = a(t)n(t) (138)



where a{t) iz a deterministic modulating function, and n{t)

is a white noise process, with spectral level 8, - One can then

replace 5.(0} in the FPK equation for E(t) by az(t)so (see

Roberts and Spanos (1986(1))9 The results given by equations
(134) and (136) can then be generalised. Specifically, it can be
shown that (Spanos (1983))

p(EitlE:litl)

p —2§awOT
1 2 ~E+E. e
t Tan Tt e [
% =2¢aw,.t %
c (t,,t) B e Caw, ¢ (t,,t)
mCawOT
2 EEl e
x Ip[ = ] (139)
¢ (t,t)
wvhere
T o= tet, (140)
and
. ~2aCw,t (2 5
c (tl,t) = o 8 e J exp (2C¢aw,z) a“ (z)dz (141)
70 t 0
1
For more general situations, where g () is not of

bower-law form, a numerical solution of +the FPK equation for
E{t) is necessary. A random-walk based numerical scheme has been
outlined (Roberts (1981)) and specific results have been obtained
for the transient vesponse of a Duffing oscillator to suddenly
applied white noise. Very good agreement with digital simulation
estimates of the variation of the mean square response with tine
was obtained. An alternative, explicit finite difference scheme
has also been described (Roberts (1986(a))).



4.6 Parametric excitation

The energy envelope averaging method can also be applied to
oscillators with parametric excitation. 2Zhu (1983(a), (b)) has
analysed the c.se of an oscillator with the following equation of

motion:

x + €2h(x,%) + g(x) = e hy (x,%) &, (t) (142)

1

D~

i

Here éi (L = 1,2,...,n) are taken to be mutually independent
stationary processes, with zero mean and broad-band character. An
FPK equation was derived which represents a generalisation of
equation (120). The steady-state probability density functions
for E(t) were evaluated for a number of specific cases, and

appropriate stability criteria were derived.
A special case of equation (142) was analysed earlier by

Dimentberg (1980), who compared his theoretical results with

digital simulation estimates.

4.7 Non-white excitation

In principle the energy envelope, E(t) , should converge to
a Markov process, irrespective of the shape of the input spectrum
although, of course, the nature of the input will affect the rate
of convergence. This suggests that, for oscillators with light
damping, it should be possible to derive an FPK equation for
E(t) which takes into account the shape of the input spectrum.

Roberts (1983) has described an intuitive approach which
does indeed lead, after certain approximations, to the following
FPK equation for the energy envelope of the non-linear oscillator

governed by equation (56),

2
% - -2 Tmmp) + & g;- [D(E) D) (143)



Here the drift coefficient, m{E) , and the diffusion coeffi-

cient, D(E) , are given by

[¢ o]
mE) = - B(E) + 5 Y (s2+cP) s [nw(E)) (144)
n=1
e 0]
D(E) = 27E ) s25_[nw(E)] (145)
n-z
n=1
Here B(E) is given by equation (69) and Sz(w) is the power

spectrum of z(t) . The Fourier coefficients ShrCh (n =1,2,...)
are related to the variation of the phase with time, in the case
of undamped, free vibration. w(E) is the frequency of undamped

free vibrations, at energy level E .

It can be shown that, in the special case of stationary

white noise excitation, equation (143) is identical to equation
(120). Moreover, for oscillators with linear stiffness, and
non-white inputs, equation (143) is equivalent to the FPK eqgua-
tion for a(t) , obtained by the standard stochastic averaging

method (see equation (2.103)).

In many applications the first terms in the summations in
equations (144) and (145) are dominant: One can then, to a very
good approximation, evaluate mn(E) and D(E) as follows:

mE) = - B(E) + 5 (2 + c?) s (146)

o]

D(E) 27ES2S [w(E) ] (147)

Some comparisons with digital simulation results for the
case of a Duffing oscillator with non-white stationary excita-
tions indicate that equation (143) leads to a good approximation
for the stationary density function of the energy envelope.



Moreover, the influence of the shape of the input spectrum on the

response distribution is well predicted.

Recently a modification of this theoretical approach has
been proposed «hiich takes further account of the shape of the
input spectrum (Roberts (1984,1986(b))). To appreciate the
limitation of the original theory it is sufficient to consider

the special case of a linear restoring moment. Then
g(x) = ng r 8y = ¢y = 1 and S, =S, = 0 for n>1., Also
w(E) = Wy - Hence equations (144) and (145) reduce to
m(E) = =~ B(E) + 7S, (uw,) (148)
D(E) = 27ES,(w,) (149)

Thus, here only the value of the input spectrum at the natural
frequency of oscillation is required; i.e., the basic assumptions
of the theory are equivalent to making a white noise approxima-

tion for z(t) .

For the linear case the error in approximating the input as
a white noise process can be readily calculated from the standard

theory of linear systems. Thus the mean sguare response is given

exactly by

2 2

o¢ = 2w Jw | a(w) | S¢(w)dw (150)

-0
where a(w) is the frequency response function of the system,
given by
_ 1
a(w) = 55 (151)
) «wo+2ijwO

where ( 1is the usual critical damping factor. aé , the white

. . . 2 . .
noise approximation for ¢~ , is given by



00
0l = 215 (w,) Loo |a(w) | 2dw

g (%) (152)
2ng

A value r can be defined as the ratio of the exact to the
appropriate result. Thus

r = 02/02

: (153)

The ratio r can be used to correct, in an appropriate
fashion, the theory outlined above, for the general case of
non-linear stiffness and damping. The idea is to replace Sz(wo)
by a modified spectrum

Sé(wo) = rsz(wo) (154)

Of course, in the linear case, this will have the effect that 02

is now given exactly. In the non-linear case one must use an
equivalent linear system.

An appropriate form of equivalent linear system is

X + 20(E)w(E)X + o®(E)x = ez(t) (155)
where w(E) is, as before, the natural frequency at energy level
E and ((E) is an amplitude dependent damping factor. The ratio

r , computed on this basis will, of course, depend on E .

A suitable method of finding ¢(E) 1is to equate it to the

damping function Q(E) defined in Chapter One (see equation
1.34). With this definition, ((E) is directly connected to the
function B(E) , (see equations (1.34) and (70)) .



The proposed modification to the Markov theory is a rough
method of accounting to some extent, for the effect of the shape
of the input spectrum on the distribution of the response.
Comparisons between theoretical results and simulation estimates,
for an oscill:tor with linear=-plus-quadratic damping, and a
softening spring, show that the modified theory leads to a
considerable improvement in accuracy.
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AVERAGING METHODS IN RANDOM VIBRATION

J., B. Roberts

CHAPTER FOUR

Application of the Stochastic Averaging Method
to _the First-Passage Problem

1. Introduction

In practical applications involving the random vibration of
a mechanical or structural system it is often required to esti-
mate the probability that the systems’s response will stay within
safe, prescribed limits, within a specified interval of time. The
determination of such a probability is usually called the "first
passage problem®, and has been extensively studied, particularly
during the last two decades (see Roberts (1986(a))).

In this Chapter the existing state of knowledge regarding
the first-passage problem, which has been obtained by wodelling
the response as a diffusion process, will be reviewed. Due to
analytical and numerical limitations and difficulties, almost the
entire existing body of knowledge is confined to the case of
single degree of freedom systems, or oscillators, driven by
wide-band excitation. For this class of system the diffusion
approach does, however, enable a number of aspects to be treated
which are difficult, if not impossible, to tackle by other
methods: these include the effects of

(a) non-linearities in both danping and stiffness,
(b) parametric excitation,
{(c) non-stationary excitation.



To provide a background to the role of the stochastic
averaging method, as a mean of attacking the first-passage
problem, available knowledge concerning the general behaviour of
first-passage statistics will first be discussed. This will be
followed by a Jetailed examination of the difficulties involved
in finding exact solutions, in the case of an oscillator driven
by stationary white noise. It will then be shown that many of
these difficulties can be overcome by applying the stochastic
averaging technique. This approach has the principal effect of
reducing the relevant diffusion process from two dimensions to
one dimension, with a conseqguent vast reduction in the analytical
difficulties associated with computing first-passage statistics.

2. First-passage statistics

Normally, in practical applications, there is a "safe
region® of operation, the outer limits of which are defined by a
suitable "barrier¥., The first-passage problem may be stated thus:
To find the probability, P(t) , that a response process, x(t) ,
of a system crosses some critical barrier (i.e. exits from the
safe domain) at least once in some interval of time O-t .

It is noted that P{t) will depend on the initial condition
of the system, at t = 0 . Associated with P(t) is the

"reliability function®
Q(t) = 1 - P(t) (1)

Q(t) is the probability that x(t) stays within the safe
domain, in the interval 0-t .



In connection with P(t) it is useful to define the
first-passage density function p(t) , where p(t)dt is the
probability that x(t) first exceeds the barrier between time ¢
and t+dt . It is easy to show that

t
P(t) = Jo p(£§)dag (2)

p(t) is simply the density function of the random time, T , to
first-passage failure. The moments of T may be expressed as

M, = E(T") = J@‘tnp(t)d‘t (3)
0

Of these moments the first, Ml ; which is simply the mean time to
failure, is by far the mnost important (for reasons which will
appear shortly).

Although complete, exact analytical solutions for P{t) are
generally unavailable, its asymptotic behaviour in the case of
stationary excitation is well understood. For stationary excita-
tion the response, x(t) , will approach a stationary distribu-
tion, as the elapsed time becomes large, irrespective of initial
conditions, if the system is stable. Under these conditions one
can show (e.g. see Roberts (1274)) that

Q(t) - exp(-at) as t - o (4)
where a 1is called the "limiting decay rate". When Ml is very

large, equation (4) is a good approximation for nearly all values
of t and it follows, from equations (1) to (4), that

a - i as M. - o (3)
Ml 1

Thus, for very long mean times to failure, the single statistic,
Ml ;» can be used to form an approximation to P{(t) .

