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Preface

The report has been prepared on the basis of a study of the
literature.

It is the aim of the report to clarify the basic principles
governing the photo-elastic conditions in three-dimensional
stress fields and to describe and evaluate the exlisting
methods of calculating the state of polarization along a
light ray passing an optically anlsotropic and heterogeneous
body.

A linear relationship between stresses, strain and photo-
elastiec effect is assumed throughout.
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ITntreduction

In photo-elastic investigations of inhomogeneous, three-
dimensional stress filelds, an optical signal is obtained,
which depends on the stress rield along the light-wave's
path through the model.

As interpretation cof this signal is complicated, it is
usually found preferable to undertake a mechanical slicing
of the model (freezing method). The desire to avoid this
destructive treatment leads to the question of how much
information on the stress field along the path of the light
can be derived from this integrated optical signal.

The question, an answer to which is attempted in the conclu-
sion of this report, requires knowledge of the methods avail-
able for calculation of the polarization field along the
light path when the stress field is known. This problem is
dealt with in the report.

It 1s solely the secondary principal stresses in sections
perpendicular to the direction of propagation of the light

that determine alterations in the state of polarization.

The relationship between the primary and the secondary principal
stresses is described in most textbooks on photo-elasticity

(12], [29].

The report glves a description of the assumptions and prin-
ciples for existing methods of describing a light-wave's
passage of an optically heterogeneous and anisotropic body.
The terms heterogeneous and anisotropic refer only to the
optical properties of the body. From a mechanical point of
view we assume that the body is homogeneous and isotropie, so
that Hooke's law is valid throughout, with constant modolus of
elasticity and Poisson's ratio.

The report differentiates between kinematic*) descriptions, in
which a relationship is assumed between the refractive index
(Fresnel's ellipsoid) and stresses or strains, and dynamic*)
descriptions, 1n which the assumptions are the electromagnetic
field theory and an assumption on the dielectric tensor's de-
pendence on the strain or stress tensor.

The terms kinematics and dynamics are taken from mechanics. Kine-
matics is the description of the movement of the bodies - here,
the change in state of polarization - without reference to the
forces causing the movement. Dynamics is the study of the move-
ment of bodies and of the forces - here, electrical and magnetic
fields - causing the movement.




1. Basic description of polarized light

A plane light-wave, which is a superposition of electromagnetic
wave-trains in which the individual electrical vibrations have
the same direction of propagation, can be characterized by means

of the following three properties:

a) the light-wave can be monochromatic, when the individual

vibrations have the same Irequency, i.e. same colour.

b) the light-wave can be polarized, which is to say that the
electromagnetic field vector is subjected to a controlled
movement, or unpolarized. ILight consisting of a superposition
of polarized and unpolarized light is partially polarized.

c) a monochromatic light-wave can be coherent, i.e. the indivi-
dual vibrations have the same phase at the same time and

place; light which is not coherent is called incoherent.

As the following aims at presenting the light-waves in a manner
that lends 1ltself to a deseription of photo-elastic phenomena,

1t will suffice to treat plane and monochromatic, polarized light-
waves. It is not necessary to use coherent light. Interference
also occurs when the interfering light-waves originate from the
same light source. As this light exhibits the same photo-elastic
effect as a single vibration, the following account is further
restricted to a single electromagnetic osclllation.

1.1 The 1light-ellipse, Poincaré's sphere

A polarized light-wave moving in the x-direction can be described
by means of the components of the electrical vector in two direc-
tions x and y at right-angles to each other in a plane perpendicu-
lar to the x- axis.
The symbols are explained in the notation.

X = 2, cosQt

¥ - a, cos(Qt + &%) S 1.1

where the origin is chosen such that =z = ay at the time tT= 0.

Eliminating t (see page Al), we getb:

2 2 s
P A 'Y cosdt = singé* 1.2
2 2 aqdns
ay oo
i.e., the elentrical vestor degeribes an ellipse with the semi-



dl
dy

a . ' o
Vs V& 4+ Vo= sin22u sineé* 1.3

*)In some presentations, however, the direction of the light
is used as the basis for the terms left-handed or right-handed

in which we have Introduced

cosa
al a

a sina

an

The axes of the ellipse form an angle with the x-axis, where

we get by reduction

2a1a2 .
2 A
2 T &y

tgep = cosb* = tg2a coss¥* 1.5

The proof of 1.3 and 1.5 is given on pages Al-A2.

Fig. 1.1 The light-ellipse.

When the ellipse develops Iinto a line or a clrele, we have the

two special cases:

a) Linear polarization; for the phase difference §* = 0,

b) Circular polarization; for &% = + g, the electrical field
vector describes a circle. For 6% = + E, the vector moves
in a clockwise direction, and the lightkis said to be left-

handed. With this sign definition , we are facing the 1ligl

It will be seen from 1.1 that the light-ellipse can be characterize:
by the three quantities 815 @ and 6% or a, B and the ellipticity W,

where w has been introduced in

d
= &

1



The light intensity that is proportional to a” is often of no

interest, and we therefore put a = 1.

T we mark a point P with the coordinates (¥, ¥, z) on a spheri-

cal surface with radius a =1, such that

x = cos2w coszZp
y = cos2w cos2P

z = sinlw 1.7

the state of polarization will be described by the point P. The
spherical surface is called Poincaré's sphere, see fig. 1.2 [1].

o ¥

Piz. 1.2. Poincaré's sphere.

At the equator we have linearly polarized light, horizontal at I
and vertical at V, when we take the x-axis as horizontal. At the
upper and lower poles we have clockwise and anti-clockwise, cir-
cular polarization of the light, respectively. Over the rest of

the sphere, we have eliiptical polarization.

In order to facilitate a study of the conditions, light-ellipses
can be drawn on the sphere, see fig. 1.2, in which the observer
is imagined to be standing outside the sphere and observing the
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light-ellipse for a ray with direction from the centre.

Poincaré's sphere is principally used to determine the transfor-
mation from one polarization fleld into another during passage of

-

a blrefringent layer, see section 2.2.1.

1.2 Stokes' vector, Jones' vector
3

Instead of describing the state of polarization by a, B and w, We
can use Stokes' wvector [2], [3]:

[. 1 T2 2 ]
gy a; + a5
2 2
- 3 a a
LT P 1 _ 1 2 1‘8
3%
32 2a1a20056
3 +#
,Sﬁ. _2a1a251n6 )

Here, there are then only three independent quantities as

2 o 2, 42

o] 1 1.9

The constituent parameters are the coordinates to Poincaré's
sphere, since

- 9 Fo -
SO a
S1 a20052w sin2p

=| 5 1.10
S2 g cos2Zw singp
S aesinzw
5] L i

see page AZ.

Stokes' vector was originally prcposed for a description of
partially polarized light; in such case (1.9) does not apply,
and in (1.5) the time averages of the amplitudes must be introd. . ~ad.

