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PREFACE

This report is a slightly revised version of a thesis submitted
in November, 1972, for the degree of Lic.Tech.{Ph.D.)} in

structural engineering.

The subject for the research was:

1) to give a general presentation of the theory for
moiré-technique applied to deformation measurements,

2) to carry out moiré-tests with a view to determining
the accuracy and suitability for the method for the
solution of specific problems.

The post—graduate research has been carried out at the
Structural Research Laboratory, The Technical University
of Denmark, under Professor, Dr.Tech. X.W. Johansen and
Professor Vagn Askegaard.

The translation into English has been done by Mrs. Pauline
Katborg and granted by the Structural Research Laboratory,
and the type-writing has been done by Miss Birgit Rossil
at the Institute of Building Design.

All this help is hereby gratefully acknowledged.

Institute of Building Design
June 1974

Egil Borchersen



II

CONTENTS
PREFACE
CONTENTS
SUMMARY

EXPLANATORY NOTE

NCTATION

1. INTRODUCTION
1.1 what is Moiré ?
1.2 The Principle of Moiré-Technique

1.3 On the Moiré Literature
1.4 Contents of the Report

2. THE MOIRE-EFFECT
2.1 The Gratings Applied
2.2 The Moiré-Effect of Two Parallel
Line Gratings
2.3 The Moiré-Effect of Two Crossed

Line Gratings

2.4 Influence of the Grating Geometry
2.5 Bright and Dark Fringes or Vice Versa

3. GENERAL MOIRE-PATTERN THEORY
3.1 Contour Lines and Diagonal Systems

3.2 General Moiré-Pattern Theory for Two
Gratings of the Known Geometry
3.3 General Moiré-Pattern Theory

in Deformation Measurements

4. GENERAL MOIRE-PATTERN THEORY OF LINE GRATINGS
4.1 The Displacement and Deformation
of the Model Grating
4.2 Parametric Description of the Moiré&-Pattern

5. ANALYSIS OF THE UNDEFORMED MOIRE-PATTERN
FORMED BY TWO LINE GRATINGS
5.1 The Geometrical Relationship

5.2 Comparison the Two Line Gratings
5.3 Two Undeformed Line Gratings Used

for Displacement Measurements

PAGE

II

3-12

4-1

4-1
4-10



III

6. ANALYSIS OF THE "DEFORMED" MOIRE-PATTERN

BETWEEN TWO LINE GRATINGS

6.1 Parametric Description of the Moiré&-Pattern

6.2 Variation of the Grating
Displacement Function
6.3 Tangent Method. Variation in the Derivatives
of the Grating Displacement Function
6.4 Variation in Moiré-Line Parameter
6.5 Moiré-Line Density. "Mismatch".
Geometrical Multiplication
6 The Moiré-Surface. The Surface Slope Method
6.7 Super-Moiré. Moiré of Moiré.
Second-Order Moiré
6.8 For How Great Displacements and Displacement
Gradients is the Theory Valid ?

ACCURACY IN DETERMINATION OF DEFORMATION

7.1 Accuracy in Determination of Displacement
7.2 Accuracy in the Tangent Method

7.3 Accuracy with the Surface-Slope Method
7.4 Accuracy in Super-Moiré Method

OPTICAL METHODS IN MOIRE-PATTERN ANALYSIS

8.1 The Optical Arrangement

8.2 The Diffraction Pattern of a Line Grating
and the Optical Filtering of its Image

8.3 Diffraction Pattern for a Moiré-Pattern
and its Optical Filtering

8.4 Interpolation by Means of Measurements
of Light Intensity

8.5 Optical Multiplication of a Moiré&-Pattern

8.6 Other Applications of Optical
Filtering Technique

8.7 Other Applications of the Diffraction
Effect of the Gratings

PAGE

6-8
6-15

6~18
6-25

6-31

8-13
8-17

8~23

8-24



Iv

APPENDIX

A. REFERENCES

B. DIFFRACTION THEORY. CALCULATION OF DISTRIBUTION

OF LIGHT INTENSITY
B.l Basic Concepts of Physical Optics

B.2 On Fourier Series, Fourier Transforms

and Dirac's Delta Function
B.3 Fourier Analysis of the Diffraction Pattern
B.4 The Diffraction Pattern of a Line Grating
B.5 Optical Filtering of a Line Grating
B.6 The Diffraction Pattern of Two Crossed

Line Gratings
B.7 Optical Filtering of a Moiré Pattern

C. BRIGHT AND DARK MOIRﬁ—FRINGEg, OR VICE VERSA

PAGE
A-1

B-1
B-1

B-4
B-8
B-11
B-15

B-20
B-23

c-1



SUMMARY

The report deals mainly with the moiré&-pattern formed by two
superposed line gratings. The deformation of one of the
gratings can be described by a displacement function, and by
means of this, a parametric description of the moiré-fringes
can be established. On this basis, a number of methods for
determining the displacement function and its derivatives
from the geometry of the moiré&-fringes are developed and
evaluated.

Within recent years, interest has concentrated on developing
the use of optical filtering and multiplication of moiré&-
patterns. The theoretical background for this is examined at
the end of the report.

RESUME

I rapporten behandles hovedsageligt moiré-mgnsteret, som to
overlejrede liniegitre danner. Det ene gitters deformation
kan beskrives ved en flytningsfunktion, og ved hjzlp af denne
opstilles en parameterbeskrivelse for moiréstriberne. P&
grundlag heraf udvikles og vurderes en rakke metoder til be-
stemmelse af flytningsfunktionen og dennes afledede udfra

moiré-stribernes geometri.

Inden for de senere ar har udviklingen koncentreret sig om
brugen af optisk filtrering og multiplikation af moirémgn-
strene. Den teoretiske baggrund for dette ggres der rede for
sidst i rapporten.

EXPLANATORY NOTE

The report consists of 8 chapters and 3 appendices, which are
divided into numbered sections, e.g. 3.l1. The formulae are
numbered consecutively within each section, e.g. (6.2-5), and
the same applies to tables and figures. References to the
literature are given in square brackets, e.g. [68-10], where
the first fiqure is the year of publication, and the second,

its number in the bibliography in appendix A.



NOTATION

VI

Part of the notation is used throughout, while the remainder

is only used locally in a few chapters. The former is as

follows:

A and A
m r

e
£, £, fy

F, Fx' Fy

M{x,y}

MG

'm W o =

H

Coordinates to the grating lines m = 0 and

r = 0 (section 4.2).
Relative difference in line-spacing (5.1-10).
Interfringe spacing (5.1).

Relative interfringe spacing (5.1~1, 5.1-2, and
5.1-3).

Model-grating-parameter (4.2).
Moiré-surface (6.6).

Model grating.

: Moiré pattern.

Moiré-line parameter (4.2-4).
Pitch (2.1).

Reference grating pitch (4.2).
Model grating pitch (4.2).
Reference grating parameter (4.2).
Reference grating.

Transmittance (2.2-2).

: Grating displacement function (4.1).

: Visibility (2.4).

(1]

Relative space-width (2.1).
Relative model grating pitch (4.2~5).
Angle between grating lines (2.2 or 4.2).

Moiré-line inclination (3.2 or 5.1).



1. INTRODUCTION

l.1 what is Moiré ?

If two superposed line-systems are dense and almost periodic,
they often form an interference pattern known as a MOIRE-
PATTERN. The word "moiré" is derived from the French name

for a silk fabric in which the threads are oriented in such

a way that they form patterns similar to the above~mentioned
interference-pattern. The interference-phenomenon, which is
due to a simple shadow effect, is sometimes called GEOMETRICAL
or MECHNICAL INTERFERENCE (Weller & Shepard [48-1], Raczer &
Kroupa [52-1]), as distinct from optical interference, which

is due to the wave-nature of light.
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gratings turned an angle © in relation to each other

Figure 1.1-1




1.2 The Principle of Moiré-Technique

In experimental strain analysis, MOIRE-TECHNIQUE is defined
as the utilization of the interference-effect between two
dense line-systems (called GRATINGS). It is, of course, a
condition that the geometrical properties of the two super-

posed line-systems produce a moiré-pattern.

The principle of the moiré-technique is as follows: the state
(i.e. the position of a structural member or its state of
deformation), the change in which is to be determined, is
characterized by a grating {(denoted the MODEL GRATING). It

is assumed that there is an unambiguous relationship between

the geometry of the model grating and the state of the
specimen, which means that determination of the change in
the geometry of the model grating is sufficient for deter-
mination of the corresponding change in the state of the
specimen.

In order to determine the geometry of the model grating, a
second grating (called the REFERENCE GRATING) is superposed
on it, whereby a moiré-pattern is produced.

In order to determine the changes in the state of the
specimen it is necessary to know the relationship between
the model grating, the reference grating, and the moiré-
pattern, and the relationship between the model grating and
the state of the specimen.

The first relationship is general and does not depend
particularly on the state to be measured, but solely on the
mutual geometry of the two gratings. The analysis of this
relationship is called THE MOIRE-PATTERN THEORY.

On the other hand, the relationship between the geometry of
the model grating and the state of the specimen differs from
one method to another. The analysis of this relationship is
called THE MOIRE-METHOD THEORY, and it is only treated brief-
ly in this report. In Section 4.1 the moir&-method theory for

three well-known methods is described, namely, direct-moiré,

shadow-moiré, and reflection-moiré.



In the following, a more rigorous division of the moiré-
theory is given on the basis of the following common features
of the moiré&-methods:

a. In all the moiré-methods, a moiré&-pattern is formed
in the focal plane of the reproducing system (camera).

b. The moiré-pattern in a. is formed by superposing two
reproduced gratings,

c. The deformation of one of the gratings can be unambiguous-~
ly expressed by means of one or more of the parameters
describing the deformation of the specimen.

The relationship c. also depends on the position of the re-
producing system (camera) in relation to the specimen. Thus,

the same deformation of the specimen will produce different
moiré-patterns if the position of the reproducing system is
altered. However, it is possible to take this factor into
account in the relationship ¢., and the author has therefore
decided, for the purpose of the present report, to differentiate
as follows between moiré&-pattern theory and moiré-method theory.

The moiré-pattern theory comprises the geometrical relationship

between two gratings reproduced on the same focal plane and
their moiré-pattern.

The moiré-method theory comprises the theoretical relationship

between the deformatian of a specimen and the reproduction of
a grating on the focal plane of an optical reproduction system

(camera).

The report concentrates mainly on the moiré-pattern theory,
which is the part of the theory of moiré-technique that is
common to all moiré-methods. With this approach, the treatment
differs from current papers on moiré-technique, in which it

is usual to describe only the combination of pattern-theory
and method-theory that is valid for the method under consider=-
ation.



It appears to the author that it is more logical to
differentiate between the two theories when all the moiré-
methods are to be treated as a whole, in addition to which,
this approach facilitates comparison of the individual
methods.

1.3 On the Moiré Literature

There are at present more than 400 papers on moiré&-technique,
and new papers continue to appear, although at a slower rate.
The most recent survey is provided by Theocaris [69-1], who
has reviewed about 300 of them.

In the following, the historical background of the moiré&-
pattern theory is outlined in brief.

According to Guild [56-1], Lord Rayleigh seems to have been
the first to describe his observation of a moiré-pattern.
"This phenomenon might be made useful as a test". However,
it was not until 70-80 years later that the observation was
utilized for the measurement of deformations.

Weller and Shepard [48-1] described displacement measurements
using two identical line-gratings and establish the fact that
if two identical line-gratings are superposed with their
lines parallel, a deformation of one of the gratings will
result in the formation of a moiré-pattern with the following
characteristics: 1) Points in the deformed grating situated
on the same moiré-fringe are displaced the same distance in
the direction perpendicular to the original line orientation.
2) The difference in displacement between points on neighbour-
ing fringes (two bright or two dark ones) is equal to the
pitch of the undeformed grating.

Kaczer and Kroupa [52-1] gave the first formulae expressing
the geometrical relationship between two undeformed line-
gratings with different pitches and their moiré-pattern.

One of the most important contributions to the moiré-pattern
theory is that of Dantu [58-1], which is a continuation of
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[54~1]. Dantu interprets the moiré&-fringes as contour-curves
for the displacement function in the direction perpendicular
to the orientation of the grating line, and on the basis of
this approach, he evaluates formulae for determination of the
Strain-state from the moiré-pattern. Both the linear and the
angular mismatch techniques are included in the approach, and
a number of other topics, e.g. moiré of moiré, are considered.

Dantu's approach, alsoc known as the displacement approach, has
not gained as much ground as that used by Kaczer and Kroupa,
which is known as the geometrical apprcach. Durelli,
Sciammarella, and Parks have used Dantu's approach in a

couple of papers [61-1] and [63-1], but have since shown a
preference for the geometrical approach. Post [65-5], Koééék
[68-2], Martin and Ju [69-2][70-31,and Danh and Taylor [70-4 ]
have used the displacement approach because it has proved
advantageous in the analysis of finite deformations.

The geometrical approach initiated by Kaczer and Kroupa has
been elaborated by Crisp [57-1], who has analysed the accuracy
of the method. A more significant analysis is given by Morse,
Durelli, and Sciammarella [60-2], in which curves are shown
from which the strain components can be read directly after
measurement of the inter-fringe spacing and the fringe
inclination. An analogous analysis in respect of finite
deformations is given by Vinckier and Dechaene [63-3], and the
mismatch phenomenon has been analysed by means of the
geometrical approach by Tanaka and Nakashima [60-4 ], Chiang
[65-4], and Vafiadakis and Lamble [67-3]. Finally, Chiang
[69-3] has used the geometrical approach to analyse the sign
of the strain components.

There are only a few papers on the general moiré-pattern
theory; those of Pirard [60-1] and Kostak [68~2] form the
basis for chapter 3 of the present work and are discussed
there.

In 1969, when work started on the present report, the
literature on moiré~technique consisted mainly of papers in
which only special topics within the field of moiré were
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analysed. There was no single paper in which all the results
were summarized in a way that would enable a beginner in
moiré-technique to utilize all the report results together,
without reading the main part of the papers. It, therefore,
became the main purpose of the author's work as post-graduate
student to summarize the existing literature on moiré.

In the meantime, two books have been published that deal
particularly with the utilization of the moiré-effect in
strain analysis. The first, by Theocaris, "MOIRE FRINGES IN
STRAIN ANALYSIS" [69-1] deals mainly with moiré-methods.
Theocaris is responsible for a large number of the papers on
moiré-technique, and his book is primarily a reprint of these
papers, supplemented by a few papers by other authors. The
second book, "MOIRE ANALYSIS OF STRAIN" [70-1], by Durelli and
Parks, deals to a greater extent with the moiré&-pattern theory,
and the only method described is direct-moiré.

Although the books have in some measure supplied the need for
a summarizing paper, there are still a number of problems
that require analysis. Furthermore, some problems have been
solved since publication of the above-mentioned books, and
interest has focused particularly on the utilization of the
grating-diffraction effect, so the need has arisen for a
summarizing treatment of these topics too.

These factors, together with the further generalization of

the moiré~pattern theory that has proved possible, form the
background of this report. The preliminary work consists of

two lecture notes [70-2] and [71-1] and a number of unpublished,
internal reports.

1.4 Contents of the Report

The report is divided into two parts, moiré-pattern theory
and optical filtering technique.

The first part, which includes chapters 2.~7., begins with
chapter 2 on the moiré-effect, i.e. the conditions causing a
moiré-pattern to appear when two line-systems are superposed.
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The discussion on the moiré&=-pattern theory commences with a
generel review in chapter 3. Items of new interest are dealt
with particularly in section 3.3 of this chapter. In chapter
4, the theory is specialized to deformation measurement by
means of two superposed line-gratings, one of which has
undergone deformations and displacement. At the end of this
chapter, a parametric description of the moiré-pattern is
drawn up.

Chapters 5 and 6 contain an analysis of this parametric
description. In chapter 5, the "undeformed moiré&-pattern® is
analysed, i.e. the moiré-pattern formed by two undeformed
line-gratings, mutually inclined and displaced.

In chapter 6, the most important of the report, the analysis
deals with the case in which one of the gratings is deformed.
The procedure for complete determination of the deformation
from the geometry of the moiré-pattern is described. The
analysis, in particular, differs from those given elsewhere.

In chapter 7, which completes the first part of the report,
the accuracy of the deformation measurement is estimated. The
contents of this chapter are also new.

After this treatment of the so-called classical moiré-pattern
theory, chapter 8 deals with the possibilities offered by the
optical filtering technique for extracting further information
from the moiré-pattern. This exposition of the latest develop-
ments in the field is also new.

A number of appendices conclude the report.






2. THE MOIRE-EFFECT

2,1 The Gratings Applied

As mentioned above, the line-systems under consideration are
called gratings. Some authors distinguish between moiré-
gratings and diffraction-gratings, but this is unnecessary as
the latter can also form moiré&-patterns. The term "grid" is
also used for the line-systems, but here it is reserved for
the line-systems applied in the grid method, which is not a
molré-method.

The grating most frequently utilized is the line-grating. Its
structure, which is shown in fig. 2.1-1, consists of parallel,
dark and bright lines (rules), bars and spaces. The centre-
lines of the bars are denoted the GRATING LINES, and the
distance between them is known as the PITCH. In the figure,

p denotes the pitch, and B the ratio between the space width
and the pitch. The relative space width B adopts values in
the interval 0 < B < 1.

The grating can work either as a TRANSMISSION GRATING or as
a REFLECTION GRATING. In the first case, the spaces are
transparent, while in the second, they are reflecting. In both

cases, the bars absorb all the light received. In the following,
only transmission gratings are considered, but it will be
evident that the theory is also valid in respect of reflection
gratings.

al b) c)

ol

p='%‘ p="2- [3:71-

Examples of line grating structures
Figure 2.1-1
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The gratings normally utilized in moir&-technique have line
densities of about 1-40 lines per millimetre (&/mm), while
the diffraction gratings have densities of more than 400 &/mm.
This could provide grounds for differentiating between the
two categories of gratings, because moiré-patterns formed by
low-density gratings can be observed with the naked eye,
while in the case of higher densities, the gratings have to
be placed in a spectroscope (Guild [56-1]). The difference
arises due to the wave-nature of light, which makes the
diffraction effect of a grating dominate at high line
densities.

Even though line gratings have proved to have many applications,
there are cases in which another grating structure is more
convenient. The applications of circular and radial gratings
have been described by, inter alios, Theocaris [65-1], and

the applications of spiral gratings, by KoStak and Popp [66-1].
Finally, fig. 2.1-2 shows other gratings derived from the

line grating.

21
; X (] O [
d JJ O0O
\\ 7 L & B
Orthogonal Dot Triangle
grating grating grating

Line grating combinations .

Figure 2.1-2

2.2 The Moiré Effect of Two Parallel Line Gratings

The three standard combinations of two line gratings are shown
in fig. 2.2-1. The pitches are P, and P, and the acute angle
between the grating lines is 8.

The moiré-pattern consists of equidistant and parallel, dark
and bright fringes, which are denoted BRIGHT and DARK MOIRE-
FRINGES. Their centrelines are the MOIRE-LINES or the MOIRE-
CURVES.
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gratings with parallel lines but
different pitches.
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The three cases shown are: a) two gratings with parallel lines
but different pitches, b) two identical gratings (i.e. with
the same pitch) but with the lines inclined the angle 6, ¢)
two gratings with different pitches and with the lines
inclined the angle 6.

In the first case, the moiré-fringes are parallel to the
grating lines, while in the second the fringes are parallel
to the bisector of the obtuse angle between the grating lines.

2.2.1 Geometrical Interpretation of the Moiré&-Effect

If a part of the moir&-pattern in fig. 2.2-l.a is magnified
as shown in fig. 2.2-2.a, it will be seen that the moiré&-
line in one grating coincides with a grating line in the
second grating. The dark fringes are located half-way between
the bright fringes, i.e. where a grating line in one grating
coincides with a space in the second grating.

Geometrically speaking, the difference between the numbers of
grating lines in the two gratings is exactly one between two
neighbouring fringes. Hence, the grating lines are analogous
to the lines of a vernier scale.

In fig. 2.2-2.a, the two gratings are called RG and MG, and
their pitches, P, and P_ (pr < pm). If the number of pitches
(p,) is n between two bright fringes in the grating RG, then
there will be n-1 pitches (p_ )} in MG. The inter-fringe spacing
(i.e. the shortest distance between two dark or two bright
fringes) can then be expressed as

f = np_= (n - 1) P, (2.2-1}

Eliminating n, we get

P, P
R (2.2-2)
m X

Iif P, = P,s MO moiré~pattern will appear as long as the
grating lines are parallel.
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Strictly speaking, the above-mentioned derivation is only
valid if the ratio between the two pitches is a rational
number and if the difference between nominator and denomiantor
is equal to one (unity). This restricts the ratio between the
largest and the smallest pitch to values less than or equal

to 2. If the pitch ratio is an irrational number lower than

2, then the fringe spacing is also given by (2.2-2), but
{(2.2-1) is no longer valid.

2.2.2 Optical Explanation of the Moiré-Effect

The eye's perception of the dark and bright fringes in a
moiré-pattern is due to a variation in the light intensity
in the direction perpendicular to the moiré-lines.

For the eye to be able to differentiate clearly between two
points, the visual angle to the points must be at least about
0.0005 radians (Bjerge [64-1] page 97). This means that if the
points are 1 metre away from the eye, then thelr mutual distance
must be greater than 0.5 mm. In a line grating with a line
density of 2 £/mm the individual lines cannot be distinguished
and the grating appears as a grey field because of the

eye's impression from each point is equal to the average
light-intensity within a circle about the point with diameter
0.5 mm {see fig. 2.2-3).

100% Transmitted light

Average

Figure 2.2-3

The average light intensity increases with the relative space

width 8 (fig. 2.1-1) since it increases with the quantity of
light transmitted by a transmission grating. Post [67-1] has
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therefore chosen to characterize the gratings by a TRANSMITTANCE
T, expressing the ratio between transmitted and received light
when the light intensity is equally distributed. Hence, the
transmittance is equal to the relative space width, i.e.

T = B (2-2-3)

Fig. 2.2-2.b and c show the variation in the light intensity

in the moiré-pattern in fig. 2.2-1. When observed at normal
reading distance, approximately 30 cm, the light distribution
is almost as shown in fig. 2.2-2.b. If the observation distance
is increased to such an extent that the resolving power of the
eye is equal to the smallest pitch, then the average light
intensity will be distributed as shown in fig. 2.2-2.c (Durelli
and Parks [70-1] p. 32).

Hence, the variation in light intensity at right-angles to the
moiré-lines is linear between a number of extreme lines
constituting the bright and dark moiré-fringes.

The above considerations are based on geometrical optics, in
which the wave-nature of light is neglected. A determination
of the variation in the light intensity in accordance with
physical optics results in a truer distribution, but is far
more complicated. Guild [56-1] has considered the light inten-
sity distribution of two superposed diffraction gratings, while
Sciammarella [65-2] has considered the case of coarse gratings.
Formally, all gratings are diffraction gratings irrespective
of their line densities; the diffraction effect only becomes
dominant at large line densities, which is why gratings with
such large densities are often called diffraction gratings.

The light intensity distribution determined according to
physical optics (se chapter 8) can be expressed as a sum of
harmonic terms. The optical system by which the moiré&-pattern
is observed filters off the higher orders, depending on the
line density, the geometry of the optical system, etc. For
line densities of the order of 12-20 2/mm, a normal optical
system, e.g. a camera, will filter off all orders higher than
one; hence, the intensity distribution can be expressed by a
sinus curve with maximum values at the bright fringes and



minimum values at the dark ones.

As will have been seen, the light intensity reaches its extreme

values at the dark and the bright moir&-lines, irrespective of

the optical theory on which the considerations are based. The

linear variation shown in fig. 2.2-2.c is thus an approximation.
In the so-called "classic" moiré-pattern theory, which is treated
in chapters 3 to 7, the moiré&-pattern is described solely by the
geometry of the moiré-lines and it will therefore be seen that

it is sufficient in this connection to base the explanation of
the moir&-effect on geometrical optics.

2.3 The Moiré-Effect of two Crossed Line Gratings

If we consider the moir&-pattern in fig. 2.2-l.c, formed by two
crossed line gratings in detail, as shown in fig. 2.3-1l.a, we
can explain the moiré-effect as follows:

The grating lines in the two gratings form parallellograms, one
of which is denoted ABCD. The EFFECTIVE or VISUAL MOIRE-PATTERN
(Pirard [60-1]) proves to be the one in which the bright moiré-
fringes coincide with the short diagonals in the parallellograms.

One interpretation, given by Durelli and Parks [67-2], is that
the small, transparant parallellograms in that direction have
the shortest mutual distance and thus form bright bands that
are perceived as bright fringes by the eye.

If we examine the variation in the light intensity, we will
find that the distance between the extreme values is maximum
in the direction perpendicular to the short diagonals. In
fig. 2.3-1. the variation in the light intensity in three
different directions is shown.

The supposition that the moiré&-fringes follow the short dia-
gonals proves to be valid only when the line densities of the
two gratings are nearly equal. The major pitch must not exceed
1.5 times the minor pitch, as is apparent from fig. 2.3-2.