In this connection it is noted that Cramer (1966) and others

4'3



have shown that for a Gaussian process the distribution of
barrier crossings is asymptotically Poisson distributed as the
critical level (b) becomes very large; i.e.,

Q(t) = - w(=vt) as b - o (6)
where v 1is the average number of barrier crossings (from within
the safe region, to outside the region) per unit of time. This
implies that

a = VvV as b - o (7)

There is some evidence to suggest that equation (7) may be
valid for non-Gaussian processes (Roberts (1986(a))).

3, Specific first-passage problems

Two types of barrier are of primary importance -
single-sided and double-sided barriers. The first of these is
such that any value of x(t) less than a fixed level,; b say, is
safe. Thus first-passage faillure occurs when x(t) Ffirst exXceeds
b . The second type 1is such that, for safe operation

|x(t)] < b .

For oscillators, domains of safe operation are conveniently
depicted in the phase-plane. Single and double-sided barriers
then appear as shown in Figs. 4.1(a) and (b), where the phase

plane coordinates are a scaled velocity %/wo {(where Wy is the
natural frequency of small, linearized oscillationsg) and x . A
third type of barrier - the "circular barrier® - is of consider-
able theoretical interest. Here the safe domain is within a
circle in the phase-plane, of radius b , where

b2 = %%+ iz/wg (8)

This barrier is shown in Fig. 4.1(c).
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4. The "exact® approach

We now consider an oscillator with the following equation of
motion:

X + g(x,y) = f£(t) (9)

Here x(t) is the displacement response, y = x , ag(x,y) is a
general, non-hereditary function of displacement and velocity,
and f(t) will be assumed to be a zero-mean, stationary white

noise process.



4.1 Diffusion equations

As discu:s: -4 in Chapter One, the joint process [x(t),y(t)]
is a vector, two-dimensional continuous Markov process, with a
transition probability density function, p{x,ylxo,yost) governed
by an FPK eguation (see equation (1.77)). In the context of
first-passage problems it is more convenient to consider the
conditional transition density function q(x,ylxo,yoﬁt) , where
q(x,y]xoyyo;t)dxdy is the probability that x < %x(t) € x+dx ,
y € y(t) £ y+dy , at time t , without departing from the safe
domain. Both conditional and unconditional transition density
functions are governed by the same FPK equation. Thus, from

equation (1.77)

9 8q . I &
g% = 5§[g(x,y)q] -y 3% + 5 5;% (10)
where I is the "strength" of the white noise process -~ i.e.,

E{f(t)f(t+q)) = I6(7) (11)

The FPK equation can be considered as a continuity equation
for the "flow" of "probability mass". This is evident if equation

(10) is re-written as

W Gy + Hmy) = 0 (12)
where

F, = yq (13)

P, = -9(,¥)d - § 52 (14)

L is the flow of probability mass in the x-direction, and Fy

is the corresponding flow in the y-direction.



To solve equation (10) one requires a suitable initial
condition. Normally a deterministic condition is appropriate -
i.e. one knows that x(t) = Xg ¢+ Y(E) = Yo » 8t t = 0 . Thus

lim q(x,y]%,,y55t) = 8(x-x,)8(y-y,) (15)

t-0
A "stationary start" condition is also sometimes appropriate;
here it is assumed that there is an ensemble of initial values,

0o Yo v distributed according to the stationary vresponse
distribution.

X

Solving equation (10) enables one to determine how the
probability mass "diffuses" with time in the phase plane, from
some initial condition. The diffusion process is, alternatively,
governed by an integral equation (the Chapman-Kolmogorov-
Smoluchowski (CKS) equation): this may be written as follows:

a(x,y|xy,v,:t)

f f Qe y|x’,y re-t ) a(x’,y" %y, v, )dx dy”’ (16)
R

where the integration range, R , is the safe domain in the phase
plane. Egquations (10) and (16) are equivalent mathematical
representations of the same underlying diffusion law for the
brocess [x(t),y(t)] .

Associated with the FPK equation is the adjoint form,

usually referred to as the backward Kolmogorov equation. This is
of the form

% - g (17)

where £, the "“backward operator", is here given by

L = ~g(x0,yo>3§g + y03§~ + 5 gzg (18)
0

b

0



-

This equation can be used to derive a differential equation for
the reliability function Q(tlxe,yo) - this is the probability
that first-passage will not occur in the intexrval 0-t , for
trajectories in the phase-plane starting at Xg:Yg - Clearly,

Q(tlxg,vy) = J Jq(x,ylxopyoft)dxdy (19)
R

Thus, by integrating equation (17) with respect to x and Yy ,
over R , one obtains

%EQ = £0Q (20)

From equation (1) it follows that P(t|x0,y0) is governed by the
same differential equation as Q(t]xo,yo) R

From equation (20) it is fairly easy to derive the following
set of differential equations (usually called the generalised

Pontriagin-vitt (GPV) equations)

LM, = =nM (n=0,1,2...) ’ (21)

M, = Jw p(t)at = 1 (22)
0

equations (21) can be solved successively, to yield My, My,
etc. Of principal interest is the Pontriagin-vitt (PV) equation
for the mean time to failure, M, . Thus, setting n =1 in

equation (21), and using equation (22), one has

LM = =1 (23)



4.2 Boundary conditions

To solve the FPK equation for q (see equation (10)) it is
necessary to specify boundary conditions. These conditions play a
vital role in determining first-passage statistics.

For a single-sided barrier, it is observed that the flow of
probability mass in the x direction, Fx (see equation (13)) is
such that flow from the safe, to the unsafe region, at x =b ,
occurs only if y > 0 . For %x = b and y <o, Fx is negative,
indicating a "return flow¥, from the unsafe to the safe region.
To ensure that the return flow does not occur it is sufficient to

set
g = 0 for x=Db, y <0 (24)

Similar arguments can be used to specify boundary conditions for
double-sided and circular barriers. It can be shown that these
conditions lead +to well-posed problenms (Yang and Shinozuka
{1970)).

An alternative approach is to consider solving the differen-
tial equation governing Q , as given by equation (20). For the
single-sided barrier, for example, plausible boundary conditions
for Q are as follows:

Q(olxolyo) = 1 (XO'YO) € R
Q(t|b,y,) = o Yo > O (25)
Qtlx4,¥y) - o lyol ~ o

The first condition expresses the fact that, within a zero time
interval, the probability of not exiting from the safe domain is
unity (for starts within the safe domain). The second condition
corresponds to the fact that if the diffusion process starts on
the line x =b , y > 0 » the oscillator response will immediate-
ly move out of the safe domain, and thus the probability of not
exceeding the barrier is zero. The third condition implies that,
if the velocity is infinite, first-passage failure is bound to

4.9



occur, within any given time interval. It can be shown that these
boundary conditions lead to a well-posed problem for the determi-
nation of @ . Similar boundary conditions can be postulated for
double~-sided and circular barriers (see Roberts (1986(a))) -

4.3 Exact analvtical solutions

Exact solutions have so far been obtained for only very
special, reduced cases where one or more terms in the equation of
motion are neglected.

For two-dimensional diffusion processes two specific analyt-
ical solutions have been obtained which have some relevance to
the general problem. Franklin and Rodemich (1968) have considered
the mean time to failure of a randomly accelerated free particle,
in the case of a double-sided barrier. The equation of motion
here reduces to

x = f(t) (26)

(i.e. g(x,y) = 0 in equation (9). Thus the Pontriagin-Vitt for

M, (see equations (18) and (23)) is

62141 M

1 + ¥, &—z = -1 (27)

257
%y

A conplete analytical solution to this problem was obtained by
Franklin and Rodemich, for the case where I =1 and b = 1,
Some idea of the complexity of this solution can be gained by
examining the result for Yo = 0 ; this is as follows:

1
= c-x3)® #{-1,1,2, 10 14,2 0.
Ml(xoio) - C(l XO) F{ 371765'2(1 XO)} + F{ 3!13652(1 Xo)}

(28)



where

c = 3l1/6

-1 .
/12T (3)] (29)
and F is the hypergeometric function. For a general barrier
level b , the solution for Ml , denoted by Hl (xo,yo,b) ; is
related to that for b = 1 ; Hl(xo,yo) , as follows:

1

- .2/3 ~1 3
Ml(xoiyOlb) = b Hl(b xoib YO) (30)

In view of the complexity of this solution it is, perhaps, not
surprising that exact analytical solutions are not available for
the more general case of non-zero g(%,¥) , even for just the
mean time to failure, Ml .

In a quite different approach, Kozin (1983) has pointed out
that a result due to Dynkin (1965) may be used to obtain specific
exact results, in some circumstances. If h(x,y) is some func-
tion of % and y then Dynkin’s formula may be written as

E{h(X!Y)t} = E'{h(XIY)tO}

= E{f: Lhix(s),y(s)] ds} (31)
0

where ¢ is the backward operator and € is any random time;
thus t «c¢an be the first-passage time T . Tf & [h(x,v)] is=
just a constant, ¢ say, then,

T
E{f Lhx%(s),y(s)] ds} = CIE(T} - E{t,}] (32)
tO

and it follows that equation (31) gives an expression for the

mean time to first-passage failure, Ml = B{T} .



As an illustration, consider the case of an undamped oscil-

lator, with an equation of motion

X + g(x) = f(t) (33)
Let
2
h(x,y) = £-+v(x) = E(t) (34)
where
>4
voo = | g(oag (35)
0

Clearly, as indicated h(x,y) is here just the total energy of
the oscillator. From equations (18) and (34) one has

(36)

(Y]

& [h(x,y)] =

and hence equation (31) will give an expression for M, . For a
deternministic initial start condition, i.e., x(0), y(0) and
E(0) are known at to = 0 , then the result is

E(E(T) - E(0)}) = =M, (37)
If T is the time to reach a constant energy level, E , then

E{E(T)} = E and equation (37) gives

2
M, = F [E - E(0)] (38)

It is interesting to note that, in this simple and exact result,
the non-linearity function g(x) does not appear explicitly.

