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ABSTRACT

The stiffness of reinforced concrete beams under combined shear and
bending and under torsion is studied after fully development of
cracking. In both cases the method involves minimizing of the
complementary, potential energy for a class of the statically
admissible stress~distributions. Comparison with tests from the
litterature confirmes the applicability of the method. For beams
subjected to combined shear and bending, the results are employed
to calculate safe limits for the permissible strut inclination used
in shear design based on the truss analogy with variable strut
inclination. Here it is required that yielding of the stirrups do
not occur under serviceload. For beams subjected to torsion it is
demonstrated, how the method leads to a usefull lower bound estima-

tion of the stiffness.



_II_

RESUME .

Jernbetonbjalkers stivhed ved bgining med forskydning og ved vrid-
ning studeres i det fuldt revnede studium. Den benyttede metode
involverer i begge tilfelde minimering af den komplementzre, po-
tentielle energi for en delmengde af de statisk tilladelige span-
dingsfordelinger. Ved sammenligning med forsgg fra litteraturen be-
kraftes metodens anvendelighed. For bjzlker udsat for bgjning med
forskydning benyttes resultaterne til at satte sikre granser for,

hvor sm& betontrykhaldninger, der her tillades anvendt under dimen-
sionering af forskydningsarmeringen efter gitteranalogien med variabel
trykhaldning, ndr det kraves, at der ikke opstér flydning i bgilerne

i brugsstadiet. For bjelker udsat for vridning vises, hvorledes energ:
betragtningerne leder frem til en udmerket nedrevaerdi~bestemmelse af

stivheden.
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INTRODUCTION

It has always been a matter of great difficulty to describe the
behaviour of reinforced concrete members in shear or torsion after
the development of cracks. The purpose of the present report is to
demonstrate, how valuable information about such members can be

derived by means of simple energy considerations.



NOTATIONS

Aal Cross sectional area of longitudinal reinforcement
Aas Stirrup area crossing the concrete area b ¢
a Length of shear span

b Width of beam

C Compressive stringer force

c Stirrup spacing

E Elastic energy

Ea Elastic modulus of reinforcement

h Depth of beam

M Bending moment

P Applied load

PS Service load

Pu Ultimate load

T Tensile stringer force

\Y% Torsional moment

X, ¥ Coordinates in a rectangular system

Yq Depth of compression zone

o Torsion per unit length of beams

6 Inclination of diagonal concrete compression in the web
K cot ©

Knax Maximum permissible value of k in design calculations
Pas Geometrical degree of stirrup reinforcement
41 Stress in longitudinal reinforcement

Oas Stress in stirrup reinforcement

9, Compressive stress in concrete

Ou - Compressive strength of concrete

Ogq Yield stress of longitudinal reinforcement
Ogq Yield stress of stirrup reinforcement
Ox’dy’Txy Equivalent stirrup stresses

Ty Shear stress in concrete

P Inclination of compression concrete stress at torsion



1. BEAMS SUBJECTED TO SHEAR AND BENDING

When reinforced concrete beams are designed in the ultimate state,
using the theory of plasticity, it is possible to achieve full
utilization of both shear reinforcement and concrete. This design
might, however, under certain circumstances, lead to so small an
amount of shear reinforcement that yielding of this occurs long
before the failure load is reached, and perhaps already under

service load, which would cause unacceptable crack widths.

In this part of the report, beams subjected to shear and bending
are considered in the elastic state but after cracking of the
concrete by setting up a statically admissible stress field
depending on one parameter and minimizing the complementary po-
tential energy with respect to this parameter. Using this method

it appears that the forces in the transverse reinforcement can be
estimated, and it is demonstrated how these forces can be limited
under service load by introducing limits of the permissible inclina-
tion of the concrete stresses in the web used in the plastic ultimate
design. Such limits correspond to a required minimum of shear re-
inforcement. The necessary limits to avoid yielding of the stirrups
under service leoads are found for different types of transverse and

longitudinal reinforcement.

For readers interested in further details, attention is drawn to the
fact that this chapter is based on a master thesis by Verner Jensen,
see [77.1].

1.1. Calculation of stirrup stresses.

Consider a horizontal, simply supported beam subjected to two con-
centrated loads, P , applied symmetrically at the distance a from

the supports, see fig., 1.

For this case, Nielsen [67.1] has developed a statically admissible
stress field, sketched in fig. 2, where a part of the shear zone

is shown.

In the web the concrete stress state is a uniaxial compression 9

inclined the angle €6 to the x-~axis. The horizontal compression



T

bl Pt«—m- a—| ! — OAAAA,jP

Fig. 1.
y .
Compression stringer
t—- C
S}V |
I /\{ P PIWM
L] i
‘L _ ¢ : Pcot®©
H T X
Tensile stringer
Fig. 2.

zone at the top of the beam is idealized as a stringer carrying a
force C and the tensile reinforcement as a stringer carrying a
force T . The stirrup forces are transformed to an equivalent

stirrup stress, Oy , distributed over the concrete area. If the

stirrup stress is O * the equivalent stirrup stress is
Aic%s
6, = —F = p__0 (n
y cb as as .
where Aas is the stirrup area crossing the concrete area c¢-b ,

and ¢ 1is the longitudinal stirrup spacing. Pas is the geome-

trical degree of reinforcement. Since the stirrups are vertical



the equivalent stirrup stresses Oy and Txy are zero.

