AFDELINGEN FOR

BARENDE KONSTRUKTIONER

DANMARKS TEKNISKE H©@JSKOLE

STRUCTURAL RESEARCH LABORATORY

TECHNICAL UNIVERSITY OF DENMARK

H. Daniel Ramirez
BUCKLING OF PLATES BY THE RITZ METHOD
USING PIECEWISE- DEFINED FUNCTIONS

RAPPORT NR. R 28 1972



PREFACE

The work reported here has been carried out during my stay at
the Structural Research Laboratory headed by Prof. XK.W. Johansen.
This thesis is to be submitted to the Technical University of
Denmark as partial requirement for the "Lic. Techn." degree.

May 1972 H. Daniel Ramirez B.







~III-

CONTENTS
INTRODUCTION
1. BUCKLING EQUATIONS FOR PLATES.

1.1.
1.2.
1.3.
1.4,

TRIAL
2.1

Bifurcation Problem of Stability.
Nonlinear Theory of Plates.
In-Plane Buckling of Plates.
Lateral Buckling of Plates.

FUNCTION METHODS.
Introduction.

Variational Problems.

Method of Welghted Residuals.
Variational Methods.
Convergence Studies.

Convergence of the Plane Problem and Eigenvalue
Problem of Plates.

An Example of Application of Galerkin's Method.
Selection of Coordinate Functions.
Critical Loads for Plates: Existing Solutions.

LATERAL BUCKLING OF RECTANGULAR PLATES BY THE RITZ-
SUBDOMATN METHOD.

3.1.
3.2.
3.3,

3.4.
3.5.

3.6.

3.7,

Statement of the Problem of Lateral Buckling of
Plates.

Coordinate Functions of The Ritz-Subdomaih
Method.

Discretization of Energy Integrals for Sub-
domains.,

Discretization of Energy Integrals for a Plate

Construction of Global Matrices by Electronic
Computers.

Iteration Procedure for Finding the Eigenvalue
of Largest Magnitude.

Computer Program.

27
30

4o
ho
by
52
57

63
70
75
81

88

93
117

126

138
139




~IV-

4, NUMERICAI RESULTS OBTAINED BY THE RITZ-SUBDOMAIN METHOD

4.1.

h.2,

4.3,

Numerical and Analytical Results for Plane
Stress Problems.

Numerical and Analytical Results for Buckling
Problems.

Examples Where No Solution I1s Available.

5. APPENDIX TO CHAPTER 4.

5.1.

5.3.

SUMMARY

REFERENCES

NOTATION

Filon's Type Solution for Plates with Stiffe-
ners.

Lateral Buckling of Simply Supported Stiffened
Rectangular Plates by the Ritz Method.

Lateral Buckling of Rectangular Plates with
Stiffeners of Infinite Axial Riglidity.

LIST OF SYMBOLS

147

149
154

158
167

169

177

178
182

183



INTRODUCTION

The readers who are interested mainly in the numerical
computations are advised to skip the first two chapters
with the exceptlon of Art. 2.9, which contalns a summary
of previous numerical calculations of buckling loads for
plates.

In Charpter 1 a discussion is given of the buckling
equations for plates by means of a two dimensional theory.
The purpose was not to find new equations but to look into
the assumptlons included in the derivation of the classical
buckling equations. The buckling equations for initially
flat plates decouple into two systems: 1) lateral buckling,
where the increment of in-plane displacements is zero and
2) in-plane buckling, where the plate remains flat. The
use of general nonlinear strain measures leads to the class-
ical equations of lateral buckling of plates., Such equa-
tions include as a known guantity the initial nonlinear
plane stress field at the bifurcation point and also include
a linear bending measure. A further simplification is
made by assuming a geometricelly linear initial stress
state. The resulting buckling equations can be extended
for dynamic and follower forces.

Chapter 2 presents a summary of the trial functlon
methods in common use. This material has been collected
from diverse sources in the literature and includes some
consideration of the boundary and continuity conditions
which trial functlons ought to satisfy.

It 1s not widely known that trlal functions for the
Galerkin method in many cases need only satisfy the same
boundary conditions as the Ritz method. As for example,
the application of Green's formula to Galerkin's ortho-
gonality conditions, in the case of dynamic buckling of
plates, leads to expressions which acoept trial functions
that only satisfy the speciflied homogeneous deflections
and slopes.



The convergence in energy ol the Ritz method 1s
extended to inhomogeneous boundary cenditions for boundary
value problems and also extended to eigenvalue problemnms
where the functions satisfy only homogeneous geometrical
boundary conditions. The Ritz convergence is invgstigated
in a closer way for the plane stress and lateral buckling
plate problems. It turns out that in the plane stress problen
the stresses and displacements converge in the mean to their
exact values. In the buckling problem, the flexural moments
and first derivatives obtained from the normalized Ritz
solution converge in the mean to the values obtained by
using the normalized exact solution. The normalized Ritz
solution converges uniformly to the normalized exact
solution.

In Chapter 2 it is also established that when expanding
the exact solution in terms of an infinite number of co-
ordinate functions, the Ritz parameters converge uniformly
to the "exact" parameters of the expaision.

The method employed in Chapter 4 has bPeen called Ritz-
Subdomain method since local trial functions are defined on
subdomains in such a way as to satisfy the contiruity and
boundary conditions required by the Ritz method for the
entire domain. This particular case of the Ritz hethod
has been termed "conforming finite element” elsewhere in
the literature. In the finite element a structur? is di-
vided up in a finite number of parts which are interconnected
at points called nodal points where continuity conditions
are enforced. Consequently a stiffen<d plate may be
analysed by connecting plate and beam elements at nodal
points. On the other hand in the Ritz.-Sutd¢omain method,
the displacement f'ield is expressed in a plecewise form
satisfying the continuity and geometrical boundary condi-
tion everywhere in the problem's domain of definition. In
the Ritz-Subdomain's analysis of plates it is not posslble
to speak of beam elements by themselves since stiffeners
are assumed to follow the plate's displacement pattern.
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The trlal functions in the Ritz-Subdomain method
contain parameters which have physical significance. The
application of the convergence criterion to such parameters
leads to the conclusion that the physical quantities
represented by the parameters converge uniformly towards
their exact nodal values. The use of nodal parameters which
represent in-plane displacements and their first derivatives
when solving a plane stress analysls leads to uniform con-
vergence of nodal stresses and nodal displacements towards
their exact nodal values. Similarly the use of nodasl para-
meters which represent normal deflections w together with
their first and second mixed derivatives when sclving lateral
buckling problems leads to uniform convergence of the nodal
guantities w, w’a and W5 45 towards their exact nodal values
_(1n a normalized form).

In Chapter 4 various numerical comparisons for rec-
tangular plates are performed between the Ritz-Subdomain's
results and other analytical or approximate results. The
alternative results are given in Chapter 5. A Ritz-Subdomain's
solutlon which gives discontinuous shearing forces only along
intermediate stiffeners results in very accurate stresses
when compared to an analytical solution of the same problem.
When the plate does not have intermediate stiffeners the
Ritz-Subdomain provides a continuous stress field. This
1s a very convenlent result when the distribution of in-
plane stresses for rectangular plates is sought.

Buckling loads for stiffened plates analysed by the
Ritz-Subdomain method and analytical results are also in
close agreement for non-complicated but discontinuous in-
plane stresses. The buckling loads obtalned by the Ritz '
method for more complicated discontinucus in-plane stresses
were more accurate than the buckling loads obtained by a
usual Ritz method which employs the exact in-plane stress
distribution.



-VIII-

The conclusion ls that the Ritz-Subdomain method
presented in Chapter 3 gives very accurate plane stresses
and buckling loads for rectangular stiffened plates (or
unstiffened) fror any in-plane load distribution and geo-
metrical boundary condition. The discontlinuous character
of' exact eigenvalue solutions to stiffened plates is
better represented by the Ritz-Subdomain's discontinuous
solutions than the usual Ritz continuous solutions.
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1.1. Bifurcation Problem of Stabililty.

A mechanical system is assumed to be subjected to external
loads which are the product of a unit load system and a single
parameter P. When the loads are conservative nongyroscopic
(Ziegler [1]), there exists a potential energy w consisting of
the elastic strain energy and the work of the external loads.

Those structures whose behavior under loading is characterized
by a bifurcation point (Koiter [2]) will be considered. Fig.
1.1 shows a typical graph of the parameter P versus the dis-
placement component V at an unrestrained point of a mechanical
system, which exhibits a bifurcation phenomena when F = P . In
the figure, the displacements V, U¥ and U are supposed to be
components of the vectors V, 3* and 3 respectively.

Load }

Parameter P secondary branch

”
//;"",—-—"’__——__
| ~—adjacent state

'\\\f\_nﬂﬁal state

fundu:ment’al branch

[ -
u* U Displacement Vv

Fig. 1.1. Bifurcation Problem of Elastic Bodies.

In the fundamental branch of equilibrium (Fig. 1.1), the dis-
placement vector ¥V is asingle- -valued continuously differentiable
function of the load parameter P in the range 0 S P P and
vanishes for P = 0. However, at the critical value of the pa-

rameter, P = Pc, a qualitative change in the deformation pattern
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oceurs; an alternative solution to the equations of equilibri-
um branches off. This new branch has been fermed secondary
branch in Fig. 1.1.

To the adjacent state of eguilibrium 7+ (Fig. 1.1) corre-
sponds a potential energy n(ﬁ* + U), while to the initial sta-
te of equilibrium ﬁ* corresponds the potential energy n(ﬁ*).

For continuous bodies and loads, w is a functional consisting
of several definite integrals; therefore if ﬁ is sufficiently
small, the integrands of m (ﬂ* 4 ﬁ) may be expanded in power

series of the displacements ¥ and its derivatives, as follows:

a(@ + B) = @) + @ + (@ o (1.1)

where the subscript of the right hand indicates the order of
the derivatives included in each term.

Following Koiter [2], the critical point of equilibrium is de-
fined when a small nonvanishing displacement T satisfies the
condition:

min m,(T) = 0 (1.2)
or in the notation of variational calculus
5rr2(ﬁ) =0 (1.%)

The expression (1.3) defines a varlational problem which leads
to the determination of the critical value of the parameter PC.

The Fuler Method of Stability, as explained by Washizu [3], con-

sists in the application of the prineciple of virtual work to
the adjacent position of equilibrium ﬁ* + ﬁ,neglecting terms
which involve expressions:xfﬁ and its derivatives of order
higher than quadratic. For conservative systems, this means
neglecting in (1.1) all terms with subscript greater than two
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and afterwards applying the principle of stationary potential
energy to the state ﬁ* + U, which results in:

5n(ff*+ 7) = 5n2(ff) =0 (1.4)

given the fact that the initial state is in equilibrium and
therefore Bni(ﬁ) = 0.

Eq. (1.4) shows that the Euler Method of Stability and the
criterium (1.3) are equivalent for censervative systems. How-
ever, when the loads are nonconservative, the Euler Method
can still be applied. For this reason it appears convenient
to use Euler's Method for the study of stability problems at
the critical point.

1.2 Nonlinear Theory of Plates.

Introduction.

A nonlinear theory for plates is presented, which meets the
following requirements:

a) The statical and geometrical field equations allow the
definition of a virtual work equation.

b) The laws of Nature, such as Newton's law (i.e. equilibrium
equations)} are satisfied.

¢) The theory is two dimensional in the sense that the middle
surface of the plate determines the properties of the plate.

Using nonlinear axial and bending measures a virtual work ex-
pression 1s established. However, geometrical simplifications
are later introduced for linearizing the bending measure and
thus resulting in simpler field equations.



Geometrical considerations.

x3
'ndeformed surface
. U

deformed surface

R

Fig. 1.2. Coordinate Systems for a Surface.

The following notation 1s used:

- Latin indices can take values 1, 2, 3. Greek indices
take values 1,2.

- The summation convention indicates that repeated indices
in a term are equivalent to the sum in the range of the
index.

mwo sets of coordinates are shown in Pig. 1.2: The mate-
rial coordinates XI on the undeformed configuration, and
the spatial coordinates;g on the deformed configuration;
both refer to the fixed cartesian. frame ZI.

- Any quantity refered to the material coordinates is writ-
ten in majuscules, and components of vectors and tensors
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by indices also in majuscules. In analogous manner for
spatlial coordinates, %he quantities are denoted by mi-
nuscules, and the component of vectors and tensors by
indices aiso in minuscules.

Convected coordinates are adopted for the spatial coor-
dinate system. Which means that the parameters designat-
ing a point in material coordinates in the undeformed
configuration have the same values as the parameters which
locate that point ip the deformed configuration in spa-
tial coordinates (x‘1 = XI)

Differentiation is abreviated by a comma W, = jﬂ%
oX

The base vectors and fundamental metric tensors for three
dimensions are (see Green and Zerna (41

G =R, (1.5)

Gry =0 - G (1.6)

N S (1.7)

GRS - gR . aS (1.8)
R

where §5 is the Kronecker's delta tensor and (1.7) defi-
nes the covariant base vectors.

The components of HI s define the Christoffel symbols
El
by :

Gy = l;ir Gy (1.9)

Covariant differentiation is denoted by a vertical line:

I
vi| ) = vi, o+ L{J] vE (1.10)
) |
vol.=v. . - l ] v (1.11)
ls = V1,5 o x
¥ \ |
V,I - VKII GK= Ve | © (1.12 |
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For spatial coordinates, minuscules are used to obtain
analogous formulas to (1.5) ---- (1.12)

Tn order to define surface tensors, the X3 axls is made
parallel to the Z3 axis.

The surface base vectors on the undeformed state are ge—
noted K K , where K is a unit vector parallel to ya
axis. On the deformed surface the base vectors are

- -
8ys Bz where a3, is a unit vector normal to aa.

The space and surface base vectors are related as follows:

33 = 33 (2.13)
I =0
o d o 8
. 2 - KB= Ea- 3B= Cog
Azz= Gz = 1

For a surface of area 1 delimited by a contour C, Greens
formula (Green and Zerna [4]) reads

Hv“l dn—u(vw), aq _ yvaN ac (1.14)

where Na are components of the oubtward unit vector to the
contour and

2
A=Ay, Rop - Agp

The displacement vector U of Fig. 1.2 can be written as:

Y
U

|l

I ;’ a 3
U 31 - U Ka + U7 R,
i Ka + W Kj | (1.15)

From Fig. 1.2, it is obtained




By =%, =0,=0,,-08 +vl2

J J I

Substituting (1.13) into the last equation, i% is found

-> 2 B - -3
ay = By + | By v o] Ry
(1.16)
- (&8 B 7
= (6(I + U Ia) KB + w|OL A3
- The normal vector to the deformed surface is defined by
the relation:
- 2 -3 -
85 € g = & X 2g (1.13jjs

where eaB is the surface permutation tensor.

Equilibrium Equations - Strain Measures

?1\} aagcbc2 o+ (?‘1\( a22) ,1dx1dx2

Fig. 1.35. Forces and Moments Acting on a Deformed Surface
Element.
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In Fig. 1.3 the forces in normal sectibns of the deformed slab
are described by the moment tensor muB, the normal force tensor
faB, and the tensor of shear forces qa. By means of these ten-
so0rs, the forces and moments per unit length in normal sections

with the outward-directed unit normal, n_,, are calculated by

B
my = eBkmaana (2.27)
P - fGB n
a
o a
q =4 na

or in vector notation

ﬁ(n) - n*P n, (33 X EB) = eBkmaBnu at (1.18)
_ B - -+

?(n) s Oq2g * 9n)

- _Q -3

AUn) =% g3

The prescribed loads defined with respect to the undeformed
state are the load P per unit surface, and on the boundary Cys
the momentsﬂ?n)andfbrcesﬁ?n) per unit length of contour. On
the remaining boundary, geometrical constraints are prescribed.

In the undeformed state the area of the plate is (1 with a boun-
dary C = C1 + 02. For the deformed state, the area of the pla-
te 1is Qo delimifed by a boundary Cye

The prescribed load per unit can be represented as

? = B+ p” 33 (1.19)

The equilibrlum equations are:



L

2
bX (?Y\/a a¥Y ),Y + BYa = 0 (1.20)

v=1

G AR, < 2 ana® - o
=1 Y

for forces and moments on the face y denoted by

: s
'1‘ [f a \/_w) \._&_1_.3_?;\’_) ] (1.21)
-H:Y [mva \/—_YY) i % )] “a mm\/(w) #

on which the indices in parenthesis are not summed.

Substitution of (1.21) into (1.20) yields

(£Y* & va),, + (qY :‘!jva),Y + BYA =0 (1.22)
[mw(':atj X Ea) \fal,Y + 3‘{ x (£Y® ??.a +qY 33)\/':.-. =0

A virtual displacement 6? is given to the deformed position
such that 6v = 63. The corresponding virtual rotation conform-
ing to the definition for the moment forces is

58 = 35 % 553 (1.23)

Since the equations of equilibrium (1.22) have been obtained

by deleting a common fachor dxidxg, a virtual work expression

for the entire deformed surface QO (with contour co) has the
form

an
ya 2 y 2 e g2 ot
:E;l(f aa\ﬂi):Y + (q aj\ﬁi),y + frVA 6r 1V§T +
Q ,

+ﬁ”mm('§3 X ga)Va],Y + 'é.’Y X 33 a¥Va + qu('é.’Y X 'é.)a)\fa .
fl
o

58 dn, (1.24)
Ya




— 1

where in order to satisfy the geometrical boundary conditions
b ]

5r = O on 02.