If damping is introduced into the eguation of motion then
Dynkin’s formula does not lead to simple results. However, it may



be possible to use this formula as a method of generating
approximate results.

Although the exact results described in this section are
not, of themselves, of much practical use in random vibration
studies, they are of great value in an indirect way, as a means
of partially validating both numerical methods of solving the
diffusion equations and simulation wmethods for estimating
first-passage statistics,

4.4 Approximate analvtical solutions

If the domain of safe operation is a closed region then it
is possible to solve the PV eqguation for B%- by a Galerkin
technique, as Bolotin (1965) has pointed out. Results have been
obtained, using this approach, for the mean time to snap=through
of thin curved panels responding to random excitation. The method
may be extended to a consideration of the gpv equations for
Mn (n=1,2,...) , enabling Ml, M,, etc. to be computed
recursively.

4.5 Numerical solutions

The first numerical solutions of the first bassage problem,
for the case of a simple linear oscillator, were obtained by
Crandall et al, (1966) , who solved the CKS equation (see equation
(10)) numerically; their nethods amounts to diffusing probability
mass over a discretised phase-plane, using discrete time steps;
the unconditional transition density function, p(x,y]xo,yoyt) ’
was used to redistribute the probability mass at each time step,
and probability mass which diffused outside the safe domain was
counted as "lostw,

For non-linear oscillators this approach can not be used, as
the transition density function p(x,y]xoyyo;t) is generally not
known. However, a discrete random analogue can be constructed,



which can be viewed as a finite difference approximation of the
governing FPK equation for q(x,ylxo,yort) . Toland and Yang
(1971) were able to obtain results by this technique for various

types of non-linear oscillators.

A natural alternative to finite difference schemes is the
use of finite elements. In a recent series of publications,
Bergman and co-workers have obtained numerical solutions to both
equations (20) and (21), by using the Petrov-Galerkin finite
element method (Bergman and Heinrich (1980,1981,1982), Bergman
and Spencer (1983)). A feature of the finite element numerical
method, as& with other numerical methods, is that the computa-
tional effort increases quite sharply as the barrier Ilevel
increases. In fact the number of finite elements increases as the
barrier level sguared, and the cost of computation increases as

the fourth power of the barrier level.

5, Stochastic averaging approximations

For an oscillator with light non-linear damping, and linear
stiffness, we have seen that an appropriate equation of motion is

as follows

% + €2h(x,y) + wPx = ez(t) = £(t) (39)

0

and that the amplitude process, a(t) , where
2 2, y?
a“(t) = x° + XE (40)
“o

converges to a Markov process, as € - 0 . The limiting stochas-
tic eguation for a(t) is, from an application of the
Stratonovich-Khasminskii limit theorem (see also equation (2.66))
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. &2 T8¢ (Wy) (7S¢ (w, ))
a = = — F(a) + 5 + E(t) (41)
“o 2au] “o

where ¢ is a white noise process with unit strength and

27

Fla) = - %; o h(acasé,mawogin@)sin@d@ (42)

(see equations (2.26) and (2.29)).

If q(a!aogt) is the conditional transition density func-
tion for a(t) , then it follows from equation {41) that this
function is governed by the following FPK eguation (which is the
same equation that governs the unconditional trangition density
function, p(ai&oyt) - see equation (2.103)):

2 TS (W) 7S g (W)

The associated backward equation is of the general form of
equation (17), where here

v - m[ r(a) _ ™glwp) ] o, MW (44)

“o 2a0w§ da, 2w§ 8a§
From this, differential equations for the reliability function
Q , and the moments, Mn ,» of T can be derived. They are of the
general foxrm of ecquations (20) and (21), where now the
one-dimensional operator, .¢, is given by equation (44). It is
noted that, in this case, the GPV equations for M are ordinary
differential equations, and are thus much ea31er to solve than
their two-dimensional counterparts.

In the particular case of linear damping ezh(x,y) = 2§woy
and hence



ezF(a) = (wia (45)

(as noted earliex, in Chapter 2 - see equation (2.35)). For the
linear oscillat~r it is convenient to introduce a non-dimensional

amplitude
A = ajo (46)

where ¢ 1is the standard deviation of the stationary response,
%(t) . As shown in Chapter Two, the stochastic averaging method
leads to the usual white noise approximation for ¢ , as ¢given by
equation (2.117). If & is also replaced by the non-dimensional

time

(47)

gcillator, eguations {(41), (43) and (44)
[ % J

[

&

inaear

et

§

then, for the
may be written in the following non-dimensional form:

L R (48)
1 _ _ 0 AP 8q
£8 - -Gl - - 52 )
£ = (L[A - ?.;:}3% - §i-] (50)
> L 2R on’

clear that
working with
that the respd
probability stays below the level b , where
x2+y2/@% = bz . For the FPK equation the appropriate boundary

condition for q(alaest) is given by

4,16



g = 0 for a = b {51)

whereas, for the reliability function ¢(tia0) one must have

$olay) = 1 3 < b } (52)
$(t|b) = 0 t <o

The boundary conditions for Mn(ao) are

M (b) = o0 (53)
y/wg % y/wo‘
&
¢
& P A’
o b/x ] b B’ X
4
4
s
4
{a) {b)
At
AT
alt)
b —
alt)
'
{c)
Fig. 4.2.



In addition it is necessary to ensure that ¢(t]|0) and Mn(O)
are finite.

In the or 3f the single-sided barrier, falilure will occur
when a{t) = b secd(t) (see TFig. 4@2(a))0 This vrather
conplicated condition can he gimplified by replacing the original
barvier by the one shown in Fig. 4.2{bj}. Here the segments P4,
P8 of the original barviers are folded back, to lie along the

ST

horizontal axis. For light dawping, response trajectories will be

3 I}

roughly circular and the probability that a trajectory reaches

the barrier in Fig. 4.2(b), without crossing the barrier in Fig.
.2¢{a), and vice-verse, is negligible. Thus, first-passage times
for the barviers shown in Figs. 4.2(a) and (b) should be almost

identical if the damping is light.
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p(ala’;&t)q(a’laﬁ;tn)da’ (54)

(compare with eguetion (16}, for the two-dinensional case), where
At = 2nfwy o I plala’ :bt) is known, eguation (54) can be
marched in time, from some prescribed initlal oondition, to
determine the evolution of q{&[ﬁogb} . Hence the survival

probability

Q(tlay) = Oq(alagit}da (55)



can be computed, at every time step. It is noted that the
vertical barrier 1lines in Fig. 4.2(c) act as "absorbers" of
probability mass, which block further diffusion.

For a double-sided barrier, very similar approximations can
be made and one is led +to equation (54) again, where now
At = m/wo -~ i.e. one half of the time interval appropriate for a
single~-sided barrier.

From the nature of these approximations for single and
double-sided barriers, and the fact that p(a]aozt) depends on

the product 2t » two important conclusions can be drawn regard-~
ing the behaviour of the resulting estimates of Q(t[ac) {(and
hence P(t(ao))) o

(1) Q(tlag) will depend only on b, ge? and €%t , where
po=1 for single-sided barriers and po= 1/2 for
double-sided barriers.

(2) Q(t]ao) values for the DE process approach the correspond-

ing values for the CE process as e o .

5.2 Exact analvtical solutions

From an analytical viewpoint the simplest case to consider
is the circular barrier. Here a separation of variables technique
can be used to find a series solution +to the first-passage
problen.

Firstly it is noted that the FDPK equation for qﬂalaost)
(see equation (43)) may be written in the standard form

H = Femag + 1 g‘;(mzq) (56)

where m, , the drift coefficient, is given by



_ -e?pra)  MSgl@p)
s S - 2 (57)
0 2aw
0
and m, the diffusion coefficient, is given by
7S (w,)
n, = —~£~§9— (58)
w
0

The solution to equation (56) may be expressed as the

eigenfunction expansion (see also equation {(1.70))

(o9}
i i i‘vo
q(alaoyt) = z e = w(a) (59)
i=1 *
Here w(a) is the stationary solution of the FPK equation

(t - ®) , i.e. (see also equation (1.72))

wiay = L exp[%m ja ml(é)dé} (60}

ny 2 Jo

and k is a norymalisation constant. The eigenfunctions, Ui(a) ,
and the corresponding eigenvalues, Ai , satisfy the ordinary

differential eguation

au.,
%a{p(a)ag-l—} + Aw(a)Ug(a) = 0 (61)

where
i
2

pla) = m,w(a) (62)

and the boundary condition
w(b)U; (b) = 0 (63)

is satisfied. The normalisation constants, ¢; , in eguation (59)

are given by



b .
Jo w(a)vi(a)vj(a)da = cigij (64)
In the present problem both pla) and w(a) are positive
functions and equation (61) is of the Sturm-Liouville type. It
follows that the eigenvalues are real and non-negative, and that
Al < Az < ... form a discrete set of values.

If the mean time to failure is long then the first term in
eguation (59) becomes dominant and ¢(t|a0) approaches the
asymptotic form of equation (4), where here a = Al .

In general an exact analytical solution to eguation (63) is
very difficult to obtain. However, in the case of a linear
oscillator a complete analytical solution can be found in termus
of hypergeometric functions. This leads to the following expres-
sion for Q(TIAO) g

e ]
Tlag) = ) Diexp(-2(y,7) (65)
i=1
where
/2
-X
. Ag fo @i(x)e dx
D, = [] (66)
i i{2 02/2
J 32 (x) e *ax
0 i
®.(x) = M(-7;i15%) (67)
n = b/o (68)
and 7; are the roots, or eigenvalues, of the equation
2 _ ‘
2(n°/2) = o (69)



Here M() is the confluent hypergeometric function. This
solution was obtained originally by Helstrom (1959), Rosenblueth
and Bustamente (1962) and Gray (1966), using different
approaches.

