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ABSTRACT

An upper-bound solution is found, assuming the concrete to be
rigid, peffectly plastic with the modified Coulomb failure
criterion as yield condition and the associated flow rule. The
shape of the failure gurface is determined by variational cal-
culus. The generatrix is a catenary curve, possibly in combi-
nation with a straight line. The optimum diameter of the in-
tersection with the bottom face of the slab and the correspond-
ing ultimate load are plotted as functions of slab depth, punch
diameter, and the tensile and compressive concrete strengths.
The solution is compared with test resulfs and good gualitative
agreement and fair quantitative agreement are found.
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INTRODUCTION

The design of reinforced concrete slabs against punching shear
is based upon rules 1aid.down in the building codes. These
rules contain empirical formulae derived from experience and
bear little or no relation to a rational analysis of the prob-
lem using available theories of applied mechanics. In the
present paper, shear punching failure is treated by the upper
-bound technique of the theory of plasticity. The results do
not only apply to punching of slabs, but also to the load-car-
rying capacity of inserts imbedded in concrete. In particular,
the analysis constitutes a theoretical justification for the
applicatioh of pull—out tests to determine the compressive
strength of concrete.

The basic assumptions are specified in the section below.
They consist in:

(a) An assumption about concrete as a perfectly
plastic material.

(b) An assumption about the failure mechanism.'

Assumption (b) is an idealization of a behaviour which is
amply supported by experience, whereas assumption (a) amounts
to a drastically simplified description of concrete. The de~
formability of the material is very limited, especially in
tension, and the validity of the normality condition is open
to serious doubt. On the other hand, the analysis of shear in
beams [1],[2] and joints [3] has shown that useful results can
indeed be obtained using the theory of plasticity for concrete.
It must be stressed, however, that results of this kind should
not be used without thorough experimental checking. With this
in mind, the theory serves as a rational explanation of the

phenomena observed in reality.




NOTATIONS

Symbols are defined when they first occur in the text. The
repeatedly used notations are listed below:

a, b, c: Constants of catenary curve (equation (5))

D : Diameter of support (counterpressure)
d : Diameter of punch (Figure 4)
d " : Diameter of intersection of failure surface with

bottom face of slab (Figure 4)

F : Function of r and r' (eguation(2b))
fc : Compressive concrete (cylinder) strength
ft : Tensile concrete strength
h : Slab (imbedment) depth (Figure 4)
ho : Depth of conical failure surface (Figure 5)
k : Material constant (Figure 2). k = (14sing)/(1-sing)
P : Ultimate punching load
P : Distributed counterpressure
r : Distance of failure surface from centreline (Figure 4)
r' : Derivative of r with respect to =
Sy : Yield force of shear reinforcement per unit area
perpendicular to reinforcing bars
Wy : Rate of external work
: Rate.of internal work
Wy : Rate of internal work per unit area of failure sur-

face

b4 : Coordinate (distance) along slab normal (Figure 4)
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Angle between rate of deformation and failure surface
(Figure 4)

Half angle of conical failure surface

Angle between shear reinforcement and slab (Figure 10)
Rate of deformation kFigure 4)

Principal strain rates (Figure 2)

Material constant. Xi=1-p(k-1)

Material constanf. u=1=p(k+1)

Effectiveness factor. v==fz/fc

Relative tensile strength. o =ft/fc

Principal stresses (Figure 2}

Shear stress. <t =P/n{d+h)h

Angle of friction

Relative distributed load. ¥ =p/f

Degree of shear reinforcement. w==sY/fc
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BASIC ASSUMPTIONS

Figure 1 shows a concrete slab annularly supported and central-
ly loaded by a circular punch. The slab is reinforced in such
a way that flexural failure is prevented. The analysis of
punching shear failure presented below is based upon the as-

" sumptions: .

(a)

(b}

The concrete is rigid, perfectly plastic with the mo-
dified Coulomb failure criterion as yield condition.
The angle of friction is ¢ , the uniaxial compressive
and tensile strength being fc and ft==pfc , respect-
ively. The deformations are governed by the associated
flow rule (normality condition).

The failure mechanism consists in the punching out of a
solid of revelution, the rest of the slab remaining
rigid (cf. Figure 1). The failure surface is in a
plane state of strain. ‘ ' .

