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1. INTRODUCTION

The ultimate strength of reinforced concrete beams subjected to
shear has received considerable interest during recent years and the
literature on the subject is almost overwhelming. Most papers, how-
ever, report specific test series and supply formulas to accomodate
the results obtained. Attempts to predict the shear resistance on a
rational analysis of the behaviour of the beam materials are rather
few.

Traditionally the shear strength of reinforced concrete beams has
been calculated by means of the Mérsch truss analogy. Since experi-
ence shows that the load-carrying capacity is seriously underesti-
mated, attempts have been made to improve the formula by adding
various terms. Thus most codes of practice allow a »contribution
from the concrete» independent of the shear reinforcement. Many
other and more sophisticated additive formulas may be found in the
literature,

Another trend is represented by the potential formulas which are
derived by expressing the shear strength as a power product of the re-
levant parameters. The unknown exponents are then found by corre-
lation with tests.

By combining the two kinds of formulas it is possible to arrive at
expressions that agree remarkably well with any given test series.

* Professor, dr.techn., Structural Research Laboratory, Technical University of
Denmark.

*k Civil engineer, lic.techn., Structural Research Laboratory, Technical Universi-
ty of Denmark.
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Only a few authors have sought a solution to the shear problem
using the mathematical theory of plasticity. This fact is puzzling con-
sidering the remarkable results obtained by plastic analysis of slabs,
discs, and beams in bending. In deriving a rational estimate of the
shear strength of a reinforced concrete beam, the crux of the matter
is to establish an expression for the inclination ¢ of the uniaxial web
compression. Assuming plastic properties of the beam materials Ni-
elsen [1] determined ¢ by the requirement that the total amount of
reinforcement be at a minimum. In a subsequent discussion Nielsen
[2] established the yield load when web crushing is critical.

Earlier attempts to use the theory of plasticity (Borishansky &
Gvozdev [3], Sigalov & Strongin [4], pp. 79 ff.) are based on an up-
perbound technique where the end of the beam is supposed to rotate
about a plastic hinge at the head of the crack (fig. 1). A similar mech-
anism forms the basis of the shear compression theories of Walther
[5], Regan & Placas [6], and others.

The mechanism of fig. 1, however, is contradicted by experiments
which show no evidence of yielding of the main reinforcement cros-
sing the crack. Hence, neglecting the elastic elongation of the rein-
forcement, we conclude that the centre of rotation - if any - is not at
the head of the crack, but at some position at the level of the main
reinforcement. Thus the deformation is not a simple opening of the
crack but involves tangential shearing as well.

. The vinterface shear transfer» is taken into account in the report
of the joint ASCE-ACI Task Committee 426 [7]. The existence of
shear forces in the diagonal crack has indeed been demonstrated by
various experiments, e.g. by Taylor [8], who prefers the label »aggre-
gate interlock». Here we shall simply regard these forces as arising
from the resistance of the concrete against shear deformations, as
displayed by the failure condition.

hinge
c."c‘c’\L

I

Fig. 1. Failure mechanism according to Borishansky & Guozdev [3), Sigalov &
Strongin [4], Walther {5), Regan & Placas {6], and others.
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Fig. 2. Failure mechanism adopted in the present paper.

In the present paper we shall establish an upper bound, using a
mechanism with no rotation at all, i.e. we assume the relative dis-
placement rate of the two sides of the crack to be purely vertical at
failure (fig. 2). We shall demonstrate that the corresponding upper
bound for the load-carrying capacity is identical to the lower bound
furnished by Nielsen’s web crushing criterion.

2. PHYSICAL MODEL

We assume that the beam is in a state of plane stress, i.e. we regard
the beam as a two-dimensional body. We consider the part of a rec-
tangular beam of width b occupying theregion0 < x<aandO0<y
< h, where a is the shear span and h is the depth of the beam (fig. 3).

The section x = 0 corresponds to a point of inflexion and x = a is
a point of maximum moment. At an arbitrary section x = x the beam
is subjected to a moment M and a shear force V.,

Fy x

Fig. 3. Two-dimensional beam model.
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We assume that the beam has a tension stringer at y = 0 and a
compression stringer at y = h. Both stringers are perfectly plastic,
the yield force of the tension stringer (main reinforcement) being
Fy, assumed to be constant throughout the shear span. The shear re-
inforcement consists of perfectly plastic, vertical stirrups whose con-
stant spacing is sufficiently small so they can be characterized by the
equivalent yield stress sy per unit area perpendicular to the stirrup

direction (the parameter s, is often denoted rfy). The reinforcement

as well as the stringers are unable to resist deformations perpendicu-
lar to their direction.

The concrete occupying the region 0 < y < h is supposed to be
perfectly plastic with a square yield locus corresponding to the com-
pressive yield stress o, and the tensile yield stress zero (fig. 4).

-As an example of the application of the square yield locus and
the theory of plasticity to concrete in plane stress, let us consider
the failure of concrete under a uniaxial, compressive stress o, (fig. 5).

02

(-0, -0, ) Ty L)

Fig. 4. Yield locus for concrete in plane stress.