In the present account, Stokes' vector is of particular intere:*
because it 1s suitable for an analytical approach - Mueller cal-
culations, see section 2.2.2 - to the transformation from one
type of polarization into another.



In 1941 Jones proposed representing the state of polarization

by a vector with two complex elements [4]:
alelﬂt (

(Y 1.11a)
o Qt-5)

=

=i

The real part of the elements is the instantaneous value of the
u- and v- components of the electrical vector in a coordinate

system with axes parallel to the secondary principal directions.

In a coordinate system with fixed axes x and V¥, where the direc-

tion of propagation 1s the z-axis, Jones' vector takes the form

10t
= 81 (1.11b)
D e N ei(Qt_b*) .
2

where a, and a, are the amplitudes in this system.

Unlike Stokes' vector, Jones' vector can be used to describe
interference vectors in coherent light. Jones' vector is more
compact and it gives information on the instantaneous phase of
the light-wave. On the other hand, it cannot describe partial-
1y polarized light. None of the above-mentioned properties is
decisive for the photo-elastic phenomena.

2. Kinematic descriptions of a light—wave's passage through a

birefringent layer with given characteristic properties.

Even though the first attempts at producing artificial bire-
fringence by loading were carried ouf in 1516 by Brewster, Bilo
and Fresnel, not until 1841 do we find, in Neumann [5], a
systematic investigation of the theory of photo-elasticity.

Neumann propounded the photo-elastic law for a three-dimensional
straln field, and derived a differential equation for determining
the state of polarization for a light-wave for the case in which
the stress field varies along the direction of the light.

Since then, Poincaré, Coker and Filon, Mueller, Jones and other
have obtained results equivalent to Neumann's differential equa-
tion. With this, it is, in principle, possible determine the
state of polarization when the stress field 1s known along the

light-wave.

However, only in special cases Is it possible to arrive at the
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solution without the use of EDP.

It 1s particularly the inverse problem: determination of the
stresses in a known polarization field, that is of interest.
For this, the reader is referred to the conclusion of this re-
port.

2.1 The continuous descriptions of Neumann and of Coker and

Filon
On the assumption of small strains and small changes in velocity,
and the assumption that the photo-elastic is solely dependent on

the strains, Neumann deduced the following relationship between
the velocity of the light in the loaded body and the principal

strains:
Vo - Vo = ke + Lc;,_(e2 + ej)
— 2.
vy, "_vo = k1€2 + 1{2(6::L + ej) (2.1)
Vo, = Vg = kiej + I»\:?(e::L + eE)
where

v, 1s the light velocity in the unloaded body.

v, is the light veloecity for a light-wave polarized
in such a way that the electriecal vector vibrates
parallel with the direction of the first principal
strain. The light-wave can thus propaigate in a
arbltrary direction in the plane set out by the
directions of the second and third principal strains.

Vp and v, are analogous to v,
€ s €5 ande3 are the principal strains.
ki and k., are strain-optical constants.

For a light-wave with arbitrary direction of propagation, the
velocitles are determined by means of Fresnel's ellipsoid. On
the same assumption that the photo-elastic effect is only depen-
dent on the strains, Neumann concluded that the strain ellipsoid
and Fresnel's ellipsoid had the same principal axes, and he intro-
duced the concept secondary principal strains and found a general
relationship between these and ‘e optical signal. A detalled
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account of Neumann's reflections are contained in [5] and [12].

Later, Maxwell [6] formulated a law corresponding to (2.1), but
with the photo-elastic effect related to the stresses. In the
linear-elastic zone - the only one in which we are working - the

laws are identical.

Besides propounding a photo-elastic law, Neumann formulated a
differential equation for the passage of the light through the
birefringent body. Neumann assumed that both components of the
light-wave had the same direction of propagation. This is an
approximation due to the varylng refractive indices. Besides
this, only simple vectorial conslderations are necessary.

The light-wave 1s considered as a superposition of two vibrations
u and v in the secondary principal directions in the layer just

passed by the wave, see fig. 2.1.

vV Ay

\)

Rig. 2.1.

u

C
cos (Dt + 61)

1 (2.2)

v

8,cos (at + 62)

Tf the light-wave is allowed to pass a new layer of thickness d=z,
where the secondary principal directions have undergone a rotation

dp, the state of polarization after the passage of the light can
be deseribed by the following system of equatlons:

da, = a,cosbd do

1 2 (2.3)
da2 = = alcosa dep
d6 = dA + 2cotla sind dp (2.14)



w Y =

where

dé I1s the retardation originating in the strain
difference over the length dz.
a 1is determined from tga = ag/ai
2 = B8
Neumann's derivation is reproduced on pace A4-A5, with the above
notation.

2.2 Discontinuous descriptions

In this section we will consider the effect of one or more bire-
fringent layers with given properties.

The individual layers are of finite thickness, and the directions
of the secondary principal stresses are assumed to be constant
within each layer.

A single layer constitutes a linear retarder [27], while several
layers form an elliptical retarder [27].

When a polarized light-wave passes a retarder, we achieve the
change in the state of polarization by vectorial projection of

the vibrations of the light-wave on two directions at right-angles
to each other and letting one of the components undergo a phase
displacement in relation to the other. 1In the linear retarder
these directions are fixed and are identical with the prinecipal
directions, i.e. as in a plane photo-elastic model. 1In the ellip-
tical retarder, these directions turn; we get a rotating effect.

A continuous description can be obtained from the discontinuous
descriptions by making the layer thickness Az - O, Just as the
reverse 1s possible.

In this way the different descriptions can be derived from each
other [8], [13]. Before proceeding, let us recapitulate the
formulation of the problem in this chapter:

We wish to determine the state of polarization after passage of
the layer on the basis of:

1. the state of polarization before passage of the layer,
and
2. the retardation and orientation of the layer.
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2.2.1 Geometrical descriptions

Poincaré's sphere 1is described in section 1.1. The transfor-
mation from one state of polarization into another during
passage of the layer is obtained, as shown in fig. 2.2, by
setting the orientation @ of the retarder (the angle from the
x-axis to the fast axis) at point R on the equator, so that

< HOR = 20, -

< HOQ, = 2B, Light-ellipse for incident wave.

< Q 0P, = 2u,

< HOR =29 Orientation and retardation of layer No. 1.
< PORP1 = Ai

< HOQy = 2By Light-ellipse for emerging wave.

< QioP1 = 2w1

Fig. 2.2. Poincaré's sphere.

The geometrical determination of the state of polarization after
the passage 1s now carried out by means of a compass, the point
being placed at R and the lead at ?O; an arc PoP1 is then traced
in an anticlockwise direction such that
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< P F?l : Ai the retardation of the layer.