Figure 1: Punching shear failure




The modified Coulomb failure criteérion consists:of a- con-
dition of sliding failure:

T = c¢=-otang
and a condition of separation failure:

g = pfc
Here 1 and o are shear and normal stress, respectively, on
an arbitrary section in the material. The cohesion ¢ is
related to the compressive strength fc‘ by the expression:

where the constant Xk .is determined by the angle of friction:

x = 14+ sing
1 ~sing

The yield locus in the case of plane strain is shown onFigure 2.
The Principal stresses are 94 and Oy » and the corresponding
principal strain rates are termed €4 andvez_. The normality
condition requires the vector (c1,52) to be an outward directed
normal to the yield locus. Hence we deduce that:

Stress regime AB : g4 = pfc
(kp---1)fc < Gy < pfc
corresponds to 52/e1= 0
Stress regime B : o4 = pfc
g, = (kp-1)fc
corresponds to - 1/k < ez/e1< 0
Stress regime BC : g4 < pfc
9, = ka1—fc

corresponds to 7 32/e1= -1/k




(g, 1)

Figure 2: Yield locus and flow rule for plane strain

a) . b)

Figure 3: Normal section of failure surface
a: Kinematical discontinuity
b:  Narrow region with homogeneous strain rates




Note that the normality condition excludes the situation
22/31 < =1/k . l

Consider a kinematical discontinuity (failure surface). The
relative velocity is & , directed at‘the angle o to the dis-
continuity. Figure 3a shows thé intersection of the failure
surface with the plane determined by the surface normal n and
the velocity vector & . The discontipuity is an idealization
of a narrow region df.depth A with a high, homogeneous strain
rate &/A (cf. Figure 3b).

The local components of the homerneous strain rate are:

_ & .
EI’i = K S1Rng
Et = 0
(7] = 27 = & coso,
nt ‘nt A

The principal strain rates are given by:

. 1 '
€ =6 (1+sina) /A
1 1 Vi oo y2402 =] 2
= glepte ) sVgle, €p) Vg T

-15 (1-sina) /A

The principal directions are as indicated on Figure 3a. The
first principal axis bisects the anglée between the rate of de-
formation and the surface normal.

The rate of internal work dissipated per unit area of the fail-
ure surface is: ’

wp = (6161 + FZGZ)A '
where the principal stresses are determined'by‘the flow rule.

Since 21/22 = -k for a = ¢ , the rate of intermal work

w, as’'a function of the angle a is given as follows:




o = n/2 (Stress regime AB)

wp = prc

p<o < n/2 (8tress regime B)

wy = 38(1+sina)pf_ - +&(1-sina) (kp=1) £

w_ - 18£_[ (p=kp+1)+ (p+kp=1) sinal.

WI. = %ch(k—usinu) . (1)
a = ¢ (stress regime BC) .

Wy = 48(1+sing)o, - 56 (1-sing) (ko,~£_)

wp = 28f (1-sing)

a < p 1is not allowable.

The parameters X and y are defined as

P
I

1 - p(k-1)

=
1]

T = p(k+1)

Note that equation (1) is valid in the closed interval wiaiw/Z,
and that at the end points the rate of internal work depends

exclusively upon the compressive, respectively the tensile
strenéth.




UPPER BOUND SOLUTION

An upper bound P for the ultimate punching load is found by
equating the rate of work done by the load to the rate of work
dissipated in the failure surface. The rate of external work
is:

W, = Ps

The rate of internal work is found by integration over the

failure surface:

WI = -[WI da’ ’

where w is given by equation (1). The failure surface is

I
sketched on Figure 4. Punch diameter and slab depth are termed
d and h , respectively, and the generatrix of the surface is

described by the function r = r(x) , the coordinate axes being

shown on the figure. fThe area element can then be taken as

dx

da = 2wr
coSsq

The work equation yields:

Wy = Wy

ax

Pé cOsa

1 s
j i&fc(x—u51na)2ﬂr
o
Introduction of the relation tano = g% = r', leads to
the upper bound: "
h

P = ﬂfc J- F(r,r')dx (2a)
o

where

F(r,r') = r(x/A+(xr')z -ur') (2b)




Figure 4: Failure surface generatrix

Assume a failure surface in the shape of a truncated cone with
half angle oy - Then