Since

Yo » o _ Yo 2 P ya. 2 S
[(r aaVa) ar],y._(f aa\['a),Y 87 + f aaVa Sr,Y

and similar expressions for the remainding terms in (1.24)
exist, Green's formula (1.14) transforms (1.24) into

ﬁ[f'm . b8 +mY° (a xa ) -8B, v a 52 -(a xaj)q 63](.10

fﬁ[(fyaa +q a ). 6r+(mYaa3xa B 6e]n de 4]]? 5740 =0

°o @ (1.25)

having used dQ==\ﬁ;E.dﬂo in the last integral and the equa-
tion

Yo 2oy, =‘Y3.-)—b'-b -I='Y:1—)-h - —i_
iy (anaa) 58 = f (ayxaa) ajxaa3 f (anaa)xa5 raz = 0
The sum of the second and third integral in (1.25) is equal to

6n0, the virtual work of the prescribed external loads, and
which by (1.18) can be written

=[['§ s 6? dﬂ+§[?(n) O 6:! + i'-n’(n) . 66] dCO (1-26;
C
Substitubing (1.23) and (1.26) into (1.25)

Yo Yo oo
gf 6“‘{(1 dﬂo +gm 5nyadno = &, (1.27)
0

] nC)
where
':n., » *
6“\’(!. 2q éaY (1.28)
-3
8 . —tb +b P(3 -r3a ) = a_- - &b +b.P
Mg = vatPy (ap 6au) a, baB,Y yotPy M

]
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and where bYa .5 the fensor corresponding to the second funda-
mental form of the deformed surface, which is given by

(1.29)

It is noticed that terms involving oY do not appear in (1.27)
since the third and fourth terms of the first integral in

(1.25) cancel each other. There will now be introduced simpli-
ficatlons in the geometry which lead to the use of a linear
bending measure. As approximation to (1.21), moments and shear-
ing forces are now defined in the direction of' the undeformed
coordinate system, as follows:

2 i
2 _ Yo &g 3 (1.30)
Y \é?;Y) \a(YY)
Bo= M 2 (7« 1)
Y Ly e

and from the equation of equilibrium of moments (1.22),
Yo (2 i -
£ (aY P aa) = 0

i.e. £YS = fOY (1.34)

The rotation vector is approximated

58 = Ry x 83, (1.32)

-

Using (1.30), {(1.25) is transformed to

ij;;[fyaaa'agv + mYa(KijQ)-ég,Y+quj-6§Y-(gyxﬁj)qy.53]d00+

2

+ 8w = 0 (1.33)




with
BT 1=f§[(f¥a3a + qyﬂj)-bﬁ +mYa(Kija)-63]ncho+[I?-6?dQ
e

¥
° (1.34)

Eq. (1.34) can be written as

" ya Ya Y(R g2 4P . 53
BT, --—ﬁ[f beYa+m 5§Vm+q (I'\3 6av+u*Y" 6a5)]dﬂo (1.35)
' Q
o

where
b€ o = a(aY - 2) (1.36)
65,q s(R, - 33’Y)
3: S (A4 Up|Y)Kp (1.37)

having made use of identitlies obtained from (1.32) and (1.16?5

such as

Il

(nyﬁj)-ﬁ5x533 -(Kjxay)iﬁj-daj = -a " faxg

(33XKa)'63’y (KBxﬁa)-ﬁjx633,Y==(Kﬁxﬁa)xﬁj-ﬁaj’Y

il
:p
o
o}
o
I
o
—
=
)
i
-
<
g

In order to define the bending measure, the following condi-

tion appears from (1.35),

- 52 DA = 8
3 GaY + al b2 0 (1.38)

Since by (1.16)3

-3t -»
ﬁY 643 = -éw,Y = GBY




then (1.38) becomes

-17%-

6?13 = Bt 56, + (65’} . Kj) Tﬂi’3 (1.39)
so that

5?‘3,\( - Fud r3e)\|Y + (aEi5 . Kﬁ)’vﬁﬁ

68y = Ka 53§’Y - (Ka - 5Bk|y (1.40)
Adopting the approximation in nonlinear terms

2k B2 (1.41)

using (1.16)1the approximation is shown to be equivalent to

with

6. T
Y

-
-

The linear bending measure,
ducing the approximation (1

5n

yo = 8@,

D (1)
Eq (1.30), the equations of
be modified introducing the
Denoting the new components

sor and shearing forces respectively as FYG,

respect to the avaxes), the

(1.42)

(1.4%)

denoted by &x o’ and after indtro-

41) into (1.39)3, results in

66 (1.4%)

S 6w|

YICI !

equilibrium (1.22) and (1.25) can
approximations (1.42) and (4.44).
of the stress tensor, moment ten-
MY, QY (with
corresponding equations are

3 QY r.
F o= | pYe 2 —2_|\/& (1.45)
Y [ Valvy) +\/é1(YY) ]\d

R xib -
" - [MYQ_(_Z_Q) ]\,f%



b
(FY*d \,1:) + (@Y R \/{u:) " ?\A_= 0 (1.46)
a Ty 3 Y ’

[MYQ(KB x R) \,/Jz:],Y + 3\{ ” I\’j qY \E= 0

- —

FY%(d, x d ) =0 i.e. FY® = FOY

ya. ya ~
[][F beva + M 5"ya] dQ = &m, (1.47)
o)

-+ -

o1 =[[? 52 dQ +[ [?“ﬂ ar+-ﬂ(n) s8] dcC

0 C

where

_ voB 7
ﬁ(n) = M (K} x Ry) (1.48)
: - poB
-Ig(n) = F NaaB + Q-A.j

Q.
Q = Q NOL
-3 e d

26€YG= HY . baa + aa . 5aY

= 85U | + ﬁUulY + 0,60, + 0 80, (1.49)
2eyq = Uylg + Ugly * 850,
*va T Byla =7 w'va

In order to clarify (1.40), the displacement U will be inter-
preted as the variation of the vector R (Fig. 1.2) so that an
approximate expression for the normal to the surface, zj, is
found, i.e.

o7
oot
i

_U=UQK°"+w7£3 (1.50)
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Since 33 is a unit vector, the following formulas hold

Kj . Aj -1

R - R

03 * B3 =0

A A

-3 _ . b d =20

8h5 (R GAj) A

A A -0

6k, = aﬁ,Y = ﬁ,y 7 UQIY R+,

(1.51)

R

3

Thne base vectors EY being normal to 33 validate

A A
633 = -6KY : Kﬂ = =W, = 8

Y Y

From (1.51) and (1.52)

A Y

6hy = 8, i

-> r:a . ‘Y
a3 KB F Byﬁ

which is the same as (1.10).

The change ip the fundamental tensor B
plate is

A A
- Y
8Byq = K, (o), = —eY[a

Nielsen {5] uses as the bending measure -EB
same linear bending measure (1.44) derived in this report by

starting from a general nonlinear measure and following by in-
troducing simplifications in the geometry.
presented here, it has been observed that adopting (1.54) im-
plies linearization of the in-plane measure eya

(1.52)

(1.53)

vo. foran initially flat

(1.54)

o’ which is the

In the approach L

in the terms
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involving the displacement u®*. However cya remains nonlinear

in the terms involving the normal displacement w.

Governing Differential Equations and Virtual Work Principles

The substitution of (1.43) into the equations of equilibrium
(1.46), reads

Y%, VA (R, - 8, R5) + F'E (VA),, (R -0, R5) +
+ FYE ya (Ka,y-eu,yﬁj) +QY,Y 1{3 + (V) QYKB + YA =0
Y%, VA (Rp® ) + WYY, (RyxR) +MYOVA (Rl )+

« VA (Kaxﬁj) @ =0 (1.55)

when the applied load per unit undeformed area 1s expressed

as

B~ PR+ po T\'j (1.56)

and use is made of the known formulas

(Va),, = VA |7‘ |

Ay

hy
o= )
a,y a A

equations (1.55) become

A a
R N IR P B
s )Y,

<

AR L VAN L

Aoy L Y
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B PSRN B PR B [ voa | ] Y] + PR =0
[ AsY I xyl a] sy I N o S .) 3

LN

A
-> - yo
va () [M by l .

Ay }MY)\_QG]=O

from which the governing differential equations are

0 (1.57)

il

FYO'IY + p@

-(F'® ) I +-QY|Y + P’ 20

v

MWLIY -% =0

Substitution of (1.57)3 into (1.57)2 results in

.

MYQIYQ - (g% ea)lY + P2 =0 (1.58)

Using the values of the strain measures (1.49) in (1.47), the
virtual work of the internal forces becomes

= A ya
6110 [[(M Myu + F GGYG ) dn
9]
thus
= - Yo ya Yo )
°To [f( M 6u4Yd +F 6UYla *F m,Y_ﬁw,a da
9]
but since
Yo = FY%| U Yo
(F aUY)Ia |OL ¢t F 5Uy|a
- yo - - mYa _aYa
(M 6w:Y) IU- M |Q. 6UJ,Y M 6w|y0‘_

i Gl FREOY IR T I PR AL
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(FY% w, 6m)| = (FY%y, )l sw+ BYE 6w|
Y o v/ ta Y o

then

51 =—” FYO}, oU A0 - ” MV“| + (FYC m’y)la.) swdq +

{2
1ya ya Ya ya
+” FY su - MY bw, 4 M |Y bw + F w,wa\la an (1.59)
Q

Substituting (1.57) and (1.58) into (1.59), using Green's for-

mula (1.14) in the resulting expression, and keeping 8% = 0 on

Cg, the internal virtual work becomes

_ a oYa yao Q.. pYQ
61, -”IP aUa+P7’6wdn+[(. ou, + MY c6, + Q% bw - F ayf\w)NGdC

Q C
1
(1.60)

which by recurring to (1.’47)2 is seen to equate the work of the

external loads, the latter written as

i . b * . ped * -
q”? 5rcm+“?(n) 6T +M(n) 56)dc (1.61)
19 Ci
Physical Components of Forces and Moments
The use of (1.43) leads to
Ay = HY-HG= (K -8 K )- (R - ah’j = Rgt8. 8y (1.62)
2 2 2
d = (A #0,7)(Ay0+6,7) = (A 5+8,8,)
Eq. (1.4%), (1.47) and the unit normal vector can be written
~ z yo Ado.a 30, " A d
F —Z‘IF ' I =% 4 IQ i (1.63)
Y a=1 V ag¥¥ha y aaYy
\ “oa

(no sumvy, a)
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ol CaVE

\ CLC(.
d
Pn) e | \/%B]\/_di + [a®m, ] R (no sum 8

(no sum vy,a)

(K x

5 .
M =z (no sum B)
SR Rl SN B ’_““ss

2 o
N = Nk o g Ny \/Ac‘o'] Aaa (no sum a)
o=1 VA
wihere the physical components are the terms in square brackets.

Stress-Strain Relationship-Elastic Case

Following Nielsen [5], a linear stress-strain relationship is
written

Yo Yo BiL
F = C
“Bu

(1.64)

mYe _ pYaBu

But
For an isotropic material it may be shown that the elastic cons-
tants must be of the form

cYoBu _ K, (AYB q0M L pYH OB K, AY® aPHy

(1.65)
pYePH |

The constants X, , Y K}’ K, are found by considering (1.64) to
be valid for the limiting case of a plate subjected to appropri-
ate loads where the exact solution according to linear elastici-
ty 1s known.



-2 =

Eh

Ky = 57T39)

« . Eh’

3 T Dh{i+v)
2v

Ky = Ky = 75

where h is the plate's thickness, E vounghs modulus and v
Poisson's ratio. Substitution of the value of the constants
into (1.65) and (1.64) gives

ya

_ _Eh Y B
FYG = T4¥vy (EYU +ITS Aﬂl GH) (1.66)
3
_ _Eh v g
Mya = T2(I+v) (uya R Avu "B)
Eh’ 8
15 *yo = (1+v) MYG- - vAYGMB
- - Y
Ehe = (1+v) Fla vA__F

Ya Y

Boundary Conditions

The principle of virtual work (1.59) and (1.61) can be written

_ Yo Y _ ya Ya Bl
” l PO+ b ]auY do ”IM luv+ (F w,Y)Ia+P 5w dQ+
0

Ya _ Y +] Yo Q. Yo -
+] [ P N - Y, ‘ 5U,, A0 IM 60, +a% su-F""0, bu l N, dC
c

€,

1
*3 #*
- B, 2 6w+ My y e ]dC: 1.
€4
where the components of the prescribed force on 01 are

3 3 *
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It 1s assumed that the displacements in (1.67) satisfy on C,
the geometrical boundary conditions, namely

uY = y"yY (1.69)
3

w = W
3

Wry= W oy

The normal vector N and tangential vector ? to the undeformed
contour is given as

oN

N = ——— = @ T (1'70)
Y 3xY Y
A Ay
N© =
e 'I'Y
aC Y
T, = —==-¢e_, N
Y axY YA
A Ay
T = - e N
Y

with a parameter N (without indices) measured along the normal
to the contour C.

The derivatives of the displacement ®w transform as

- W W _py S ow
w, = N N’Y + 30 C,Y = NY SN + T (1.71)

8 = A.x60 R = oYM R = -eVE, (v 2, g 3
36 = ijﬁeYA = e AXSGY = Ay (N Y STt Tya )
PRY 36w A 36wy P
88 = (e NY S5t e TY 7;—) Ay
A bdw A Bdwy * S ow 53w -
= (- T SN + N -—c—) A?\ -T‘_’a +N'a'—" (1.72)
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where {1.71) and (1.70) have been applied. Furthermore

it

N 3. _.b_ § bouw
My 56 dC IM( ] ﬁ(n) 2 dc
1

3 §ow 3 %
] M(n) T =N dcC -l "'"aC(M(n) N) SwdC +
C 1
2y -
+ T IM(n) - N 501] (1-75)
with the contour C, having my discontinuities and [---]C (1)

designatirg the jump of the quantity in brackets at the phint
lubeled 1.

In a similar manner using (1.71)

Y - - Yo Yo 53w, 5w
[ MYoN, 8, dC = JM N, 6w, dC ]M N (v T SR ac
Cq - 1 Cq
_ Y& baw ya _
- [M Ny Ny aNdC+] aC(M N,T, ) dwdC
Ci 4

-r M‘“"N T, b

| (1.75)
i=1 (1)
1

substitution of (1.73) and (1.74) into (1.67) ylelds

- ya Y _ Yo yo %)
IIIF |Y+ P ]bUde IIIM lG-Y + (F w,Y)|a+F‘ ]6wdﬂ+
9] Q

Yo v YO 53w
Cl ¢

e sw) N_ +3x (M"“N T)aw dc -z MY“NT aw] s
o 1 Y Cl(l)

JIF(H) bW - i’[(n) Gi —%——3% (M(n)- ) bw] ac -

- zi I M(n) . N 5w]01(i) =0 (1.75)



The following boundary conditions on Cl’ by assuming continuous
displacements w and slopes G0y in (1.75), result in

3N
Yo _ Y
BNy = Froy (1.76)
_MYN N = - -7

oo (n)
a 9o ya ya I
QN +xg MW T) + BN w,, = P2y 55 ('M’(n) N
-l MYeN T [T .- % ;oi=1, e..,
l e Y 1(1) [ (n) |c (1) "
1

Application of (1.48), (1.43) and (1.70) leads to

MiyT) = M(n)-ﬁ = MO € . N, RH =Yy e N MYy 7

YA o’y
(1.78)

Hi

- A (VRREY. ] A Yo
M(n)i‘-mc’we 7 'I'“_A’ ~MYEN e T MYON N

MeNN) aSyr YA

Y

iy G ) Q. oY a
?(n) A 5= F‘G'NaaY 1\’5+Q Ny = FY*N w, + Q¥ N,

R & S -1 AY _ pPa Y _ mya
?(H)K_F NaaBA = FPON_ 88 = FYON,

Using the identities

¥n) 7 Fny ~ A
*5 _ i ¢
Pa) = Fn) " A3

together with (1.78), the boundary equations (1.77) appear in
vector notation as

-Is(n) * -A’Y = _f‘q?n) * 'A'Y (1'79)

CONET SR

(n) = Men)



o i A #*
Py Fs o a0 Py - M =¥y - B3 - 50 By - 0
[ﬁ(n) . 1-\1']01(1) = [M(n) N ﬁlcl(i); i-= 1,...,m1

The gquantity [M(n)' ﬁ] (1) may be interpreted as a generali-
C.
1

zed concentrated force in the direction of the displacement

w, since in the expression of virtual work it is multiplied

by the variation bw(i)*where i ideififies the point of appli-
cation. The quantity F(n) . A5 - 3¢ (ﬁ(n) . N) may be inter-
preted as a generalized distributed force on 01 in the direc-
tion of the displacement w, since in the virtual work it mul-
tiplies the variation sw. The component of the moment around

@ is given by ﬁ(n) . ® and around R by ﬂ(n) - .

Flexural Pormulas for Isotropic Plates

The application of (1.7), (2.57), (1.58), (1.77) and the fact
that

AY: N T, =0
AYS N, Ny =1
validates the following formulas
MYE — oD [(1-v) w|Y e vaY® w]}] (1.80)
Qa = -~ D wlza
- wag 2 (PY w, )+ P’ = 0

or

Yo Yo a S
- Dtﬂya + F w v, + P w, P =0
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and on C1 the boundary conditions

ya Ya * #*
F‘YG'Nawly-Dw'Y . %[D(i-\,)m| NaTY]zF(i)-s%-(M(n)'ﬁ)

[ina Na TY]Ci(i) = [M(n) : N]C (i); i=1,...,m1

1
- D[(1 -v) wlYa NY N, + v wl?] = M?n) - 7

3
5. —Eh

where 5
12(1 -v )

Large Deflection of Plates which Remain Flat

The normal deflection is assumed zero i.e.

- (1.81)

which transforms (1.16) to
> _7 Bl 2 _ (4B B ?
a, = A, +U |cJL Rg = (85 + UP| ) Rg (1.82)

Sya~ é; - 5; - Uylu * Ualy ¥ UB'Y UBla

Similarly to (1.21) and (1.18), the stress tensor and normal
forces are defined by

pd
|
n

o I

Aa a

Y 2ry Vaa¥Yl A

= X
A=1

(¥,X not summed)
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where the quantities in brackets are the physical components.

By (1.82) the equations of equilibrium become
[o'¢ EGVA],Y + BVa=0
or
Ya (B , ¢yB a =
(" (88 4+ v |a) KBV'A],Y+ P*R VA =0 (1.84)
Using the formula
Yo (B B i A‘ 1Y% (B P
[o¥® (o8 + 0Pl )1 Ryval = [0¥% (sf+ 0P| D 1] Rg VA
Eq. (1.84) can, after changing dummy indices, be written

[oY* (&% + U“IX_A||Y + P* =0 (1.85)

The internal work is

o
5T, =”0Y be g AP (1.86)
i
The strain measure defined by (1.35) becomes, for w = O,

28e,,=0(a,,) =6 (U], + u |, + vel, U3|a) (1.87)

Combining (1.87) with (1.86)

- Ya. YA O
éﬂo-i’[[o 6Uy|n + g [jlk 6Ua‘v] dQ (1.88)
0

_ YA (.0 a
_]Io (63 + %) aum|Y aq
Q

<o o™ (63 + oPl01],, sug aas] fro™ (6§ + 0 ou,1], 0o
Q 1%
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With the help of Greens formula (1.14) and the equations of

equilibrium (1.85), for arbitrary variations 8U_ on Cl’ the
last expression is transformed to
~ a YA .0 a
o _[]P 6U_ d0 +[cr (83 + v*]) N, U ac
9 01
=”§ : aﬁdcuf ??n)- &0 dc (1.89)
§) C1
Tfrom which
Yh, o a _ - ]
oYAs% + v ) N, =Ty - B on g, (1.90)

For geometrically linear strain measure, (1.83), (1.85), (1.88),

and (1.90) become

- -+ -
2 6Eyo. = KY . 5aa + Aa- 6aY= Uylu + Ualv (1.91)
> a 2 YA Ry
B =T % -3 [T VA,,] == (A not summed)(1.92)
Y ] A ’E\-—
= v A
-y
2 W Ay
I3 =T AN, =% [T v VA,,] =2~ (X not summed)
(n) Y yop Y UUAR g
\ A
TYQIY «+P* =0 (1.93)
_ Ya _ Ya
ano..[]T 3 dQ._[[T 6Uyla an (1.94)
0
— a Ya — . .
--[[P fU_ 40 +[ TN 6U, ac _][? 6U’dn+[§4(n) s0dc
Q cq 0 c
(1.95)
Yo - - o )
TN, = Fr 2% on ¢y (1.96)

1.5 1In-Plane Buckling of Plates

Plates subjected to in-plane loads may buckle laterally how-
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ever, for certain cases there exists the possibility of in-
plane buckling. For example, a circular arch (here idealized
as a plate) subjected to uniform pressure may buckle in the
plane for certain critical pressure (Timoshenko [6]). The sta-
te previous to buckling, refered here, 1is the nonlinear prob-
iem given by (1.81) through (1.90) of Art 1.2 and serves as
a basis for the analysis termed the Euler Method of Stability.

The Euler Method of Stability concerns the problem of whether
there exists at least one additional, distinct equilibrium con-
figuration in the very close neighborhood of the original equi-
librium configuration. The existance of a critical original
configuration is assumed and a linearized theory developed,
which determines the adjacent configuration.

The stresses, strains, displacements, body forces and pres-
cribed boundary forces of the original configuration, respec-
tively, are denoted by
A
sve, 2. 0V, Qy, P
2

ya Y

and those of the adjacent configuration by

pva

where the prescribed boundary forces are acting on the boundary

C1 and the displacements uY = 0 on Cg.

The principle of virtual work applied to the adjacent confi-
guration yields

[]k%ya+ryu)6(éyu+eYu)dQ-J.](ﬁy+Py)6UYdQ-.l(ﬁY+FY)BUYdCuO

a Q Cq (1.97)

where by (1.87)
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2( Y& €)= (OYIQ+UY|Q)+(GGIY+UGIY}+(GK|Y+Ully)(GK|Q+UA‘Q)

(1.98)
Let A \ AA
2B U | * UQIY + Uy |, U |+ UN ML (1.99)
which combined with (1.98) gives
A +e y=4 .= 4'u|u"| (1.100)
va Yo Yo Yo Ay a

In order to have a linearized theory, the ineremental quantities
PY and FY are assumed to depend linearly on UY while the Syu and

Yo

T can be approximated by linear functions of UY, such as

¥ 5e. T RYS 5 (1.101)

FYS CYG&JE
yo

where the CYGB” are independent of UY.