2
a
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Fig. 5. Failure of concrete under unioxial compression.
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A lower bound for the failure stress is obviously
% = %

An upper bound is found assuming a straight yield line forming
the angle ¥ with the direction of compression. Let § be the relative
displacement rate across the yield line and let it be inclined at the
angle § to the yield line normal (fig. 5). The rate of internal work
(plastic dissipation) per unit length, corresponding to the square
yield locus is then (see e.g. Nielsen [9], pp. 69 ff.):

W; =% o, 8(1 —cos f) (1)
The rate of external work is
Wg =0, & sin (8 —7) siny

Equating the rates of internal and external work we find an upper
bound for the failure stress:
(1 —cos B)o,
% = 2sin(f —7v) sin vy

The minimum upper bound is found from the conditions

X ag
—b_ —b_
35 0 and 3y 0
Both equations yield the result:
B=2y (2)
which gives
% = 0

Thus the assumed mechanism gives the correct solution and we
obtain the relation (2) between the directions of the yield line and
the relative displacement rate under uniaxial compression.

We have used the term »yield line» to designate the kinematic dis-
continuity, because the term »crack» may be somewhat confusing.
Traditionally, cracks in concrete are conceived as brittle fractures
caused by tensile stresses. Thus they follow the direction of principal
compressive stress and there is no shear transfer. This requires that
the relative displacement rate be perpendicular to the crack (8 = 0).
On the other hand, it is customary to speak of »shear cracksy in con-
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nection with shear in beams, where the direction of the displacement
rate is governed by the main reinforcement. In order to avoid am-
biguity we shall use the term »yield line» in such cases. Thus a yield
line is a curve where the deformations are located. It is a mathemati-
cal idealization of a narrow region with many criss-crossing cracks
and crushing zones. In the case of plane stress, the relative displace-
ment rate may be at any angle to the yield line, which in general does
not follow a principal stress trajectory.

3. CONCENTRATED LOADING
3.1, Lower-Bound Solution

Let us consider a traditional shear test, i.e. a simply supported beam
subjected to two concentrated loads P applied symmetrically at the
distance a from the supports (fig. 6).

We derive a lower bound for the load P by assuming a statically
admissible stress distribution. Denoting the elements of the stress
tensor in the x,y-system by o_, Oys Tay and the stringer force by N,
we assume the state of stress at an arbitrary beam section x = x given
by:

N, =—C fory=h (3a)
0 =0y cos?y

oy=—absin2¢+s for0<y<h (3b)
Tyy =~ 0p COS @ SIDY

N, =F fory=0 (3¢c)

) '

- |
ic ‘
Te l h
1P F —
] 1
el ;
a |

Fig. 6. Stress distribution for simple beam with symmelrical point loads.

66




PLASTIC SHEAR STRENGTH OF REINFORCED CONCRETE BEAMS

Here C and F are the compressive and tensile stringer forces, respec-
tively, and s is the equivalent stirrup stress (per unit area normal to
the stirrups). The state of stress in the concrete corresponds to a uni-
axial compression ¢, inclined at the angle ¢ to the x-axis (fig. 6).

We now make the additional assumption that the stress is homo-
geneous throughout the beam, i.e. oy, and y are constants. The three
equations of equilibrium at the section are then:

0=F —C—opbhcos’y (4a)
V =g, bh cos ¢ sin (4b)
M = hF —% %, bh? cos? ¢ (4e)

We assume that the conditions at the support are such that the

boundary conditions for ¢, and Tgy AN be satisfied at x = 0. The

conditions at the load (x = a) will be considered below. The bound-
ary conditions at the lower and upper faces of the beam are:

_1dF

v~ b dx and ay=0 at y=0
-_1dC - -
"~ Db dx and ay—O at y=h

Using the relation V = dM/dx, we note from equations (4) that the
boundary conditions for 7, are satisfied. The conditions for o, im-
ply that the stress distribution is statically admissible, provided we
put

s = 0y sin’y (5)

Inserting into the equilibrium equations (4), we get:

0 =F — C — sbhcot?¢ (6a)
P =V = sbhcoty (6b)
Px =M =hF —1 sbh®cot?y = h(F —% Vcot) (6¢)

where we have expressed the stress resultants V and M by the ex-
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ternal load P. Eliminating coty between equations (6b) and (6c) we
obtain an equation for the load:

2Fbhs = P? + 2Pbxs

Since s is constant by equation (5), only F varies with x and we note
that the maximum value F = F; occurs for x = a. Hence

P =+/(bas)*+ 2F bhs — bas
is a lower bound for the load. P being an increasing function of s and
Fy1»> the best lower bound is obtained for s = s v and Fy; = Fy. Thus
the lower-bound solution for the load-carrying capacity is:

a
o=V Y+ 2my =Y (7

Here we have introduced the parameters 7, ¢, and n defined as:

N L S
bh ’ g, '’ bha,
Thus 7 is the nominal shear stress while ¢ and n are dimensionless
parameters describing the strength of shear and longitudinal rein-
forcement, respectively.
Equation (7) expresses /0, as a monotonously increasing function
of ¥, and we note that:

® o

n for — -

IR

Thus, as the shear reinforcement is increased, the load tends a-
symptotically to the yield load in pure flexion, Pg = th [a. For small
values of ¢ the applicability of equation (7) may be restricted by
bounds on coty, depending on the conditions of support and loading.

The lower-bound solution of equation (7) is not very realistic, due
to the fact that the critical section with yielding of the main rein-
forcement is at x = a where the assumed homogeneous stress distri-
bution is highly improbable. In order to derive a better lower bound
we modify the stress distribution as indicated on fig. 7, assuming a
stress-free region under the load. Thusat x=awehave C=F =F; =
Pa/h.

According to equation (6c):

68




PLASTIC SHEAR STRENGTH OF REINFORCED CONCRETE BEAMS

P
. C=Fy
R W 3P coty
1 17F - iy
PT FM“-EPCOtl.P TPCOt\p 1hC0‘t
X
J;-PhcohpI
M Pa
M‘

Fig. 7. Modified stress distribution and tensile stringer force for beam with con-
‘ centrated loading.

