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ABSTRACT

In this paper a method is presented for optimization of the reinforcement required to resist arbitrary internal
forces in reinforced concrete shells. As the design principles suggested are applicable to shells of arbitrary shape,
including slabs, subjected to all types of loading, the method is of a genecral nature. The procedure also indicates
whether the thickness and strength of the concrete shell are sufficient to ensure a staticaily admissible stress field in
the shell. The internal forces include normal and shear forces and bending and twisting moments. The design criteria
correspond to the ultimate limit state,

SYNOPSIS

The paper deals with the optimum design of reinforced concrete shells of arbitrary shape subjected to an
arbitrary load. The shape of the shell is assumed to be given. The investigation thus applies to shells, plates, folded
plates, and slabs. The thickness of the shell, which may be nonuniform, 1s assumed to be given.

The load of the shell is assumed to be given.

In the general case, the reinforcement is assumed to consist of one or two parallel layers of orthogonal
reinforcing net. The directions of the bars are referred to as the x- and y-directions. In case of two layers, these
directions will be assumed to be common for the layers.

The position of the reinforcement relative to the middle surface of the shell is assumed to be given. This
position is usually governed by the requirements to concrete cover.

The internal forces in any section of the shell are assumed to be known. These include the normal forces NS
and N, the shear force N the bending moments M, and My, and the twisting moments Mxy'

yo’ xyo’'
The method is an ultimate limit design method. The bearing capacity of the shell has thus been adopted as the
basic design criterion. The problem of buckling of the shell or slab is not discussed in this paper.

The tensde strength of the concrete is neglected. The normal sections of the concrete are assumed to be
cracked except where compressive stresses accur.

The concrete stresses are assumed to be uniformly distributed in the compression zone.

Compressive reinforcement has not been considered. The method can easily be extended to include this, but in
that case, the problem of buckling of the compressed reinforcing bars will have to be taken into account.

The design strengths, o, in the reinforcement and o}, in the concrete, are assumed to be specified.

a

The problem to be solved is as follows:

I. Check if the thicknesss and strength of the conhcrete are sufficient at all points of the shell.

2. Calculate the minimum necessary cross-sectional areas of the reinforcement at any point of the shell

surface. In the general case, this covers four quantities corresponding to two layers with two directions
in each layer.
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I the corresponding reinforcement is provided, it will be passible to indicate a statically admissible stress field
in the shell.

The problem is of a general character. The method was first adopted for cylindrical shell caissons for Han-
stholm Harbor, Denmark (Fig. 1), and later applied to similar structures in Africa and the United Kingdom.

SANDWICH SHELL MODEL

In Fig. 2 an infinitesimal element of
the shell has been isolated between consecu-
tive sections parallel to the x- and y-
directions. The lengths dx and dy of the
sides of this element are taken as equal to
unity.

All normal forces and normal stresses o
are taken as positive corresponding to ten- 4/ e
sion. In Fig. 2 the internal forces and at
moments per unit length of the shell are
indicated. The orthogonal x- and y-axes are Fig. 2 Internal Forces
located in the middie surface of the shell,
and the zaxis is perpendicular to this surface. For the present analysis, a corresponding sandwich element is
substituted for the shell element proper. This element is shown in Fig. 3(a<d). The sandwich element consists of
three layerss. If their thicknesses are given, the geometry of the sandwich shell element is known. The question of the
geometry of the sandwich shell will be discussed in a later section of this paper. For the present discussion, the
geometry is assumed to be known. All forces and moments in the shell element (Fig. 2) may thus be resolved into
membrane forces located at the middle surfaces of the top and bottom sandwich element, as illustrated in Fig.

3(a-d).

LIMIT ANALYSIS OF MEMBRANE SHELLS

A limit analysis of each of the outer sandwich layers of the shell (Fig. 3) may be carried out as suggested in

[].
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In Fig. 4, an clement of a membrane shell has been
isolated. The two sides are parallel to the orthogonal x- and
y-directions, The third side represents a crack in the shell,
The length of this side has been taken as equal to unity. The
angle between the crack and the x-axis is denoted v. The
inclination of the crack indicated in Fig. 4 corresponds to
ny =0, In Fig. 5, the corresponding situation is shown for

Ny*O

Nyy and N, denote the forces in the reinforce-
ment in the x- and y-directions per unit length of these

directions, respectively.

