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WEIGHT OPTIMIZATION OF FRAMED STRUCTURES UNDER EARTHQUAKE
LOADS

by Julius Solnes and Ole Holst a)

ABSTRACT

The paper deals with minimum weight design and analysis of
plane frames under gearthquake loads.

The minimum weight design of plane frames for different com-
binations of vertical and horizontal loads may be solved using
mathematical programming techniques. In the case of earth-
quake loading, however, the corresponding design loads are
found to be highly dependent on the stiffness of the frame
and hence on the design variables.

In the present study the mathematical programming formulation
is presented and a stepwise iterative solution procedure is
glven,which involves a first order Taylor approximation of the
object function and the stress and deflection constraints. Ex-
pressions for the various partial derivatives involving the
stiffness and mass matrices and the external loads are given,
together with a short description of the solution technique.

Finally a numerical example is worked out applying the period
dependent loads defined in the Californian SEAOC code.

a) Respectively, assistant professor and doctoral student,
Structural Research Laboratory, Technical University of
of Denmark, Copenhagen.



INTRODUCTION

Optimization of structural systems using the powerful method
of mathematical programming has received considerable attention
during the last few years, [1], [2], [3], [4].

The application of such optimization techniques can result in
rapid automatic design procedures which choose the "best" values
for the design variables while analysing the structure and check-
ing whether all imposed restrictions are observed. All load
cases can be run simultaneously and any deflection constraints

or other kind of restrictions may be introduced at the same time.
At no extra cost, even if it may be of secondary importance, an
optimization criterion such as minimum weight governs the selec-
tion of the design variables.

For any structural design problem there does not exist a unique
solution because the restrictions are in the form of inequalities.
For instance, the stresses in any number of critical sections must
be less than or equal to the allowable material stresses and so on.
An optimization eriterion, however, enables one to look for a.
unique solution, i.e. the solution which yields an extreme value
of the function to be optimized.

The more classical design procedures involving random search and
check techniques are especially inadequate when regarding com-
plicated structures. Such analysis can be very costly and time
consuming. An initial design has to be selected, and the thus
defined structure is checked for all static load cases. This will
generally result in complete reappraisal of all structural ele-
ments, which need to be increased or decreased and a new design
is found. Finally, the structure may have to be put through dyna-
mic analysis,which again can prove the design to be inadequate.
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The success of the above design procedure is entirely dependent
on the deslign engineer's intuition and experience. Especially,
the selection of a good initial design will be fundamental in
obtaining reasonable results, and even then, ¢the final design
may be very far from the optimum design although all design re-
strictions are observed.

Structures which have to be checked for earthquakes or other
time dependent loads Introduce yet another difficulty. The de-
sign earthquake loads, f.inst., are strongly period-dependent and
each design yields a different load system to be accommodated
as the stiffness varies. Design convergence may therefore be
very difficult to establish.

Fox and Kapoor [5] have recently discussed structural optimiza-
tion in the dynamic response regime. They try to evaluate the
dynamic response parameters using modal superposition and then
run the structure through an optimization analysis in which
the response values have to be re-evaluated as the stiffness and
hence the requency characteristics of the structure change.

In the present work, however, a different approach is proposed.
Working with stiffness dependent earthquake design loads, an op-
timization process is studied which yields an optimum structure
before the dynamic analysis, thereby ensuring that such analysis
1s not attempted with a nonfeasible design. Moreover, the opti-
mum design thus obtained will be superior within the range of the
design loads.

The theory has been formulated for plane structural frames ,and a
numerical example is given.

PROBLEM FORMULATION

To recapitulate the mathematical programming formulation of any
structural frame design problem, consider a structure which is
fully determined by the n-dimensional design vector

T
X = 1x, ceeee X (1)
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Here the design variables [Xil may be taken as a parameter
description of each structural element (£.inst. area, moment
of inertia, ete.), a geometric description of the structure
(f.inst.,column spacing, height etc.) or a description of
different features such as the degree of fixation of element
ends, etc.

Once all the design variables have been assigned values, there
exists one complete structure,and its weight or even the total
cost of erection can be expressed as a function (to be mini-
mized),

P
}b]
g

Z(X) » MINIMUM

termed the object function of the problem.

The design constraints together define a design variable sub-
space, in which the design variables have to be located. It 1s
defined as follows:

The deflection or deformation of the frame and the maximum
stresses in the frame must be within acceptable limits set by
design philosophy and material strenszth. This will result in
the following inequalities or constraints.

The deflection or drift limitations

VIIA

X% s 9 (3)
where Y, and YD are p-dimensional, Y being the p critical de-
flections or deformation values to be checked,and YD the cor-
responding vector of the admissible values.