Gratingbars

FPigure 2.3-1

MG

Figure 2,3-2
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In the figure, a line grating with pitch P, is superposed by

a second grating with pitch p_, which increases towards the
right. The moiré-pattern can be observed more easily if the
figure is tilted around one of the lines in the line grating.
An examination of the fringe formation shows that the principle
of the short diagonal is only valid in the domain pm/pr < about
1.5.

Kogggk [63-1] has investigated the fringe formation conditions
by considering the variation in the light intensity in different
directions. He concludes that a sufficient condition for coin-

cidence between the bright fringes and the short diagonals is

that the mutual distance between the diagonal curves following
the short diagonals (f in fig. 2.3-1) is bigger than 3 times
the minor pitch of the two gratings. Thus, application of the

principle of coincidence between the fringes and the short

diagonals in respect of a given moiré-pattern is dependent on
v,

fulfilment of the Kostak-condition.

Finally, it should be noted that if the grating with the large
pitch is replaced by a grating with twice that pitch, the same
moiré-pattern will appear if orientation of the grating lines

remains unchanged (see fig. 2.3-3), (Durelli and Parks [67-2]).

3
1

Pm

2P
T

Figure 2,3-3




2.4 Influence of the Grating Geometry

In the above, no assumption has been made about the relative
space width B (see fig. 2.1-1). It will be seen from fig.

2.3-2 that B affects the contrast of the pattern. A detailed
investigation of this has been carried out by Zandman, Holister,
and Brcic [65-3] and Post [67-1].

Tmax= B min

_ )0 for B + Bn=1

Tnin™ \B, + G- 1 for B, +Bpxt
RG
p" pr = Bm= 0.6
T
] ] l
: ] L I
IMG } | | | | |
mo [ T T2 i i e
1 H | | i | 1 § | i
a)l Q}“T_r_ll [ T !
e W 1 Wb i
| I i i
B, = Bp= 0.6
b)
B, =06
B=0.4
Br"'pm =1

Variation of transmittance T with the
relative space width f§ of the gratings
Figure 2.4-1
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Fig. 2.4-1 shows three moiré-patterns formed by two gratings
RG and MG with the pitches P, and Pn* The difference between
the patterns are due to the fact that p has different values.
The corresponding variation in light intensity, expressed by
the transmitted light, is shown for each case.

For the cases under consideration the maximum and minimum
values of the transmittance T can be expressed as:

Tmax = Bmin (2.4-1)
-0 for Br + Bm =1
Tain = {(ar + Bm) -1 for B, + B, > 1 (2.4-2)

The visual impression of the three patterns differs due to
differing variations in the light intensity. These differen-
ces can be expressed by the guantities:

T = T e
The visibility: V = Tmax — Tmln (0 £V s 1)
o max min
The contrast : K =T =T (0 S K = 50%)
max min
Br = 0-6 Br = 0-5 Br = 0-4 Br = 006
Bm = 0.6 Bm = 0.5 Bm = 0.4 Bm = 0.4
T 60% 50% 40% 40%
max
T . 20% 0 0 0
min
T + T 80% 50% 40% 40%
max min
K="T - T | 40% 50% 40% 40%
max min
Tmax v min
VvV = T T 0,5 1 1 1
max min
f L g £ £
"y S =3 <32 > 2
£ _ £ £ £
Wi >3 =3 ) <37

Table 2.4-1
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The table gives the values of these quantities for the three
cases in fig. 2.4-1, together with the normal case in which
bar and space in the grating are of equal width {Br = Bm = 0.5)
and the values of Wb and Wﬁ.

These quantities, which are due to Post [67-1], are known as
THE APPARENT FRINGE WIDTH (Wﬁ for the dark fringes and Wb for
the bright ones). The apparent bright moiré-~fringe width is
defined as the area in which the light intensity exceeds the
average intensity of the whole pattern, while the dark fringes
constitute the remainder of the pattern (see fig. 2.4-1). The
smaller the apparent width, the sharper will be the fringe.

The values to be selected for B depend on the purpose of the
moiré-pattern. As will be seen from the table, Br = Bm = 0.5
gives the best contrast. Furthermore, in this case, the inten-
sity varies linearly from mid-fringe to mid-fringe. If only
the bright fringe centrelines are to be determined, gratings
with Bm = Br < 0.5 can be used, since these have the smallest
fringe width and maximum visibility. If, on the other hand,

it is the dark fringe centrelines that are to be considered,
gratings with Br + Bm = 1 can be recommended. Such pairs are
termed COMPLEMENTARY GRATINGS and are characterized by having

minimum apparent dark fringe width and maximum visibility.

For most applications, both fringe centrelines have to be
determined, for which reason gratings with B = 0.5 ought to

be used. Even though this conclusion is based on the moiré&-
patterns in fig. 2.4-1, it is in agreement with the conclusions
reached in the papers mentioned above. For further explanations,
se these papers.

2.5 Bright and Dark Fringes or Vice Versa

When photographic negatives are copied, the fringes defined
above as the "dark" fringes sometimes appear brighter than the
"bright" fringes.

An example of this phenomenon is shown in fig. 2.5-1, in which
the "dark" fringes are dark in one area and bright in another.



Caution must therefore be shown in the use of the terms dark
and bright fringes, but as long as the phenomenon and its
explanation are borne in mind, mistakes can be avoided. As
will be seen in fig. 2.5-1, it is possible to se the grating
lines in the formal "bright" fringes, but not in the "dark"
ones. An explanation of this phenomenon is given in appendix C.

Figure 2.5-1
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3. GENERAL MOIRE-PATTERN THEORY

Pirard [60-1] was the first to treat the moir&-pattern theory
for arbitrary gratings. His results have been reprinted by
Theocaris in [69-1] pp 14-18. The following is based partly
on Pirard's paper and partly on Koé%ék's paper [68-2].

3.1 Contour Lines and Diagonal Systems

When two superposed, undeformed line gratings are considered

it is unnecessary to identify the individual grating lines
since they have not only the same orientation but also the

same spacing. The geometrical relations between the two
gratings and their moiré-pattern can be determined by consider-
ing a local area; as the system is homogeneous, this will
suffice for the whole pattern.

If the grating lines have different geometrical properties,
which they may well have in the undeformed state and almost
always have following a deformation, it is practical to
characterize the individual lines by a parameter (or a number).

Kogg;k has chosen to regarding the grating lines as CONTOUR
LINES, as each line can be regarded as a curve along which a
given function has a certain constant value. It will always
be possible to choose this function in such a way that the
constant value is an integer, whereby each line can be
characterized by a line number or a parameter.

by

-
]

|

N=O=NWsT O

Figure 3.1-1
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Consider, as an example, a line grating (fig. 3.1-1) with the
pitch p, the lines of which are numbered consecutively with
the parameter n. If an x,y-coordinate system is chosen such
that the x-axis coincides with the grating line n = 0 and the
y-axis is oriented so that the parameter increases in the
positive y-direction, it will be seen that each grating line
can be expressed by the parametrical equation.

y =np (3.1-1)

or
% = n (3.1-2)

As a contour line system is the projection on the x-y-plane
of the curves of intersection between a surface, z = G{x,y}
and planes parallel with the x,y—plane; then for any grating
there is a corresponding surface for which the grating lines
are contour lines. The line grating in fig. 3.1-1 can be
regarded as the contour line system of the surface:

z = Gix,y} = % (3.1-3)
which is a plane intersecting the x,y-plane along the x-axis.
The difference in level from line to line for the chosen
surface (3.1-3) is equal to unity, while the choice of

G{x,y} = y would give a difference equal to the pitch of the
grating. The choice of difference in level is, of course,
arbitrary, but it has proved more convenient to use the
surface that has an integer as the difference.

In general, a grating or curve system can be described as

G{x,y} =n (3.1-4)

which is called the parametrical equation of the grating. For

every surface G{x,y} there is a corresponding grating and,
conversely, it is, in general, possible to determine the
grating function ¢{x,y} corresponding to a given grating.
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For two contour curves in the same contour curve system it
holds that:
a. they will not intersect each other if they have different

parameters, and

b. the difference between the parameter values of the two

adjacent contour curves is either 0 or 1.

Therefore, cases in which a part of the surface is perpendicular
to the x,y-plane are neglected as they are of no interest in
the following.

Gy [x.y) =t

Additive and substractive diagonal curve systems

Figure 3.1-2

Consider two superposed contour curve systems (fig. 3.1-2)
with the parameters k and 1,

G {x,y} =k and G,{x,y} =1 (3.1-5)

Through the points of intersections a number of curves can be
drawn, which are designated DIAGONAL CURVES and which satisfy
certain parametrical conditions. Fig. 3.1-2 shows the diagonal
curves that satisfy the following conditions:

k-1=m (dotted lines) (3.1-6)
k+1

n (dot-and-dash lines) (3.1-7)



These diagonal curve systems are also known as THE SUBTRACTIVE
SYSTEM and THE ADDITIVE SYSTEM, respectively, and it is they
that are of principal interest in this report. As the choice
of parameter is arbitrary, there are now no restrictions
preventing a change of sign for one of the parameters. A
change of sign for one of the parameters means that the
subtractive system becomes the additive system, and vice
versa. Whether a given diagonal system is subtractive or
additive thus depends solely on the choice of the parameters

and is independent of the geometry of the superposed contour
curve systems.

The parametrical conditions for the diagonal systems are not
restricted to the two equations mentioned above (3.1-6) and
(3.1-7), but may include any linear combination of parameters
for the two gratings, hence:

n=A k+ Al (3.1-8)

where Al and Az, too, are integers.

Diagonal curves corresponding ton = k - 21

Figure 3.1-3

Thus, fig. 3.1-3 shows diagonal curves corresponding to the
parametrical conditions:

n=%k-21 {(3.1-9)



In chapter 2 {on the moiré-effect), it was shown that moir&-
lines belonging to the bright moiré~-fringes correspond to
what are here called diagonal curves. To determine the
parametrical conditions applying, it is necessary to consider
the mutual geometry of the two superposed gratings; if the
ratioc between the greatest and the smallest pitch in the two
superposed line gratings is less than approximately 1.5 (see
fig. 2.3-2), then the moiré-lines will follow the short
diagonals of the parallelograms, which corresponds to the
parametrical conditions (3.1-6) or (3.1-7).

In the following, the term "moiré-lines" will be reserved for

the “bright“ moiré-lines, since it is these that are determin-

ed by the above-mentioned parametrical conditions. The "dark

moiré-lines” correspond to parametric values inbetween, such
as —%' +¥' +1%' +2%' etc-

In general, the parametrical conditions determining the moiré-
lines have to be examined for each moiré-pattern. The results
from superposed line gratings can usually be used, as the
curvilinear quadrangles formed by the two curve systems can,
with good approximation, be treated as parallelograms.

However, it should also be noted that the moir&-lines cannot
necessarily be determined by the same parametrical conditions
throughout the moiré-pattern, but as moiré-lines corresponding
to one parametrical condition do not continue directly into
lines corresponding to another parametrical condition, a
discontinuity in the moiré-fringes will disclose a change of

parametrical condition.

In practice, the coefficients Al and 12 (3.1-8) can only
determine moiré-patterns with the values *1, *2, and *3. For
diagonal systems corresponding to higher values of Al and A_,
the contrast is too weak for the fringes to be visible (Kogéék
[68-2]).

As long as the moiré-lines correspond to one parametrical
condition, they can be characterized by a parameter, e.g. m
in (3.1-6). This means that the moir&-lines can be treated as



contour-lines as well. The corresponding surface is designated
THE MOIRE-SURFACE (section 6.6).

Finally, it should be noted that if the moiré-lines are
considered as grating lines, then this grating, superposed
with one of the two original gratings, will form a molré-
pattern that is identical to the second original grating. This
follows directly from the parametrical condition by interchang-
ing two parameters.

Application of this general principle on the addition and
substraction of two contour line systems has, for example,
been used in two-dimensional photo-elasticity by Mesmer [56-2]
and de Lamotte [68-1]. When two thickness-interferograms of

a plane specimen (one taken before and the other after the
deformation) are superposed, a moiré&-pattern results, which

is the contour lines for the change in thickness of the
specimen. The change is propoitional to the sum of the
principal stresses in the plane of the specimen.

3.2 General Moiré-Pattern Theory for two Gratings of

Known Geometry

In this section, expressions will be derived for the moiré-
pattern formed by two superposed, arbitrary gratings of known
geometry. The derivation is analogous to that given by
Theocaris in [69-1].

Consider two gratings given by the following parametrical
equations:

r (3.2-1)

R{x:Y1

S{x,y} = m (3.2-2)

Assuming the moiré-lines to follow the parametrical condition:
n=r+m (3.2-3)

the moiré-pattern is given by the equation:

M{x,y} = R{x,y} * si{x,y} =n (3.2-4)
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If now, an arbitrary contour curve system

F{x,y} = n (3.2-5)

is considered, the treatment may be generalized to include
gratings as well as moiré-patterns. As n is constant along a
contour curve, these can also be described by the differential
equation:

F'xdx + F'ydy =0 (3.2-6)

where comma denotes partial differentiation.

Figure 3.2-1

The slope of the tangent at point A (fig. 3.2-1) on a contour
curve is then:

tany = v - " F (3.2~7)

If the contour line spacing (pitch) p at point A is defined
as part of the normal at the point that lies between the
contour curve and its adjacent curve, then

p=V ()% + (ay)?
The normal is given by

-Ax F + Ay F =0 (3.2-8)
Y r X



and the part AB is determined by (3.2-5):

AFAx + ég1-:'.\y {3.2-9)

An=1=A—x Ay

If the curves are so close together that

AF AF .,
Ax T F,x and Ay T F,y

then (3.2-9) takes the form:

F  Ax +F Ay =1 (3.2-10)

If (3.2-8) and (3.2-10) are solved with respect to Ax and Ay,
then the contour line spacing (pitch)} becomes

Y S (3.2-11)

(F )" + (F'y)

’

For an ADDITIVE MOIRE-PATTERN, i.e. n = r + m, the interfringe
spacing £  takes the form

£ = —_— === (3.2-12)

and correspondingly, for a SUBTRACTIVE MOIRE-PATTERN, fs takes

the form

£ . (3.2-13)

s ¢QR'X - s,x)2 + (R =8 )

vhich of the two patterns is the EFFECTIVE MOCIRE-PATTERN, i.e.
the pattern immediately perceived by an observer, can be
determined by comparing the two spacings fa and fs. The pattern
with greater spacing will be the effective pattern, if one can

be seen at all.



For the additive and subtractive system the condition is:

2 | = -
fa = fs <=> R'xs'x + R'ys'y s 0 (3.2-14)
For the general parametric condition,
n = Alr + Aznl (3.2-15)
the corresponding interfringe spacing is
2 2. -1
f = [“1 R'x + Azs'x) + (Al R'y + >\2 s,y) 1 2|(3.2-16)

the coefficients Al and 12 determining the effective moriéa-
pattern are found by investigating by means of (3.2-16) the
combination that results in the biggest spacing f.

3.2.1 Example. Line Grating Superposed with Circular Grating

As an example, the moiré-pattern form by superposing a line
grating and a circular grating is considered.

N == NW

Line grating Circular grating

Figure 3,2-2

Fig. 3.2-2 shows the positions of the gratings in an X,y-
coordinate system. The parametrical descriptions of the
gratings are:
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Line grating : Rix,yl} (3.2-17)

il
W b

I

=

[.2,.2
Circular grating : S{x,y} VXY - (3.2-18)

Calculation of the contour line spacings {(pitches) by means
of (3.2-11) gives, quite naturally, p, and p . The parametrical
description applying to the moiré&-pattern is given by (3.2-16):
A 2 A A 291
f = [(__2. .___}E_) +(.._l + _2 ___.‘L___) ]—'2_
Pn vx +y Py Ppn vx +y
Aoy 2 A N2 222 _1 (3.2-19)
(G2 + GO st r]

P P pr I:’m Vx +y

m r
To maximize £, the expression within the square brackets must
be minimized with the restriction that Al and Az must be non-
zero integers.

For y > 0, this expression is less than

(22+(ﬁ"2+2"1"2_f3+32
\p \p) P_P,. \P P
m r*m X

r

which is minimum for P, = P, when either Al =1 A Az = -1 or
A, ==l AR, = 1. Consequently, the moiré-pattern is subtrac-—

1
tive for y > 0 and, analogously, additive for y < 0.

The parametrical description of the moiré-pattern is then
(for y > 0):

;2 2
M{x,y} = —"pﬂ- - X =-n (3.2-20)

m pr

which may be rewritten as

2 2, 2 2 2
(p. - p)y" - 2ynp p *p x -p.n =0 (3.2-21)

JP;UN

It will be seen that the moiré-curves are conesection curves
of a type depending on the two pitches P, and p, as follows:
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a)
pr > Pm
e =Y P ellipses
@._..........
b)
P, P,
R parabolas
- e . M c)
: Pr < Py
hyperbolas

Moiré-patterns for a circular grating and a line grating

Figure 3.2-3
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The figures illustrate clearly the legitimacy of considering
the gratings as contour curves. The circular grating may be
considered as the contour curves of a cone. The curves of
section between this and the plane for which the line grating
is the contour curves are precisely of the type that depends

on the ratio between the slope of the plane (é#o and the slope
1 x
=5

of the generator (p

m

This means of illustrating section curves between different
kinds of surfaces has been used by Oster ([64-2], [64-3],
[67-5] and [68-4]), for the purpose of describing a number of
optical interference phenomena.

3.3 General Moiré-Pattern Theory in Deformation Measurements

When the moird-technique is used in deformation measurements,
the geometry of one of the gratings is changed from a known
state into an unknown state, and it is for determining this
new geometry that the moiré-pattern is used.

The grating that deforms is designated the model grating (MG)
and its undeformed state is assumed to be determined by the

parametrical description,

o -

MG sP{X,Y} = m (3.3-1)

which changes, after deformation into the deformed model
grating,

MG : Si{x,y} =m (3.3-2)

y.Y
{x,y)
I:\\S[xy]=m
(X.Y) u
sO[x.¥Y) = m

Figure 3.3-1
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Fig. 3.3-1 shows the deformation of a single grating line
with the parameter m. The deformation is described so that
points having the coordinates (X, ¥) in the undeformed state
are displaced to points having the coordinates (x,y). If
(u, v) denotes the components of the displacement vector,
the following equations are valid:

]
<
+
=

X (3.3-3)

]
]
+
<

y (3.3-4)
Eguations (3.3~1) and (3.3-2) can then be rewritten as
s°{X,¥} =s{X+u, Y+v}=m (3.3-5)

The difference between the two functions S0 and 8§ is assumed
to be determined by a DIFFERENCE~ or DEFORMATIONS-FUNCTION
D{x,y}, defined by

six,y} - s%{x,y}

Di{x,y}

s{x,y} - s%{x + u, ¥ + v} (3.3-6)

1f s° is a differentiable function, then:

X+u o Y+v -
s®{x+u,Y+v} = s°{x,¥} + J %%;dx + I %%;dy (3.3-7)
X Y

and utilizing (3.3-1) and (3.3-2), the difference function
takes the form:

X+u Y+v -
-Dix,y} = 252 4% + I 95 _ 4y (3.3-8)
'Y Ox oY .
X Y

The difference function is then expressed by the known

function S°{X,Y} and the unknown displacement components u
and v.
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when the model gratings are superposed with a reference
grating (RG), determined by the parametric discription:
RG : Rix,y} =1 (3.3-9)

then, in the undeformed state, the undeformed molré-pattern

is given by

O

mMp° : M°(x,Y} = A, RIX, YD + ), s®{X,¥} =n (3.3-10)

when the general parametric condition (3.1-8) is used.
Assuming that the geometry of both the reference grating and
the undeformed model grating is known, it is possible to
determine the undeformed moiré-pattern as indicated in section
3.2,

The deformed moiré-pattern formed by superposition of the

reference grating and the deformed model grating is given by:

MP : M{x,y} = Al_R{x,y} + Az s{x,y} =n (3.3-11)

when the same parametric condition is assumed to apply as in
the case of the undeformed moiré-pattern. If the deformations
are large, the parametric condition may have changed, but

this can easily be checked by magnifying a section of the
pattern.

Using (3.3-6), (3.3-10), and (3.3-11) yielad:

Dix,y) = 7= [M{x,y} = MO{x,y}] (3.3-12)
2

and it will be seen that the difference function is also an
expression of the change from the undeformed to the deformed
moiré&-pattern. In the special case s%{x,y} = Rix,y}, i.e.



when the reference grating and the undeformed model grating
are identical, Mo{x,y} = 0, the deformed moiré-pattern
immediately forms the contour curve system of the difference
function.

Furthermore, it will be seen from (3.3-12) that the difference
function is determinable to the extent that the geometry of
the deformed moiré&-pattern is measurable. In the special case
of model gratings, with

o o
%E: = constant = C and %%7 =0 (3.3-13)
it will be seen from (3.3-8) that

u=- -(]:':-D{x,y} = u{x,y} (3.3-14)

This means that one of the components (u) of the displacement

vector is proportional to the difference function if the model
grating has the properties (3.3-13). This is the case for
line gratings in which the lines are parallel to the y-axis

and for circular gratings in which the x-direction is identical
to the radial direction.
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4. GENERAL MOIRE-PATTERN THEORY OF LINE GRATINGS

In this and subsequent chapters, the moir&é-pattern formed by
two line gratings is dealt with, together with the changes in
the pattern resulting from a displacement (with or without
deformation) of one of the gratings. Strictly speaking, it is
only the images of the displaced and/or deformed gratings
that are discussed here, but misunderstandings are hardly
likely to arise from the fact that it is said instead that
the images of the gratings become deformed or displaced.

The grating whose deformation and displacement are to be
determined is designated THE MODEL GRATTNG (MG). Before dis-
pPlacement, this is assumed to consist of straight and

equidistant grating lines, which are transformed, during the
displacement, into a number of curves that remain adjacent
curves, i.e. they do not intersect each other.

In order that the geometry of the model grating may be
determined, both before and after displacement, this is
superposed by a second line grating, called THE REFERENCE
GRATING (RG). This grating is assumed to consist of straight
and equidistant grating lines and its position in relation

to a fixed reference configuration is assumed to be known.

First, a displacement function describing the displacement of
the model grating will be introduced, after which the parametric
description of the moiré&-pattern can be formulated. The analysis
of the moir&-pattern is then divided into two parts, 1. the
cases (chapter 5) in which the model grating undergoes a dis-
placement without deforming, i.e. pure translation and pure
rotation, and 2. the cases (chapter 6) in which it is the
deformation itself that is to be determined. In the analysis,
methods are specified for determining a number of the

parameters describing the deformation, and the accuracy of

these methods is investigated in chapter 7.

4.1 The Displacement and Deformation of the Model Grating

The displacement and deformation of a grating line can be
illustrated as shown in fig. 4.1-1, The straight line 10 is



Figure 4.1-1

transformed into the curve 21. The guestion is, to what extent
the deformation of the line 20 can be determined assuming that
the geometry of the curve 2, is determined by means of the
moiré-pattern.

If the individual points on line 20 cannot be identified
separately, it is impossible to determine the point to which
a point on % is displaced, except, of course, that it must
be to one of the points on Rl. For example, the point C may
be displaced to D or to E, or to a third point on 21.

If, on the other hand, the points on the deformed curve 21 are
considered, it is possible to determine the compeonent of the
displacement vector perpendicular to 20. It will be seen from
fig. 4.1-1 that whether point D is displaced from A, B or C,
all the displacement vectors ﬂb, ED and CD will have the same
component BD in the direction perpendicular to Eo.

This expresses the general property of line gratings: that

they can only be used to determine the displacement component

perpendicular to the direction of the grating lines in the
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undeformed state, and at that, only at the positions of the

points after the deformation.

It is, of course, only possible to determine the displacement
components perpendicular to the grating lines for points
lying on these lines. However, with normal 1line density, it
will suffice to know the value of the displacement function
at the points on the lines in order to get an impression of
the overall behaviour of the displacement function. In the
following it is therefore assumed that the displacement
function is continuous, whereby it is possible to think in
terms of the deformation of the grating plane instead of just
the deformation of the grating lines.

In the following sections the relationship between the grating
displacement function and the deformation of the specimen is
analysed for three characteristic moiré-methods.

4.1.1 Direct-Moiré

A direct-moiré method means a method in which a grating is
fastened directly to the surface of the specimen, thereby
following its surface deformations. Determination of the
deformation of the grating then immediately gives the surface
deformation of the specimen.

Specimen ‘IM! Camera

\Q: Grating 2

Grating 1

Direct-Moiré

Fiqure 4,1-2




If a second grating (grating 2) is placed in fromt of the
surface with the first grating (see fig. 4.1-2), the images
of two gratings, producing a moiré-pattern, will be formed
on the focal plane of the camera. The image of grating 1
represents the model grating, and that of grating 2, the
reference grating.

The deformation of the model grating is similar to that of
the surface of the specimen when the focal plane is parallel
to the surface. The similitude factor is equal to the
magnification of the reproducing optical system, and for the
sake of simplicity, this is set at unity in the following.
The grating displacement function is thus identical to the
displacement function by which the deformation of the surface
of the specimen can be described.

The in-plane deformation is illustrated in fig. 4.1-3.

1|X2.x2)

A ni X = x'-"'Tli

(X,.x,)

Figure 4.1-3

Due to the deformation, point A, with coordinates xi, is

displaced to point B with coordinates X . Describing the

deformation by means of the displacement vector n,s we get
X, = xi +n, (i = 1,2) {(4.1-1)

The components 71, and n, of the displacement vector may be

regarded as functions of either the initial coordinates xi

or of the final coordinates X;. In strain analysis, these



two types of description are known as the Lagrangean and the
Eulerian description, respectively.