In both cases, equilibrium in the x- and y-directions
requires

Ny = Ny+ IN cotv (1)

xyl

Nyy = N +|N [t:mv (2)

If both N, and N, are positive, the necessary
reinforcement i proporllon.il to N,, +N_.. Minimum of

@
reinforcement thus corresponds to v 45°y
Consequently
N, = N+ |ny| (3)
—] i + J
Ny‘l '\'y Ih“yl (4)

Equations (3) and (4} are only valid as long as both
N,, and Nya are positive. This requires

N, cos v
Y
|Ny.| cos v I x
v
IN,,|sinv
l“ N, siny N, sinv
1 Nyacos v
Crack
v
Fig.4 Casc 1: Reinforcement Required in Both
Directions. NXYPO
N, cos v
’ |
x [Ny cos v |
v
N, tsinv

Ny snv MNyea sin v

Crock

Fig. 5 Case 1: Reinforcemenl Required in Both
Directions. nyﬂi()

The above situation (v = 45% is illustrated in Fig. 6. The principal, compressive membrane force N}, in the
concrete occurs in sections perpendicuiar to the crack, for instance, in the section along the line of symmetry of Fig.
6. The part below this line has been isolated in Fig. 7. Equilibrium of this element requires

Nb=-2

Nyy| (5)

As all normal forces are taken as positive corresponding to tension, Ny is negative.

Equations (3) through (5) are no longer valid when N, ,

is negative, i.e., when N <~- I This situation is

illustrated in Fig. 8 which corresponds to the situation N, <N Reinforcement is only requ:res in the y-direction.

Equilibrivm in the x- and y-dircctions requires
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NY
: y
[N, I X
=
IN,,|
Noa N,
Nyo

Crack

Fig. 6 Case 1: Optimum Inclination of Crack

N

tanv = L"y—] (6)

|Nx
Ny, = Ny + |ny| tan v )]

Equations (6) and (7)
NZ‘.
= N -—

Ny, = Ny N, (8)

Equation (B) is valid for N

t a” 0, ie. for
NxNy = Niy'

¥

The principal, compressive membrane force
in the concrete occurs in sections perpendicular to
the crack, for instance in the section through the
origin. The part of the element below this section
is isolated in Fig. 9. Equilibrium of the element
shown in Fig. 8 requires that the resultant of the
two forces acting on the side along the y-axis pass
through the common intersection point of the
three remaining forces. The resultant thus forms
the angle v with the x-axis, as shown in Figs. 8
and 9. Equilibrium of the element in Fig. 9
requires

N, = le[ secy = |Nx[ (l+tan2v) )]

Equations (6) and (9)
NE
Ny = Nx+ﬂ“! (10)
X

When N, is negative, a corresponding
situation occurs, This 1s illustrated in Fig. 10,

dy=|

Na + |le| Nl

45

N,o 1

-

Fig. 7 Case I: Principal, Compressive
Membrane Force, Nb

IN,|tanv

v

F— [N,|tanv secv

|N,,| tan v

Crack

Fig.8 Case 2. Reinforcement Only Required in the

y-Direction

. 'Y
Nyo sin? v x

-Ny sin ¥ v
IN,Itan v
v
\ IN_|sinv sec?v
Nyu !l'!z v
Fig.9 Case 2: Principal, Compressive Membrane
Force, N,



corresponding Lo the case N <N,. In this case reinforcement is only
required in the x-direction, Ethbrium of the clement in the y- and =

x-directions requires NI
N [ |N.-,|"' v 14
cotv = |'N¥% {11 g ; 1—:
17y -
Ny, = N+ [ny| cot v (12) ’
|N.,|Iunv
Equations (11) and (12}
Niy N lan v M, ton v
Ny, = Ny - N (13)
y
Crack
Equation 513) 15 only valid for positive values of Nyo. i, for
NxNya:ny.

In Fig. 11 the upper part of the element in Fig. 10 above the line Fig. 10 Case 3: Reinforcement Only
through the origin and perpendicular to the crack has been isolated. Required in the x-Direction
Equilibrium of this element requires

-Ny = |Ny; cosec?y = INy[ (1+cot?v) (14)

Equations {14) and (11) IN,| cosec v — N,
L

N2

v 17

Xy Y —-K
Ny = N+ = | U19) K \/

Y

if both Nx and Ny are negative and N,,sinv cos v N,gsinv cosv

NxNy,'#NEy. no reinforcement is required. In this
case, the principal membrane force in the concrete ~Nysin v
corresponding to maximum compression can be

calculated from the conventional formula

- Fig. 11 Case 3: Principal Compressive Membrane Force,
S— N,
= 21an2 b
N, = %(Nx+Ny) S %\/(;Jx-Ny} +4ny ] (18)

The four cases discussed above are summarized in the diagram in Fig. 12. Each combination of N_, N_ and
N,y Tepresents a point in this diagram, and the formulae indicated in the corresponding sector of the diagram apply
o ¥he case in question. The directions in which reinforcement is required are indicated by the directions of the
hatching in the sectors.