After the passage, the light-ellipse is characterized by point
P1 on the sphere:

cosQuhcos2ﬁ1

Py 00521131n2ﬁl

sinZuw
1.
where

sinw; = sin2e cosa 31n2;w1—B0)0052wOSinAi
sinEwOsinAl - sin2(m1—Bo)0052ubcoaA1

cosswocosﬂ(¢i-so)

) cosEmo[(fl.—cosA_I_)cosgcpisine(cpj_-t:‘;o)ps:i.nE!Bo]+:—3:J'.n?_>wosJ'.n.l:\lcos:‘*cp_I
1 cosﬂwo[—(i-conAi)sinrqhvinE(gh—Bo)+cos2BOJ—s;nHw

Os:nalcoa;wi

(2.5)

The demonstration of this is given on page A6-A8.

After passage of n layers, the state of polarization will be
characterized by point Pn. The transformation from Pl into ?n
can be constructed in the same way as that from Pi to ?2, except
that the point of the compass must be placed at a point that does
not normally lie on the equator. This transformation is there-
fore characterized by three quantities.

By projection of Poincaré's sphere on a plane, we get the plane
description (j-cirele methods). Menzes [8], who deseribed the
scattered-light method in 1940, independently of Weller, also
introduced the j-circle method, which s a parallel projection

on the plane through the equator of the sphere. Xnowledge of this
method has been disseminated particularly by Kuske [10], [11], and
others.

We will not follow Kuske's procedure, but will explain the J-circle
directly by means of Poincaré's sphere, see fig. 2.3 and 2.2, where
the same notation is used. The j-vector gives the shape and
orientation of the light-ellipse, the point of the vector corres-
ponding to the projection of point Pi on Poincaré's sphere on the

equatorial plane.
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(2.6)

Menges measured the light-ellipse at different points along a
ray through the model and marked out the j-vectors as shown in
fig. 2.3. The points of the vectors form a curve, from which
the orientation g andthe retardation A can easily be constructed.
Kuske used the method to describe the state of polarization
particularly in plates and shells, and proved the existence of
the characteristic directions, which correspond to the isoclines
in a plane stress field, see page 17. As a graphical method,
the j-circle is more suitable than Poincaré's sphere, but as is
often the case with graphical methods, the accuracy is poor.
Kuske, indeed, recommended that the method be combined with an
analytical calculation. For this purpose, Kuske gave a set of
differential equations [11], [28], which do nct however, appear
to be as suitable as the other analytical methods at our disposal.
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2.2.2. Analytical presencations

Mueller calculations

Section 1.1 shows how the state of polarization can be deserihed
at a point on the sphere, when the coordinates of the point are
three of the components of Stokes' vector. Later (section 2.2.1
it was shown how the transformation from one layer into another
can be described by means of a geometrical construction on the

sphere.

Although Stokes' vector was introduced in 1852, H. Mueller [27],

in 1946, was the first to introduce an operator - Mueller's matrix

corresponding to the rotation of the sphere, whereby the transi-

tion could be determined analytically.

Applying the following notation:

vo and Vi are Stokes' vector before and after the passage

layer No. 1,

E is Mueller's matrix for layer No. 1,
1

we find that Mueller's calculations take the following form:

T, = M7 (2.7)

In the case of the passage of several layers, we get after the

n'th layer:

1Yo = Mp¥y, (2.8)

The matrices Mi""M correspond to linear retarders, assuming,

n
as before, constant principal sgress directions within the
individual layers. The matrix MA, which gives the total effect
of the n layers, will, in the general case, correspond to an

eliiptical retarder.

Mueller's matrix has the following form [14]:

- .
1 0 0 0

= 0 DZ-ER.+G7 ODE -2EG
O 2DE =DT+ET+G 2DG
0  2EG -2DG 26°-1




where
A,
D = coszisin 7?
by
E = Sil]gk}alsln '—2—
A
G = cOs -'2—

0y is the orientation of

Al igs the retardation of

TIn the form shown here, Mueller's matrix thus

the layer,

the layer.

contains only

information on two independent quantitles, ¢ and A.

From (1.20), (2.7) and {2.9a-b) we get:

1

cosEub[coseﬁo—(i-cosai)sin2w151n2($1-80)]-sianOSinalsin2¢i
coszO[sinEBOJr(i—cosAl)cosEcpisinE(cpl-Bo)]+sin2wosinA1cosEcp1

[cos2w_sinA sinz(wi-ﬁo)+sin2wocosA1 ]

(2.10)

A comparison with (2.5) will corroborate (2.10).

We will now apply Mueller calculations to demonstrate the

existence of the characteristic directions.

As the matrix for each layer has the form,

1 0o o0 0 W

T O myy Mgy Moy
O Mgy Mgy My

| O My Mys My

Mﬁ alsoc has the Torm

- -

1 0 o0 0
= ' T t
Mio= |0 Moz Moz Mou
O t i
m?2 m?j m?)_'
O Myp Mys My

If the incident light-wave ¥

]

is linearly polarized with the



r‘ - o -
1 0 0 0 1
= ' ml, ml, m' cos?
V . = =22 23 24 =
H no 0 mi, mi. m! sin2g
22 733 T34
0 m) - m43 m44j 0
L- — vl
- "
[ 1 1
még cos2B, + méj sin?Bo cos2w, cos2p
1 1 - r
m;j2 cosQBO + m?j 51n260 = coszrl sinEBn
my 5 cos2BO - m43 SIHEBOJ 51n£wn J
) (2.11)
?n is linearly polarized if sin2w, = 0, i.e.
] - - i
my,COS2B ) + mqqunQBﬂ 0, i.e.
m, (2.12)
2
b -
4}_,;.80 = .
43

(2.12) has two solutions B,y and B,,, which correspond to two
directions at right-angles %o each other. From (2.11) we Tet
the orientation Bn of' the emerging, linearly polarized wave:

cos2B, = m},cos2B_ + My58in2g (2.13)

- .28 ] 1 'y
51n2sn = mBECOSQBO + m3331n280

£ o _ e
(2.13) has two solutions By for B, = By 8nd 8 . for Bo = Boos
which alsc correspond to two directione at right-angles to each
other.

For B4, Byps By and B,o Aben [13] has introduced the designa-
tions primary characteristic directions {Boi] and secondary
characteristic directions (Bni).

As the mij coefficients depend on the retardations Al, Ag...An,
which in turn depend on the wavelength of the light, the
characteristic directions are a function of both the stress
I'ield and the wavelensth of the light used.

For a linear retarder, the characteristic directions correspond
to the isoclines, which are independent of the wavelength.
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By means of Mueller calculations we can derive som2 photo-elastie
properties of significance to scgttered—light technique on 3-
dimensional models. The matrix MA corresponds to an elliptical
retarder and thus contains the three independent quantities:

o, the orientation
the retardation
Wy the ellipticity
The justification for these designations lies in the fact that

sinEwé = 0 for a linear retarder and that mé and Aé then corres-

pond to orientation and retardation for this retarder.