_ d
r = > + xtanot0
1 o=
ha tanOLo
F(r I") = (...d..+xtanm ) A_—%
! 2 o) cose

and the upper bound becomes

h
P = ﬂfc J. F(r,r")dx
(o)
h (dcosuo+hsinao)(A—USLnao) 3
P = Tl'fc 3 {

2
s5°a
co o




The shape of the failure surface which corresponds to the
lowest upper bound is detexmined by calculus of variations.
The problem amounts to finding thé function r(x) that mini-
mizes the integral fg F(r,r')dx . The Buler equation is
(cf. [4], p.206):

F—i—'Fr. =,

C, being a constant. .The function F is given by equation .
(2b), hence: '

rl

rWIFEZ -ur')- r'r{h —— -y} = ¢
. AF (T )2 1
This may be reduced to:
14+ (') = r¥/c? (4a)
or
et £ r/c? (4b)
where '
c = c1/A

The complete solution to eguation (4b) is:

r = acosh X +psinh X (5)
c c

This function satisfies equation (4a) provided that c?=a2 --b2
and without loss of generality we may take

c = a<=-b

The constants a and b are determined by the boundary condi-
tions. r =4/2 for x =0, yields a = d/2 . If 2r = d1
for x = h , then b is fcund from the equation:

d1

— h . h
- . = acosh c + bsinh c
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di/2 .

Figure 5: Optimal failure surface generatrix

The angle o between the velocity & and the failure surface

is given by:

a = o= 25 x,Db e
tano r c51nh p + Ecosh = \
The minimum value tang = b/c 1is obtained at x = 0 . BAs-

sumption {(a) of the preceding section requires that b/c>tane.
For some values of d, h, and d.l , this condition cannot be
satisfied by the function given by equation (3). In such
cases, the failure surface generatrix will consist of a straight
line in combination with the catenary curve, as sketched on
Figure 5. The generatrix r = r(x) is then:

r = % + x tang for 0<x<h (6a)

x--ho x-h
+ b sinh

r a cosh

for h <=x<h (6b)
O —

The four constants ho' a, b, and ¢ are determined by the
eguations:




=13 =

¢ = /aTBT (7a)
_a I
a = 7+ ho tan¢ (x~h9) :f(7b)
cano = B Clemn )
ane..= g S(x=hy) o (Te)
d1 h-h0 h—ho
5 = a cosh + b sinh — : {x=h) {7d)

The lowest upper bound for the ultimate load is found from
equations (2), the function r{(x) being given py‘equatioﬁh (6).
Thus P 1is the sum of two parts: 2 tn

4

P = P1 + P2 (8a)

where Py and P, are the contributions from ghé conical Qnr-
face and the catenary of revolution, respectively. i

P1 is found from equation (3) with 'aov= v and h = ﬁé:

ho (a cosw+h6 siny) (1~sine)

P, = wf 2 - (8p)
e L. o0s%e
Equations, (2) yield:
. S Rt e
Py, = af, Jf r(AJ1+ir‘i25u;')gx TN
hy

Here rdx = c?d(r') by equation (4b) , hence
CJF(x,r’)ax = ASAFR)Z efdlr’)spSridr - {

= Acz[%%l1+ir'$5 + %ln(x'#&j¥§r'§?)]-%ur2+c1

RS » -l - §
= Ac 5 c-+

N '2, : r _J. : 2. '
FAC In(r'+2) —Hr™ #C,

x-h x-h !
= 1ie1n[22(cosh —2 + sinh —2) J+grOer-ur)+c,
1 1 x--ho x—ho
= 2kc(x h°)+ir[l(bcosh = +asinh )

x-‘ho x-ho
-u{acosh —z— + bsinh —¢ )1 + C
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where equations (4a) and .(6b), have been used, and

R P
C:‘:_ C1 + 2Ac ln‘ o
Thus:
h—ho h---ho h-h
P2 = wf [—Ac(h h ). +2 2 (A (bcosh +asinh ) ~u (acosh +
h-h 1
- za(ib-ua) .
Using eqguations (7a) and (7d), thls may be reduced to (cf. KERN &
JENSEN [5]): ‘ B
1 : 4, . L
P2 iﬂf [Ac(h—h )+ A(——'\&——)z c? - ab) ~*u((—§02‘-a3)] @i (8c)




ANALYTICAL RESULTS

The values of tany , fc‘, and p , as well as the‘punch dia-
meter d , support diameter D , and slab thickness 'h are
assumed to be given. The shape of the optimal failure surface
and the corresponding least upper bound are found by iteration
_on an electronical computer. . The strategy of the iteration
process is as follows: : s

(1) Assume a value of the opening diameter d1, i.e. the dia-
meter of the intersection of the failure surface with the
bottom of the slab.

