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Summary.

Analysis of the stability of curved space beams is based
on the potential and the complementary energy theorems. For

straight beams examples using the methods for approximate ana-
lysis are presented.
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Introduction.

In this report, stability criteria for arbitrary curved beams,
based on the potential energy and the complementary energy theo-
rems are presented, and some simple examples of their use are
given. '

The work was carried out partly in connection with the prepa-
ration of a textbook on curved beams [1]. It soon became clear
that the engineering literature generally curved beams is rather
limited, and the literature on their stability is even more li-
mited. Because of this, the theory was basicly reformulated.
some of the results are believed to be new.

A gredt deal of work of highly thecretical character has
been carried out on generally curved beams. See refs. [2] - [10].

The engineering literature was initiated by the increased
use of arch bridges, ‘and throughout the thirties, investigations
of the.stability of arches were reported {111 - [18]. This work
has later been continued and the scope of investigation broadened
[191 - [291].

Energy methods for stability analysis have been presented in
the works {30} - [37].




Derivation of Stability equations.

A structural problem can often be formulated as a variational

v

problem
3 =
—a'"; i ('}\E;E) da’s = 0 (1)

where x is a vector of the unknown displacements or stresses
and p is a vector of prescribed- loadings or displacements.
From equation (1) an incremental equation can be obtained

3 3 9
3% (a—-ﬁ I (x:p) dx + 38 T (x;p)dp) dx = 0 (2)

When the first term of eq. (2) satisfies the equation
2 3 T (x;p) dx ax = 0 ‘ {3)
3'}5 3’}.5 ~’R A

then x is no more uniquely defined, and hence equation (3) is
equivalent to the Euler Stability criterion, which states that
the stability of a structure is lost when there exists an equili-
brium configuration infinitely close to the present one for

the same loading.

Stability eguations for arbitrary curved beams, derived by
the potential energy theorem.

In ref. [1] the stability criterion for arbitrary curved beams
is derived. The iengthy derivation will not be repeated here,
only the basic kinematics.

In figqure 1;a cross-section of a beam in the deflected con-
figuration is shown. The cross-section remains plane and is
characterized by the uPit vectors e, and 2, and the unit normal

- . . ar
€5. The tangeit of the system line is g = 5% = r', Furthermore we
define a” = a-a. In the reference configuration, the above de- i

fined quantities are given by capital letters 21, Ez' 23, A and A.
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Figure 1.

The deformation of the beam is completely characterized by the

strain measures

g=1eg 9 93 7t xy x5} (4)
defined by
= . - =
A E,I = ,?'_, ’%1 A
Ao, =ae,
Aoy =3
: 3 > (5) |
= - = ef. = E!- :
BT =tT , t=gle , T=E}E, |
= - = ' = L.
Aoy = kyoKye Ky = giegy 0 Ky = B3k
By = ky=Ry, Ky = 2185 4 K3 < Ej°Ej J

If we restrict our aFteﬁtion to Bernoulli_beams,we havé 0, = Oy
= 0. The kinematic theory used here is a special case ¢f the
more general treatment given by Erichsen and Truesdell [3]. The
strain measures defined by eQuation (5) are very convenient
because the work performed by the force N and moment M is



dw = N1de1 + dewz + N3dw3 + M1dT

+ MszZ + M.dx (6)

3703
where
Ni = g-gi‘ i=1,2,3
(7)
M, = M-+e, i=1,2,3

1 ~ ]

If we restrict our attention to an elastic beam having a linear
relation between the strain vector 4 and the stress vector

p=Awy Ny, Ny omp oM, M} (8)
we can write
L£=¢4d (9)

The total potential energy of the beam is then

1

H(E'E) = f 7

T
i 4" g4 AadE+ I (10)

where He is the potential enexrgy of the external loading.
The equilibrium equations can be cbtained from eq. (10) by
taking the 1st variation

61 =0 (11)

and the stability criterion, eg. (3), by taking the 2nd varia-
tion
§°N = 0 (12)

Using equation (5) we obtain for. a Bernoulli beam



6%n = J t6a” gog 4w, 2 (a0l + aud)
£
M S (80! Suw-8w! Suw. - (8w + 8wl t + 2 (KS6.-k. 6w.) de.)
1 & (91 Swymowy ow,— (8w, 3 a (kgduykyOu,) dey
+ M L (Swlbw, ~8w!dw, + 2tdw, Sw ~(5w2+6w2) k.+k. Sw.lw., + z téw. de,)
2 7 (Cugbu -dujduy 1 8= (8w HBuwy) Kotk Suyduy + o tdugde,

