


EFFECT OF MAIN STEEL STRENGTH ON THE SHEAR CAPACITY

OF REINFORCED CONCRETE BEAMS WITH STIRRUPS

by

M W Braestrup, Civilingenigr, lic.techn.
Structural Research Laboratory

Technical University of Denmark






Foreword

The bulk of the research reported was carried out at the Structural
Research Laboratory, Copenhagen, the paper being completed at the
Engineering Department, Cambridge. The assistance of the staff of
the latter in the preparation of the manuscript is gratefully ack-
nowledged.

A condensed version of the present report has been accepted for
publication in the "Archiwum Inzynierii Ladowej" ("Archive of
Civil Engineering") in the course of 1979.

Lyngby, May 1979

M. W. BRAESTRUP



Summary

Plastic analysis is applied to shear in beams. Steel and concrete
are idealized as rigid, perfectly élastic materials, the latter
with the modified Coulomb failure criterion and associated flow
rule. Upper bound solutions are derived for beams with vertical
or inclined stirrups, subjected to concentrated or distributed
loading. The failure mechanism may involve yielding of the main
reinforcement. The analysis shows the shear strength to be higher
for distributed than for point loading, and generally inclined
stirrups are more efficient than vertical. Comparison with lower
bounds shows the solutions to be exact for beams with strong main
reinforcement or with no stirrups. In these cases, excellent agree-
ment with test results is also found.

Resumé

Plasticitetsteorien anvendes pd forskydning i jernbetonbjzlker.
Materialerne antages stive, idealt plastiske, for betonens vedkom-
mende med Coulombs modificerede brudbetingelse (kvadratisk flyde-
kurve) og den associerede flydelov (normalitetsbetingelsen). @vre-
verdilgsninger udledes for bjzlker med lodrette eller skrd bgjler,
pavirket af koncentreret eller javnt fordelt belastning. Brudmekanis-
men idebarer mulighed for flydning af hovedarmeringen. Analysen viser
at forskydningsstyrken er stgrre for fordelt end for koncentreret
belastning og at skrd bgjler normalt er mere effektive end lodrette.
Sammenligning med nedrevardier viser at lgsningerne er eksakte for
bjelker med staerk hovedarmering eller uden forskydningsarmering. I
disse tilfeldé findes ogsé udmmrkét overensstemmelse med forsggsresul-
tater. ’
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INTRODUCTION

The strength of reinforced concrete beams subjected to shear is a simple
problem of structural mechancis which for a long time has defied solution. In
recent years, however, considerable progress has been made through the application
of the classical theory of plasticity. The basic idea is to regard the concrete
as a perfectly plastic Coulomb-material with a small (in this case vanishing)
tensile strength. The limited ductility of concrete in compression is accounted
for by reducing the strength by an empirical effectiveness factor. Using this
simple material model, problems of shear in concrete are open to rational treatment
by the straightforward methods of limit analysis which have proven their efficiency

in connection with flexural problems (yield line theory, yield hinge methods, etc.).

At first glance, it appears highly questionable to describe a material like
concrete as perfectly plastic. Rather than engage in a futile discussion regarding
the validity of such an assumption, we propose that the description be judged upon
its merits, and the theory does furnish some surprisingly accurate predictions of

the behaviour of concrete structures subjected to shear.

Another advantage of this approach is that it is a general theory, unifying
the analysis of shear in beams (deep or slender, with or without stirrups) with
other problems such as punching shear of slabs and shear in joints and corbels,
cf. NIELSEN & al. [1], BRAESTRUP & al. [2].

Shear in beams were treated by NIELSEN & BRAESTRUP [3], who derived coinciding
upper ané>lower bounds for beams with point loading and vertical or inclined stirrups
and for beams with distributed loading and vertical stirrups. The failure mechanism
consists of a diagonal yield line with a vertical displacement rate. The correspond-
ing stress distribution is an inclined compression field in the web concrete and
yielding of the stirrups. The solution is equivalent with the classical truss
analogy, except that the strut inclination is variable, the optimal inclination -
corresponding to failure - depending upon the amount of shear reinforcement. In
most cases of practical interest, it is considerably flatter than the classical
value of 45°, The concept of variable strut inclination has proven extremely
useful in the design of stirrup reinforcement, GROB & THUERLIMANN [4], coLLINS {5],
NIELSEN & al. [6]. It has recently been introduced into the CEB-FIP Model Code for

structural concrete [7].
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The solutions derived in referemce [3] are only valid provided the main
reinforcement is sufficiently strong to constrain the deformation to be vertical,
i.e. the tensile force should be below yield. The purpose of the present paper
is to consider instances where this is no longer the case. Upper bound solutions
are presented for such beams, assuming a failure mechanism where the displacement
rate makes an angle with the beam normal. At the same time, the analysis is

extended to cover the case of distributed loading on beams with inclined stirrups.

The basic concepts and assumptions are introduced in Section.1l. In )
Sections 2 through 5, each of the four loading cases are considered. Upper bound
solutions are derived in one sub-section, and discussed and compared with known
lower bound solutions and available test results in the next. Finally, all the
solutions are summarized in Section 6. Some of the expressions are quite
complicated, and would presumably not be of much use in design. It is possible,
however, to draw some general conclusions concerning the effect of stirrup

inclination and type of loading.

aolin



NOTATIONS

a : Length of shear span

b : Width of beam web

f : Compressive strength of concrete
f_: Tensile yield stress of stirrups

h : Shear depth of beam

p : Distributed load per unit area

r : Shear reinforcement ratio

T : Yield strength of main reinforcement
V : Shear load

v : Relative velocity in yield line

@ : Inclination of relative velocity (Figure 2.1)
a* : Inclination of relative velocity (Figure 1.2)
B : Inclination of yield line (Figure 2.1)

Y -: Inclination of stirrups (Figure 3.1)

=3

Auxiliary parameter (Equation (5.3))
6 : Inclination of concrete compression (Figure 2.2a)
K : Reinforcement parameter (Equation (3.3)4)

A : Shear span ratio (A=a/h)

M ¢ Reinforcement parameter (Equation (3.3)2)

W : Reinforcement parameter (Equation (3.3)3)
V : Concrete effectiveness factor

P : Reinforcement parameter (Equation (3.3)ly
0, : Tensile stress in stirrups

T : Ultimate shear stress

® : Main reinforcement degree (¢=Ty/bhfc)

¥ : Shear reinforcement degree (¢=rfy/fc)



1.

BASIC ASSUMPTIONS

Consider a simply supported beam of web width b subjected to shear. The

shear span (distance from point of maximum moment to mearest support) is denoted a.

The reinforcement consists of longitudinal, main reinforcing bars and équidistant

stirrups, vertical or inclined. A plastic analysis of the shear capacity of the

beam may be based upon the assumptions listed below:

(a)

(b)

(c)

The main reinforcement at the bottom of the beam and the compression zone
at the top act as stringers, carrying a tensile force T and a compressive
force C, respectively. The beam depth h is measured as the distance

between the stringers.

The stirrups are able to resist axial forces only. The action of the
web reinforcement is described by a normal stress ¥o,, per unit area
perpendicular to the stirrups, r being the shear reinforcement ratio and

o, the tensile stress in the stirrups.
The web concrete is in a state of plane stress.

The stringers and the stirrups are rigid, perfectly plastic. = The yield

strength of the tensile stringer is Ty. The yield stress of the stirrup

steel is f_.
y

‘The concrete of the web is rigid, perfectly plastic with the modified

Coulomb failure criterion as yield condition and the associated flow rule
(normality condition). The tensile concrete strength is zero and the

*
compressive strength is fc =vfc, where fc is the cylinder strength and

" v is an effectiveness factor.