The Lagrangean displacement functions are:

n, = Ui = Ui{Xj} (1,3 = 1.2) (4.1-2)
and the corresponding Eulerian functions are:

n, =uw = ui{xj} (i, = 1.2) (4.1-3) .
These are related as follows:

ui{xj + Uj} = Ui{xﬁ} (4.1-4)

Uj_{:«::.| = uj} = ui{xj} (4.1-5)

The deformation state is normally described by means of strain
tensors. Corresponding to the two types of description we have
and Almansi's strain tensor e

Green's strain tensor Eij 597
respectively, defined by
o BB e e
3 0% 1 i %%y
. 1 bui N buj _ buk buk T
ij 2 oxj bxi oxi DX )

For Infinitesimal strain, the
brackets can be neglected, and the deviations between the

last product terms in the

components of the two tensors are then usually so small that

the two tensors can be regarded as equal. A detailed analysis
of these relations is avallable in Durelli and Park [70—1],
chapter 4, or [64-4].

It 1s evident from section 4.1 that if one axis of the co-
ordinate system is parallel to the grating lines, the grating
displacement function will correspond to one of the two

Eulerian displacement functions. Therefore, in order to obtain

a complete determination of the deformation state, it is
necessary to determine the grating displacement functions in
two different directions.
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In the direct—-moiré method, if v stands for the grating
displacement function and the magnification of the image-
forming system is equal to unity, it then holds that

v u when the grating lines # xz-axis

1
{(4.1-8)

I

v u when the grating lines # xl-axis

2

4.1.2 Shadow—-Moiré

The shadow-moiré method discussed in this section is treated
principally by Dykes [70-51].

1 "undeformed"
surface

deformed
surface

Shadow-Moiré
Figure 4.1-4

The principle of the method is outlined in fig. 4.1-4, which
shows a section perpendicular to the grating plane and the
grating lines of a transmission line grating (TG) placed in
front of (above) the matt measuring area. A light source L



and a camera are placed at the same distance h from the
grating plane. The distance h is measured from the optical
midpoint K of the lens of the camera.

From the point of observation (the camera), both the grating
TG and its shadow on the measuring area can be seen. The image
in the camera can be regarded as a similar image of a central
pProjection on the grating plane through the point K. In order
to obtain a sufficiently sharp image of both the grating TG
and the shadow grating, it must be assumed that the distance
W, * W between the grating plane and the surface of the
specimen is small in relation to the distance h of the camera

from the grating plane.

The image of the transmission grating TG is an undeformed line
grating, which is taken as the reference grating since its
geometry can be determined in advance.

The image of the shadow grating, on the other hand, normally
appears as a deformed line grating because it consists of a
curvilinear line-system. This depicted grating can thus be
regarded as the model grating whose geometry is to be
determined. If the surface of the specimen is plane and
parallel to the plane of TG, the image of the shadow grating
will have the form of an undeformed line grating, and this is
regarded as the undeformed model grating.

The relationship between the deformation of the surface of

the specimen and the displacement function of the model
grating is as follows. The grating line at A casts a shadow

on the undeformed surface of the specimen at line B and at
line C after the deformation. In the focal plane of the camera
these are depicted at Bk and Ck, respectively, i.e. line Bk is
displaced to Ck during tl% deformation. From similar triangles
it will be seen that

b aw
h h + W, + w

= = b -
V-—CkBk —HBD

With the above-mentioned assumption Vo + w « h, we then get

W (4.1-9)

Tl
gl |1

VvV o




The grating displacement v is thus proportional to the
deflection w of the measuring area in relation to its
undeformed state and measured perpendicular to the plane
of the transmission grating.

4.1.3 Reflection-Moiré

The third moiré-method to be discussed utilizes as model
grating the image of a grating reflected in the specimen
surface. The method is due to Ligtenberg [52-2] and [55-1].

R
. Q
P amera
b eeme—— — — — — i ——
5

Specimen

Screen

1
|t

Reflection-Moiré
Figure 4.1-5

Fig. 4.1-5 shows a section perpendicular to the grating plane
and the grating lines on a screen. The reflection of the screen
grating in the specimen surface is observed through a hole in
the screen. If the specimen deforms, the reflection changes
and, with it, the model grating.

The relation between the deformation of the specimen and the
change in the model grating is as follows: Before deformation,
a reflection of point Q on the grating-screen is seen at point
P on the specimen., After deformation, it is seen at point P'
(with the same visual ray as P). That it is now another point
on the screen that is observed is due to the fact that
deformation has resulted in a change of slope, a, at P'. This
means that the rays (arriving rays) QP and RP' must form a
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mutual angle 2a in order to be reflected in the same direction.

Specimen-plane

T —— e — e ] Screen
P — = e — ]
N
b
Camera
S ——— — L e
Re
RI’
- < } h*‘%

Figure 4.1~6

Fig. 4.1-6 is a simplified version of fig. 4.1~-5, for use in
the determination of the relationship between the change in
angle and the deformation of the model grating. Here, the
deflection is assumed to be sufficiently small to allow us,
with good approximation, to regard P as coinciding with P°'.

The case considered is then the one in which the specimen only
undergoes a change of slope at point P.

Before the deformation, points R and Q on the screen are
reflected at Rf and Re, respectively, on the focal plane of
the camera, and after deformation, R is reflected at Re. The
angular rotation at P due to the deformation has thus caused
a displacement of the grating line through R to R » The
distance R —R is then an expression of the deformation of
the model grating and 1s the image of the distance R=-Q prior
to the deformation.

If the change in slope is considered small compared with unity,
then,

2 2
RQ = a(l + %)tan 20 ex a(l + -}9—)2a
a a



If, furthermore, b « a, we get

RQ ¢ 2aa-

The displacement v = R.R_ of the grating in the focal plane
of the camera is thus seen to be proportional to the slope of
the specimen surface.

If a coordinate system is inserted in the model plane, then

]

C-Qg when the grating lines # y-axis

v
(4.1-10)

v = C-%ﬂ when the grating lines # x-axis
Yy

where C is a constant depending on the test arrangement, and

w is the deflection of the model surface.

In order to keep this report within reasonable limits, the
practical application of the methods will not be treated. In
the author's post-graduate studies, particular attention has
been paid to the reflection-moiré method, and the results of
these investigations will be published later.

Particular reference is made to the following authors for
details of the application of the methods:

Direct-moiré . Sciammarella & Durelli [61-1] and Durelli

& Parks [70-1].

Dykes [70-5] and Meadows, Johnson & Allen

[70-12] .

Reflection-moiré : Ligtenberg [55-1], Bradley [59-1] and
Beranek [68-14].

Shadow-moiré

4,2 Parametric Description of the Moiré-Pattern

In the previous sections it has been shown that when certain
conditions are fulfilled there will be proportionality between
the grating displacement function and the displacement compo=
nent, deflection or surface slope of the specimen, respectively.
The next step is thus to establish the relations between the
grating displacement function and the geometry of the moiré-
pattern.
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-

a) MG° b) RG

Undeformed model grating Reference grating

Figure 4.2-1

The undeformed model grating (MGO) has the pitch P, and the
reference grating (RG), the pitch P,.+ The coordinate system

used for describing the gratings is assumed to have its

X=axis parallel to the grating lines in MGP (fig. 4.2~1.a),

while the orientation of RG depends on the acute angle @
(-90° < 8 < 90°) between the x-axis and the grating lines. The
angle is measured in an anticlockwise direction from the x~axis.

m and r are used as parameters for the grating lines, and they
are so oriented that they increase in the positive y-direction.
The grating lines with the parameters r = 0 and m = 0 intersect
the y-axis at the points (0 ,Ar) and (0 ,Am), respectively.

The two gratings then have the following parametric descriptions:

o
MG~ : y

mp_ + A_ (4.2-1)

-~

— r L J
RG :y = rGag t xtand + Ar (4.2~2)

In (4.2-2) the possibility of 8 = 90° is neglected since this
does not normally give rise to a visible moiré&-pattern.
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The parametric description of the deformed model grating (MG)
is obtained directly from (4.2-1) by adding the grating
displacement function v = v{x,y)} , which is the displacement
in the y-direction. (v{x,y} 1is one of the Eulerian displace-
ment functions (4.1-3)). The deformed model grating is then

given by

MG : y = vix,y} + mp_+ A (4.2-3)

when superposed as shown in fig. 4.2-2, MG®° and RG form a
moiré-pattern determined by the parametric condition

n=r-m (4.2-4)

This parametric condition is valid as long as the moiré~lines
follow the short diagonals (section 2.3). In section 5.1 it
is demonstrated that it is a sufficient condition for this

to be the case, when

-20°% < 8 < 20°
p
3 . m_4
4 P, 3

In the following these conditions are assumed to be fulfilled.

Solving (4.2-1) and (4.2-2) with respect to m and r and insert-

ing these in (4.2-4), we get

. A A
n = y(cose _ JL) _ xSing _Tr oo, m

P, P P, P, P,

Introducing, in addition, the relative pitch 5 defined as the
ratio between the two pitches:

5 = —= (4.2-5)

then the parametric description of the undeformed moiré-pattern

takes the form:

npins y(6 cosh - 1) - x&sinb - Aracose + Am

(4.2-6)
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When the deformed model grating (4.2-3) and the reference
grating (4.2-2) are superposed, the same parametric condition
(4.2-4) is assumed to apply. The parametric description of

the deformed moiré-pattern is then:

np_ = vix,y} + y(6cosb - 1) - x6 sing - A_6cose + A | (4.2-7)

The validity of the parametric condition (4.2-4) for a given
moiré&-pattern must, of course, be investigated (se remarks in
chapter 3). Generally speaking, it is valid as long as the
deformation does not exceed a magnitude at which the ratio
between the major and the minor pitch is less than 1.5 and

at which the parameter of the model grating maintains its
orientation in relation to the y-axis. The conditions are
usually fulfilled in the moir&-methods dealt with in the
report,

Figqure 4,2-2







5. _ ANALYSIS OF THE UNDEFORMED MOIRE~PATTERN
FORMED BY TWO LINE GRATINGS

The moir&-pattern to be analysed is that formed by two
undeformed line gratings, as given by (4.2-6) and shown in
fig. 4.2-2.

5.1 The Geometrical Relationship

Fig. 4.2-2 shows a number of geometrical quantities by which
the moiré-pattern can be described. These are the only
quantities required for a complete description of the pattern
as this consists of straight and equidistant fringes.

The geometrical quantities in question are:

f :+ THE INTERFRINGE SPACING, i.e. the distance between
two adjacent moiré~lines measured perpendicular to
the lines.

f,: The distance between two adjacent moiré&-lines
measured in the x-~direction.

f : The distance between two adjacent moiré-lines
measured in the y-direction.

¢ : THE MOIRE-LINE INCLINATION, i.e. the angle between
the x-axis and the moir&-lines measured anti=-
clockwise (0 £ o £ 1800).

For these gquantities, (4.2-6) yields

Feg - 2 (5.1-1)
Py V1 + 62 - 26 cos®

Fx™ ;f = TeineT (5.1-2)

Fy ;f = Tooose 1 (5.1-3)

tang = g oinl (5.1-4)

in which the relative quantities F, Fx and Fy are introduced.



Fig. 5.1-1 and 5.1-2 show the variation of F and ¢ , respectively,
for various values of 6 and 8 2 0°.
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Figure 5.1-1

It will be seen from expressions (5.1-1) to (5.1-4) that

F{-8} = F{e}
Fx{-e} = Fx{e}
Fy{-ﬁ} = Fy{B}

and
o{-8} = 180 - w{6}

It will further be seen that when & = 00, the moiré&~lines are
parallel to the x-axis (¢ = 0 and Fx -+ ») and when

§cosf - 1 = 0, the moiré-lines are parallel to the y—axis

(¢ = 90° and Fy -+ =), In the special case of 6§ =1 and 6 = 0°,
the quantities do not have finite values, but this corresponds
to superposing two identical gratings with parallel lines -

a case in which no moiré-pattern can be observed.
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Example 3.1-1 (8 =1 A 8 ¢ 0).
If the two gratings are identical but inclined an angle 6 in
relation to each other, i.e. P, =P, =P *%6=1, (5.1-1)
yields
F=2£f_ 1 L (5.1-5)
p

V2 ~ 2 cose 2tsin%|



This relation is shown in fig. 5.1-3.
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Figure 5.1-3

When 8 is small,

1

It will be seen that F varies considerably for small values

of 6 and becomes almost constant for larger values of 6 than
0 )

107=-12".

For two identical gratings, it will als8 be seen from (5.1-4)
that

= .sinb __ _ 8 _ r.,8
tanyp = Gosh = 1 cot2 = tan(2 + 2) (5.1-7)

Thus, when two identical gratings are superposed the moiré&-
lines bisect the obtuse angle between the grating lines.



Another special case obtains when two parallel line gratings

with different pitches are superposed, i.e. 6 = 0° A

P, ¥ P, ® 6 +% 1, In this case, (5.1-1) yields

6

F =117

(5.1-8)

which, for P, > P, ® 6 > 1), gives

£ = & - pr'pm
Prd -1 P, ~ P,

as was found by other means in section 2.2 (2.2-2).

It will be seen that the relative pitch-difference e is given
by

= % (5.1-10)

o
This expression, together with (5.1-6), was the first step in

the development of a moir&-pattern theory (Kazcer and Kroupa
[52~1]).

The difference in relative
b —-Dp
pitch e = S A as a function
r

of the interfringe spacing f.

Figure 5.1-4




The relationship between e and the interfringe spacing f is
shown in fig. 5.1-4 for a number of typical line densities.
The curves are, of course, of the same character as that shown
in fig. 5.1-3.

As mentioned in chapter 2, Koffak [63-1] has established a
sufficient condition for ensuring that the moiré-lines follow
the short diagonals or, in other words, for ensuring the
validity of the parametric condition (4.2-4). Kostak's
condition is that the interfringe spacing must be larger than
three times the major pitch of the two gratings. The limit-
ations on 6 and & entailed by the condition are as follows:

If 6 > 1, it is required that £ 2 3pm = 3pr6 , and using
(5.1-1), this can be written as

& P,
2 3p_6
Vi + 62 - 265 cos8 r
& 1+62-26c0595%

Hence,

1 £ 56 £ cos8 + Vcosze ] (5.1-11)

9

Similarly, when 6 = 1 it is required that

-g—(cosﬂ - Vcos?e - g) <5 <1 (5.1-12)

Fig. 5.1-5 shows the area within which the combinations of 8
and 6§ give an interfringe spacing that is larger than three
times the major grating pitch.

According to the above conditions, & and 0 are limited to the
values

o] (o]
-20° < 8 < 20 (5.1-13)

<6 =%

fw
(W]
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Figure 5.1-5

The conditions are sufficient to obtain moir&-patterns of the
type under discussion, but not a necessary one as, for example,
it is possible to observe a moiré-pattern when 6§ = 1 and

g8 = 30°. The limiting area in fig. 5.1-5 should therefore

only be regarded as approximate.

When two line gratings are angularly displaced, the inclination
of the moiré-lines changes. This relation can be found by
differentiating (5.1-4) with respect to 9.

6{(db - cos8)

o]
= (tang) =
b8 (6 cos - l)2 (5.1-14)

i.e. when 6§ cos8 + 1:

o} bW
cost < 6 o Sg(tanw) >0 = >6 >0
cost > & = s (tanp) < 0 = b0 < 0

50 @ oY)



This means that if a grating RG is angularly displaced in
relation to another grating MG from 6 = 0° in the positive
direction, the inclination of the moiré&é fringe ¢ will increase
with 6 when62 1 (AB in fig. 5.1-6), while if 6 < 1, the
inclination will decrease until 6 reaches the value correspond-
ing to cos® =6 (CD in fig. 5.1-6), after which it increases
again (DE in fig. 5.1-6).

1,33 5’f=3pm i
A N\\ {B
|
e ] g%.,o I:
0% "\ ~ TE
A \ 1
f=3p] | N f
050 | 6=cosO_|
.@.‘2(0 K :
]
0,25 8s )
0 \\J e_

a= age g0° a0°

Figure 5.1-6

It is thus always possible to determine which cf the two line
gratings has the major pitch, since, in accordance with

"THE RULE OF MUTUAL ROTATION"

If a grating is rotated in a small angle from o =0°
in relation to a second grating, the first grating
will have the minor pitch if the inclination of the
moiré-lines follows the rotation, and the major
pitch if the lines rotate in the opposite direction.

If 6 is slightly less than unity, it will be seen from

fig. 5.1-6 that the angle in question has to be correspondingly
small. Otherwise, the curve § = cos@ will be passed during the
rotation, and then the rule will no longer be valid. For example,



5=9

5 = 0,999 cosf = 8 =

& = 0,990 = cosB =» 6 = 8°

However, the limiting curve in fig. 5.1-5, which is also
shown in fig. 5.1-6, also limits & since the passage of the
curve 6 = cosb takes place outside the area when & is too
small.

This é-value is found by inserting cos® = & in (5.1-1), at
the same time requiring that £ = BPr (as §< 1). Then

6pr
* Vi+sli-as

f=Fp =3p

2 r

9
= 6 = 10 0,95

i.e. for &6 in the interval 0.75 < &6 < 0.95, the change in the
inclination of the moiré-line from the state in which it
decreases with 6 to that in which it increases with 6 cannot
be observed. However, doubtful cases in the interval

0.95 < § S 1 can also be investigated by means of the
"shifting-rule" (example 5.3-1).

5.2 Comparison the Two Line Gratings

As an example of the applications of the theory developed,
let us determine the pitch of a grating MGO, assuming that
the pitch of the reference grating (RG) is known. In this
case, it must also be assumed that the pitches do not differ
so much as to invalidate (5.1-1).

The following procedure can be used. The two gratings are
rotated in relation to each other until the moiré-fringes
are parallel to the grating lines. By measuring the
interfringe spacing £, the pitch P, of Mc®° can then be
determined by means of (5.1-1) for the case 6 = 0°:

E-p, F=-1 (5.2-1)

1l
A
—
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The "Rule of Mutual Rotation" can be used to determine which
of the two cases is the correct result.

The accuracy of the procedure depends mainly on the error in
the determination of the interfringe spacing £, since the
error in the parallellism between the moir&-fringes and the
grating lines can be neglected, because the moiré~£fringes
rotate through the angle 90° + %-(e <« 1) when the grating

lines are mutually rotated from the angle 6 = € to 6 = 0°.

The error in the measurement of the interfringe spacing
depends on the accuracy of the determination of the position
of the fringe centreline (the moiré-line). With the naked
eye, the fringe centreline can normally be determined within
1/10 of the interfringe spacing, but as a rule it can be
more accurately determined partly on the basis of the
"apparent fringe width" (section 2.4) and partly on the
basis of the interfringe spacing. The use of a photo-cell
for determination of the fringe centreline (minimum or
maximum of light-intensity), reduces the error to about 0.01
times the interfringe spacing (Sciammarella et al | 65-2]).

If s{5} denotes the absolute error on & and s{F} the absoclute
error on F = JL, the relative error on 6, calculated from
(5.2-1) in accgrdance with the theory of accumulation of
error, will be

s{F} 1

for 6 > 1
sis} _vssiF} _| &~ Fo .
5 3F 6 s{F}) _ 1 ¢ _s<1 (5.2-2)
s{F}

As the relative error on the interfringe spacing can be

P
assumed to be constant, it will be seen that the method gives

the best result when 6 =~ 1 = F is big.

If, instead, we consider the quantity e = & - 1, i.e. the
relative pitch-difference, then

Fi%?% for 6 > 1 » e >0
s{el - o s{F} for lei < 10%
¢ s{F} ¢or 6 <1oe <0 :
r+1

{5.2-3)



5-11

It will thus be seen that the relative error on this quantity
is constant and equal to the relative error on the difference
in the interfringe spacing. With the naked eye, the relative
error is To = 14%, whereas, with a photo-cell, it is of the

order of magnitude of ~ 1.4%,

100

As the pattern is homogeneous, the accuracy can be further
improved by determining the interfringe spacing as the mean
(average), taken over several fringes. If F is determined on
the basis of N fringes, the relative error (5.2-3) will be
% of the corresponding value of F determined on the basis of
a single interfringe space.

Another way of determining the ratioc (§) between two pltches
is to determine the variation in the inclination of the moir&-
lines when the two gratings are mutually rotated. Solving
(5.1-4) with relation to §, we get

tany
cosb tany - sind

(5.2-4)

from which & can be determined for related values of 9 and §.
Here, the accuracy will depend on the accuracy with which the

two angles can be measured.

Finally, &6 can also be calculated by means of other combinations
of the geometrical quantities characterizing the moiré-pattern.
The relative expressions can be derived from (5.1-1 to 5.1-4).

A discussion in detail of these expressions has been given by
Morse, Durelli, and Sciammarella in [60-2], reprinted in the
book [70-1]. Furthermore, Crisp [57-1] has investigated the
accuracy of some of the expressions in practice.

5.3 Two_Undeformed Line Gratings Used for Displacement

Measurements.

An important application of line gratings is their use for

the measurement of rigid body displacements (e.g. Guild [60-5]),
meaning the mutual movement of two rigid bodies. Each of the
bodies is provided with a line grating in such a way that the
gratings have an area of superposition where a moir&-pattern

can be observed.
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Tf the mutual displacement of the two gratings takes the form
of pure translation, no change will occur in the two character-
istic quantities discussed in the foregoing, viz. the inter-
fringe spacing and the fringe inclination. On the other hand,
there will be a change in the positions of the fringes, and

we will now take a look at the relationship between the moiré-
fringe displacement and the grating displacement.

As stated in section 4.1, line gratings can be used to deter-
mine displacement in the direction perpendicular to the lines
in the displaced grating. The displacement is considered in
relation to the reference grating RG, i.e. this is fixed, while
the other grating, MG, is subjected to pure translation in the
y-direction of the order of magnitude of

vi{x,y} = v = constant

It will -be seen from the moiré-pattern equation {(4.2-7) that
the moir&-line with the parameter n is displaced

= me——— - .
AY = T7"F cos6 in the y-direction | (5.3-1)

and

- v - -
Ax = 55100 in the x-direction | {5.3-2)

Here, cases in which one of the denominators is zero, which
arise when the moiré&-fringes are parallel to one of the axes,
are neglected. If 1 - 6 cosé = 0, no displacement can be
ocbserved in the y-direction, and if 5 sind = 0, no displacement
can be observed in the x-direction.

If Vv =P, i.e. the displacement is equal to the pitch of the
grating, then
P
= m _ 5]
AY = T "5 cose 1 - 6cosd Pr

and

pm 1
AX = 5 5ind _ sino Pr
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Compared with (5.1-2) and (5.1-3), it will be seen that Ay = fy
and Ax = fx. The displacement of the moiré-pattern per pitch-
shift of the grating MG in the x~ and y-directions is thus
equal to the inter-fringe spacing in the corresponding
directions.

In the case § = 0 A 8 # 1, we have

A 1
1? =7 % anddx =0 (5.3-3)
Hence,

5 >1=A4Ay <0
6 < 1= Ay >0

In the same way as the "Rule of Mutual Rotation" {section 5.1},
this can be used to determine which of two line gratings has
the major pitch, Since, according to

"THE SHIFTING RULE"

If one of two parallel line gratings is shifted
perpendicular to the grating lines, the shifted
grating will have the minor pitch if the moiré-
fringes move in the same direction as the shifted
grating, and the major pitch if they move in the
opposite direction.

The ratio (5.3-3) is also denoted the MAGNIFICATION, which
indicates by how many times the displacement of the moiré-

fringe exceeds that of the grating. If 6§ = 1.001 and the line
density is about 20 2/mm, then a displacement equal to 0.1 mm
will result in a displacement of the fringe of 1000 « 0.1 = 10 cm.
If the error in the determination of the fringe-centre is 0.1 £

(= 0.1 - 5cm =05 mm), this means that the displacement of the
grating can be determined with an error of ¥2:0.1 mm-0.05 =
0.007 mm .,

Displacement measurement by means of two undeformed line
gratings has been especially developed in Britain by Ferranti
Ltd., in cooperation with NPL (National Physical Laboratories)



5-14

and NEL (National Engineering Laboratory). Here, diffraction
gratings with high line densities are used on servo-controlled
machine tools, the movement of the moiré-pattern being ohserv-
ed by means of a number of photo-cells, which register the
variation in light intensity as one grating moves in relation
to the other.

The manufacture of gratings for the above purposes is discussed
by Burch [60~6] and Dew [62-1]. Guild [60-3] treats the theory
relating to a number of measuring systems, and Shepard [63-3]
gives a short survey of the latest improvements made to these
systems. Systems for light-intensity measurements are described
in a number of papers, for example, Wong [63-4] and [63-5],
McIlraith [64-5] and [66-3], Sim [65-7], and Russel [66-4].