Lennox and Fraser (1974) found that the existing tables were
inadequate to evaluate the eigenvalues, Vi o of equation (69),
and numerically solved this equation to obtain the first nine
eigenvalues, for # = 1,2 and 3 . Subsequently Spanos (1980,1982)
has discussed efficient algorithms for computing both 74 and
the constants Di in eguation (66), and has presented tabulated
and graphical results, for a range of 7 values.

If the mean time to first passage is large then, as in the
general case, eguation (65) reduces to the limiting form of
equation (4), where here

a = 2w (70)

071

The moments, Hn , of the first passage time T , can be
obtained directly from the general solution given by equation
(65). The result is

(e o]

M (M) = Z —r
n' o0 n
i=1 (2€73)

D.n!
2 (71)

where time is measured in units of 7 . This result can be
obtained rather more easily by solving the appropriate GPV

equations.

Of most practical interest is the first moment, ngaﬂ} = the

mean time to failure - and the variance of the time to fallure

var{T]Ao} = M,(A,) - Mi(AO) (72)

o)

Ml(Ao) can be expressed as



Ml(AOS = %Z[ﬁi{gf] - ﬁi[§9] - ln(nz/Ag)] (73)

where ﬁi( ) is the exponential integral function. The variance
is given by

Ay /V2

2
Jo (4nn%;§f§(x L ax (74)

1
2
¢y

var{T|a,} =

I 18

1

Various alternative ways of expressing these results have been
discussed (see Gray (1966)).

In the special case of zero damping, the solution to the PV

equation for M., may be written as

1
“g 2 2
M,(a;) = §;§7557 [b°-ag] (75)
If the excitation is a white noise, I = 2%S(wo) and eguation

(75) agrees with the exact results given earlier (see equation

(38)), since here E = Agaz/z .

In the more general case of a non-linear oscillator with a
circular barrier and an equation of motion given by equation (9),
exact solutions for Q(t|AO) are not available. However, if Hl
is large, useful asymptotic results for this statistic can be
deduced from the appropriate PV equation, as Seshadri et al
(1980) have shown (see also Lindenberg and Seshadri (1979)).
Since a - l/Ml as M - o , the asymptotic behaviour of M

1
also gives the asymptotic behaviour of ¢(t|a0) .

If the PV equation for Ml
it can be integrated directly to yield the expression (see
Seshadri et al (1980))

is written in self-adjoint form



mzw(a)

b
M, (a,) = 2J W(a)  ga (76)
a
0
where

N |
W(a) = JO w(€)dg (77)

For large b the integrals in these eguations can be evaluated
asymptotically, in specific cases, to yield analytical expres-

sions for Ml .

For problems involving single or double-sided barriers it is
necessary to solve equation (54). If a separable solution

a(alagst) = @(a)y(t) (78)

is assumed then one finds that (Roberts (1976})
d(a) = AJ@(a’)p(a|a’:At)da’ (72)

where

A= (e ) /Pt ) (80)

Thus the general solution to equation (54) may be written as

e 0] “’)’ t
alalagity) = ) ¥ae T T (81)
i=1
where
1
th

Ai is the i eigenvalue of equation (79) and @i(a) is the

corresponding eigenfunction.



In general, analytical solutions of the eigenvalue problem,
Tepresented by equation (79), are not available for 1linear or
non-linear oscillators. However, in the limiting case where M,
becomes very large, the first term of the summation of equation
(81) becomes dominant and hence ¢(tla0) appr0a¢he$ the asympto~
tic form of eguation (4). Horeover, it can be shown that a - v
as n - o (Roberts (1978)). As mentioned earlier, this is
probably the correct, exact asymptotic limit for the limiting
decay rate.

5.3 Semi-analvtic solutions and approximations

One approach to finding solutions in the non-linear case,
for the circular barrier, is to seek approximate solutions of the
form

2

A
a(rlay = c;(m)e; 2] (83)

I T~

i=]

where @i( ) are the set of eigenfunctions relating to the
linear solution (see equation (67)), gi(r) are functions of time
and m is an integer. The expansion of equation (83) is particu-
larly convenient since the eigenfunctions arvre orthogonal with

respect to e * . and the eigenvalues are known (Spanos (1982)).

By using this Galerkin technique a linear set of differen-
tial equations for c; (7) can be determined and solved using
standard wmethods. The resulting estimate of Q(TIAO) will
progressively improve in accuracy as the number of terms, m , in
the summation is increased. Comparisons with corresponding
digital simnulation estimates, for the case of a Van der Pol
oscillator, indicate that 5-10 terms suffices for oscillators
with a "moderate® degree of non=-linearity (Spanos (1982)).



For single or double-sided barriers, an approximate analy-
tical solution to the eigenvalue problen of equation (79) has
been given by Mark (1966), for the case of the linear oscillator.
For the double-sided barrier is

== erf[ {gﬁ tanh(uw()}% ] (84)

(S~

where erf is the error function. This expression gives the
correct asymptotic solution (¢/v -+ 1 as b - o) .

5.4 Numerical solutions

For a non-linear oscillator, with a circular barrier, the

moments Ml(a of the time to first-passage failure can be

)
obtained fair;; easily, by numerically solving the sequence of
ordinary GPV eqguations. Results for the first woment have been
cbtained by this means (Roberts (1976)), for the case of an
oscillator with combined linear and guadratic damping. Strictly
numerical solutions of the diffevential equations for the
reliability function, Q(t]ao) do not appear to have been

attempted.

For single and double-sided barriers, equation (54) is the
governing equation. As mentioned earlier, this can be solved
numerically by marching in time, with steps At , provided that
p(a{aO:At) is known analytically. An eigenfunction expansion for
this transition density function can be written, which is of the
same form as eguation (59) (here the unconditional transition
density function is required, so b - ) . However, for the class
of oscillators under discussion an analytical solution for the
eigenfunction problem is known only for the <case of linear
damping. This soclution lesads to the expression (see also Chapter
3)



5 ~2§wOAt

2
_ {(a“+ale )
p(a]ao:At) = % exp{ - Ozﬁ }
wzgwoAt
aaje
e
where
B = 011 - exp(-2(uyt) ] (86)

Equation (54) has been solved numerically, for the case of a
linear oscillator, by performing numerical integrations at each
time step, and using equations (81) and (82) (Roberts (1976)). It
was found, as the general theory predicts (Miklin (1957)) that
q(a]aoitn) becomes proportional +to the first eigenfunction,
¢1(a) ¢ @8 1N  becomes large, and that

R(n) = é%%%%? - A (87)

as n - o , where

b
Q(n) = jo q(a]ao:tn)ﬂa (88)

Thus the first eigenvalue {and hence the limiting decay rate) can
be estimated by marching in time, until the ratio R(n) reaches
its limiting value. For 7 <3 this technique is satisfactory
but for higher barrier levels Al is so close to unity that the
degree of computational effort required to produce accurate
estimates of a is prohibitive. This difficulty can be overcome
by expanding q(a]aoit) in terms of the eigenfunctions of
p(alaoit), which are in the form of Laguerre polynomials (see
Chapter 3). This technique leads to a recurrence relationship for
the unknown coefficients in the expansion, which are easily
solved (Roberts (1976)).



Results have been presented for P(tlao) and a , for a
range of barvrier levels, 7 and danping factors ¢ , and
compared with corresponding results obtained by using the
circular barrier. Similar results for a were reported earlier
by Mark (1966:

Iutes et al (19280) have fitted empirical expressions to the
results for «a given by Roberts (1976) to allow easy extension
to other values of 7 and ( . The best simple expression they
found, for the double-sided barrier, was

= 1 - 1,075[ﬂ exp[= %ﬂ]w (89)

RIR

where

W = 0.2364 + 28.14Q° (90)

and g 1is a measure of the bandwidth of the response process,

given by
1
2,2 2
g> = 1 ~(1-¢3)7?t [1 - % tan™t { 261~ o }] (91)
1-2¢
For small ¢ this can be approximated by
4
@ ~ 2c¢@a-1-10) (92)

For oscillators with non-linear damping a discrete random
walk analogue, R(tj} . for the process a(t) can be constructed,
as shown in Chapter 2. For R(tj) the appropriate discrete
equivalent to equation (54) is

Q(ak,tn+1} = Q(ak‘z’iytﬁ.) rk"l+Q(aj"ﬂ ﬁt<«}q2{+i (93)

T L i3

where Qf{a iz the prcbkabilityv of being in state akftn ;

t
e B
without exceeding the barrvier. This results enables Q{akitn) to



be found by marching in time steps, &t . When t, = iAt , where
At is the interval between the vertical lines of the approxi-
mated single or double-sided barrier (see Fig. 4.2(c)) then the
probability mass is absorbed, for 2y > b , and does not appear
in the subsequent diffusion process,

The random walk analogue has been used +to estimate
P(tlao) » and the limiting decay rate, a , for oscillators with
combined linear and cubic damping (Roberts (1978)). The stability
and robustness of the numerical scheme vas found to be remavkably
good, with no difficulty in obtaining results for barrier levels
as high as % = 6 , in the linear case.