The assumptién of rigid-perfect plasticity means that elastic deformations
and work-hardening effects are neglected in the analysis. By assumption (a), we
further neglect any dowel action of the reinforcement and slhear in the compression
zone, The stirrup spacing is assumed to be sﬁfficiently small to permit a
continuous distribution of the stirrup forces. The shear %xeinforcement ratio is
defined as the area of steel per unit area of a section perpendicula; to the
stirrups. Hence:

A

=5
1.n r besiny

where AS is the cross-sectioned steel area per stirrup, y is the stirrup

inclination, and ¢ is the stirrup spacing along the beam axis.

In the case of plane stress, the modified Coulomb criteriom with a zero
tension cut-off reduces to the so-called square yield locus, sketched on
Figure 1.1, The principal stresses are denoted cj and 0p. Deformations are
only possible for stress states (o, 0,) which are plotted as points on the
yield locus. According to the associated flow rule, the ratio between the
principél strain rates €; and e, is such that the vector (ej, €,) is an outwards
directed normal to the yield locus at the corresponding point (o;, 0,). At a

corner, the vector (e;, e,) is required to be situated between the normals to

the adjacent faces of the locus (cf. Figure 1.1).

In reality, concrete is mnot a perfectly plastic material. The behaviour in
tension is almost brittle, therefore it is reasonable to neglect the tensile
strength. In compression, the ductility of concrete is fairly limited, which
means that the redistribution of stresses, assumed in plasticity, can only take
place at the expense of‘losing strength. This suggests the int?oduction of the
effectiveness factor v.as an empirical measure of concrete ductility. The value

of vmust be assessed by comparison with experimental evidence.
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A yield line in concrete is a kinematical discontinuity separating the
body into two rigid parts. One part is ﬁoving relative to the other with
the velocity v inclined at the angle o* to the yield line (Figure 1.25). The
discontinuity is a mathematical idealization of a narrow deforming zone
(Figure 1.2a). According to the flow rule, the strain rate state in the zone
can only be pfoduced By the stress state (o;, 0,) = (o’_fc*) cofresponding to
‘the lower right cormer of the yield locus (Figure 1.1). Hence the rate of
internal work dissipated per unit area of the yield line is-given by (cf. e.g.
reference [2] ):

1

*
= 1 E3
(1.2) Wc : EVfC (1-sina*)

valid for -m/2 ¢ a*<w/2

The principal directions of stresses and strain rates are indicated on
Figure 1.2b. The first principal axis bisects the angle between the relative

velocity vector and the yield line normal.

02
Fig. 1.1 : Square yield locus

for concrete in

"Cﬁ plane stress

Fig. 1.2 : Yield line in plain

’ concrete
a) Narrow deforming zone
b) Kinematical

discontinuity

(”Vfc,-Vfc)

a | g
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2. CONCENTRATED LOADING, VERTICAL STIRRUPS

2.1 Upper bound solutions

Figure 2.1 shows a shear span of a beam subjected to the shear force V. We
assume a failure mechanism consisting of a single yield. line inclined at the angle
B to the beam axis. The relative velocity is v at the angle g to the beam normal.

The rate of internal work dissipated in the mechanism is:

bh

(2.1) W, = xf_cos Sing

h . .
1 y B Sing vcosg + %vfc* [1 - cos(S—a)] + TyVS;na

where we have used equation (1.2). The ranges of the variables o and B are:

(2.2) o= o and o £ cotB £ A

where A= a/h is the shear span ratio. The upper limit on cotB is imposed by the
geometry of the beam. The lower limit and the bound on o ensure that the stirrups,

respectively the longitudinal bars, are yielding in tension.

rf

~<
o o]

Fig. 2.1 : Failure mechanism of beam with vertical stirrups

subjected to point loading



The rate of external work dome by the loading is

(2.3) ) WE = vyVcosq

and the work equation WE = WI yields.the upper bound solution:

_ 2ycosacosp + v[l = cos(a—Bﬁ + 2dsinasinf

: T/fc 2sinBcoso

Here t= V/bh is the ultimate shear stress,v = fc*/fc is the concrete effectiveness

factor, and we have defined the mechanical degrees of shear and main reinforcement,

respectively:
rfy B : Ty
(2.4) V== and o=
c ¢

Introducing.the parameters:

e U - w2
(2.5) p 3 and u S

‘we may write the upper bound solution in the more convenient form:

(2.6) o/ = v 1-pcosocosB-usingsing
: c  2cososing

The lowest upper bound is found by minimizing equation (2.6) with respect to the

variables o and B. Necessary conditions are:

il

(t/20 = o)

sino - psinf

L}
(=]

2.7

-cosB + pcosa . (at/28

]
(=]

o)

the solutions to-these equations being:



cotB

]
o
T
° =
#
<
<[
N
a=d
< | e
~f~
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£l
<[
~

(2.8)
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|

tana

[}
h~4
pu

1
=

i
<
L]

~
<

1
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~

Inserting equations (2.7) into equation (2.6), we find the lowest upper bound:

't/fc = Jvp(l-u?) tanp or by (2.8)1:

(2.8), Ve, =3 V@D 0D = 2{eG-0v0w)

c
The condition oo imposes a lower limit H2py on the parameter p, i.e. an upper
limit ¢4¢; on the longitudinal reinforcement degree. From equation (2.8)2, we
find p;=o and &,=v/2. For 42v/2, the lowest upper bound is obtained with a=o.

Equation (2.7)2 then yields cosp=p, and by equation (2.6), the solution reduces to:

P v-29
O TIST T e
(2.9) tana = o
t/E = %\Il-pz = v

This is the usual solution, corresponding to no yielding of the longitudinal
reinforcement, cf. [3] p. 72. Equations (2.9) are also found from equations (2.8) -

by inserting u=pj=o,

The requirement cotB»o implies pzp; or Yy, . Equation (2.8)lshows that
py=0 and w1=v/2, For yzv/2, the lowest upper bound is’ obtained with B=7/2.

Equation (2.7) then gives sine=p, and using equation (2.6), we find:
’

cotB = o
n V=28
(2.10) tano = 52 T2 g'.EIS__(\)—d>)

'r/fc = %ﬂl—u2= VQ(v—é)

The same result is obtained by inserting p=p;=o into equations (2.8). This
solution covers the case when the stirrups are not yielding., For ¢z0,=v/2, i.e.

no yielding of the longitudinal reinforcement either, the solution reduces to:



cotB = o
(2.11) tang, = o
/g, = v/2

Cf. refefence,[3] s Pe 72,

The limit cotBfs) leads to the condition pep , oOT w:wo. By equation (2.8)1,

we have:
: A N
o =.ykz+1—uz or
(2.12) .
. v )\Z+1_u2_)\
wo = 2 U )\2+1—uZ
For Y& 0? the lowest upper bound is obtained with cotB=A. Determining o from

equation (2.7) and inserting into equation (2.6), we find the solution:
= s

]
>

cotB

u

(2.13) . tano = m

% (A7 +1-p2-p1)

/£,

When the main reinforcement is not yielding (a=0),. we insert y=p;=o, and the

solution reduces to:

cotB = A
(2.14) tang = o
tE, = 3 (RZFI-pn)

These equations are valid for ufuj=o and’p!po, where

>
>
B
hat
3
>

Nl
>

+
Nt

Po = \]X2+1 or vy =

This result was given in reference [3] s, P. 72,
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2.2 Discussion

When the main reinforcement is sufficiently strong (82v/2), the analysis
predicts g=o, i.e. the tensile stringer is not yielding at failure of the beam.
Figure 2.2a shows the failure mechanism with a deforming zone consisting of a
distribution of yield lines at the inclimation g, rather than the single yield
line of Figure 2.1. The rate of internal work, and hence the upper bound,
remains the same. Such a failure mechanism is often observed in reality, as
demonstrated by Figure 2.2b, showing a beam tested at the Structural Research
Laboratory (BRAESTRUP & al [8]). -

The formulae derived in the preceding subsection are upper bound solutions,
which means that the estimates for the ultimate shear stresst are greater than
or equal to the theoretical load-carrying capacity. Corresponding lower bound
solutions are determined by the construction of statically admissible stress

distributions.