As an example of the use of photo-cells for displacement
measurements based on the fringe-counting principle, the
calibration instrument shown in fig. 5.3-1 can be mentioned

Castantr Lohte™

Slasmafistat
=t e Cenerietu™g

Linearmel3system " - —y.
{Durchlicht)

calibration Instrument (HBeidenhain System)
Figure 5.3-1

This instrument, which has been discussed by Askegaard [71-3],
ijs used at the Structural Research Laboratory for calibrating
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electrical and mechanical displacement gauges. The gauge
length is 30 em, and the precision is 0.001 mm. As shown in
the figure, the instrument isg provided with a counter, which
registers the movement of the moiré-pattern by means of four
photo-cells,

Other applications include a number of mechanical extensometers
in which the “"dial instrument" is replaced by two superposed
gratings. Examples are described in Linge [57-2], Diruy [65-6],
Holister, Jones and Luxmoor [66-2] and Vafiadakis [67-6]. )
These descriptions are all included in Theocaris' book [69-1].

The extensometers are slightly modified versions of existing
instruments, and do not, in general, result in greater
Precision. Their advantage lies in the fact that the
displacement of the moiré-pattern is registered electrically,
and the instruments can therefore be used for measurements

at normally inaccessible locations. In the case of the Diruy,
the instrument is also used for measuring dynamic displacements.

A characteristic feature of the extensometers described is
that it is necessary to follow the movement of the moiré-
pattern during the displacement in order to determine this.
Displacements in the direction perpendicular to the grating
lines result in the same moiré-pattern if the mutual
differences between the displacements are multiples of the
pitch. Thus, it is not enough only to observe the initual

and the final pattern unless it is known in advance that the
displacement is less than the pitch. One method of following
the movement of the moiré-pattern is to use fringe-counters,
as shown in fig. 5.3-1. Another is toc use several sets of
gratings with varying line densities simultaneously. Thus,
Vafiadakis provides his extensometer [67-6] with both a pair
of gratings with a line density of about 4 &/mm and a pair
with a line density of about 20 L/mm. This means that provided
the grating displacement does not exceed the major pitch, an
observation of the initial and the final pattern will suffice
for determination of the displacement. The precision, on the
other hand, is determined by the pair of gratings with the

minor pitch.
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In cases in which the movement of the moiré-pattern cannot
be followed during displacement, it has proved advantageous
to use other types of gratings, in which the moiré-pattern
is not repeated for each displacement corresponding to one
pitch. Kogégk and Popp [66-1] have analysed the change in
the moiré-pattern when two spiral gratings are mutually
displaced, whereby both translation and rotation can be
determined. The former author has also described, in [69~-4],
an extensometer with circular gratings, which has been used
for long-term measurements of the mutual movements of rocks.




6. ANALYSIS OF THE "DEFORMED” MOIRE-PATTERN BETWEEN
TWO LINE GRATINGS

6.1 Parametric Description of the Moiré-Pattern

If a deformed line grating (MG), in which the grating lines

are parallel with the x-axis in the undeformed state, is super-
posed with a reference grating (RG), the resultant moiré&-

" pattern, expressed by (4.2-7), can be described as follows
(slightly rewritten):

vix,y} = np. = y(6cosé - 1) + x&sinb + A_6cosf - A

{(6.1-1)
It is assumed that a number of the parameters describing the
moir&-pattern are known:

X and Y......: The coordinate system must be oriented
with the x-axis parallel to the grating
lines in the undeformed model grating
and must remain stationary during
deformation of the model grating.

P, and 6 = —%: It is assumed that the pitches p_ (in

the uyndeformed model grating) and P,

(in the reference grating) are determined
in advance.

Beseernennnses It is assumed that the angle between the
reference grating lines and the x-axis
can be determined on the basis of the
measuring arrangement.

We are then left with the following unknown parameters:

vi{x,y}.......: The grating displacement function, the
variation of which is assumed to be such
that the parameter condition (4.2-4) is
valid for the moir&-pattern. The order
of magnitude of the variation is
discussed in section 6.8.

vix,y} is the displacement-function
in the y-direction.
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Neeeassssnsss?t The moiré-line parameter, which is an
integer for bright moiré&-fringes and is
constant along each of these. For the
dark fringes, n is equal to an integer
+ k.

Ar and Am....: Coordinate (see fig. 4.2-1) fixing the
level of the grating line parameters.
However, they can usually be chosen at
random as they are only determinative
for the absolute value of the moiré&-
line parameter n.

However, before discussion how the unknown parameters can be
determined, let us first consider the moiré&-pattern in a
significant special case.

R e e i o o o it e ks s - et S S e

In this case, the two gratings are identical and congruent

prior to the deformation.

Therefore, for the known parameters, the following is true:

and 8 = 0.

Furthermore, A = A, + kp, where k is an integer. The moiré-
pattern is then described by:

vi{x,y} = (n - k)p = Np (6.1-2)

where N = n - k.

In this case, the moiré-curves are the contour lines for the
grating displacement function vix,y}, with the difference in
level equal to the pitch (p) of the gratings prior to

deformation.

This property of the moiré-pattern, for 6 = 1 A6 =20, was
described in the first articles on moiré-pattern theory, e.9g.
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Dantu [54~1], since it could be derived from simple geometrical
considerations.

For the general case (6% 0 a & =1), the parametric description
of the form (6.1-1) was first given by Kostak [68-2]. Unlike
the so-called geometrical approach (cf. section 1.3), which
assumes a homogeneous and infinitesimal state of strain, this
provides a simpler method of analysing the moiré-pattern
without the restriction of the requirements to a homogeneous
and infinitesimal state of strain.

For the moiré-methods discussed in sections 4.1.1-4.1.3, it
will be seen that the moiré&-patterns for 6 = 1 and 8 = 0 are
also contour-lines for:

Direct moiré ¢ The displacement functions u; or u,.
Shadow moiré ! The deflection w.

Reflection moir&: The slope furictions g% or %g.

6.2 Variation of the Grating Displacement Function

For two points in a moiré-pattern with the coordinate
differences Ax and Ay and with the parameter difference for
the moiré-lines An, the difference Av in the value of the
grating displacement function at the two points is found by
means of (6.1-1) to be

Av = Anp - Ay(5cos® - 1) + Ax6 sind (6.2-1)

Along lines parallel with the axis (Ax = 0,Ay = 0 respectively),
the variation can be expressed as

(Av)A Anpm - Ay(6 cos® - 1) (6.2-2)

x=0

(Av)Ay=0 =Anp + Ax& sineg (6.2-3)

while, along a moiré-line (An = 0), it becomes

(Av) = -Ay (6 cosf - 1) + Ax 6 sing (6.2-4)

An=0

Thus, the difference in the value of v at two points on a
moiré-line can be calculated directly from the known or measur-
able quantities, Ax, Ay, & and §.



For Ax + 0 A 6 # 0, the variation can also be written

(Lw)An= = Ax & sine(l {(6.2-5)

_ Ay 6 cos® - l)
0

Ax 5 sin®

Then, in the special case Ax > 0 A 8 > 0 A 5cosf ¥ 1, we get

6 sind (6.2-6)

<
> §cost -1

> Ay
(Av)An:D - 0 because Ax

This is illustrated in fig. 6.2-1, which shows one of the
molré-lines considered.

The value of the displacement function along the line in
relation to its value v{A} at point A can be determined by
drawing a number of curve secants through A. If the secant
slope (AB) is equal to the right side of (6.2-6), the
displacement function will have the same value at the two
points of the curve, i.e. v{A} = v{B}. If the secant slope
(AB') is smaller, then v{B'} > v{A}l will apply, and
analogously, if it is bigger (AB"), then v{B"} < v{Al.

y AB: Ay _6sin€
Ax  DBcosB-1
X

Figure 6.2-1

Continuing this line of reasoning, it will be seen that the
displacement function reaches its minimum value along the
line at point D where the tangent slope is equal to the right
side of (6.2-6).

The slope in question is the same as that of the moiré-fringes
prior to the deformation (cf. 5.1-4). This is shown in
fig. 6.2-2.
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a) Before Deformation b) After Deformation

Figure 6.2-2

The nature of the variation of the displacement function for
all possible combinations of 8 and & is shown in fig. 6.2-3.
The maximum and minimum points are denoted C and D, while A
and B are two points with the same value of the displacement
function. Finally, the arrows indicate the directions for
increasing value of v{x,yl.

The variation in the value of the displacement function from
one moiré-line to another also requires knowledge of the
parameter difference An for the moiré&-lines. With this
knowledge, similar considerations apply as for the variation
along a moiré-line.

If a secant is drawn with the slope used earlier, as shown
in fig. 6.2~4,

Ay _ 6 sing
Ax = S cosf - 1

then, according to (6.2-1):

v{E} = v{F} = v{A} + an P, (6.2-7)



6cos©-1>0 dcosB-1=0 6 cos©-1<0
D -
B

: /
A iy Lé A
S
= X DC ——= X
// \-\
/A B
e=l:l4l AB:Ay=0 Ay =0
y
A E/ by |
v |
Y c - X
C y
B }
A

0<0, ABA Bsin® Ay AB:Ax = 0

Ay=
bcose -1
A
K/ 'S

The Variation of the Displacement Function vix,y}
along a Moiré-line for Various Combinations of 6 and 6.
vimax} = vic} > via} = v{8} > v{D} = v{min}

Figure 6.2-3
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which means, inter alia, that the variation in the direction
in question is independent of the interfringe spacing.

As will be seen from (6.2-1), when the parametric distribution
of the moiré-lines and the value of the displacement function
at a point are known, it is possible to calculate the
displacement function over the whole of the area covered by
the moiré&-pattern.

Yy
AB .Ay _ _B&sin®
% "Ax  Bcos®-1

Figure 6.2-4

One method of determining the value of the displacement
function at a point is to follow the change in the moiré-
pattern while the model grating is deforming. If the
distribution of the moiré-line parameter in the "undeformed"
moiré-pattern is known, the value of the displacement function
at a point will be given by

vix,yl = (ng - n)p, (6.2-8)

where n, is the moiré-line parameter for the fringe passing
through the point in the "undeformed" moiré-pattern and n, is
the parameter for the fringe in the "undeformed" pattern that
moves to the point during the deformation,

Another method is to utilize possible knowledge that, in view
of the boundary conditions, the conditions of symmetry or



similar, the displacement function has, for example, the value

v = 0 at certain points.

The variation of the displacement function is mainly only of
interest in deflection measurements in shadow-moiré&. Both in
direct-moiré and in reflection-moiré&, on the other hand,
interest lies in the derivatives of the grating displacement
functions, as these are proportional to components of the
strain and curvature tensors, respectively. As it is necessary
to know the signs of these derivatives in order to be able to
calculate the variation of the moiré-line parameter, the
derivatives have to be analysed before the parametric
distribution.

6.3 Tangent Method. Variation in the Derivatives of the

Grating Displacement Function

Differentiating (6.1-1), we get

f.flnpm = Wax + m’-dy + (6 cos® - 1) dy - 6 sin6 dx

bx [0}
{6.3-1)
Along a moiré-line (dn = 0). Therefore,
AV . dv
(3; - & sind) dx = —[3§ - (1 - 6coseq dy
(6.3-2)
from which it will be seen that
gz: —b—‘£= 1 -—
ax 0 = 3% 6 sin® (6.3-3)
and
%-;- =0 = t’;’ =1 - 6cos8 (6.3-4)

As (6.3-3 and 6.3-4) are independent of the moiré-line
parameter, the derivatives of the displacement function have
the same value at all points with tangents parallel to the
axes. In a moird-pattern, contour-lines can thus be drawn
directly for %% and %% with the values determined by 6 and 6
(cf. figure 6.3-1).



A complete calculation of the derivatives of the displacement
function can therefore be carried out by varying & and/or g,
i.e. either by using reference gratings with different pitches
or by rotating the reference grating.

1-bcos®

Tangent Method
Figure 6.3-1

Figure 6.3-2 shows a number of typical relationships between 0,6,
6sinb,and 1 - 6cos8. It will be seen that & sin® varies
slightly with 6 and almost proportionally with 8, while

1l - 6cosB varies slightly with 6 and almost proportionally

with 1 ~ 6. If it is possible to vary both & and 6, it will be
seen that it is most advantageous

to vary 6 in the determination of %E

and

to vary 6 in the determination of 2
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Figure 6.3-2

Dantu [58-1] drew attention to this possibility of drawing
contour-lines for the derivatives of the displacement function,
which is here called THE TANGENT METHOD, but examples of its

application are only given in Theocaris [68-5].

In chapter 11 of Durelli and Parks [70-1] a similar method is
given for calculating the rotation of the model grating lines.
These authors consider the points along the moiré&-lines at

which the tangent is parallel to the reference grating lines,

i.e.
dy . _
e tan@ (6.3-5)
Inserting this in (6.3-2), we get
ov
(V7 tang = BL.S = tanf {6.3-6)

dx 1 - XV
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When %; << 1, a line through these points can be regarded as

contour-line for %%, and it is this approximation that Durelli
and Parks utilize.

For moiré&-line slopes that are not parallel with the axes, the
following generally applies:

DV | !
dy _ _ >% 6 sind
& " T A (1 _ & ooee (6.3-7)
by cosf)

Considering in particular the points on the curves at which

dy _ __6sing _
dx = 5cosb - 1 (6.3~8)

i.e. where the tangent is parallel to the moir&-lines prior
to the deformation, we get from (6.3-2)

dy _ __&sing _ v v _ _
dx = Scosb -~ 1 9V = pdx +52 dy = 0 (6.3-9)

This confirms the fact noted in section 6.2 to the effect that
the displacement function reaches its extreme values at the

points at which the tangent is parallel to the moir&-lines

before the deformation.

In general, the derivatives of the grating displacement function
cannot be determined separately solely on the basis of the slope
of the moiré&-line, the exception to this rule is the points

with tangents parallel to the axes. On the other hand, relation-
ships of the same type as (6.3-6) apply to all moir&-line slopes.

The special case of 6 =1 A 8 = 0 can be used to divide the
moiré~pattern into areas within which the derivatives have
constant signs. From (6.3-1) we get

_ I W _
B—0A6—l»bxdx+_bydy 0 (6.3-10)
from which we see that
dy AV g BV ite si
for Ix > o, % and Y have opposite signs
and (6.3-11}
dy 2V g B
for ax < 0, % and >y have the same sign




The zones are limited by curves for %% = { and %% = 0 {(cf.

figure 6.3-1). If the sign of one of the derivatives is known
in one zone, the signs in other zones can be determined
directly. The sign in one zone can, for example, be determined
by rotating the reference grating and drawing one of the

curves corresponding to (6.3-3 and 6.3-4}. As the value of

the derivative corresponding to one of these curves is determin-
ed by (6.3-3 and 6.3-4) the sign is also fixed.

When the curves for %% = 0 and %% = 0 are drawn, attention
must be paid to the fact that the inclination of the moiré-

line is indeterminate at the singular points (i.e. %% = %% = 0);

furthermore, it is not certain that a moir&-fringe passes
through the points at which the derivatives are equal to zero.

An example of this is shown in figure 6.3-3. Here, (b} shows

the moiré-pattern corresponding to a displacement field (a)

with %% = 0, which results in a moiré&-line inclination of zero.
It is not immediately apparent from (b) that %% changes signs

at A-A and B~B. Only when the reference grating has been rotated

a small angle (c), do the "vertical" tangents at A-A and B-B
reveal that here, too, %% = 0.
The determination of the signs for the derivatives of the
displacement function plays a decisive part in the determination
of the variation in the moiré&-line parameter. Even though the
relations {6.3-11) are mentioned by Sciammarella and Durelli

in both [61-1] and [63-2], these authors only propose guessing

a sign for one of the derivatives on the basis of known boundary
conditions. The method mentioned here, which combines Dantus's
observations (6.3-3 and 6.3-4) and {(6.3-11) was first arrived

at in the preliminary work for this report and was mentioned

at approximately the same time by Chiang in [69-3]. The method

should render determination of the signs independent of an

intuitive impression of the character of the deformation.
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Figure 6.3-4 shows an example of this method. (2) shows the
case where 6 = 0 A 6§ = 1, and the moiré-pattern can be divided
into zones A-F. The reference grating is then rotated 6 = ¢.5°

(b), and it will be seen that %% is positive in zone B. %ﬁ is
positive in zone B, so %§ must be negative in this zone. The

signs in the six zones are therefore as follows:



Zone %¥ %¥
A pos. pos.
B pos. negq.
C neq. neq.
D pos. negqg.
B neg. neg.
F negq. pos.
a) 8=0° b) 0 =0,5°
6=1 6=1

dv
'57'1'65059'0D00

: =5 sin©=0,009

ay

Figure 6.3-4
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Another method of determining the signs for %% and %% is to
consider the moiré-line inclination along the curves b AP

- [o}:4
and ?% = 0, when 6§ =1 A 8 + 0, since we find from (6.3-7)
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that:

Along the curve %% = 0, the following applies

o dy sind _ m_. 8
S LRGN ax > Cos8 = 1 ta“(z * 2) (6.3-12)
fle)'4
-oby<0

which corresponds to the zone above B-B and below A-A in
figure 6.3-3.

Analogously, along the curve %% =0

o day sin8é _ n .8
920740 > %> s =T = tan(z + 2) (6.3-13)
= %¥ <0

These relationships between fringe inclination and the signs
for the derivatives of the displacement function are analogous
to "The Rule of Mutual Rotation" given at the end of section
5.1.

6.4 Variation in Moiré-Line Parameter

The difference in parameter between two adjacent moiré&-lines
can either be 0 or 1, as, for reasons in continuity, bigger
intervals than 1 cannot occur.

Between two points (x,y) and (x + AX, ¥y + Ay), the parameter
difference An according to (6.2-1) is given by

1
P

An = [Av + Ay (6 cos® -~ 1) - Ax S sinf] (6.4~-1)

m

Along lines parallel to the axes (Ax = 0 and Ay = 0), we have

(An),, o = si [(AV), _o + By(6cose - 1)1 (6.4-2)
(an)y oo = 2 [(av), _o - 8% 6 sing] (6.4-3)

m

For determination of An between two adjacent moir&-lines, it
is sufficient to know the sign for the expressions in the
brackets, since An can only assume values of -1, 0 or +1. If
the expression in the brackets is positive, then An = +1, and




so on. It will be seen from (6.4-3), for example, that if

AV < 0 for AX > 0 A §sing > O, then (An)Ay=0 < 0 and thus

equal to -1.

C:lx,y+Ay)

B:ix+Ax,y)

Figure 6.4-1

The increment (Av) in the value of the displacement function

Ay=0
from A to B (see figure 6.4-1) along a line parallel to the

x-axis can be written as

X+Ax v
UVlpy=0 = .[

It will be seen from this that in zones in which g; is positive,

(AV)Ay=0
that the increment (Av)

is also positive. Correspondingly, it will be seen
<=0 is positive if %% is positive, and
negative if Q; is negatlve. Within the zones in which the sign
of the derivatives of the displacement function is constant,
it is thus possible, for certain combinations of 6 and §, to
state whether n increases or decreases in directions parallel

to the axes. This is shown in figure 6.4-2.

As will be seen from the figure, it is only possible to determine
the variation in n over the whole moiré-pattern for the case

of 6§ =1aA 06 = 0. For the other cases, the variation in n can
only be determined in sub-zones of the moiré-pattern, but as

the moiré-lines cross the boundaries of these sub-zones, it

will usually be possible to determine the variation in n over

the whole of the moiré-pattern on the basis of knowledge of

the variation in the sub-zones.
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ax >0
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The arrows indicate the directions in which the moiré-line
parameter n increases within zones in which the sign(s) of

the derivatives of the displacement function are (is) constant.
Figure 6.4-2

An example of this is shown in figure 6.4-3, where the
variation in the moir&-line parameter is determined for the
moir&-pattern shown in figure 6.3-4.b. As shown in example
6.3-1: "Sign Determination I", the signé of the derivatives
are as indicated in figure 6.4-3.a. From a comparison with
figure 6.4~2 for 6cosB - 1 < 0 A 8 > 0, we get the directions
marked with arrows in fiqure 6.4-3.b with increasing parameter.
Even though the variation in sub-zone A is indeterminate
(unspecified), it will be seen that the variation for the
entire moir&-pattern is determined.




In figure 6.4-3.b, the moiré&-lines are numbered in accordance
with the direction of the arrows, an arbitrary line being given

the parameter n = Q.

al b)
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e S i

Variation in signs for the moire-
pattern shown in figure 6.3-4.b.

Figure 6.4-3

This zero-level can be selected at random as long as the
variation of the displacement function within the moirxé-
pattern (cf. section 6.2) is investigated. What happens when
a zero-level is selected is that the quantities A and A
(see figure 4.2-1) are assigned certain values, but these
quantities have no effect on the variation within the moiré-

pattern.

6.5 Moiré-Line Density. "Mismatch". Geometrical Multiplication

It was mentioned in Scction 4.1 that it was only possible with
line gratings to determine the displacement for points located

on the grating lines. When the displacement is to be determined
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with a superposed reference grating and appurtenant moir&-
pattern, the number of points is further reduced to comprise
only those points on the deformed model grating lines that
also lie on the moiré-lines. It is thus desirable for a given
deformed model grating to get as high a moiré-line density

as possible.

Efforts in this field have taken various directions. By
utilizing the diffraction effect in the gratings it is
possible to multiply the moiré-fringe in a moiré&-pattern. This
method, termed OPTICAL MULTIPLICATION in the following, is
described in section 8.5. Another pPossibility is to develop

on the same photograph the moiré-patterns for a number of
cases in which the reference gratings is shifted a fraction
of a pitch between each exposure. The method is termed
GEOMETRICAL MULTIPLICATION and is described at the end of
this section.

However, first, a third possibility, which lies in varying the
angle 0 and the relative pitch 6, will be discussed. Methods
utilizing this possibility are termed "Mismatch Methods" in

the English literature. Generally, the two possibilities are
treated separately, variation of 6 alone (6 # 0 A 6=1)
being treated by the so-called "Rotational Mismatch" or

"Angular Disparity" method, while variation of § alone

(6 =0 A6 % 1) is treated by the "Linear Mismatch" or

"Linear Differential" method.

About a point A in the moir&-pattern (figure 8.5-1), the
moiré-line density will vary as follows when either § or § is
altered:

The number of moiré-lines between two points is generally
greater than or equal to the parametric difference for the
moiré-lines. This difference is given by (6.4-1).




Figure 6.5-1

For 6§ =1 A 8 + 0, (6.4-2 and 6.4-3) yield

[Av

= Ax sin@] {6.5~1)

AnAB =

An =

e [Av, . + Ay(cos® - 1)] (6.5-2)

Y
pm
s
P_ AC

and for 6§ £+ 1 A 8 = 0

—_l'— -
AnAB = fav B] (6.5-3)

--_.l_ -_ -—
&n, . = [AvAC + Ay (5 1)1 {6.5-4)

It will be seen that variation of 6 alone will have a mainly
incremental effect on the moiré-line density parallel to the
model grating lines (the x-direction), while variation of

& alone will only alter the moiré-line density in the y-
direction, i.e. perpendicular to the direction of the model
grating lines.
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g = 0°| 1°| 22| 59| 10°
1000 siné 0 | 18] 35| 87| 174
1000 (1-cos8) 0 0 1 4| 15

Table 6.5-1

The increase in number of moiré-lines by variation of 8.

6-1 0[0,2%00 | 1%0]| 1% | 10%
1000(6-1) 0| o 1 10 100
Table 6.5-2

The increase in number of moiré-lines by variation of §.

Tables 6.5~1 and 6.5-2 show the increase in number of moir&-

© and § from 6§ = ], regpective-

lines by variation of 8 from 8 = 0
ly, in zones in which Ax = Ay = 1000 P Finally, attention
should be drawn to the fact that if the differences AVAB of
AVAC in the displacement function have opposite signs in
relation to the increment, the moiré-line density will not
increase until the increment is greater than twice the differ-

ence in the displacement function.

An example of the change in a moiré-pattern by alteration of

8 is shown in figure 6.5-2.

These two possibilities for increasing the moiré-line density
were first discussed by Dantu [58-1]. Since then, the problem
has mainly been treated by Tanaka and Nakashima [60-4], Chiang
[65-4], Post [65-5] and Vafiadakis and Lamble [67-3].

Example 6.5-1. Sign Determination III. (Moir&-Fringe Density)

—— s B o —— i — S i - TR e R e o i il e i e o g T —— —— i ——

The third method of determining the signs for %g and %¥ is
based on the variation in the moiré-fringe density during

alteration of 6. The procedure is as follows:

Consider a zone in the moir&-pattern in which there
are moiré-fringe inclinations that are not parallel
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to the axes in the state 68 = 0° A 6 = 1. Then rotate

the reference grating to 8 > 0 and investigate whether
the fringe density in the directions of the axes

increases or decreases, since:

If the fringe density increases in the directions of

the axes during a small, positive rotation of the

reference grating from g = 0, the moiré~line Parameter

will decrease in the corresponding directions, and

vice versa if the fringe density decreases.

This appears directly from (6.5-1 and 6.5-2), since the
number of fringes ,Anxl for the length AB is

6= 0= and = gLIAv

m
B >0 = ,An l iI./.\.v - Ax sin®B
x pm

As long as 0 is so small that the first term is numerically
the greatest, the following is valid:

o) Ax . + if Av < 0
jan,] = JanQ] = RXsine (1 F dvas 3 0)
1.e.
(0]
[Anyg| > |An | wav, <0 (6.5-5)

IAnxl < IAni' « AVAB >0

The method of increasing the moiré&-line density termed
GEOMETRICAL MULTIPLICATION or "Grid-shift Technique” was
first described by Chiang, Parks and Durelli [68-10), and
the latter two authors have again discussed the method in
[68-11) and [70-1].