_Px

h
Hence F = Pa/h at the section x = a — 1/2 h coty and we assume
that F remains constant for a — 1/2 h coty < x < a. The shaded re-
gion on fig. 7 (where the stress state is not homogeneous) is in equi-
librium under the applied loads, provided we assume that it carries
the vertical load P and the part 1/2 P coty of the compressive stringer
force C = Fy; (cf. fig. 7). The state of stress in the shaded region is
considered in detail by Nielsen [1].

Putting Fy; = Fy, we now get P = th /a = Pg, i.e. when the main
reinforcement is yielding the beam has reached its flexural capacity.
If the beam is to fail before that, it must be because the inclined con-
crete compressive stress becomes critical. Requiring o, = 0., We get
from equation (5):

F +—;—Pcotw

coty = -;*-wl

The load P is then determined by equation (6b):
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/o, -
P =sbh ?_1 = bh Vs(o,—s)

This equation determines P as an increasing function of s as long
as s < o,/2. Hence the best lower bound is obtained for s = Sy ie.:

cotg =+ F—1 (8)

1
and

==V —¥) (92)
c

for ¢ < 1/2.

For ¢ > 1/2 the optimum equivalent stirrup stress is s = ¢/2 and
we get:

T _1
02 (9b)
Thus in this case the stirrups do not yield.

For small values of {, equation (9a) may be restricted by bounds
on the value of coty, depending on the support conditions.

Fig. 7 also shows the variation of the tensile stringer force which
has to be carried by the longitudinal reinforcement. As is well known,
it is not sufficient to design the main reinforcement according to the
pure moment curve. Outside the vicinity of the maximum moment
the tensile stringer force should be derived from the modified mo-

ment distribution M* obtained from equation (6¢):
hF=M*=M+1 Vheoty (10)

where coty is given by equation (8).
The compressive stringer force is also given by equations (6):

C=F—Vcot‘,a=%M—é-—Vcotap (11)

We note that for x < 1/2 h coty the compressive stringer force is
negative, meaning that we get tension in the compressive flange, as
is observed during tests. The absence of reinforcement to resist this
tensile force does not lead to a decrease in the load-carrying capacity
since we may modify the stress distribution at the support in a simi-
lar way as at the maximum moment (cf. Nielsen [1]).
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3.2 Upper-Bound Solution

To find an upper bound for the load P we assume a failure mechanism
consisting of a vertical shear deformation at an inclined yield line
(fig. 8a). Denoting the inclination of the yield line by 6 and the rela-
tive displacement rate by &, we find the rate of internal work (plastic
dissipation):

= sh 1
W = Bsy bhcoté + vy bo (1 — cosd) (12)

Here the first term is the contribution from the stirrups crossing the

yield line and the second term is obtained from equation (1). The
rate of external work being

Wg =Ps
we find the upper bound to be:

1 1
P = sy bheotd + 3 o,bh (= —cotd) =1 o,bh T+ cot?s
_
(2 0, sy)bh cotd
On non-dimensional form:

=5 VIt cot?d —k —y)eotd =1 (/T+ cot?d — pcotd)
- )

1P

a) /

Sy 5

el u

a) Concentrated deformations

[ S U

-

b)

b) Distributed deformations

Fig. 8. Failure mechanism for beam with concentrated loading.
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where we have introduced the additional parameter
p=1—2¢

The optimal inclination of the yield line and the lowest upper
bound is obtained from the condition:

daP_ _
d(cots) 0
which gives:
p 1—2y
t0 = = 13
N e ST T (13)
and
L=3VI=p? =VUA V) (14a)
[+

Equation (12) is valid as long as there is extension of the stirrups,
i.e. cotd > 0 or ¢y < 1/2. For ¢ > 1/2 the lowest upper bound is ob-
tained for cotd = 0, whence:

1
A for V=35 (14b)

For small values of ¢ the geometry of the beam poses the re-
striction cotf < a/h, from which:

7 _Valthl—(1—2y)a
0, 2h

(14c¢)

for
Jalth* —a _

g ~ —— =
VSTavmam Vo
The value y, is rather small. For a/h = 3 we get:

_yJaf+ h*—a _/10—3 _
7% o/ai+b?  2v10 = 0.0256
Taking the ratio between stirrup yield stress and concrete cylinder
strength to be 15, this corresponds to a shear reinforcement ratio of
less than 0.2%.

The upper bound, equations (14), and the lower bound, equations
(9), are plotted on fig. 9a in the case of a/h = 3. We note that for
¥ = Y, the upper-bound solution coincides with the lower-bound
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solution, equations (9), found above. This means that the web
crushing criterion gives the correct plastic load-carrying capacity ac-
cording to the assumptions made.

For ¢ < ¢, the web crushing criterion is only an upper bound,
still it gives a fairly good description of the shear strength, even for
beams without any shear reinforcement. Putting ¢ =0, we find:

T _valth'—a
0, 2h
In accordance with experimental evidence*, the shear strength is a

decreasing function of the shear span ratio a/h. The curve is plotted
on fig. 9b.

1/o,

0.2

/

SHEAR STRENGTH

T~

a/h
0 1 2 3 4 5 6

SHEAR SPAN RATIO

Fig. 9b. Web-crushing criterion for beams without shear reinforcement.

* As for shear-reinforced beams an effective concrete strength o: =vo, See sec-
tion 6, has to be introduced. Test results on beams with rectangular section in-
dicate » ~ 0.6, when h is put equal to the full height of the section. Beams with-
out shear reinforcement will not be further treated here.
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Comparing figs. 5, 6, and 8a we identify the angles 8 and v of fig.
5 as:

B=6 and vy=0—v
Hence equation (2) yields:
=20 —¢p) or 8=2

We note from equations (8) and (13) that this is indeed the case.