Fig. 2.2 : Shear failure of beam

a) Failure mechanism with distributed deformations

b). Test beam after failure
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Beams with strong main reinforcement were treated in reference [3], and it
was shown that equation (2.9)3 is indeed a complete solutiom. The identical

lower bound may be written:

v = bhrfycote or
(2.16)
t/f . = ycote
c
where 06=8/2. The angle 6 is the inclination of the concrete compression (strut

inclination) of a diagonal compression field, cf. Figure 2.2a. Shear is
transferred from the web to the tension stringer at the bottom of the beam and
to the compression stringer at the top. The stress field is modified near the

point load and the support.

The value of the strut inclination 6=/2 is found from equation (2.5) :
?

(2.17) coth = %;%

The solution has been compared with experiments reported in the literature
(cf. references [1], [d ). TFigure 2.3 shows 198 results of shear tests on
T-beams. As beam depth h is usedithe internal moment lever arm, represented
by the distance from the centroid of the main reinforcement to the centre of the
flange. The ultimate shear stress t/f is plotted as a function of.the-shear
reinforcement degree ¥, and compared wigh the theoretical prediction, equation
(2.9)3. - The agreement is acceptablé, the best value of the empirical
effectiveness factor being v= 0.74.

For beams where also the shear reinforcement is sufficiently strong (yzv/2),
equations (2.11) give B=m/2 (8=n/4), i.e. the stirrups are not yiélding at
failure of the beam. The corresponding_shear strength T/fc=v/2 is plotted
on Figure 2.3 as the horizontal line, tangential to the circle representing
équation (2.9)3. The validity of this solution has been substantiated by tests

on T-beams with very high shear reinforcement degrees (cf. reference [8]).

' For beams without web reinforcement (y=o0), the upper bound’ for the ﬁltimate
shear stress is given by (2.12)3 with p=1, The failure mechanism of Figure 2.2a
degenerates to a single yield line running from the load to the support, cf.
Figure 2.4a. -"Note that the shear span a is defined as the clearance between
the load and support platems. On Figure 2.4b is sketched a stress distribution,

consisting of a single concrete strut between load and support. The shaded



regions are in a state of biaxial hydrostatic compression, and it is assumed
that the anchorage and the support are able to transfer the concrete forces to
the tension stringer. As shown in reference [1], the lower bound corresponding
to this stress field is identical with the upper bound. Thus also in this

case we are dealing with the complete solution, cf. also NIELSEN & BRAESTRUP [9] .

RESULTS OF 188 SHEAR TESTS

SHERR STRENGTH

- 60 T/t Shear tests on simple T-beams
V‘ ‘V
- & &
X X
N x x x %
. 40. % q
‘ X « | x X « X] v=.74
X X T x| X
>< %)« xx N X
.30 S "
*
.20
h
.10
P
y
0.00
0.00 .10 .20 .30 . 40 .50 .60

SHEAR REINFORCEMENT

Fig., 2.3 : Results of shear tests on beams with vertical stirrups

compared with theoretical prediction S
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Fig. 2.4 : Shear in beams without stirrup reinforcement

“a) Failure mechanism

b)  Stress distribution

The analysis does not make use of the compression stringer, which is yielding
in tension. This means that any top steel has to be taken into account when the
longitudinal réinforcement degree ¢ is calculated. We would expect the solution
to be most representative of beams without compression flange, and indeed the
predictions are in excellent agreement with the observed strengths of rectangular
beams. without stirrups. Figure 2.5 shows: the results of some tests carried out
by ﬁOIKJAER [lO].'* As sheer depth h is used the total beam depth, and the shear
strength ‘r/fc is plotted as a function of the shear span ratio a/h, the
reinforcement degree being constant. The points fiﬁ the theoretical curve

excellently, when we assume an effectiveness factor of v=0.46, Since v is a

% cf. also reference (9)



measure of concrete ductility, it may be expected to decrease with increasing
strength level, and this has been confirmed by amalysis of a great number of
test results [1@]. Thus the rather low value of Figure 2.5 reflects the fact

that the concrete of this series was very strong (fC&:SSMPa).

In the presence of stirrups (p#l), it can be shown that equation (2.14)3

(for 9£v/2) and (2.14), (for e2v/2)is also a lower bound (cf. JENSEN & al L.

= 030 <
o x
= fe X =1_[l/(‘°2_* a
E fo 2 LVIVETeL0lv-9) -V
v 025
o v
o
& ——®=0.21 v=046
0.20
0.15 @
@ Shear failure
'0'.10 J O Flex. failure
0,05 \
- a
1 L 1 1. h
0 1 . 2 .3 4

SHEAR SPAN RATIO

Fig. 2.5‘ : Results of shear tests on beams without stirrups

compared with theoretical prediction
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When the longitudinal reinforcement is not strong enough‘to ensure a=o
(i.e. for ®<v/2), then the shear resistance is estimated by equationS(2.13)3}
(2.8) 3, or (2.10)3. These upper bounds are not backed by any lower
bound soluﬁions. Equation (2.13)3 applies for ¥ < Wo’ Qb being given by
equation (2.}2)2, i.e. for beams with rather weak shear reinforcement. The
requirement of most building codes, prescribing a certain minimum stirrup
reinforcement, make the majority of practical beams fall outside this
category. An exception is formed by deep beams. Equations (2.8)3 and (2.10)3 predict
a reduction of the shear strength by the factor % 1613367} For reinforcement
degrees just below v/2, this factor remains close to unity (for ¢=v/3, we get 0.94).
At any rate, most beams failing in shear will have high longitudinal reinforcement
degrees, in order not to fail in flexure. The 198 beams, plotted on Figure 2.3
to test equation (2.9)3, all have 220.3. Thus for reasonably designed beams,
equations (2.8)3 and (2.10)3 are not very valuable, Their importance arises
in connection with axial force, cf. reference [1]. The equations may become’
topical, however, in the case of bond or anchorage failure, because this reduces
the tensile stringer strength available in the shear.mechanism without affecting
the flexural capacity. An anchorage defect may be almost impossible to distinguish
from a proper shear failure, and it cannot be excluded that a number of the
failures reported in the literature as due to shear are actually governed by
imperfect anchorage.

The various solutions are summarized in Section 6, where also the

corresponding domains are visualized on Figure 6.1.
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3. CONCENTRATED LOADING, INCLINED STIRRUPS

3.1 Upper bound solutions

We now consider shear failure of a beam with stirrups inclined at the angle Y

to the beam axis (cf. Figure 3.1). The rate of internal work is modified to:

. bh
vsin(o+y) + %vfc* fl—cos(B—aﬂ Sing

(3.1) W_ = rf sin(B+ + T _vsino
) Wy y(\r) yvst

31n8

Owing to the stirrup inclination, yield line inclinations B>1/2 may be permitted
without causing compression of the stirrups. Thus the ranges of the variables g

and B are:

(3.2) azo and -coty £ cotBeA

The rate of external work is still givem by equation (2. 3), and the work equation

yields the upper bound solution:

o/f = 2bsin(Bry)sinCuty) +vli-cos(g-a)] + 26singsing
c 2sinfcoso,

where the reinforcement degrees ¢y and ¢ are defined by equations (2.4).