1 - 1
+ M (Gmiémz Gwzdw

2 2 2
1% + 2t6w16w3—(6w1+6w2) k, +k, Sw,8w, - Py t6w36€1)

1 3772 2773

2 ; 2.
(6m16m2+ by 5w36e1)}Ad5+ § nc =0
(13)

2 1
+ 2 dmzdal) + M:'3 =

v (=
M ( Gwléw a

3

In eg. (13) Gwi is the virtual rotation of the coordinate system
g; defined by

631 = 6w3 &y - sz e

622 = 6w1 23 - 5m3 e, (14)

8g3 = Swy &y ~ Sy g
This stability criterion was published in ref. [1] and is belie-
ved to be new. It is a general criterion also valid for large
prebuckling deformations. In this case, a, t, k2 are nonlinear
functions of the loading intensity and hence, eg. (13) is non-
linear. If we neglect prebuckling deformations, equation (13)
is a linear eigenvalue problem, equvivalent to the Rayleigh quo-
tient for straight beams. .

For a straight beam loaded in the 1-2 plane we obtain, when

neglecting prebuckling deformations, and assuming 581 = 0 and

6K3 = 0,
2. _ 2 2 2 2, ! _
841 = £ (eI, 817 + BI, 6k5 + Nj (Swy+8uw3)-2My Suw du,}dL = 0

(15)



From egquation (15), both the Euler buckling load and the torsion-
al buckling load can be obtained. .

Stability equations for beams derived by the complementary
energy theorem.

A generalized complementary principle is described in ref. [38].
For curved beams it takes, according to ref. [1], the form

PR S ) )
Te = é (22 & I+ Ny (BymBy03+850)) 4N, (By+8,05-83¢,)
+ N (Ey-Biwy+Bae,) + M1X1+M2x2+M3x3} Adg (16)

where

A§1 = 31—§1 , AEZ = gz—gz , AE, = 23*E (17)

Es 3
E, = + AE E, = + AE AE E, = + AE:AE (18)
172 %8+ By T g AEpRE, o By = g ARJAE,
=1 e - .
B1 = 2 (BEpreg = LE3-g))
=1 (. .
B, =% (-0E;-gy + 0E.e) L (19)
=1 _
By = 7 (8B g5 — 4B, &) J
= — (= Y Apr. 1 . 1 hm2, xp2 3
Axy = =(- 5 AE}-AE, + 5 AE, O3 + 5(AE,+AED)
- 1 A 8E, k, - 1 AE.-AE. k)
z 8E1°8Ep Ky — 5 BEq-4E5 Ky
] v (20)
S S ; -1 .
BX, = -(3 BEj-AE; - 3 AE,-AE] - % AE,-AE.t
1,2 2 1
+ g (AE] + AE}) k, - & AE,-AB, k)




-1 - Y apraw, - 1as. .
Axy = ( 7 A§1 Agé 5 AE AEZ 3 AE1 A§3t
(20)
1 1 2 2
- 5 AE,:AEy k, + 5 (AEJ+AES) k)
The solution of the elastic problem is obtained by
5IIC (Z, r, g;) =0 : (21)

where the stresses I must satisfy apriori the equilibrium equa-
tions.
According to equation (3),we get the stability criterion
_ T .~1 2 2_
§°1, = é {dZ” G~ 4z + N, (Su3+éuy~8u, 80;+5wa80,)
+ N2(—6m16w2+6w16w3—6m3651)+N3(~6w36w1—6w16w2+6w2521)

K,+8w, Sw

. s _ 2 2,
+ M1(6m26w3 Swzﬁmé (6w2+6w3)T+6w16w3 3 18w,y K2)

. ' 2., 2
+ M2(6w36m1—6m{6w3+6w16w3 T—(éw1+6m3) K2+6m26w3 K3)

. 1 - T - 2 2
+ M3(6w16m2 6w26w1+6m16w3 T+Gw26w3K2 (6w1+5w2) K3)}
AdE = 0 - (22)

when neglecting the prebuckling deformations. It is interesting
to notice that equation (22) is valid both for the Timoshenko
and Navier theory, because the condition 5w2 = 6w3 = 0 in this
formulation is a natural condition which need not be satisfied
apriori. However,for a Navier beam,better results can be expec-
ted when we apriori assume 6w2 = 6w3 = 0, which will also de-
crease the number of displacement variables.