The substitution of (1.101) into (1.97) and the neglecting of
nonlinear terms in the displacement uY and 1ts derivatives,
vields

”]gvc. §E, qd0 ][P su¥aq - Jﬁ\ aqucl

[[( TR, +’W°U N LI Lsu%)an - -[ 7, 80% dc=0 (1.102)
Ci
Taking the variation of (1. 100) and changing afterwards the
notation GOY to suY gives éeY = 6EYa. Consequently the first
term in brackets in (1.102) can be cancelled since it is iden-
tified as the principle of virtual work applied to the origi-

nal configuration, so that

~ A
[](WQGEYG+0YGU)L'YGUHQ-PQGUQ) an - ] F_6U%aC=0 (1.103)

0 C1
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Transforming (1.103) by Greens formula (1.14) and notieing
that &UY are arbitrary on Ci and 0, the differential equations
and boundary conditions thus derived are

[%WQ(AYR+QK|Y)+3YQUkIY]| +PK=0 on (1.104)
a

Sy 5 Ay _
T (AYlkUle)Na-ro‘ U1|Y Na=Fx on c,

It is noticed that an adjacent position of equilibrium has been
assumed to exist infinitely near a fundamental position of equl-
librium and that w = O for both positions. This may be suspec-
ted when certain geometrical or loading symmetries are present
such as in the case of an arch loaded with uniform pressure.
Timoshenko [6] finds for the arch using the beam theory the
pattern for fundamental configuration symmetric and the pat-
tern for the adjacent configuration antisymmetric.

1.4 Lateral Buckling of Plates

Using a Linear Bending Measure

The problem considered is the stability of a plate of area (
subjected to distributed forces on Q and to boundary actions
(forces and moments) on the contour Cl’ The Euler Method of
stability has been adopted for the analysis and the steps to
follow are those of Art. 1.3.

The stress and moment tensors, the axial and bending measures,
the in-plane and normal displacements, the distributed force,
the boundary forces. and the boundary moments, respectively,
for the fundamental state are

A A A A

A
43¢ 45 3t i 3E 3
, mYe, €y’ *yo’ *,w, B, ® , M

A
g Yo
and for the adjacent state are

%YQ+FYQ &YG+MY° 2 +€ Q + ¥, Ga+UOL
r ] Yq' YG-’ YCt YG-’ )
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A * 3+ 3 3* 344t *
W, -ES**-%-? 9 ? +T‘R M + iﬁ(nf,

(n)?

The principle of virtual work (1.47) applied to the adjacent
configuration, with 6;:aﬁ,yields

A A A A
YO, oY Yo ., YO ] _
][FF +F )6(€YG+€YG)+(M +M )b(uYa+uYa) dan
4]

-{Jkﬁ**+?*)-a?dnéflﬁﬁ**+§?n))-6?+(M**+ﬁ?n)y53 ]dC:O
1

(1.105)
where
A A A A A )
26(eYa+eYu)=6(UY|a+Uyla)+6(Ua|Y+Ualy)+6[(eY+ey)(8a+9a ]
A
5(n,__+n _ - (1.1206)
ya Ty} =- 6(w|Ya + w'Yu)
- [n &
5T = BU Ka + 6wﬁj
80 = Ay X B" 60, R, xR a5u:|)L
Defining
-~ A A
- ) 4
28E, = U |, + eU |, + 8 88 +8 8o (1.107)

which combined with (1.106) results in

A

) i ™

La(eYa + eYa) - aaLYa+6(ea eY) (1.108)
Eq. (1.105) can be linearized assuming that the incremental
quantities ?*, ?*, ﬂ* are linear functions of the displace-
ment G and that

pYe 0€ g T pYe 68 o (1.1209)

~Ya yapBu o
= E
3 B

Introducing (1.109) and (1.108) into (1.105%) and neglecting
nonlinear terms in 3,



-32.

A A
][[Fmaﬁ + mY2 5 Yu-?**-6-r"]dn—

[[ﬁ** on + W 58 ]de +”[MY° +FY° 5 (8, 6,) 1aa +

”’ﬁ“’“ %, 90 - ”I’ 52 a0 - [[ Fny 6B+l ) 68 ] dc=0 (1.110)

’1
Since tne initial state is in equilibrium the first two inte-
grals cancel eachother so that the principle of virtual work

(1.110) becomes

~ ~ A
”[FY%EY + MY“MW + pYC N 86,1 an -

”? 52d0 - [[T}( ) o+ M*(‘n)-s’e’] ac = 0 (1.111)
By virtue of
“ a'E’YQ-_- FYE sy

Yla + ¥ Q,Y sw,

and proceeding as in the derivation of (1.75), the principle
(1.411) is transformed to

A A
-”[‘F‘Y“IG+P*Y] 6U, 40 -”[MY"LIeW + (FT w, )|a+(i‘ﬂ° w’y)la +
Y Q
P;]aman +[ [FYoN_ - Fa)] 8U, dC+] (M) +

C
aM 1
83w NT)  Ava ~ya A _
+M(NN)]——dC +[[QN- + B m’ch."'F w,YNu

aC
x5 MY ‘e m «
- F(n) +——L)—aC JswdC -ii [(M(NT) -M(NT))Bw]c1( ) =0 (1.112)

where m, are the number of discontinuities in the tangent to
Ci L arid

= - mYQ
M(NT) = - M Na TY

Yo
M(NN) M NG.NY
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The field equations corresponding to (1.212) are

el o pY < (1.213)
MYe (FY%w, )| + (5% u, )| L =0
Iow ¥ “yla Pyla T 73

~YQ Y

I NG. F(n) \

BM A ~ A 9 aM

. __ (NT) ya Yo _ o (NT)
PNy~ + P, N 45 w,, N = Fiqy =5
M M,

(NN) = "(nN)

1 .
[M(NT) ]C (i) = [M(NT)]C (i)'; 1=i,...m1
1 1
with the last four expressions valid on the boundary Ci'

Initially Flat Plate

AA
When the plate 1s initially flat, w = w,Y = 0, Eq. (1.212)

can be written

A
JIITY 6B +MY% pu 4 1YE 6,88 ] dn -
0
1%

Q

"-efan - [[F) o) 68] ac = o (1.114)

¢l
where

Eyq = Uyla + UcLlY

cYaBu B

7Y = Br

and where TYCI results from a geometrical linear analysis given

by (1.93) and (1.96).
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The field equations derived from (1.114)are

TV + Y =0 (1.115)
A on Q0

ya ye .
M IGY + (T (”’Y”a + P3 = 0

Yo Y
T N(1 = F(n) , ™

aM A oM
__(NT)  mye, N - g0 _ (W7

QaNu 3¢ T T Woya = F(n) aC

% > on C, (1,116)
Moy = Mo

Movmy 15 (1) = Mamy 1y () 3 1Leeeomy
1 1 J

Let A
pve - pplolye (1.147)

Taking T(O)YG as a stress tensor corresponding to an arbitra-
ry numerical value of the applied in-plane forces and P as an
unknown parameter. Problem (1.415) may be interpreted as an

initial stress problem where the initial stress tensor @(O)YQ
is used to find the value of the parameter P which determines

the critical value of the loading.

Non-Conservative Systems

For the analysis of the stabllity of non-conservative systems,
Ziegler [1] has stressed the need to include the increment of
inertia forces, namely

#* ae L
Pk = - MUX + B7L (1.118)
P* M" B-N-
3= - RSy
where M is the mass of the plate per unit area and B:, B;

are prescribed body forces (other than inertia forces) given
by linear functions of the displacements Ul, w and thelr deriva-

tives.
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A type of follower-forces can be those Rorces which at the
~ -
Initial state were f%n) a* and became f( ) 3 at the adjacent
A
state. The f%n) are prescribed constants and the direction

of the follower-forces for an initially flat plate are

!

A
-g.-ll- ﬁ,a + UB'@ K

a

- - 3
d =a + K
a a Wra 3

The incremental stress on the contour Cf with normal NY is

A A A

P o rny 8y - 0y R ff;) w, R (1.119)

3

n)

The boundary conditions for the initial state of a flat plate
are glven by (1.96) as
A

a Aya
fn) = T Ny

which transforms (1.119) to

A
_ mYa
P N, @, R

3
(1.120)
ie. F=TN o
» . 5— 'Y ,G,
Combining (1.115) and (1.120) gives
+
M aM
Q™ W, - —7§¥21 - - ——%%31 on C, (1.121)

When moments and forces 1n the direction of the vector Av
are zero, namely B = F( )- (NN) = M(NT) = 0, Ea. (1. 1¢4) and
(1.115) become

I‘f[MYGGuYa+%Yaw,Y bw, +Msw]da = O (1.122)
Q

A '
MYalaY+(TYaw,Y)I -Mw = 0 on Q
a
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QN e LT g, N =0 on C,-C
o aC ’y Yo S

[M(NT)] (1) = 0; i;i,...,mi

4
[ [r¥%z, aa = [[PleuYaq + [ ¥ sutdc (1.123)
ya % Y
Q 9} Cq
Tyula-MﬁY + ]3%Y =0 on Q0
e N = F‘*Y on C
a (n) 1

Eq. (1.122) together with (1.121) constitute an elgenvalue prob-
lem whose solution is independent of the incremental stresses TYQ'

When the incremental applied forces normal to K} are zero, i.e.
*
BY = F(iy = O, then

oY - g¥= 0

which indicates that the elgenfunctions w alone cause the strains
of the middle surface given as m,Yw,a

Tnitially Flat Plate-Nonlinear Bending Measure.

The bifurcation problem for initially flat plates, may be ftrea-
ted by assuming both nonlinear bending and axial strain measures.

In the notation of (1.27) and (1.28) the inltial state. is repre-
gented by

A A Ayu. A /\u
’ uYU-’ m*, bYU.’ U,

and the adjacent state

AYG ya AYG o A Ac o A
FI+LT, “YG+HY0’ m™m', byu+bya’ U +U—, wtw
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The virtual work expression (1.27) for the adjacent configura-
tion is

A A A A
- Y&, YO (YO, YO
6110_.#;1[(1‘ +f )6(uYa+pYa) (m+m )6(byu+bya)+
0

A A A
Yo, P, Y, P
m' ™ bY+m' b" )6 + da 1.124
+( v Y) (uap uap)] B ( )

For an initially flat plate i.e.

A A
P Yy
= m =P
°y b

and applying (1.37), the nonlinear strain measures (1.28) re-
sult in

(2"l - - (sUP -
b o =(B+U"| o By - 8 RS)-(oUP| R - oo R)
A
=a§§a+ul|asu |, +e 00, (1.125)

N
T oz(3. ol (R «u? . P
6F o235 R 60P | = (R UM R )R 0P|
4 p
=(Aap+Up|a)6U |c1

Adopting the notation

d

A A
ye _ yo, 2
f =0 \ Y

and with the help of (1.124) and (1.125), the principle of
virtual work for the adjacent configuration becomes

A
[[Lo¥%sE -P" " su®laq - [ F. su¥dc +
o vaa oy ¥

Y _mYa ya, p Yo A _
-Tffkf' B g m'" Bb b 6uap+% (UllaﬁU |Y+euaeY)]dnO
Q

0
-uQJ?*-a?dn-g‘[??n)-a¥+ﬁ?n)-5€]dc =0 (1.126)
1
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where the external virtual work remains the same as in (1.10%).

The following linearization is to be introduced in (1.125)

Yo ~yv A RYe o 7
£ Vg T 8E g (1.127)

mYe - ~YABuy
T = ¢ Eg,,

_ Yo Yo, p ~ A gve
m'“8b._+m bY 6”ap \laM &%

ya va

Y& - nYaBu
M =D uBu

where the linearization with respect to the bending measures
1s the same carried out in Art. 1.2 from (1.30) to (1.44).

The first two integrals in (1.26) vanish since together they
are equal to the expression of the virtual work principle re-
lative to the original configuration, Therefore the introduc-
tion of the linearization (1.127) reduces (1.126) to

A% MY A5 M LGve _
{HT?” oF o 1 %on, o +6¥7y, | 6U |, +Y% 8,06, 1do
5 -5 % - =pi -5
-{{? ardn-}ifﬁ(n) ST+ )y - 68 1dC = O (1.128)
A

where 0% results from the nonlinear analysis of (1.81) through

(1.90).

The principle (1.128) decouples into the expressions

~Nva o AY 'y o a* Y -!!-Y
[ ] [TY26E, y+0¥%u, | su], 1dn =" e su¥ans [F1ysu ac (1.129)
9! 0 C1
A *5 *3 wp it -p
Yo Yo . o .

[ [ M bu qt0" 0,08 Jda = [ [P 6wd0+‘f[r(n)5m+M(n) 66 ]dC

n Q Cy (1.1230)
When the right hand sides of (1.129) and (1.130) vanish (no
incremental loads), the two possiblilities of bifurcation which
arise are

0 and U% solution to (1.129)
O and w solution to (1,130}

a) In-plane buckling i.e. w
b) Lateral buckling i.e. U®

il
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A
Substituting the geometrically linear Y% or (1.93) instead
of the nonlinear oY% or (1.128), the simpler but more appro-
ximate equations fhus obtained coincide with (1.11%4).
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2. TRIAL FUNCTION METHODS

2.1 Introduction

By using simplified theories or models, most practical prob-
lems in science and englneering can only be reduced to a sys-
tem of complicated equations (field equations) which cannot

be solved by the analytical methods available. Several appro-
ximate methods have been used, among them the trial function
methods. In these methods, use is made of a trial solution
which consists of a combination of known functions and unknown
parameters which are to be determined according to speclfied
criteria. When the criteria are orthogonality conditions the
label is method of weighted residuals or when a functional 1s

made stationary there is said to be a variational method.

A summary of these methods has been given by Finlayson and
Scriven [7] and the main references are the books by Mikhlin
[8, 9, 10] Crandall [11], Collatz [12], Ames [13], Becker [14],
Sokolnikoff [15], Washizu [3], Gould [16], and Sobolev [1T7].

In this section a discussion of these methods is attempted. At
times proofs are left to fthe references or presented here in
a modified form. A special emphasis 1s made with respect to
the conditions which the trial functions should satisfy. At
the end of the section, a brief description is given of some
of what has been done regarding the application of numerical
methods to the problem of finding the critical loads for plates.

Some definitions given by Mikhlin [8] are now presented, to
be used in the remainder of this section.

Two functions U(}) and V(¥) of the position vector X, and two
constants a, b are given. Thus a homogenious guadratic func-
tional J (U,V) satisfies the relationship

J{aU+bv, aU+bV)=a2J(U,U)+2abJ(U,V)+b2J(V,V) (2.1}
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A linear functional satisfies the relationship

L(aU+bV) = aL(U) + bL(V) (2.2)

A cuadratic functional is positivzs when

w>J(U,U) =0 (2.3)
where the iquallity sign only helds when U = 0.

A quadratic positive functional may be used to define a norm

lu| = y/5(u,0) (2.4)

The class of functions for which the norm is finite are callecd
functions with finite energy (with respect to the given Tunc-

tional). The norm itself in {(2.4) may be termed norm with res-—
pect to a positive quadratic functional.

The scalar product of two functions in z domain Q is

{u, vy = ][ uvan (2.5
0

the scalar product in a one dimensional domail s is

v, v>‘s =£UVdC ‘ (2.6

The norm of a function is given bir

2
ull .—.J"J v2an (2.7)

The functions with finite ||U|| are called functions with fi-
nite norm. A functional is positive definite if

|U| 25 v*lull® (2.8]

where vy 1s a-real constant.

A sequence of functions u&,qa,...Q%_with finlte erergy, are
linearly independent when their Gram determirant is non-zeroc



Yo

Det [J(2,, 1+ 0 (2.9)

For the class of functions with finite norm, (2.9) is simpli-
fied to

Det (@, 9, %1 %0 (2.10)

A sequence {¢ } is said to be complete in energy if for a gi-
ven function U(f with finite energy and a number € > 0 it is
possible to find an integer n for which

lu - U | < e (2.11)
n
where Un = 21 qy Py and the q; are constants.
o E
When (2.11) is satisfied it is then said that U, — U con-
verges in energy.

In a similar way a sequence of functions lwiE with finite norm

.

is complete when
[|u - U |l < e (2.12)
il.e. U = U converges in the mean.

n

2,2 Variational Problems

The class of functions

It is known from the classical variational calculus that the
problem of minimizing a functional (which has a minimum) is
equivalent to the integration of a system of differential equa-
tions under appropriate boundary conditions.

For example on a two dimensional domain Q delimited by the con-
tour C, the Poisson's equation can be written as:

AU =1,

o - £ (X4, X5) (2.13)

oo

U o =
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which 18 equivalent to tteproblem of finding the minimum of %he
functional

F(u) =[] (U,a U,y - zfou)dn (2.14)
0

under the same boundary conditions UIC = (.

In terms of the notation of Art. 2.1, (2.14) becomes
FU) = (U, U) - 2 L (fO:U) (2.15)
J(u, v) =“‘ U,y V,q 40
0

L(fo, U):“' £y U dQ
Q
where U and V are functions with finite energy.
In (2.15) the norm lUl . J(U, U) can be recognized as a po-
sitive functional for functions with Finite energy and L(fO,U)
as a linear functional.

It is cbserved that although the operator AO in (2.13) invol-
ves derivatives of second order, the functional F(U) contains
derivatives up to first order. J(U,U) has meaning even when
the first derivatives have finite discontinuities ( jumps) on
certain finite number of curves. Therefore the class of func-
tions which make the functional F(U) minimum may be broadened
to include those functions with derivatives of first oprder pos-
sessing finite jumps on certain curves.

More generally, if the order of the maximum derivative in the
funetional to be minimized is t, the class of admissible furao-
tions may include those with finite jumps in its ¢t th. deri-
vative.

It is desirable to investigate bropercies of the t th derivetiva

of a given function with respect to the axes ¥ X SRy .
g p G:LJ-C\?_’ Gt
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Let also g(xk) be a function which together with all its
derivatives up to and including t th order are continuous in-
side the domaln Q0 and zero on the contour C, that is

€, =0 K = 0,1,..,¢ (2.16)
By 8o "'Bk‘lc

i

Sobolev [17] defines the operator (-1)t 3 a...a of generali-
152"t

zed differentiation when, given the function g(Xk) of {2.16)
and a function v(xk), the following condition is satisfied:

£ #
fJv Crg. @ ...q, 0= (-1) urjgaa_ o ..., Van (2.17)
1%2 t 172 t
i Q
4
The function (-1)t 3 V is called generalized deriva-
alag ...G‘t

tive of t th order and may have finite discontlnuities at cer-
tain finite numbers of curves as shown by Smirnov [ 18]. When
continuity is enforced the generalized derivative coincides
with the usual derivative.

For the minimization of the functional F(U) of (2.14) the func-
tions U belong to the class with generalized derivative of first
order for which J(U,U) of (2.145) is finite (functions with fi-
nite energy) and satisfies the prescribed boundary conditions.

Boundary conditions

Let now F(U) be a quadratic functional given over the surface

0 and the function U be subjected to homogeneous boundary con-
ditions on the boundary C. These boundary conditions are to be
defined later, while the functional to be minimized is

F(U) = J(U,U) - 2 <I‘O, U> (2.18)

where J(U,U) is an integral over the domain  whose integrand
is g differential expression, and fo is a function prescribed
over the domain (.
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The variational expression corresponding to (2.18) becomes
J(U, sU) - <fo, UY =0 (2.19)

For problems of this kind, Greens formula often provides an
equivalent expression for J(U, 8U) which is made of an integral
over the surface 1 and several integrals over C. When at each
point of the boundary C = unique unit normal vector to the con-
tour C can be drawn, the application of Green's formula may
lead to

1 A
J(U, 8U) = -<AOU, 6U> + _zi <AiU, A16U>C (2.20)
1=

where AO is a differential operator and 1 gives the number of
linearly independent differential operators Ai, ﬁi'

Substituting (2.20) into (2.19), it is found that
N, 5 A
<AOU—I'O, U Y + 151 { &y U, Aiau>c =) (2.21)

This last equation helps to define the boundary conditions. The
geometrical or principal boundary conditions are those which

verify

o ~ .
Ay U=0 on s; i=1, 2,...,1 (2.22)

Qﬁ beinz the parts of the Houndary C for which the restriction
s meant. )

Now assuming that U satisfies only the geometrical boundary
conditions (2.22), and using (2.21),

AOU = T on Q

A,U=0 on s; = c-§. i =1,2,...,1 (2.23)

Egs. (2.23) constitute the so-called mechanical or natural boun-

dary conditions.
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Mikhlin [14, P.162] states that when A  is a differential ope-
rator of order 2t, the boundary conditions are homogeneous and
the operator AO is positive, i.e.