Fig., 3.1 : Failure mechanism of beam with inclined stirrups

subjected to point loading



We introduce the parameters:

=1 2 inzY n = l—%{l N %‘P—coszY

o
1]
—
|
bl
I

29 29 .
) v cosysiny

In the case of vertical stirrups (Y=7/2), we get K=o and the definitions of P

and M=l reduce to equations (2.5). The upper bound solution may now be expressed
in the form: ‘

—.. L-pcosucosp-usinosinf+ksinacosftkcosasing
(3.4) 1"/fc v -2 sinfcosg

Minimization with respect to the variables g and B yields the equations:

‘ sing=-using+kcosg = o (3t/da = o)
- (3.5)
pcosa—cosB-ksing

1
o

(3t/28 = o)

The solutions to these equations are:

z 2
‘a - 1 1~y =«
cotf = Iz [ @\ Tpz=Z Ku]

(3.6)

1-p4— 2

Inserting equations (3.5) into equation (3.4), we find the lowest upper bound:

T/fc = \Z)_p [ (1-.;’32—K2)cot6+l<(0+11)]

Using equation (3.6)1, this becomes:

- v e 2.2 (] e

(3.6)3 T/fc T(I=KD) [ll pe-K fl n -K + k(1-k +1JD)]

For vertical stirrups (K=o0), equations (3.6) reduce to equations (2.8).

The lower limit M=H1l on the parameter ¥, imposed by the condition aZo, is found
from equation (3.6)2:

Ko

(3.7, [ S e
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This is equivalent to an upper limit $€®; on the longitudinal reinforcement degree.
Using equations (3.3), we get:

v—2wsinzy
(3_7)2 & = 2-

Vi VYeosY(cosY+ 2ﬁ5(6:$§252?)

For ¢2@), the lowest upper bound is obtained with a=o. Equation (3.5)2 then

vields cosB=p , and using equation (3.4), we find:

v-2¢sin?y

tB = £ =
co Vi-o 2{psin“y (Vv=¥sin’y

3.8 tano = o

T/fC % (V1—92+K) = dwsinzY(V-wsinzY) + Ycosysiny

The same result is obtained from equation (3.6) by inserting W=u1, given by
equation (3.7). This is the solution corresponding to no yielding of the main
reinforcement (cf. reference [3] p. 84). In the case of vertical stirrups

(y=n/2), the solution reduces to equatioms (2.9).
Equation (3.6)1 determines the lower limit p=p, on the parameter p, implied by

the condition cotB-coty:

coty—k (U+kcoty)
~ﬂ 1+cotZy-(u+xcoty) 2

(3.9)l py =

Inserting equations (3.3), we find the equivalent upper limit y=¢1 on the shear
reinforcement degree:

1 2., 2
_ Vv coty+il+cot?y
(3.9)2 Yy = 7 (l+coty T )

Here we have introduced ﬁ=u+Kcoty, defined by equation (3,3)4. For vertical

stirrups (y=n/2),this reduced to p;=o and ¥1=v/2, as found in Section 2.1.

When the main reinforcement is not yielding, we solve equations (3.7)1 and
(3.9)1, and find:

(3.10) W} = =xcoty or @ = v/2
- _ v l+cosy
(3.11) p1 = -—cosy or Yy 7 sinZy

These limits were given in reference [3], p. 84.
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For y2y;, the lowest upper bound is obtained with cotBf=-coty. Determining
from equation (3.5)1 and inserting the values of o and B into equation (3.4), .

we find the solution:

cotg = —coty
b}
(3.12) ' tany = m{z;u:z

T/fc

% (q1+cot2y—ﬁ2+coty)

The same result is obtained by putting p=p; in equations (3.6), and using
equations (3.3). For vertical stirrups (y=w/2), the solition reduces to

equations (2.10).

From equation (3.12)2, we see that no yielding of the main reinforcement

corresponds to M=o, as found above. Inserting into equations (3.12), we find:

cotf = —coty

(3.13) ., tano

B
=]

= Y
T/fC = g cot

Nof=

This solution was derived in reference [3], p. 84.

The limit cotB<A leads to the condition GRS where Py is determined by

equation (3.6)1 with cotB=A:

Atk (U=AK)
(3.14)1 p =

0 ﬂ1+xz—(ﬁ-xnjl

The corresponding lower limit ¢o on the shear reinforcement degree is found by
inserting equations (3.3). An explicit expression is most easily obtained by

solving with respect to M:

(3.;4)2 - —AK(l-Kz—pz) + pﬂ(1+A2)(K2+p2)-A2

2

k2 & p? -

' For vertical stirrups (k=0), the limit reduces to equations (2.12).



When ¢£Wo, the lowest upper bound is obtained with cotB=A. The angleaq is
determined by equation (3.5)1, and inserting into equation (3.4), we find the

solution:

L}
>

cotB

U—AK

(3.15) tand = XTI 2

r/fc

% (Y1+A“=(U-AK)“ = pA+K)

For vertical stirrups (K=0), equations (3.15) reduce to equations (2.13).

When the main reinforcement is not yielding, we solve equations (3.7)1 and

(3.14)l to find:

(3.16) Ky = KA

(3.17) P

That p=p3=KkX corresponds to a=o is also seen from equation (3.15)2. The solution

then reduces to:

cotB = A
(3.18)° tana = o
i, = %-(V1+AZ = pAtk)

This result was found in reference {3], p. 84. The equatioms are valid for
peuy and pZp , the limits being given by equations (3.16) and (3.17). For

vertical stirrups (k=o0), equations (3.18) reduce to equations (2.14).



3.2 Discussion

Beams for which the longitudinal reinforcement is sufficiently strong to
prevent yielding of the tensile stringer at failure were treated in reference [3].
It was found that equation (3.9) represents the complete solution and a
corresponding stress distribution was determined. It consists of a diagonal
compression field with a strut inclination 6=8/2, i.e. half the yield line

inclination. -

The lower bound solution may be written:

<
]

bhrfysinzY(cot9+ cotY) or

(3.16)
/£

]

Psin?y(cotb+coty) = %- [(1—p)cot9+K]

The corresponding strut inclination 6=8/2 is found from equation (3.8)1 .

. T

(3.17)  cotd = 7%

This expression is identical with equation (2.17), but note that the definition

of p is different.

The shear reinforcement degree Y is defined in such a way (cf. equations (1.1)
and (2.4)1) that irrespective of stirrup inclination it is proportional to the
amount. of active web reinforcement, i.e. stirrup volume minus anchorage devices
(hooks, horizontal legs, etc.). The yield line inclinmation is given by equation
(3.9)1, and we note that for the same value of ¥, the yield lines are the flatter,
the more inclined the stirrups are. For ¥=v/2sin’y, the yield lines are vertical,
and for greater shear reinforcement degrees, the yield line inclination exceeds
/2 until it reaches the limit cotB=-cotY for.¢=V(l+cotY)/25in2Y. In this case
the yield ‘lines are parallel to the stirrups, and the beam is overreinforced in

shear.

The effect of stirrup inclination upon the shear strength is also dependent
uﬁon the amount of web reinforcement. For small values of ¥, there is a slight

reduction in strength, whereas for great values we get a substantial increase.