In brief, the geometrical multiplication method envisages the
superposition, for example by double exposure, of several
moiré-patterns that differ from each other in that the
reference grating is each time shifted in fraction of the

pitch perpendicular to its line orientation.

In the case 6 = 0 A 6 = 1, the moiré-pattern is described by
(6.1-1):

vix,yl = n,p+Aa - A (6.5-6)

By shifting the reference grating %;a in the y-direction, we
get a new pattern that can be described by

1
vix,yl n,p + (Ar +'§P) - A

m

(6.5-7)

1
(n2+-2-)p+Ar—Am

As it is the same displacement function that is described by
both patterns, the following must be valid:

n, =n, + 3 {6.5-8)

If we superpose the two patterns, we can write the resultant

pattern as

vix,y} =11§ + Ar - Am (6.5-9)

n even corresponds to (6.5-6)
n uneven corresponds to (6.5-7)

It will thus be seen that the resulting pattern has half the
difference in level or the double number of moiré-lines as the
pattern (6.5-6). The pattern (6.5-6) has thereby been multiplied
by the factor 2.

In the descriptions mentioned above, the maximum multiplication
factor achieved is 3, and, due to experimental and other

difficulties in connection with the reference grating displace-
ment, the method seems inferior to that of optical multiplicat-
ion, in addition to which, a considerably higher multiplication

factor can be achieved with the latter (see section 8.5).



6.6 The Moiré-sSurface. The Surface Slope Method

As mentioned earlier, the moir&-pattern can be regarded as the
contour curve system for a surface. This surface is designat-
ed THE MOIRE-SURFACE z = M{x,y} and is given by (4.2-7)

z = M{x,y} =np_ = vix,y} + Mo{x,y} (6.6-1)

where
M {x,y} = y(6cos8 - 1) ~ x6sind - A_6cost + A (6.6-2)
is the moiré-surface prior to the deformation (4.2-6).

Figure 6.6~1 shows the moir&-surface corresponding to a moiré&-
pattern in the x,y-plane.

2
A
C, Z=3p
yd )
]' A, C 2=2
I g 2 Pm
. A
y ! AL '
|2 o c, 2=p
y : “Fm
|
'\ | N
i , " I o, cﬂ
37 i An T /' I ’1 / —y
[ J'_, // // \\,
P P -~ “F P
— - -3 -
B| “—n=3 ’/ - <
- = A
- - n=2 Nzl Moiré-lines
) e — = Tonz0
) — —— — ——

The moiré-surface z = M{x,y}

Figure 6.6-1




The derivatives of the displacement function can be determined
on the basis of the inclinations of the moir&-surface in the

directions of the axes (Surface Slope Method), since

oM
3% Tl ox + x % 6 sind (6.6-3)
oM _ v Eﬁg =2V 4 (6cosB - 1) (6.6-4)
>y by by X )

The method of determining the slope is explained in fig. 6.6-2
where, on the basis of the moiré-pattern, section curves in

the moir&-surface in sections parallel to the axes are drawn

up.

Section curve
s z=4Lp

I\\\aﬁhh‘_ z=3p Pm
DT\ 2=2pm pm
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M
Determination of bift
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Fiqure 6.6-2

By measuring the inclination (slope) of the tangent at the
individual points, the derivatives of the displacement function
can be determined from (6.6-3 and 6.6-4), assuming that & and

f are known. If this is not the case, they can be determined

by measuring the slopes (inclinations) on the "undeformed"

moiré~surface.



The accuracy of the method (see chapter 7) depends on, inter
alia, the degree of correspondance between a drawn section
curve and the real (true) section curve, and it will be seen
that the denser the moir&é-fringes, the better will be the
section curves depicted.

The method is rather laborious as it entails drawing a large
number of section curves, if the state of deformation must be
determined throughout the moiré-pattern.

Another, somewhat speedier method with a slightly lower
dccuracy is to calculate the average (mean) slope at points
halfway between two adjacent moiré-lines. In the case of the
point F in fig. 6.6-2, the tangent slope can be written
approximately as follows:

oM aMm _ Pn Py _
(637) “ay Th o (6.6-5)

calculated with appropriate sign, where f is the local
interfringe spacing in the y-direction.

The accuracy of the approximation depends on, inter alia, the
interfringe spacing because, according to the mean average
theorem in differential calculus, the true section curve will
have the slope in question (6.6-5) at a point between C and D.
The accuracy of the method can thus just as well be said to
depent on the error of the determination of the point between
C and D at which the section curve has the slope (6.6-5), and
here, too, greater fringe density will also lead to increased
accuracy.

A third method of determining the slope of the moiré&-surface

is to approximate the surface by a polynomial in x and Y, which
assumes values of the surface at a number of points, after
which the slopes of the polynomial can be calculated and
utilized as surface slopes. The method requires the formulation
of a computer-programme, as described by Irons and Carter
[67-15], Hinton and Irons [68-15] and Bossaert, Dechaene and
Vinckier [68-12].



6.7 Super—-Moiré. Moiré of Moiré. Second-Order Moiré.

Super-moiré,which is also known by the other two names, is yet
another method of determining the derivatives of the displace-
ment function. The method is a graphical differentiation method,
and has been introduced in moiré-technique by Dantu, who has
described it in [58-1] and [66-8]. Parks and Durelli have also
discussed the method in [66-9].

Consider a contour-curve system (fig. 6.7-1l.a) in the x,y-plane,

given by
Fi{x,y} =n (6.7-1)

A copy of the contour-curve system is shifted a distance Ax
in the x-direction, and a second copy is shifted a distance

-Ax, after which the two systems are superposed (fig. 6.7-1l.b}.

The function expressens for the two systems are:

n, (6.7-2)

Gl{x,y} F{x-ax, vy}

n, (6.7-3)

1
I

Gz{x,y} F{x+Ax, y}

If, now, curves are drawn through the points of intersection
for the two contour-curve systems, in accordance with the

parametric condition:
N=n,6-n (6.7-4)

T+ will be seen that these curves are the contour curves for

the derivatives of the contcour function.
Inserting (6.7-2 and 6.7-3} in (6.7-4), we get
Fix+Ax, vy} - F{x-4ax, y} =N

which can be written as follows after a expansion in Taylor-

series for small values of ax:

ol
2
12
2

[F{x,y} + Ax;—E] - [Fix,y) - Ax

or

xF{X,y: T SAx (6.7-5)
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where N is the parameter for the super—moiré-pattern.

The curves through the points of intersection are thus contour

curves for the derivatives of the contour function with respect

to the shifting-directions. The difference in level depends on

the magnitude of the shifting, the difference in level decreas-
ing with increasing shifting. However, the shifting must not
be made too great either, as it is assumed to be small in the

expansion used above.

The super-moiré method can be used for determination of the
derivatives of the grating displacement function by mutual
shifting either two deformed model gratings or two "deformed"

moiré-patterns.

wWwhen the deformed model grating (6.2-3) is used, we get

F{x,y} = L iy - vix,y} - A_l
P, m
from which
aF 1 av
F _ L (1 - &Y (6.7-6)
S
P _ L - W -
ik 5 [ bx] (6.7-7)

The corresponding super-moiré patterns are then contour curves

for
dv Nx
l — -—cy . 2Ay pm (6.7"‘8)
N
5V X -
ax = 2Axpm (6.7-9)

where Ny and Nx are integers. It will be seen that both super-
moiré patterns are contour curves for the derivatives of the
displacement function. An example of this application of the
super-moiré method 1s given by Heise in [67-16]1, in which he

uses it on Ligtenberg's reflection moiré-method.

The most recent contribution is that of Sciammarella and Chang
[71-6]1, who have developed a method in which the grating
shifting is effected optically. This method is also discussed

in section 8.7.
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When the super-moiré& method is used on the “"deformed" moiré-
pattern, (6.6-1) yields

FPi{x,y} = -l-M{x,y}
Pm

and the super-moiré patterns become contour curves for (6.6-3
and 6.6-4):

N
ov _ : ~ __X -
7 6 sino 74y P (6.7-10)
v _ (1 - 6 9) o jSL.
2y cosf) = T Ay P, (6.7-11)

In other words, in this case, too, the super-moiré patterns
are contour curves for the derivatives of the displacement
function.

De Haas and Loof [66-7] were the first to use this method on
reflection-moiré, and at the same time, they introduced the
optical filtering technique (section 8.6.1) for filtering off
the grating lines in the moiré pattern. During the shifting,
these would otherwise result in the appearance of secondary
moiré-fringes, which complicate interpretation of the super-
moiré pattern. Since then, Beranek in particular [67-17],[68~13]
and [68-14], has described applications of the super-moiré
method for determination the curvature of plates by means of
Ligtenberg's reflection-moiré method.

6.8 For How Great Displacements and Displacement Gradients
is the Theory valid ?

The analysis of the "deformed" moiré-pattern in chapter 6 is
mainly based on two assumptions. Firstly, it must be possible

to observe the moiré-pattern, and secondly, it must be
determined by the parametric condition (4.2-4). The requirements
to be made to the magnitudes of the displacement function and
its derivatives in the X,y-directions can be determined by a
comparison with the "undeformed® moiré-pattern. For this, the
requirements are fulfilled if the relative pitch 6 and the

angle 8 between the grating lines lie within the limiting curve
shown in fig. 5.1-5,




The following analogous requirements can be formulated: The
ratio 6* between the pitch in the deformed model grating and

the reference grating pitch P, and the angle 0* between the

deformed model grating lines and reference grating lines shall

fulfil, at every point of the "deformed" moiré-pattern, the

same requirements as & and 6 in the "undeformed" moiré-pattern
(fig. 5.1-5).

As the density of the moiré-pattern depends on the magnitudes
of the derivatives of the displacement function and not on its
absolute value, the requirements underlined above only define
limits for the magnitudes of the derivatives. These limitations
can be found by considering a homogeneously deformed model
grating.

Homogeneously deformed model grating

Figure 6.8-1

Fig. 6.8~1 shows a pair of homogeneously deformed model
grating lines characterized by the pitch p; and the angle a.
The parametric description of the model grating is given by
(4.2-3):

y = vix,y} + mp_ + A (6.8-1)
which, rewritten and differentiated, yields

(6.8-2)
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where Ax and Ay are the interfringe spacings measured in the
directions of the axes. Expressing these by p* and a, and
inserting them in (6.8-2 and 6.8- -3), we get

P
v . -—g}sinu (6.8-4)
DX Pp
P
% =1 - 2 cosa (6.8-5)
Y Pm

In order to take the angle 8* into account in the expressions
for the derivatives, it is necessary to differentiate between
the various 6§, 8~cases.

When 6§ = 1 A 6 = 0, 8% = a and P, = P, i.e.

i *
6 =1 B - - sin® (6.8-6)
=2
Uy cosg*
6 =0 3y = 1T v (6.8~7)
D*
h 6% = 2 |
where P

o]

Inserting in (6.8-6 and 6.8-7) the values for 6% and o*
corresponding to the limiting curve in fig. 5.1-5, we get the
possible combinations of the two derivatives shown in fig.
6.8-2.

If 6 and 8 can be varied arbitrarily, it will not be the

magnitudes of the derivatives that are limited, but their
variation within the moiré-pattern, since, with a = §* - e,
the general expressions corresponding to (6.8-6 and 6.8-7) are

%% = - f}sin[ﬁ* - 9} (6.8-8)
9—-; S %cos{e* - 9} (6.8-9)

It will be seen that the two derivatives vary about the values
0sind and 1 - &cos6, while 0% and 6* vary in permissible
combinations. The variations about these two values are of

the same order of magnitude as the variation about (0,0) in
fig. 6.8-2.
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As will appear from the above, a displacement field in which
the derivatives of the displacement function do not vary more
than shown in fig. 6.8-2 can be determined using a moiré-

pattern in agreement with the theory discussed in this chapter.




7. ACCURACY IN DETERMINATION OF DEFORMATION

One of the most important questions arising in connexion with
a measuring method is that of determining its accuracy and
resolving power. Nonetheless, in only a few of the papers on
moiré-methods is this question touched upon. The main
contributions on the subject are provided by Guild [56-1],
page 100-144, Crisp [57-1], Dantu [58-1] and [66-8],
Soderquist [66-10], Theocaris [69-1] and Durelli and Parks
170-1].

In the division applied here, i.e. into moiré pattern theory
and moiré&-method theory, the contributions to the error in
the measurements fall into two groups, only one of which will
be discussed here. The assumptions for the following are:

a) that there is a photographic copy of a moiré pattern,

b) that the error in connexion with the moiré&-method
theory (relationship between model grating displace-
ment and deformation of specimen) is neglected,

c) that the error in the determination of the relative
Pitch (6.2-5) is insignificant,

d} that both the reference grating and the undeformed
model grating are perfect line gratings,

e) that the parametric distribution of the moiré-lines
is known {(e.g. determined as specified in section 6.3).

However, assumption c) need not be rigorously fulfilled,

since the "undeformed" model grating can be a line grating
with a certain initial deformation. Nevertheless, this initial
deformation must be determined before the real deformation
occurs and be subtracted from the measured deformation. As
regards assumption e), this need not be complied with when

the "tangent method" is used.

On the basis of these assumptions, the measuring accuracy wilil
now be calculated for determination of the grating displace-
ment function and its derivative by means of the three methods:
the tangent method, the surface slope and the super-moiré
mgthod.



7.1 Accuracy of Determination of Displacement

The determination of the variation of the displacement
function within a moiré& pattern is described in section 6.2,
and the possibility is discussed of specifying, in certain
cases, the absolute value of the displacement function. As
this function varies from one method the another, we will
here consider only the accuracy with which the relative
variation of the displacement function can be determined.

The variation Av is given by (6.2-1):
Av = Anp_ - Ay (6 cos@ - 1) + Ax 6 sind (7.1-1}

and the absolute error s{Av} is then given by the law of

accumulation of error:

stavi? = (¥ s{an}1? + [%s{zsy}]2 + [g—;’s{zsx}]2
+ (& ste}] (7.1-2)
s{av}? = [pms{An}]2 + [(6 cos® - 1)s{Ay}]2

+ [6 sin® s{ax}1? + [(Ay 6 sinb + Ax6cosB)s{B}]2

(7.1-3)

It will be seen that the first three terms are independent
of the distance between the two points under consideration
and can be regarded as constants for the pattern. The last
term, on the other hand, depends on both the distance between
the points and the direction, and will be seen to be equal to

zero in the special case,
Ay _ -coth
AX

i.e. in the direction perpendicular to the referencegrating

lines.

If the error in the parameter determination at a point can be
regarded as independent of the fringe density, then s{n} is

constant, and the error in the determination of the variation



in the displacement will be seen to be minimum for

8 = 0 A 6 = 1. Determination of the parameter n at a point
is carried out by interpolating between two moiré-fringes
and it is, therefore, assumed that it can be done with the
same accuracy as determination of the fringe-centreline.
This accuracy (cf. section 5.2) is normally 10% of the
fringe spacing (1% when optical methods are used), so s{n}
is put equal to 10%, which gives

s{An} = VZ s{n} = 14% (7.1-4)

The error s{Av} in the determination of the difference in

displacement is therefore, at minimum,

s{Av} = 0,14p_ (7.1-5)

and increases if 8 #+ 0 and & + 1 are used.

7.2 Accuracy in the Tangent Method

This method is described in section 6.3, and the following

relation (6.2-3 and 6.2-4) are shown to be valid at points

on the moiré-curves at which there are tangents parallel to
the coordinate-axes:

g¥ =0 = %E = 5 s5iné (7.2-1)
g—;=o=gl’-=l—6cose (7.2-2)

The error in this connexion depends on the extent to which
it can be decided whether the tangent to the moiré&-curve is
parallel to an axis (y-error) and on error on the determinat-
ion of the angle 8§ (g-error).

p-error can be determined from (6.3-2) in that, for tangents
that are not parallel to the axes, we have

g% = & sin@ [g’;’ + 6 cosg - 1] (7.2-3)
g% =1 - 8 cosh - dx[g! - 6 sinf]) (7.2~4)




Figure 7.2-1

A comparison with (7.2-1 and 7.2-2) will show that the last
term in (7.2-3 and 7.2-4) expresses the y-errors if the
derivatives are determined from (7.2-1 and 7.2-2) in the
points where tha tangents are not parallel to the axes. In
other words,

P—error on %% :-%%[%% + 5 cosd - 11} {7.2-5)
Y-error on %% :-%%[%% - & sing]) (7.2-6)

If the tangent slopes can be determined to be parallel to the
coordinate axes with the error ¢ << 1

%§ = 0 *+ s{tanp} =~ * s{p} {(7.2-7)
—g% = 0 + s{tang} =~ * s{w} (7.2-8)

In the following the angle ¢ is assumed to be of order of

magnitude 2°, i.e.

s{p} = 29 « 0.04 radians (7.2-9)

. s ] ov ov .
The variation in the g-errors on ox and 5§ are shown in figqg.

7.2-2 and 7.2-3.
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The y-error can also be determined directly by measurement on

the moiré-pattern, the expressions in the square brackets in
(7.2-5 and 7.2-6) being approximated by means of (6.2-2 and
6.2-3) by:

dv -1 - |Av -1 =8|, o Pm
oy+6cose 1| = Ay+<5cosﬂ 1} = ay Pm-fy

(7.2-10)
$Y - 5 sino] |AY - & sine - |an|  _ Pa
IOx 6 sing o Ay 6 sino = |ax| Py = fx

(7.2-11)

where fy and fx are the local interfringe spacings measured
in the x and y-directions (cf. fig. 7.2-1). The absolute error
can thus also be written as

ov | Po _
Pp=error on ax ° f—-s{w} (7.2-12)
Y
m

Av B
Y-error on 3y ° ?—s{w} (7.2-13)
X




The @-errors can thus be determined directly by measuring the
interfringe spacings in the x and y-directions. The following
typical relations between @-error and interfringe spacing can
be mentioned:

Interfringe Spacing: f = 10pm 100 p_ lOOOpm
pm
p=-error: 1?s{m} = 0,4% 0,04% 0,004%

Table 7.2-1

The 8-error on the derivatives depends on the uncertainty in
the determination of 6, i.e. the angle between the reference
grating and the undeformed model grating. This in turn depends
on the test arrangement and is assumed in the following to be
constant and equal to

0
s{0} = % ~ 0.01 radian (7.2-14)

The absoclute 0-error is then obtained from (7.2=1 and 7.2-2):

p-error on dv _ lg%{%i} s{68} = 65 cos@ s{0} | (7.2~15)

N

X
§-error on %X = |§%{%¥} s{6} 6|sin9|s{e} (7.2-16)

X

These are depicted in fig. 7.2-4 and 7.2-5.

In accordance with the law of accumulation of error, the total
error in the tangent method is:

Total error = \/(tp-error)2 + (B--error)2

These are shown in fig. 7.2-6 and 7.2-7 for various values
ov ov

of 5 and 3% and 3; 3

With the assumptions made regarding the errors on the tangent
slope v {7.2-9) and the angle 6 (7.2-14), it will be seen that
the errors are generally too high in relation to the 10%
relative error normally considered an acceptable accuracy for

a measuring method.
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The orders of magnitude is s{yw} and s{8} are fixed on a

rough estimate, which is not based on any great experience
from the application of the tangent method. The values may,
therefore, be too high, but must still be reduced considerably
before the accuracy can be said to have reached reasonable

proportions.

7.3 Accuracy with the Surface-Slope Method

In the surface-slope method, which is described in section 6.6,
the derivatives of the displacement function are determined by
means of the slopes of the moir&-surface for which the moiré-
lines are contour curves.

(6.6-3 and 6.6-4) yield:

ov _ OM - _
3% = ox + 6 siné {7.3-1)
dv _ dM _ -
Sy - by + 1 5 cosé (7.3-2)

where M{x,y} is the equation of the moiré&-surface.

The uncertainty in this method consists partly of the error
in the determination of the surface slopes (slope-error) and
partly from the error with respect to 8 (B-error).

The slope errors depend on how the slope of the moiré-surface
is determined.

Fig. 7.3-1 shows a section curve to the moiré-surface
corresponding to the moiré-pattern at the bottom of the figure.
The slope g% , for example at point B, is to be determined.
This can be done by inserting the tangent to the curve at the
point in question, after which the tangent slope is measured.
The accuracy of the method depends on the degree of
correspondence between the drawn curve and the true section
curve, and on the accuracy of the fixing of the tangent and
the measurement of the tangent slope. It is not possible
immediately to give an overall evaluation of these conditions
if there is no analytical expression of the section curve

with which the results of the measurements can be compared.
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However, there is no doubt that the accuracy is greater than
in the approximation method to follow.

The approximation lies in the assumption that the tangent
slope at a point (E) halfway between two moiré~line points
(A and B) is equal to the slope to be secant AB, i.e,

oM ,g _ Pn -

The error in this approximation can be evaluated on the basis
of a Taylor expansion of the surface function M{x,y}. If we
put A’E' = E'B' = Ay, then

ME = M{x;y}
2 3
oM M oM
- _ _ _ E, 1 2 E _ 1 3 E
MA M{X,Y AY} ME‘. AYW + 2(AY) 6y2 'G—(AY) 3 + ...,
OM d%M 32uM
_ - E 1 2 E 1 3 E
= " -+ = —_ =0
M, = M{x, y+ay} M.+ Ay—(s? + 5{ay) oy2 + glay) W + ...
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which yields

3 5
oMy My ~ My 1iayy? d°My ! (Ay)4b Me
3% 2 Ay 6 oy 120 >y
(7.3-4)
or, since MB = MA =P, and 2 Ay = fy,
OME P,
- =-f;+-remain1ng term {(7.3-5)
where
Remaining term = JL(f )2°3ME + 1 (£ )SEEEE +
| 28ty 5 3 T I20 Ty Ty s T T
(7.3-6)

An evaluation of the magnitude of the remaining term can,
for example, be made by calculating the difference guotients
of higher order on the basis of the moiré-pattern.

As an example, consider fig. 7.3-2, where the difference
quotient of third order for the length BC can be proved to
be

l -a l] -«
1, 2
o’M _ Am _ _Pu a, (1+a,) = a,(1+a,)
6y3 Ay3 (fy)3 1 + al + u2
= —2 _s{a.,a.} (7.3-7)
3 1772
(fy)

The first term in the remaining term (7.3-6) is thus

1 pm
TR
y

and the factor S{ul,az} takes the values given in table
7.3-1.
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a,fy

Figure 7.3-2

0,5 0,8 1,0 1,2 1,5 2,0 3,0

0,5 0,67 0,35 0,27 0,22 0,18 0,17 0,13
0,8 0,35 0,06 0,05 0,02 0,00 |-0,01 (-~-0,01
1,0 0,27 0,05 0,00 |-0,03|-0,04{-0,04 -0,03
1,2 0,22 0,02 | -0,03|-0,04/)-0,06 -0,06 | -0,05
1,5 0,18 0,00} -0,04 |~0,06|-0,07 -0,07 | -0,06
2,0 0,17 | -0,01|-0,04{-0,06 -0,07 {-0,07 | ~0,06
3,0 0,13 1-0,01(-0,03|-0,05 -0,06 | -0,06 { -0,05

The factor S{al,az] (7.3-7)

Table 7.3-1

If the adjacent interfringe spacing u f and a, f is greater
than half the interfringe spacing on the measurlng length BC,
the first term in the remaining term will not exceed 3% of
the approximated value (7.3-3).

The slope-crror can thus largely be put equal to the
uncertainty in the determination of the difference quotient




f i

of the first order, and can be written:

P pms{f }
Slope-error = s{?m} =-f———ij- (7.3-9)
Y Y Y

The relative slope-error on account of the error on the
determination of the interfringe spacing is thus equal to
the relative error on the determination of the interfringe

spacing.

As mentioned in section 5.2, this is about 14% if the
determination of the fringe-centreline is carried out with
the naked eye, but is reduced to about 2% if it is done

by means of a photocell, i.e.

Relative slope-error on %% : 2% -~ 14% (7.3-10)

The O-error in the surface slope method will be seen, from
a comparison of (7.2-1 and 7.2-2) and (7.3-1 and 7.3-2), to
be the same (7.2-15 and 7.2-16) as in the tangent method.
Thus,

f-error on g§ = § cosd s{6} (7.3-11)
5 ov _ .
-error on oy & |sind| s{@} (7.3-12)

However, unlike the tangent method, it is possible in certain
cases with the surface-slope method to reduce the magnitude
of these uncertainties considerably. The cases in question
are those in which, prior to deformation, an undeformed
moiré-pattern is formed, with the same 6 and & as the deformed
moiré-pattern. The fact is that in these cases, § sinf® and

1 - 6 cos8 are equal to the slopes in the x- and y-directions
to the moiré-surface corresponding to the undeformed state.

As this surface is plane, the slopes can be determined as the
mean value over several interfringe spacings. Measuring over
n interfringe spacings, we find the relative error, analogous=-
ly with (7.3-9), to be

(7.3-13)
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If, for example, n = 20, the relative 06-errors (cf. 7.3-10)
will be of the order or magnitude of 0.1% to 0.7%.