For mathematical convenience we have assumed the deformation
to be concentrated in a diagonal yield line. As seen on fig. 8a, the
yield line may be at an arbitrary position between the load and the
support. We might as well assume the deformations to be distributed
over the region between load and support, as shown on fig. 8b.

4. DISTRIBUTED LOADING
4.1 Lower-Bound Solution

We now turn to the case of a simply supported beam loaded symme-
trically by an equally distributed load p per unit area of the shear
span (fig. 10).

To derive a lower-bound solution we assume a state of stress in
the beam as given by equations (3) with ¢ constant, However, since
the boundary conditions for 0y, now require:

o,sin’e = at y=0
and ,
oysinp =s+p at y=h

RSN R RN RN RN RRRRLL

| % %oz & h
@ S9 /® So. P © S _,

' &
bpa

a

Fig. 10. Stress distribution for simple beam with distributed loading.
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we can no longer take g, and s to be constants. We construct astat-
ically admissible stress distribution, proceeding as indicated by Niel-
sen [1], assuming o, constant in n regions bounded by the beam
faces and planes inclined at the angle ¢ and vertically spaced at the
distance h, starting at the section x = a (fig. 10). Similarly, s is as-
sumed constant in the corresponding n—1 intervals along the x-axis.
Introducing the notation o, for the compressive concrete stress in

the kb region and s, for the equivalent stirrup stress in the ktH in-

terval (cf. fig. 10), we find from the boundary conditions for Oy

o Sine =8 =s 1+ P (15)

The boundary conditions for Tyy require:

dF
aty=0: d—xk =— bTxyk = boy, cospsing = bs; coty
dacC, )
aty=h: = bT:;yk+ 1 = boy, , 1 cOsypsing = b(s, + p) coty

We note that while o, and s decrease with increasing x, then F and
C are increasing functions of x, varying linearly within each interval
k. Hence the maximum value F; of the tensile stringer force is ob-
tained at the section x = a in the first interval. On the other hand
0y, and s, are the minimum values of the compressive concrete stress
and the equivalent stirrup stress, respectively.

We assume 0,; = 0 and s; = 0. Hence in the kth interval, i.e. for
a — x = Ahcoty, where k — 1 < A < k, we find after some manipula-
tion:

oSin’e = s, = (k—1)p
Fy = Fy — (k —1) (\ —5) bph cot?y

The equilibrium equations at an arbitrary section of the k*® in-
terval can now be established (cf. equations (6)): ‘

0=F—C,—(k— A)op bheos’o — (A —k + L)op, | 4 bhcos®

= Fy— C,—k [\ —3 (k — 1)] bphcot? ¢ (162)
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bp(a—x)=V=(k—)\)obkhcosw sing+ (A—k+ l)obk+ 1 bhcosypsing

= [s, + (\—k+ 1)p] bheoty = Apbhcoty (16b)
1 bpx(2a—x)=M=nF,—Ex —Lk+ 1) (k —2)o,, bh? cos?
szx(a x)=M=hF_ (27\ 2 ) ( A)op, bh* cos? ¢

—%()\ —k+ 1)%0,, . 4bh’cos’y
= hF, —*‘%[sk + (A —k + 1)?p]bh® cot?p

= hFy, —% A?bph? cot? ¢ (16¢)

Equation (16b) is identically satisfied whereas equation (16¢) de-
termines the load. Considering the section x =a (k = 1, A = 0), we
get:

1
Ebpa2 =M = hFy,

The best lower bound is obtained for Fy = Fy, ie.

2th

We conclude that if the beam fails by yielding of the main rein-
forcement, it has reached the flexural capacity pp- If the beam fails
in shear it must be because the maximum compressive concrete stress
has reached the cylinder strength, i.e. o, = 0,. Hence, by equation
(15)

2am2 =
0817w =8y, + p
ie.
g

= C J—
coty st D 1 17)

where sy; = s, is the maximum equivalent stirrup stress (in the
last interval). The shear force at the support x = 0 is found from e-
gquation (16b):
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/ o
bpa = (sy; + kp)bh j_ -1

M

p
where k = —— — n + 2 is a factor (0 < « < 1) which accounts for

he t«P
the fact that the shear span a is not necessarily a multiplum of hcoty.
Assuming « = 1, we get:

pa=hv(sy + p) (6, — sy — D)

with the solution

2

p=§(a—2}_l+j—ﬁ§—)[a 25M+‘/ +4% SM(O syl d

The load p is an increasing function of sy as long as sy, =
1/2 ¢,(1 — h/a). Hence for 0 < ¢ < 1/2(1 — h/a) the best lower

bound is obtained for sy, = Sy, L.

T 1 ___mw—- P
Here we have introduced the nominal shear 7 = pa/h. For ¢ >
1/2(1 — h/a) the stirrups do not yield, and we get

r_1 (18b)

In general we will have x < 1 corresponding to the situation
shown on fig. 10 where the nth stress region does not reach the ten-
sile stringer. Thus egs. (18) are not a true lower bound, since the
approximation k = 1 is not a conservative one. However, as the com-
pressive concrete stress is concentrated above the main reinforcing
bars (except for I-beams) we would not expect web crushing to be
critical before the cylinder strength is reached at the level of the
main reinforcement, in which case our assumption is justified.