The range of applicability of equation (3.9)3 is larger than that of equation (2.9)3

which means that the shear resistance keeps increasing with the web reinforcement-
degree longer than when the stirrups are vertical. The parameter domains of the
various solutions are sketched on Figure 6.2 of Section 6, which also contains a

sumpary of the results,



The optimal stirrup inclination VM for a given shear reinforcement degree Y

is found ([3] p. 85) to be cotyy, =f$: and the corresponding shear strength is
T/fC=W@T When the stirrups are optimally inclined, they are perpendicular to
the concrete compression of the lower bound solution. Equation (3.9)3 is plotted

on Figure 3.2 for y=w/2, y=n/4, and Y=Yy ¢ In all cases the effectiveness factor

is inserted as v=1.0.
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Fig. 3.2 : Effect of stirrup inclination on shear strength

of beams subjected to point loading



v'ﬁﬁpéfimental evidence on beams with inclined stirrups is not so plentiful as
for vertlcal stlrrups. A few tests have been carried out at the Structdral
Research Laboratory (cf. Reference [12}) They show that equation (3. 9) may be
vapplled, and that the effectlveness factor Vv can be taken to be the same as for
vertlcal stlrrups. Tests on thln—webbed T~beams with very high shear reinforcement
dgrees (e.g. ROBINSON & DEMORIEUX [13]) have demonstrated that a suitable inclination
of the stirrups leads to a great increase in shear resistance, as predicted by the

theoretical solution.

As yet, no lower bound solution corresponding to equation (3.18)3, valid for
low shear reinforcement degrees, has been found. The critical value ¢0 is slightly
greater than for .vertical stirrups, but still the requirements of minimum shear
reinforcement will éxclude most cases with ¢<¢0. This is even more evident when
the main reinforcement is yielding, in which case wo is determined implicitly by

equations (3.14) (cf. Figure 6.2).

When the main reinforcement is too weak to ensure a vertical deformation rate
at failure, the shear strengths, as given by equations (3.6)3 and (3.12)3, are
reduced somewhat; - ‘As for beams with vertical stirrups, this reduction is not
likely to be of much practical interest, since a substantial stringer strength
is necessary to prevent flexural failure. This is especially true for the large

web reinforcement degrees that imply high shear strength.



4, DISTRIBUTED LOADING, VERTICAL STIRRUPS
4.1 Upper bound solutions

Consider a beam subjected to the uniformly distributed load pb over the shear
span. Oun Figure 4.1 is sketched a shear failure mechanism consisting of a yield

line starting at the support.

The rate WI of internal work is given by equation (2.1), where the variables

o and B are subject to the limits (2.2). The rate of external work is:

(4.1) WE = vpb(a~hcotB)cosa

The work equation WE=W yields the upper bound solution:

I

- 1-pcosdcosB-Usinasing
(4.2) o/E 2(Asinp-cosg) cosa

Here t=pba/bh=Ap is the ultimate shear stress at the support section, and the.
parameters p and p are given by equations (2.5), the reinforcement degrees ¥ and ¢

being defined by equations (2.4).

R

Fig. 4.1 : Failure mechanism of beam with vertical stirrups

subjected to distributed loading



- 26 -

The minimum upper bound is obtained for values of o and B satisfying the

equations:

sind-isinB = o (21 /3a=0)
4.3)

Apcosgtysing~rcosg-sing = o (@¢/?g=0)
The solutions to equations (4.3) are:

1-y2 1-p2
A ol -]

A ,1-p2
i + 142l
A2 [p M1z ]

]

cotg
(4.4)

i

tang

Inserting equations (4.3) into equation (4.2), we find the lowest upper bound:

o/f = Y =)+ (1-p2)cotp
c 2 Ap —pcotg , or by (4.4)1:
- vA (1-u2) 2 1-p2
(4.4)3 T/fc E?X?iiggfi p +{/18x T:%Z
The condition a2o imposes the limit HZpy=o or 9=d1=v/2,  For %3v/2, the
lowest upper bound is obtained with a=o. Determining B from equation (4.3)2

and .inserting into equation (4.2), we find:

cotB = K-(T}Ez)_ (p"ld—xz—(l-pz) -1)

(4.5) tanq

[o]
Vi = ey G+ IO

The same result is obtained by putting p=yp;=o in equations (4.4). This is the
solution corresponding to no yielding of the longitudinal reinforcement, derived

in reference [3], p. 80.

The condition cotBzo requires pzpy or Y=¢3. From equation (4.4)1, we find:
Vi-u2 -2
(4.6) o, = _;\L or v = §%_A_p_

For ¢3¢1, the lowest upper bound is obtained withv3=n/2. Then, by equations -
(4.3)1 and (4.2), the solution is:



cotB = o
(4.7) tana = lfu
Y
This is identical with equations (2.10). - The same result is obtained by inserting

p=p; into equations (4.4).

When also the main reinforcement is very strong, i.e. for 2¢,=v/2, the

solution reduces to:

cotB = o
(4.8) tano = o
T/f = v/2

c

This is identical with equations (2.11). The solution is valid for p<p,, found

by putting u=p3=o in equations (4.6):

-1

.

>

1
(4.9) Py =% or LE

ol
>

cf; reference [3], p. 80, Equations (4.8) are also found by inserting p=p;=1/X

into equatioms (4.5).

The condition cotBel is always satisfied, even for very small shear
reinforcement degrees. Indeed, for p>l, equation (4.4)1 yields:
2_ (1~ 2
cotp - l*iél_g—l < A
For beams without stirrups, the shear strength is given by equation (4.4)3
with p=1, viz:
_ ., AQ-u?)
(4.10) T/fc AY m
When the main reinforcement is sufficiently strong (¢2v/2), we imsert p=p;=o,
and the shear strength reduces to T/fc=vX/(x2+l) (cf. reference [3], p. 80).
Equation (4.10) is valid as long as equation (4.6) yields a positive value of
Y1, i.e. for A>v1—uz. For smaller shear span ratios, the upper bound solution

for the shear strength is T/fc=vl2, irrespective of the reinforcement.:
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4,2 Discussion

In reference [3], a stress distribution was suggested for beams with strong
main reinforcement (¢2v/2). It is not as simple as for point loading. Assuming
a constant strut inclination §, the temsile stress in the stirrups and the
compressive stress in the web concrete varies along the shear span, being maximum
at the support. Introducing an additional assumption concerning the optimal
stress state, the corresponding lower bound was shown to be identical with
equation (4.5)3 (respectively (4.8)3), which accordingly represents the complete

solution.

The lower bound solution may be written:

V - bphcot® = bhrfycote . or

(4.11) A%— - %— cotd = Pcotd

¢ c
Equation- (4.11) ekpresses vertical equilibrium along a comcrete strut starting at
the support, cf. Figure 4.2, The optimal inclination of the concrete compression

is found to be 6=8/2 (cf. also Figure 1.2b). Equation (4.5)1 gives:

(4.12) cots = _a_)__.,\’lﬂ Z(1-p?)-1

A0

Comparing with equation (2.17), we note that the strut inclination (and hence
also the yield line inclination) is steeper by distributed than by point loading

for the same amount of shear reinforcement.

V=bpa

Fig. 4.2 : .End zome of beam with vertical stirrups, bounded

by section parallel to concrete compression



The fact that the load is distributed produces a considerable increase in
shear’ capacity corresponding to a given shear reinforcement degree .y, In
reference [3] it was shown that the ultimate shear stress t=\p for distributed
loading is obtained from the solution for point loading by replacing the parameter y
by the quantity ¢+p/f ‘This result is also valid when the main reinforcement

is not yielding, i.e. for d<v/2, Indeed, equation (2.8)3 yields:

= = Y2112 fi-(o- 22 2
Vfc Ap/fc 3 yl i Vi © vE )

with the solutionm:

o vp(l—u2)+vV(l‘u2)+k2(1‘u2)(1‘92)
(4.13) p/fC O+
This equation is equivalent with equation (4. 4)3, q.e.d. Thus in case of

distributed loading, the shear reinforcement degree Y may be reduced by the amount
P/fc’ without affecting the shear strength. If the relative shear strength T/f
is plotted as a function of the shear reinforcement degree y, then the solutlon
for distributed loading is obtained by shifting the curve for concentrated loading
the dlstance p/f to the left.