It can be proved, [27], [14], that the matrix has the form

™ h
1 0 0 0
= _|o D°-E°-F24G2  2(DE+FG) -2 (DF+EG)
n 1o 2(DE-FG) “D4E2-F24G2  2(DG-EF)
0 -2(DF-EG) _2(DG+EF)  -DP-E2+FeiG2
where
A‘

ey 1 Tin 1 g
D = coszn cos2Y s5in

1
_ 1 ainfg! sin —a
E = coszn 51n2¢n sin —

A'

— t b

P = sinEwn sin 5
A‘
. n
G = coOs =

If we know V_ and can determine ¥ then from
n n+1

Vit = MpaaVn

compared with expression of the form (2.40), we can determine
P and ¢n+1’ i.e. determine the secondary principal direction
and stress difference in layer No. n+l. By simple calculation,
considering the n+t'th layer instead of the first layer, we get

from (2.10):

cos.Qanco;:EBWl - coszwrl cos2B

= +1 n+l
teePnyy = - cos2w sinfB, - cos2w ,Sin28 (2.14)
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(2.14) can also be derived geometrically from the j-circle. Tne
retardation An+1 can then, as shown in [12], be determined from

sinewm_i = cos2mn51n2(mn+1—6n)sinan+1 -+ sin2wncosAn+1

Jones' calculations

Jones' calculations are carried out with matrices, as Mueller
calculations; but Stokes' vector is replaced by Jones' vector
(1.11), and Mueller's matrix by Jones' matrix:

_ ~ - = cosyp, - sing e"181 ¢ cosy, sino
T, =R(w,) NR(-p,) = g : . ! !
1~ 1 1 1 —1&12

sincp1 cosy, Lo e -sing, cOsQ,
e 1l cosgw1+e'lA12 singmi (e_lali-e_iﬁla’)coscpisincp1 (2.15a)
. .15a
(e'lﬂil—e_lAiQ)COSwisinwi e 184 sin2w1+e_1A12 cosgwl

Here, ﬁ(—wl) gives a rotation of the coordinate system, so the
light vector is described in a coordinate system with axes in
the principal directicns, Ni determines the retardation of the
components of the light vecftor in the principal directions, and
ﬁ(mi) rotates the coordinate system back to the fixed x-y-
coordinate system. Aii and A12 are the retardation in the first
and the second principal directions of layer No. 1, respectively.
In a coordinate system with axes u and v in the secondary princi-
pal directions, Jones' matrix takes the form:

3, = ;(—@) (2.15b)

In the passage of several layers, we get, Jjust as in Mueller

calculations,

L J—

NEERDPEY

Sl
oy

T — TR
Dy = n"1 (2.16)

where Jé gives the characteristies for the n layers.

If we let A11 = —Aie, corresponding to an isotropic phase dis-
placement that does not affect interference phenomena between
the two waves, we can, by inductive proof, coneclude that Mé can
be written

igcose eigsine
(2.17)

SN —eigsine o~ 18058
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Tt can further be shown, [4]. [13], that the matrix Mé can also

be written:

- cosB._.-sinf@_. ern 0 cosp_, sing .
Jn : { ni nl}[ } [ ol 01} (2.18a)
n .
I

. -J ,
Slani cosBrli 0 e VY —s:nBoi COSBO
= N ='=—
B htﬁngNnR(Bog
where
i +E)s5in28
tg28_; = 51n(%_§4 n .
sin2Ecos 8-sin2{sin~— 8
tg2g,; = Sln(éfg)Slnge > (2.18v)
sin2g&cos” 8+sin2¢sin~4
cos2y, = i[cos2E+cos2(+cos20(cos2E-c052() ]

Boi and Bni are the characteristic directions discussed above,
i=1,2.

Jones' calculations have not been used very much in photo-elastic
methods. Aben [1%] has used the method to determine the state of

stress in shells.



3. Dynamic descriptions

As stated in the introduction, the dynamic desecriptions are based
on the assumption of a relationship between the strains or stress-

es and the permitivity tensor Eij‘

The subject matter of the next two pages forms the basis for the
electromagnetic {ield theory for dielectrics and is described in
textbooks on the theory of electricity and optics.

However, the concepts polarization of the matter, susceptibility
tensor, dialectric tensor and dialectric constant are described
in brief on pages A8-A9.

When the permitivity tensor is known, we can, in principle, solve
Maxwell's electromagnetic field equations, i.e. determine the

state of polarization as a function of time and place. The fact
that the permitivity tensor is dependent on the strains is due to
the anisotropic binding of the electrons of the matter during
mechanical loading. This 1s demonstrated by means of the model

in fig. 3.1, where the directions of the principal stresses coincida
with those of the springs.

3

Fig. 3.1. Model of the anisotropie binding
of the electrons during loading.

The polarization of the matter in a coordinate system with axes
in the principal directions is as follows:

Pi ')(1 O 0 Ei .
ol = €O 0 XE 0 E2 = EOXE (3.ia)
3 O 0 X5|Ey

P=|P
P
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where ¥ 1s the susceptibility tensor, the elements of which are
assumed to be linearly related to the stress of strain fensor.
In an arbitrary coordinate system, (3.la) has the form,

) %11 X2 X3l [ By
P= Py =€,1%1 %p %o |Eg| = €o>ngj (3.1b)
%51 Yz X33l | Es
X3 j is related to eij by
€€y =Dy =€ E;+P, = (85 5+%5 1 €E (3.2)

from which

€5 = Big*¥yy
where

1 for 1 =}
.. =
1] O for i £ J

Maxwell's equations, which form the basis for the following,
have the form

8D. B

& " .1 _ . 1
ot Hi = Ji + 5T rot Ei = 5T
Dy = €4 36F; Bi = Hj 3oy Ty = vi58

For a dielictric, the equations can be simplified, since

|
o

Hig = %13
Yij

as the material is non-magnetic and non-conductive. Maxwell's

equations can thereby be reduced to

-uoﬁi = rot E, (3.4)
div H =0

i



The factors dealt with so far in this section are well-known from
the electromagnetic field theory.

The first to use Maxwell's equations in photo~elasticity were
Mindlin and Goodmann [17], who, in 1949, assumed the following
relationship between Eij and the stress tensor Uﬁj.

. F P
2%kc®1 4 (3.5)

1
€, . == 5ij + Cicij + C
o

where
Ny is the refractive index for the unloaded body, and

C1 and C2 are photo-elastic constants.