The tensile stringer force is shown on fig. 11. We note from equa-
tions (16) that only at the interval points do we have hF = M* , where
M* is the modified moment distribution defined by equatlon (10),
and coty is given by equation (17). This is due to the fact that we
require F to vary linearly within each interval.
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hcoty

-
(=2

P

Jibpuhcotq{

M 4 bpa?

M"
Fig. 11. Tensile stringer force for beam with distributed loading,

Also equation (11) for the compressive stringer force holds at the
interval points only. As with concentrated loading, we get a region
near the support with tension in the compression flange.

4.2. Upper-Bound Solution

We derive an upper bound for the yield load assuming a failure mech- -
anism consisting of an inclined yield line with the inclination 6
starting at the support (fig. 12). The vertical displacement rate being
&, the rate of internal work is given by equation (12):

1 —cosh

_ 1
WI = SsybhcotB + 60c bh Sinf

2

The rate of external work is:

Wg = 8 bp(a — hcotf)

HIHHH/HHHHHHHlep

P
_~T\©

fopa
- a

S I

Fig. 12, Failure mechanism for beam with distributed loading.
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Equating the two expressions, we find an upper bound for the load
p:

1 1
B hsycote + 5 hoc(sine cotd)

P~ a — hcotd

On non-dimensional form:

% (v/1+ cot?d —pcotb)a

a— hcotd

T =
%

The minimum upper bound is found requiring dr/dcotd = 0, lead-
ing to:

_ 1
a(1 —p?)

cotd [pvVa* (1l —p?)+ h* —h] (19)

and

2
e rarara (EE VRN BPE SICER) ReTS)

We note that cotd > 0 for h/a < p < 1. Hence for large values of
¥, equation (20a) is replaced by:

h
2) (20b)

there is no restriction for small values of J since

2 _ 12 6
p—+1 = cotf - a}qf_k<% (in fact cot (—2-)=%)
and
T ah
?‘:=a2+h2 for ¢ =0

We might expect to obtain a smaller upper bound, considering a
curved yield line. Using calculus of variations it is easy to show, how-
ever, that of all curves starting at the support, the straight line is in
fact optimal. Indeed, we note that the upper bound, equations (20),
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is identical to the lower bound, equations (18). Hence we have de-
termined the correct yield load. Accordingly, equation (17) with

SM T Sy yields:

1 _1=ﬂ1+p)+hz—h\/.'-;12(1~—p2)+lrxz
b+ BT a*(1—p) + b+ hv/a>(1 —p*) + h?
ao
[+

This may be reduced to:

cot?y =

a(l + p)
h+val(l—p?) + I

coty =
On the other hand, by equation (19):

tan%= v1+ cot?d — coto

:a(]_ ip)z [\/32(1—p2)+ hz——hp “P\/az(l—pr2)+ hZ+ h]

_h++a?(1 —p2)+ h?
- a(l+p)

Thus we have § = 2¢, as we would expect.

The yield load as a function of the shear reinforcement, equations
(20), is plotted on fig. 9a for the case of a/h = 3.

Inversion of equation (20a) yields:

v =g 1= B T4,y

a

whereas inversion of equation (14a) gives;
1
V=g 1 —VI=4G/o,)]

Hence the distance between the two curves measured parallel to the
Y -axis equals hr/ao, = p/crc (cf. fig. 9a). This means that in order to
get the same shear capacity by distributed loading as by concentrated
loading we may reduce the necessary shear reinforcement s by the
amount p. We also note, comparing equations (19) and (13), that
the yield line is steeper by distributed loading.
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5. INCLINED STIRRUFPS

In the preceding sections we have assumed the stirrups to be vertical.
We now modify the model, considering stirrups inclined at an angle
a(0<a< -72T~) to the beam axis (fig. 13). We still assume that the ac-
tion of the stirrups can be described by an equivalent stirrup stress s,
per unit area normal to the stirrups. The yield stress s is then pro-
portional to the volume of shear reinforcement, if we neglect the
amount of steel required for anchoring the stirrups (including the
horizontal legs in the case of closed stirrups).

For simplicity we consider only the case of concentrated loading.
The stress distribution, equations (3), is modified to:

N, =—C fory=h

o, =—o,cos’p+ scos’e

oy =—0bsin2<,o+ssin2a for0<y<h
Tey = 0pCOSP sing — s cosa sina

N, =F fory=20

The equilibrium equations (4) now become:

0= F —C — g, bhcos®p + sbhcos®a

V= obbhcospsin¢ + sbhcosasina

1

M=hF— 9 abbh2 cos?y + % sbh? cos? o

IANAN

Fig. 13. Beam with inclined stirrups.

NN

Q -1
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We note that the boundary conditions for Tey 8Ly = Oand y = h are

satisfied. The boundary conditions for oy imply:
ssin’q = g siny
The counterparts of equations (6) are then:
0 =F — C — sbhsin® a(cot?y + cot?a)

P = V = sbhsin® a(coty + cota)

Px=M=hF —-% sbh? sin? @(cot? v — cot? a)
= h[F —m% V(coty — cota)]

As before we modify the stress distribution in the vicinity of the
load, requiring F = Fyy = Pa/h in the interval a ——% h(coty — cota)
< x < a. Thus shear failure occurs by crushing of the concrete,
whence:

I

- —1
coty =+/ ssina

and the lower bound is:

7 =+/ssin* (g, —s sin’a) + s cosasina

.. . . . 1 .
This is an increasing function of s as long as s< Eac(l + cosa)/sin® a.
Hence the maximum lower bound is obtained for s = Sg» ie.

coty =/—2——1 (21)

Vysin®a

and

F=+/ysin’a(l — ysin’a) + ¥ cosasina (22a)
c

for é%(l + cosa)sin® a.