For a straight Wavier beam loaded in the 1,2 plane, and
assuming 651 = 6@2 = 6w3 = 6M3 = 0, we get



2 1 2 1 2
8N, = [ { o M7 4+ o &M
< I GIv 1 EIZ 2
+ N (6w2+6w2) + N, (6w, dw,) + M, (Sw!Sw,~8w!suw )i
1 3 2 2 2771 3 1772 2777
dL = 0 (23)
Using the eguilibrium equation Mé = - Nz,and integrating by
part we obtain
2 _ 1 2 1 2 2 2
SIIC—I{EI—6M1+-E~I—5M2+N1(6w3+Gw2)
L s 2
)
-2 My 6m1 6w2} dL = 0 (24)

In equation (24) we have neglected boundary terms obtained by
the integration. For the most common boundary conditions those
terms vanish. In the case of a free end, locaded by a moment M3,
the term does not vanish. However, this case requires more care-
full treatment all the same, and the result is dependent on the
manner in which the moment M3 is applied. ,

It is interesting to notice the similarity between the equa-
tions (24) and (15).

Examples,

In order to illustrate the use of energy method for approxXimate
calculation of stability loads, a series of examples are presen-—
ted in the following. In the examples 1 to 4, the potential ener-
gy method is used, and the complementary energy method in examp-
les 5 to 8.

Example 1.a.

The simply supported beam,shown in figure 2,is prevented from
rotation at the ends,and is analysed approximately,assuming
the following displacements ‘



2
A 1
T L
—
3 < -] 4
R 2
s TP 3
i L 1% \1
-
Figure 2.
iy ns,
6u3 = ¢, sin - ¢ 6m1 = ¢, sin I i
which satisfy the kinematic boundary conditions 6u3 & 6w1 = 0.

- "By equatiohn’ (15) we then get

61 = 1, (Bl arg o3 (L2 L
-2 cje, g2r% 0.3513 B2 = 0

or,using matrix notation, |

821 = xT(a-AB) % EIIJ—Z =0
Here x and X are defined by
and the matrices A and B by

3=l 0|, B-= o . 1% 0.0878

0 3 72 ;—i_j 72 0.0878 0

We then obtain the characteristic eguation
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1 6
2 7 T GI/EI, _ T GI/ET,
)\——4--——201‘)\—
7 0.0878

The critical load is therefore

v (EI6T,  17.89 {EIGI_
P = =
0.1757 1.2 L2

which is 5% greater than the exact result.

Example 1.b.
If the beam in example 1.a is loaded outside the system line,
then the loading will contribute -to GZH.

Let the force act at a distance h above the system line.
The additional contribution to the second variation is

Then we get a modified matrix B equal to

B= |0 ™ 0.1757

72 0.1757 2 2

and the following characteristic equation

GIS
19.74 A — 9.8696 —— = 0
EI,

2 h
3.0071 AT + T

If we assume ( 2

)

[ 3lF=2

<< 1,we get the formula
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LZ

fal

17.89 VEIzGIS n [ EI,
P=———— (- 1.81 ¢ | 537)
E]

The formula given by Timoshenko [40] is’

16.94|}EIZGIS h EI

P = Lz (1~ 1.74 i aI—)

[3¥]

L]

Example 1.c.

If we wish to do a more accurate analysis of the case treated
in example 1.a,we may assume

LER TS,
6u3 = ¢, sin 5 + ¢, sin 3 <
: s ns,
6w1 = d1 sin 5~ + d2 sin 3 -
We then find
EI
%1 = x7 (a-2B) x —2 = 0
where
T T PL2
X = {C.l/L C2/L d1 dz} = {x '_}52} , A= m ’
GI GI :
_l1 1 . 4 4 1 s 2 s 2
é-l-iﬁ sz 0t gt 9/2E—I-£nJ~r§152J
B = 0 0 -0.8668 0.2560] =1 0 §1
0 0 2.2496 ~=5,7977
-0.8668 2.2496 0 0 E? 0

0.2500 -5.7977 0 0
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By eliminating %, the eigenvalue problem can be reduced to

T 1 T -1 _
%2 G2 "B A By) %70
where
Y i
51 51 §1 = 0.01671 - 0.007755
~-0.007755 0.009805 .