(2} ‘Assume ho =0

(3) Determlne the constant a from equation (7b) and assume
. a value of the constant b . ‘ -

(4) cCalculate c¢ by equation (75)‘and the radius r, given
by the right hand side of equation (7d) If} k2 is not
sufficiently close to d1/2 , change the value of b and
repeat the step.

(3) If h =0, check if b/c > tanp . If this is not the
case, assume a: value h6 + 0 and repeat the'process
from (3). : Lo
If h + 0 , check if equatlon (7¢) is satisfied.

If not, change the value of ho and repeat the process
from (3).

(6) .Determine P by equations (8)

By this procedure a fallure surface and an upper bound P is
obtained corresponding to the’ ch01ce of d1 . The value of d
which gives the least upper bound is very dependent upon the
assumed tensile concrete strength, i.e. upon the value of p

-For p-= 0 , P decreases with increasing- d1 4+~ which means
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Figure 6: Failure surface generatrices corresponding to

Figure 7: Punching load for zero tensile concrete strength

zZero concrete strength

a} d/h=0. b/h=1.5 2.5, 3.5, 5, and 10
b)Y d/h =1. bp/h

2.5, 3.5, 5, arnd 10

c) d/h 2. D/h 3.5, 5, and 10

a) Load parameter as function of relative support
diameter for various values of relative punch
diameter.

b) Load parameter as function of relative punch
diameter for various values of relative support
diameter.
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F’/u-.h(dw»-h)fc =0
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that the failure surface will always extend all the way to the
support, i.e. d1 = D. Examples of failure surface generatrices
are shown on Figure 6. The angle of friction is assumed to be
© with tang = 0.75. This angle is used in all the calculations
below. The shape of the surface is determined by the relative
punch diameter d/h and the relative support diameter D/h.

As non-dimensional load parameter it turns out to be very con-
venient to use the quantity 'r/fc , where 1 = P/m(d+h)h isw
the nominal shear stress on a cylindrical surface with diameter
d+h. The load parameter is plotted as a function of the rela-
tive support diameter on Figure 7a. The result is rather in-
sensitive to the value of ¢ assumed, except for the smallest

support diameters. The load approaches zero asymptotically as

P/mh@+hf, .

k=t./16 '
‘ . %/m 10
7.

//,’—R___-_rerc/m
-n—.___‘_‘*_

//”—F__-Tq—‘—_hhh“““--___‘___‘n=L/l00

—-_,._H“,_-—"/

EEQ_’,_——"”””’

d/h

1 2 3 4 5 . 8 7 8 9

Figure 8: Punching load for various levels of tensile concrete
strength

10




the support diameter . increases towards infinity. Figure 7b
shows the load parameter as a function of the relative punch
diameter. Note (on both figures) that when the punch diameter
is not too big compared with the support diameter, then the
load parameter is fairly independent of the relative punch
diameter. This fact corroborates the design method of the CEB
building code [6], which is based upon the nominal shear stress
1 defined above. .

The introduction of a finite tensile strength (i.e. p$0)
leads to a finité valug of the optimum opening diameter d1 .
This value is found by iteration. As a starting point is
chosen d1*=d-+2htanm . The support diameter must not be less
than this value in order to comply with the condition a>¢ .
The corresponding upper bound is found by the procedure de-
scribed by points (2)-(6) above. The diameter d1 is then
increased until a minimum of P is found or d1 = D . When the
support diameter is greater than the optimum opening diameter,
then the ultimate load becomes independent of the support dia-
meter (cf. Figure 15 of the section that follows).. The load
parameter is still fairly independent of the relative punch
diameter, as seen on Figure 8 (cf. also Figure 14 below).

From Figure 8, it appears that the tensile strength has a
considerable influence upon the load-carrying capacity. It is
worthy of note, however, that the ultimate load is independent
of the tensile strength, provided the support diameter has the
value D = d + 2htang. In this case, the failure surface
degenerates into a truncated come (cf. Figure 6) and the ul-

timate load is given by equation (3) with o = ¢ , i.e.:
- “1=sing
P TffC h(d +htancp) W (9)

Thus P is proportional to fc . This means that if the
condition D = d + 2htanp 1is satisfied - at least approxim-
ately - by the experimental setup, then punching tests may be

used to determine the compressive concrete strength (cf. JENSEN
, & BRESTRUP [7].