When there is no yielding of the main reinforcement (the case a=o for o20/2),
this result is illustrated on Figure 4.3. The solution for distributed loading,
equation (4.5)3, is plotted for a shear span ratio of A=3 and compared with the
curve corresponding to point loading, equation (2. 9) The effectiveness factor v

is inserted as unity.

The reduction in necessary shear reinforcement is also apparent by comparison
of equations (4.11) and (2.16). Indeed, inserting equatlon (4 12) into equation (4.11)
we arrive at equation (4. 13) with p=o, i.e. equation (4. S) Thus, when the load is
distributed, the stirrup reinforcement rfy may be des1gned for a shear load V—bphéot@,

i.e. for the shear force in the distance hcot® from the support (cf. references’ [1],

[14]).

Figure 4.3 also represents equation (2. 13), valid for point loading and W‘w .
No such modification for small reinforcement degrees is necessary for dlstrlbuted
loading. The solutions are summarized in Section 6, the domains being sketched

on Figure 6.3.
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Because of the high shear strength (cf. Figure 4.3), most beams with distributed
loading fail in flexure, and the number of shear tests reported is quite limited.
In reference [3] is cited a single result, which is in reasonable agreement with

the theory.

For beams without stirrups, the shear strength is estimated by equation (4.10).
For strong main reinfoxcement (92v/2), an identical lower bound is easily found,
provided that .shear can be transferred to a compression stringer (cf. Figure 4.2),
For rectangular beams, the complete solution may be shown to be smaller (see

JENSEN & al. [11]).

For ¢<v/2, the main reinforcement is not sufficiently strong to ensure a=o,
and in that case no lower bound solutions have been found corresponding to the
upper bounds. Equation (4.4)3 predicts a reduction of the shear strength, this
reduction being the same as for point loading, when the shear reinforcement degree
is high (y2v(A-1)721), since then equation (4.4)3 reduces to equation (2.10)3.

For weaker shear reinforcement, the reduction is somewhat higher, although still

modest. - For Y=o and A=3, it amounts to a factor of 0.90 for %=v/3.

SHEAR STRENGTH

ETA
Distributed loading,a/h=
0.5 s,
. —a”””
_P/e _Concentrated -loading_
04— -4 - -l . 4 —
0.3
0.2 S
I
0.1 L s
1
|
I .
{
1%, b
0 0.1 0,2 0.3 0.4 0,5 0,6 0.7 0.8 0.9

VERTIC’AL STIRRUP RE INFORCéMENT

Fig. 4.3 : Comparison of shear strength of beams subjected to

distributed and concentrated loading
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5. DISTRIBUTED LOADING, INCLINED STIRRUPS

5.1 .Upper bound solutions

We now consider a beam subjected to the distributed load bp and with
stirrups inclined at the angle y. The shear failure mechanism is sketched
on Figure 5.1. The rate of internal work Wi is given by equatiom (3.1),
the variable angles o and B being subjected to the limits (3.2) The rate
of external work Wg is determined by equation (4.1). Since we may have
cotg<o, it is assumed that the beam is loaded also_to the left of the support.

The work equation WE=WI yields the upper bound solution:

Zwsin(8+y)sin(a+y)+v[1—cos(5-a)]+2®sinasin6
2(A-cotg)cosgsing

T/fc =

Here the reinforcement degrees y and ¢ are defined by equations (2.4).
Introducing the parameters p, u, u, and k, defined by equations (3.3), we

write the upper bound as:

l-pcosacosB-usingsinf+ksingcosf+kcososing
f = vA : =
.1 t/ c VY 2(Asinp- cosB)cosa

Minimization with respect to the variables o and B, yields the equations:

o)
o)

sina~psing+kcosf = o ) (d3t/3a
(5.2)

Apcosatusing=k (Asing+cosa)=-Acosp-sing = o (t/2RB

t—— T ——]

Fig. 5.1 : Failure mechanism of beam with inclined stirrups

subjected to distributed loading



These equations can be solved with respect to o and B. If we introduce the

additional parameter

202 )
3= X(lxﬁl-izljf§<”+p) .

the solutions may be written:

(o=) VL#AZn= A+ (1A 2n) kp)
(I«*)rZn-?

cot =

6.4 Q) 5~ (kA 0) Qo)

tano . = TR 2= (RA-1) 2

For vertical stirrups (k=o), these equations reduce to equations (4.4)1 and (4.4)2.

Inserting equations (5.2) into equation (5.1), we find the lowest upper bound:

o/f = Q& 1224+ 2 (o) + [ (1=k2-5 2) +ic ()] cotp
c 2 (Ap=k) (A—cotp)

Using equation (5.4)1 and performing some tedious manipulations, we may write
this equation:

_ VA Aktp=(u=ak) (o) +(1-k2-u2) {1+ 2y
G.83 g = o TAN2= (a0 2

For vertical stirrups (k=o); the upper bound solution reduces to equation (4.4)3.
3
The requirement that oo imposes the condition pzui. The value of 3 is
found from equation (5.4)2. The solution is:

_ o (p=k) Via2=(p-k) 2=
(5.5) K1 T K A 2=(p-x) 2

corresponding to A2n=12—(kp-m)2. The corresponding value of ¢=¢,(y) is found by

inserting equations (3.3).

For pu<ui, the lowest upper bound is.obtained with a=o. Determining B from

equation (5.2)2, and inserting into equation (5.1), we find the solution:
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(p—k) WL+A2-(Qp=) %=1

coth = TRT (0
(5.6) . vtanu = o
Cua kAt LA2-(apk) 2
E, = o THx2

Note that in this case u)=kcotB, as for point loading, cf. equations (3.7)l and

(3.8)1. For vertical stirrups (k=o), equations (5.6) reduce to equations (4.5}.
The condition cotBZ-coty requires pZpji. From equation (5.4)1, we find after
some manipulation:

1-Acoty=- (u—Ak) (u+xcoty)
{1+cotZy-(u+kcoty)?

(5.7)1 Api=xk =

Inserting p=l-«tany andp =p—coty, and solving with respect to K, we find:

5.7 v =2 (A+acotY)(1+ﬂ)+lcot2y—(1+ﬁ—kcoty)v1+cotzy—ﬁz
T2 ! (1+1) (A+coty)

N

For vertical stirrups (y=7/2), equation (5.7)2redqces to equation (4.6)2.

1

When the main reinforcement is not yielding, equatioms (5.5) and (5.7)1 are
solved to give: '

(5.8) My = -kecoty or o = v/2 and

TAp1-k = siny- _ v A(l+cosy)-sin
(5.9) Ap1—k siny-Acosy or V1= 3 Sty Oreoty)

For p<p1, the lowest upper bound is obtained with cotB=-cotY. We determine ©

from equation (5.2)1 and insert into equation (5.1) to get the solution:

cotf = -coty
.1 utkcoty ;
-10) tana = { L+cot?y-(pt+Kcotys | l+cot’y- ¥
g = O VlrcotZy-(mrkeot) MeotY _ VA Vltcot”Y-FircotY
c 2 Atcoty 2 Xfcoty

Note that equation (5.10)2 is identical with equation (3.12)2.