5.5 Use of the energy envelope

It was shown earlier, in Chapter 3, that for oscillators
with the eguation of wmotion

¥+ e®h(x,y) + g(x) = ez(t) = £(1) (94)

the energy envelope E{t) could be approximated accurately as a
one-dimensional Markov process, as € = 6 . The conditional
transition density function q(E]EG;t) for the Harkov model of
E(t) is governed by the same FPXK egquation as the unconditional
transition density function p(E]EO;t) - Thus (see equations
3.120)

& - gﬁ[ {623(‘5} - %}@] v g%tcmq] (95)

where B(E) and C(E) are the functions defined previously, and
Ii= ZWSf(O) o

The backward operator, .¢, for E(t) is



# = - |e2B(E.) - I|9 4 Lo )-‘?—2—— (96)
[ "0 z]'aég 2770 aEg

The easiest first-passage problem to solve, when dealing
with E(t) , .= to find the probability, Q(t|Eg) that E(t)
stays below a critical level, E , in the interval 0-t , given
that E(0) = E, , a known initial wvalue. This is a natural
generalisation of the circular barrier problem considered
earlier, for the special case where ¢(x) is linear. If the
damping is sufficiently 1light then Q(tIEO) will be a good
approximation to the probability that ®(t) stays below the
level b , in the interval 0-t , where E = V(b) .

A complete analytical solution for Q(tIEO) can, in prin-
ciple, be obtained by using an eigenfunction expansicn, similax
to that given previously for a(t) (see eguation (59)). However,
the appropriate eigenfunction problem has been solved, so far,
only for case of linear damping and a power-law spring - i.e.

g(x) = k|x| sqan(x) (27)

and k and v are constants. In this case the functions B(E)
and C(E) are both proportional tc E (see equations (3.128) and
(3.129)), so the eigenfunction problem is not dissimilar from
that in the 1linear case. This solution for Q(tlEo) (Roberts
(1976)) generalises the result given earlier for the linear case
where v = 1 (see equations (65) to (69)).

The moment, M (E)) , of the time it takes for E(t) to
first reach E , starting from E, , can be determined fairly
easily by solving the GPV equations recursively, for n = 1,2,...
etc. (Roberts (1976)). In the case of a linear damper and a
power-law spring, the moment may be found analytically. In other
cases the GPV equations may be solved numerically, without
difficulty, since they are oxdinary differential eguations.
Specific results have been obtained for the Duffing oscillator,

with linear damping (Roberts (1976)).
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In the special case of zero damping (e 0) the PV

equation for Ml(EO) becomes

2
aM a“M
I 2y lcme) —L - - (98)
2 dg 2 0 2
0 aEg

By inspection the solution {subject to the appropriate boundaxry
conditions) is in complete agreement with the exact solution
given by equation (38).

The diffusion equations for E(t) may be used to find
approximate solutions +to the single and double-sided barrier
problems for the displacement process xX{t) . This involves a
generalisation of the arguments given earlier, for a(t) , and
leads to the following discrete-time diffusion equation:

h
q(ElEogtn+1) = Jo p(E]E’:At)q(E’{EO;tn)dE’ (929)

where h = V{b) . This is clearly a generalisation of equation
{54) for a(t) . q(ElEostn) is the probability that E(t)
reaches the differential element centred at F ; at time tn ;
without intersecting the vertical barrier lines, spaced &t
apart,.

In the case of a non-linear spring the choice of an appro-
priate wvalue for At in equation (99) is not ocbvious. It has
been shown (Roberts (1978)) that it is best to choose as follows:

At = ur(h) (100)

where, as before, h = v{(b) and s =1 for single-sided
barriers, 1/2 for double-sided barriers. T(E) is the undamped
natural period of the oscillator (see equation (1.40)). With this
choice of At it can be shown that a -7 as b = w .



Equation (99) can be marched in time, with step length At ,
provided that the unconditional transition density function is
known. Available analytical solutions for this function are
limited to the class of oscillators with linear damping and a
non-linear spx . of power-law form (see Chapter 3). Estimates of
the limiting decay rate, for some oscillators in this class, are
given by Roberts (1276). These were obtained by numerically
evaluating the evolution of q(E[EO;t) , according to equation
(99). For high barrier levels an expansion technique for
q(E|E0;t) is required, to ensure numerical stability (see
Roberts (1976)).

In cases where p(EIEO;t) is not known analytically a
random walk analogue of the diffusion equation can be used, which
is a generalisation of the analogue discussed earlier, for the
case where g(x) is linear. This method is discussed in detail
by Roberts (1978), where results are presented for the case of a
Duffing oscillator with 1linear damping. Alternatively, an
implicit finite difference approximation can be used to solve the
FPK equation governing q(EIEO;t) (Roberts (1986)). As with the
random walk analogue, this enables one to march the diffusion
process forward in time, with steps, o6t . However, the latter
approach has the advantage that 6t is no longer necessarily
proportional to the sguare of the awmplitude increment. Thus
larger steps in time can be used, without sacrifice in accuracy.

5.6 Oscillators with parametric excitation

The methed of stochastic averaging can also be used to study
the effect of parametric excitation on first-passage times
(Dimentberg and Sidorenko (1978)), Ariaratnam and Tam (1979)).

consider, for an example, an oscillator with combined
external and parametric excitation, with an equation of motion of
the form

X + wy[20+g(t) 1% + ng[l-m(t)] = f£(t) (101)



Here g(t), h(t) and £(t) are stationary stochastic processes
with zero means, and g(t) and h(t) are parametric excita-
tions. Here the parametric excitation is more general than in the
oscillator considered earlier, in Chapter Two; it reduces to the
earlier type if g(t) = 0 .

On applying the method of stochastic averaging, on the
assumption that the damping is light, the following appropriate
stochastic differential equation for the amplitude process,
a(t) , may be derived (Ariaratnam and Tam (1979), Roberts
(1982)):

1
a = (- oa+ g%) + (ra? + B2 £x) (102)
where
ng
a = wa - -5 [259(0) + 25g(2w0) + 3Sh(2w0) + 6§hg(2wﬂ)]
(103)
S . (W,)
8 = __%._9._. (104)
“o
and
2
T o= g [285,00) + Sq(20y) + 8 (20,) + z@hq(zwb)] (105)

Here Sg(ao,sh(an and Sf(w) denote, respectively, the power
spectra of g(t),h(t) and f(t) , whereas th(w) and §hg are
the real and imaginary components of the cross-spectrum of h(t)
and g(t) - i.e.

g (@) + 1, (v = %% Jf; E{h(t)g(t+r))e ¢4, (106)



The FPK and backward Kolmogorov equations follow immediately
from equation (102). Thus the backward operator is

&
Bag

L = (- aa, + Egt)agg + Z(yal+B) (107)

By solving the differential equation for ¢(t]ao) , With appro-
priate boundary conditions, Ariaratnam and Tam (1979) have
obtained an analytical solution for the probability that a(t)
stays below a specified level for a given time. This result, in

terms of the hypergeometric function F is a generalisation of

1 4
the result given earlier in this Chapter, for a linear oscillator

with purely external excitation.

If only the moments of the first passage time, T , are
required then they may be obtained directly from the GPV equa-
tions, as previously noted. Results of this kind have been given
by Dimentberyg and Sidorenko (1978) and by Ariaratnam and Tam
(1979)) .

5.7 Non-stationary problems

The case of purely external excitation will now be returned
to. If this excitation 1is considered to be a modulated white

noise
f(t) = a(t)é(t) (108)

where a(t) is a deterministic modulating function and &(t) is
stationary white noise, of unit strength, then the "zero-start®
solutions discussed earlier in this paper relate to the case
where a(t) 1is a step function.

If the approximate energy envelope is adopted then, if a(t)
is some avrbitrary function, I in the diffusion eguation for

E(t) can be replaced by az(t) . Numerical solutions for the



diffusion equations can easily be generalised to allow for

time-dependency of og(t) . For example, Roberts {(1276) used the
discrete-time envelope method to obtain estimates of the pro-
bability of first passage failure of a linear oscillator, where

a(t) = A[exp(wclt) - exp(wczt)j H t >0 (109)

and A, c, and €, are constants.

In cases where the stochastic averaging method is applicable
(i.e. g(x) 1linear, or nearly so) a rather more general model of
the non-stationary excitation, £{t) , can be adopted, using the
concept of the evolutionary power spectrum (see Chapter Three).
Using this spectral representation one sinply replaces S(wo) by
S(wo,t) , in the differential generator &, for example (see
equation (44)).

Whilst numerical solutions are easily modified to deal with
modulated excitation, analytical solutions are much more diffi-
cult. One semi-analytical approach is to use step-function
modulated excitation as the basis for a Galerkin method of
solution. Results for a linear oscillator with modulated excita-
tion, and a circular barrier, have been obtained recently by
Spanos and Solomos (1983).

6. Conclusions

For oscillators with light damping methods based on the use
of stochastic averaging offer a relatively simple approach. The
reduction in dimensionality of the relevant Markov process, from
two to one, results in very considerable simplifications, with a
negligible loss in accuracy. Comparisons between the result
obtained by numerically solving the "Yexact! two-dimensional
diffusion equations, and the corresponding results obtained from
the approximate one-dimensional diffusion equations (see Figs.,

4.3 to 4.6, where the mean time to failure , denoted W , is
plotted against barrier height for various types of oscillator

4,35
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(see Roberts (1986(b)) for details) indicate that the latter are
certainly sufficiently accurate for engineering purposes. This
conclusion is reinforced by comparisons with simulated data and
the fact that sxact solutions are obtained in the case of no

danping.
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AVERAGING METHODS IN RANDOM VIBRATTON

J. B. Roberts

CHA R_FIVE

Application of the Stochastic Averaging Method

to Specific Engineering Problems

1. Introduction

In this concluding Chapter the application of the stochastic
averaging methoed to the following two specific engineering
problems will be discussed,

(1) The rolling motion of a ship in irregular beam seas.
(2) The response of a hysteretic oscillator to wide-band
random excitation.

In both cases the energy envelope method, as developed in
Chapter Three, will be employed to yield information on response
statistics such as the standard deviation, and the distribution
of amplitude.