) (4)

~
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however, refers to the stress constraints where §(§) is the ma-
trix of critical stresses sought after amongst all the critical
sections of the frame and §p is the corresponding matrix of the
allowable stresses, which may or may not include stabllify ef-
fects. Then, there may be restrictions on the variables them-
selves from purely design considerations (beam height, symmetry,
identical elements etc.) and fabricational limits, also,f.inst.,
the period could be restricted to lie in a certain period band
ete. These conditions can be represented symbolically as

=
H(X) > HL (5)

Together the constraints (3) - (5) define the design subspace in
the n-dimensional variable space. The boundaries of the design
space are the above constraints treated as equalities which cor-
respond to n-dimensional hypersurfaces. A two dimensional geo-
metrical representation shown in figure 1 may further clarify
the mathematical programming problem at hand.

x}- A \ "The Design Space”

o Z(Z) = kz"kg

5("{0 nonfeasible
initial design)

X4

\—u feasible initial design
Fig.1

The constraints (3) to (5) are, of course, due to the effect of
all possible load combinations, that the structural frame ‘s to
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accommodate. Here the design philosophy being studied amounts

to determining the optimum values of the design variables such

that all load combinations can be withstood through a linear
deformation. The design earthquake forces are therefore selected
as suitable for elastic behaviour. It is clear, however, that

the optimum structure thus determined will afterwards have to be
checked for nonlinear behaviour due to more realistic earthquake
forces, and will possibly have to be put through a dynamic analysis.

The optimizing process may be briefly described as follows. The
numerical procedure is started with an arbitrary initial design
(%}) which may be rather crude {fig. 1). The initial design vec-
tor may even bhe infeasible and it may become infeasible again
during the lterative process. In both cases, the numerical pro-
cedure will eventually restore its feasibility. The global opti-
mum GJO., which yields the lowest admissible value of the object
Tunction within the design space, is then sought through a step
by step approach which consists of solving a linear programming
problem for each step.

The original mathematical programming problem ((2) - (5)) is, in
general, strongly nonlinear; therefore, for each step the functions
(2) - (5) are linearized by a first order Taylor approximation.
This involves the numerical computation of the left-hand silides of
(3) to (5),which in turn requires the computation of the funda-
mental period, the force envelope, the mass matrix and the local
and the global stiffness matrices. Furthermore, the partial der-
ivatives of all these quantities with respect to all the design
variables are needed. Hercafter, it is easy to formulate a linear
programming problem which gives the optimum incremental vector X
that results in maximum decrease of the object function. Care
should be taken to avoild the local optima, L.0., at which the pro-
cess automatically stops.

In the following,the elements of the frame analysis and the opti-
mizing process are described in more detail.
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ANALYSIS OF THE STRUCTURAL TFRAME

The load combinations may conveniently be split up into lateral
and vertical loads. The lateral earthquake loads can be taken
as follows:

P(T; X) = @(T) - F(X) (6)
in which T(X) is the fundamental period, Q(T) is the design
selsmic shear force at the base and BE(X) is the force distribu-
tion envelope. The vertical loads can be writ@en as

MX) g+ X (7)

where M(%) is the mass matrix, dependent on the deslign variables,
% is the acceleration of gravity and W is the matrix of the por-
tion of the live loads, not f£o be included with the mass.

Whereas the earthquake design loads (6) can be taken as purely
nodal loads, the vertical loads (7) are both nodal loads and dis-
tributed loads. It is therefore convenient to define the two
load matrices B and BF for the combined nodal loads and the equi-
valent nodal loads respectilvely; the latter are also referved to
as the unbalanced nodal loads.

The areas {Ai} of the elements are selected as the design
variables of the frame. These variables are assembled in the
n-dimensional design vector P

Denoting the global stiffness matrix of the frame by KK, the follow
ing equation relates the nodal loads to the nodal displacements

K¥ - X+ BF =3B (8)

Hence the restriction (3) can be written in terms of the external
loads and the global stiffness matrix as follows:




KKt (B - BF)

o~ ~t

ViiA

YD (9)

Considering each element in isolation the local end forces and
end disvplacements for the i1-th element, Si and Vi’ are related

~J

through the local stiffness matrix Ki’ that is

i~

5, = KNi © vy (10)

The local stiffness matrix Ki’ which contains all the information on

the element stiffness properties and the degree of end fixation,
may be found in various textbooks on finite element analysis

[6].