Later, O'Rourke [20], Aben [13] and Van Geen [19] formulated
systems of equations corresponding to (3.4) and (3.5), from which
they determined E and H. Common to these dynamic solutions of

the photo-elastic problem is the faect that the approximations
necessary for the solution all lead back to the solution for the
kinematical methods. Therefore, the only advantage of the dynamic
methods is that we are made aware of the approximations concealed
in the kinematic descriptions. Besides these, we will discuss

two other approximations in our assumptions.

For high electric field strengths, the linear relationship between
P, and Ej (3.1) is not valid. However, we will not delve deeper
into the question of the non-linear optical phenomena [9], but
just note that, even with a laser, where 5-15 mW are distributed
over some few mm2, (3.1) provides a completely acceptable basis
on which to work. (3.5) is an acceptable expression for the
behaviour of most photo-elastic materials provided the materials
are linear-elastic and there is no creep.

When the stresses are so great that the material shows plastic
behaviour, or if the material creeps, (3.5) can no longer be used.
However, the treatment of such problems lies outside the scope of
this report. 1In order to avoid creep of yielding, materials with
low creep must be selected, and the loads kept suitably small.

2.1 Description of Mindlin and Goodman

As early as 1940, Drucker and Mindlin [15], [16] formulated a
photo-elastic theory based on the assumption that light moves
in an elastic medium, the ether. The ether theory has little to
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do with reality, but 1t does lead to the same equations as the
real dynamic theories, which are bhased on Maxwell's eguations.

Drucker and Mindlin used the ether theory partly to determine an
approximate expression for the state of polarization in the case
in which the directions of the principal stresses only rotate a
1ittle [15], and partly to determine the stress {leld in plates

[16].
We will now go through the main points of Mindlin's and Goodman's

description [17].
)":L = m. ., we get from (3.4) and (3.5):

with (€ 13

iJ

e My = -rot(ni.rot H.)
. ! ! (3.6)
div Hi =0

(3.6) are the basic equations governing the electromagnetic fileld
of a light-wave in an optically heterogeneous and anisotropic body.
This equation is written out in coordinates. It i1s shown that
most of the terms are of minor magnitude, whereby the expression

is considerably reduced.
Certain of the discarded terms correspond to the assumption that

the light-waves propagates along straight lines despite the vary-
ing refractive indices, while others do not have such a simple

explanation.
If we only consider a light-wave in the direction of the z-axis,
and turn the coordinate system SO that the axes coincide with the

secondary prineipal directions, (3.6) reduces to

u o, 2 _ ;1 du

2z TV vz T T, Ot

v s -1 (3.7)
. -1 v

2z~ vz T T wg ot

where

u and v are the magnitudes of the electrical field in the
fipst and second principal direction, respectively.

I S |
1 " n YE o
1 oHo
1, _1
Ko = n

o
m
i

Q
Q



1 is the refractive index for a lirht-wave with eleciric
vector parallel to the first secondary prinecipal direc-
tion.

® is the angle from the x-axis to the first secondary
principal direction.

If we insert in (3.7) solutions of the form

u = Uejmt_ai)
. (3.5)
= VeJ(Qt—GE)
where U = U(z) and V = V(z), we get
: a6

U 21 38, -8,), 20 _ . Q

5 " Ju 5z ~ € 172w == Ik, U

Vo oy 22 ~J(&, -6 o090 _ | 5 8

>z JV 5z T € 1 7271 ke J kl \'

(3.9) are the basic photo-elastic equations in the form specified
by Mindlin and Goodman.

The transition from (3.9) to Neumann's equations is comparatively
simple and requires only basic mathematics, see (17]. sSimilarly,
Aben's equations can easily be derived from (3.9), see [17] and

[13].

Later, O'Rourke [20]) and Kuske [21], also on the basis of dynamic
assumptions, derived the photo-elastic basic equations, although

in a form that seems less serviceable than (3.9). We will not go
deeply into these descriptions, but turn to Aben [13%], who, in 196c,
gave a new formulation of the photo-elastic equations.

3.2 Aben's deseription 1966

Aben's assumptions are:

1) A system of differential equations derived from Ginsburg [13]:

2.
B E 2
dz GOC
> (3.10)
d°E, 2
CR i Y
2 2 Yo
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where Ei, O Di and Dé are determined by

23
E, = E, o 9F E, = Ej el Ot : ;
3,11
T iqt

(3.10) is obtained from Maxwell's equations, with certain approxi-

matlions

2) D; = €;,6E, (3.3)

3) € N n26 + C,0 + C,0,..b (%.12)
1] o®1ij 1713 2%x°%1j :

(%.12) is the photo-elastic law in a form that was first given by
0'Rourke [20] and that is more frequentiy used than (3.5).

We will not go through Aben's derivation here, since i1t is describ-
ed in detail in [13], but will show how his result can be derived

more easily from Jones' calculations:

In a coordinate system the axes of which are in the principal
directions , Jones' calculations have the form

Dy = Dyg*

e~dBI4 g . coshw,; 4 sindo, 4 b, _,
0 e"98; o

—sinﬁmi_l cosﬁwi_l,

=]

aD; 5 = NyR(-(w;-0; 4 ))D; 5 = NyR(-aw; 4)D;

Qt

We now neglect the time dependence e* in Jones' vector by intro-

. 1 1,
ducing E1 and EE'

E!
= 0t 1
Di—l = eJ i:wr] (3153-)
E
and
| AR,
a0, , - eJ“t[ {] (3.13b)
AE
2

The photo-elastic law is:
byg = Byp = Clog-9,
from which

Ajq = 3C(0y-0,) + constant

As o =—%C(61—02) + constant
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We can neglect an isotropic phase displacement, and therefore put

the constant at O.

If we further make use of the fact that

e‘jA cosh + Jj sinA X1 4+ jA for A » O

and let
we get:
E! dE! —‘%‘J'C(O -0, )dz ri -
1 + gl [e 1% 0 do|[E,
= L 2
Eé + dg! 0 ‘eg.jC(Ui-UE)dZJ ~dy 1 Eé
[e"%JC(Ui—OE)dz dwe—%jc(di'dg)dz -Ei
1 1 =
_d$e§30(01—02)dz egjc(ci—og)dz -Eé
1 - 3jc(o,-0,)dz E'
1 72
[ , } 3:] (3.14)
~dep 1 + ,jC(oi-og)dz E,
For an arbitrary layer, we get from (%.14):
v _ _ Ll _ ! |
dE; = gJC(oi Ug)Eidz+E2dm
(3.15)
[ 1 - _ 'a ot
dE, = gJC(cJ:L 02)E2dz E,do

The photo-elastic equations were first given in this form by Aben
[13], who used it as the basis for his photo-elastic investiga-

tions.

The results derived by Aben from (3.15), the characteristic
directions and the appearance of Jones' matrix for an arbitrary
retarder, are described in this report under Jones and Mueller

calculations.