Equations (5.10) are also obtained by inserting p=p1 into equations (5.4),
and using equations (3.3). For vertical stirrups (Y=T/2), the solution reduces
to equations (2.10). TFrom equation (5.10)2 it appears that no yielding of the
main reinforcement (0=0) corresponds to H=-Kcoty, as found above. Inserting

into equatioms (5.10), we get:

cotg = -coty
(5.11) tane = o
I S X
T/fc "2 Atcoty cot 2

Equations (5.11) are valid for u¢u; and psp;, the limits being given by
equations (5.8) and (5.9).

The condition cotBe\ is always satisfied, even for very small reinforcement

degrees., Letting y~o and using equations (3.3), equation (5.4)1 yields:

2Tyl
cotf — A——é—%——u—)d\ ,

as for vertical stirrups, cf. Section 4.1.



5.2 Discussion

Beams with distributed loading and inclined stirrups have not been treated -
before, consequently no lower bound solutions are known. It is straightforward,
however, to construct a stress distribution similar to the one used in reference (31
in the case of vertical stirrups (cf. Section 4.2). Therefore there is mo reason
to doubt that when the longitudinal reinforcement is sufficiently strong to prevent
vielding at failure (919;), the equations (5.6)3 and (5.11)3 represent the complete

solution, corresponding to yielding of the stirrups or not, respectively.

Vertical equilibrium along a concrete strut starting at the support
(cf. Figure 5.2) yields:

V-bphcotd = bhrfysinzy(cote+coty) or

(5.12) AR B cotp = ysin? (coto+ coty)
c c

The optimum strut inclination ©=8/2 is found from equation (5.6)1:

_ 11+A2—(AQ-K)2—1

(5.13) cotd = W

Comparing with equation (3.17) ‘we note that the inclination of the strut (and
hence also of the yield line) is steeper by distributed loading than by point
loading for the same amount of shear reinforcement and stirrup inclimation. On
the other hand, comparing with equation (4.12), we see that to take account of
the fact the stirrups are inclined, we replace the term Ap by the quantity Ap-k,
where p is now given by equation (3.3)1. This is equivalent with replacing Ay
by Awsin2Y+¢cosYsinY, which 'is smaller provided cott>1/X. Since the strut
inclination increases with increasing ¥, this means that the struts (and the

yield lines) are the flatter the more inclined the stirrups are.

Parallel to the case of vertical stirrups (cf. Section 4.2) it turns out that
the ultimate shear stress T=Ap for distributed loading is obtained from the
solution for point loading by replacing the parametery by the quantity ¢+p/fcsin?Y.

Indeed, inserting into equation (3.6)3:

T _ _ v 2 p: “ c 2
T = o [V(l-(p—U%C)Z—KZ)(l—uz—K‘)+K(1fK2+u(p——vac ))]



This equation may be solved to give equation (5.4)3. Similarly, equation (5.6)3
is obtained from equation (3.8)3. Thus the reduction in stirrup steel when the
loading is distributed rather than concentrated is even greater for inclined stirrups
than for vertical. When the main reinforcement is not yielding (92%,), this fact
is also evident from equation (5.12). Inserting equation (5.13), we again arrive
at equation (5.6)3. Thus, as for vertical stirrups, the shear reinforcement may
be designed fo; a reduced load V-bphcot®, but when the stirrups are inclined, the

strut inclination 6 may be chosen even flatter (cf. reference [14D.

The various upper bound solutions are summarized in Section 6, and the domains
are sketched on Figure 6.4. For strong main reinforcement, the boundary between
yielding and non—yiélding of stirrups is ¢=y3, given by equation (5.9). As for
ﬁoint loading, the value of y; increases with. stirrup inclination. Comparing
equations (5.1l)3 and (4.8)3, we note that for strong shear reinforcement, inclined
stirrups are more effective fhan vertical, as in the case of point loading, cf.
.equations (3.13)3 and (2.11)3. However, the enhancement factor is smaller for

distributed loading, and it depends upon the shear span ratio A.

When thie main reinforcement is not strong enough to ensure a vertical
displacement rate at failure, then the upper bound solution predicts a certain
Teduction in ultimate load. A corresponding lower bound is not easily constructed,
- but as in the other cases comsidered previously, the shear strenmgth is not likely

to be important in this range of parameter values.

]

Fig. 5.2 : End zone of beam with inclined stirrups, bounded by

section parallel to concrete compression



6. SUMMARY AND CONCLUSIONS

In the preceding sections, we have considered shear in simply supported beams
with vertical or inclined stirrups, subjected to concentrated or distributed loading.
Upper bound solutions have been derived for. the shear strength corresponding to
a failure mechanism with a yield line inclined at the angle B to the beam axis and

a relative displacement rate inclined at the angle o to the beam normal.

The solutions are summarized below, on non~dimensional form. The shear span

ratio is termed A=a/h, and the degrees of shear and main reinforcement are defined
as follows:

rf
(2.4) vo= Y and o =2
c

We further introduce the auxiliary variables p, u, ﬂ; and «, defined as:

(3.3) p = 1—Z£sin2y , b= 1-22 EECOSZY
v v v
o= 1—%2 . K = %wcosYsiny

’

Here vy is the stirrup inclination.

Concentrated loading, vertical stirrups

Moderate main reinforcement : tv/2
Weak shear reinforcement : wﬁwo(Q), where
(2.12), by = 3 Mot
o 2 FXZ;T:;va
cotf = A
(2.13) tang = —H
VA2+1-p7
t/E, = -‘23 (A 4+1-u2-p2)
Moderate main reinforcement : /2

Moderate shear reinforcement : woﬁwiv/Z
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=
cotB P =%
(2.8) tano. = |y e
l-uz
' = N 2y (10’
UE, = Z‘J(lu)(lp) )
Moderate main reinforcement : 23v/2
Strong shear reinforcement : Y2v/2
cotB. = o
2.10 =
. o =
( ) tan _ W
= Y \J _2
T/fc = 5 1-u
Strong main reinforcement : ?2v/2
' Vi+) 2~
Weak shear reinforcement H wez A A
. 2 1‘+)\
ecotg = )
(2.14) tand = o
) -
'r/fc =7 (i}\2+ oA)
Strong main reinforcement . d2y/2
) 1422~
Moderate shear reinforcement : X*L—Afw /2
2 JIERET
cotg. = "E—;
1-p
(2.9 tane = o
= Y352
T/fc = 5 1i-p
Strong main reinforcement : ®2v/2
Strong shear reinforcement : Y2v/2
cotB: = o
(2.11) tano, = o
T/f = v/2

c



Figure 6.1 shows the domains of the different solutions in the (¢,%) parameter

plane.

The boundaries are plotted for a shear span ratio of A=2.

corresponding failure mechanisi is sketched for each domain.

!