- 20 -

6

a) ¢
2
3
A
5
8
T
€
a
o 5 18 I3 ) = x » ) s s0

N

b) o1
1 :
2 ;
2 :
4 ;
5
s |
7 ‘
[ {
g i
10
L] s 10 15 F F- a0 k- L 5 50

<)

Buauawnaunen

@

5 10 15 x F- x B o - sa

Figure 9: Optimum failure generatrices corresponding to
various levels of tensile concrete strength.

a): op 1/400. d/h
b) = 1/250. d/h
c): p 1/100. d4/h

0, 1, and 2
0, 1, and 2
0, 1, and 2

Figure 9 shows examples of optimum failure generatrices.
The support diameter is supposed to be greath enough so as not
to interfere with the solution. The optimal diameter
is an approximately linear function of the punch diameter, as
seen on Figure 12 of the section below.

The presence of a uniform counterpressure - as when a
column is punching a slab carrying distributed load - has an
effect very similar to that of the tensile strength. If the load
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per unit area is p = xfc , then the solution depends upon the
factor ¥ - in much the same way as on the factor p . This
goes for the shape of the failure surface (cf. Figure 9 ) as
well as for the ultimate load (cf. Figure 8).

The effect of a continuously distributed shear reinforce-
ment is exactly the same as that of a distributed counterpress-
ure. Let the shear reinforcement degree be ¢ = SY/fC , where

s is the yield force per unit area perpendicular to the

rzinforcing bars, and let the bars be incliped at the angle vy
to the slab (cf. Figure 10). The reinforcement is assumed to
be rigid, perfectly plastic and able to resist forces in the
direction ©f the bars only. Then the quantity ¢sin®y will
correspond to the factor X , introduced above.

In practice, the shear reinforcement - if any - will be con-
fined to a region around the punch (or column) and not distri-
buted over the entire slab. In that case, the reinforcement
will not affect the shape of the failure surface, but enhance
the ultimate load by the contribution SYsinY ’ SY being the
total yield force of the reinforcement. This is only correct,
however, provided that a lower upper bound cannotbe obtained
with a failure surface completely inside or completely outside

the shear reinforcement (see Figure 10).

Figure 10: Punching of slab with shear reinforcement.
With dotted lines are indicated possible failure
surfaces not activating the reinforcement.
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The shape of the failure surface may be investigated exper—

imentally by studying the pieces of material punched out of
BACHE & ISEN [8] produced artificial pop-outs

test specimens.

Figure 11:

Profile of artificial pop-out,
hydraulic pressure inside a rubber ball im-
bedded in a mortar specimen (Reproduced
from [8]).

roduced by

di/h

f=1./400

t=1./250

W

Pigure 12:

F.N
X KIERKEGAARD-HANSEN 1954
A HESS 1975
o KAEAN & JENSEN | 1978 d/h
1 2 3 4 5

against relative punch diameter

Relative failure surface opening diameter plotted
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by inflating a rubber ball imbedded near the end face of a
mortar cylinder. A failure profile is shown on Figure 11, and
the shape agrees reasonably well with the theoretical predict-
ions of the preceding section. Note the thinness of the pop
—~out near the edge.

Pull-out tests on plain concrete blocks were performed by
HESS [9]). Two 36 mm diameter steel discs mounted on shafts
were imbedded at the centres of opposite faces of the specimen,
and a tensile force was applied to both shafts. Again, a
striking feature of the failure is the shallowness of the
crater. A total of 11 tests were carried out, but only in
four cases (imbedment depth less then 80 mm) could the failure
be contained within the 500 x 500 mm® face of the block. The

opening diameters d have been measured on the (unpublished)

failure photographs ;nd are plotted on Figure 12 together with
the theoretical curves determined above.

Most tests reported in the literature are one-sided, which
means that a counterpressure (support) is applied. An exper-—
imental investigation carried out by KIERKEGAARD-HANSEN [10]
includes a test series with relative punch diameters close to 1
and the author reports that the failure was contained within
the support diameter, which was 5~-6 times the imbedment depth.
One of the failures is seen on Figure 13. The disc was punched
out by means of a mandrel pushed downwards through the spec-
imen. The shape of two fracture pieces were measured, and the
results are plotted on Figure 12.

