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1. Introduction

The problem of the determination of the stresses and displacements
in a structure which takes viscoelastic effects into account will
only have analytlical solutions in some simple cases, Klias {1%].
More complicated problems must generally be solved by numerical

methods.

A summerlized treatmenft of the theopry of viscoelasticity is given hy
Christensen [1]. The foundation of the theory applied to this
paper is given by ‘urtin & Sternbery [3]. 1t can be shown that

the constititive equations contaln a discription ot the well-

known Maxwell-, Kelvin- and Hurver-materials, Rabotnov [2].

A general and useful method is the {inite element method, White
[8]. Two different types of elements will be derived from func-

tlonals giver by (turtin [6] by variational principles.

Another numerlical method ls based on Adiftrerence equations. This
method is usually preferred when the problem depends on one
dimension. OJolutions to such problems Involving conarete structures
are given by Wissmann [12] and Aagaard Ugrensen % Hgjlund Rasmussen

[13].



2. Symbols and assumptions

Time t
A +A =A

Ay
Fig. 1

The following symbols are used;

Gijkl(t): The components of the relaxation tensor, expressing

the elastic memory of the material. It is the visco-
elastic analogy to the elasticity tensor.

JIJkl(t): The components af the creep tensor. The creep tensor lIs

the viscoelastic analory to the complianhce tensor.

rid(t) : The components of the strain tensor.

uiJ(t) : The componenftis of the stress tensor.
u,{(t) : The components of the dlsplacement vector.
Tl(t) : The components of the surface traction vector.

Fi(t) : The components of the body forece vector.

El(t), T. (&) and ?i(ti are the prescribed values of the displace-
ments, the surface tractions and the body forces,

All functions are assumed to vanish for & < 1),




The constitutive conditions are expressed by

(1)

& *
93~ Yigk1 ¥ %K1

# do (2)

and el.j - JiJk.l k].

where "*" denotes Stleltjes' convolution product, see
appendix. A combination of (1) and (2) gives the relation
hetween the creep and the relaxation tensor.

Tigkr ¥ Oprmn h(t)dm 84n (3)

where h(t) is the unit step function, see appendix.

The following ls assumed concerning the relaxation tensor and, by

means of (3),also concerning the creep tensor:

- £ 1 ; it "I‘
gkl ~ Ggikl T %1kl (%)
IJ)
lim Gijkl exists (
e
L] = 1) _ o (f))
“1Jkl is continuous for t & [O,=[
(t) for t e [O,=f ()

Further investipations regarding the conditions on the relaxation
and the creep tensors have been made by Curtin & Sternberg [3]
and Day [9].

All latin indices refer to Cartesian coordinates. linless other-
wise mentioned, the summation conventlon is used.

All strains are assumed to be small compared w!th unity and all
displacements are assumed %0 be small compared wilth the dimensions
of the structure.




5. A compatible type of Tfinite elements.
3.1 Variational principles.
The functional, see fig. 1,
o sl - Too»
" = IV[OiJ * deij](g,t)dv jV[Li duy J(x.t)av

- IA [T; * du, J(x,%)dh (8)

o
glven by Gurtin -[6] is chosen as a starting point for the derivation

of the finite element equations, corresponding to an element of the
compatible type.

The additional conditions are

€45 = 5(111“j + uj,i) in V (9)
Gij = Gijkl * dekl in v (10)
v, o= 0y on A (11)

Gurtin [6] has shown that, under tlisse conditions, the state S
= (g» % 4) is a solution to the given viscoelastio problem when

1. The variation of ™. vanishes with respect to S.
2. The variations obey the additional conditions.

The variation of a functional can be expressed as follows:

6m(S) = 4= n(s + w8S), (12)

for an arbitrary choice of &3.

The uniqueness of the solution is also shown by Gurtin [6]. The
functiocnal ™ is the viscoelastic analogy to the potential energy
for perfectly elastic materials, though it should be noted that U

does not represent any physical energy. Energil-expressions for
viscoelastlc materials are given by Bland {8].

3.2 OSpatial discretization.

An approximation of the functional ™ is obtalned by dividing the




structure into discrete elements and expressing the independent
functions by a finite number of generalized values and sets of
interpolation functions.