Aben used (3.15) to determine stresses in shells and in a body in
which there is constant rotation of the secondary principal stress-

eS.
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4. Assessment of the various descriptions

This report is divided into two main sections - kinematical and
dynamic descriptions, depending on the assumptions on which the
descriptions are based.

A study of the dynamic deseriptions shows that certain approxi-
mations are necessary in order to arrive at a serviceable soclu-
tion, but that these approximations are of much less importance
than those otherwise connected with photo-elastic investigations.

Tt is therefore more reasonable to classify the methods according
to functlon and possibilities of use. This is attempted in the
following table, where the mutual relationship of the descriptions

is also elucidated.

It is impossible to make a general statement as O which descrip-
tions are the most serviceable. Poincaré's sphere provides an
exellent means of forming a gqualitative impression 6f the state
of polarization or the state of stress (the difference between
the secondary principal stresses and their orientation) by means
of the scattered light method. If, on the other hand, we want

a quantitative stress determination, the analytical description
of Poincaré's sphere [34] or Mueller calculations [14] seem to
provide the best tool, since these glve a relationship betwenn
the difference between, and direction of, the secondary principal
stresses and the light-ellipse, the shape and orientation of

which can be measured direct.

However, the other analytical methods have also been used in the
scattered light method (Jessop [%3], Cheng [35] and Srinath (1 ),
but these methods are less general than those utilizing Poincaré's
sphere.
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Conclusion

All the methods discussed permit determination of the state of
polarization along a line when the secondary state of stress In

a section perpendicular to the line is known throughout this.
However, it is the inverse problem that 1s of interest.

We know that the polarization field of the emerging light-wave

can be characterized by means of the state of polarization of

the incident light-wave and a function of the state of stress

along the light-wave. This function (Jones matrix, Mueller matrix
or the transformation on Poincaré's sphere) is characterized by
three quantities. It is therefore impossible to determine the
stress field along a line in the general case on the basis of
known states of polarization of the inecident and emerging light-
waves, since all we determine here is the three quantities mention-
ed. Up to the present time, two alternative methods have been

used:

1) Stress determination in bodies in which the stress field
along a line is characterized by maximum three guantities
besides the hydrostatic stress field. This procedure has
been used particularly on discs and, since 1934, also on
plates, shells and rotation-symmetrical bodies under specilal
loads [13], [20], [22], [25], [37], et al.

As an example, 1t can be mentioned that the disc and plate
problem has two unknown quantities besides the sum of the
principal stresses. This problem can be solved, although

in the case of the plate problem, the plate must be analysed
only on one side of the middle plane.

In shell problem, we have four unknown gquantities besides
the sum of the principal stresses. This problem can, for
example, be solved in the same way as the plate problemn,
when both sides of the middle plane are analysed [9]. How-
ever, there are several solutions to the shell problem [13].

2) Determination of the difference between the secondary prin-
cipal stresses and of the secondary principal directions by
mechanical slicing (Oppel 1936 [38] ) or optical slicing
(Weller 1939 [39] and Menges 1940 [8]) in such thin slices
that an assumption can be made of constant principal stress
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direction within the slice. By using this technique in three
planes at the same point, we can determine the deviation from
the hydrostatic stress f{ield, 1.e. five of the sex parameters
of the stress field can be ascertalned.

The remaining parameter can, for example, be determined by
integrating the equilibrium equations from a known boundary
condition.

With the development of the slicing technique and the appear-
ance of sensitive light-detectors, these methods have been
greatly refined and improved in recent years, a process which,
particularly as regards the scattered light method, is not yet
ended.

Besides the methods mentioned, there are two entirely new principles

offering interesting possibilities for a three-dimensional stress

determination by means of known state of polarization before and

after the passage of the model.

3)

i)

When the model is subjected to a magnetic or electrical field,
Maxwell's electromagnetic field equations are altered, and in
this way further information can be obtained on the stress
field. Aben has described the application of this prineciple
to plates [36].

By letting the light-wave pass in various directions, we can
gimilarly obtain further information on the stiress field.
However, no attempt seems to have been made to clarify the
mathematical problems arising in the general, three-dimenslonal
case, although Drucker and Woodward [2€] have formulated this
problem and shown that it's solution requires 5n3 different
directions, imagining the body to be divided in n3 small boxes
within which the stress field 1s assumed to be constant. See,
further [40], in which examples are given of the use of holo-
graphy for the registration of the photo-elastic effect of
light-waves in several directions.
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1.1 Determination of the orientation and the shape of the

light-ellipse.

X = aicosﬂt

y = aecos(0t+6*) - a,(cosQtcoss*+sin0tsing*)

=

(ji)2 = cos Nt

a4
(gL - cosntcoss®)® = (L - X eoss*)° .
2 8o

sin“Qtsin®6 - [1—(§&)a]sin26
1

from which

X2 2 K
(EI) + (gg) -2 2,2 coss* = sin“o* (1)

The roots of the determinant are found

1 y - cosot
af %1%2 2 1 1 sin“g*
=\ - (= + —3)h + i~ =0
_ 0056* AE Y al a2 aiae
a,a
172 a2
4 2 2 T 72 "
A = - =5 (a1+a2 + | (a ag+ 2) 4a1 251n & {(2)
aja,

From (1)} and (2) we get the semi axes of the ellipse

d 2 2 2 3
1 B sineé* B 2ai 251n ] ,
N A ~ N a2, 22y 2 PV\2_1a2aPcin -
d2 ajtact (& 8yt 2) Mal »sin g
af+ag Mad d 5
— Y
5 (14 2 2 231“ 8% )=
aZ (1 +-VV sin“Rasin” &%) (3)

Ve



where
a; = a cosa o a5 = a sina (4)
The orientations of the axes of the light ellipse are determined.

The direction vector to the seml axes forms an angle B with the

x-axes, where

1
5 M N lesingzasinzh*
. ay ~ tBo sinza _
8B = ~ome* coss™
84282

3 2]
1-cosPa-1: w1—51n22asin B
cosdtsin2a

T2 =
-cos?o+ {1-sin 2asin o
cosd*sinla

£eB o= = -
1-tg B

scosstzin2a(-cos2a+t dl—sing?asinab*)
La . L 2 :
00526*51n22a—00582a—1*Siﬂ22081n26*+200520 1—51n22a51n g%

i e -
ccosstsinga(~-cos2a Vf—SLH Pasin”s¥*) _
Y. . 2
-20052a+QCOSEu 1&—51n32a51n 6%

cosb*LE2a (5)

1.2 Demonstration that Stoke's vector corresponds to the

coordinates on Poincaré's sphere.