If the above-mentioned pProdecure cannot be used, the absolute
B-error with s{6} = 1% (7.2-14) will be

dv
8-error on e 1%

< 0.04% for || < 2°
8-error on g% = < 0.1% for IBI < 5° (7.3-15)
< 0.2%8 for |lal < 10°

Thus, the method generally gives a considerable error for
g%, while in the case of g%, it can be kept down by using
g = 0.

In some methods, an attempt is made to eliminate the un~

certainty on g% by measuring other quantities, which, in the

special cases, give the pPossibility of calculating g% . (See,
e.g. Post [65-5] and Chiang [70-11]). However, as an exception,
the "double-exposure technique" can be mentioned in cases

in which there is no rotation of the reference grating. In
that case, the error on 8 can be made equal to zero, and
there will then be no 6-error on g%.

For cases in which the 8-errors can be eliminated, it will

be seen that the uncertainty of the surface~slope method is
equal to the slope-error (7.3-9). The optimum result obtain-

able is thus

relative uncertainty = 2% (7.3-16)

when a photocell is used for determination of the fringe-
centreline and when 6§ is chosen such that g% and 1 - & have
the same sign.

7.4 Accuracy in Super-Moir& Method

The super-moiré& method is described in section 6.7, and for
the cases in which the "deformed” moiré-patterns are shifted,
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the following applies:

N p
bv~ X " m . _
3% = A% + 6 sind (7.4-1)
N P
OV . _y°m e -
5y = 3 ay + 1 - 6 cos® (7.4-2)

These expressions are entirely analogous to (7.3-1 and 7.3-2),
due, in reality, to the fact that the differentiation process
is the same.

The approximation (7.3-3) is analogous to {(6.7-5), and the
error in the latter can be investigated in the same way as
in section 7.3. If the B8-error is optimized with & = 0, the
error in the super-moiré method originates from the error
on the displacements 2 Ax and 2 Ay. If this is estimated to
be of the relative magnitude of 1%, we get, analogously to
(7.3-9) and 7.3-16), a

relative error = 1% {7.4-3)

N
assuming, here too, that E% and 1 - 6 have the same sign.
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If, for example, n = 20, the relative 8-errors (cf. 7.3-10)
will be of the order or magnitude of 0.1% to 0.7%.

If the above~mentioned prodecure cannot be used, the absolute
@-error with s{8} = 1% (7.2-14) will be

ov

'o—xﬁl%

@—-error on

< 0.04% for le| < 2°
8-error on §§ < 0.1% for lo]| < 5° (7.3-15)
< 0.2% for e8] < 10°

Thus, the method generally gives a considerable error for
g%, while in the case of g%, it can be kept down by using

8 = 0.

In some methods, an attempt is made to eliminate the un-

certainty on ov by measuring other quantities, which, in the

special cases?xgive the possibility of calculating g% & (See,
e.g. Post [65-5] and Chiang [70-11]). However, as an exception,
the “double-exposure technique” can be mentioned in cases

in which there is no rotation of the reference grating. In
that case, the error on 8 can be made equal to zero, and
there will then be no 68-error on g%.

For cases in which the @-errors can be eliminated, it will

be seen that the uncertainty of the surface-slope method is

equal to the slope-error (7.3-9). The optimum result obtain-

able is thus

relative uncertainty = 2% (7.3-16)

when a photocell is used for determination of the fringe-
centreline and when & is chosen such that g% and 1 - & have
the same sign.

7.4 Accuracy in Super-Moir& Method

The super-moiré& method is described in section 6.7, and for
the cases in which the "deformed" moiré-patterns are shiftedqd,
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the following applies:

N p
OV ., x ' m . _
E =_2Ax 4+ & s5ind (7-4 l)
N p
OV ~ y m % -
>y = 2y + 1 6 cosB (7.4-2)

These expressions are entirely analogous to (7.3-1 and 7.3-2),
due, in reality, to the fact that the differentiation process
is the same.

The approximation (7.3-3) is analogous to (6.7-5), and the
error in the latter can be investigated in the same way as
in section 7.3. If the b0-error is optimized with 6 = 0, the
error in the super-moiré method originates from the error
on the displacements 2 Ax and 2 Ay. If this is estimated to
be of the relative magnitude of 1%, we get, analogously to
(7.3-9) and 7.3-16), a

relative error = 1% (7.4-3)

N
assuming, here too, that E% and 1 ~ & have the same sign.




8. OPTICAL METHODS IN MOIRE~PATTERN ANALYSIS

The analysis of the moiré&-pattern in the previous chapters has
been based on the geometry of the moiré&-lines without taking
into consideration the variation in light intensity between
these.

When this factor is taken into account, further information
can be extracted from a moiré-~pattern, and it was investigat-
ions of this by Sciammarella, Ross and Sturgeon [65~2] that
started the development that has so far led to the concepts
interpolation, optical filtering and optical multiplication

of moiré~-patterns. Guild was really the first to undertake

the theoretical derivation of the interference between two
crossed diffraction gratings in his book [56-1], but an actual
utilization of the theory for deformation measurements does
not seem to have occurred before [65-2].

The theory on which the explanation of the concepts mentioned
is based is grounded in physical optics, which differs from
geometrical optics mainly in the fact that it takes into
consideration the wave-nature of light. In the following,
theoretical derivations are omitted for the sake of clearness.
Instead, the theoretical treatment is given in Appendix B.

8.1 The Optical Arrangement
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The Optical Arrangement

Figure 8.1-1




The principle of the optical arrangement, which all the
methods to be described here can make use of, appears from
fig. 8.1-1. A monochromatic, point light source is placed at
the focal point of a converging lens (1), which changes the
radiation of the light to a parallel beam. A photographic
negative with the moiré-pattern is placed at right-~angles to
the direction of radiation of this beam. Part of the light
will pass through the negative and will be collected by the
second converging lens (2) on the image plane, where it will
form a picture of the moiré-pattern, which is only a partially
true copy of the original.

If all the light emitted by the original moiré-pattern passed
lens (2) and continued unimpeded towards the image plane, the
picture would be a true copy of the original. However, the
light from the original is emitted in all directions, and
part of it therefore fails to pass through lens (2).
Furthermore, various types of apertures may be placed between
the lens (2) and the image plane, which further limit the
gquantity of light reaching the image plane. As shown in
Appendix B, it is possible, under certain idealized assumptions,
to specify which parts of the light from the original reach
the image plane.

We know from geometrical optics that parallel light rays
passing through a converging lens intersect each other at the
same point in the focal plane of the lens. Fig. 8.1-1 shows
two such points A and B in the focal plane, where A is the
point of intersection of light rays arriving parallel to the
optical axis, while the rays passing through B before reaching
the lens (2), form the angle o with the optical axis. It will
thus be seen that there is here a possibility for controlling
the data on the original that is transmitted to the image
plane. If, for example, a screen with a hole in it (a filter),
which only permits the passage of light through B, is placed
in the focal plane, only the part of the light from the
original that is emitted in the direction a will reach the

image plane.



It has proved possible to calculate by means of Fourier
analysis the information on the original picture contained
in light rays in the direction a. This will be discussed in
brief in the following, where we will study the distribution
of light intensity on the focal Plane. This distribution is
also known as the diffraction pattern.

8.2 The Diffraction Pattern of a Line Grat{gg and the

Optical Filtering of its Image

Diffractionpatters
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/?>3/3/ %

™~
L \ Lx—%{’-
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Linegrating with
the pitch p

Object-plane

Diffraction Pattern for a Line Grating

Figure 8.2-1

If a transmission line grating with the pitch P is placed in
the object plane in fig. 8.2-1, a number of dots will be formed
on a screen in the focal plane, as shown in fig. 8.2~1. These
dots lie on a line perpendicular to the direction of the
grating lines and are symmetrical about the optical axis. The
central dot is denoted the diffraction order zero, and its

two adjacent diffraction orders +1 and -1, ete., their spacing

being as shown in the figure,




The relationship between the diffraction orders and the
distribution of the light intensity in the object plane proves
to be as follows.

The light intensity I at a point is proportional to the square
U2 on the light-wave amplitude U at the point (cf. Appendix B).
Fig. 8.2-2 shows (a) the arriving plane light-wave with constant
amplitude U , which distributes itself (b) as a step function
after passing the grating.
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Fourier Expansion of the Amplitude

Figure 8.2-2

This can be expanded by Fourier analysis (cf. Appendix B (4.1)),

as
= L 2n 2n
u =0 gix,y} = U_ B (1 + clcos{Eij + ¢, cos{2 5 v} + ..1]
{8.2-1)
where
c, = 2 SiLRd (8.2-2)
n nnp

The contribution of the first three terms is shown in fig.
8.2-2, ¢, d and e. g{x,y} denotes the grating transmission

function and expresses the ratio between departing and arriving

amplitude.



B=9

Each term in this expansion can be said to have a unique
connexion with the individual diffraction orders as follows:

a light-wave from the object plane with an amplitude distribut-
ion as the first term U, in (8.2-1) wil give a distribution

of light intensity in the focal plane equal to the central
diffraction order of the line grating, while an amplitude
distribution equal to the second term will give two dots

equal to No. +1 and No. -1, and the third term, two dots

equal to No. +2 and No. -2 etc.

This relationship can also be expressed by means of the complex
expansion in series of the transmission function. Applying
Euler's formula,

cosa = %[e + e = -%‘-[exp{ia} + exp{~ia}]

(8.2-1) can also be written

1 No= 2n
U=3Up8 Z cNexp{lNF—y} (8.2-3)
N==—co
where €y T Sy = cINl.

The relationship can then be expressed by the fact that the
Nth diffraction order originates from the Nth term in (8.2-3).

Or: A complex amplitude distribution on exp{iN %‘y_}
gives rise to a diffraction dot at the distance

E% from the optical axis.

The diffraction pattern thus provides the possibility of
selecting suitable terms in the expansion (8.2-3) in such a
way that only a part of the terms contributes to the formation
of the picture of the line grating. This is designated

OPTICAL FILTERING, examples of which are shown in fig. 8.2-3.
Here, a magnification of 1:1 is assumed, which is obtained by

placing the object plane and the focal plane in fig. 8.1-1 in
such a way that the distances a = b = 2L, where L is the focal
length of lens 2. Fig. 8.2-3, left, shows an area of the line
grating in the object plane, while on the right, it shows the

area on the image plane on which it is reproduced.
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The distribution of light intensity I in the image plane
depends on the diffraction orders that are allowed to pass
the focal plane. If a filter that only permits the passage
of the central diffraction order (fig. 8.2-3a) is arranged
in the focal plane, the light intensity will correspond to
the first term in (8.2~1) and will thus be constant over the
whole image plane.

In the calculation of the distribution of the light intensity
when the amplitude U is complex, the following applies:

I =vuX (8.2~4)

where UF is the complex conjugate to U. As

- K _ g 2Ty N 2TV,
Iy = UyUy = CexpliN B } exp{-iN b } =¢C

this means that every diffraction order that passes the filter
alone produces a uniformly illuminated image plane.

If the filter permits the passage of the orders -1, 0 and +1,
we get a periodic distribution (fig. 8.2-3b), with the period
P as in the original grating in the object plane. If the
filter also excludes the central dot, so that only +1 and -1
pass (fig. 8.2-3c), we get a periodic distribution with the
half period in relation to the previous case. In general, if
the filter only permits the passage of the diffraction orders

+N and -N, the period of the picture will be 5%1;, whereby a

grating is obtained with a line-density that is 2N times that

of the original grating.

This OPTICAL MULTIPLICATION of the line~density has an upper
bound, which depends particularly on two factors. Firstly,

the part of the optical signal that passes through a symmetrical
pair of diffraction orders generally decreases heavily with
increasing orders. However, this can be compensated to som
extent by using gratings with a small relative space width (8),
since this factor determines how heavily the intensity decreases
with increasing order (cf. B.4-3 with relevant text). Further,

it is sometimes advantageous to use phase gratings instead of




the amplitude gratings treated here. The latter factor is
discussed by Post in this context in [67-8],[68-6] and [68-7].

The second factor setting an upper bound to the multiplication
factor is the geometry of the optical arrangement. As described
in Appendix B (B.4-6), the diffraction order N corresponds to
the light emitted in a certain directiocn from the object plane.
The higher the order, the greater will be the angle of the

path of the ray with the optical axis of the arrangement, and
from a certain order Nmax (B.5-3), the light from higher orders
will pas right outside the lens.

In the above-mentioned articles, Post mentions 30 as the
maximum multiplication factor obtained, and this was achieved
using phase gratings. Sciammarella and Lurowist, on the other

hand, only reach a factor 5 with amplitude gratings in [67-9].

In order to get an idea of the order og magnitude of the
optical arrangement used in grating multiplication,
Sciammarella [69-6] uses a lens with a focal length L = 150 cm.
With a light source with the wavelength A = 6000 & = 6000-10"°
cm and a line grating with 20 2/mm, the distance between the

diffraction dots in the focal plane 1is

AL

= 1.5 .
D cm

A diameter of 2R = 25 cm is specified for the lens, which
means that the maximum diffraction order Nmax, that manages
to pass through the lens is ((B.5-3) with r << R),
~ X B

Nmax 2L A )
However, this value can be increased considerably by altering
the distance from object plane to lens, whereas the distance
1.5 cm between the diffraction dots remains unaltered by such

manipulation.

Multiplication of a single line grating is utilized by Boone
and van Beeck in [70-10], where, by projecting the model
grating on the reference grating, they carry out partly a



magnification and partly a multiplication of the model
grating, so that approximately the same nominal pitch is
obtained in the two superposed gratings. The principle is
used in cases in which the model and reference gratings do

not have the same initial pitch.

8.3 Diffraction Pattern for a Moiré&-Pattern and

its Optical Filtering

Two crossed line gratings assumed to lie in the same plane,
€.9. on a photographic negative, are now placed in the object
plane. The two line gratings MG and RG, which form an "un-
deformed" moiré&-pattern in the object plane, are assumed to
have the following parametric descriptions:

MG : y =mp_ (8.3-1)
P
RG : y = ressp + xtand (8.3-2)
or
RG : y*=rp (8.3-3)

X

where an alternative coordinate system is used:

x* = xcosb + ysin b (8.3-4)

y* -xsin & + y cos 8 (8.3-5)

and where P, and p, are the pitches and 8 the angle between
the grating lines (cf. (4.2-1 and 4.2-2)).

The relevant diffraction pattern is indicated in fig. 8.3-1la.
The mutual positions of the dots are shown in fig. 8.3-1b, anad
they are provided with "dot coordinates" [M,R]. M specifies
the diffraction order in the diffraction pattern of the
grating MG to which the dot corresponds, and analogously for
R. Thus, the points [0,-4],[0,-31,.....[0,0},.....[0,+4]
correspond to the diffraction pattern that would be formed by
the line grating RG if this were not superposed with the

other grating in the object plane.
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Diffraction pattern for two crossed line gratings.

Figure 8.3-1

As in the case of the line gratings, there is a unique
relationship between the individual diffraction dots and the
Fourier expansion of the amplitude distribution in the object
plane.

This can be written

u{x,y!} U.g {x,y}g {x,y} (8.3-6)
0O "m r
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where gm{x,y} and gr{x,y} are the transmission functions of
the two gratings. Assuming that the two gratings have the
same B-value, these are

gm{x,y} B L1 + clcos{2nm} + czcos{4nm} +...] (8.3-7)

and

gr{x,y} Bl[1 + clcos{2nr} + czcos{4nr} +...] (8.3-8)
where (8.2-1) is related to (8.3-1 and 8.3-3).

The amplitude distribution (8.3~6) thus assumes the form,

U{x,y} = qoﬁz[l + ¢, cos{2mm} + c. cos{2nr}

1l
+ (cl)zcos{2nm}cos{2nr} + .. ]

Uo Bz [1 + c, cos{2mm} + c, cos{2nr}

+ %=(c1)2[cos{2n(r+m)} + cos{2n{r-m)}] +...

(8.3-9)

where only the contributions from the first two terms in each
of (8.3-7 and 8.3-8) are calculated. The contributions of the
individual terms to the diffraction dots are as follows:

Term Diffraction Orders
1 [0,0]
c, cos{2nm} [+1,0] and [-1,0]
clcos{2nr} [0,+1] and ([0,~-1]
%(cl)2 cos{2n (r+m) } [+1,+1] and [-1,-1]
%(cl)z cos{2n (r-m) } [-1,+1] and [+1,-1]
Table 8.3-1

A filtering of the diffraction pattern of the moir&-pattern
can be carried out in the same way as for that of the line
grating. A number of cases are shown in fig. 8.3-2,
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I=1 [142 c, cos{2mm}
+2 ¢, cos{2nr}
+(c1)2 cos{2n(r-m)}
+(c1)2 cos{2n (r+m) }

+(cl)2 cos2{2mm}

1+2 ¢, cos {2nam}

I=Io[
+(c1)2cosz{2nml]

I=I [1+2 c. cos{2nr}
) L,
+(cl) cos“{2nr}]

I=I_[1+(c )2

1
7

cos{2n (r~m)}

1l
4cosz{2n(r-m)}]

(cl)

_ 2
I—Io[l+(cl)

+%(c1)2cosz{2n(r+m)}]

cos{2n (r+m) }

Optical Filtering of Moiré-Pattern

Figure 8.3-2




Case_a shows the filtered pPicture when the nine most
significant (central) diffraction orders pass through. The
Picture retains the structure of the original, but gets a
uniformly varying distribution of the intensity as against the
steps between bar and space in the original.

In cases b and c, the filtering only gives the two gratings

separately and is analogous to fig. 8.2-3b. It is thus
possible to separate two Superposed gratings. Applications of
this will be treated later.

Finally, & and e show distributions of the intensity that
vary periodically with the quantities r-m and r+m, which are
bPrecisely the subtractive and the additive moiré-patterns

(cf. (3.1-6 and 3.1-7)) formed by the two superposed gratings.
With filtering, it has been possible to get rid of the
original grating lines so that only the moiré-fringes remain.

The various applications arising from filtering are discussed
in greater detail in the following.

8.4 Interpolation by Means of Measurements of Light Intensity

In the study of the diffraction pattern of two crossed line
gratings both were assumed to be undeformed. An extension of
the theory to the case in which one of the gratings is
deformed can be carried out, with a certain approximation, as
follows. The approximation lies in the assumption that the
state of deformation can be regarded as homogeneous within
the area under consideration.

The treatment here is limited to a moiré-pattern in which the
two gratings are identical and congruent prior to deformation.
In this case {cf. example 6.1-1), the moiré-pattern is
contour-curve system for the displacement function, i.e.

vix,y} = np (8.4-1)

In order to be able to determine the value of the displacement
function between the moiré-lines, it is now assumed that the
deformed grating is homogenous locally between two moirs-
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Figure 8.4-1

lines. The deformed grating can thus be ascribed a pitch P,
with the grating lines rotated a small angle w in relation to
the orientation in the undeformed state. The reference grating
with the pitch p remains in this state, and for small
deformations, p, = P (L + €}, where |e| << 1.

Two superposed line gratings with the pitches p and p (1 + €)
and with a mutual angle w << 1 will form the diffraction
pattern shown in figqg. 8.4-1, where some of the dots will
almost coincide. If the optical arrangement has an aperture
in the focal plane which only permits the passage of light
about the central dot (aperture 1 in the figure), the
distribution of intensity of the picture will correspond to
case d in fig. 8.3-2 and can be written

g 4 cos?{2mn}] | (8.4-2)

b= Io[l + (cl)zcos{2nn} + %(c )

This can be approximated to

I = Io + I1 cos{2nn} (8.4-3)
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where

_ 2
Los Io (Cl)

1 2
[1 + E(cl) ]
Hence, the relationship between the light intensity and the
displacement can be written

I - Io
"—T—“—} (8.4-4)
1

The approximation from (8.4-2) to (8.4-3) is shown in
fig. B8.4-2. The deviation between the two curves depends on

=vaP
vix,y} 5—arccos{

the factor C e which in turn depends on the relative space
width B (cf. fig. B.5-3), but will not be discussed in detail
here, since it igs only the principle involved that is to be
illustrated.

If (8.4~3) is assumed to have sufficient validity, it will be
seen from (8.4-4) that it is possible to interpolate between
the moiré-lines by measuring the variation in the light

intensity.
! |
I+
L= {te{(ey)s Hie ¥ )cos {2mnn)
~-=ly+Iycos [21n]
\ /
1€221] Z
1 H 4
i
1 1
2
Bright Dark Bright
Fringe Fringe Fringe

Variation in Light Intensity between the Moiré-Fringes

Figure 8.4-2




Sciammarella has been the leading force in the development of
an interpolation technique on the basis of measurement of the
light intensity. However, his original starting part was based
on another optical filtering technique than that discussed
here, which assumes coherent light. The filtering technique
used by Sciammarella in [65-2] has been described by Frangon
[63-6], amongst others, and consists, in brief, of a
calculation of the filtering effect of a lens in simple
picture formation. For periodic objects such as line gratings,
higher order terms in a Fourier expansion can be filtered off,

and Sciammarella reaches bis “"Basic Optical Law for the Moiré-

Displacement-Field" in precisely the form of (8.4-~3 and 8.4-4).

The main features of the interpolation technique are as follows.
Along a line in the moiré-pattern, where the displacement
function is to be determined, the relative variation in the
light intensity is measured by means of a photo-cell. On this
basis, the mean intensity Io is determined together with the
maximum and minimum points. By drawing sine curves through

a couple of maximum points and the intermediate minimum point
the interpolation can be carried out, and the variation in

the displacement function determined.

At first [65-2], the variation in intensity was recorded on
an X-Y-plotter, and it was only the more accurate determination

of the fringe-centreline that was used.

There was an uncertainty of 1% on the moiré-line spacing.
Later extensions with, inter alia, directly connected digital
system permitting a totally computerized interpolation process
[66-5]1,[66-6],[67-10] and [67-11], further reduces the
uncertainty by a third. This series of articles is concluded
by [67-12] and [67-13], which do not, however, report further
reduction of the uncertainty, byt treat a couple of special

problems in connexion with the method.



Sciammarella's interpolation method based on measurement of
the variation in light intensity in a moiré&-pattern is not
widely used. This is due partly to the requirement to
instruments and partly the rather complicated procedure.
Finally, the appearance of the optical multiplication
technique, which can increase the sensitivity in a simpler
way, has, to some extent, rendered the complicated
interpolation procedure superfluous. However, it is worth
noting that it is presumably the clarification of the moiré&-
theory resulting from Sciammarella's work that has formed the
basis for, inter alia, the optical multiplication technique.

An alternative interpolation procedure without the use of a
filtering technique has been described by Theocaris in [69-1],
pages 85~111, and in [69-7]. Instead of drawing a sine curve
through the extreme points, Theocaris measures the density
directly on the photographic negative of the moiré&-pattern.
This is done automatically, and the result appears as contour-
curves over the density of the negative. The method is stated
to have a resolving power of less than s of the moiré&-line

20
spacing.

8.5 Optical Multiplication of a Moir&-Pattern

In section 8.2 the possibility of carrying out an optical
multiplication of a line grating was mentioned, and here we
shall now take a look at the possibility of doing the same
thing with a couple of crossed line gratings (a moiré&-pattern).

Consider again the case of two almost identical, undeformed
line gratings with a small mutual angle w. With the
arrangement shown in fig. 8.1-1, the resultant diffraction
pattern is as shown in fig. 8.5-1.

The diffraction dots are collected in groups, in which
M + R = constant, where M and R are the diffraction orders
for the two gratings.




8-18

=
+
=t
I}
+

{+1,+21 [+2,+1] [+3,0]

[o,+2]1 [+1,+1] [+2,0] = +
[-2,+2]1 [-1,+1] [0,0] [+1,-1] [+2,-2] =
[-2,+1] [-1,0] [0,-1] [+1,-2] . = -
{-2,0] [-1,-1] [o0,-2] = -
Wy
[-3,0] [-2,-1] [-1,~-2] r-- = -

Diffraction Pattern with "Dot Coordinates" [M,R]
Figure 8.5-1

If the filter only permits the passage of such a group, a
periodic distribution of the light intensity will appear in
the image plane, with the same fringe orientation as in the
subtractive moiré-pattern and with a |M + R| times greater
fringe density. For M + R = 0, however, the multiplication
factor is equal to 1. This possibility of multiplication is
given by Durelli and Parks in [70-1], pages 50-54, but is
only possible for certain values of B.

In, for example, the group with M + R = +3, the central dots

are:

[-1'4]1[013]l[+1I2]l[2'1]'[3'0]'[4,—1]



Each dot [M,Rl's contribution to the amplitude distribution
in the image plane, dU is analogous to (8.2-3), given by

au = 7 (g)? U, c, c, exp{i 2r (Mn + Rr)} (8.5-1)

and if only the dots from [0,3] to [3,0] are considered, the
amplitude distribution will be:
u =—]=[32U [c_c, (exp{i6nm)} + exp{iénr})
4 o] o 3

+ c, c, (exp{i2r (2 m+r)} + exp{i 2r (m+2r)})]

As the light intensity I is given by

I =uyuk (8.5-3)

where Uk is the complex conjugate to U, we get, after some
calculation,

_ 1.2 2 2 2
I = (4 B UO) 2 [(c0 c3) + (cl c2)
2
+ [(cl c2) + 2co c, ¢, c3] cos{2nn}
+ 2co ¢, ¢, cos{4wn}

+ (qaca)zcos{ﬁnn}] (8.5-4)

where n = r ~ m is the parameter used previously for the
subtractive moiré&-pattern. The intensity function will be Seen
to be the sum of three periodic functions with the pPeriods

n, %r:and-%n, and only in the case in which the coefficient
of the last term is dominant will a moiré-pattern appear that
is multiplied by the factor M + R = 13, This applies, for
instance, to gratings with g =~ % y Since p = % = c2 = 0
(8.2-2), and the distribution of the intensity will then be

I = (311-8200)2 2 (co c3)2 [1 + cos{6mn}] (8.5-5)

The arrangement shown in fig. 8.1-1 can thus be used for
optical multiplication in cases in which a single factor is
dominant. Post discusses applications of the principle in
[67-81,[68~6]),(68-7], and[71-2], but he mainly uses
transmission-phase gratings of the "Blazed grating” type,
where there is a special possibility of making a single




direction dominant. Post reaches a multiplication factor of
up to 30, but also makes use of the possibility of applying
the principle to two gratings with a pitch ratio of

p
P

i~

=H+ ¢

=]

where H is an integer and ¢ << l.