2. Roll motion of a ship in random wvaves

In assessing the possibility of a ship capsizing, when
operating in a particular sea state, attention must be paid to
the probability of the rolling motion reaching large, and poten-
tially dangerous amplitudes. Rolling motion can become excessive
when the natural roll frequency lies in the frequency range for
which wave energy is dominant. In these circumstances the roll
response can be regarded as a resonance phenomenon, in which the



amplitude of the roll motion is critically dependent on the
magnitude of the hydrodynamic damping which is present. Unfor-
tunately the damping in the roll mode is often very light with
the result that large roll amplitudes can readily occur under

resonant conditions.

Here it is shown that the stochastic averaging method, based
on the energy envelope, can be brought to bear on this problen,
provided that attention is restricted to the case of a ship
rolling in unidirectional beam waves. In these circumstances it
is possible to justify the adoption of a single degree of freedon
roll model, in which non-lineavities are present in both the
damping and restoring moment terms.

The theoretical results obtained are validated through a
comparison with experimental results obtained from a model ship

in a wave tank.

2.1 Fguation for roll motion

The theory which will be studied here is based on the
assumption that the roll motion of a ship in beam waves can be
modelled by a non-linear, second order differential equation of

the form,

. 2 .

I$ + €“C(P) + K(¢) = M(t) (1)
where

I = roll inertia

) = angle of roll

c(¢) = non-linear damping moment

K(¢) = non-linear restoring moment

M(t) = roll excitation moment

62 = a scaling parameter (62 small)



The adoption of this model implies that the roll motion can be
uncoupled from the other motions, such as sway, by a suitable
choice of coordinates. Some justification for this uncoupled
equation of roll, will be given shortly. It is observed that
equation (1) can be simplified somewhat by dividing throughout by
I . Thus

B+ E2F(P) + 6(h) = x(t) (2)
where

F=2¢/I, G6=ZXK/I, X=M/I (3)

2.2 Application of the eneray envelope method

As before, if the enerqgy envelope, E(t) is defined as

2
B(e) = £ 4 vy (4)
where
¢
v = | e@rac (5)
0

then, if 2 is sufficiently small, E(t) can be nodelled as a
one-dimensional Markov process. The transition density function,
p(E]EO:t) for E(t) is then given by (see Chapter 3)

2
R - - L@y + 2 g‘E'fg[D(E)P]

wvhere expressions for m(E) and D(E) are given in Chapter
Three by equations (3.144) and (3.145).

If the excitation is not too severe, then it is possible to
consider, in an appropriate sense, that the response E(t) will



reach stationarity. (However, it is noted that, strictly
speaking, it is improper to discuss the stationary response
distribution in the roll mode, since stationarity will never
actually be reached). Setting OJp/dt = 0 one obtains, as before,
the stationary density function

T

where € is a normalisation constant.

From equation (6) one can deduce various response statis-

tics. For example, the amplitude process, a(t) , where
E = V(a) (7)
has the stationary density function

w(a) = w(E) & = G(a)w(E) (8)

Moreover, as noted earlier, the joint stationary density function

of ¢ and ¢ is given by

w(g,$) = (9)

H|€
His

where T(E) is the period of free oscillations, without damping.
From this one can obtain expressions for many statistics asso-

ciated with ¢ and ¢ . In particular, one finds, by integra-
tion, the standard deviation, ¢ , of the roll response, o(t) .
Thus

P = f; ffw¢zw(¢,é>)d¢ (10)

and, from equations (9) and (10)



o = jw W (E)D, (E)dE (11)
0

where

_ 242 $2dg
D(E) = F(& . i (12)

[E~V(¢) ]2

For most ships, undergoing moderate roll motion, (i.e., not
close to capsize) the effect of non-linearity in the restoring
moment is relatively weak. In this case, as pointed out in
Chapter 3, the energy envelope theory indicates that the shape of
the input spectrum does not play a role in the determination of
m(E) and D(E) . Thus, for linear, or near—-linear restoring
moments, the basic assumptions of the proposed theory are effec-
tively equivalent to making a white noise approximation for
x(t) , with constant spectral level, Sx(wc) .

Since in the present application the spectrum of x(t) is
decidedly non-white (as will be shown later) it is appropriate to
apply the modified theory, outlined in Chapter 3. This involves
scaling the spectrun Sx(w) + in the expressions for m(E) and
D(E) with a factor r(¢) , derived from 1linear theory (see
Chapter 3 section 4.7).

2.3 Theoretical modelling

In the experimental tests, to be discussed later, a scale
model of the Fishing Protection Vessel the "Sulisker" was used.
We now describe how the general theory, outlined earlier, can be
applied to this particular ship.



2.3.1 Coupling with other motions

As a first step it is necessary to validate the uncoupled
roll equation of motion given by equation (1). A complete,
non-linear analysis, with all six degrees of freedom represented,
is not feasible analytically; in any event the parameters, and
even the form, of the general equations of motion are uncertain.
However, a guide to the validity of equation (1) can be obtained
by considering small displacements and using a linearised theory.

A comprehensive linear analysis was carried out using a
computer programme known as NMIWAVE (Standing (1979)). As a first
stage in the calculation, the hydrodynamic forces and moments
acting on the ship were computed, assuming that the ship was
subjected to unit amplitude, harmonic beam waves of various
frequencies. The next stage involved computing the elements of
the added-mass matrix, at various frequencies, by assuming that
the ship oscillated harmonically in calm water. This calculation
was carried out for each degree of freedom. Finally, the overall
transfer functions between the wave input and the various compo-
nents of ship displacement were calculated by combining the
computed force vector information with the parameters of the
general linear equations of motion for six degrees of freedom.
For a specified wave elevation spectrum, Sw(w) , one could then
use the overall transfer function to compute the spectra, and
cross-spectra, of the six displacement coordinates and hence
statistics such as the standard deviations of the displacement

components.

The calculations were carried out with the origin of the
coordinate system located at the centre of mass of the ship. A
study of the computed added-mass matrix revealed that, with this
reference point for the motions, there is significant coupling
between sway and roll. The other motions were much less strongly
coupled with roll. This point was further demonstrated by running
the NMIWAVE programme with the inertias relating to displacenment
other than roll and sway set artificially at a very high level,
so that the number of degrees of freedom was effectively reduced



to two (corresponding to roll and sway). The standard deviations
of the roll displacement in this case were within 1% of the
results obtained with the fully coupled, six-degree-of-freedom
equations.

On the assumption that only sway motion is coupled with
roll, and that the influence of the sway damping term on the roll
motion is small, it is possible to decouple the roll equation by
moving the origin of the coordinate system to a new position,
called the %roll centre®, a distance gz vertically below the
centre of mass of the ship, as shown in Fig. 5.1. The appropriate
expression for 2z is

centre of
mass
b
\\\‘s$ “{_%
/f !
roll
centre
Fig. 5.1.
A
z = Xg—]‘ (13)
11
where A21 is the off-diagonal added-mass component and All is

the total mass (including added mass) of the sway motion. The
effect of moving the coordinate system is to change the values of
the roll inertia (slightly) and the roll moment (significantly).
Calculations based on the resulting single-degree~of~freedon
equation were found to give standard deviation values for roll



displacement within 10% of the results obtained with the fully
coupled six-degrees-of-freedom equation.

It can be concluded that, at least for small, linearized
motions, the rcil can be modelled as a single-degree-of-freedom
equation, provided that the coordinate origin is chosen at the
roll centre. In the absence of further information, this roll
centre is also the best origin to adopt in the case of larger,

non-linear motions.

2.3.2 Restoring moment

The exact hydrostatic restoring moment of the Sulisker,
expressed as the variation of the righting lever (see Chapter
One) with roll angle, in calm water, is shown in Fig. 5.2. For
analysis purposes it is useful to approximate this function by

following analytical expression

G(g) = wip(1 + AP (14)

where (with ¢ in degrees) A = 0.0002 and W, is the undamped

frequency of roll oscillation.
2.3.3 Damping moment

Free decay tests, carried out on a scale model of the
Sulisker, were analysed by the method described in Chapter One.
The analysis showed that the damping is well represented by a

linear-plus-quadratic form - i.e.

F(¢) = a¢ + bg|g| (15)

where a and b are constants.
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2.3.4 The complete equation of motion

On combining expressions one has the following

motion:

+ ®lap + bPIB|1 + Po1 + AP = x(r)

equation of

(16)



with the introduction of the non-dimensional time
T = w,t (17)

equation (16) can be written as

p+ 2(a"p + b BB + p(1+ A7) = XID (18)

Yo

where differentiation is now with respect to 7+ and a® and p”

are non-dimensional damping coefficients, defined by

* € a b* €°b (19)

From free~decay data one finds that

* *®
a. = 0.0107 , b = 0.00474 (20)

2.3.5 Wave moment spectrum

The wave elevation spectrunm, Sw(w) must be converted into a
wave moment spectrun, SM(w) , and hence to the spectrum of
x(t) , denoted Sx(w) .

Here the simplifying approximation is made that the
linearised analysis, referred to earlier, can be used to convert
Sw(w) to SM(w) . This is tantamount to assuming that, even for
fairly large angles of roll, the wave moment experienced by the
ship is not dependent on the actual motion of the ship. Such a
decoupling is only strictly correct for small, linearised motions
and the consequences of adopting this assumption in the analysis
can only be assessed through a comparison between the subsequent
theoretical predictions and experimental results.
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Thus if M(w) is the magnitude of the roll moment expe-
rienced by the ship in harmonic beam waves, of frequency w and
unit height, as computed from linear theory (NMIWAVE programme)
it will be assumed that

Sylw) = M2 (w) 5, (w) (21)

The variation of M{w) with frequency will depend on the
choice of origin, as explained previously. Here the roll centre
will be used, rather than the mass centre of the ship, for the
reasons given earlier. Fig. 5.3 shows the variation of M(w)
with frequency for moments about the roll centre, and about the
centre of mass. It is noted that the result of shifting the
origin of the coordinate system is to substantially reduce the
value of M(w) .