From (%) we get

af+ag - &° (6a)

af—ag - acosPa {Gb)

2aja, = aesinza {6e)
From (3)

P



£ 2
2 Zomsint ) = S ing¥
= S = sin = == sin 2csind

dydy = 5 V(l L+sin“2osing*) 5

dy
From tgw = 7 we get
1
2

i 2 5 _ 2 s
d1d2 = @ coswsinw = > sin2w

sin2w = sin2asind* (7)

From (5) and (7) we get

22atg2g§

sin22a

.2
1 = Sin26*+00526* _ Sin"2w+ecos

sin22u = 1—00522a = sin22w+00522utg22ﬁ

from whiech

cos20 = + €os2wcos2p (8)

From (6a):

From (6b) and (8):

Si = ay-a, = aQCOSEwCOSEB {9}

From (9), (6b), (6¢) and (5)

2a1a2 N

8. = 2a,a,c0sb% = S cosd™ =

2 172 1 ae_ae

1 72
aECOSENCOSEB . tglocosdt = a20052wsin28
From (6c) and (7)
- ) 2.1 sin2w I

S_ = 2a. a.sind*® = a"sin2a - T35, T & Sinhcw

3 192 " sin2a



2.1 Neumann's derivation of Z.3% - 2.4,

Before the passage we have, (the electiric vector) in the

(secondary) principal directions,

u o= alcos(0t+6l)
(10)
v = agcos(Qt+62)
and after the passage,
u' = a/ cos(Ot+6i)
1 1
(11)
.”f i 1 : j-.
vt o= ag COS(Qtéég)

First, let us consider the case where there 1s solely a rotation
of the secondary principal axes, and where € "€y = 0O in the layer.

We then get, see fig. 3,

t

u' = :osdwcos(nt+61) + aesind¢cos(bt+62) =

21
(aicosdw+aecos(62—61)sindw)cos(nt+6i)

-agsin(bg—éi)sindwsin(Qt+61) =

1 ]
aleos(Qt+6i)
) (12)
v' = agcosdwcos(nt+62) - aisindmcos(ﬂt+61) =

(agcosdw—aicos(ég—él)sindw)cos(ﬂt+62)

—alsin(ée—éi)sind@sin(gt+62) =

' t
agcos(ﬂt+62)

As dp << 1, we get

2 2 .

(al) = a1+2¢1agcos(62-61)d¢
2 2

(aé) = a2—2alagcos(62—61)dw



. ~ t ~ !
from which we get as a; ~oay and a, 7 a,
- ' — — —
da; = a;-a; = aecos(é2 61)dw

In order to determine &,

(13)

, and éé Neumann formulates the following

equations, the meaning of which appears by writing u and v in

complex form and then rotating the coordinate system

1 1 .
alcosf):L = alcosdcpcosé1 + a251ndwcosé2

[] . = . . .

aislné1 = alcosdmanél + a251ndtp51néE
1 1 . -

a200562 =-alslnd@0h561 + agcosdcpcosb2
1 > f + - i

a251n62 =—alswndc951n61 + aecosdcps_nﬁ2

From (13) we get
1 1 0 1 . o
a1a251n(62—nl? = ala231n(62—61)

from which

d(a1a2

d(6,-6,) = ~tg(6,-5,)
2Rl el 2, a,

which, together with (13), leads to

3(5.-5, ) ~a24a”
—§—1 - -sin(5,-5; ) i 2
oL alag

in that we only consider the variation in o, and as tga

) (14)

= +251n(62—61)cot2a (15)

)

By adding the contribution from the difference in principal strain

we get the total increment of the phase retardation:

ds = Q(el-ﬂﬁ)dz+2C0t2QEiH6dm

(16)

As an alternative to this procedure, (15) can be derived from (12)

as done by Coker and Filon [7] and later by Jessop [33].



2.2.1 Ceometrical descriptions.

Proof of the transformation on Poincaré's sphere. The proof
falls in two sections:

1. Determination of the cocrdinates of P1

2. Proof of the indentity between Pi and the new

state of polarization.

1: According to spherical geomefry we have

cosPioR = cosPOOR = coszwocosz(ml-ao)

2
SinPloﬂ = + ¢I—00522wocos 2(@1-30)

sinE(@i—Bo)COSEwO

+ 1—c0522wocosd2(w1-ﬁo)

SinPORQO

sin2wocosal+sin2(¢1—ﬁo)coszosin;L

sin(PORQO+Ai) 2

1l

inP, R z ¢
sinky Qi i_Vi-cosdEwocosdE(®1-Bo)

sinEmOsinAl-sinE(wl-Bo)cosEubcosai

cosP; RQy =—cos(P01QO+Al) _

i:V1—00522w000522(¢1“50)

sin2w, = sinPlﬁQisinPloR = sin2wocosal+sin2(cp1-ﬁo)cosQwOs.ZnAl
(17)

tg2(@, -9, ) = cosP RQ, taP OR =

sinewosinhl—sinE(cpl-Bo)cos2wocosA1
cos2wocos2(m1-ao)

(18)

From (18) we get

tg2( Bl % )+t52CP1
t82Py = T-tga(p,-w, )vE2P,

Sin2w081n010082w1-81n2(wi-Bo)0052w0005A10052w1+0052w00082(wi-ﬂo)sin2¢h

cosEmocos2(wi—Bo)cos?ul—sinamlsinﬁisin2¢irsinz(qi-go)COSEwocosalsin?xi

— i



cos?wo[sin2ﬁ0+(1-cosal)coszlsinz(ml—Bo)]+sin2 oSing cos2®,

- - — . . (19)
COSch[COUEEO-(lvcosﬁi)Slndwlsin2(¢h-ﬁo)]-Sln2w081n610052¢h

Hdefore the passage af the layer we have two vibrations in the

directions of the semi axes of the lisht-ellipse:

E1 = d,cos(t

1

E, = d,cos( 0t + %f = d

2 o sinQt

2

After the passage of the layer with retardation Al and orientation
p, we have the following two vibrations in the principal directions

of the layer, in that di = cosuy and d2 = sinmoz
u = aicos(0t+61) -
cosw cos(wi-ao)coth—sinwOsin(wl—Bo)sith

o

v = aacos(nt+62) =
sinwocos(wi—ﬁo)sin(0t+ai)-coswosin(wl-so)sin(Qt+Ai)
= [sinwocosalcos’wi-Bo7+coswosinglsin(wi—so)]sith

+ [sinwosjnglcos(ml—Bo)—coswocosbisin(wi-ﬁo)]coth

The corresponding retardations are determined by:

sin&i = - é; sinwg sin(wi-ﬁo)
coss, = gz cosw, cos(p, -B,)
sinéé = - ﬁ; [sinwoeosaicos(Qi-ﬁo)+cosmosinaisin(wi-ﬁo)]
coséé = fr [sinwosinAlcosfqa—Bo)—coswocosﬂlsin(wl-so)]

from which



'cosb, -

T oty .
cosd' = cos(d 61) = cosb, 1

. [ LI
5 +51n6251n61 -

1 PSR _ oy
EIEE [coswoslnu051nal cosQchosalcos(wi—ao)51n(m1—so)] :
1

EEIEE [51n2wosinA1—cosewocosalsinQ(wi-ﬁo)]

The difference between the squares of the amplitudes becomes:

1 2 1 2 — -
(ai) —(a2) = cosaw0c052($1 BO)
Applying (L.8) to a coordinate system with axes in the principal
directions of the layer we get:

tg2(51-cp1) = cosé'tgla'

1 t
COSé' - 2a1a2 =

(a] )2-(a})?
sin2wosinai—COSEwocosﬁisiHE(mi-so)
coszocosz(mi—ﬁo)

which is in accordance with (18). The ellipticity w, 1s determined
from (1.3) as tgw = dg/di:

s:‘LnEuJ:L f 2d1d2 f
sin2a'sing' =

tato, g ! 1 Voae 1Yy
2a, a, (51n6200561 0056251n61) =
sin2wocosa1+sin2(m1-ﬁo)0032w051nai

which is in accordance with (17).