<AOU,U> >0
<AOU,U> =0 =>U=0

Then the geometrical boundary conditions contain derivatives
of order g t-1, while the mechanical boundary conditions con-
tain some terms with derivatives of order > t.

For example in (2.13) the boundary condition is geometric (de-
rivative of zeroth order).

For problems where the mechanical boundary conditions are in-
homogeneous, the functional F(U) to be minimized may be writ-
ten as:

I

F(U) = J(U, U) - 2 L(U) (2.24)

<f,U>+z f,AU>

where the functions fi are to be identified.

L(U)

The variational expression corresponding to (2.24), is

J(U, 8U) - L(8U) = O (2.25)

Substituting (2.20) into (2.25) and assuming U to satisfy only
the homogeneous geometrical boundary conditions (2.22), it is
found that

=
o
I

5 £, on s, i=1,2, «.s,1 (2.26)
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From (2.26) the f; are identified as the prescribed functions
needed for the statement of inhomogeneous mechanical boundary
conditions.

Finally, a minimization problem with inhomogeneous geometrical
boundary conditions can be transformed to another minimization
problem with homogeneous boundary conditions so the results
described above remain valid (Art. 2.5).

2.5 Method of Weighted Residuals

The application of this method to two problems will now be des-
cribed. Both problems are defined as a domain (@ delimited by
a boundary C. The boundary conditions are specified on 1 seg-

mentssj; J=1,2,...,1 of the boundary C, as follows:

A boundary value problem

HU = £ on Q (2.27)

H.U = 1, on s.,
J 3 J

An eigenvalue problem

on Q (2.28)

i
@)

HOU - RMOU

HJU - leU

il
O

on s J=1,2,¢..,1

J"

where for j=0,1,2,...,1 the Hj, IVI'j are operators and the f.j

are functions.

The residuals are defined for any function Un by

RU =H,U -, J=0,1,...,1 (2.29)
and for the eigenrvalue problem

RU, = HyUy - MM, Uy 3=0,1,...,1 (2.30)
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The method of weighted residuals consists of assuming a funec-
tion
n

U, =E Q; @4 (2.31)
where q& are known functions, termed coordinate functions,

and q; are n parameters, which are determined by establishing
n orthogonality conditions.

If the coordinate functions satisfy all the boundary conditions,
it 1s only necessary to use the first residual Ro (Egq. 2.29 or
2.30) in the orthogonality conditions:

<Ro U, ¢j> = 0; 3=1,2...,n (2.32)

where wj are arbitrary weighting functions.

When the given coordinate functions P 5 1=1,...,n do not satisfy
the boundary conditions it is then necessary Go take the boundary
residuals RJ

According to the form of the weighting functions in (2.32), the

Uh; Jj=1,...,1 into consideration.

method receives different names, as follows:

a) Collocation

In this method a number of points fj, j=1,...,n are chosen
where the residual R, is "collocated", so that the weighting
funetions become

Vv, = 6(53-“?3) (2.33)

where i is an arbitrary point and 6(§-§j) the Delta Dirac func-
tion. By definition the Delta Dirac function is zero every-
where except for b ?j where 1t has a unit value.

The equationsobtained from (2.3%2) are



-49-

R_U_ (Y.,) =0 j=1,...,n (2.34)

wifh coordinate functions which satisfy the boundary conditions.

When the avallable coordinate functions do not satisfy the boun-
dary conditions everywhere then for each residual Ri there need
to be established n; orthogonality conditions, where i=0,1,...,1,
as follows:

-
Ry Uy a(x-?j)> =0 3=1,....n, (2.35)
-y . .
<Ri Un, 6(X'Yj)>si = Oj J=1,no.,ni; l-_-l,ooc,l
or, which is the same,

R, U ('Y'J) = 0 J=i,...,n;; 1=0,1,...,1(2.36)

where the total number of collocation points is kept equal to
the number of coordinate functions.

b) Method of the Subdomain

The domain Q) is divided into n subdomains Qj and the weighting
functions are defined

wj S when X belongs to Qj
J=1,...,n
wj = 0 when X does not belong to QJ
where X is an arbitrary point in 0.
From (2.32) the orthogonality conditions become
[l RU G0 = O =1, ...,n (2.37)
%

where the coordinate functions included in Un satisfy all the
boundary conditions.
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¢) Method of Moments (Galerkin)

Given an operator T the weighting functions are defined as:

R | J=1,...,n (2.38)
and the orthogonality conditions by
<RO Un’ T q)J.> = 0 J=1,...,n (2.39)

When T = 1 the method is termed Galerkins method, Note that the
coordinate functions need to satisf{y the boundary conditions of
the problem.

Although in this application Galerkin's method uses coordinate
functions which satisfy all the boundary conditions, in Art.
2.7 an example is shown where (2.39) is first transformed by
Green's formula to an equlivalent expression in which several
boundary residuals are substituted. As a result, the flnal ex-
bression only requires coordinate functlons which satisfy the
boundary conditions that had not been used in the transforma-
tion of (2.39). Thus, when Galerkin's method is applied to
field equations for which an equivalent minimum problem exists,
the rearrangement of (2.39) just mentioned brings Galerkin's
method to coincidence with the RITZ method. Thereby only the
geometrical boundary conditions of the minimum problem need to
be considered.

Another variation of the Moment Method is called Xanterovick's
method, where the parameters of the trial solution are functions
(as oppossed to constants).

The trial solution is taken as
qi (Xi) cpi

Denoting the domain Q for Xi = const. by Cx’ the orthogonality
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conditions become the system or differential equations
df R, Uy ‘1'3 dX, = 0 J=1,...,n (2.40)
X

where 0 has been taken as two dimensional and the weighting
functions are given by (2.38).

For a two dimensional domain, Kerr [19] has applied a scheme
termed Extended Kanterovick's Method, which consists of the
following steps:

i) Application of Kanterovick's method using the coordinate
functions mi(Xe), 1=1,...,n and solving the system (2.40)
for the unknowns q; (X;).

2) The functions qi(Xi), determined in the previous step are
used for another application of Kanterovick's method as
coordinate functions and Ei(xe) are used as unknown para-
meters. The domain 0 for x2 = const. is denoted by C
and the system of differential equations to be solved be-

comes
J‘Rotﬂ1¢j dX1 =0 J=1l,...,n
y
where
n —
UI'I = _E qi(xg) qi(xi)
i=1
¢j = T‘qj(xi) J=1,...,n

3) More cycles may be made using as coordinate funections the
solutlions of the previous step. This may prove advantageous,
especially when using one coordinate function at each step,
because only one differential equation needs to be solved
each time.
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d) Least Sguares Method

Define the functional

1
I1(u,) =<POROUn, ROUn> +j£1 PR, RJUn>sj (2.51)
where ?5 given on Q and ?ﬁ on s, j=1,...,1 are all positive
weighting functions.

The parameters q of (2.31) are determined from the minimum
of I(Un), which yields: -

1 AR .U
= aRoUn Y I! n>
u, P u., P, = 0 2.k2
<?o n’ o 3 q, +351 Rj nt td 8Qqy /8y ( )

k=1,...,n

This expression (2.41) can be interpreted as an application

of the method of weighted residuals, where all residuals are
orthogonalized and the coordinate functions need not satisfy
the boundary conditions.

One may notice that the application of the Least Squares Me thod
to linear eigenvalue problems involves some difficulties since
it makes the problem nonlinear.

2.4 Variational Methods

In these methods a functional is established whose stationary
value results in an Euler equation equal to the governing
equation of the problem and the so-callei natural boundary con-
ditions. Among the most important variational methods are:

a) Ritz Method

In this case a trial solution (2.31) is substituted into
a functional which is being minimized. The two types of
problems dealt with here are:



A boundary value problem

|2 - 2 n(v) = 3(u,V) - 2x(v) (2 .55)

F(U) = |u

or an eigenvalue problem

Ju|?, I, (U,U) o
' |Ul2 T Jy (UT (=22
where J(U,U), J, (U,U) and JM (U,U) are positive quadratic

functionals and L(U) is a linear functional. The boundary
conditions are the homogeneous geometrical boundary conditions
corresponding to the minimum of the functionals in (2.43) (ana-
logous to Eq. 2.22). Note that a minimum problem for which the
geometrical boundary conditions are homOPeneous can be trans-
formed to another minimum problem where they are homogeneous
(Art. 2.5 ).

The variational expressions for (2.43), are
J(U, 8U) - L(8U) = O (2.44)
or

Jy (U, 8U) - 13, (U, &U) = 0 (2.44)

Substituting the trial function (2.31) with coordinate func-
tions ;s i=1l,...,n satisfying the geometrical boundary condi-
tions, it is found that

E J(cpl, q)j) - L(CPJ.) =0 (2'45)

or

n
j_f-‘_‘i (JH (qji: CPJ) - A JM (C\Oi: CPJ)) =0 j::]_,..._,n (2-}45)

where the first expression constitutes a system of linear equa-
tions and the second a linear eigenvalue problem between two ma-




trices.

Tn order to have a solution to (2.45) the coordinate functions
must be functions with finite energy, i.e.

J(mi,mi) <®wi=1,...,n

for the boundary value problem. In addition the coordinate
functions must be linearly independent and thereby satisfy

(2.9).

Using the approximation U = E q (X )cp , where the unknown
parameters are functiocns, Eqé (2 45) become a system of dif-
ferential equations similar to those of Kanterovick's method
but with the additional advantage that the coordinate func-
tions need only satisfy the geometrical boundary conditions of
the problem.

b) Courant's Method

Given a functional to be minimized, Courant has suggested a
modified minimum problem which improves the convergence fto-
wards the satisfaction of the Euler equation of the original
problem (Mikhlin [8, p. 95]).

Let F(U) be the original functional and AU = £ its Euler
equation. Assuming the function fo %o be defined in the two-
dimensional domain O and to have continuous derivatives up to
order K, it is possible to set

p -
AT(AU-£.)
p-m

P
Ii(U) = F(U) + E =
p=0 m=0

(2.46)

m
oX4 aXn

It is observed that the minima ofjfi(U) and F(U) coincide
and are given by the exact solution UO.

e¢) Adjoint Variational Methods.

Given an operator HO, che adjoint operator Eg and adjoint boun-
dary conditions are defined from the relationship



o )
(HU, U*D = CHE R, ) (2.47)
where U and U* are two admissible functions.

Adjoint varlational methods make use of the adjoint operator
(when H * H ) for constructing a functional whose Buler equa-
tion is the governing equation of the problem at hand.

For a boundary value problem, the functional to be made sta-
tionary is the following

= (U1, U*> - (o) = oy U - g U0 <fO,U*> (2.148)

where HOU=fo is the governing equation of the problem and the
function go(xa) is arbitrary but chosen according to the mean-
ing desired for the functional I (Becker [14, p.86])).

For a function U which satisfies all the boundary conditions,
the stationary value of (2.48) results in

<H0U-fo, 6U*> + {rH U, U*> -—<g; o 6U> = 0 (2.49)

#*
olnce the function U satisfies the adjoint boundary conditions,
(2.49) becomes

QOU-fO, aU*>+<HO*U* - &, 5U> =0 (2.50)
5
i.e
HU-f =0
Ho*ufgo -0

For an eigenvalue problem given by H U- Ani U= 0, the follow-
ing functional is defined:

vt HOU>

b= <U*,r-1éU> S

==
p—
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The stationary value of (2.51) for a function U satilsfying the
boundary conditions is

3# 3+
i H U - AM, U + (0", 60U - AM U = 0 (2.52)

For a function U* which satisfies the adjoint boundary conditliomns,
(2.52) becomes

# * % * 4
<HOU-)\MOU, 8U >+<Ho U -—)LMO U, 6U>= 0 (2.53)

HOU-lMOU = 0
3* 3
HO U-2N, U=20
The adjoint variational method consists in substituting into
(2.48) or (2.51) the trial solutions
. U* % P
a; 95 n = i a; Py (2.54)

where each Py satisfies all the boundary conditions and each
3

P satisfies all the adjoint boundary conditions. The para-

meters Qs qi are to be determined, the total number being 2n.

d) Involutory Transformations (Courant [20, p. 233]).

A functional which is made stationary under certain subsidiary
constraints can be transformed, by introducing new variables
called Lagrange parameters, to another functional for which the
function and the parameters are arbitrary. It is possible to
release a few of the constraints and introduce one parame-
ter per release so that the functlion used in the new function-
al need satisfy beforehand only the constraints not having
been released.

If the original problem is a minimum problem, usually the mod-
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ified problem is only a stationary problem, Thereby some of
the advantages characteristic of a minimum are lost. However
since there is no need to satisfy the subsidiary conditions
released, the coordinate functions used in a possible trial
solution are subjected to less requirements.

Examples of this procedure are given in thé book by Washizu

[3].

2.5 Convergence Studies

Someconvergence theorems have been presented by Mikhlin [8]

for the Galerkin and Least Squares methods. Mikhlin also gives
the proof of convergence of the Ritz method for variational
problems with homogeneous boundary conditions. In this article,
Mikhlin's derivations are followed Lo some extent in the dis-
cussion of the convergence of the Ritz method for problems with
inhomogeneous boundary conditions.

Ritz Method - Boundary Value Problem.

A quadratic functional to be minimizeg has the form
2
By () = f0]? - 21, (w) .= J(w,0) - 21, (w) (2.55)

where ] I is a positive quadratic funeticnal and L (w) a lin-
ear functional, both defined on a domain Q0 with boundary c.

The funct;on w 1s subjected to 1 geometrical boundary condi-
tilons given on parts gj; J=l,...,1 of the boundary C, as follows:

R, w=%  ons,; J=1,...,1 (2.56)

J J J’
where ﬁj are linear operators and fj prescribed functions.

It is now assumed that there is avallable a funetion Y which
satisfies the geometrical conditions (2.56), i.e.

- A A .
ﬁj ¥ =Ty on s gel,...,l (2.57)
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Setting w = U+y, from (2.57)

A
ﬁJU =0 on 5, j=l,...,1 (2.58)

that is, U satisfies homogeneous geometrical boundary condi-

tions.

Substituting @ = U+y into (2.55), it is found that

p, (U+9)= |U|? + 20(u, )+ |7 - 2n (V) - 2, (P)

= ‘U|2 - 2L(U) + |$|2-2L1(EU (2.59)
where
L(U) = Li(U) - J(U,v) (2.60)
Let
F(U) = |U|2-2L(U) (2.61)

The stationary value of (2.59) is
GFi(w) = SF(U)

From this last expression, fthe function U which makes F(U) min-
imum and satisfies the homogeneous boundary conditions (2.58)
makes also the functional Fi(U¥E) a minimum. The Euler equa-
tions and mechanical boundary conditions corresponding to the
minimum of F(U) are those given by (2.26).

Denoting the exact solution to the boundary value problem by
U, and by U functions which satisf (2.58), the stationary
value of F(U) in (2.61) may be written as:

J(Uo, U) = {U) (2.62)

Substitution of (2.62) into (2.61), results in
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F(U) |U|2 - 23(U,U,) + |UO|2 - |UO|2

F{U)

|U - Uol2 - |Uo|2 (2.63)
clearly from (2.63)

d=min P(U) = - |U (2.64)

ol
It will be shown that when the functions Vn, V and UO possess
finite energy, the following inequality holds

7V, )-F(V) a3 % |v_ - V| (2.6€5)

n
where K is a positive constant.

From (2.63)

F(V,) - F(V) = |vn - UO]2 -|v - UO|2

=(Ivn - Uo! + lV”'Uo‘) (Ifn"Uol"lv'-UOD (2260

Since Vn’ V and U0 have finite energy, it can be assumed thast

<
wl—U0|+|V-UO|-K
Using this last expression and the triangle inequality, (2.66)
is transformed to (2.65). The triangle inequality needed is:
- vy,

IVn—Vl = IVn'Uo "(V_Uo)l Z Ivn_Uol

Theorem: Ritz approximate solution to AOU=fO constitutes a mi-
nimizing sequence for the functional F(U), provided that AU =

fo has a solution with finite energy.

Since the problem to be solved has a minimum given by (2.64),
a function V can always be found for which, when given ¢ > O,
it is possible to have
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F(V) <d + (2.67)

o

Moreover, there is assumed avallable a sequence of independent
functions @;; i=1,...,n which is complete in energy (1.8. they
satisfy Eq. 2.9 and Eq. 2.11). Therefore setting V=424 ﬁiwi
and given e > 0 it 1s possible to find an integer n and con-

stants Gi for which

|vn = v| < % (2.68)

where V is an arbitrary function with finite energy and K is
a positive constant.

From (2.68) and (2.65)

and from (2.67)

a =< F(V,) SRV + £ T Fie (2.69)

rm

When trial solutions are considered, a Ritz solution Un =
n
L oq; o (the same coordinate functions as for Vh) provides

i=1 1
parameters a; which give the minimum of the functional in

(2.61) i.e.
F(U,) < F(V,)

so that (2.69) may be written as

dSRU) ST+ e (2.70)
lim F(U,) = d (2.71)
n = o

(2.71) being the definition of a minimizing sequence.
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Substitution of (2.7C) into (2.63) yields

F(U,) = |Un-UO|2 +d5T + e

or
“%1'Uo‘2 S e (2.72)

i.e. the Ritz solution converges in energy to the exact solution.

Ritz Metheod - Eigenvalue Problem

The eigenvalue problem dealt with has the following form

°|2H (2.73)

where ‘U'EH, |Ul2M are two different positive quadratic func-
tionals, U is a function which satisfies homogeneous geometrical
boundary conditions and UO is the exact solution to the mini-
mum problem.

For any given € > 0, U can be chosen to satisfy

jul®

]

<

A S+ e ' (2.74)

o]

=

Setting the variables

§)
Vo= —2— (2.75)

July ° uol%y

then (2.73) and (2.74) may be written respectively as

A = inf |w|2H = v, |5 (2.76)
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lul,, < \Ave (2.77)

For a sequence W complete in energy it is possible for

€ > 0 to have
Iw - man <Ye (2.78)
and by using (2.74) the last inequality becomes

Iw - mnIM S'V[§_ (2.79)

Again from (2.74), the triangle inequality and equations (2.75)
through (2.79)

A+7 (2.80)

1<'w'H<ll |H+'"’“’|H '\/l+e+L

Jug % 1 Tohe - To-uly
where m » O when ¢ » O

Let U, be the Ritz solution to (2.73) and A, the approximate
eigenvalue Thus obtained. The following equation results from
the use of (2.80)

lUnlaH |wn|2 lw |2 —_
—_—— = = min < A+7
TN P P A P 8
1.e. A S A, < A+ T (2.81)

When € » O then 7 » 0. Thus (2.81) can also be written

lim A = A (2.82)

n=- o




or

|Uo|2H . ]UnlgH
TE—TE— = lim TG—TE—
ol M ni M

i.e. the Ritz solution tends to the exact solution.

Another form for (2.82) results from setting

v, = F%-é— (2.83)
nl m
i.e. |V | = 2
so that
Lim |V, |, = lVO'H (2.84)

Eq. (2.84) indicates that the normalized Ritz solution conver-
ges in energy to the normalized exact solution.

2.6 Convergence of the the Plane Problem and Eigenvalue
Problem of Plates.

In this section some of the convergence properties of solutions
obtained by the Ritz method are discussed in the case of the
Plane and eigenvalue problem of plates. As the results are
independent of the coordinate system, Cartesian coordinates are
adopted for simplicity. The in-plane displacements of the de-
formed plate are denoted by Ua’ and the deflection normal to
the undeformed middle surface of the plate by w. The area of
the plate is Q, the contour ¢ and the sum of both is denoted by
0 = Q+C. The in-plane displacements are prescribed on the con-
tours Sa’ the deflection w on the contour S§ and the slopes w,n
on the contours S/+a' The boundary conditions for w and w,a
are homogeneous.
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In-Plane Problem
Let

oI ® = I 05 a0
Q

For functions Ua with generalized first derivatives

”UG'HL (1) B ‘I;{(Uisi * Ui:z) =
2
2 2
“U"'Hwe(i) ] (sf(c:;ud(:) ' HUal‘Lg(i)

Poincare's inequality (Mikhlin [1o, Dp. 155]) is

o 2
ol 2 S vl o)
2

where Ki is a positive constant.