Lense 1 Lense 2 I Lense 3 Lense 4 Image-plane
[ 1 - ol = — - I = - = - —
RG Fitter1 MG Filter 2 =
oate | b | b | ot | bt | e e 2L

Figure 8.5-2

Another arrangement, shown in fig. 8.5-2, makes the above-
mentioned dominance partly superfluous. It has been described
by Sciammarella and Lurowist in [67-9] and has also been used
by Luxmoore [68-8].

In comparison with the arrangement in fig. 8.1-1, that in
8.5-2 has two extra lenses and a filter. Furthermore, the two
gratings RG and MG are separated, which facilitates selection
of diffraction orders in multiplication filtering.

Wwhat happens before the lens (3) is the same as happened with
the line grating in section 8.2.

If the first grating (RG) has the transmission function

N=
B 1 c,expliN2nr} (8.5~6)
N==co

B~

gr{x,y} =

and if the filter (1) only lets the order R pass, the follow-
ing complex amplitude distribution will arrive at the second
grating (MG):
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=1 i -
u, = 7 B U, c, exp{iR2nr]) (B.5~7)

If the second grating (MG) has the transmission function,

MN=oo

g {x,y} = 1p ! c_exp{iN2mm} (8.5-8)
m 2 N=w N

the amplitude distribution departing from this grating will
be

1 i
U, = U, 9= 870, N=Z_m Cy Cp exp{ 12m (Nm+Rr) } (8.5-9)

After passing the lens (4), this distribution will give rise
to diffraction dots in the Plane of the second filter, with

the same locations as ..... (~-2,R], [-1,R], (0,R], [+1,R],...
[M,R],... in fig. 8.3-1b or fig. 8.5-1,

If the two gratings are practically identical with a small
mutual angle only one of the dots in each group in fig. 8.5-1
will be formed in this way. Sciammarella and Lurowist's
multiplication method now consists in letting two selected
orders pass through in first filter, e.g. R = 0 and R = Ro‘
These will give two dots in each group. In the case of the
group Mo =M+ R = RO, it will be the dots:

[MO,O] = [RO,OI and [O,Ro]

If the filter (2) only lets this group pass, the amplitude
distribution in the image plane will be

= 1,2 .
Uy =3B 0, [cRo c, exp{12nRom}
+ cocRoexp{12nRor}]
_ 1.2 . .
=78 U, c, CRO [exp{.12rrRom} + exp{J.ZnRor}]
(8.5-10)
The distribution of the light intensity will then be
. K _ 1.2 2 _
I =uU, U; = (78 UococRo) 21 + cos{2nRo(r m) }]




The variation is periodic and has the same orientation as the
subtractive moiré-pattern that the two gratings would normally
form if they were superposed in the same plane. However, a
multiplication by the factor R0 has been achieved. As
mentioned earlier, Sciammarella and Lurowist managed to
produce patterns multiplied up to five times when they used

transmission amplitude gratings.

Tn a later article [69-6], Sciammarella describes a modified
procedure that can multiply the pattern up to 20 times. In
the new method, the procedure described in section 8.2 for
multiplication of a single line grating is used first. By
allowing the orders +R and -R to pass the filter in the image
plane, the following distribution of the intensity is
obtained:

I = (BUOcR)2 cos? {2nRr} (8.5-12)

This is exposed on a negative. The grating is then deformed
and the procedure repeated. The second distribution of the

intensity is
I = (BU_c_)? cos’{2nRm} (8.5-13)
m o R -

The double exposed negative now has a distribution of the

intensity
I=I_ +1I (8.5-14)

When the negative is correctly exposed, its transmission
function is proportional to the distribution of the intensity
(8.5-14), and if the negative is placed in the object plane in
the arrangement shown in fig. 8.1-1, the following dots will

form in the diffraction plane:

[2R, 2R]
[2R,0], [0,2R]
(2R, -2R], [0,0], [-2R,2R]
[-2R,0], [0,-2R]
[-2R,2R]
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If, for example, [0,2R] and [2R,0] are allowed to pass the
filter, we get in the image plane the subtractive moiré-
pattern multiplied 2R times.

As mentioned, 2R = 20 has been achieved, and an important
Teason for this is stated to be the use of a transmission
phase grating, which is easy to produce.

8.6 Other Applications of Optical Filtering Technique

As a supplement to the study of the optical filtering technique,
& couple of other applications of the method will be mentioned

in brief.

8.6-1 The Schlieren-Method

The Schlieren-method is generally a contrast-improving method
(Born and Wolf [65-24] P.425) for coherently illuminated,
transparent specimens. The method consists in filtering-off
all diffraction orders on one side of the central dot. It is
therefore incorrect to call the method described by de Haas
and Loof [66-7] by this name.

de Haas and Loof use an arrangement like that shown in fig.
8.1-1, with a poor contrast moiré-pattern negative in the
image plane, and allow the group M + R = +1 to pass the filter
(cf. fig. 8.5~1). They achieve a richly contrasted subtractive
moiré-pattern corresponding to a multiplication factor of 155
In complete analogy with the calculations (8.5-1) - (8.5-5),
the dots passing the filter are

* o 2 5 8 w0 r [-1,2]’ [O,l], [1'0]' [2’_]-]; [3f-2]r [4I_3]I°"
In the case B = % (grating bars and space of equal width),
¢, = ¢, = Cg = Cg = 0, i.e. the only dots that form in the

group M + R = 1 are
fo,1} and [1,0]
and they give an intensity distribution,

I = Io [1 + cos{2nmn}]

with maximum visibility (equal to 1).




de Haas and Loof use the filtered moiré-pattern for second-
order moiré {cf. section 6.7} and manage to filter off the
original grating lines that would otherwise have produced

extra moiré-fringes beside the second-order moiré-fringes.

8.6-2 Separation of Moiré-Patterns of Cross-Gratings

In some moird applications (see, for example, Post [65-5]), one
negative contains two moiré-patterns corresponding to four
superposed line gratings or two cross-gratings. In the case of
two orthogonal line gratings (fig. 2.1-2), with almost parallel
pairs of lines, optical filtering in the arrangement shown in
fig. 8.1-1 will result in the formation in the diffraction
plane of a diffraction pattern composed of two patterns of the
type and orientation shown in fig. 8.5-1, at right-angles to

each other.

The use of a slit-aperture, which, for example, only allows
the diffraction dots corresponding to one of the orientations
through, results in only one of the moiré-patterns being
formed in the image plane. Applications of this principle are
described by Chiang in [69-5] and by Clark, Durelli and Parks
in [71-4] and [71-5].

8.6-3 Addition and Subtraction of Two Crossed Gratings

In connexion with fig. 8.3-2, it was shown that it was possible
to form both the additive and the subtractive moiré&-pattern
between two superposed line gratings when these formed a not
too small mutual angle. This has been described in the above-
mentioned [71-4] and [71-5], where it is used to produce
contour-curves for the rotation and the shear strain term in

the two-dimensional strain tensor by the direct-moiré method.

8.7 Other Applications of the Diffraction Effect

of the Gratings

In the space behind a diffraction object (line grating, moiré-
pattern or similar), plane waves radiate in a number of

characteristic directions. An investigation of the inter-
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ference between these waves shows that at certain distances,

the amplitude distribution from the diffraction plane is
recreated.

The conditions have been described and utilized by
Sciammarella et alios in [68-9], [70-6] and [71-6], by Durelli
and Parks in [70-1], pages 52-62, and by Ebbeni and Rezette

in [70-7], [70-8] and [70-9]. Only a couple of the
applications of a more general character will be discussed

in the following.

inB=NA
sin B = D

Plane-wave corresponding
to N'th diffraction order

Arriving 1

x ’ 4
Z= ZO

] \ \\ \\ \\ \Wave-fronts
Vs

i
\\_ Linegrating with the pitch p

Figure 8.7-1

Fig. 8.7-1 shows a line grating illuminated by a coherent and
monochromatic parallel light~beam perpendicular to the grating
pPlane. After passing the grating, the light separates into a
number of parallel light-beams, which radiate in directions
corresponding to the individual diffraction orders. The figure
shows one of these, corresponding to the diffraction order N.
The direction of radiation for this is given by the angle B,
for which

sinp =N (8.7-1)

o>
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where p is the pitch of the line grating and A the length of
the light wave. The appurtenant proportion of the amplitude
distribution in the grating plane is given by (8.3-2):

-0} = & i N20 -
dUN{z—O} = 5BU ey exp{ley} (8.7-2)

This distribution shifts (as the waves gradually radiate) in
the y-direction a distance

Ay = ztanpf o« zsinf = ZN%

for B << 1 {8.7-3)

The contribution of the parallel light-beam to the amplitude
distribution in the plane 2z = z, is thus given by

1 ‘122
dUN{z=zo} =50, ¢y exp{J.N—l-S'l(y + Ay)}
2
_1 2T (N
= 35U, ¢y exp{lNPy} exp{l(P) 2nlzo}
or
N\ 2

dUN{z=zo} = dUN{z=0}exp{1(E) ZHAZO} (8.7-4)

It will be seen that the amplitude distribution in the z = z,
plane is identical to that in the z = 0 plane every time the

last factor is equal to 1, i.e.

N 2
exp{l(E) ZHAZO} =1
N 2
© (—) 2niz_=n2n
P 0

o |z =§‘-(2)2_] (8.7-5)

where n is a positive integer. In the particular case of

N = 0 (mean amplitude), (8.7-5) does not, of course, apply,
but as it is a parallel light beam that radiates in the z-
direction, there is no shift in the distribution in the y-

direction.

Considering the distance,

z =B (8.7-6)

0
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it will be seen to be the first distance in which the
amplitude distribution for N 1l is equal to that in the
it will be seen that (8.7-5) is also
satisfied for all higher orders.
shifted a distance Ay

+

grating plane. Further,
The individual terms are

Np at this distance.

This means that the amplitude distribution for all orders at
this distance is the same as in the grating plane. The
amplitude distribution of the grating plane (8.2-3) is thus
recreated at distances behind the grating that are multiples
of (8.7-6). Thus,
distance behind a monochromatically and coherently illuminated

if another grating is placed at the same
grating, a moiré-pattern will appear that is identical to the
pattern that would be formed by the two gratings if they lay
in the same plane.

The orders of magnitudes of these distances for
A = 6000A = 6-10"4
10 and 20 2/mm:

mmm are as follows at line densities of 1,

1l &/mm zo = 1,67 m
10 £/mm Z, = 1,67 cm
20 2/mm 2, = 0,42 cm

Consider now the space behind a moir&-pattern formed by two
Superposed, parallel line gratings with the

(p, > P}

pitches P and P,
Here, the following conditions apply.

The expressions corresponding to (8.7-1) - (8.7-5) become
(denoting the individual diffraction orders of the two
gratings M and R):

. M R
(L ) 0.7-7
sin B B, B, ( )
a1 o 1.2 . M R _
dUM'R{z—O} = TR0, Cpy Cp exp{12n(—pm + —_Pr) } (8.7-8)
AU {z=z } = qu {z=0}exp{i(31 + 31)22nxz H(8.7-9)
M,R (o} M,R pm pr (o]

The regquirements to the distance z

amplitude distribution in the z

Q
r4

in order to get the same

o plane as in the grating




%o =X(R M2 (8.7-10)

According to Ebbeni and Rezette, at the distance

2 (8.7-11)

where

£ = _m.—r << l (8-7_12)

there will be a light intensity distribution corresponding to
the moiré-pattern. The specified distance (8.7-11) is general-
ly stated to be only an approximate value, and it is only

correct in cases in which the reciprocal value of the relative

difference in pitch & (8.7-12) is an integer, i.e.

% = H (8.7-13)

where H is an integer.

The requirement to be satisfied is that the last factor (8.7-9)
must be equal to 1. This leads to the condition

M , R\
A = (—— + ——) Az = integer for all R and M.
pm pr ©

Inserting z_ from (8.7-11), we get

(]
2
Ao (_E.+_&)2 PrPn_ _ (Mp_ + Rpp) =
p, P, € P, P, ¢
=E£[M+R-p—'“-]29-
pm r &




and A can thus be written

2
_ H l + B -
A = m[M + R—H———] nH {8.7 14)

As n is an arbitrary integer, it will be seen that
n = (1 + H) H2 at any rate ensures that A is an integer when
(8.7-13) is satisfied.

Ebbeni and Rezette used the described appearance of the
intensity distribution of the moiré-pattern to determine the
relative pitch difference or changes in this in two different

ways.

In the first, "Mé&thode de variation de distance", the negative

with the moiré-pattern is placed at right-angles to a coherent
and monochromatic light beam. Then, the distance z behind the
negative at which the light intensity distribution of the
moiré-pattern is recreated with the greatest contrast is sought
on a screen. This z corresponds to (8.7-11), and ¢ can then be
determined if one pitch, e.qg. P is known. In the second,
"Méthode Spectroscopique", a parallel light beam with white

light is used instead. If the screen is placed at a distance
z; from the negative, (8.7-11) will be satisfied for one of
the light-wave lengths of which the white light is composed.
To determine this wavelength, a spectroscope is used because
the wave length in question dominates in the spectrum. In
[70-7], it is stated that the method can be used to determine
¢ with a resolving power of 10~ ° and that it can only be used
in areas of moiré-pattern in which the deformation is
homogeneous.

Sciammarella and Chang, in [71-6], use the displacement of the
amplitude distribution perpendicular to the direction of the
grating lines for second-order moiré (cf. section 6.7). They
place a negative with a deformed line grating at right-angles
to the coherent and monochromatic parallel light beam, and
catch (expose) on another negative the light intensity
distribution at the characteristic distance Z, (8.7-6) for the
undeformed line grating.




It can be proved [71-6] that when the magnitude of the
deformation is subjected to certain restrictions, the light
intensity distribution exposed on the negative will be
proportional to the distribution that would appear if the
individual terms in the amplitude distribution of the
deformed model grating {analogous, but not identical, to
(8.2-3)) were shifted the distance

Ay = NP
in the y-direction.

1f optical filtering is then carried out, in which only the
orders * Nare allowed to pass, a contour-curve picture of the
derivatives of the grating displacement function in the y-
direction will appear, thus:

—— D em—— H = 0' +l' iz' - s » (8‘7_15)

This corresponds to two deformed model gratings multiplied
N times being mutually shifted a distance Ay = Np, and the
method is thus a combination of multiplication and second-

order moiré.

Instead of the displaced amplitude distributions being
exposed at equal to Z, (8.7-6), it can be done at distances
that are multiples of this. If we denote this multiple M,
then the shift will be

Ay = MNp

and, for the final contour-curve picture of the derivatives
of the displacement functions,

pv _ __H
3

Y o2n’M

(8.7~-16)
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In [71-6] Sciammarella and Chang show examples corresponding
toM =10 and N = 4, which corresponds to a difference ip
level in (8.7-16) of 0.00313. For the derivatives in the
¥x-direction, i.e. the direction of the grating lines, the
shifting cannot be done by means of the diffractive action
of the grating, but must be purely mechanical, as described
in section 6.7. On the other hand, optical filtering of thig
can also be carried out so that the possibility of
multiplication is utilized too.
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APPENDIX B: DIFFRACTION THEORY,

CALCULATION OF DISTRIBUTION OF LIGHT INTENSITY.

In this appendix we will study the theoretical side of the
optical methods deseribed in chapter 8. First, an account is
given of the concepts of Physical optics. This is followed by
& survey of some concepts from the Fourier analysis, which is
the mathematical tool used in the subsequent calculations.

In section B.3 the relationship between the distribution of
the light intensity in a diffraction plane and in the
appurtenant diffraction pattern is derived. In B.4, this isg
followed by a calculation of the diffraction pattern for a
line grating, and in B.5, by a calculation of the distribution
of the light intensity in the image plane when only certain
parts of the diffraction pattern are allowed to pass the focal
plane.

In corresponding calculations for two crossed line gratings

are discussed in B.6 and B.7.

B.1 Basic Concepts of Physical Optics

Physical optics is based on Maxwell's equafions for electro-
magnetic fields (see, e.g. Born and Wolf [65-8]). Inter alia
these equations govern the propagation of electro-magnetic
waves in an arbitrary medium.

The most important of the types of waves fulfilling Maxwell's
equations are the two harmonic types, viz. the plane wave and
the spherical wave, whose electrical fields are given by:

E = f%)cos(f-ﬁ - wt) (B.1~-1)
E = %Eo cos(T*k -~ wt) (B.1~-2)

where

E = the electrical vector

E.= a constant electrical vector

r = the position vector for the point
k = the wave vector = k¢




= +he normal vector of the wave surface
2

= the wave number = Y

the wavelength
= the time

e o+ > w 9l
I

= the angular frequency

An alternative way of writing these, which has proved
advantageous from the point of view of the calculations, is

the complex:

E

E exp{i(T*K - wt)} {B.1-3)
and

Frim %’Eo expli(F+K - wt)} (B.1-4)

where "i" is the imaginary unit and where the real part
corresponds to (B.1-1 and B.1-2), while the imaginary part
has no physical significance.

The light intensity I{F} is proportional to the time~averaged

value of the square on the length of the light vector, also
called the amplitude, i.e.

I{T} = I < E-E5 (B.1-5)

where Ek denotes the complex conjugate to E and I0 is the
factor of proportionality.

In the following treatment of the effect of diffraction and
image formation, our interest is concentrated on the intensity
distribution, and we can, therefore, neglect the time term
exp{-iwt} in (B.1-3 and B.1-4). Further, in investigating the
diffraction we can neglect the direction of the field vector,
thereby restricting ourselves to treatment of a wave function
in the form

u = UO{?} exp(iTr-k} (B.1-6)

In the following this is denoted THE OPTICAL DISTURBANCE.
Uo{?} is the amplitude at the point and is constant for plane




waves but is in inverse ratio to the distance from the centre
in spherical waves, although only when it is assumed that the
medium is not amplitude-absorbent, which is largely the case
for atmospheric air.

Diffraction denotes the phenomena in optics that cannot be

explained on the basis of the assumption in geometrical optics
regarding the straight propagation of light, with sharp shadows,
as illustrated in fig. B.1-1. Here, S is a point light source
emitting spherical waves, and the question is then, what light
intensity this will result in at another point Q when a screen
with an opening A-B is Placed between the two points.

Wave~-fronts

Figure B.1-1

If the question were to be examined on the basis of geometrical
optics, the answer would be that no light is received at Q
because the point is located in the geometrical shadow area.
The fact that light intensity can, nevertheless, be observed

in the geometrical shadow area can be explained on the basis

of Huygen's principle, which states that all points on a wave
surface are points of origin for secondary spherical waves.




The mathematical formulation of this is termed FRESNEL-
KIRCHHOFF'S DIFFRACTION FORMULA, according to which the

contribution of the primary wave point P to the optical

disturbance at Q is given by

U
du_ =C_ —exp{ikr,} [coss + 11dA (B.1-7)
Q orl 1
where C0 is a constant, r, = PQ and & the angle between the

elementary rays SP and PQ.

This can be interpreted as follows: The primary wave gives
rise to an optical disturbance U at P. From an area element
dA on the primary wave surface, a second spherical wave

Up .

-r—-exp{l k rl} dA

1

is emitted, the contribution of which at Q has to be corrected
by the direction factor [cosB + 1]. This direction factor
ensures that every spherical wave surface with its centre at
S can also be regarded as the result of secondary spherical
waves with origins on a second primary wave surface with
centre at S. This applies as long as the primary spherical
waves can radiate unhindered. If there is a screen with an
opening between the point of transmission S and the point of
reception Q, only the part of the primary wave surface that
passes through the opening with secondary waves contributes

to the optical disturbance at Q.

Before calculating the diffraction pattern, let us discuss in
brief the Fourier-transforms since these, as mentioned earlier,

form the basis for the calculations.

B.2 On Fourier Series, Fourier Transforms and

Dirac's Delta Function.

The following is based on Hsu [67-7] and Sneddon [51-1].

According to Fourier Analysis a periodic function f{t} with

the period T, i.e.

F{t}t = £{t + T} (B.2-1)
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which is piecewise continuous and absolutely integrable over
@ period T, can also be written

f{t} = %‘-ao + 7 [an cos{n w, t} + bn sin{nmo t}1{(B.2-2)

n=1
where w, = %fl = the angular frequency,

iy
a =22 f{t} cos{nw_t}dt (B.2-3)
n T]T o :

2

T

_ 22 - =

b =3 r £t} 51n{nw0 t}dt (B.2-4)

2

The function f{t}, shown in fig. B.2-1, is needed later, and
the Fourier expansion is:
13
3 P
since a = i‘[ Ecos{n—z—Et} dt
n P P
0

EB

nnBSin{n"B}

and b =0
n

o0
i.e. f{t} = EBI[1 + 2
n=1

11#3 sin{nrrB}cos{zl%?E}] (B.2-5)

f{t)

{0,E) B p

-—m—-—.-f

(0.0} (p.0) 2p.0)

Figure B.2-1

If the function £{t} is piecewise differentiable and absolute-
ly in the interval -= < t < =, a new function F{u} can be
formed from it, called the FOURIER TRANSFORM of f{t}, given by




F{u} = _l__ I f{t} exp{iut}dt (B.2-6)
V2 n S-=
and, further,
f{t]l = 1 J F{u} exp{iut}du (B.2-7)
n —=

Analogously, the Fourier transforms of a function f{t,s} of

two variables is given by

F{u,v} = -Z—J'T‘-I I f{t,s} exp{i(ut + vs)ldtds (B.2-8)
f{t,s} = -2-1—1{1 ] F{u,v} exp{-i(ut + vs)}dudv| (B.2-9)

An important theorem in Fourier analysis is the so-called
CONVOLUTION THEOREM, which states: If the two functions f{t,s}
and g{t,s} have the Fourier transforms F{u,v} and G{u,v}, the

convolution integral

H{x,y} = J J f{t,x}g{x - t, y - s}dtds | (B.2-10)

can also be written

H{x,y} = I J Fl{u,v} Glu,v} exp{~i(xu + yv)} dudv

(B.2-11)

Finally, a few words on the so-called IMPULSE FUNCTION &{x},
which is also called DIRAC'S DELTA_EUNCTION. This is a
generalized function, which is defined as

6{x} =0 for x # 0 (B.2-12)

and ©
j 5{x}dx =1 (B.2-13)

It is thus not a function in the normal understanding of the
word, with a given value at a given point. However, it is a
considerable aid in the calculations, even though these can

only be said to have formal validity.



The following rule of arethmetic applies, inter alia, with the
delta function

E £{x} 6{x - a} dx = £{a) (B.2-14)
Ea{a - x} 6{b - x} dx = 6{a - b} (B.2-15)
[:&{::} exp{-ivx}ldx = 1 (B.2-16)
J_: expl{ivx}dv = 2 n 6{x} (B.2-17)

L”sin{mo X} exp{~ivx}ldx = in[6{v + wo} - 6{v - wo}]

(B.2-18)

I

J cos{mo x} exp{-i vx} dx = nl&{v + mo} + 6{v - wo}]

(B.2-19)

The possibility is thus created of calculating with Fourier
transforms to the functions f{x} = 1, £f{x} = sin{mo x} and
f{x} = cos{mo x} despite the fact that they are not absolutely
integrable in the interval -« < x < o,

In the special case of the expanded function (B.1-5):

A& -
f{t} = sa  + n)=:l a_ cos{n W, t} (B.2-20)

we then get the formal Fourier transform

F{u} = 721—“-1 f{t} exp{-1i ut} dt

\/%—[aoé{u} +n£1 an[é{u - nmo} + &6{u + nwo}]]
= 12'- m)? amé{u + mmo} (B.2-21)

m==—co

where a = a_ with n = Im].




B.3 Fourier Analysis of the Diffraction Pattern

We will now discuss the calculation of the distribution of the
light intensity in the focal plane of a lens resulting from
the passage of a plane wave through a diffracting plane. The
light wave can, for example be produced by means of a laser,
and it is assumed to be coherent and monochromatic. This means
that the time factor can be neglected and that the wavelength
is constant. Under reference to fig. B.3-1, it is assumed that
plane waves radiate in the z-direction before encountering the
diffracting object plane. In this there are apertures, and the
part of the wave front passing through such an aperture gives
rise to secondary spherical waves, the onward radiation of
which will now be investigated. As the arriving wave front is
parallel to the object plane, all secondary waves will start
from this with the same phase.