In this case the only lndependent functions, the displacements

U, s are chosen in the form

fu(g,6)1 = [N(x) Tiv(t)} (13)

where [N] is chosen independent of the time t in accordance with

the assumptions mentioned above. The stress components and the
strain components depend on the displacements through the additional
conditions.

fe(t)l = [BI{v(t)} (14)
As [N] is time-independent, so is [B]
T
fo(e)l = [ [c(t-7)][Blafe(r)] (15)

By using the approximate ‘displacements and (A1) and (A8) of %the
appendix we obtain - '

D =t T'=t-7
T | dlv('r)} Tt (G e-r-7") I[Bla{v(r') 14V
t :
- T IT {8(t-r)} [Nldiv(~)}av
v T=% ,
-~ [ ] iRt-mla{v(r)tar (16)
Ag -

By replacing ™y by the approximation ng and using the

variational principle, we get a set of equations to determine
the approximate displacements.

The variational princ*plé and (12) give
i (S) = EIJ‘ j “atov(n)1 a1 0 (61 1BIA v AV
+3f j_mj_m div( )lT[B] [G(t-T-7")][Blafsv(r')lav
- IVFt {P(t-m)} [N]dsav(T)}dv
I I _(2(e-m)) [N]diav(w)ldA (17)

As the argument or (¢} is symmetrical with respect to T and T



- T =

so are the first two expressions of (17), and this can thus be
written in the form

by = jt ft;Td!6V(¢)lT[K(t-T-T')]d{V(T')I
- IE:[;(t-T)le!ﬁv(T)l (18)
where [K(t)]—= J‘V[B]T[G(t)][B]dv (19)
and [R(t)] = j‘V[N]Tlﬁ(t)ldv N jA INTT{T(t) 1aa (20)

o
The elements of {sv(r)] are replaced one by one by the unit step

function h(t) while the rest of the elements are taken as

zero. This choice of lsv} allows some of the integrations with
respect to time to be carried out analytically, see appendix (A6).
Now we get a slmple system of equations.

JY [k(e-m)lafv(n)} - IR(E)] = O (21)

3.3 Time-discretization

The time-dependent functions of eq. (21) are approximated by
continuous linear functions. The changes of the slope are chosen

at t, < b= ... = by e (21) can then be written in the form
N
§=i([K(tN'ti)] + [K(ey-t; ) 1fav | = 2{R(ty)] (22)

By using more refined approximations for the integral, we obtain
a better accuracy, but also a coupling of the equations at different
time steps.

The N'th displacement increment is easily determined from (22),
if the previous increments are known.

favgd = ([K(0)] + [K(ty-ty )] 72
N-1
(2{R(t)} - =

1=1
By replacing the displacement increments by the total displace-

([R(ty-t; o) I+ [K(ty-t ) Diav,}  (23)

ments in (23) we get



fvgd = ([K(0)1 + [K(by-ty ) DT
N-1

This system of equations 1s identical with the one derived by
Taylor & Chang [5]. It 1s important to note that discontinuities
with respect to time do not make the method fail. For Ati = 0
the well-known equations for elastic materials are obtained.

fav,} = [K(0)17{R(t,)] (25)

3.4 Examples.
3.4.1 Elastic materials

For an elastic material the relaxation tensor and consequently
the stiffness matrixare time-independent. (24) then becomes

[K1fv(t)} = {R(®)} : (26)

This set of equations will Le recognized as similar to the equations

derived by Zienkiewiecz [7].

3.4.2 Constant strain velocity for isotropic materials.

The Iinvestigation is restricted to'the case of constant stresses.

In this case, assuming constant strain velocity, (1) becomes

t

O3y = Gy 31 (8) )1 (0) + IOGiJkl(T)dT €,.1(0) (27)

The relaxation tensor of an isotropic material can be expressed by
Gy(t) - G (%) G, (t)

Gy 1 (t) = 3 byt T T (Aypbgy t o 8n8y) (28)
By combining (27) and (29) and solving with respect to G, and
62 we get

Gi(t) = Gi(O) exp( ~at) .

29
. 1

where the dilatation e = 3 exk (30)
and the deviations €55 = €44 = 844¢ (31)

o = eij/eij B = -e/e (32}



i.e. the general form

Gijkl(t) = %(GQ(O) exP(‘ﬁt) = Gl(o) exP(—Bt))ﬁijakl

+%G1(O) exP(_Bt)(ﬁikbiJ + Gilﬁjk) (35)
i1s the relaxation tensor of a material subjected to the initial
strains

e, =Gl o (34)
13 7 Tijkl Tkl

and the constant strain velocities

at constant stress.
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4. A hybrid type of viscoelastic finite element.
4.1 variational principles.