Let

|| T ||2 = f(_}[‘uauudn

=112
16l L 7,5 %5 42
2 2 2
2] - (fvac) «{ fuyac) + |7
w2(1) S, Sg L2(1)

and from Poincare's inequality

2
NI = il

1
()

Korn's inequality, as given by Mikhlin [9, p. 127),15s

2 2
131l e s%o [T
2

(2.

(2

(2

(2.

(2

(2

85)

.86)

.87)

88)

.89)

.90)

.91)
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where K2 is a constant and

2
2| s~ J[Fap Fap a0 with 2B, < u Ul (2.92)
Q

Use of the notation of (1.91) and (1.66) yields

= Ya _ Eh ya v_ B oLy
E Tya'_ 1+v(E EYu + 105 EB EY)

and for a Poisson's ratio X >y > 0 the following is derived

E T2 Ky EY Evg (2.93)

The integration of (2.93) produces

2 2
0] aI%”ﬁ” B (2.94)
where
2
B[ g =y v Tyo 90 (2.95)
G
which by Korn's inequality appears as
2 2 )
1T] 22 x5, || (2.96)

Ly(1)

It is observed that when the geometrical boundary conditions
are homogeneous, the functional of the Plane problem of elasti-
city is positive definite, since from inequalities (2.90) and
(2.94) results

»2 2 =
' U ’T B.KiKEKj |Iﬁ" where U satisfies homogeneous B.C,

The Ritz solution ﬁn has components Ua(n), and the exact solution
-

Uohas components Ua(o) in the discussion which follows.
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It has been shown by (2.72) that the Ritz solution converges
in energy to the exact solution i.e. given € > 0 it is possible
to find an integer n for which

- 2

] 2
U, - Uy . < e (2.97)

ﬁ being functions which satisfy the geometrical boundary con-
ditions of the problem.

From the inequalities (2.97) and (2.9%4) follows

. 2
” Un - ﬁo“ . <€ (2.98)

or in expanded form

”'[(E_,E,:) ~ 592 4 a(e(®) - 5{2)2.(x4n)- £(2) 2] 4 <e
a i

i.e. the strains converge in the mean
‘LY(E(H) - E(o)) an < e; E.LF(E(n) E(o)) dan < €;
) - )% a0 < e

The stresses also converge in the mean, being linear combinations
of the strains, as for example

2

j‘j ('I'(n) T(O))E aq = f%gﬂ‘[(gﬁl) —E:g_o))+v(E(n) (g) )] an
0

”‘ (o$2) - mf{9))2aq 5 BB [”‘ (e{8) - £{9))%aq +

# o fpeegp)-mgeh’e ] =By (1)

having used the triangle inequality.
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- -
The definition (2.89), for functions U, and U_ which satisfy

the geometrical bound, cond., leads to

= [ i) -U:EO))dﬂ)g +( f (Uén) -Uéo))dn)2+

W, (1)
2 S, S,

n o

- 2 2
N -Gl ) =118 -5, L (1) (2.99)
2 2
Korn's inequality (2.96) and (2.97) results in
2
- -
|

U -4 < (2.1200)
I n o” Lg(l) ¢

or

- 2
1%, -3, <
Wp(2)

The inequalities (2.90) and (2.100) give
-3 ] 2
||Un -U |l < (2.101)

i.e. the displacements converge in the mean.

Eigenvalue Problem of Plates

Let

1

||w"Lq =(‘ﬂf!w'q an )a 0<qg<ew (2.102)
Q

and for functions w with generalized derivatives of second order

2
“w“ " = -”‘w’c.ﬁ W, 4g A0 (2.103)
L (2
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Nl gy (g o) (5 e 22}

2 3 Sy

n

l‘wl|c = m%x W

Sobolevy inequalities [17, p. 69] include

loall Ssallell ) e<a<e
q 2

<
el = sllel
2

From the definition in (2.103), follows
lwl ={lwll,

or

o2 = {lull?

which leads to
i o aa = |lullZ o
which from (2.105) becomes

lol2 s fluff

w,(2)

2

According to (1.66)

Kya - T w'ya

Ly
13
-
N
[o ]
Q
™
no
-+
1=
no
|
n
—
n
~—

(2.104)

(2.105)

(2.406)
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ya h2 En , va v_ B .y
" Mya =17 11y (* o TS Mg M )
Yo h2 Yo
H M — K ® (2.107)

3% My
(2.107) being analogous to (2.93).

The integration of (2.207) may be written as
2
| |? 2 Kg || w]| (2.108)
"
where

”(.l.l“a’t =‘£rnya KYG dQ (2.109)
Q

2
le = [[xY® M, 40
0

When the function w satisfies homogeneous geometrical boundary
conditions, from inequalities (2.108), (2.107) and definition
(2.103), it is seen that the functional lw lis positive definite,
i.e.

P

where 72 = K6K§ 0

The eigenvalue problem for plates is defined as the minimum of

A = IWIe (2.110)
- .
]ml M

for functions w which satisfy homogeneous boundary conditions.

With w,  as the Ritz solution and wo as the exact solution,
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W w

v (2.112)

n = o =
|wnl M |wO‘M

Eq. (2.98) is written in terms of the functions v, and V _ as

Lim |V, | = |v. | (2.112)
n -+

The inequality (2.108) and the expression (2.112) yield

11m||vh||u =||vo||K (2.113)

Il - ¢
i.e. the bending measures of the normalized Ritz solution con-
verge in the mean. The bending moments MY corresponding to
the normalized Ritz solution also converge in the mean to the
exact values, since they are defined as linear combinations of
the bending measures.

From inequalities (2.104), (2.105) and expression (2.143)

lim||Vn,a||L =I|Vo,a H 0<g <= (2.11%4)

n- q q

vaml|va |l =l 7l

n=ee
i.e. the slopes of the normalized Ritz solution converge in the
mean with an arbitrarily large exponent to the slopes of the
exact solution. The normalized Ritz solution converges uniformly
to the normalized exact solution.

2.7 An example of application of Galerkin's Method

The eigenvalue problem of plates subjected to in-plane loads

varying with time and follower-forces, as given by (1.122) and
(1.421), can be restated:
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a Sva o
MY | v {TYS y, )I ~Mw = 0 on Q (2.115)
oy Y la
M(NN) = 0 on c1
[M(NT)] (K) = 0 K'—l,.-.,mi
Gy

3M
_ (NT} | Avo _ )
QaNa e+ T W, No= 0 on CyC

aM
QG'I‘T(1 - ——%gzl =0 on C

f

and with homogeneous geometrical boundary conditions

w =0 (2.116)

where w = deflection of the plate in direction of X° axis
(perpendicular to the plate)

w &y (2.127)

2
MY® _ b nva Bu = -h_oya Bu

o)
o

[N

- MY
Min) = M uNaNY

- Ye
Miyry = “MYON T,

QG - MYGI
Y

-~

CYQB” tensor of

elastic constants defined by (1.16%)
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NY = components of the outward normal to the contour C
7Y . components of the tangent unit vector to the contoul

- number of discontinuities of the tangent to the

contour Cl'

The plate of thickness h has been subjected to in-plane loads
which are represented by the stress tensor %Ya. The applied
bending moments on the boundary and the normal load to the
middle plane of the plate are zero. Follower-forces as definec
by (1.120) are Brescribed on the contour C. resulting in the
component F% = TYG NY w,a in the direction of the Xj axis. The

in-plane stresses are assumed to be given as
fa
oY% = gY% p(e) + T?g) P, (2.118

where the stress tensors SYG and TYu) do not depend on time an.
(o

have been obtained by linear analysis.

Given the coordinate functions ¢i(x“), i=1,...,n and using the
trial funetion w = I qi(t)wi, the Calerkin method (or Kantero-

vick) yields 1=l

-
__h” ‘”' (CYCLBH w

o YO
=15 nlsp) lyg, p. dQ + P(t) .[..r(o wn,.v) IU. ijdﬂ
0 Q
va r . . \
v R JIT ay, o @g80- ] Mt a0 g=1,...n (2129
Q Q

The orthogonality conditions (2.119) may be used when the coordi-
nate functions satisfy all the boundary conditions exactly. How-
ever it will be shown that transforming these equations it is
possible to use coordinate functions which satisfy only the homo-
geneous geometrical boundary conditions.
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For any two functions @y and wj which satisfy the homogeneous
geometrical boundary conditions, integration by parts gives

2 2
h h yap
HEIJ‘(CYQB“ quIBu)lya. cdeQ ="T'2_.”‘C uwilspmjlyudn-'-
0 Q
2 YOBM op my
h~ —J ac - yaBu -
+ 12_]0 @ilBuNaNY 5 dC KE:L [c mi,BuNaNchJ ]Ci(K)
Cq
2
h Yo B 3 (YOBH
) TZI[(C cPiIBu”Y + 30 (¢ cpillilu NNy ]“pj dc .
(TYe N )| .0 = ye dn #re0)
I (o) Pi,y/ g #5900 = '”T(O) Pi,y P50 907
0 0

Yo .
+IT(0) Py N, P9, dC (2.121)

(these last two equations may be obtained from (1.111) and (1.1222)
by substituting w = Py and 6w = mj, by making some obvious changes
in notation, and by considering the fact that the prescribed bend-
ing moments and normal loads to the plate are zero)

With the help of (2.120) and (2.121), the orthogonality conditions
(2.119) become
2 2 dep
_ h- YoBu h_ poYvaBu J
2 [fc "’n,Bu cpjlyc. aa + g5 [ mn|B“ NN, —dc -
0 C
1

2 .
- ?_201' [(cvaﬁu mnlgu)lY'*?aC- (cYePu wnlBu NN Jcpj ac —
m

1
- yapu Yo .
K:—}:.:i [C “’nlsu NG'NY CPJ Jci(K) - P(t)[ “r‘rs (.Un, chJ:G. dﬂ-‘l-

1

Yo
+J‘S v N, P, dCJ+
C

1
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+ P l”T(o) N d(l+j"l‘(o)n N, @y dC | -
c
1
”an cp‘ijrO j=1,...,n
Q

or

2
h~ ~yaBu va ya MU
”l' £ ¢ wn|8u¢p3|w— (P(£)SYop P o)) e, | @5 4 antpjldn+

n,y
")

m
3 1
N N —3dc-%

b2
v 1z wnlBu a’y BN T % 11‘”n'BuNaNYCPJ]Cl(K)+

yaBu
12 [°C
4

2
+ T |— 111‘-§| (cYoBH ‘”n‘su)lu""é'a"c' (c Yo-Bu “’nlau N, N

1

vt

Yo _
+ (P(t) S +P T(o)) e a] tPJ-IdC— 0 (2.122)
j:l,..-,n
Using the mechanical boundary conditions, (2.122) becomes:

2
“[?_g_cwﬁu “’n|5u wjlv +(P(t)sY°‘+P Yy @5 o+

n,y 'Jsa
ya Yo _
+ M o, ldn- [ [P(t)s +P T(O)] y Ny @, dC =0
Cp
J=1,...,n (2-125)

This system of ordinary differential equations (2.123) involves
an approximation for tThe mechanical boundary conditions in an
average sense and the coordinate functions need only satisfy the
geometrical boundary conditions. Denoting the vectors of the

functions qj(t), j=1,...,n as g, an equivalent form of (2.123)
in matrix form is ~



..Tl'_}_

o
l” % ¢ YaRv CPLIBH cpjlmdnl,ci * P(t)[ g‘rsmwiﬂwj,adn_
Q

- Yo aq -
Js™ ey Ny P dclq +P [”T(O)q’ln ®5,a
Cp

—j (O) @, Nucpjdclq +

I-IIJ‘M P; Py an lg - 0 (2.124)
Q
In the absence of follower-forces (i.e. Co = 0) the problem is
called dynamic buckling of plates. When Cf = 0 and P(%t) =
it is called the static lateral buckling of plates. If only
follower-forces are prescribed on the boundary (i.e. ClnCr),
(2.123) may be simplified by (2.121) to

‘M8 o, - [(P() 5 Yo,

0
P L
* Py Tio)) wy, ] |qcpJ.l do = 0 J=1,...,n
2.5 Selection of the Coordinate Functions

-—— _.-___--....——--....-.-__—_—_.—_._—__._——__.-.._...-__._—

The following functional is being minimized

rU) = [0]® - 2 L) = J(u,u) - 2 L(u) (2.43)
where l ' is a quadratic functional and L(U) a linear functional.
The quadratic functional l , is defined for functions U with

generalized derivative of order t. The zZeometrical (or principal)
boundary conditions contain derivatives of U of order = t -1 while
the mechanical boundary conditions have at least one derivative of
U of order > £. It is also supposed that the Fuler equation cor-
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responding to the minimum of F(Ul) is
AOU = fo

fo being a function prescribed on the domain Q, and AO being
an operator.

The coordinate functions Py s K-1,...,nt used in the trial so-
lution must

a)} Be linearly independent and make lmK‘ finite for any
K=1,...,n. {Functions with finite energy).

b) Be complete in energy. i.e. for any € > 0 and any U
lu-u | <ce (2.11)

¢) Have generalized derivative of order €.

d) Satisfy the geometrical (principal) boundary conditions.

Under these conditions the solution Un given by the Ritz method
tends in energy to the exact solution UO

u - U | — 0

n- e

Nodal Coordinate Funcftions

There will now be described a special sequence of coordlnate
functions called nodal coordinate functions. The domain (O is
divided into an arbitrary number Ng o? subdomains QJ and on each
of them a different trial function U'Y’ is assigned. For any
point Xreferred to a fixed reference system, the globél trial
function 1is

Un(ﬁ) = U(J)(i) when X belongs to Qj



=1 -

The loecal trial function is assumed composed of e ccuordinate
functions such as

ol .3 {4 o) (2.125)
pag L

where

qgj) are e unknown local parameters which represent
quantities of physical significance at selected
points on the contour of the subdomain Q. termed
nodal points. Usually at the nodal points (or

nedes), the function U(J) and its derivatives are
chosen as parameters.
(J)

?

are local coordinate functions valid only within
the subdomain QJ' Usually polynomials are taken
as these local coordinate functions.

The global trial function is a linear combination of n nodal
coordinate functions, as follows

n
Un = Kfi U Py (2.126)
where the sequence {qK] 1s made by the lcocal parameters which
are linearly independent. There exist certain continuity con-
ditions at the nodes, through which local parameters of one sub-
domain are equated to other local parameters of adjacent sub-
domains. In turn all the local parameters which are equal at

a node are identified by one global parameter. Therefore if

in a subdomain Qj a global parameter Gy i5 equal to a local pa-

(J)

rameter a;" "’ the nodal coordinate function P is defined as being

egual to the coordinate function ®; which corresponds to the
local parameter mentioned i.e.

if qqugj) =

D By on Qj (2.127)
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When for such subdomaln QJ the condition (2.127) cannot be sa-
tisfied for any local parameter,

Py = 0 on QJ
When the trial function Un and its derivatives of order S g1
are continuous at the nodes but not throughout , the function
is said to be non-conforming. On the other hand a function
Un is conforming when all its derivatives of order < t-1 are
continuous 1in (1.

Olivera [21] has shown that the completeness criteria can be
satisfied by using polynomials to make a conforming or non-
conforming function Un which can take arbitrary constant values
i{n each subdomaln. The last condition is fulfilled if the
function U(j) contains a complete polynomial of t degree, all
the terms of which are affected by arbitrary coefficients, and
also contains higher order polynomial terms, which can vanish
whatever the value taken by the coefficients of the t th. degree
polynomial.

The special case of the Ritz method which uses conforming trial
functions will be termed Ritz-Subdomain method.

The Finite Element method employs non-conforming trial functions

which are input in the functional to be minimized. Olivera [21]
has shown that if the prescribed distributed function ro = 0, the
Finite Element method converges in energy to the exact solution
as the size of the element (subdomain) is decreased. When fo # 0
several Finite Element analyses must be carried out, increasing
the number of elements and observing the convergence if any.
Since the t-1 derivative is not continuous for non-conforming
functions, the convergence to the exact solution is not assured
as in the case of the Ritz-Subdomain method (examples in Zien-
kiewicz [22]).
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. Convergence of the Parameters of the Trial Solution

Glven a sequence of independent coordinate functions [mKl it
1s possible to define a new set of functilons
i

by = Kfl d g Pyi diy #0; i=1,...,n (2.128)
where the constants diK are determined from an orthogonalization
process, as described by Mikhlin [8], by setting the conditions

0O 1 * j
J(wix wj) =l1 1 = b (2-129)

taking the functional to be that of (2.43).

n
z Ei by, the variational statement
i=1

corresponding to (2.43) becomes

For the trial function Un =

J(Uns wi) = L($i) i=1:---:n
or by (2.129)
Ei = L(wi) i=1,...,n (2.130)

and the trial solution can be written as

n
Uy =% L(hy) by (2.131)
i=1
Remembering that Ritz's and sometimes The Finite Element's
solution converge in energy to the exact solution Uo,it is seen
from (2.131) that U, can be written as:

U = B T(by) ¥y (2.132)

which indicates that the Ritz solution consists in writting in
short the exact solution expanded in orthonormal functions.
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Moreover from (2.128)

n i n n n
U = T @&, T dy @ = I Y d,, G, = = q
n Tl Ml TIK K T P o CiK % “ioy 7K 9nK
n —
where q ;. = .E diK Oy 2.133)
1=K
Similarly from (2.132) and (2.128)
U = ¥ &,g
°© gy KK
where q, = & d,. O (2.134)
K~ .7 “1K K
Obviously from (2.133) and (2.134)
lim q . = dg K=l,...,01 (2.135)
nowo
n
i.e. if the approximate solution U_ = ¥ ¢ p,, converges in
n Ked nkK K

energy to the exact solution U0 = Kgi Qyc Py s the parameters of
Un converge uniformly to the coefficients of an expansion of
the exact solution where the coordinate functions expand Uo‘

The last statement indicates that for the Ritz-Subdomain method
and for the cases where the Finite Element converges to the
exact solution, the quantities of Un represented by the global
parameters tend uniformly to thelr exact values.

For example, for the plane stress problem (1.89),a functionwith ge-
neralized first derivative may be used as a trial function for
each of the components of the displacement vector Ua' For
triangular subdomains (Zienkiewicz [22]) it is sufficient to

take as parameters the displacements Uu at the nodes, and as

the local coordinate functions polynomials of first degree. Thus
in this case, according to (2.135), Ua of the Ritz solution tends
uniformly to the exact values at the nodes.
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2.9 Critical Loads for Plates: Existing Sclutions.

The steps 1n the determination of critical loads for elastic

flat plates under conservative in-plane loads are (a) investigat-
ing a plane elastic problem, and (b) solving a linear eigenvalue
problem.

Adopting Cartesian coordinates, the governing differential equa-
tions (1.93) can be satisfied identically by the Airy stress
function ¢ (see Wang [23%, p. 93]). The stress function P, for
a given stress tensor Tya and zero body forces, is defined by

1|,, = 0 (2.136)
YA yQ.,

Tii g ‘l’:ag (2'157)

Top = bayy

Tia = = ¥opp

The stresses for a plate of area Q and flexural rigidity D are
described immediately prior to buckling by the tensor PTY . The
unknown parameter P 1s determined solving (1.122) i.e,

- D w, + P(T w,Y },. =0 (2.138)

under approplate boundary conditions for the normal deflection
w-

Problem (2.138) is equivalent to finding the minimum of the
functional

] 2
: ‘L‘I‘D[w’aa w"Yy_e(i_v)(w’ll w:ge - m:12)J dq
P = (2.139)

"ﬁ{{ TYG w,Yw,adn
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In general buckling investigations have been reported in the
1iterature for 2 broad cases: (1) where the exact solution to
the plane problem is known; (2) where an approximate solution
to the plane problem is found before setting up the eigenvalue
analysis.

(1) exact solution to the plane problem is known.

For this case, solutions have been presented by Timoshenko [6],
Bleich [24], Biirgermeister, Steup and Kretzchmar [25], Pfliger
[26], and CGerard and Becker [27].