Object—plane

AD=1
0B=L

Focal-plane
(Diffractionplane)

Figure B.3-1

At a distance AO = & from the object plane, a converging lens
with a focal length L is placed, and first, we will consider
the distribution of the light intensity in the focal plane of



this lens. Optical disturbances from all points in the object
Plane will arrive at a certain point Q in the focal plane with
the coordinates (X,Y).

Every secondary spherical wave from the object plane emits
light rays in all directions, the contribution of which to the
optical disturbance at Q is governed by the Fresnel-Kirchhoff
diffraction formula (B.1-7). We further know from geometrical
optics that parallel elementary rays arriving at a lens
intersect each other at the same point after passing this.

It is now assumed that the distance OB is so great in relation
to the diameter 2R of the lens that the variation in the
direction factor can be neglected. This further means that the
variation in the optical distance traversed from the object
Plan to the focal plan is so small that the reduction in the
amplitude by the distance can be taken to be the same for all
elementary rays. It is, therefore, only the phase differences
between the various wave fronts arriving that give rise to
variations in the resulting optical disturbance and, thereby,
in the light intensity.

Now the two elementary rays arriving at Q from A and P start
with the same phase but traverse different optical distances.

This difference in optical distance As is equal to the
distance from P to a normal Plane through A to the direction
of a ray. For the purposes of explanation, we can, for example,
imagine that Q (see fig. B.3-2) emits spherical waves. After
passing the lens, these become Plane waves, and as points on
the same wave surface have traversed the same optical distance,
the difference in question will be equal to the distance

PP' = As,

If the elementary ray leaving the object plane has the direction
cosines a, B, and v, and if the point P has the coordinates
(x,¥), this difference is given by

As = ~(ax + By) (B.3-1)

in relation to the elementary ray from the point A with x = Yy = 0.
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Object-plane
5

Wwavefronts F~t—t——a

A — 0 e
p

P Focal-plane
As
Lense

Figure B.3-2

The coordinates (X,Y) to the reception peint Q can also be
written
X=zolL and Y~ BL {B.3-2)
for o and B << 1
since an elementary ray through the optical midpoint 0 of the

lens will pass uninterrupted through the lens. A comparison
of (B.3-1 and B.3-2) yields

X Y
As = _(xi + yi) (B- 3"3)

It is now practical to introduce two new quantities p and v,
which are called SPATIAL FREQUENCIES and are defined as

= X . 4 -
u-kL v kL (B.3-4)
2n
where k = S the wave number.

The optical difference in distance is then

as = -1 (xu + yv) (B.3-5)

The phase factor in (B.1-7) exp{ilcrl} can now be written as
follows at the point Q = (X,Y):

exp{ik(r, + as)}t = exp{ilcrA} exp{i kaAs} (B.3-6)

where ry is the optical length from A to Q. As this is constant,
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the phase factor can also be written as follows, using (B.3-5):

exp{ikrA} exp{i k As} = c, exp{-ilxp + yvl} (B.3-7)

The amplitude term is now characterized by means of the
TRANSMISSION FUNCTION g{x,y} in the object plane, meaning that
g{x,y}ldxdy is the amplitude of the diffracted wave originating

from the area element dx dy. In the present case it is equal
to a constant in the apertures in the object plane and zero
outside these.

In the general theory of diffraction, the transmission function
is defined as the ratio between departing and arriving optical
disturbance and thus contains information on the phase
distribution. With the Present assumptions on phase coincidence
for departing secondary waves, the definition used is not in-
consistent with the general transmission function.

The resulting optical disturbance at point Q = (X,Y) of the
focal plane can thus be written

U{p,v} = CZJ I g{x,y} exp{-ilxyu + yvlldxdy | (B.3-8)

- =00

since the point Q is characterized by the spatial frequencies
(u,v). It will be seen from this that, with the exception of
One constant, the optical disturbance (the diffraction pattern)
in the focal plane is equal to the Fourier transform of the
transmission function.

B.4 The Diffraction Pattern of a Line Grating

Fig. B.4-1 shows an arrangement by which the diffraction
pattern of a transmission line grating can be produced. A
monochromatic point light source is Placed at the focal point
of lens 1, and the optical disturbance will, therefore,

radiate as plane waves after passing this lens. The diffracting
screen is a line grating with the pitch p, with its lines
parallel to the x-axis, and with the ratio B between
transparent spaces and pitch. The transmission function then
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has the same form as fig. B.2-1 and can be written as

g{x,y} = EBLL + ) cncos{nglly}] (B.4~-1)
n=1 P
where

c = n1‘351n{nrtﬂ} (B.4-2)

i !
» @X @ X
Light-
source
Lense 1 Linegrating Lense 2 Focal-plane

1 l : L—

Figure B.4-1

The diffraction pattern of the line grating is obtained as
the Fourier transform to (B.4-1), utilizing (B.2-17 and
B.2-21):

G{p,v} = 2_177J J g{x,y} exp{-ilxp + yvlldxdy

- -co
Ren 2
=EBgné{p}t § ¢ 6{v - N (B.4-3)
N P
N=—o0
where ¢, = ¢_ with n = IN|.

N n

The optical disturbance thus has extreme values at a number
of discrete points in the focal plane, as indicated in fig.
B.4-2.

The light intensity distributes itself in the same way along
the Y-axis and is formally proportional to the square on the
amplitude of the optical disturbance at the individual points.
The formal calculations give the light intensity an infinitely
great value at a number of points, although this is not, of

course, the case in reality.



The Optical Disturbance in the Focal Plane

Figure B.4-2

One of the idealizations assumed has been that the grating
extended an infinite length in the directions of both axes. If,
instead, a finite grating length in the direction of the lines
had been assumed, with M grating bars and with a transmission
function equal to zero outside this zone, G{u,v} would have had
the form,

sin{%—v Bpl sin{%Mv p}

G{u,v} = ¢ (B.4-4)

1 .l
FVBp 51n{5vp}

This expression is taken from Hsu [67-7]1, page 277, and is also
included in most books on optics. The appurtenant light
intensity distribution I{X,¥} is proportional to the square

on G{u,v}, and is as shown in fig. B.4-3 for B = %. It will

be seen to have peak values at the same points as shown in

fig. B.4-2., Between these, the distribution has secondary
maximum values with function values that are much lower than
the peak values.

The various light dots in the foeal plane, og which the
diffraction pattern is made up, are denoted DIFFRACTION ORDERS
and are numbered according to the relevant N-value (cf. fig.
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B.4-2 and B.4-3). All orders will be seen to have the same
spacing, which is independent on the relative bar-width (1 - B)
and their intensities decrease periodically with increasing

distance from the central dot.

1{X.Y}

[sin {BNn}lz
‘| BNT

Figure B.4-3

The envelope corresponding to the first term in (B.4-4) has
zero points when the product BN assumes integral values. From
this it will be seen that the smaller B, the further there will
be between the minima of the envelope. As B is the ratio
between the grating space width and the pitch, this means that
a greater, relative bar width (1 - B) results in increasing

distance between minima.

An important factor appearing from the calculations is the
relationship between the expansion (B.4-1) of the transmission
function and the individual diffraction orders. Here,

The diffraction orders tNo are produced by the
No'th harmonic term in the Fourier expansion of

the transmission function.

In other words, the central dot (N = 0) in the diffraction

pattern is produced by the average disturbance BE in the



B-15

object plane. The basic wave (n = 1 in B.4~1) produces

N = +1 and N = -1 etc. That is why it is possible to
manipulate the image~formation of a grating by only letting
selected diffraction orders pass the focal plane.

Finally, it will be seen from the calculations that the N'th
diffraction order is produced by waves radiating in the

direction
- 2n
(M'U) = (O,N—B—) (B.4"5)
or
(«,B,v) = (O,N%.Y) (B.4-6)

where (a,B,y) are the direction cosines of the elementary ray.
(B.4-6) results from (B.4-5) by means of (B.3-2 and B.3-4)

B.5 Optical Filtering of a Line Grating

The arrangement shown in fig. B.4-1 is now enlarged with a
screen, as shown in fig. B.5-1. The line grating is located

a distance of twice the focal length from lens 2, and an image
of the grating will then be formed at the same distance from
the lens on the opposite side of this. In other words, all
rays originating from a point on the line grating and passing
lens 2 intersect each other at the same point on the image

" plane, where a screen is arranged to pick up the image. At

the selected distance, an image in 1l:1 is obtained.

Ys

Lense 1 Line tin L 2 -
en inegrating ense Focalplane Image-plane
(Screen)

Figure B.5-1

If all light waves emitted from the grating passed through
the lens the distribution of the light intensity would be the
same in the plane of the grating as in the image plane.
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However, part of the light from the plane of the light grating
is emitted in the directions outside the lens, and this part
must thus be deducted.

Taking a circular area of the grating about the optical axis
with radius r, we can immediately find, by means of fig. B.5-2,
the directions of radiation that do not pass through the lens.
iIf the lens has an aperture of radius R, we get, for the two

R
Figqure B.5-2
direction cosines Ba and Bu:
_R-T -
B, = 721 (B.5-1)
_R+r -
By = 2T (B.5-2)

Assuming that R > r, beams with direction cosines smaller than
B will pass through the lens, while beams with B > B will
pass right outside it. For B < B < B, only part of the beam
will pass the lens.

It will be seen from (B.4-6) and (B.5-2) that higher

diffraction orders than

_a P_R+tID -
Nmax - Bul 2L A (B.5-3)

do not occur, and this, in turn, means that the Fourier
expansion for the optical disturbance in the image plane will
at most consist of the first N _ + 1 term in the expansion
(B.4-1).

If a screen with an aperture (a hole in it) is placed in the
focal plane, the aperture being of such a size and location

that only the central diffraction dot can pass through it, the

question is how the image (pattern) of the line grating will
then look.



The optical disturbance in the image plane can either be
obtained as the Fourier transform to the first term in (B.4-3)
Oor simply by taking the first term in (B.4-1) since this
resulted in the central diffraction order. Denoting the
coordinates in the image plane (xB,yB), the optical
disturbance uofxB,yB} and the intensity Io{xB,yB}, we get:

uO{xB,yB} = BE (B.5-4)

- 2.8 252 _
Io{xa,yB} = uO] = B°E (B.5-5)
in other words, a uniformly illuminated image surface without
any grating effect.

If, instead, it is only the diffraction order +1 that slips
through the aperture in the focal Plane, we get the optical

disturbance,
u, {xgrygl =
ira mEBnc 6{u}6{u--g-£}ex {i(x + v)}ldudv =
2w ) 1 P P B ¥ ¥p L
1 . 2T
FEBc exp{l—p—yB} {B.5-6)

and the light intensity distribution,
C.\ 2 C. .\ 2
_ 2 _ 1 2 _ 1 -
I+1{xa'ya} - Iu+1| - (2) (EB)” = (2) Io (B.5-7)

Thus, this, too, results in a2 uniformly illuminated image
surface, but with a reduced light intensity.

If, instead, the screen is provided with two apertures, which
allow the orders +1 and -1 through, we get the optical

disturbance,
2ny
B
uil{xE,yB} = E[.%c1 cos{ } (B.5-8)
and the light intensity
2ny
- 2 2 B -
IiI{xB,yB} = Io(cl) cos { } (B.5~9)




In other words, the image now has a varying light intensity
with a distance of %;: between two maxima or two minima and
the image has the character of a grating with half the pitch
of the original grating. The line density in the grating has
thus been doubled by the filtering. If the filter (the filter-
ing screen in the focal plane) allows the passage of pairs of

higher diffraction orders *N, we get, correspondingly,

2
u, . = EBcy cos{N?“yB} (B.5-10)
I, = IC‘(cN)2 cosz{N%EyB} (B.5-11)

The image will thus be a grating with 2N times as many lines
as in the original. This is, in reality, the concept of optic-
al multiplication. Nmax (B.5-3) at any rate sets an upper
bound for the multiplication, but in addition, the intensity
is weakened at higher orders.

When the diffraction orders +1, 0 and -1 are allowed to pass

the filter a grating with the same line density as the original
grating is obtained. In this case,

20
uoﬂ{xB,yB} =u, +tu,, = EB[l + ¢ cos{—p-yB}] (B.5-12)

1

or

= 2 2;2 1 2n
Ioﬂ{xB,yB} = I_[1 + (c,)" cos {p yB}+2cl cos{p ygl]

(B.5-13)

It will be seen that the intensity I,,, is periodic with the
period p.

The difference between this intensity distribution and that of
the original grating can be investigated by examining their
visibilities V, which are defined by

max Imi.n
Vv = T . (B.5-14)
max min

For the original grating (B.4-1) is

I = E and I . =0
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i.e
original =1
For the grating (B.5~13), we get
I =I[1+ (c)%+2c ]
max (o] 1 1
— 2 -—
Iin = 10[1 + (cl) 2cl]
from which
2cl
Y = {B.5-15)
0x1 1 + (cl)Z

This depends on the factor Cyv which in turn depends on the
relative spacing width B (cf. (B.4-2)). These relations are
shown in fig. B.5-3, and it will be seen that the visibility
of the image of the grating is equal to that of the original
when B « 0.6,




B.6 The Diffraction Pattern of Two Crossed Line Gratings

Let us now, instead, place in the object plane in fig. B.5-1,
two crossed line gratings (RG and MG), the locations of which

in the x,y-system are shown in fig. B.6-1.

The two gratings can be described by:

MG : y = mp_ (B.6-1)
p

RG : y = rcoge + x tanf (B.6-2)

RG : y* =rp (B.6«3)

r

where the notation is as used in chapter 4. However, in
addition, a supplementary coordinate system x* - y* is
introduced, which simplifies the description of the grating
RG.

If the two grating have the normalized transmission functions
gm{x,y} and gr{x,y}, the resulting transmission function

h{x,y} for the superposed gratings will be

hix,y} = Egﬁ{x,y}gr{x,y} (B.6-4)

where E is the amplitude of the optical disturbance arriving

at the object plane.

Then, from (B.3-8), we find that the optical disturbance

H{p,v} in the focal plane can be written:

(=2

H{p,v} = Cl I gm{x,y}gr{x,y}exp{—i(xu + yv)ldxdy

(B.6-5)

Using the "convolution theorem” (B.2-10 and B.2-1l), we see

that H{uy,v} can also be written

H{u,v} = CI j Gm{u - t, v - s}Gr{t,s}dtds
o0 =00

(B.6-6)

where

Gm{t,s} = ?% [m}r“gm{x,y}oxp{i(xt + y s) ldx dy
B (B.6~7)

and analooously for Gr{t,rﬂ}.



Figure B.6-1

If the relative spacing width (B) is identical for the two
gratings, their transmission functions can be written

gm{x,y} = Bl1 + c, cos{2mm} + c,cos{2 - 2mm} + ...]
(B.6~8)
gr{x,y} = BI1 + clcos{zlrr} + cycos{2 - 2nr} + ...]

(B.6-9)

which is obtained from (B.4-1) with E = 1. In addition, it is
assumed that

m= X (B.6-10)
pm
*®
r = -1 (y cos® - xsinp) = = (B.6-11)
pr pr

If only the first two terms in (B.§-8 and B.6-9) are included,
then analogously to (B.4-3), Gm{t,s} and Gr{t*,s*} become

: 2n _ 2n

Gm{t.S} = pnoé{t}) [26{s} + clé{s + pm} + c16{s pm}]
(B.6-12)

and

G {e*s%) = Bno(tr} [25(s*) + c, 6{s* + LT
r
+ ¢, 6{s* - 2Ty (B.6-13)
] pr




Substituted in (B.6-6) we get:

H{p,v}
C(Bn)2[26{u*}(26{v*} + o S{v¥ + Er& + ¢y S{v* - "})
r r
+ c, 6{p* + l')'-—“-sine:} 2 6{v* + H—cose} + ¢, §{v¥* + -g—-'lcosﬂ+—}
1l P P 1 P
m m m pr
+ ¢, 6{v* + g—-cose ==2el0 )
1 Pn P,
2w . 2w
+ clé{u* - E;- 1n6}(26{v* - js-cose} +
m m
2n Zn
+ ¢, §{v*¥ - =—cosd + —|— + c, S{v¥ - =— cos6 - ——4)]
1 P pr} P,
{B.6-14)
where

p* = pcosh + vsind
v¥ =-u s5iné + v cosb

The diffraction pattern is shown in fig. B.6-2, where the
points in the focal plane at which the amplitude of the
optical disturbance is infinite are plotted. There are 9
points in all. Had more of the terms in the expressions for
t+he transmission function (B.6-8 and B.6-9) been included in
the calculation of Gm and Gr in (B.6-12 and B.6-13), there
would have been a correspondingly greater number of points

in the diffraction pattern.

The nine points in fig. B.6-2 are provided with "the
coordinates®™ [M,R], where M is the diffraction order in the
diffraction pattern of the line grating MG to which the point
corresponds, and analogously for R. It will be seen that the
points [+1,01], [0,0] and [-1,0] are the diffraction pattern
that would be produced by the line grating MG only, while RG
on its own would give the points [0,+11], [0,0] and [0,-1].
The remaining four points, on the other hand, are due to the

interplay between the two superposed line gratings.
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B.7 Optical Filtering of a Moiré Pattern

As in the case of the filtering of the line grating in B.5,
the image of two crossed gratings can be varied by suitable
choice of diffraction patterns. The contributions of the
various diffraction orders to the optical disturbance in the
image plane are obtained, as earlier, by taking the Fourier
transform of the corresponding term in (B.6-14). The
contributions are as follows in table B.7-1.




Diffraction Contribution to Optical Disturbance in the
Order Image Plane. Factor %c:n Bz
[o,0] 4
fo,-11 exp{ 12—— }
P,
[0,+1] exp{+ 1—yB}
[-1,0] 2c exp{—l—p— {(sin® x* + cosd y;)}
[-1,-1] (c ) expy— i 2% (5ing x} + cosf yf) + 2T ok
’ 1 P P, Yg erB
2 J2w, . 2m
(-1,+1] (c,) eXP{' 1(?;(51“6 xg + cosbyg) - E'Yﬁ)}
[+1,0] 2 ¢, exp{-i- 2T (sinb x* + cosb y;)}
pm
[+1,-1] (cl)2 exp{+ .(ZPZ {sin® x* + cos8 y;) - EE'E'YE)}
[+1,+1] {c )2ex + i £ (sin® x* + cosB y*) + 2Ty«
1 1 P P B Ys p_ VB

Table B.7-1

For the purposes of clarification, the following quantities
will now be introduced:

r
= L (sine x* * =
my = B (sing x¥ + cosd y}) (B.7-2)

which will be seen to describe two line gratings in the
coordinate system (x;,y;) of the image plane. These are the
images of the two line gratings in fig. B.6-1.

Table B.7-1 can now be written as shown in table B.7-2.




Diffraction Contribution to Optical Disturbance in the
Order Image Plane. Factor %(Zn B2
[0,0] 4

fo,-1] 2 ¢ exp{niZHrB}

[0,+1] 2¢c exp{+12nr}

[-1,0] 2c exp{ i2n }

[-1,~-1] exp{ i2w(m, + rB)}
{-1,+1] exp{ iZTr(mB - rB)}
[+1,0] 2¢, exp{+ianB}

[+1,-1] (cl)Zexp{+12n(mB - rB)}
[(+1,+1] (cﬂzem{+12nh% +rBﬁ

Table B.7-2

Table B.7-3 gives the light intensity distribution for a
number of related diffraction orders.

It will be seen from cases a, b and ¢ that two or three
diffraction orders corresponding to the same model grating
diffraction order (M) will give an image with the same
orientation as the reference grating. The period will also be
the same if the order R = 0 is included (case a), while it
will be halved if this is omitted (b and ¢). An analogous
case for orders with the same R-value is shown in case f.

It will be seen that in case d, the diffraction orders [+1,+1],
(0,01 and [-1,-1} vary perlodlcally with the quantity

n; =r, + . with the period An = 1. Tt is Precisely the
additive moiré pattern formed by two line gratings with the
parameters Ty and m, that is given by this parametric
description, and we have thus succeeded in Producing this
pattern by means of the optical filtering. Omitting the
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pDiffraction | Diffraction| Variation in Light Intensity
Order Pattern in the Image Plane
a) . 2 2
[o,+1] + o le[1 + (cl) cos {2rrrB}
[0,0] + NoX + 2cl{271rB}]
[0,-1] ‘O :
' (reference grating)
b)[0,+l] + ‘ 16(c )2 cosz{211r }
OK 1 B
[0,-1] “m
0 (reference grating doubled)
©
c)[+l,+1]+ A 4(cl)zcosz{2T;rB}
[+1,-1] e .0 ,
T (reference grating doubled)
[}
141,427+ G,) . a1 + (¢ cos®(2n(r, + m))
[-1,-1]+ -@. +2c; cos{2 rr(rB + mB)}]
[0,0] ) p-
® {additive moiré& pattern)
e} ® 2 2
[+1,+1]+ . . 4(cl) cos {2n(rB + mB)}
['1,"1] s »
s . (additive moiré pattern doubled)
®
f)[+1,0] + * 16(cl)2 COSZ{ZTIMB}
["'110] :@
e (model grating doubled)
® .
g)[0,+1] + ¢ 8(c )2[1 + cos{2n(m_ - r_)}]
@@ 1 B B
[+1,0]
SAfe Sa (subtractive moiré pattern)
h) . 2 2
[-1,+1]+ o 4(c )" cos {2m(m, r.)}
[+1,-1] ®.0
A, {(subtractive moiré pattern doubled)}

Table

B.7-13




central order [0,0], we get, as shown in case e, the same
orientation in the pattern as in case d, but the period is
halved. The additive pattern has thus been multiplied by the
factor 2. Cases g and h show entirely analogous conditions,
in which the light intensity varies with the quantity

n; = my = r,. This corresponds to the subtractive moiré
pattern formed by the two line gratings RG and MG, i.e. the
pattern which is normalle observed as the moiré pattern for
small values of 8 and P, - P_, and on which the whole of
chapter 4 of the report is based.

It is important to note here that the original grating lines
have been filtered off in the patterns depicted.

Only the first two terms in (B.6-8 and B.6-9) were included

in the calculations, i.e. the transmission function for the
gratings is assumed to have a cosine variation with a period
equal to the pitch. If further terms are included, a
correspondingly greater number of diffraction orders will

be obtained, and by optical filtering of these, we can obtain
moiré patterns corresponding to the pitches that are fractions
of those used here.







APPENDIX C

BRIGHT AND DARK MOIRE-FRINGES, OR VICE VERSA

As mentioned in connexion with fig. 2.5-1 of section 2.5, the
formally bright moiré&-fringes can, in some cases, appear as
the darkest fringes in a moiré-pattern. As far as is known,

this phenomenon has only been described and explained by
Rieder and Ritter in [65-9] and Pelzer-Bawin in [68-16].

(Termed by the latter "Une particularité photographique dans

la domaine du moiré".)

-BRIGHT- " DARK "
FRINGE FRINGE
Mo | 2emend GO0 0| 000
intenslty | . axposnre EREREEENEERE RN
I
=] i — N

Resulting arriving
lightintensity.

HODDDDIIOUHHH

bright

average

dark
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>

pdark
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p bright
average

D bright
average

dark
Dave age

Figure C-1




Fig. C-1 provides an explanation of the case "double
exposure" of a negative, where the grating photographed is,

for example, rotated between the two exposures.

The top of the figure shows the arriving light intensity,
which is equal to IO,r where there are spaces, and zero where
there are grating bars. The "bright" fringes are formed

where spaces from the 2nd exposure coincide with

spaces from the lst exposure, while the "dark" fringes are
formed where grating bars fall in spaces. The resulting
arriving light intensity becomes a block distribution for

the "bright" fringes, with 2 IO as maximum value and zero

as minimum value, while for the "dark"” fringes, it is constant

at Io throughout.

The density (D) of the corresponding areas on the negative
will depend on the density curve of the photographic material
and the exposure time (At). The density curve, which expresses
the dependence of the density (D) on the exposure (E), has

the idealized, non-linear character shown in the figure,

with background fogging Dl' which is constant for E < Ez'

The exposure (E) is equal to the light intensity (I) times

the exposure time (At), i.e.
E = IAt

Fig. C.l-a, C.l-b and C.l-c show the density for various

exposure times:

a) The exposure time is so short that the density only
corresponds to the background fogging throughout.

b) Only the most heavily exposed areas in the "bright"

fringes have become denser than the background fogging.
The average density in the "bright” fringes Do iont
average

dark for the "dark" fringes.
average

exceeds
the average density D

c) The exposure time is increased wo that the most heavily
exposed areas reach the density limit, and here, increased
exposure will not increase the density further. The "bright"

fringes arc now fully developed, while with further



exposure, the "dark" fringes will increase in density
until they, too, reach the density limit.
d) The dark fringes have now also reached the density limit,

I:’dark

and for an exposure time of between At and At _,
d average

has become greater than Dbrlght .
average

In the case of further copying, the resulting positive will
have its bright parts, where the average density of the

negative is maximum. If the negative is exposed corresponding
D bright

average
will be brightest on the positive, while exposure correspond=-

ing to d) will make the "dark" fringes brightest.

to case c), will be greatest, and the "bright" fringes

It will be seen from this that if a negative is over—-exposed,

the "dark" fringes on the final positive will appear as the
"brightest" fringes, and vice versa.
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