To convert SM(w) to Sx(w) , & knowledge of the roll
inertia is required, The added-mass component of the roll inertia
is frequency-dependent, but varies slowly with frequency. Since
the rolling motion takes place predominantly at the natural
frequency of oscillation, a good approximation is to assume that
the total roll inertia is independent of frequency.

The measured natural roll frequency (at low amplitudes) in
free decay tests was about 0.113 Hz (converted to full scale).
The added roll inertia at this frequency is

2.60 x 10 tonne (t) n’ . Adding this to the roll inertia of the

(dry) ship gives a total roll inertia of 21.2 x 103 t m2 . This

value of I «gives a theoretical natural roll period which is

very close to that measured experimentally.

2.4 Computing the roll distribution

To evaluate m(E) and D(E) the approximations given in

equations (3.146) and (3.147) are adequate. Thus

m(E) = =~ €2B(E) + g(si + ci) S, [W(E)] (22)
D(E) = 27 E si 5, [W(E)] (23)

2.4.1 Damping function

With time measured in units of T it can be shown that
(Roberts (1985))

3/2

€?B(E) = 2[a’E a(E) + b E/2B(E)] (24)

where, over the range of values of concern here (0 < |¢l < 350)
the following asymptotic approximations are valid



a(E) = 1 + 0.375 n (25)

B(E) = 1.20(1 + 0.450 m) (26)
where
2
n = AA . (27)
2(1 + AAa%)

and A is the amplitude of roll, such that
E = V(A) (28)

The damping function Q(E) which is needed to use the
modified theory is given by

Q(E) = a“a(E) + b EY243(E) (29)

2.4.2 Fourier coefficients s, and c,

To evaluate s, and ¢y it is necessary to solve the free

undamped oscillation equation. One finds to a good approximation
(see Roberts (1982)) that

s = 1 4 == m (30)
with an error of order m<® . Similarly, for small n '
m (31)
On combining, and neglecting terms of order m2 again, one has

s§+c = 2 (32)



2.4.3 Evaluation of «(E)

From the solution for free undamped oscillations, one finds
that the period of oscillation, T(E) , measured in units of 7

is given by

4K (m) (33)

T(E)

fe=

(1 + a2

where K(m) is the complete elliptic integral. Hence

WE) = ok (34)

2.4.4 Evaluation of DZ(E)

DZ(E) may be evaluated from equation (12). For a

linear-plus-cubic restoring moment one finds that

a2 M(m’) (35)

D,(E) = L(m")
where
(7/2 in6a6
M(m/) - sin (36)
J0 (1 + m’sinzé?)l/2
r7T/ 2
L(n’) = dg (37)

J0 (1 + m’sin29)1/2

and

2
p AA . (38)
2+AA

DZ(E) has the dimensions of E , and DZ(E) -0 as E - O .
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2.5 Experimental validation

The tests to be discussed here were carried out in a 1:20
scale model of the Sulisker to prevent the model drifting down
the tank it was partially restrained by a mooring arrangement, as
shown in Fig. 5.4, Irregular unidirectional waves were generated
by a wavemaker at one end of the tank and the model was posi-
tioned for beam wave encounter.



With the wavemaker set to produce waves with a prescribed
"target" spectrum, simultaneous measurements of roll motion and
wave elevation, in the vicinity of the model, were recorded.
Long, non-repeating runs were necessary to generate sufficient
roll data for +the statistics of roll response to be reasonably
accurate. Due to reflections from the tank ends and walls, it was
not possible to run the experiments continuously for more than
about 20 min. before the wave motion became unacceptably dis-
torted. Thus difficulty was overcome by stopping the experiment
and then restarting. Generally two 20 min. blocks were used for
each target wave spectrum, containing a total of about 1200

consecutive rolls.

Four different wave target were chosen for the present
study, as summarised in Table 1 (here converted to full scale).

Table 1
Target Wave Spectrum No of rolls
Dataset No. recorded
Type Parameters
1 JONSWAP H=5:1 m,T=8-5 s 1001
2 JONSWAP H=4°-4 m,T=6-6 s 1325
3 ITTC H=4-7 m 1249
4 JONSWAP H=6-1 m,T=8-5 s 580

Fig. 5.5 shows a comparison between the target wave spectrum and
spectral estimates from the actual wave record in the vicinity of

the ship model, for dataset 1.

2.5.1 Conversion to roll moment spectra

The measured wave elevation spectra can be converted to wave

moment spectra, by using egquation (21).
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Fig. 5.6 shows a typical result of such a conversion (here
Dataset 1). Here the broken line shows the result of converting
the target wave spectrum and the full circles the result of
converting the experimental estimates of wave spectra. Since
M(w) increases rapidly with frequency, the conversion process
has the effect of considerably magnifying the "tail" of the wave
elevation spectrum. The experimental results have significant
scatter and for computational purposes the continuous curve shown



by a full line was used. Also shown in Fig. 5.6, for comparison
purposes, is the roll displacement spectrum, SR(w) , as estimated
from the digitised roll response records. As expected this shows
a sharp peak, close to f = 0,113 Hz , the theoretical natural
roll frecquency. it is interesting to note that a secondary peak
appears in the roll displacement spectrum, at the frequency at
which SM(aD peaks. This has the effect of broadening the
bandwidth of the roll response spectrun.

A basic assumption of the theory is that SR(w) has a
band-width which is appreciably less than the band-width of
SM(w) ., Fig. 5.6 shows that this assumption is not unreasonable
in the present study.
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2.5.2 Standard deviation of roll response

From the theoretical analysis described earlier, the roll
standard deviation, ¢ , can be calculated, using the original and
modified (i.e. with spectral level correction factor) theories.,
Table 2 gives a comparison between experimental and theoretical
values of o .

Table 2
Experimental o Theoretical o
deg. deg.
Dataset
original modified
1 10.1 10.1 2.9
2 11.3 12.9 11.8
3 10.4 11.1 10.4
4 11.4 10.8 10.7

2.5.3 Cumulative probabilities of roll peak amplitudes

The cumulative distribution, P(A) of the roll peak ampli-
tudes is given by

A
P(a) = jo w(a)da (39)

Figs. 5.7(a) to (d) show, for Datasets 1 to 4, respectively,
the variation of P(A) with roll amplitude, as obtained from the
theory (original and modified) and from the experimental roll
records. Also shown, for comparison purposes, is the Rayleigh
distribution for each case (based on the experimental value of
the standard deviation). Rayleigh probability paper has been used
in the presentation of these results; thus Rayleigh distributions
appear as straight lines.
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To obtain the experimental estimates the positive peak
amplitude, a+ » Nheasured from 2zero level, were first used to
generate a histogram. A similar histogram was also formed from
the negative peak (or trough) amplitudes a . The average of
these two histograms was then found. A histogram of the peak to
trough range values, r , was also found and converted into a
histogram of half-range values, ¥/2 . These histograms were then
used to construct estimates of Pay .

It is observed that, in all four cases, the modified theory
gives fairly good agreement with the experimental results; the
pronounced deviation from the Rayleigh distribution, at high roll
amplitudes, is well predicted by the theory. This deviation is
principally due to the strong non-linearity in the damping, which
is almost entirely quadratic. At high amplitudes the Rayleigh
distribution seriously overestimates the probability of reaching
these levels of response.

3. Hysteretic oscillator response to wide-band random
excitation

For the purpose of predicting the response of hysteretic
oscillators to random excitation, it was shown some time ago, by
the present author {(Roberts (1978), (1980)) that the method of
stochastic averaging offers a useful alternative approach to
equivalent linearisation, in situations where the energy dissipa-
tion per cycle is relatively small. In the specific case of an
oscillator with a bilinear hysteretic force, a modified form of
the standard stochastic averaging method was used to obtain
analytical expressions for the response distribution (Roberts
(1978)). For cases where the response is narrow-~band in nature,
this theory gives results in very good agreement with digital
simulation estimates. Later this theoretical technique was used
to give useful information concerning the yield statistics of a
simple elasto-plastic oscillator (Roberts (1980)).



Here (see also Roberts (1988)) it will be shown that the
stochastic averaging method can also be applied in situations
where the hysteresis loop is modelled through an extended dif-
ferential equacion, of the kind proposed by Bouc (1967), and used
extensively by many authors, in connection with the egquivalent

linearisation method.

3.1 The extended differential model

An oscillator with the following differential equation of

motion will be considered:

2y + (1-a)afgz = f£(t) (40)

X + 2§wox + awy

Here ® is a non-dimensional displacement (normalised by a
characteristic yield displacement), ( is a non-dimensional
damping ratio, Wy is the "pre-yielding" natural frequency, a is
the post to preyielding stiffness ratio, f£(t) 1is the excitation
and 2z is a non-dimensional hysteretic restoring force 2z can
be conveniently modelled in terms of the differential equation

5 = -qlx|z|z|™t - Bx|z|" + Ax (41)
7 Iy T ———————— ;
N |
m , Z !
¥ p-ve |
Beve ! i
1 |
i }
p b — ) :
” xp = @ xm *
SOFTENING HARDENING
(a) (b
Fig. 5.8.



(see Chapter One). Here the parameters n, 7, 8 and A control
the magnitude and shape of the hysteresis loop.

Here attention is focussed on cases where the energy lost
per cycle is relatively small - i.e. the hysteresis loop is
“"slim" and the area enclosed is relatively small. Referring to
Fig. 5.8 it is noted that such loops can be considered to have a
non-linear "backbone¥, g(x) , which may be of the stiffening or
softening type, depending on the sign of B . One can write

z(x) = g(x) + e(x) (42)
where €(x) is the purely hysteretic component of z{t) .