Consider the functional given by Gurtin [6]

ne = %fv[eij * oy 1(x, t)av

- IA [T, * duy 1(x,t)av (36)
with the addigional conditions
5,3 Fy =0 in v (37)
Oy 4= O3y in V (38)
Oy 3R y4= Ti in A, (39)
Tgl) + TgII)= 0 on A (40)
oyny =Ty on A (41)
T
» Iun
Fip 2

o is analogous to the complementary energy for perfectly elastic
materials. It should be noted that Tos like the functional ™%
defined in (8), does not represent any physical energy. The
additional conditions {39) and (40) are introduced in the
functional o by the method of Lagrange multipliers ki(ﬁ’t)‘ The
method of introducing the equilibrium conditions along inner

surfaces into the functional i1s treated by Pian & Tong [10].
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myp= g - [(rfT) (I . dny (%, t)dA

- IA (o, 4ny - T,) * di, (x,t)dA (42)

o/
The varliation of the modified functional ™y is found by means

of (12).

I 11)
oy = bmy - IA (T£ )4 T§ ) * dexy(x,t)dA
i

= IA (UiJnJ - Ti) * d611(£,t)dA
(o}

- (I) (I1)

-rAi(aTi + 8Ty 7T0) % da, (x,t)dA

- jA 80y yny *dx, (x,t)dA (43)

o
The state S 1s determined by the independent functions: the

stresses g and the Lagrange multipliers A

By choosing 40 = 0 and 83 = n(t)sr(x) we get
g = = [ et v (e (e
i
- IA (Uijnj - T;)en (g)da (45)

o
As %,8(x) can be arbitrarily chosen, it follows that by = 0 1if
(£)7, p(I1) _
37Ty = 0 on A, and % 31y T, on A_.

By choosing d) = 0 and 68 = h(t)sg(x) and applying the symmetry

of Jijkl'

by = Iveijacij(g)dv - IA aciJnJﬁi(g)dA
u
- fAiacijnJAi(g)dA = IAosuiJndxi(ﬁ)dA (46)

By means of the additional condition (38) and the Uauss transforma-
tion, we get
LE I jAaciJnJui(é)dA - IA 80, 4n Uy (x)dA
u

= IA 5ciJnJAi(g)dA = IA 6oijnjhi(5)dA (47)
i o




- 12 -

Then the variational principle states that

li ui on Au

and 11

ui on Ai and Ac

By dividing the structure into NEL elements we obtaln

NEL

= % (% j‘v (Jijkl * doy * dokl)(;g_',t)dv

I
- IA (oijnj * dui)(ﬁ,t)dA

+

I
J (D * duy)(x,t)dA) (48)

A
91

which is the modified functional to be used in the derivation of
the finite element equations.

4.2 Stress modes and spatial discretization

The structure is divided into NEL elements and the stresses
of each element I are expressed by

fo(x,8)1 = [P(x)] {8(8)} + {ot(x,t)} (49)
I T I I

where

[P] 15 made time-independent,
I
{B]_ are the stress modes of the element and

Lci} satisfies the inhomogeneous part of the equations of
I equilibrium in the I'th element.
fol and {o1] contain generalized stresses since the symmetry
I

I :
of the stress tensor is used. The displacements

along the element surface are continuous and expressed by
fu(z. )} = [N(x) ]I{v(t)}I (50)

[N] is made time-independent,and
I

{vli are the nodal displacements of the I'th element.
I

Hecause of the continuity of the displacements, the nodal displacement




S

are not quite independent and a transformation is required,

fvi = [81 {v} (51)
T

where [v} are the independent global displacements. By introducing
the global displacements and stress modes we obtain the approximate
functional.

=t T'=t-+
"= 5 (j I f f(lB(T)l [P] + !oi(le )

[J(t —t-i )J d([P] is(7)} +{01(¢)l )av
I I I I

T T T
- IA I (is(t T)} (F] +1T1(t T)l )IN] d{v(T)l dA
I 7=t
+ j‘T {T(t- —r)} [N] d{v (r)} aa (52)
AOI ~eo I
where [F] is defined by
[Tt = [F] {g] (53)
I I I
Furthermorg the following symbols are introduced
T
[H1(t)] = [ [P] [J(t)][Plav (54)
I VI é
[H2(t)] = f (P] [J(t)] av (55)
I VI I I
[(H3(%,7,7")] = [ {o1(r)] [J(t-r-7") 1ot (r')} av (56)
T VI I I
[61] = [ [F] [N] da (57)
I A I
[Ga(t)] = -] iTi(t)! [NJ dA
I AI I
T
+ [ 1T(t)] [N] aa (58)
Ac I I
I