For ¢ > 3 (1 + cosa)/sin’a the maximum lower bound is ob-

tained for s = % o, (1+ cosa)/sin’ @, i.e. the stirrups are not yielding
at failure of the beam, and we get

r_1l+tcose 1 —a
0.~ 2sina 2 °°t% (22b)
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To find an upper bound we note that equation (12) for the rate of
internal work in a failure mechanism consisting of a vertical displace-
ment rate § in an inclined yield line with the inclination 6 is modi-
fied to:

Wy —5s sin? abh(coté + cotoz)+ 5h b (1 —cosf)

Hence the upper bound for the load becomes:

T T

;—= ¥sin? a(coté + cota) + = 5 (\/1 + cot?8 —cotd)
The condition dr/d(cot8) = 0 yields the inclination:

1 —2¢sin*a
2/ ¥sin? a(1 — ¥sin®a)

cotd = (23)

This leads to the minimum upper bound:

';,T— =+/ysin® a(1 — ysin®a) + Y cosasing
[

Thus the upper bound equals the lower bound, equation (22a), and
comparing equations (21) and (23) we note that § = 2, as we would
expect.

The requirement that the stirrups be in tension, i.e. coté + cota =
0, now gives ¢ <3 (1 + cosa)/sin’a. For ¢ greater than this value,
the lowest upper bound is obtained for coté = — cota, i.e.
(\/1 + cot?a + cota) = cotj,z—

oc

as found above, equation (22b).
The upper bound is valid as long as cotf < a/h. For cotd = a/h we
find:

7 _y/a?+ h®— (1 —2¢sin*a)a

¢ . 2h

+ Y cosasina (22c¢)

which holds for ¢ < ¥, where Yo is now given as:

1 +a?+h*—a
sina 2+/a?+ h?

Vg =

84




PLASTIC SHEAR STRENGTH OF REINFORCED CONCRETE BEAMS

With respect to failure mechanism the effect of stirrup inclination
amounts to a replacement of the parameter y in equations (8) and
(13) by ¥ sina. For @ < /2 this leads to increased values of coty
and cotd, i.e. the yield line is flatter by inclined than by vertical
stirrups. Concerning the load-carrying capacity we see by comparing
equations (9) and (22) that the inclined stirrups are most effective
for

cos’a

v 1+ 3sin®a

assuming ¢ = V-
In the important case o = 7/4, the inclined stirrups are more effective
than vertical stirrups for ¢ > 0.2.

The optimal stirrup inclination a = oy 1s found from the condition
dr/da = 0, where 7 is given by equations (22).

From equation (22a) we get

cotoy, = Vi

Hence the maximum shear strength 7 = Ty that can be obtained by a
given amount ¢ of shear reinforcement is given by:

TM/O'C=\/E
Since
1+ cosw _
et =g VIF I WIF T +V0)> b
M

this holds for all high values of y. Thus for thin-webbed beams, a

substantial increase of shear strength can be obtained by placing the

stirrups at a suitable angle. This is in accordance with experience.
For small values of ¢/, we find from equation (22c)

¢ _va*+ h*—a
cotay, =

h

and

M _ VIR e+ (TR +a)
o, 2h
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Fig. 14. Web-crushing criterion for beam with inclined stirrups,
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valid for

2 12
V< vy = (:La%l_a)z

Since ¢ = 6/2, we note that in both cases:
m
(XM = E Ty

This means that when the stirrup inclination is optimal, then the di-
rection of the uniaxial concrete compression is normal to the stirrups.
On fig. 14 the web-crushing criterion is plotted for stirrup inclina-
tlonsa = /2, & = 7w /4, anda=aM. .
Equation (22c) corresponding to ¢ < Y/ has been omitted on the
graph.

6. TEST RESULTS

In the following we shall consider beams with vertical stirrups and
with fairly strong shear reinforcement, i.e. Y > wo. The web-crushing
criterion, equations (9), yields:

V=h \/bsy(boc — bsy) for bsy < 5 bo,

Ll M

-1
V= 5 h bac for bsy > 0l boq_

Thus, in order to determine the shear strength, we need know three
parameters:

h: The shear depth, i.e. the distance between the tension and
the compression stringer.

bo,: The compressive strength of the web, per unit length of the
beam.

bsy: The yield strength of the shear reinforcement, per unit
length of the beam.

Of these quantities, only the last is well defined, and may be found
by tension tests on the stirrup steel. The uniaxial, compressive con-
crete strength ¢, may be determined by cylinder tests, but we cannot
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except the quantity bo, to be an adequate measure of the web
strength. This is due to the fact that the compression is applied to
the web concrete through the longitudinal bars. This concentration
of the load leads to failure of the concrete at a stress level which, as
an average over the web, is less than ¢,. Thus we are led to the intro-
duction of the effective web strength ba: = vbo,, where v is a web
effectiveness parameter.

The definition of h is not too precise either, since at least the com-
pression stringer has a considerable extension. Therefore, we intro-
duce the effective shear depth h™. Most European and American
standards relate the allowable shear stress to the effective depth of
beam. The Danish Code of Practice DS 411 [13], [14] requires the
use of the internal moment arm z, calculated at the section of maxi-
mum moment. Another possibility would be to choose as effective
shear depth the depth of the web, i.e. of the concrete body assumed
to carry the shear. In this case any contribution from the compres-
sion flange is neglected.