Equation (42) represents, roughly speaking, a decomposition
of z{x) into a non-linear stiffness effect, g(x) , and a

non-linear damping effect. €(x) . Substituting from equation (42)
into equation (40) one obtains

X + 2(wyx + G(x) + wg(:b-a)e(x) = f(t) (43)

vhere

G(x) = Wfl(l-a)g(x) + ax] (44)

3.2 Application of the averaging method

When the energy dissipation is small, the total energy

-2
E(t) = §~+V(x) (45)
where here
X
V(x) = J G(&)a¢ (46)
0



is the potential energy function, will be slowly varying. From

equation (43) one has

%+ wg(lma)e(x)] + XE(t) (47)

E o= -y

As we have seen earlier, the first term on the right side of this
equation is the rate of energy dissipation. Averaging this over

one cycle, one has

H(E) = —T—lﬁ- § x[2¢wk + Wl (1-a) € (x) ]dt (48)

where T(E) , as before, is the period of free, undamped oscilla-

tions.

Equation (47) is now approximated by

E = = H(E) + xf(t) (49)

and, if the excitation is approximated as a white noise, one is
led, as shown in Chapter 3, to a Markov model for E(t) , with

the governing FPK equation

%% = gﬁ{ [H(E) - %]p } + %— ;%[C(E)p] (50)

Here I, C(E) and p(E]Eo;t) have the same meaning as before.
Previous results, in this Chapter, and in Chapter Three may now
be used to obtain the stationary probability density functions of

E and the joint process [X,x] .

In the following, for simplicity, only the special case

where

a = ¢ = 0 (51)
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HE) = AL (52)
where

AE) = o Ef> e(x)ax = o f z dx (53)

is the area enclosed by the hysteretic loop.

Also, in the following, attention will be devoted exclusive-
ly to the case where

n = 1 ’ w = 1 (54)
The condition Wo = 1 does not imply any loss of generality,

since changing the value of Wy is equivalent to rescaling the
strength, I , of the input.

3.3 Calculation of the backbone

There are several ways of defining the "backbone", illus-
trated in Fig. 5.8. It is observed that, for fixed values of
A, B and 7 , there is a family of possible loops, as sketched in

5.25



Fig. 5.9. A convenient definition of the backbone, used here, is
the locus of the extremities (xm,zm) of the loop. Thus ¢g(x)
is defined by

glx,) = 2z, (55)

The relationship between X and z is easily obtained by
integrating ecquation (41), and using a symmetry condition. One
finds that

ALz A2
2% = - 3 ln[l . m} - 3 ln[l o m} (56)
u d
where
Ay = ﬁ+'r} (57)
Ay = B -

This non-linear algebraic relationship must, in general, be
solved numerically. However, if v is small the hysteresis loop
is slim and one can use the following asymptotic approximation:

g(x) = ‘% [1 - exp(=Fx)] (58)

Irrespective of the value of v , the backbone is linear as

X ™ 0 ; thus g(x) - A% .

3.4 Calculation of the area of the loop

An exact expression for the area, A(E) , of the loop can be
easily obtained by using equation (53). The result is

A(E) = (59)

2A{ [1n(1;fo)+¢o] _ [1n(1;fo)+00] }
a u

where



and E is related to Z, through the expressions
2, = g(xm) 7 E = V(xm) (61)

Asymptotic expressions for A(E) can be found in certain
special cases. For example

A(E) = g[%] vE3/ 2 as E - 0 (62)
irrespective of the magnitudes of # and <9 . The above expres-
sions for A(E) also holds, asymptotically, for any E , irf

=0 and v - 0 .

For [ > 0 one finds that, as E - o

where E = V(xm) - This expression is useful, for the purposes of
numerical evaluation, since an evaluation of A(E) using equa-
tion (59) can lead to numerical difficulties when E is large.

3.5 Calculation of T(E), C(E) and DZ(EQ

Considering the evaluation of T(E) , the periodic time,
initially, it is noted that the integrand in the expression

b dx
0 VE=V (x)

becomes infinite as x - b . To remove this singularity it is

T(E) = 2%2‘] (64)

convenient to use the transformation



V(x) = E sin®6 (65)

In terms of 6 , equation (64) can be expressed as

sind .9 (66)

T(E) = 342E J

As f - 0, in the above integral, x = 0 , V(x) = sz/z and
1

hence the integrand approaches the finite value 1/(2VA)2 . Thus
the integral in equation (64) can be evaluated by straightforward

methods.

Similarly, the functions C(E) and D2(E) can be evaluated
by a transformation to the 6 variable, defined above. Thus

3/2 /2 2,4
cm = Mg | e a0 (7
and
- a/3E [? ¥Psine
P2(B) = 1(E) JO e (68)

Asymptotic expressions for the above functions of E are
2

useful, for the purpose of evaluating p(E) and ¢~ . As E - 0
the restoring function g(x) -» Ax , as previously mnentioned.
Hence one finds that
-1
2
T(E) -~ 27A
C(E) -+ B as E = O (69)

D,(E) - E/A

For £ > 0 the following asymptotic expressions for the case

E - oo can also be found



T (E) - 44/2E [/A

C(E) - 2E/3 {70)

2
8 [E
Dy(E) = ‘1"5‘[1;’

3.6 The loss factor

The function H(E) may be related to the non-dimensional
damping function

Q(E) = H(E) (71)
2w E
0
(see Chapter 1, where it is pointed out that, for the 1linear
oscillator with viscous damping, Q(E) = ¢ , where ¢ is the

usual critical damping factor).

Previous studies indicate that, in the 1linear case, the
stochastic averaging approximation gives very good results if
¢ <o0.1. Accordingly, one can tentatively assume that, in the
present application, the stochastic averaging approximation is
likely to be reasonably accurate if Q(E) < 0.1 .

Using the result given earlier in this paper it is easy to
evaluate Q(E) for a particular set of loop parameters (A, B and
7) . Figs. 5.10(a) and (b) show typical variations of Q(E) with
E, for A =1, and various £ values. In Fig. 5.10(a) v = 0.5
and in Fig. 5.10(b), 7 = 0.1 . Such results give an indication of
the 1likely accuracy of the stochastic averaging method, for a
particular loop parameter set, and a given E range.

3.7 The case (B =0

In the special case where B = 0 , the backbone is linear.
If, furthermore, 7 is small, so that the asymptotic area expres~
sion given by equation (62) is relevant, then it is possible to
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obtain a complete closed-form solution for w(E) , the stationary

density function of E . Thus

1

HEL - 82 g2, (7 - 0) (72)
and hence

P(E) = X exp{— 21 v3/2| (v - 0) (73)
where

p = 1542 0.800 (74)
and

2
_ 3(pM3 1
ko= 5[?] I(2/3) (75)



Here TI'( ) is the Gamma function.

An explicit expression for the mean square displacement,

o2 » can also be found. The result is

2/3
02 = %E—;—Y} (as 7y - 0) (76)

where

S Y ) (77

3.8 Comparisons with simulation results

Simulation estimates of ¢ and P(E) where obtained by
numerically solving the differential equations of motion, using
the fourth order Runge-Kulta algorithm.

A useful, preliminary assessment of the accuracy and range
of validity of the present theory can be obtained by comparing
theoretical estimates of the standard deviation of the response,
o , with corresponding simulation estimates.

Figs. 5.11 and 5.12 show a set of such comparisons for the
case where vy = 0.02 and 0.1 , Yespectively and /3 ranges from
0 to =5 . Here the ratio o¢/D is plotted versus D , where

D= (I/7r)1/2 is an input level parameter. It is observed that,
for negative g (a hardening g(x) function) the present theory
gives excellent agreement with the simulation estimates. Very
good agreement is also obtained for the case B=0, if D is
relatively small. However, for high values of D the simulation
estimates tend to fall above the theoretical line.
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The latter discrepancy is due to the well-known drifting
phenomenon, whereby the "centre® of the oscillation wanders very

slowly. Drifting becomes noticeable if, as the extremities of the

hysteresis loops are approached, the stiffness dz/dx approaches

For the class of oscillators under consideration, it is
provided that

zero.
easy to show that dz/dx = 0O as Zn @y
Au = (+v is positive. As D increases the probability of high

2, values being reached increases and hence the tendency to

drift increases.



One can represent x(t) as
x(t) = y(t) + d(t) (78)

where d(t) is the very low frequency drift motion and y(t) is
the oscillatory response, the periods of which are related to
T(E) . The present theory does not account for drift motion but
does relate to the process y(t) .

The non-drifting motion can be estimated from the digital
simulation values of x(t ) (t = iAt) by using a high pass
digital filtering operatlon to remove d(t) . A simple form of
this, used here, is

m-1
yieg) = x(t;) -2 ¥ x(t, ) (79)
k=0

The second term on the right hand side of this equation repre-

sents a Ylocal mean" of x(ti) . If mwAt > T* , Where ™  is a
characteristic period of oscillation of y{ti) ; then one can
expect to remove virtually all of d(t) from the response
samples.

Values of o estimated from the modified data, y(t ) ., are
shown by crosses (+) in Figs. 5.11 and 5.12. At the hlghest value
of D , these estimates are seen to be in good agreement with the
present theory, confirming that the latter is a good model of the
non-drifting component, y(t) , of the response.

Finally, to demonstrate the fact that the present theory
enables the distribution of the response to be estimated, several
comparisons between theoretical estimates of the density func-
tion, p(E) and the corresponding simulation estimates are shown
in Figs. 5.13(a), (b) and (c). In Fig. 5.13(a) and (b) the simula-
tion estimates were derived from the original data, x(t ) (i.e.,
no drift removal). As the standard deviation results would lead
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one to expect, the theory agrees very well with the simulation
estimates, in both cases. In Fig. 5.13(c) some results are shown
for a case where significant drifting occurs; here the simulation
estimates are derived from the modified data, y(ti) . Again the
agreement is satisfactory but there is a tendency for the simula-
tion estimates to fall above the theoretical line, at high energy

levels, indicating that the effect of drifting is still present,

to some extent, in the modified data.
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