Exact solutions are available for rectangular plates when Tau =
const., T12 = 0 and two opposite edges of the plate are simply
supported (in Shulesko [28] or the above references)}. Timo-
shenko [6] reports exact solutions for circular plates with or
without holes where the boundaries are subjected to normal con-
stant stresses so that the distribution of stresses prior to
buckling is given by Lame's formulas.

A problem which has been solved by diverse approximate methods
involves in-plane stresses of the form

T ==e, + e, X (2.140)
T22 = ej + Eu Xi
Tip = &5

where Xa are the Cartesian coordinates and €15 €ns e}, e, e5
are constants. Salvadori [29] has used the ordinary finite
difference discretization for solving (2.138) when the stresses
are (2.140) and the plates are rectangular. For a similar plate
simply supported on the boundary, Kildppel and Sheer [30] use the
Ritz method, assuming the deflection w given by a double Fourier
series. KlBppel and Sheer introduce longitudinal and transverse

ribs (maximum number three in each direction parallel to the axes).
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Fach rib carries an axial stress equal to that of the plate at
the point in contact with the rib, and the rib's torsional ri-
gidity is negligible.

Note that for square plates with stresses of the form (2.140)
and with uniform edges simply supported, c¢lamped or free,
solutions to (2.139) can be found by the Ritz method using vib-
rating beam functions as coordinate functions. This procedure
has already been used by Webster [31] in the analysis of free
vibration of rectangular plates.

(2) Approximate solutions for both the plane elastic and eigen-
value problems.

For solving the plane elastic problem, the finite element, finite
difference and integral methods have been presented, respectively,
by Zienkiewicz [22], Fox [3%2] and Oliveira [33]. Griffin and
Varga [34] have given a simple scheme for finite differences
which can take care of complicated contours, though it is re-
stricted to boundary conditions expressed in term of stresses.

Conways, Chow and Morgan [35] produce an accurate solution to

the symmetric problem of Fig. 2.1 (a), where all boundary con-
ditions are in termsof stresses. Firstly they use Filon's
solution to satisfy the differential equation (2.136) and boundary
conditions at the longitudinal edges. Subsequently the normal
stresses on the transversal edges, which arise from Filon's so-
lution, are approximately cancelled by a Ritz solution. The
coordinate functions of the trial function are poelynomials

which do not affect stresses at the longitudinal edges.

Sommerfield [36] in 1906 and Timoshenko [6] in 1910 provide an
approximate solution to the problem of Fig. 2.1 (a}, assuming a
double Fourier series as a trial function in the Ritz method.
Timoshenko assumes the denominator of (2.139) in the form

~
a

po]

L0 (w, )7 ax (2.141)
2 z

O —
Xi 0
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Let ¢ be a small distance to each side of the line |
stresses represented by
= () 2.14:2

T = T,

11 12

T 0 except at X, = O

22 7 1

[
P =-1im j‘ Tso dX,

—e -
e=0 Xino

when subtituted in (2.139) give the expression (2.141) employed
by Timoshenko. Therefore Timoshenko's solution corresponds to
stresses represented by (2.142).

Legget [37] in 1937 shows that Timoshenko's solution to the
problem of Fig. 2.1 (a) was at least 12.5% below the exact value.
Legget expands the load in Fourier series and applies Filon's
analysis. He observes that the stresses on the transversal edges,
which result from Filon's analysis, are self-equilibrating, i.e.
the force and moment resultants of the stresses on each trans-
versal edge are zero. Thus Legget concludes by Saint-Venant's
principle that the solution gives accurate stresses except near
the transversal edges and that for long plates (3.1/3.2 > 2) the
error diminishes.

Legget assumes a buckling shape

(-]

[+ -]
w=% T T;; sin o= X, sin =X (2.143)
i=1 .j=1 iJ 8.1 1 Efg' 2

Substituting (2.143) into (2.138) and expanding the hyperbolic
functions included in the stresses of Filon's solution, Legget
arrives at the expression

#

[--}
1 "
T K 5in szl SLnEEXE = 0

1 g=1 IS 1 )

i 8

r
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where the K:S are linear functions of the set of parameters

qij'
The conditions

3

Krs = 0
can be identified as & system of linear homogeneous equations,
which has non-zero solutions when the infinite determinant is

ZEero
I
det [KPS] =0

Legget solves the determinant, restricting the order to 8 terms
~ A
for several ratios al/ae.

Zetlin [38] in 1957 analyses, by the Ritz method, the symmetri-
cal problem of Fig. 2.1 (b) and presents graphs of the results.

White and Cottinghan [39] in 1962 study the problems represented
by Fig. 2.2, using the ordinary finite difference method for

both the plane and eigenvalue problems. They discreticize (2.136)
in terms of finite differences of Airy stress function and re-
striet the analysis to stresses prescribed on the boundary, as

in Timoshenko's book [40]. White and Cottinghan present graphs

of the results obtained for clamped or simply supported plates
along the boundary. They obtain, for control problems with a
uniform compression as the stress field, an error on the order of

2% .

Peklov [41] in 19606 solves the plane problem corresponding to
Fig. 2.3 by the "Load Compensating Method". He approximates the
elgenvalue problem both by finite differences and by the Ritz
method (with a double Fourier series as a trial solution). The
Ritz method yilelds results 0.7% above the finite difference
results. Peklov gives tables of ecritical loads for different

. FaS ~
ratios ai/ag.
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Rockey and Bagchi [42] in 1969 apply the finite element method
to the plane and eigenvalue problem of plates with ribs as in
Fig. 2.1 (¢). They use functions with discontinucus slopes for
the in-plane displacements and deflection w of the plate.
Rockey and Bagchl present graphs of critical loads for different
rib sizes.

I il N
T == !
A | pft t\pP tp
| r | L r
“ Ixz [ 2\ 1| )2 2
I O | el 1 | I —— | t f
tP X C
! Parabolic shear selc-:ct)iscfn
d distribution
2]
{a} Timoshenko & Legget (b) Zetlin {(c} Rockey & Bagchi
Fig. 2.1. Simply supported plates.
P P
P P £ -
1 fibi 2412
P P P HE B L
O 4 O L
(a) (b) fc)
Fig.2.2. Clamped and simply supported plates.
(White & Cottinghan)
P P
H |
e pA[m— rE
TR N1/ I
| | [ i
L e
PA Ap
2 2

Fig. 2.3. Simply supported plates.
(Peklov)
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2. LATERAL BUCKLING OF RECTANGULAR PLATES BY THE RITZ-~
SUBDOMAIN METHOD

e il el T e i P

Let €, h and C be the area, thickness and contour, respec-
tively, of a flat plate. The plate 1ls subjected to in-
plane conservative body forces ? on {1, to prescribed in-
plane conservative forces ﬁ?n) on the boundary Cl’ and to
prescribed displacements on the boundary 02. A Cartesian
coordinate system is adopted and the displacement compo-
nents of the plate's middle surface at the adjacent posi-
tion of eqguilibrium are denoted by PU,» w. The factor P
is to be determined in the analysis. UCL are displacement
components parallel to the unbuckled middle surface of the
plate, and w is the lateral deflection which is normal to

Ua.

The investigation of the lateral buckling of plates can
be simplified (according to Art 1.4) to solving two linear
problems

a) a linear plane elastic problem, which consists of
finding the Ua which satisfy the geometrig boundary
conditions on 02 and turn the functional m, into a
minimum, where

A 2
h=% [ I-E%?- [E], + E5, + 2(1-v)ES, + 2vE,, E,,] a0 -
51
3t
_ff'ﬁ.ﬁdn-j'w’(n)-ﬁ’dc (3.1)
Q c,
E =0 + U (3'2)

Yo Y,G o,y
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as previously expressed by (1.94), (1.95) and (1.91)
(although the circumflex accent has not been used
here).

b) a linear eigenvalue problem, which consists of find-
ing the ®w which satisfies homogeneous geometrical
boundary conditions on 02 and gives the minimum of
P, where

. >
= I D L, Wiy m2(1-V) (W4 Wapp ~Wiyp ) A0

P = Q (3.3)

”H”fﬁa%y%ad“
0

e

Previously denoted as (2.139). The flexural rigidity

is given by
>
Eh
D = ——p (5.4)
12(1-v°)

and the stresses T as

ya
_ _En
Tli = m (Eil + v EEE) (3.9)
_ _Eh
Toa = 7_2 (Epp + v Egy)
En
T, = (1-v) E
12 7772 12

3.2 Coordinate Functions* of the Rlitz-Subdomain Method.

o S T WA AN S Ak A v G G B R e N M M L S A e s W Gt M S b SR ge) WS e e eer ey b mm o

The Ritz-Subdomain Method (see Art. 2.8) consists of dividing
the domain of definition of a given minimum

*name given to the trial functions used in the Ritz Method.
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problem into subdomains. Local coordinate functions
continuous inside each subdomain are grouped to form
global coordinate functions (valid for the entire do-
main) and the latter i1n turn are used in a trial solu-
tion for the minimum problem at hand. In the case of
problem (3.1), continuous functions with piecewise con-
tinuous first derivatives are needed for Ua' On the
other hand (3.3) requires for w continuous functions
with continuous first derivatives w,CI and piecewise
continuous second order derivatives m’aB'

Rectangular subdomains can be used for studying plates
with parallel edges, as in Fig. 3.1(a), although in
this report only rectangular plates, as in Fig. 3.1(b),
are treated by means of rectangular subdomains. More-
over, two kinds of subdivisions are employed, the
uniform mesh of Fig. 3.1(c¢) and the variable mesh of
Fig. 3.1(d).

Let V be the function to be represented inside the
rectangular subdomain of Fig. 3.1(b) and V; be the
value of V at the corner i (i=1,2,3,4). The follow-
ing functions may be constructed using nondimensional
coordinates 5, m.

Pyramidal function (piecewise continuous) - The rec-
tangular subdomain is divided into two triangles as in
Fig. 3.2(a). The function V inside the triangle of
Fig. 3.2(b) becomes

Vo= (1-8-n) V) o+ 5V, + MV (3.6)

Hyperbolic Paraboloidal function (flrst derivatives

piecewise continuous).

Let X

i
E = —
ay (3.7)
X
n = 2
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in Fig. 3.2(c) be nondimensional coordinates and (éi, ni) the
coordinates of the corner i. The value of the function V in-
side the subdomain results, using Hermite polynomials of Zeroth
degree (see Holland and Bell [43, p. 386]), as follows

v =121 #(1+4 g E) (144 mym) Vy (3.8)

Birubic function (second derivatives piecewise continuous) -
With the help of Hermite polynomials of first degree

H(,8) = 4(8+3)° (1-8)8, + 1~ E; (3.9)

It

Hy(8,8;) = (5+3) (8-3) (5 + B;)
The function V inside the subdomain of Fig. 3.2(c¢) can be ex-
pressed as (Hansteen [44] presents V in expanded form)

y

2 [H (8,8, )H,(n,ny )V, +H, (§, 85 JH (n,m; )V, 08, +
1=

v

It

The continuity conditions for the Ritz method are satlsfied
taking hyperbolic paraboloidal functions for each of the dis-
placements Ua and taking a bicublc function for the displace-
ment w. In this form, cases where stiffeners and line loads
are internal (not belonging to the contour C) and parallel to
the edges of the plate can be treated with no additional com-
plications. On the other hand when bicubic functions are used
for Uu for plates with such type of stiffeners, special modi-
fications are needed in the computational scheme.

In this report bicubic functions for all displecements Ua’ W
have been chosen for the following reasons:
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It 1s desirable to investigate problems with high stress
gradient as in the case of plates subjected to in-plane con-
centrated loads. A bicubic function seems to be more able
to approximate a complicated shape than a hyperbolic para-
boloidal function. Furthermore, uniform plates subjected

to in-plane forces on the contour C1 are likely to have
continuous stress fields. A good function for approximat-
ing a continuous exact stress field probably is a function
whieh gives a continuous stress field. Bicubilic functions
for Ua preduce functions U which are continuous, and

2
consequently by (3.5) the resulting stresses are also con-
tinuous.

The requirements for computer storage are two global ma-
trices for the eigenvalue analysis and one global matrix

for the plane stress analysis. Thus for a given computer's
capacity the order of the plane stress global matrix should
be higher than the order of the matrices included 1n the
eigenvalue computations. For uniform plates with Ua given
by bicubic functions it is necessary to have 8 unknowns per
node (4 for each Ua) when determining the plane stress
distribution. The eigenvalue analysis made using a bicubic
function for w requires 4 unknowns per node and consequently
involves matrices of lower order than the order of the plane
stress global matrix.

The cholce of bleubic functionsg for Ua’ w suggests that a
more accurate treatment is to be given to the plane stress
problem than to the eigenvalue problem. This appearance 1s
so because Ua need only to be functions with piecewise con-
tinuous first derivatives and the actual functions employed
have piecewise continucus second derivatives. However, the
integrands of (3.3) depend quadratically on w while the in-
tegrand of the denominator in (3.3) depends only linearly on
U.. Therefore P is more sensible to errors in Ua than to

o
errors in w, making the use of efficient functions for Uu

advisable.
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Fig. 3.1. Plates subdivided into rectangles
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Note: ({,7) are non-dimensional coordinates

Fig.3.2. Some types of subdomains
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5.3 Discretization of Energy Integrals for_ Subdomains.

- e v P e e . e e —t e e PR e v ey B ey A e S SN e S e R B e eev mm S P

In this section the energy integrals (3.1) and (3.3) of plates
are discretizated using the Ritz-Subdomain methods with trial
functions of the form (3.10). 1In addition, energy integrals
for stiffeners are presented and discretizated in a similar

way according to functions of the form (3.10).

The derivatives of (3.9) with respect to the variable E become

! 2

Ho(g’gl) = - 12 gi g + 3 gi (3’11)
tt

H, (E:%i) = - 24 B, E

HI(E,E,) =36 +2 8 & -+

1M 2] 1 *

Hi (E,ﬁl) = 6 E + 2 gi

Derivatives of V in (3.10) can be obtained by using (3.11)

m
- T [ (8,85 )H (m, My )V, +Hy (8,8, )0 (M,My )V, 8.+
1= ’

<3

3
0

v

t ] T
+HG (8,8, JH, (N,My )V, oas+H, (8,8 )H (M,my)Vy 40342,

M
oV _ 1 '
S = B I8, 8 ML (1, Vo8, (8,6 (0, )V, 2y +

+H, (8,8 )51 (M, M)V, a4, (8,8 H (n,n)V, joaq8,]

(3.12)

3%y 3%y e

3% an

and similar expressions for
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2

It is noticed that each of the five derivatives %%; %%, Q_%
13
3V a2y
and has 16 terms of the form
ané aton

2

(bo + blg + b2§2 - bjgj) (do + dyn o+ dyn + djnj) (3.13)

where the constants bo’ bi’ b2, b3, do’ di’ d2, d3 are readlly
obtained from (3.11) (the total number of constants is

8 x 16 x 5 = 640).

Plane Elastic Problem (subdomain integrals)

For convenience the displacements U, are also denoted by

I
= U2
Let
A T
Y=y Vigag  Vyoa Vyap a,2,] (3.15)
N N 3 * ¥* T
1 = Vg Vigar Vypoay  Vygp 848

from which &i and &; are identified as vectors containing tﬂe
parameters corresponding to node i for the variables V and V
respectively. The paramefers (3.15) for the four corners of
the subdomain in Fig. 3.2{c) can be grouped as

- N
' A
% &
N A
Be= ¢ a ) Bo=( ) (5.16)
X X
A A
Xy Ny
L - J
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A

- such that p: are the local paramefers which correspond to the
displacements Ua inside the subdomain. For each displacement
U, a function of the form (3.10) results in

At
U, = o R (3.17)

with @ given by (3.10).

The first derivatives of the displacements Ua inside the subdo-
main can be written as

aUa"
EE
A Ax
» = Dy,1 5 (3.18)
om _J

A
where the matrix [Bij] is 2 x 16 and each of its elements Dij
(32 in total) is of the form (3.13) with 8 constants given by
(3.11). It is clear from (3.48) and (3.17) that

A
F

—
T
Il
~—
o>

. .1
" » (3.19)
;—W‘J

The integrand of the strain energy integral in (3.1) is

2, o+ ““UE +-(——li" ou

2 1-v .2
1,1 +U

1,29,4+2VUy (Up otU5 o550 U5 4

(3.20)
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' The strain energy corresponding to the subdomain in Fig. 3.1(b)
A

1s denoted by AT . Introducing (3.147) into (3.20), the varia-

tion of the energy for the subdomain becomes

s l —

T  1-v T | T 1-v T [ (A
'l T 2:1331 + ) %sesejalvgxlgse“"—'e"_'gse 5231 nl
It
o [ i (e
sam= [ [ T2 < WNE===— T T T Ay
A T i} h
_b% R, S J TN N BV T |\
) 2:15812"' .SB:EQ::L I%Jg%)gl ) 211231
L ] p—
(3.21)

A being the area of the subdomain in Fig. 3.2(c). Let aC, be
the portion of the contour C1 included in the subdomain's
boundary (AC1 may be zero). In addition, the following quanti-
ties are prescribed

a
2
§ = 5= (3.22)
aq
22
Q= (no sum)
a
A
a a
Y=-a_..g.=04_2 Q
1 1

A
where ¥ defines the relative size of the plate and Oy depends

on the mesh selected.

Let
Y, =§ (3.23)

E,as =/ Ia—Y_uﬁ_ d&dn (3.24)
AQ



_9'(._

From (3.24) and (3.49)

AA
gub - [f [ Dy4Dgy a&dn] (3.25)

AQ

where a, B = 1,2 have been used in the integrand since the
matrix in (3.49) is 2 x 16.

_ A
Each D, in the integrand of (3.25) is of the form (3.13), more
precisely

3
Dy = ( B, . Xy (120 G (3.26)

Using (3.26)
A A A A A A

AA AA 001285 P1a1 Py g 4+Ppg s oBJ
J ] Dy1Dp ja8an=(byy bOBJ ’ -

AQ A
bior.:s. 1AM 2a_ EBJ 3ai P18y _lwg&l) "

3 A

A A

ool 2BJ
x(doaidoﬁj+

A A A A A A A A
d d d

.d +4d d +d__.d, ..
Lol B3B3 T2alT2B8] BaiTl83 ai
, L » 254 28]

(3.27)

'*dial 1BJ'+d2a1 oBJ +
12

Since the coefficients of the ri§ht hand side of (3.26) are
known, the matrices gﬁi’ 522 andfg12 can be calculated. The use
of an electronic computer reduces the chances of errors.

By the chain rule of differentiation

10)

1
a,B = a‘g 3—*3— (1’10 sum) (3.28)

=

13)
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.and (3.24), the expression (3.21) becomes

A A
sam - ERo ) K (3.29)
1-v Ny A
ok, B
L J

where the plate thickness h has beeﬂ considered constant and
3t
the elements of the 2e x 2e matrix % are given by

AR A A

1-v 1
Kig = L1213 Y+ 72 P2015% (5.30)

A A
l{i+<-:-;.j+e = :2213

i A 1-v § 4 i-v
Kisgee = V81213775 Yo113 = V84013 T L4031
Ase R A iy M A
Kive;3 = 7 C1013 * o115 = 3 L1015 + Vo131

i=1,2,---,e

j=1,2,|o-,e
e = number of local coordinate functions for each variable
U, in the subdomain = 16 (for bicubic functions).