=

The

gy B b2 2]
N+ 2
a /
{2.9) {2.1)
0-

[2.14)

2
-

(2.13)

¢’=¢b(¢)

(2.8)

F

ig. 6.1 :

Domains of upper bound solutions for beams with vertical

stirrups, subjected to point loading

=y, (@)

given by equation (2.12)
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Concentrated loading, inclined stirrups

Moderate main reinforcement : @S% -y (A+coty) cosysiny
Weak Shear reinforcement : \Ilisbo(@), where
= =A(1-k2-p2) 40 {(1+22) (xZ4p?) -2 %
(3.14)2 o= Zip
determines 1ll=lll;).
cotf = A
H=AK

(3.15) tano = “_1:}\—2—_-_’(11___—)\—52

2
Ut = 3 (\ll+)\2—(u—>\|<)-p)\+l<)
Moderate main reinforcement H & 31 ()
Moderate shear reinforcement : \bo(@)ﬁw&wl (®), where

\)—leJsinZY )

v
(_3.7)2 %1 = 5 Yeosy(cosy+ Z—WST?FYT
(3.9) V1 = 4 (1+coty cotY+ il+cot2‘!—ﬁz)
<79 =3 cotY ————g——————, T+
1 1-p2-c2
. cotg = T=Z [p ——-—z——-zl_g =z~ Ku]
. - 1 1_92_,(2 _ ’
(3.6) tano = [u VT--FZ—_KZ Kp
= v 0202y (1mu 22 2
/£, =) H(l p2=k2) (1=u2=k?) +k (1=« +up)]
Moderate main reinforcement : dev/2
Strong shear reinforcement : Y2y (8)
cotf = =coty

R S

3.12 -
GAD e - e
/£, 32) ( \/1+cot2y—ﬁ2+cotY)
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Strong main reinforcement @ @IZ%—- P (A+coty)cosysiny
. v d}\z-yl—x
Weak shear reinforcement : U’ﬁ'f sinly (241
cosB = A
(3.18) tand = o
/E, = %(hﬂi-pxm)
¢=!L&l_7\ -y Lrcosd
2 sin? ¥ /334 2 gin2q

~
o

(3.18)

®=2 - (A+cotd)cosVsind

(3.8)

Y= 60

{3.12)

Fig, 6.2

3 Yasin2¥

Domains of upper bound solutions for beams with inclined

stirrups, subjected to point loading
¥=1,(2) given by equation (3.14)

Y=y (8) given by equation (3.9)

9=, (y) given by equation (3.7)



Strong main reinforcement : ®20;1(y)
V12
v l+cos
i —_ 5 <
Moderate shear reinforcement 5 sinzyqxz:— Sy =3 EIEZ?l
p
t =
cotB ﬁ;EZ
(3.8) tano = o
=Xd_2
T/fc 5 (Y1-p=+x)
Strong main reinforcement : d2v/2
Strong shear reinforcement : 25 1+C°SY
) sin“y
cotfp = ~—coty
(3.13) tano = o
= Y Y
T/fc = 3 coty
The domains of the solutions are shown on Figure 6.2. The boundaries are

. . . . . : o
plotted in the case of a shear span ratio of A=2 and a stirrup inclination of y=60",

For each domain, the corresponding failure mechanism is sketched.

Distributed loading, vertical stirrups

Moderate main reinforcement . : Bsy/2
Weak and moderate shear reinforcement : vepy (@), where
v A=1152
%.6), v o= %lTkL‘_
2 2
- 'U 2 1-p
ot = X(T-p?) [ e 1]
' 2 1-p2
(4.4) tano = -——1r-ﬁz LAl SR s
e, = BAA N Rl ]
c 2(1+A%-p?) A=
Moderate main reinforcement: dev/2

Strong shear reinforcement : Y2y (2)



cotB = o
(4.7 tano = T
= Y 22
T/fc = 3 Vl 1
Strong main reinforcement : ®2v/2
Weak and moderate shear reinforcement : /2
. >
cotf Tas9) (p\,1+>\ (1-2)-1)
(4.5) tand = o
E, = mAo e+InZaeD) )
c 2(1+r=)
A-l =
$-:x% A-4
| ——
- —
(4.5) (4.8)
\
¢-3

14.4)

(4.7)

Fig. 6.3

y

e

Domains of upper bound solutions for beams with vertical
stirrups, subjected to distributed loading

¥=y1(8) given by equation (4.6)
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Strong main reinforcement : d2v/2
Strong shear reipforcement : P20/2
cotB = o
(4.8) tamg = o
T /fc = v/2

Figure 6.3 shows the domains of the solutions, the boundaries being plotted
for a shear span ratio of A=4, The corresponding failure mechanisms are sketched

for each domain.

Distributed loading, inclined s tirrups

Moderate main reinforcement : 329y (p)
Weak and moderate shear reinforcement : vy (), where
()\p"K) 41-*-).7—()\9‘10 23
G- w A=Chomr0) 2

determines ®31, and

G.7) v = 2 (A+ucoty) (1+u)+Acot‘y-(1+u—Acoty) vl+t’:ot2y-u2
"2 1 P (1+1) (A+coty)

cotp = (}\p-K)hH\En-A—Ku(lﬂ.zn)

A n-kZ(1+2Zn)
(5.4) tana = Qb0 70 (a0 (o)
' T2 (imae) 2
T/ = YA Ak+p=(u=AK) (up=k?)+ (1-yu?-k2) {12y
¢ 2 1+22- (H‘)\K)i
where
= }\(I_DZ_KZ)+2|<(L|+Q)
-2 A Y¢ B S
Moderate main reinforcement : dtv/2

Strong shear reinforcement : Y2Y1()



- 45 -

cotf = -~-coty
(5.10) £ = *“"‘—‘;
. anc {T+cotZyiZ
e = YA Vircor®y=n®+coty
c 2 +coty
Strong main reinforcement : 926, ()
. s
Weak and moderate shear reinforcement : wﬁ-! A(L+cosy) —sin

2 sin y(k+coty)

(Ap—K)41+AZ—(AQ-K)Z—A

cotg =

AS-(Ap=K) =
(5.6) tan® = o
VA p+AK+41+AZ—(AD—K)L
T/fc = E—‘*-"—i#————

_v All+cos?)-sin3 .

l (b—? sin2y (A+ cot ¥)

Fr

(5.6)

Nl

@*Q(q)) \ ¢'=¢| ()

(5.4) (5.10)

¥ VA f2sin?i e cotd) v

Fig. 6.4 : Domains of upper bound solutions for beams with inclined
stirrups, subjected to distributed loading
Y=y, (¢) given by equation (5.7)
9=8,; (y) given by equation (5.5)
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Strong main reinforcement ®2v/2
SV A+cosy)-siny

Strong shear reinforcement : *7 SinZy(rrcoty)

cotg = -coty
(5.11) tano = o
_ v A e
?(fc T2 Atcoty cot 2

Figure 6.4 shows the domains of the solutioms. The boundaries are plotted
. . . o .
for a shear span ratio of A=4 and a stirrup inclination of Y=60 . For each domain,

the corresponding failure mechanism is sketched.

The solutions corresponding to strong main reinforcement are complete, i.e.
identical with a lower bound. The strut inclination 6 of a corresponding stress
distribution (diagonal compression field) is determined as 8=B/2. The struts are
steeper by distributed than by point loading, and (generally) flatter by inclined
than by vertical stirrups. For strong shear reinforcement, inclined stirrups are
more effective than vertical, in the sense that the same amount of web reinforcement
leads to higher shear strength. The ultimate shear load is greater by distributed
loading than by point loading. Indeed, the same maximum shear stress is maintained
when the shear reinforcement degree is reduced by the amount p/fcsinzy, p being the
intensity (per unit area) of the distributed load. Equivalently, the stirrup
reinforcement may be designed for the shear force V-bphéote, i.e. the shear force

in the.distance hcot8 from the support.

When the main reinforcement is not sufficiently strong, it will yield at shear
failure of the beam. .The upper bound solutions predict a reduction of the shear
Strength, but no corresponding lower bounds are indicated, except for beams without
any stirrup reinforcement. The reduction is likely to be of limited importance,
because a substantial main reinforcement is required in order to prevent flexural
failure. A possible exception are beamswith little shear reinforcement, and for
such cases, lower bound solutions are developed (JENSEN & al.[11] ). Solutions
corresponding to weak main reinforcement are also of interest in connection with
the shear strength of beams subjected to additional axial loading. Finally
they may explain premature collapses due to anchorage failure, which reduces the
main reinforcement strength available in shear withoqt significantly affecting

the flexural strength.
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