Introducing the direction coslnes ay and the left and right end
global displacement sub-matrices Y{“and %F (see figure 2a), (10)

fa]

can be written as

S, =K..{- - - = . S (11)

where (see fig. 2a)

cos Bii cos 921 )
a, ={-cos B, cos 844 O (12)

~1

0 0] 1

The normal force and the moment in the element at a section
located gLi from the left end can be written as

1 :
n;(8) = X3v;lya49p 3 (28 = 1) - Sy

e

) (13)
« g5 (X;L;¥;8;49+P; ) (68(1-8)-1) =55, +8L; 55,

=
s
—
un
p —
i
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in which Y; 18 the unit volume weight of the element and p; is
the distributed locad per unit length acting perpendicular to
the element (see figure 2b).

Fig. 2a

In the RHS of (13), it is the part not involving the S forces
that gives rise to the unbalanced nodal force matrix EF

Now, for any number of sections in each element the member forces
my (&) ana n, (€) can be computed and checked against the corre-
sponding allowable forces mo 4 and noy in the member, and the
following stress constraints may be formulated,

n, (g) m (€) |
Q,(ﬁ,s S'P: g) = ""n_oz_" + —ﬁ'l-q_ =1 (1)4-)
in which
noy; = X, Og s (15)
and
mo; = W, GE (16)




-10-

where [og, GE} are the allowable stresses, Xi 15 the unknown
cross-section area of tThe element and wi is the unknown sec-
tion modulus. wi may be expressed 1n terms of the area as fol-

lows:
W, = ox? (17)

and the constants o and B are then universally determined from
manufacturers' tables of standard profiles. In this manner, the
design variables are still limited to the member cross-section

areas.
THE OPTIMIZATION PROCESS

The optimization of the object function (2) subject to the con-
straints (5), (9) and (45) is in general strongly nonlinear.
Various nonlinear optimizing procedures such as gradient methods
(7], [8] and penalty function techniques {9] have been proposed.
In the following, however, the successive linearization technique,
applied by Reinschmidt et al. [10] and Romstadt and Wang [11], is
employed. This method is based on a first order Taylor lineari-
zation of both the object function and the constraints in each
iterative step, followed by a linear programming solution f'or the
optimum incremental vector B

Consider a framed structure for which the total weight can be

written as

2(5) = L% | (18)

where [; 1s a vector of all element lengths tTimes unit weight of
element.

Now, a Taylor linearizatlon of (18) together with the constraints,
yields the following linear programming system.

iF = 1 &< - mMINIMOM , (19)
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subject to
k
LT & S (9 - 3
b %
k
PR sy g (20)
5 %
k
SRG) s 9 -5

where zk 1s the value of the design vector in the k-th iteration.

In order to keep the linear approximations within a reasonable
range of errors, the inequalities (20) are further supplemented
by move limits set for the incremental vector égk or

&
[]

in which the "lower bound” and "upper bound" vectowm are usually
selected as a certain percentage of the design vector KF. Move
limits can alsg ensure that the design variables are kept within
the limits set by the range of acceptable profiles.

The linear programming problem (19), (20) and (21) may now be

solved using the dual formulation of the standard Simplex method,
to yleld an optimum incremental vector ggk. This implies that all
the partial derivatives in (20) need to be evaluated, either ana-
lytically or numerically. Starting with the deflection, the follow-
ing relation is obtalned

2 SR oxg

=1 -1
g7 — - et (apep) (22)

i~

52| %
A

The earthquake forces which are a part of B have to un@ergo a spe-
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cial treatment due to the period-dependency. Formally it 1is
possible to write

5P SE(X)
X © gJ.% 7% & E(X) + Q(T) X (23)

whereby it becomes necessary to compute the period T(X) and its
derivatives at each step. The period, then, is computed as fol-
lows:

First, from (8) all the horizontal deflection components Y} due
to unit horizontal forces applied at all the nodes are successive-

.
L]

ly obtained as

KK - YH = BY - (28)

~J

where BU is a matrix of column vectors that have zero elements
except for the loaded node, which has a unit element. Then, tak-
ing the corresponding submatrix MH from the global mass matrix,
the period is computed by the followins scheme,

LoEE)T - oy - o - ;— T°L] - By = Q (25)

where I is the unit matrix and the transformation indicated
has ensured a positive definite, symmetric matrix. EY is the mo-
dified eigenvector, which will not be evaluated.

The derivativés 5T/6X may formally be obtained by differentiation
of (25). However, such a procedure 1s unnecessarily complicated
and a numerical evaluation by a repeated application of (25)
preferable.

Now, turning to the stress function derivatives, these are evalua-

ted as follows:

Eg 5G; _ sign(ny) ény A n, 6noi)
86X, 6Xj no,; axj no, 6Xj
- i . . . mo,
51gn(ml) om; m; b (26)

+ N =)
mo4 6Xj moi 58X .
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Lastly, the evaluation of the partial derivatives (6H/6X) is

~ T e

straightforward.