The characteristic equation is then

1 GIs 1 GIS
—7 m 219.1 - — {==— 0.7905 + 0.0001037 = 0 ’
)\4 EI2 >\2 EI2

and we &btain

16.97 \/EIZGIS

L2

which is 0.2% greater than the exact result

16.94 I/E12GIs

L2

Example 1.d.
The same beam is again considered, but including warping rigidity. P
BEg. (15) is than modified to i

821 = [ fez §t2 + BI, 8«2 + BI St!
5 | 2 W

L 2

2

-2 M, 6w1 Swé} dL = 0

We assume the same displacements as in example 1.a. The ma-
trix A is modified to
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A= | 0

GIs EI 2

W T
==+ g2 (7)
EI2 EIZ L

and the critical load is found to be

my 2
. 17.89 JEIZ(GIS+EIm(E) )
L2

If ,for example

_ 1 2
Exr = 3 GIS L
then
o - 26.74 y EIZGIS
L2

which is 4.4% greater than the exact result.

Example 1.e.

We close the treatment of the simply supported beam by conside-
ring different loading conditions, see figure 3.

a) b} d)

c)
|
/Im m I\\@J Mo {%

———
L 3L 'L

5 5§ §

Figure




We use the same displacement assumption as in example 1.a.

LER TS,
6u3 = ¢y sin —— . 6m1 = ¢, sin ——
and get
EI
Pr=x" a-1B x—<2=0
MOL
where x = {01/L cz}, A= _T; ,
1 a4
A= 5“ 0
0 i EEE WZ
ZEI2
and
—_ 2 1
B = 0 T°B r B=— IMﬁm.IGw:'ZdL
TM_ L
o
nZB 0

and the critical moment

M - w \/EIzGIS

o 2BL
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In the table below the value of M is listed for the loading

cases shown in figure 3.

CASE a b c d
M L
—_—2 142 1.15  1.02  1.000

™ ’EIZGIS

Example 2,
A simply supported beam is elastically supported against rota-
tion at one end, see figure 4.

We assume

s s
du, = ¢, sin — + ¢, sin —
3 1 L 2 L

TS, TS,
éw1 = <:'1.I sin ¢~ + d2 sin ——

OM; =c-bwy at sy=L

2

Figure 4.




We then get from eg. (15), adding the second variation of the
energy of the spring csw?

61 = x" B-2p x—g2=0

Here x = {c1/L c2/L a4 d2} ,
_T1 4 )
2=zt 0 o 0
0 gt 0 0
GI GI
1 s w2 c-L =]
1] 0 5w (57 + ==— 1.0472 =—
2 EI2 2 EI2 E12
GI GI
1 5 .2
0 0 1.0472 =2 L s ===
] EI2 2 EI2 ]
and
E = 0 0 -0.6824 -0.8668
0 0 0.6868 0
-0.6824 0.6868 0 0
;. —0.8668 0 0 Q

The critial load can be found by calculations similar to those
of example 1.b. In the table the critical loads for different
values of the 'spring stiffness are listed.

cL/GIS 0 3 6 30 300 ®

PLZ/JEIZGIS 10.81 15.00 16.08 17.43 17.84 17.89
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Example 3.

In this example a continucus beam is analysed, see figure 5.
It is loaded in the middle of the left span by a single force,
and the prebuckling bending moment is as shown on the figure.
The beam is not prevented from rotation at the middle support.
The kinematic boundary conditions are

Su, = 0 for s

3 0, L, 2L

and
dw, = 0 for 54 = 0, 2L

1

We assume the displacement field

TTS,I 'rrs.l
6u3 = ¢y sin < + c, sin 2 -
'ITS.I '[TS.l
Gm1 = d1 §in me~ + d2 sin —y=
and obtain
EY
GZH = gT (A - 2 B) x _EZ =0
o= M3 2
0.094PL

bo

&P&@x&é\s':’

S1

i

Jb2 L2, L ’
1 7 7 =

Figure 5
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Here
x = {c1/L 02/L a, dz} ,
5 = pr?
E12
A = { 4 o 0 0
o ten? 0 0
GI
1 .2 s
0 0 - T : o]
4 E12
GI
2 s
0 0 0 T
L EIZ -
and
B = 0 0 -0.6948 ~0,4196
0 0 0.6859 ~0.6709
~0.6948 0.6859 0 0
-0.4196 -0.6709 0 0

Proceeding as in. example 1.¢, we obtain the result

20.96 \(EI2GIS

P ===,
L2

If a more simple approximation was made by assuming e, = d2 =
we would‘get

22.33 1/E12GI5

Pw — . = 8
2

which is only 7% greater than the result obtained by the more
accurate analysis.
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Example 4.
As a last example using the potential energy method, an arch
loaded by end moments as indicated in figure 6 is considered.