By means of the variational principle and (12), the variation orf
g ls written

g = dr THV(E)] + afsv(t)],

NEL
T ({B(t)} + alsB()] ))
I I I

NEL t t=r T
E ([ [ d!aa(w')!I[H1(t-¢~w')lldia(v)lI)

T -0 -t

a=0
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4+

£t t-7 7
I [ atse(«")}_[H2(t-7-1")] dlot ()}
I I T

t T
[ te(t)} [62] [s] dfev(m)}
- I T I

t
[ fep(t-v)} [o1] [s] afv(n)]
- T I I

t
I [GE(t—T)]I[S]Id16V(T)I) (59)

fsv(t)] and {s8(t)} may be chosen arbitrarily. One cholce is
I

fsv(t)] = 0 and B, (t) = n(t) successively while the rest of the
stress parameters are zero. This choilce and (59) give

EIN ¢t
g (] [HL(t-7)] a{p(m)}_ +
T - I I

t
[ (H2(t-r")] dfot (")}
m I T

- [e2] [s] tv(s)]) =0 (60)
I I

Another choice is {68! = 0 and évi(t) = h(t) while the rest
of the global displace%ents are zero. With this choice we obtain

ELN T T T T
z ([s] [ar] {s(e)}+[8] [Ga(t)] ) =0 (61)
% 101 I I I

4.3 Time discretization

It is assumed that like the compatible element, all functions are
plecewise linear and continuous with respect to time t for t €
[to,tN] with discontinuities in the slope at t; < ¢, = .... = -
Then (60) can be written

L([ (0)] [Ha( )] )| }
v ([HL(O C[H4(t, - t A
. R BN I

I
NEL

=% (2[cGt] [s] ile
T I I
N-1

. ([HL(ty - £, ] +[HI(ty - ti_i)JI)lasil
i :

-3 ([H2(t, - t.)] +[H2(t, - t. _,)] Y{aoci | ) (62)
5 N 177 N L-1 T i‘I

As {ag] 1is independent from one element to another, {ABN} can
I I

be found if ([H1(0)] =+ [Hi(tN - tN_i)]) can be inverted.
I I

Assuming this and substituting {BN}I = [BN-i‘I + {8y} and iABN}I




determined from (62) into (61),we obtair

2 ([s] [oa] ([He( )] +[HA( 1y
2 S Gl HAi(O +|Hi(t,, - t
I ( T I I NoON-17

NE£GiJI[S]I{vN!

=2 (Is] [Gz(tN)] —[SJ [Gi] RUS 1t
T -
+ [8] (o] NLACH ey - by-a)1)
N-1
(z (HL(ty - %)) ey - b)) ){Asi}
NEL
+ 2 (H2(ty - t)] +[H2(t . 1)] {ao1, } )) (63)

!le and [ABN} may now be determined from (63) and {62).

Neglecting the inhomogeneous part of the equilibrium equations
(62) and (63) reduce to

([H:L(O)]I + [HL(ty - tN_i)]_{AsN}I

- 2[61] [s -
[ ]I[ ]I{vNI

N-1

2 (IE(ty - 6y )] +[HI(gy - ty)1_1agy ] (64)
NEL T T N S

2z £SJI[G1]I(Lﬂi(0)11+[h1(tN - tN_i)il)

i S
CONCIRIN

NEL T
=z ([s] [Ga(ty)]
I I

; ]T[ ]T([ (0)] +[H( ] )—1
+ [S] [61] ([H(0)] +[H(b, - &, .
I T I N OON-174

N-1
£ ([H2{ty - t;)] +[HI(ty - ti*i)ll)faeilT) (65)

L
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5. A special type of relaxation and creep tensors.

The numerical methods involved in the integration with respect
to time demand & high computer capacity. This may be avoided

in the case of certain type of material, whose relaxation tensor
can be written

Q
[6(6)] = [Gg] + 2 1[Gk]exp<-t/wﬁ) (66)
By applying ( 3 ) we obtain
Q
[3(£)] = [J3,1 + irl[Jk]exp(—t/Ti) (67)

This kind of material has been treated by Zak f[11] in one-dimensional

cases.
5.1 Zak's method applied to the compatible type.