The failure surfaces produced by punching of slabs are
generall& disturbed by the presence of bottom reinforcement.
However, KERN & JENSEN [5] have carried out 12 tests using
reinforcement in the circumferential direction only. Slab
depths of 30 and 50 mm were used, and the punch diameter varied
between 30 and 100 mm. All the failures took place within the
300 mm support diameter. The opening diameters were measured
on the original failure photographs (reproduced in [5]) and the
results are plotted on Figure 12.




Figure 13:

Piece of material punched out of concrete

specimen. (Reproduced from [101])
.30
| P/sh@d+hf, M KIERMEGAARD-HANSEN 1964
I ® MAEAN & JENSEN | 1976
.25 -
.20
R 1=1./100
) 0 fi=1./00
fi=0
.05
d/h
0.0 : : :

Figure 14:

Load parameter plotted against relative punch
diameter. Support diameter greater than op-

timum opening diameter.

i
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The determination of the experimental opening diameter is a
somewhat tricky business, due to the irregqularity of the failure
crater. KIERKEGAARD-HANSEN [10] measured the projected area
of the failure surface (cf. Figure 13) and the value of d1
plotted is the diameter of a circle with the same area. In the
other cases, the diameters are judged from photographs taken
after failure. .

The diagram of Figure 12 shows a marked difference between
the free failures from [9] and the failures with supports [5]
and [10]. This suggests the conclusion that the presence of a
counterpressure may have a disturbing effect upon the develop-
ment of the failure, although the failure surface does not reach
the support. Apart from that, the variation of the opening
diameter with the punch diameter conforms rather well with the
theoretical prediction.

The ultimate loads from KERN & JENSEN [5] and the series
from KIERKEGAARD-HANSEN [10] mentioned above are plotted on
Figure 14 against the punch diameter. The theoretical curves
shown correspond to a support diameter which is too great to
affect the solution. The points corresponding to [10] lie
close together, whereas the results from [5] are more scattered.
As predicted, there seems to be no systematic variation of the
load parameter with the relative punch diameter.

Most of the tests described in reference [10] we carried
out with d = h = 25 mm, and the investigation includes three
series where only the support diameter was varied. The con-
crete cylinder strengths were 118, 294, and 395 kp/cm?, re-
spectively. The ultimate loads are plotted oﬂ Figure 15, with
the exception of two tests where the loading was interrupted
because of miéalignment of the setup. The plot also includes
the results from Figure 14 which had d = h . The tests from
[10] had concrete étrengths between 201 and 214 kp/cmz,whereas
the concrete strengths of KERN & JENSEN [5] varied between 16.9
and 30.7 N/mm?2.
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"J
P/chc+hf, & [ AIEAMEGRAAD-HAMSEN 1984  FC =|118 KP/CM2
: ® KIERMEGAARD-HANSEN 1964 FC 21294 KP/CM2
: & WIERHEGARAD-HANSEN 1964 FC =385 KPsCM2
A KIERKEGAARD-HANSEN FC = P
h=1.0 + D~-HANGE 1964 210 KP/CM2
\ﬁ X HKAERN & JENSEN | 1976
. fl=f,,./100
\ f=£,/400
&
‘ | 5
o] o —— ]
ro]
o
- %
D/h
1 2 4 E 6 7 g 9 10

Figure 15: Load parameter plotted against relative support
diameter. Punch diameter equal to slab (imbed-

ment) depth.

Figure 15 shows the theoretical curves for d/h = 1 corres-

ponding to various levels of relative tensile strength.

One

of the series is seen to fit extraordinafily well to the curve

for p =

than predicted.
and the limited deformability of the concrete, which makes it
highly unlikely that the uniaxial compressive strength be ob-
tained at all points of the failure surface at the instant of

0 , but the majority of the ultimate loads are lower
This may be explained by the strain-softening
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failure. Thus we are led to- the introduction of an effective com-
pressive strength fz which is a fraction v = fz/fc of the
cylinder strength. (The effectiveness factor v also occurs
in other problems involving shear in concrete, cf. references
{11,021, and [3]). 'From Figure 15 it appears that v is the
smaller, the stronger the concrete.

in order to predict the ultimate load of a given punching
problem, we need to assess the magnitude of the relative ten—
sile strength p and the effectiveness factor Vv . Accepting
the argument that the presence of a support may disturb the
failure surface formation, then from Figure 12 it appears that
to get realistic results we should assume p = 1/400., This very
low value suggests that the effectiveness factor on the ten-
sile strength is much lower than on the compressive strength,
as is to be expected considering the very reduced deformability
of concrete in tension.