The arch is supported such that

6u3 = 6m1 =0 for s, = 0, L .

The following displacements are assumed

TS,
6u3 =cy sin —— .
LER
L

d, sin — .

Suy 1

Furthermore we have

M3 = M and k1 = k2 =M, =M, =N, =0 .

Equation (13) is then reduced to

20 _ 2 2
§°n = { {E12 S5 + GI_ 87

+ M3(am55m2~6w56w1—(5w3+6w§) kb AL = 0

L=RB

Figure 6.
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where

St = ﬁw{ -k, Sw, -

6K2 Smé + k3 6m1,

Swz = - Su

[

and we obtain

2. _ L, m4 2 2 .2 Ty 2
§°I = EIX 2((L) c) + k3 d1 + 2 k3 (L) oy d1)
L my4 2 2 .2 Ty 2
+ GIS 5 ((E) C,I + k3 d1 + 2 k3 (f) C.I d.])
_ L iy 2 T 2 2 2 _
M 5 (2(L) cq d1 + ((L) cy f d1) k3) =0
or
20 2T a - 1EI_
§°I = x" (A A B) X3 5= 0
where
_ .. ML
%= {c1/l d1} , A T
2
GI GI
_ 4 2 _2 s .2 2 S o2
é— . +k3L E-I—;'ﬁ 7Tk3L'+'k3LEITT
2
GI GI
2 s 2 2.2 S 2
and
- 2 2
B = it k3L ki
ﬂz k.L
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The characteristic eguation is

GI
1k 2 - 1) A% 4020+ =5 (12 - (k1D A
3 EL, 3
GI
.2 S 2 2,2 _
+ 7 m('ﬂ' "(kBL)) =0 .
After some calculations we obtain
k3 2 nz
M= 27 [(EI,+GI ) * |[(EI,-GI ) “+4EI,GI  —-—3]
(kBL)

In this formula the prebuckling deformations can be taken into
account by calculating k3 as a function of M. If prebuckling
deformations are neglected we have

Example 5.a.

In the last examples,we shall jllustrate the use of the com-
plementary energy method. The first example is the simply
supported beam already treated in example 1.a by the potential
energy method, -

We assume the same displacement field as in example 1.a %

FProm the equilibrium equations we obtain the bending moments

P _ P L
oM, = 7 (e 6u3) + 355 Gué , sy <3
P L
6M2 = 5 8y 6w1 ’ s, < >

If these are introduced into equation (23),we get
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P12 ‘ P/2
By o > e
Pcy/2 G Pey/2
u
3 P
Figure 7.
L/2 2 TS
2 _ P 2 f 2 1
8°m, =2 J {5 sy ) sin® (59 g7
0 2
2 s - ™
p° 2 . 1 P 1,,2 1
+ 7 <] (1—sm(-L—-—) + 8, 7 cos (7)) GTs
P e T
-3 8¢ 2 ¢q ¢y sinl—=7) (P sin(-x)} ds,
2.3
= %7 {an - AB} x FL -0
GI
s
Here
) GIS
X = {C /L o A= —s
1 2 4 PL2
A = 0.154 0
GIs
0 0.0167 BT
2
and

=1 o 0.867
0.867 0
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The critical lcad is obtained by the equation
|a-3gl= 0
which gives

Pm—i: = 17.08

AL \0.0167-0.154 1.2 L

The result obtained is 1% greater than the exact result. In

GI 0.867 EIZGIS VEI2GIs
2

example 1.a we obtained an error of 5%, using the same displace-
‘ment assumptions. ‘

Example 3.b.

The advantage of the complementary energy method is that very
simple displacement fields can be used. All that is required
is that the kinematic boundary conditions are satisfied and
that the functional GZHC can be calculated. In our case all
displacement fields are permissible, as long as the term

f My Sw,dw) ds

can be computed.
We thus choose the displacement field indicated in figure 8

25
_ 1 L
Suy = ¢ —— 593
2s
_ 1 L
Swy = cy 5~ S <3

In order to write down Gwé we introduce the Dirac delta distri-
bution as illustrated in the figure.