To be statically admissible, the stress field has to fullfil the
boundary conditions and the equations of equilibrium. For detailed
examination, the reader is referred to [67.1]. Here we only quote

the resulting stresses and stringer forces:

= P )

9, = gp(tg 6 + cot 6) (2)
_ P

Oas— p—bﬁtq [S] (3)

as

c = % - %P cot 6 (4)
_ M 1

T =y + %P cot 8 (5)

Denoting the cross sectional area of the longitudinal reinforcement

as Aal ; the stresses in this reinforcement along the x-axis are
T 1 P x
fod = o = e (L + %P cot 6) (6)
al Aal Aal h

x being zero at the support.

If the load is acting at the top of the beam, the stress distribu-
tion above is rather improbable in the section under the load.
Therefore, we introduce a modified stress distribution, see fig. 3.
The shaded region on fig. 3 is in equilibrium under the applied
loads, provided that it carries the vertical load P and the part
5P cot 6 of the compressive stringer force, see also [67.1]. It
should be noticed that the stress state in the region considered is

not homogeneous.

With the modified stress distribution, the tensile stringer force

does not exceed the value

in any part of the beam.

Under service load we now estimate the inclination of the compressive
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stress in the web by minimizing the complementary potential energy.
Assuming linear elasticity and Poissons ratio being zero for both
concrete and reinforcement, the complementary energy is equal to

the elastic energy.

Using the modified stress distribution, it is only necessary to
consider the elastic energy of the shear span and, furthermore,
numerical calculations (see [77.1]) show that the contribution
from the concrete can be disregarded. This means that in order
to find tg 8 we only need to minimize the expression
-t 2 >

E = jo Eﬁg[hbpasoas + Aaloal]dx (8)
where Ea is the elastic modulus of the reinforcement. When Aél
and o are constant over the whole shear span, the requirement

dE _
F=0 (9)

leads to the equation



h? b g
85 tg%6 + 22 = g (10)

5 a P
tg7o - 16a Aal

4 Aal

which can be solved by iteration using the formula

s/b” b Pas , a?
tg 8 = —-_—(4HTtgze—1) (11)
al

If the shear span is not too short, for instance if % > 3 , only

neglectible errors will be introduced using the solution

3/a b p
_ as
t9 0=/ TE (12)
al

instead of the iteration formula (11).

After calculating tg 6 from (11) or (12), the stirrup stresses

are determined from (3) until

bh p__o
p = as fs (13)

tg §
where the stirrups start yielding. Oce is the yield stress of
the stirrup reinforcement. If the load is increased further,

the stirrup stress remains constant at

until the failure load of the beam is reached.

In fig., 4-7, stirrup forces calculated from the above theory are
compared with the actual stirrup forces measured by means of strain-
gauges under shear tests with T-beams carried out at the Structural
Research Laboratory at the Technical University of Denmark [76.1].
From the figures it is seen that the stirrups do not become active
at lower loads due to the tensile strength of the concrete, which

is not included in the theoretical solution. Apart from this, the

theory agrees well with the tests.
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1.2. Design applications.

Future design of reinforced concrete beams subjected to shear can

be expected to be based upon the theory of plasticity, see Nielsen

et al [76.2}. 1If, for instance, we consider the beam type treated

in section 2, coinciding upper and lower bound solutions are presented
in [76.21, where the theory is compared with test results from about
200 shear tests, and excellent agreement is found. The lower bound
solution mentioned can be derived using the stress distribution

from section 1.1, and we find that if

P
u

W- - 0 (15)

1, =
(e + E) = 9 c

then the shear capacity is determined by
Pu = x b h Pas Ofg (16)

where k = cot 6 indicates the inclination of the concrete stresses
in the web at the ultimate load. From (15) and (16) it is seen that
the best lower bound solution is obtained when Op = G s which means

that

G _ = p. O
C = [¢] as fs (17)

Pasfs

However, design based on (16) and (17) could result in an amount of
stirrup reinforcement so small that yielding of the stirrups might
occur under service load. To avoid this we introduce an upper
limit for the permissible value of « by means of the results

from section 2. Here we found the stirrup stresses before yielding
to be

b op
_ P _ P Vs as
o = e tg § = Y (18)

as Pag bh Pas bh al

These stresses reach a maximum value if Aal is as small as possible,
so the most severe case corresponds to designing the longitudinal
reinforcement by means of the formula

P a

= 2 (19)

A
al Ofl h



where Ofl

From (16), plastic design leads to a sufficient amount of stirrup

is the yield stress of the longitudinal reinforcement.

reinforcement, namely

P

— u
Pag = PTY o (20)
fs

if (15) is fullfilled.