Having decided upon p we can find the effectiveness factor
v as the ratio between experimental and theoretical ultimate
ioads. This has been done for all the tests of Figures 14 and
15, except the two with the lowest support diameter (cf. Figure
15) for which no theoretical counterpart is defined. The re-
sult for the 54 tests is an average effectiveness factor of
v = 0.835 with a coefficient of variation of 15.8%.

The aim of the experimental investigation carried out by
KIERKEGAARD-HANSEN [10] was to develop a pull-out test to measure
the compressive concrete strength. With imbedment depth and
punch diameter constant at 4 = h = 25 mm , it was found that
in order to ensure a good correlation between pull-out force
and cylinder strength, the support diameter should not be
greater than D = 60 mm , corresponding to tanuo = 0.70 ,
oy being the half angle of the truncated cone punched out.
This result agrees with the theory presented, since we found
that the punching force would be influenced by the tensile
strength if tano;0 > tang . For concrete it is generally ac-
cepted that tanp = 0.75.
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Based upon the experiments described in {10], the so-called
lok-test apparatus was designed with D = 55 mm ; correspond-
ing to tanao = 0.60 . Adhering strictly to the physical as-
sumptions introduced, a failure surface with tana, < tang is
not acceptable. However, as explained by JENSEN & BRESTRUP
[7), this méans that the pull-out force will be greater than
predicted, but we would still expect a good correlation with
the cylinder strength. That this is indeed the case is seen
on Figure 16, which shows the results of lok-tests carried out
at the Structural Research Laboratory [11]. The straight line
is the theoretical relationship we would get by equation (9)
if the angle of friction for concrete corresponded to tany=0.60.
As expected, the actual pull-out strengths are somewhat higher.

P, Mp
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Figure 16: Pull-out force plotted against concrete cylinder
strength. (test results from [11])
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CONCLUSIONS

Bagsed upon very simple physical assumptions (the modified Cou-
lomb failure criterion with associated flow rule), the shape of
the failure surface has been determined in good agreement with
observations from punching and pull-out test. A ratio of

p = 1/400 between tensile and compressive concrete strengths
should be used in the formulae.

Then the ultimate load may be calculated, assuming an effect-
ive compressive concrete strength egqual to 84% of the cylinder
strength. The coefficient of variation is rather high (16%),
indicating that the model does not give a gquantitatively sa-
tisfactory' description of the punching failure. It does, how-
ever, give a gualitative explanation of the phenomena observed.
It further gives a theoretical foundation for the use of pull
-out test to determine the compressive concrete strength, pro-
vided a suitable geometry of the test apparatus is specified.
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SUMMARY

A slab on an anpular support, centrally loaded by a circular
punch, is considered. The concrete is assumed to be rigid,
perfectly plastic} and as yield condition is used the modified
Coulomb failure criterion with the associated flow rule (norm-
ality condition). The failure mechanism assumed consists in
the punching out of a solid of revolution, the rest of the slab
remaining rigid. Equating the rate of work doné by the punch
to the rate of work dissipated in the failure surface, an upper
bound for the ultimate load is calculated.

The shape of the failure surface is determined by variation-
al caleulus. The generatrix is a catenary curve, possibly in
combination with a straight line. The optimum diameter of the
intersection with the bottom face of the slab and the corres-—
ponding ultimate load are found by iteration as functions of
punch diameter, slab depth, and tensile and compressive con-
crete strengths. ) ) ‘

With a certain support diameter, the failure surface de-
generates ipto a truncated cope.  In thig case, the ultimate
load is pfoportional to the compressive concrete strength, in-
dependently of the tensile strength

The effects of shear reinforcement and of dlstrlbuted counter-
pressure are studied. ‘ ‘ )

The theoretical éoiution ig compared with punching tests on
slabs and pull-out tests on plain concrete specimens. Concern-—
ing the failure surface shape, the best agreement is obtained
with the ratio of tensile to compreSSive‘donérete strength egqual
to 1/400. Using this value, the best agreement concerning the
ultimate load is obtained with an effective compressive con-
crete strength equal to 84% of the cyllnder strength, the
coefficient of variation being 16%.
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