Introducing (3.17) into (3.1), the virtual work of the external
forces for the subdomain results in

6AA ah pan+l 6 P& a0 BII;*T /i\'* )
© r{ Al[;l p’“ (n ) ~a ~a

where

_ , o *a
= '[m[ ¥ PTdQ +A£1’cg Flp) A€ (3.32
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Eigenvalue problem (Subdomain Integrals)

Let AT  be the bending energy in the denominator of (3.3)
corresponding to the subdomain in Fig. 3.2(c). The virtual
work 6Ano can be discretizated following the procedure used
for baﬁo in the plane stress problem. To that effect let

- T
M= Doy ey gay w02y gpaga, (5.33)
e _ _ _
AT (3:31)
— _
3 2
(22 ] | %
3= 2E°
2 22T
3w * *
(20w || 2 7" = [0,.12 3.36
T
2% i
2Eam 3EJN
" J L =
: IO 1 |
Dy = §=1 bryy & ) £=o dlijn ) (3.37)
322 52,
£“3==J;é‘£§§ 2 dean = [[ J DyyDgd8aN] (3.38)
a B AQ
2 2
g 2% .
Cxe = [ [ dgdn = [[ | D..D,.dg&dn]
~33 .
aq 9Y9Y, 3V, 3V, AQ

Kherg the matrix [Dij] is 3 x 16. Substituting Dyi DBJ for
Dai DBJ in (3.27) the formula for computing ;aa is obtained.
in the same way £33 1s obtained by using D}iDBJ'



-100-

From (3.3) and (3.35)

6 AT

ll

o = J [ DUBW, 1 Wy g #VBW, gy WtV EL, 5y Wy +BW,s paWs oot
AQ

+ 2(1-v) 5, 4 5 m,lg)dn
T
2

#T T T T
8oy = 82 [ [ D(W,y19:05+VRsqq PopotVPinn Pay P ppPront

AQ

T 3

Using (3.22) and (3.38) in the last expression and considering
the flexural rigidity D constant

BAT, = == b [kij] 7" (3.39)

a-l ~
2 1 )
(i3] = [€4243Y +Lo01y 2! v(cigij+cigji)+2(1'“)c33ij];z;
1

For plates with uniform mesh (Fig. 3.1(b)), it turns out con-
venient to use

) wp o # *
sam, = & 6Z, [kij] Z (3.40)

aq8y

+* ) 1 o
[kij] = [51113 Y +oo4 ;5 +v(c12ij+c12ji)+2(1"“)C3313]EI?

The variation of the integral in the denominator of (3.3) is
expressed using (3.5) and (3.2) by

j [ Ty qus 00, 40 = j j (Uy 4 +VU5 o)w, 80+

1-v
e (U1J2+U2,1)(w,iém,2+w,26w,1)+

+ (U 8w, ] da (3.41)

2,2™VU; 1)Ws5
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Consldering the expression (*.41) for the subdomain of ares
(3.35) and (3.17) lead to

T
ur ..r T'YCL w’-v ﬁw’adn '62‘ .H‘jl[w’infp’j_ 2 (CP:itp,g +
AQ AT

T T T A T T
1920851 )@ otV 5P 500y Thy + [V, 1 05, @, o+

~

'*‘:E]_v(tp: 12?2"‘2: 2~’1)CP’1+CP’ o 0% BJG }dQZ

(3.41)

Using the chain rule of differentiation, (2.36), (3.18) and
(3.22) the virtual work expression (3.41) is transformed to

1 #p o # #*
[T Tyals (80 0 = = 827 "[s; ] 7 (3.42)
AQ a4,
where
* [( g 4yn 1 S y
855 = kzi GleV+ i jky ik+(113k;§ i jk ) Pox ] o (3.43)
A
Gy sk J I 11 1J D, gd5dn (5.44)
A Q
H 1-v AN s
k== J[D 11 Doy eKdgd“ f f De By yPogd8dn
AQ
AA A
Tigk= [ [ Doy Dy Dy agan

A A A
Jigx= Vv ff 1121 3Pok dEdn+——— [J DDy Dy dEdn+
A0 AQ
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e = number of local coordinate functions used for each
displacement U, (for bicuble functions e=16)

A

haK = components of the vecto:'ga

A Fh A#

h, = h (3.45)

~0 1—v2 ~eL

For plates where a uniform mesh is adopted (Fig. 3.1(c)), it
furns out convenient to express (3.42) as

_ _j-__ ¥ 2% *
{ £ T g sy 805, 40 = A 82 "[s;51z (3.46)
where
i € 1 A 1 A
Siy = K_Ei [(GinY + Hy gk ?)hiK+(IiJK;§ 0y ol (3.47)

The integrals GiJK’ HiJK’ Iin and Jin are symmetric with re-
spect to the indices i,j. Since any lndex can take values from

1 to 16, the symmetry conditions reduce the number of quantities
to be computed to 136 x 16 x 4 = 8704. Quantities Qg Which
oceupy a storage in an electronic computer of (136, 16, 4) can
be defined as follows

[Qr1 Quxe Qxz Qgal = (61 5x Higxk Tigx Jigxl (3-48)

i=i,.o-’16
j-—_-i_'-.o’i

1-16(3-1)-  ((§-1)5)/2) + 1

where the real number inside the symbol(&.?}is truncated to its
maximum integer.

The integrals (3.44) are made of terms of the form

1
AA A z 2 2 A m., o A
. D .. = . n
{ E|; Dai Dgj Dyxdsan I% & ) (E by (Z o k&) x
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3

2 A
o Pain )(qz & 83" )( SYKn ®)dn

J8

‘=

(3.49)
where (3.26) has been used.

The line integral along the variable & in (3.49) results in

(%5 g (B b . N Z b g b
T b, .E T b E b E2)dE =
It 1= lai m=6 mp J =0 nyK o oyK
A A A A A A A
ToPoykt91P1 vkt %Poyvk  91Pmyk* T2Povk* %3P1 vkt IuPoyk
+ + +
15 80
A A A A A A
o_b d, b +0_b o] b g b
505yK* O 2y %P1 vk 96 ok | O505yK! %6 sy o)
448 27501
where A
) .51
o, = boa;bosj (3.51)
A A A A
% = DoaiP1gi+P101 08
N A A A I Il
% = PugiPop 101185+ P2aiPogy
A A A A A A A A
O3 = DoaiPag 5 P11 285 P2ai P18 5 P 301 0B 3
A A A A A A
Oy = P141P3g5+Poq1Pop s P3aiP1py
A P A
- b +b
95 = PogiP3p357P3q1P2p 5
A A
% = P3q1P3g;

The integration along the variable n in (3.49) can be carried

out simply by substituting the coefficients d... for the co-
A

efficients b... in (3.50). Since the coefficients in (3.50)
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have been given by (2.12) and (3.11), the integrals (3.4%)
can be evaluated using an electronic computer.

Energy integrals for stiffeners

Several energy expressions for a stiffener placed from node 1
to node 2 in Pig. 3.2(c) will be considered. Then analogous
energy expressions will be given for stiffeners placed on the
boundary of the subdomain in Fig. 3.2(e¢). The stiffener from
node 1 to node 2 has a constant cross section of area S*, mo-
dulus of inertia I* and torsional constant J*.The stiffener
is elastic with a material of Young's modulus E* and shear
modulus G*.

Since the displacements U (also denoted by (3.14)) are given
by (3.17) and the deflection w by (3.35), it follows that

vl =¥ (3.52)
T] = —% ~
w , = XY
n=-% ~n~
S|, XD
N=-%
where
| 2 ! E
= [087 _ 3.5 _ 1y _og2, 3
X = [2g %E + & : 57 -3 % +g | -287 + ?é + %:
2 T
SO S (3.53)
A T
1=10v, aVy g Voo ayVp 4] (3.54)
T
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_*T

e T B PR W N *1%2"%, 12
Furthermore

X 2 31 .2 | 62,3 g2 !

X = 57 = [68 -5 | 3B -g-d | -68 + 3 138+ 801 (3.55)

A
v
gl -xn
n:_;:'l ~ ~t (5'56)
aw I
1 N
N=-% ,
32w _ 'T,l?*
omeg| T X
T=-
E "T
2 > =X Y
ag ~ -~
n=-
Let
1
* K 1 t
T
,,E :J' X X dg (3-57)
-%
T
¥* i
b =[x x ag
~J —’é’ -~ i
3 .
" T
=) xx x‘as 3 1=1,2,3,4
"~ —-% ~J
mn
» A
g =z 50y (3.58)




. From (3.

The use

PaR =

56), (3.57) and

AV 22
3% (3¢

of (3.55) into the integrals (3.57) gives

dg
n=-3%

6
5

Symm.

12

Symm.

A
=1

-106-

(3.58)

® A
T 51

~J

I ]
Ty
(3 T o
P | 2 1

1l

(]
2 ﬁa
R
2 =i

1 6

10 -5

2 - L

15 10
6 .
5

6 - 12

4 - 6
12 -

S
0

e e B

G

= O O

-

(3.59)

(3.60)
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- 108 -12 108 - 12
) - 6 12 1
1= [3==
[T -7 Symm. - 108 12
L - 6 -l
_ -
_12 -6 -12 1
. ¥ 6 -2/3
2 = 2
~ Symm. 12 -1
- 2/3
- _
- 12 1 12 -6
T -2/3 -1 -2/3
~ 70 Symm. =12 6
_ A
Let
*_% )
sy = S _{2-v7) (3.61)
ha, E
A
- I* E*
I, = —p—
D a X
« grg*
Jd. =
LS ph,

E and v being, respectively, Young's modulus and Poisson's
ratio for the plate of thickness h.

Several energy integrals defined below are transformed accord-
ing to (3'7)1 to expressions containing formulae (3.59), (3.22)
and (3.61), i.e.
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Axial energy

a #*
1 5 2 2 S
1 - v  Eh 1 AT * & (3.62)
3} [2 8 E (U ) LA AL A 1
a.i N==1
2
Flexural energy
&y I,
1 ¥ 2 D “1 1 .
3 [2 TE Uy, Wy =7 FTER LRI (3.62),
_3.1 MN=- 1 1 1
2
Torsional energy
2y I
P D 1 1 L L
T 2 awer Wi, X, =373 “—;— T 5 L (3.62)3
8y T=-% YO0 8%
2
Geometrical energy
a
3 9 1 4 1 T * g
_f; N=-2
2

The axlal energy (3.62)1 is to be added to the right hand side
of (3.1) while the flexural energy (3.62)2 and torsional energy
(3.62)3 are to be added to the numerator of (3.3). The effect of
the axial force in the stiffener due to the change in geometry
from the fundamental to the adjacent state of equilibrium of the
plate, represented Dby (3.62)y, 1s to be included in the denomi-
nator of (3.3) with a negative sign.

When a variable mesh (as in Fig. %.1(d)) has been selected for
the analysis, the vectors (3.54) are more conveniently substitu-
ted for the constant vectors

R AT v A v, 1} (%.63)
~o 1 1 '1,1 2 f V2,1 -0



=

~10 9

Y - [w a w A ]T

X, = [w 19,1 2 8 W

7 - [4 2.4 w 2. w 88 ]T
~o TS Wy G192 Wy 45 2 W o 12 %2 12

Both set of vectors (>.54) ang (3.63) are related bytthe ma-
trix

riL 0 0 0
a O 0
A
g = o (3.64)
L_Symm. al_J
as follows
A A
=g L
- A ,
L=8 X, (3.65)
- “x
Ye %s % Xo

Using (3.65) ang (3.58)

A Fal A A A
¥
1T . 1;P[ai £* a1 1 (3.66)

SEM % g =% 2 A # A -
~ 2l my Sy
-T s aT (A #* A )

o Ithmrary
-T*-—__-TA *® A

SEL ke ay
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The new expressions (3.66) are used for calculating the ener-
gy integrals (3.62). It 1s noticed that the matrices included
in brackets 1n (3.66) can all be expressed by the functlon

_-n--n- 3 44t #*4 ——]
tiq  Bip P13 Bty
D, 1t D ##
- B t,, Btpz Btoy
Qo(t !bola):'bo 34t 34t (3'67)
ot & B8t
Symm. 33 4
2t'ﬂ"ﬁ’
i B %]

provided that proper values are glven to the symmetric 4 x 4
matrix Ef* and to the constants D, and B.

Energy integrals for stiffeners located at any of the edges
of the subdomain in Fig. 3.,2(c) can be calculated in analo-
gous manner. Table 3.1 presents the analysis of the inte-

grals
a
A A ow w0
_ 3
Te)n = 2 [2° s ETU,,, ax, (no summation) (3.68)
a edge
__A
=z
a
To)n = 2 Wa\a A
_%L edge
2
%
o * #
ﬂ(})?\ = 5 ! 2 JG w,iz CD(.A
#%A edge
2
2
1 *_% D
T\'(u_))L = 7 [2 S E U?\,?\.m’l dxl
._il edge
2

Likewise an approximation to (2.14) requires the compubation
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2y
7w S S

n(5)1 = J‘ w A A 2a

7q
2 M
2

edge

where Bk = O in a variable mesh, B

#*

1 -
o(® "o B,\)z (no sum.) (3.68)

= 1 in a uniform mesh

and ¥ taken as shown in item (2) or table 3.1.

5
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Work of external edge loads.

\F \F i AF A’%n a,
11 @
.._.-4-/

; %
; ; R R

1 2 "5 7 S5 7 ¢
(a} Linear edge load (b) Constant edge load (c} Spline edge load

U
A g,
_ 3%
Fig.3.3. Some types of loads on GI;I_ A B
the edge 1 to 2 of g a,
rectangular plate o

Consider a subdomain near %o a boundary of a plate, for example
that shown ih Fig. 3.3 To simplify matters, let the prescribed
external load acting on the contour of the subdomain be denoted

by
F?i) - F (3.69)
#92 =3
F(n) = F

# - —3
and F; (or Fi) represent the values of F (or F ) at the nodes
i=1,2,34.

A linear load applied on the side 1 to 2 in Fig. 3.3(a) is ex-
Pressed by

r Fq
F=lz-8!4%+¢] F, (3.70)
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The contribution of the subdomain in Fig. 3.3 to the contour
integral in (3.1) is

a 1

1 - AT =
J2 Fu, X, =1 a, [ F Xd8 (3.71)
T -3

where (3.52) has been used for U, =V.

The result of introducing (3.53) and (3.70) into (3.71) is

> 2
3 11/24 9/24 (7,
[x Fag = 7= {j} (3.72)
-1 ° 2 Fo

-9/24  -11/24

For a constant load as in Fig. 3.3(b), the sum of the two
columns in the matrix of (3.72) gives

- a
3 1/2
[ xag=( /12 (3.73)
~ 1/2
-3 -1/12
- -
For loads distributed according to spline functions
- M T
Fox [F  Fpea T Tyl (3.74)
the integral in (3.71) becomes
¥ - 7 B a
["xFag =[x x a8 SO (3.75)
-3 -3 Fa
_Fo,1 2

where
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156 2 51 13 |
} . ; oD ¥ 13 -3
I x%x" = 55 | oy 43 156 e (3.76)
E =13 -3 -22 Y

Eq. (3.75) contains as particular cases the linear and con-
stant load distributlons, given respectively by (3.72) and
(3.73).

A A
From the definitions of 1 in (3.5%) and hT in (3.17)

A Ay Ay e Ny T
i - [hai hos haS ha6] with -1

In the abscence of distributed loads (P - 0) the last ex-

pression together with (3.31) validate
(" B

Fy >
% g %
P

a,
= [2 F u, dx, with a = 1

.
Hy > >
o]
no

I

Q
1

*

*

>
Q
)
.

_
Age
and the remaining components of Li are zero. This example

illustrates how (3.62) can be computed.

In completely analogous manner the loads B of (3.69) can be
distributed according to linear, constant or spline functions.
The formulae obtained are (3.72), (3.73) and (3.75) with aste-
risks over Fy and Fi,i (i=1,2).

For loads prescribed over the transversal edges of the subdo-
main in Fig. 3.3, (3.71) may be written

a, 3
= A -
[2 F U, X, =L " a, _[‘1 Fy an (3=77)
2

where for the edge 2 to 4
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3.4 Discretization of Energy Integrals for a Plate

It has been already described how integrals of the form (3.1)
and (3.3) can be calculated restricting the integration to a
typical subdomain and to a typical stiffener. The sum of the
energy integrals of the subdomains and stiffeners inecluded in
the plate, as shown here, can be performed by various matrix
operations.

The plate of Fig. 3.1(c) is loaded on the boundary C1 and
eventually reinforced with stiffeners on C. Ritz-Subdomain
bicubie trial solutions for Ua and w inelude the parameters

[ !
|
(Uq) U, 42, Uy 2%

and (3.81)

a_lyg

r _ .
1U1,1221%2(Va Vs, 121 Up 0851Up 40258,]

[w W, a, W, 52, m,12a1a2]

at each node of the plate.

Plates with stiffeners located inside of their boundary C de-
serve special attention. Consider that the plates of Fig. 3.4
and Fig. 3.5 include stiffeners of cross sectional area S*
which carry axial forces

3%
T, = 8 Uk,k (no summation) (3.82)

From Fig. 3.4(a)

+*
N + 8 U

Tip = Typ 2,00 (3.83)

Sinece the displacements U, 2are continuous along the gtiffener
(X2 = const, ) U2,22 is continuous and

= ur

u 1,2 = V1,2

1,2
The last equality introduced into (3.5)3 and (3.8%) gives

- g 2(1+v) *
U2,i = U2,1 + e S U21223 (3.8%4)




-118-

i.e. U2 1 is discontinuous along the stiffener.
3

liz i uiz
E An - in
3|2 3[4
# - y 76
= >—(1 *'“>—<1
T, +T,,dX S
1 2+ 12872 2 dX, )
Tﬁdizlgr *dX, Idiz Ty = = e 7y + 7 X,
J, Ti2d X4
T dX
2 e
(a) Transversal stiffener (a) Longitudinal stiffener
Uz Uz
: Uz 7
- X -
1 3 %2 1 2 ‘
(b) U,, discontinuous along the (b} U,, discontinuous along the
transversal stiffener longitudinal stiffener

Fig.3.4. Plate with transversal Fig. 3.5. Plate with longitudinal
stiffener stiffener

As shown in Fig. 3.4(b), the derivative (U2,1)’2 need not be

the same on both sides of the stiffener. From (3.52)3 (replacing
w for U, and n by £) it is observed that, for a particular =,
U2,1 in the segment between the nodes 1 and 3 of Fig. 3.4(a)
depends only on the values of U2 1 and U2 12 at the ends of the
segment. Thus, the condition (3 84) can be approximated in a



-110 ~

Ritz-subdomain bicubic analysis by using 10 local parameters

!
a1 u

! ! | -
[Ui;ul,ialiU1,2a2:U1,12a1a2IU2'UE 1211 92,02 Uz 19225
+ | -
Ua,1 1IU2 12382 (3.86)

at each node located on the stiffener. The parameters at the
remaining nodes are § and are given by (3.81).

Following similar development, from Fig. 3.5(a)

- + +*
Tio = Tgp + 5 Uy 44 (3.87)

Since U_ are continuous along the stiffener (X, = const.) U
a il 1,11

is continuous and

.{
2,0 =0

U 2,1 = Uz 4

The last condition in (3.5)3 transforms (3.87) to

++
U, = vty 20avis (3.88)

1,2 Eh 1,11

Fig. 3.5(b) show the discontinuous Ui » and U1 1o along the
stiffeners. From (3. 56)2 it is deduced that Ui » depends on
the coordinate Xi and the values of U1 o and U1 12 at the nodes
located along the stiffener. Thus along the stiffener, the
vector of 10 components

| i { !
!
[Ui 1,1 1}“1 225Uy 1231a2'U2'U2 1217 V2,085 Vg 1231a2
U3,z 2}”1 12218 (3-89)
replaces the vector (3.81).

Since the number of parameters per node has been determined,
it is possible to define global vectors which include the pa-
rameters of all the nodes of the plate. Thus, the global vec-
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tor g* includes all the parameters involving U o Ua 8 and Uu,12
at the nodes. The global vector g includes all the parameters
involving w, w,a and Wy 4 at the nodes. As started here, in
the remaining of this chapter circumflex accents will be placed
above vectors and matrices which belong more properly to the

plane stress analysis.

Plane stress energy integrals (entire plate)

A
The vectors g; in (3.16) and {3.15) have been used for uniform
mesh cases as in Fig. 3.1(c). However, for variable mesh cases
as in Fig. 3.1(d) it is more convenient to use the following

vectors
Fal A A A A
ui=lVy Vi a8 Vi,0% Vi 40 298] (3.90)
/\* % * A * A 3 A A
v={Vy Vg3 Yy pas Yy 452435]

At A Ae  Ae Ayl
ho=ly) B Xz Nyl

. .
(Vi; Vi) denoting the displacements (Ui; Ug) at the corners
i= 1,2,3,4 Of Figc 302(0)0

Let
*
ry = i
*
i+l = @
* 1
o = O i=1,5,9,1% (3.91)
3t
r':s.+5 u1u2
i+16--- P 3 i:i,"',i6

where the o, are given by (3.22)2
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Using the dlagonal matrix

ki3
the relationship between hu of

1

A

~d

or in another form

~

Ny
1

#*

2

o>l

-
A

—

,

—

g**
1

< Q**
Nﬁ
.

where T is a dianonal matrix

~

13>
1l

FAN
(3.16) and h:*

(3.92)

of (3.90) becoues

(3.93)

(3.94)

(3.95)

The local parameters belonging to a subdomain can be found in

the global vector q and thus

%

0> > > >
IF—“D‘* ZI\JB‘* 2}*3

N %

*

*

T >

1>

A*
q (uniform mesh)

Ny
q (variable mesh)

(3.96)
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Ay
(the meaning of g 1is slightly different for uniform and va-

i~

riable mesh).