Inserting (19) and (20) into (18) the stirrup stresses under service

load, PS , can be written as
P 3 G i
S £l
o = == K g —_— (21)
as P /
" fs 4k Ofs

Under service load we require that
(22)
which, together with (21), leads to the following upper limit of «:

(23)

On fig. 8a, the limits found from (23) are illustrated graphically.

Similar calculations can be carried out for other loading cases
and for other types of reinforcement. Some results are shown on
the figures 8b - 8f.

The requirements to Kmax stem from serviceability considerations.
The ratio Pu/PS depends on the load factors and the partial
safety factors on the material strengths. In Denmark one may
generally assume that

21,6 (24)

"U|*U
o

s
and that ofs/ofl is not essentially lower than %.

From the figures 8a - 8f it then appears that suitable overall

limits for Knax can be chosen to be



2,5 for beams with constant longitudinal
reinforcement
« < (25)
max 2,0 for beams with cut off longitudinal rein-

forcement

In selecting those values, proper account has been taken to the
fact that the calculation of the stirrup stresses carried out as
described will be on the safe side, cf. fig. 4-7.
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2. BEAMS SUBJECTED TO TORSION

In the following we shall consider the behavior of cracked reinforced
concrete beams in torsion. It will be demonstrated how a reasonable
lower bound estimate of the stiffness can be derived by means of
energy considerations. The method used is, as in chapter 1, based

on the principle of minimum of the complementary potential enerdy.

The content of this chapter is based on parts of a master thesis made

by H.H. Christensen [77.2].

2,1. Stiffness of the cracked section.

In this chapter we shall deal with reinforced concrete beams with
rectangular cross-section and vertical stirrups, as shown on fig. 9.
As a statically admissible stress field the one illustrated in fig.

10 is chosen.

Fig. 9.
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The stress field in the concrete is a uniaxial compression inclined
at the angle ¢ to the center axis of the beam. The concrete

stresses reach a maximum value, at the surface of the

o ’
b,max
beam and then decrease lineary towards zero along the distance

Yo from the surface. The concrete is assumed to have no tensile
strength, so that at larger distances than Yq from the surface,

the concrete stresses are zero. As in chapter 1, the stirrup forces

are transformed to an equivalent stirrup stress.

Denoting the torsional moment as V , the equilibrium conditions

now lead to the following stresses in the concrete and the reinforce-

ment:

o - vl + tgzw) (26)

b, max 2 2 2
yo(hb - 3(h + b)yo + 3 yo)tg ©®

4
V{(h + b) - K yo)

a1 T 3 53 (27)
Aal(hb - §<h + b)yo + 3 yo)tg [0)

Yas = 2V e to 9 2 2 (28)
2a  (hb - 3 + b)yo 5 yo)tg ©®

From these stresses the complementary potential energy under the

same assumptions as in chapter 1 can be determined as the elastic
energy. The elastic energy per unit length of the beam is found

to be:



b 2
o? vy - & -yv.))
b, max PO 2y + (h - b+ 2y))ay

2Eb Y,

A 0% A__ ks
1 Tal 4+ .a8s “as ? (29)

2Ea 2Ea c

where s 1is the circumferencial length of a stirrup.

The above expression for the elastic energy now has to be minimized
with respect to Yo and tg ¢ . Using partial differentiation,

we are lead to two coupled eguations of fifth order, which have to
be solved numerically. These calculations are not included here.
Having determined Yq and tg ¢ , these values are inserted in
(29), and the torsion of the beam can then be found using the

Clapeyron principle, which in this case yields

where o is the torsion per unit length of the beam.

On figure 12 the theory above is compared with results from tests
made by P. Lampert and B. Thiirlimann, [68.1]. The cross~section of

the beams tested are shown on fig. 11.

T T2 Ty

Fig. 11.
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All the beams had the same amount of reinforcement, but the beam
T2 had a different arrangement of the longitudinal reinforcement,
a difference which does not seem to affect the behavior of the beam

in comparison with No. T 1,

The cross—-sections of beams Nos. T 1 and T 2 were hollow, while
T 4 had a massive cross section. We see that this circumstance
did not make any significant difference to the stiffness after
the concrete was cracked, as expected since the depth of the com-
pression zone, Y, + according to the theory is calculated to be

smaller than the wall thickness of the hollow cross-section.

From fig. 12 it is seen that the theory gives a usefull lower
bound estimate of the stiffness of the beams.



CONCLUSIONS.

By comparing the theoretical results with tests, it appears that
the method used leads to reasonable, safe calculations of stresses
or deformations for the types of cracked reinforced concrete members

considered.

For beams under combined shear and bending it is demonstrated that
when the ultimate sheer design is based on the truss analogy with
variable strut inclination, then proper limitation of the deforma-
tions of the stirrups under the service load can be ensured by
requirering

2,5 for constant longitudinal reinforcement

Knax = cot 0 =

2,0 for cut off longitudinal reinforcement

Here O denotes the inclination of the concrete struts used under

the ultimate design mentioned.

In the case of reinforced concrete beams undergoing torsion, safe
determination of the stiffness after cracking of the concrete can
be derived using the expounded method, but for the use in practice,

simplifications of the calculations would be desirable.
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