Thus the linear programming scheme (19), (20), (21) is ready
for solution and the result is the incremertal vector AX. The
new design vector

£k+1 _ %k + égk (26)
1s the basis of the next iteration step, and the process s stop-
ped when the relative reduction of the object function s less
than a certain percentage, say 1%, and alil design restrictions
are observed. As mentioned earlier, this only means that the
process'has possihly been stopped at any of the local optima.
There is no way to direct the process automatically to the global
optimum. The only method possible 1s to rerun the problem with a
different initial design vector and, after possibly several at-
tempts, the lowest optimum is taken as the zlobal optimum, or at
least a sufficiently close local optimum has been found. The nu-
merical procedures and their implementation, therefore, depena
greatly on intuition and sound Judgement as to selection of the
starting values.

Finally,it may be mentioned that the final solution is based on
continucus variation of all the variables. The available sections
are of course discontinuous, and the final design has to be se-
lected from the section values closest to the values found. This,
of' course, will possibly shift the optimum solubtion considerably,
Several methods have been prouposed to solve this problem, which
involve random search techniques and discrete programming techni-
ques [12], [13]. However, it appears that these methods are very
time-consuming and the further welght reduction which is obtained
is rather insignificant considering the extra computational effort.
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NUMERICAL EXAMPLES

A numerical procedure, written in the PL/TI language for the
IBM 370/165 computer system at the Technical University of
Denmark, has been worked out in order to test the above theory.

Fig. 3 shows two simple frames which have been analysed. In
both cases, design constraints were introduced so that only
two design variables were considered, by keeping all beams and
all columns alike. In this way, much time was saved and the

results are more easlily displayed.

q,szN/m qQp =75 kN/m
gy =100 kN/m
q kN/m
| L
GDlnunnngnnnnn(@ - ()innuquh JHIG@ .T
9 10
q kN/m
T
3 4 @ 1 : @
7 B8
IS RSO R
q KN/m E @.lll Iil13 i @ T g
A [©] IHIRITIIII ) i) " 5 6 i
> TE TG g
[ — b nr
i ® 12 ® -
~ 3 L =
1 2 .:_ = Y!‘ T
_@m l111a1urnmn o
] 2
® @ ® @ 1 4
o A = e L
fo— — J&"L___.] b 10_!.'.‘ S

Fig 30. Example 1 Fig 3b. Example 2



The load combinations which the two structures have to accom-
modate are the following. Firstly, the combined distributed
vertical loads (self-weight of all members together with applied
loads qp on all beams) and the horizontal nodal earthouake for-
ces Py constitute one load case. Then, in example ” only, the
vertical loads Qrr on all beams and selfweight of all members
ae treated as a second load case.

The earthquake design loads p. are as specified by the SEZAOC

code,
22 w. I
pl i O-..O Y 2—- wl .._...._-I_l_
2V Ewsh,

where T is the fundamental pericd of the frame and Wi is the
total lumped mass concentrated at the i - th node.

For the sake of simplicity, standard HE-A profiles (Furonorm

53 - 62) were chosen for all the beam and column elements. There-
fore, analytical expressions were derived relating the section
modulus W and the moment of intertia I to the area for the full
range of HE-A profiles avallable. These are shown in figure 4,
together with general information on material properties and
strengtls used in the analysis.

The computational process is carried out as already outlined in
the text. However, it was found that a numerical evaluation of
all the gradients using a forward differences technique was much
more advantageous tThan the analytical method. In this way,
considerable ease in programming and greater versatility

of the procedure was obtained.

The two examples were now run under two different conditions. In
the first case, only the stress constraints were considered whee
reby the stresses are checked Tor the left end, the right end and
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CONCLUDING REMARKS

The theory which has been outlined in the present work appears
to offer interesting possibilities regarding automated earthquake
resistant design of framed structures. It has been shown that
the optimizing techniques which are becoming an inereasingly im-
portant aspect of structural design, can successfully be applied
in design for stiffness-dependent forces such as earthguakes and
wind forces.

In earthquake design analysis, it is especially important to have
a good initial design before the more sophisticated methods of
dynamic analysis are attempted. The optimum design method pro-
posed here may offer a solution to this problem.

The numerical evaluation of the theory presented above is only

in 1ts initial stage. Due to the limited time avallable, only the
two simple examples could by analysed. However, the num-

erical results obtained so far are encouraging,and as shown by the
two examples, design convergence is rather easily obtained. There-
fore, the numerical procedure is still being improved and it is
hoped that new results for more complicated frames will soon be
available for publication.
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