GEOMETRY OF SANDWICH SHELL

The concrete is assumed to be cracked as illustrated in Fig. 13. The principal, compressive membrane force
Ny, in the concrete is assumed to be resisted by uniformly distributed stresses o, This requires that the depth ¢
of the neutral axes be

c= — (a7




If the only internal forces in the section are

the normal force N and the bending mo- N ==INeyl—~ N L
ment M as illustrated in Fig. 13, the ‘ \ i ‘ . ‘ ‘ ' . [ £ Ny L
moment of these forces with regard to the aNEEE | T TIT
tensile reinforcement is Case 2 | NENN BN | Cose !
Ny= D Nua = N, + N, |
NI, HETEAES
M, =M-Ne (18) Npa= Ny~ g Nya = N, +INy, |
sz N, "'2|N=!l
e R T T
where ¢ denotes the eccentricity of the T T . NR ! ] N,
tensile reinforcement. mmmn e s ma: T ] LTING
g
N1 =M, = =N, i
The moment M, has to be resisted by p—y ks on —
the concrete compressive stresses. Conse- = 17 N,
N,.-o Nln-Nl-T
quently v
Nyo =0 \ Ny = 0 2
Niy
M, = -cop(h-t%e) (19) | Ny=3nan- LN Foan, Ny =N,
=N ./H
where h denotes the effective depth of the NN, =N, H
reinforcement.
With the notation Fig. 12 Chart of Relevant Design Formulae for Any Combi-
nation of Membrane Forces
M,
u= S5 . (20)
h Ob
A 4
Eq. (19) leads to F——] [:::H K ;
m .
| s h
c=h(l -1-2u) (21) . Ie )
L] e o
L-.. ' I
According to Egs, (5}, (10), and (15), A A-A
N,, contributes to N and thus affects
the “required value of ¢ according to Eq. Fig. 13 Cracked, Reinforced Concrete Section

(17). On the other hand, N,, cannot be

calculated until the geometry o¥lhe shell has been defined, and this geometry depends upon c¢. The problem can be

solved by trial and adjustment. In most cases, it appears practical to base the first estimate on the predominant

bending moment and Egs. (18), (20), and (21), thus neglecting the effect of N, . If N, is not zero, the value of
. - Y Xy

¢ thus found will have to be increased.

The middle surfaces of the outer sandwich layers thus correspond to the centroid of the reinforcement
resisting the predominant bending moment and to the centroid of the corresponding concrete compression zone,
respectively. The methed is illustrated in the numerical example in the next section. The geometry of the sandwich
shell is thus governed by the predominant bending moment. If this, for instance, is M,, a certain force N, .
according to Eqs. (4) and (8) may have to be resisted at the middle surface of one or both of the outer sapdwich
layers. However, the centroids of the reinforcement in the y-direction do not usually coincide with these middle
surfaces. For this reason the resultant N, of the two N, forces (N, ., and Nya-) has to be resolved into forces
at the centroids of the corresponding reinforcement. This will also be illustrated in the numerical example in the
next section. If the resultant N 4 is not located between the centroids of the reinforcement in the y-direction,
reinforcement in this direction wiﬁ only be required in one of the layers. The resultant can then be resisted by this
reinforcement in connection with a compressive force in one of the outer sandwich layers.
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NUMLERICAL EXAMPLL:

Nyo = -120 Nfmm o = -7 N/mm:
Nyu = 300 N/mm o, = 270 N/mmn=
ny” = 170 Nfmm Thickness of shell: 250 mm
M, = -83,000N
My = [2000N
Mxy = B00N
l |
I 1 l 1
58 N,a. =169 N/mm f AL,
Nog. |. 3 ¥ | M,a,
]. [+ ' ; I
4
I 53 La,, | &7
N [ 76 “N,o
250 | 147 ——-——
192 ¥ a 18 Ny A, t I
| ‘ | .80
-M
'M- K
. 125 | !
t | i A& N,o. = 230 N/mm ] 5 =45
! |