We define the effective shear strength

™= s

bh*
where V is the applied shear force, b is the web width, and h* is the
effective shear depth. Introducing the web effectiveness parameter

v, the web-crushing criterion for beams with vertical stirrups is modi-

fied to:
*

=YV —y) for y<g (24a)
C
and «
T _V |
Y for Yy > B {24b)

c

Here ¢ is the non-dimensional shear reinforcement strength ¢ =
Sy /6, Sy being the yield strength of the shear reinforcement per unit
area of a horizontal web section. In the presence of a distributed load
p, per unit area of the web section, the parameter y should be re-
placed by ¢ + p/o,.
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Equation (24a) represents a circle with radius »/2 and centre at
W, ™/0,) = (v/2, 0).

In order to assess the values of » and h*, we compare equations
(24) with experimental evidence. Note that the two parameters are
interrelated in the sense that the choice of h* will effect the value of
v and vice versa.

A good starting point would be to look for beams where actual
web failure is observed, i.e. thin-webbed beams. Such beams have
been tested by Robinson [11], Leonhardt & Walther [12], and Placas
as reported by Regan [10]. Assuming the web to be fully effective
(v = 1) the results indicate that the effective shear depth is the lesser
value, i.e. the depth of the web. On the other hand, we do not know
if the web actually sustains a load corresponding to the one-dimen-
sional concrete strength, measured on cylinder or cube specimens.
The fact that stirrups with high tension are embedded in the web
might lead to a reduction in strength. Investigations by Robinson &
Demorieux [15] and Demorieux [17], [18] do indeed show such an
effect. Since experimental documentation is lacking, we shall adhere
to common Danish practice, taking the effective shear depth equal
to the internal moment lever arm. In the analysis of test results de-
scribed below, the shear depth is measured from the centroid of the
tensile reinforcement to the centre of the compressive flange.

Having decided upon h*, we can proceed to determine v. To that
end we need test results covering a wide range of shear reinforcement
strengths, from the weak to the very strong. Unfortunately, most of
the shear tests reported in the literature involve beams with little or
no shear reinforcement.

A representative experimental investigation has been carried out
by Leonhardt & Walther [16]. The results are plotted on fig. 15. The
authors measured the cube strength B of the concrete, and we have
assumed the cylinder strength o, to be o, = 0.8 B, - The test series
comprised 18 beams of which three (beams TA5, TA17, and TA18)
had bent-up bars as shear reinforcement in addition to vertical stir-
rups. Two beams (TA7 and TA8) had curtailed main reinforcement.
Of the remaining 13 beams, three (beams TA9, TA10, and TA13)
are omitted from the plot because they were reported to have failed
in bending.
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Fig. 15. Shear tests by Leonhardt & Walther [1 61,
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The prediction of the theory that the points lie on a Mohr’s
circle through the origin, is fairly well supported by the experimental
evidence. The circle giving closest fit (shown on fig. 15) corresponds
to a web effectiveness » = 0.796, the coefficient of variation being
2.8%.

One of the beams (TA6) was provided with additional horizontal
web reinforcement. Otherwise, the beam was identical with beam
TA3, As expected, the horizontal reinforcement has no positive ef-
fect on the shear strength.

To demonstrate the general applicability of the theory, fig. 16
shows the results of 153 shear failures, including 66 tests carried out
recently at the Structural Research Laboratory. The plot refers to
simply supported T-beams (without tension flange). Only slender
beams (a/d > 2.5, d being the effective depth) and beams with some
shear reinforcement (i > 0.01) are considered and flexural failures
are omitted. The graph includes a single test (from Leonhardt &
Walther [12]) with distributed loading. The result has been plotted
substituting ¢ + p/o, for Vil

The points are seen to be fairly well distributed about the web-
crushing criterion corresponding to » = 0.72, although the scatter is
considerable (the coefficient of variation is 6.0%). Fig. 16 also shows
the shear strength calculated on basis of the Danish Code of Practice
DS 411 [13], [14]. No safety factors have been introduced and aver-
age rather than characteristic strength parameters are used. Still, the
code is seen to be very conservative, especially for small values of .

In order to get a better prediction of the shear strength by the
web-crushing criterion we must determine » for each individual beam
type. We would expect the web effectiveness to depend on the web
width and on the reinforcement details, i.e. the number and dimen-
sions of the longitudinal bars, their distances from the edges of the
‘beam, and whether or not they are supported by stirrups. Currently,
extensive test series are being carried out at the Structural Research
Laboratory with the aim to study this question. The experiments
should also be able to verify or falsify the following assumptions or
consequences of the proposed theory:

* Detailed documentation on fig. 16 is available from the authors, who would
appreciate information about test series not included in the plot.
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RESULTS OF 153 SHEARAR TESTS
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Fig. 16. Test results versus web-crushing criterion and code of practice.
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a) For sufficiently strong shear reinforcement the shear resistance
reaches a level depending only on concrete strength.

b) The shear strength is independent of the strength of the main re-
inforcement (though it does depend on the number and dimen-
sions of reinforcing bars).

c) At yield the deformations consist of a vertical translation of the
load section relative to the support section.

In order to study item (c) simultaneous measurements are taken
of the compression of the flange, the elongation of the main rein-
forcement, and the deflections. This is done at constant load when
the beam is near failure. The preliminary results indicate that as-
sumption (c) is not far off, whereas the concept of a rotation about
the crack head is totally misleading.

7. CONCLUSION

In the preceding sections we have established a rational theory for
the shear strength of reinforced concrete beams with a compression
flange. Simple beams with concentrated and distributed loading are
considered. In the former case the stirrups may be vertical or in-
clined.