As in the previous example,éM1 and 6M, are obtained from
the equilibrium equations
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2c
Bus=-6w, L
2C1/L
A/locﬂl.
Bwy
Figure 8.
&M =£(c - du,) + 5 s, su!
1 2 1 3 2 71 3
_ P
6M2 = 5 S,] (SUJ.I ’
and we ohtain
2.3
20 o T o, PeL,
GHc—-FJ‘c‘ {AAE}EGI 0
s
Here
GI
g={ey/L e} 0= =5
PL
A = 0.250 0
GIS
0 0.0125 BT

and

%]

I

bo| et

[Tl
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The critical load is thus

\/EIZGI2 ‘/EIZGIS

P = = 17.89

2 r
\0.25-0.0125 12 L

which by chance,is the same result as obtained in example 1.a,
with a more accurate displacement assumption.

Example 6.
A simply supported beam is only prevented from rotation at one
end.
We then may assume the displacement field
LEN
6u3 =c -
) s,
9 2T,

1]
o
-
4]
-
=]

The bending moments, see figure 9, are found to be

Pyo s 2
P 3
L2 L Lz
1 1 -

Figure 9.



26

6M1 = % (2c1—6u3) + % s, Gué , 5y < %
oM, = 5 6uy + st suy , st <2, st =1L -s,
8M, = % sy Swy 5, < %

‘GMZ = % ST 5m1 , sf < % , s# =1L —51‘

. 2 s
Introducing these displacements and moments into §°II_ we obtain

-

2L3

2 _ T P _
GHC—F}S(A-A‘@)'{{’F—D .
]
Here
GI
X {c1/L cz} ' A= ——% ’
PL™
A= 0.404 ]
GIS
0 0.0105 BT
2
and
B =

0 0.694
0.694 0

The critical load is then

0.694 VEI GI EI_ GI
27s 277s

P = = 10.66

2
y0.404-0.0105 1.2 L

In example 2,we obtained the value 10.81 ,using the potential
energy method and 4 modes. '
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Example 7.a.
Pl Pug
% - 2 - L -8M3
El  |L/2 . ¢! ,
#* 1 Uo /7Pu0
2E1 |L/2
Pug =
L . - :
> A I
2P
a) b) c)
Figure 10.

A simply supported column with variable stiffness is loaded

by two equal forces P, as indicated in figure 10 a. Considering
only buckling in the 1-2 plane ,we obtain the complementary energy
functional

1
[+] EI 3 1

820 = [ {1 M2 + N, 0%} 4r = 0 .
L 3 3

Assuming the simple displacement field in figure 10.b, we obtain
the moment field in figure 10.¢ and

2 L/2 3 21 .1L/2 3 21
67, = g7~ G Pu))” 3+ 3E (S Pu)) g «
: : 2u :
- P12 (—L—O)z—sz/z (22
2.2
_ P uOL 9 Pu
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The critical load is then

p=10.67 B |
L

In reference [38], the same column was analysed using stability

functions, and the result

p = 8.96 L

L2
was obtained. The result obtained here by the very simple ana-

lysis has an error of 19%.

Example 7.b.

The same example is treated using a more accurate displacement
assumption, see figure 11.a.

1P ' Pug, , Pug/2

-— 71
Puo
L L/2
P M3

ug | L

Pug | |

-‘L 7(

sz Pup/2

2Pug
a) b}

Figure 11.
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We obtain the bending moments of figure 11.b, and

2 pu
S - My A <
T, = v 3 T 8=0.

from which we -obtain the critical load

P=9.14 2
L

which is only 2% greater than the exact result.

Example 8.
In order to give a simple illustration of the use of the com-
plementary energy method for statically indeterminate structu-
res, we include the column shown in figure 12.a.

We choose the simple displacement field shown in figure 12.b
and choose a spring moment Mo' The spring stiffness is ¢, and

the contribution of the spring to 62HC is % P2M2. We then obtain

[a]
P
you U P
iggg j ) Mg

b6M3 L
EI L : ‘

TN 7 ¥ . |
a) - o b)

Figure 12.
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20 _1 L .2 2 2 .2 .2 2,21
8 HC =38 (P uO + 3P MO 3p quo) f MO P =
O, 2
PL(—L—
2.3
T pL’ _
= x" (A-)B) x =T 0 .
Here
EI
x={u /L M/L}, A= 2,
Q o] PL2
A= 1/3 -1/2
EI
and B =

Lo o]
The characteristic eqguation is
EI, _
(/3 -2 ) 1+ Ef) =

1
4 r

£from which we obtain the critical load

EI
_ T omr
P=12 —sez =5
1+4 == 1,

oL

In the limiting cases we have

¢ +> = P=12%,
L
c + 0 P =3 El .
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Both results have an error of 21%, but the qualitative effect
of the spring is obtained with a very simple displacement
field.
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