All dimensnons are in millimetres

uniess otherwise stated

Fig. 14 Position of Reinforcement and Membrane Forees

M, 1s the predominant bending moment. Effective depth of corresponding reinforcement {Fig. 14)

= 3
hx 192 mm

M, is found by substituting -M, for M and N, for N in Eq.(18)

M, = 83,000+ 120-67 = 91,000N

Equation {20)
91,000
1922(-7)

= 0.35
Equation (21)

¢ = 192(1 -4/1-2:035 ) = 87 mun

Both N, . and M,, contribute to N, and thus to Ny according to Eq. (10). Consequently, the
necessary depth’ ¢ of the compression zone must ‘be expected to be somewhat more than 87 mm. Estimated value

c = 90 mm

The middle surfaces of the corresponding outer sandwich layers are then located at z=67 mm and
z = 80 mm, respectively (Fig. 14).
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By resolving the internal forces as illustrated in Fig. 3 the following membrane forces are found at the bottom
sandwich layer

91,000 _
Ne. = =47 = -619 N/mm
: 67 12,000 =
Ny_ = 300 iﬁ+ Ve 137+ 82 = 219 N/mm
> 67 800 _
ny_ - 170]ﬁ+'14_-f 77+5 = 82 N/mm
As Nx-<'|ny—| , ho reinforcement is required in the x-direction.

As Nx<Ny , Eqgs. (8) and (10) apply {(Case 2 in Fig. 12)

N = 2194525 2219 +1) = 230 Njmm
ya- 619
Np = -619-11 = -630 N/mm
Equation {(17)
c = 630 _ 90 mm
-7
No correction of the estimated value of ¢ is thus required,
Membrane forces in the top sandwich layer
N,y = 619-120 = 499 Nfmm
Ny+ = (300-137)-82 = 81 N/mm
ny_,, = (170-77)-5 = 88 N/mm
This corresponds to Case 1 in Fig. 12.
Equations (3) to (5)
Nyg+ = 499+88 = 587 N/mm
Nya+ = 81+88 = 169 N/mm
N, = -2-88 = -176 N/mm

This principal membrane force is located 58 mm below the top surface of the shell (Fig. 14). If it is resisted by
uniform concrete stresses in a compression zone, the depth of this zone will be 2-58 = 116 mm and the stress

_ 176 - 7
ag = -ﬁz -ZNlmm

The compressive stress is thus much below the design value.
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Required cross-sectional area of reinforcement in the x-direction per unit length of the y-direction

In the top layer:

_ 587 _
Ax+ — z—.m = 2,17 mm
In the bottom layer:

No reinforcement required.
The resultant of Nya+ and Nya

Ny, = 169 +230 = 399 N/mm

It is located at
169-67 - 230-80

z = 399 = -18 mm

The corresponding layers of reinforcement in the y-direction are Jocated at z=+53 mm and z = -23 mm,

respectively.

Required cross-sectional areas of reinforcement in these layers per unit length of the x-direction are

XY,z
N, Nxo’Nyo'nyo'
MM M MM

Xy’ b 23
N,. N ny yx

yxo

an' Nyq

v

399 2318
Ay+ = 376 s3+23 - O10mm
399 53418 _ Lo

Ay. =

270 53+ 23

NOTATION

Rectilinear coordinates (Fig. 2)
Normal and shear forces per unit length of shell section (Fig. 2)
Bending and twisting moments per unit length of shell section (Fig. 2)

Normil and shear forces per unit length of outer layers of sandwich shell
(Fig. 3). Additional suffices + and - refer to top and bottom layers.

Forces in reinforcement per unit length of section (Fig. 4)
Angle between crack and x-axis (Figs. 4 and 5)

Principal, compressive membrane force per unit length of compression
zone. As all normal forces are taken as positive corresponding to
tension, Nb is negative.

Eccentricity of tensile reinforcement (Fig. 13)

Effective depths of tensile reinforcement (Fig. 13)
Depth of rectangular stress block (Fig. 13)

Moment with respect to tensile reinforcement {Eq. (19))
Non-dimensional parameter (Eq. (20))

Stress
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0y Oy Design strengths of steel and concrete

A, Ay Required cross-sectional areas of reinforcement (per unit length) in the
x- and y-directions. Additional suffices + and - refer to top and
bottom layers.
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