The derivation is based on the mathematical theory of plasticity
and identical upper and lower bounds are found in the three cases
mentioned above, equations (9), (18), and (22). As failure criterion
for the concrete the square yield locus is adopted (fig. 4). The fail-
ure mechanism consists of a vertical displacement located at diagonal
yield lines (fig. 8). The behaviour of the beam, as reflected by the
theory, is as follows:

I:  The first cracks follow the trajectories of principal stress in the
uncracked beam. As the shear reinforcement takes over, the
cracks tend to become flatter.

II:  The stirrups are yielding. The deformations are located in yield
lines composed of cracks and crushing zones. An increase in
load is obtained by a flattening of the yield lines, causing more
shear reinforcement to yield. '
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III: This process goes on until the compressive stress in the web be-
comes so high that the concrete fails.

IV: This may lead to actual web failure or to so great deformations
that the compression flange is destroyed.

We note that the load-carrying capacity of the beams is reached
in stage III, when the web concrete fails either by crushing or by
spalling. Therefore, we have chosen the label web-crushing criterion
for the load formula, though actual web distress need not be ob-
served, the failure being a local phenomenon at the main reinforcing
bars. The failure of the compression flange (shear compression fail-
ure) often observed, is regarded as a secondary phenomenon caused
by excessive deformations after the failure load is reached.

The principal features of the proposed theory, by which it differs
from other shear theories, are as follows:

A: The failure mechanism is not a rotation about the crack head
but rather a vertical translation.

B: The theory gives a rational explanation for the shear stresses in
the yield line (interface shear transfer) that contribute sub-
stantially to the load-carrying capacity.

Both the relevance of the failure mechanism and the existence of
intexface shear transfer is amply supported by test experience. It
must be stressed, however, that it is a necessary condition for the
web-crushing criterion to apply, that the main reinforcement does
not yield at failure of the beam. For continuous beams with high
shear and bending located at the same section, this may be different.
Also, it should be noted that for weak shear reinforcement, the in-
clination of the web compression becomes very flat. This may lead
to problems with anchorage and curtailment of the longitudinal re-
inforcing bars. In the laboratory, extraordinary measures may be
taken to prevant bond failure, but this might very well prove too
costly for engineering practice. It may therefore be advantageous to
design the shear reinforcement for a steeper web compression than
the one required by the web-crushing criterion.
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NOTATIONS
All symbols are defined when they first occur in the text, Definitions
of the repeatedly used notations are listed below.
~ shear span
beam width
compressive stringer force
tensile stringer force

maximum tensile stringer force

a
b

C

F

Py

Fy: tensile stringer yield force
h beam depth

n* effective shear depth

M bending moment

M*

modified moment distribution for design of main reinforce-

ment
N,: stringer force
P: concentrated load
Pp: concentrated yield load in pure flexion th /a
p: distributed load per unit area

pp:  distributed flexural failure load 2th /a

s: equivalent stirrup stress (per unit area normal to the stirrups)
Spt maximum equivalent stirrup stress

Sy equivalent stirrup yield stress

V: shear force
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Wg:  rate of external work

Wyt rate of internal work (plastic dissipation)

x,y: axes of beam co-ordinate system

a: stirrup inclination (with respect to beam axis)

ap ¢ optimal stirrup inclination

g inclination of displacement rate relative to yield line normal
¥ angle between yield line and uniaxial compressive stress
5: relative displacement rate at yield line

n main reinforcement parameter Fy /bho .

6 inclination of diagonal yield line (shear crack)

v: web effectiveness a:/ o,

p: shear reinforcement parameter 1 — 2y

01,0, principal stresses in concrete (plane stress)

Oyt uniaxial compressive stress in concrete

0,: compressive concrete cylinder strength

oz‘: effective compressive concrete web strength

Oy, 0y stresses in the x,y-system

T: nominal shear stress P/bh or pa/h

T*: effective shear strength V/bh*

TV : nominal shear stress for optimal stirrup inclination
xy " shear stress in the x,y-system

P: inclination of uniaxial web compression

Y¥: . shear reinforcement parameter 8y /o,

Yot shear reinforcement parameter for which coté = a/h
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SUMMARY

The load-carrying capacity in shear of simply supported reinforced
concrete beams is studied. A solution is presented based on the math-
ematical theory of plasticity. '

Identical upper and lower bounds are found for beams with con-
centrated loading and vertical or inclined stirrups and for beams with
distributed loading and vertical stirrups. The failure mechanism con-
sists of a vertical translation of the central part of the beam with
respect to the supports, without any rotation of the beam ends. As
the failure criterion for the concrete the square yield locus for plane
stress is used. It is shown that with the proposed failure mechanism
this predicts shear stresses in the diagonal yield line (crack).

RESUME

Plasticitetsteorien anvendes til bestemmelse af forskydningsbzereev-
nen af jernbetonbjaelker armeret med skra eller lodrette bojler.
Sammenfaldende ovre og nedre veerdier er fundet for simpelt un-
derstottede bjzelker belastet med to symmetriske enkeltkraefter (skrd
eller lodrette bojler) eller med jaevnt fordelt belastning (lodrette boj-
ler). Brudmekanismen bestir af en ren forskydningsdeformation u-
den rotation af bjelkeenderne. Som brudbetingelse for betonen be-
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nyttes den kvadratiske flydekurve for plan spzendingstilstand. Det pa-
vises, at den antagne brudmekanisme indebzerer eksistensen af for-
skydningsspaendinger i de skrd brudlinier. De teoretiske baereevner er
sammenlignet med danske og udenlandske bjslkeforsog.

(Received September 1974, revised March 1975)
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