%, The fundamental concepis of the electromapnetic theory

for dielectrics.

It will be seen from fig. 3.1 that if the substance contains
a resulting electric field E, this will cause a displacement
of the electrons relative to the nucleus. The displaced



electrons form dipoles causing an electric field Epol' The re-
sulting electric field E can be considered as the sum of two
contributions: Epol and a new field, the dielectric displacement
D, defined by

= 1 = =
E E—;D+Epol

where we have introduced a fundamental constant, the permitivity

cf wvacuum:

€ =-8,85 . 1012

o

As the polarization P of the sustance is defined by

P=- EoEpol
we get 3.2:
D = EOE + P

The suceptibility tTensor f, which is an expression of the
substance's capacity for polarization is defined by 3.1. The
dielectric tensor eij’ which also depends only on the substance,
indicates the relationship between the D-field and the E-field.

Eij is defined by 3.2.



11.

iz
13,

14.

15.

16.

i7.
18.

19.

20.

21.

22.

23,

24,
25.

26.
27 .

28.

29.

30.

3.

AFDELINGEN FOR BARENDE KONSTRUKTIONER
DANMARKS TEKNISKE H@JSKOLE

Structural Research Laboratory

Technical University of Denmark, DK-2800 Lyngby

RAPPORTER (Reports)
(1970 -

Brasstrup, Mikael W.: The Cosserat Surface and Shell
Theory. 1970.

Askegaard, Vagn: Anvendelse af modelanalyse. 1970.

Solnes, Julius: The Spectral Character of Earthquake
Motions. 1970.

Bresstrup, Mikael W.: Yield Lines in Discs, Plates
and Shells. 1970.

M@gllmann, J.: Beregning af hsngekonstruktioner ved
hjwlp af deformationsmetoden. 1970.

Byskov, Esben: The calculation of Stiress Intensity
Factors Using the Finite Element: Method with
Cracked Elements. 1970.

Askegaard, V.: Grundlaget for adh:sion. 1970.

Summaries of Lecture Notes on Experimental Stress
Analysis. 1970.

Sgrensen, Hans Christian: Forskydning 1 jernbeton-
bjelker. 1970.

Sgrensen, Hans Christian: PForskydningsforsgg med
12 jernbetonbjmliker med T-tvarsnit. 1971.

Mgllmann, H.: Analysis of Hanging Roofs Using the
Displacement Method. 1971.

Haurbsk, Poul E.: Dempede svingninger i spsndbeton-
bjslker. Svingningsforsgg med simpelt understgttede
bjelker.

Brsstrup, M.W.: Yield-line Theory and Limit Analysis
of Plates and Slabs. 1971.

Dyrbye, Claés: Pendulum Vibration. 1971.

Mgllmann, H.: Analytical Solution for a Cable Net
over a Rectangular Plan. 1971.

Nielsen, J.: Silotryk. 1972.

Askegaard, V., M. Bergholdt and J. Nielsen: Problems
in ¢connection with pressure cell measurements in
silos. 1972.

Ramirez, H. Daniel: Buckling of plates by the Ritz me-

thods using piecewise-defined functions. 1972.
Thomsen, Kjeld & Henning Agerskov: Behaviour of butt

plate joints in rolled beams assembled with prestres-

sed high tensile bolts. 1972.

Julius Solnes and Ragnar Sigbjdrnsson: Structural re-

sponse to stochastic wind loading. 1972.

H. J. Larsen og H. Riberholt: Forsgg med uklassifice-

ret konstruktionstrs. 1972.

Out of
print

Out of
print

Cut of
print

Out of
print

Qut of
print

Qut of
print

Publication
pending

Out of

print

Cut of
print



R

=

R

R

32.
33.
34,

5.

1 36.

37.

38.
39.
40.
41.
ho,
43,
W,
45,
46.
47.

48.

Vagn Askegaard: Programme and methods of teaching of
experimental mechanics. 1972.

Julius Solnes and Ole Holst: Welght optimization of
framed structures under earthquake loads. 1972.

Rostam, Steen and Esben Byskov: Cracks ‘n Conecrete
Structures. A Fracture Mechaniecs Approach. 1973.

Sgrensen, Hans Chr.: Efficiency of Bent-up Bars as
Shear Reinforcement. 1973.

Krenk, Steen: Singulwsr integralformulering af nogle
plane friktionsfri kontaktproblemer. 1975.

Philipsen, Claus: An investigation of the stability
of columns with thin-walled open cross-sectlon.

1973.

Theilgaard, Esko: Integralligningsmetoder anvendt
p4 problemer inden for bygningsstatikken. 1973.

Henrichsen, Lars: Linearly viscoelastiec finite
elements. 1973.

Bryndum, Mads: Litteraturstudium vedrdgrende let
konstruktionsbeton. 1973.

Holst, Ole: Beregning arf plane rammekonstruktioner
med geometrisk ikkelinearitet. 1973,

Krenchel, Herbert: Rupture criteria for ¥RC-mate-
rials. 1975.

Borchersen, Egil: Moire pattern deformation theory
and optical filtering techniques. 197h.

Brgndum-Nielsen, Troels: Optimum design of reinfor-
ced concrete shells and slabs. 1974.

Pedersen, Flemming Bligaard: Dynamic properties of
anti-vibration mountings. 1974,

Philipsen, Claus: Interferensiholorrafisk bestemmel-
se af legemers form og flytningsfelt. 1974,

Larsen, H.J. og H. Riberholt: Tvmrbmreevne arf s@m
og dykkere i spln- og trof'iberplader. 1974,

Poulsen, P.E.: The photo-elastic effect in three-
-dimensional states of stress. 1974.

Nilelsen, J.: Modellove for kornede medier med smr-
ligt henblik p& silomodeller. 1974,

Qut of
print



	abk-r048a.pdf
	abk-r048b.pdf