(66) substituted into (19) zives

T Q
(K(8)1 = [ [B] ((G,] + i_ltGk]exp(-t/Tﬁ)[E]dV

Q
G
= [KO] + T [Kk]exp(—t/Tk)
k=1
(2%) may then be written in the form

Q
(21K, + (K 1(2rexp(-by - ty_g /T avy]

N-1
= 2{R(t) 1 - f_12[ﬁo]ibvl§

& N~1 a G
-2 (K] ;_1((exp((-tN - %;)/T )rexp(-(By - £ _4)/Ty)) {avyl
Q
- 2fR(B)} - 2[K Mvy gt - T (K Hay ) (68)
N-1 k=1 ’
where !VN-i} = ¥ {Avil, (69)

G G
icN,k! = exp(-aty/T) (1 exp(-AtN_i/TK))iAvN_i!
+ exp(-AtN/Té)inN_i,k} (70)
and Bty = ty - ty 4 (72)

The displacements are determined from (68) and the recursion
formula (70).




= 3y .

5.2 Zak's method applied to hybrid elements satisfying the
homogeneous equilibrium equatlions.

Substituting (67) into (54) gives

T
Ba(e)] = [ [PIgl3,10P] av

I
Q J
E IVI[Jk][P]IdV exp(-t/T) )

Q J
=[H1_ ]+ [H1, ] exp(-t/T ) (72}
o) f Keq KL kI
Substituting this 1into (64) gives
D o(2[HL ] o [H1, ] (expletty - t,)/T0_))
b + expl- =
1=1 a) T k=1 k T N i kI

+ exP("(tN = ti-i)/TgI)){ABilI
= 2[61]I[S]I{VN} (73)
(73) is rewritten
Q J
(2[H101I+§=1[H1k31(1+exp(*AtN/Tkx)“BnlI

1
2[G ]I[S]Iile +

L

B (2 s exp(—AtN/TﬁI)HBN_i}I-{oN,klI) (74)

A ™

where

log, il = exp(-aty/Ty ) (1 + exp(-aty_, /7)),

!ABN_1}I
+ exp("AtN/TiI){GN~1,k!I (75)
and
- - 6
iABN!I !BN}I iBN_ilI (76)

’Bng may be determined from (74), and substituted into (61). This
give

NEL 7 m Q
% -[S]I[Gi]I(E[Hio]I +

kzi[Hik]I(i + eXP(-AtN/TﬂI)P'l-
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Q
(2[G1]I[S]¥{VN} + §=1[Hk]I(1 + exp(-AtN/TiI))iBN_iiI
Q
- H = 0
§=1[ k]IlaN,kEI + iRlI) (77)

This is rewritten in the form
P ars e 1T earm 1+ ) [H1,] (1 + exp(-at,/TY. )))7L
z Tt olp Ttk N/ Tk
[G1]_[S] fvyl
- iRTngis]T[Gi]T(Q[Hl 1o+ ) [H1,.] (4 + exp(-at,/T.))"%
; Iro I ofp Tt kg I 5
z (] (2 exp(-AtN/TiImaN_it-ljlu.N,klI) (78)

k=1
The nodal displacements can be determined from (78).
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Appendix
The Stieltjes' convolution product is defined by

t
o * dy = f m(t-T)di(T)} tE >0

- D
where o(t) = y(%) = 0; t € ] -=», Of
¢ 1s continuous, t € [0,=]

¥ 1s plecewilse
continuous t € [0,=[

Furthermore
m(t) = 0 t € ] -“’,0[

and w(t) is continuous t € [0,=[
The following rules of calculation are observed:

o *dy = ¢ * do
@ * d(y * du) (p * dy) * dw

o * do * dy

It

o * d(y + w) P *dy - o * dw

o ¥ dy =0 =290=0vy¢=20

® * dh = o
16€] -=, 0f

0Ot ¢ [.O, w [
(A3) may be written
© ¥ de *dy =] [ g(t-7-7")dw(r')dy ()
The case of y differentiable in ] O,«[ turns (A2) into

t
o * d§ = o(t)y(0) + fom(t-w) Q%éfl dr

(A1)

(A2)

(A3)
(A%)

(A5)
(A6)

(AT)

(A8)

(A9)



SUMMARY

The present paper introduces a class of hybrid linearly
viscoelastic finite elements, additionally a compatible class

is developed. The equations are derived by wvariational
principles applied to a complementary functional modified

by lLagrange multipliers as well as a potential energy functional.
The timedependence introduced by Stieltjes' convolution product
thus allowing discontinuities 1n stresses, strains, displace-
ments and loads. To avoid time-consuming numerical integrations
the class of creep and relaxation functions 1s limited to con-
stants and exponential functions in time.
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