For a segment of stiffener the same type of relationship (3.96)
exlists. For example, for a segment between nodes 1 a 2 of the
subdomain in Fig. 3.1(b)

A ANy

1=R g (uniform mesh) (3.97)
~ ~ ~

AN Ay

1= R aq (variable mesh)

in accordance to (3.54), and (3-63)1.

Defiﬁing the matrices

AN Ay
k = k (uniform mesh) (3.98)
A Am A A Ap g
K=T k' T = [k, ror.] (variable mesh)
A*
A T
£={ (uniform mesh)
~ j\*
o
A*
A A fi .
f =T (variable mesh)
~ ~ A*
)

the expressions of virtual work for a subdomain with a longi-
tudinal stiffener segment become

A

AT A A
Eh * T o~ T
5ATTO = 1—_—\;§ 62 R E E E (3'99)
A Ayn A ' A A
_ _Eh #0 * o *
o D S % ) T

where (3.96)2, (3.97)2, (3.31) have been used. The arguments



bi amd By take the values given in Table 3.1.

Introducing (3.98) into (3.32)

A
*
external virtual work for the subdomain - 6q Tf (5.99)3
The total sums of quantities of the type (3.99) yield
Ay A A A Agm Ay
Eh *T
b, = L bAmg + I &1 + o = ——= 6q K q
° A) long (1)1 tran (1)2 1-v2 ~
(3.100)
A Agm A Ay
oM. = T 6q L f - 8q °F
A o~ ~ ~ o~

where the symbols g, I and T denote total sums of strain
AQl long tran

energy ror, respectively, the subdomains, the longitudinal stif-
feners and the transversal stiffeners. Tn addition, the notation

A A A A A A A

K- £ R kR+ z RTq(t; bys By) Ry+ T RIQu ok o )

~ AQ ~ ~ ~ long ~~ ~" ~ ~ tran~Te- V& P MosFo -E?
(3.1201)

A Ay A

=z RT f

~ AQ ~ o~

has been introduced. The arguments ba and aa take the values
given in Table 3.1. ba may be different for flexural, torsional
or geometric contribution of virtual work. 15!)L = Oy for variable
mesh cases and Bl = 1 for uniform mesh cases.

From (3.101)

5 Ngm N Ay P
2 5q" k" - 8™T E (3.102)
1—\) ~ ~ ~ ~
which implies
AA A
Kg=F (3.103)




-124 -

(3.104)

The solution vector g contalns the vectors gadefined by (3.45)
which are needed for:computing the geometri? subdomain matrix
s*of (3.47). Since K 1is a symmebtric band matrix, Choleski's
Tethod for band matrices can be used for solviRg (3.103). In
this way, only half of the band of the matrix K needs to be
stored in an electronic computer when the solution to (3.103)
is to be carried out.

Eigenvalue problem integrals (entire plate).

Following a parallel development to previous plane stress ana-
lysis, the parameters corresponding to a subdomain in Fig.
3.1(d) are defined as

A A A A
[wy, w48y W5 o8, Wy 402985] (3.105)

2 =
if

AR BRI
The connection between Z and the vector E* of (3.34) is

3*
Z =

¢ Far

Z (3.406)
~

with T given by (3.92).

The global parameters g and the local parameters belonging

elther to a subdomain or to a longlitudinal stiffener are re-
lated by

3t
Z =Raqg (3.107)
-t ~
¥ =R
L Tl
-3F 3+
Rl
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- -
where the vectors ¥ and ¥ are given by (3.54). Similar rela-

I~

tionships exist between g and the local parameters involved in
any of the expressions (3.68)2, (3.68)3 and (3.68)4.

Defining

kK =k (uniform mesh)  (3.108)
- L

k = P K & o {k* r*rf] (variable mesh)
*

s = 5 (uniform mesh)
_m . S .

s =T i Z = [Sijrirj] (variable mesh)

the expressions (3.39) and (3.42) become

AT, = 7% 6 q° R k R q (3.109)
a ~N e e
1
' S N |
T w, dw, dO = =
II yo Yy o Ql ﬁv .E i E E

Introdueing (3.107) (or similar relationships between local
and global parameters) into (3.109), (3.68),., (3. 68)

(3. 68)4, the total internal virtual work 61':'g fo: the stlf“ened
plate is obtained. Taking into account that Gn is also equal
to the total geometric virtual work, the follow1ng formulas
are deduced

611-; = 5 6ATT + I (61T(2)1+6TT(3)1)+ z (6“(2)2+6ﬂ(3)2)

AQ long tran
(3.110)
- %%- & qT K g , (variable mesh)
a ~J [an I Y]
1
D T .
= 57— 6 q" K q (uniform mesh)
aa i~ ~ o
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I
fm:-P(zJ‘T w, 6w, 4O+ T BT BT )y yo)
° AQ j Y long (4)1 tran (#)2
AQ
(%.111)
T
= - P ﬁL- 5q- S q (variable mesh)
a ~ ~o~
1
1 T .
=-P= 64g 8Sq (uniform mesh)
1 ~ o~
where

T T i+ +#*
K=2 RKkR+7T [R b, b R, +R tb R'] +
~ An ~ o~ lOHg ~1 S;o (NJ 1’ ﬁi)ﬂ;l 1 NO( 1151) ]

+ T [R Q (b - IR +Re Q (t DsP )R ] (3.112)
bpan 2 o0 2 RTR ol rr2rF2
S=% RRsR+ZI R Q(q,i,Bi)R +T RIQ, gbg,ﬁg)ﬂ
~ A~~~ long nd ~ tran~~°

(note that by and B, take the values given in Table 3.1)

From (3.111) and (3.112)

i (3.144)

A
Pa1

which constibtutes a linear eigenvalue problem between two ma-
trices.

3.5 Construction of Global Matrices by Electronic Computers.

An attempt will now be made to exklaln how an electronic com-
puter can calculate the matrices K, K and g given by (3.101)
and (3.1i12).
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The sum indicated by (3.101), can be performed, using electro-
nic computers, by first establishing the zero matrix

PR

=0
~

Subseguently each subdomain matrix E is partitﬁoned and its
parts are properly stored in the matrix K as shown In Fig.

3.6.

Let L be the order which vy (see (3.14) and (3.15)) occupies
in the global vector q Tfor each of the corners i = 1,2,3,4 of
a typlcal subdomain in Fig. 3.6. Consider a segment of the
longitudinal stiffener of Fig. 3.6. The contribution

[QOij] = QO (t*: 14 1)

i~ ~

A
of this segment to the half band of K (Fig. 3.6(d)) can be ex-
pressed by

J = 1:2:5:4 (5'115)

R

K = <(i—1)/2\ +1

1= <(J-1)/2> +1

m = Ll -1+i-2(k-1)

n = Ll+j-2(1—1)—m

A A

Kmn = Kmn + Qoi
where the real number included in ...:> ls truncated %o its
maximum integer and the operation

A A .

Kn 2K + -+ (3.416)

indicates that the variable to the right hand side is modified
while its storage place in the electronic computer remains the
same.
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9imilar schemes to (3.115) can be dﬁvised for storing the ma-
trices Qo of (3.101h_in the matrix XK.

The case of plates with intermediate stiffeners (in the sense
that they do not lie on the boundary) needs special considera-
tion. In subdomains above the intermediate stiffener (Fig.
3.7(a)) instead of the local vector of parameters

Mg Mep Aamp T
E = [21 22 ] (%.117)

the following vector 1is used

T

A
g™ - [(3.89)node 1; (3.89)node 2; (3.81) node 3; (3.81),nodel]

Pl

(3.118)
where the subdomains' nodes are shown in Fig. 3.2(ec).
By using (3.148), the virtual work (3.29) becomes
A gh  Dwxp N Pew
= 1
b AT 7z 6" d, H (3.119)

A
k, being a 36 x 36 matrix yet to be defined.

~

3ince the components (notation (3.14))

Ags Axa Nag DA - [ e | 1
[B5 Hy Hjz Hyl = [V 5% :V1,12a1a2: Vz,zaegve,iaaiae]

do not contribute to the virtual workA(3.119) of the subdomain
above the stiffener, the elements of Eo are

A

koij = 0 i,J = 3,4,13,14 (3.120)

In the same way for a subdomain to the right of a transversal
stiffener as in Fig. 3.7{b), it is found that

T
A** _ [(3.86)n0de 1; (3.81), node 2; (3.86)node 3; (3.81)node 4]

~
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A'ﬂ'* A** A'ﬂ'* A*% ) +#* . I 3. ) # [ -
[Hg Hg Hpy Hpgl =" [V 424 :V1,12a1a2} v ,1a1:V 102 85]

k =0 1i,3j=6,8,24,36 (3.121)

oi]

where the nodes are numbered as in Fig. 3.2(c) and the nota-

tion corresponds to (3.14).

Agese A
The comparison between H and H of (3.117) yields
~J

~J

Ag Ay g
Hy = Hj (3.122)
where 1 = 1,...,36
1=0
= a1 (3.123)
o =1 for longitudinal intermediate stiffener
a = 2 for transversal longitudinal stiffener
Ad 3t
o =0 to satisfy conditions (3.120) or (3.121)
A
n, = [1; 2; 0; 0; 17; 18; 195 20; 3; 4; 5; 6; 0; 0; 21;
22; 23; 24; 7; 8; 9; 10; 11; 12; 25; 26; 27; 28; 13;
T
14; 15; 16; 29; 30; 31; 32]
A
ny = [1; 2; 3; 4; 17; 0; 19; 0; 48; 20; 5; 6; 7; 8; 21;

22; 23; 24; 9; 10; 11; 12; 25; 0; 27; 0; 26; 28; 13;
T
14; 15; 16; 29; 30; 31; 32]

From the bilinear form (3.119) and (3.122) it is concluded
that

i=1,...,36 (3.124)
J=1,...,36
A
e 2&1
l=n

= Dy
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= 0

A
= kg

A
which constitutes the definition of k for a given a=1 or o=2.

Following Flg. 3.7, the upper half of the matrix k can be
stored in the upper half band of the matrix ﬁ performing the

operation
A A A
Kmn -» Kmn + koij (3.125)

in Triangle 1

J=1,...,0

1,l'l,j
As

m = Li + 1 -1

n=Jj-1+1

a
1

in Triangle 2

J = Oa+1’-.-,36

i= Ou+1,...,3
Ay

m = L3 + 1 - Oa

n=Jj-141+ 1

in Rectangle 3

i=1,---,o
J= a+1’|..’36
m = + 1 -1
3
*
n=1I,+7J-1
where
a =1 for longitudinal intermediate stiffeners

o = 2 for transversal lntermediate stiffeners.
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Using (3.124), the operation (3.125) can be written

K =n (3.126)

ol

1 =n i
a A A A

if kl# 0 then Krn - K + kkl

i.e. the matrix Q need not be computed since Q can be stored
directly in K

The storage of the matrix k in K (or s in §) of the eigenvalue
problem can be accomplished by a partition of the matrix K

(or g) followed by a storage of the resulting submatrices in
K (or g8). It can also be achieved in the following form

J=1,...,16 (3.127)
1 =1,000,]
k =<(1-1)/4> 1
1= <(J-1)/4>+1
m=1IL -1+1- b (k-1)
=L§:+J—4(l-i) - m
Kmn = Kmn + kij

*

where Lk is the order which the parameter W off the node k

(see (3.33)) occupies in the global vector q; k = 1,2,3,4.
~4

The final representation of the matrices K and g is shown in
Fig. 3.10. The numerical precedure adopted here (next section),
Justifies the use of the computer's storage pattern shown in
Fig. 5.10. The matrix $ is expressed Iin terms of the matrices

py o 3 )
S, and 3, . The scheme (3.127) can be altered as follows

- -t
if 1 > 8; then Sy, 2 Sy *+ S

. 13 (3.128)
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otherwlise
n-=yJ-=-1
-3 -ttt
Smn -» Smn + Sij

The plane stress distribution of the plate shown in Fig. 3.8
is conslidered to be similar in nature to (2.142). Since the
integral (2.141) is made of integrals of the type (3.68)5, the
geometric virtual work (3.211) only involves nodal parameters
defined along the line of action of the load. Consequently,
if the nodes are numbered in the order shown, the matrix 3, of
(3.112)2 only has nonzero elements in a small area. Imagining
a stiffener placed along the line of action of the lcad P in
Fig. 3.8 and considering a segment thereof, the expressions
(3.68)5 indicate that each go(g*, é%y ﬁx) is stored in g in
exactly the same manner as the stif}ener‘s flexural matrix
QO(RT’ Dy, Bl) is stored in X. Thus, the computation of 3

for the plane stress distribution (2.142) does not present
new computational problems.
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Number of unknowns per node
yJrat the given horizontal line

121 ——{129}——{137 f—metis 5H——153 8 ®@@@®®©®
@
81 89 g7 105}—{113 8 %
o
41 49 57 65 73
8 @
1 przd 9 Zzzz17 ez 25 ez 33 8
{(a) Rectangular plate showing the (b) Partition of E into
subdivision i subdomains submatrices 4x4

The number inside indicates
the order assigned to the first
nodal displacement component

in the global vector of para-
meters g*

~

Number of column
57 a7 112 1 41 56

DE® RVB®® Oee® OO®®

57 ®
®
@
®

97

clclele]

12

1——Nurnber of row

(¢} Global matrix K The storage {d) Half-band storage of the
of k into K is shown here for symmetric matrix }:<
the subdomain marked with
@ Cross

Fig. 3.6. Uniform rectangular plate subjected to in-plane loads on
the external boundary.
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g 3 13 147 155 163 61 71 107 115

71 )

10 |1 }===:51 """ 61 === 71 m*i
1 J 9 {17 e 2533 ]—-Number of row

Number of unknowns per

—

— @

node at the given 107 7
horizontal line. I { 3
115 | I
X
The number inside indicates K

Storage of matrix E for the
subdomain marked with a cross,
into global matrix K.

the order assigned to the first
nodal displacement component
in the global vector §*

Fig. 3.7 (a). Rectangular plate with two longitudinal stiffeners.

127 135 143 153 161 59 69 101 1M1
: ' 59 1

85 93 101 111 119 = -

_E_ i 69 ' l 3
43 51 59 69 77 |

1

g 17 27 35

Number of row

E 8 8 8 8 8

Number of unknowns per 101 2
node at the given _
transversal line. "M ”

Storage of matrix E* for the subdomain
marked with a cross, in the global
matrix K.

Fig. 3.7 (b). Rectangular plate with two transversal stiffeners.
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A
After the matrices K, ¥ and $ have been computed, it becomes
necessary to introduce the geometrical boundary conditions'
effect in such matrices.

By using the present functions, it is possible to prescribe
Ua’ w and w, at any segment along the boundary or inside the
plate simply by sizing the subdomains properly, as is the case
shown in Fig. 3.9(a). In the same figure, the following cases
may be present, simultaneously or not

a) U_ = 0 between T and II (see (3.52)1)

i.e.U_ = Uy,4 = 0 at nodes I and II (3.129)
L]

b) W = 0 between I and II (see (3.52)1)

i.e.w = W,y = 0 at nodes I and II

= 0 between I and II (see (5.52)3)

i.e.w,2= Wy 5 = 0 at neodes I and IT

d) U, = 0 between IIT and IV (see (3.52)1)

i.e.U. =1 = 0 at nodes III and IV

a s
e) w = 0 between III and IV (see (3.52)2)

il.e.w = w,2 = Q at nodes III and IV

£) w,,= O between III and IV (see (3,52)3)
i.e.w,1= Wygn = 0 at nodes III and IV

The conditions above represent: b) and e) simple supports,
c) and f) guided supports, b) + ¢) and e) + f) clamped sup-
ports.
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64 [ 1i-#

49 53 57 61 11 | | I=first nod_cl
parameter in
the global

P 33 37 41 LS--E vector g
< b
17 21 25 29 L6
18
64
1 5 9 13
{a) Plate (b) Geometric matrix S {c) Computer’s storage

Fig.3.8. Plate with a rigid fiber along the line of action of a force.

< &
X2 d
7
%
, Y %
4]]1 /éU1=T12-0
g,
% %
G777 = X1 :
I I (]
Fig.3.9(a). Boundary conditions Fig.39(b). Half ofa symme-
for a ptate trically loaded plate
— \%\ - Inclined line of zeroes
| GX —1 .« 10000.... horizontal line
\% E ‘ of zeroes
i
AN ‘
(a) Matrix K (b) Half band of K
§*§**
2 2

A

(c) AgK q= S q {d) Computer’s storage

Fig.3.10. Sketches showing the effect of the geometrical bound.cond.
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Point boundary conditions can be treated by making the point
under consideration a nodal point. For example, w =0 at T
and II produces a deflection pattern which is only zero at
the ends of the intertal I - IT. Likewlse, w,2 =0 at T and
IT makes the normal slope w,, Zero at the ends of the inter-
bal I-IT and not in between.

As for the symmetrically loaded plate of Fig. 3.9(b), other
conditions besides the geometrical boundary conditions can
sometimes be satisfied exactly. In this case the condition
at the line of symmetry is U, = T12 = 0. The condition U1 =0

1

for the edge implies U1 n = 0, which t gether with T12 =0
produce U = 0. Finally the condition U, = U = 0, for
2,1 1 2,1

The edge of symmetry, is satisfied by setting
Up =Up,0=Us,4 =U; 45 =0 (3.130)

at the nodes located on the symmetry line of Fig. 3.9(b).

It is also necessary to pay speclal attention to boundaries
where stiffeners end, as for X5, = 0 of Fig. 3.4(a). The boun-
dary condition U2 = 0 for X2 = 0 implies that at the stiffe-
ner,

U = U =0 for XE = 0 (3.1%1)

2 =Vp,1 =
i.e. one more condition than the remaining nodes located at
22 = 0.

The boundary conditions Just discussed lead to expressions of

the form
A
a, = 0
A A

where A 1s the mth. component of q and q, is the nth. compo-
nent of g. In order to represent (3.132) in the global equa-
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tions (3.103) and (3.113) it becomes necessary to set

A
Kin = 2

the remainder of the mth. row and mth. column of

I (3-133)

K_=5_ =1 (3.134)

the remainder of the n th. row and nth. colum of
K and 3 = 0O

If the eigenvalue problem is solved by an iteration procedure
which employs a starting vector 9(0)’ then
Ao)n = ©

The schemes (3.133)} and (3.134) have been represented 1n Fig.
3.10 as well as their effect on the actual matrices handled
by a digital computer.

3.6 Tteration Procedure for Finding the Eigenvalue of Largest
Magnitude.

The matrix elgenvalue problem (3.113) can be solved by an iter-
ation scheme (see Faddeeva [45]) where starting from an assumed
eigenvector the procedure converges to the eigenvector belong-
ing to the eigenvalue of largest magnitude.

The positive definite symmetric band matrix X can be expressed
as a lower triangular matrix L multiplied by an upper triangu-
lar matrix §. As shown by Forsythe and Moler [46, p. 28], for
a gliven vector W, the solution to the system of linear equa-
tions

Kqg=W
~ o~ i~

can be obtained as follows:
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2) Triangular matrix decomposition

K=L3
Lij = Uji s 1+ 3
Lig =1
i.e. LT and E differ only in the diagonal.

b) forward elimination

At

A
rEg

=W solve for
™~

c) backward substitution

1S
2.Q

= X solve for g

~d

The above considerations lead to the following procedure:

Data Ks 3 matrices stored in the digital computer
as in Fig. 3.10(d))
q(o) initial vector of 1 unrestrained
~ el ol it Qo)1 = 0 geometrical B.C.
Prescribed
€ relative maximum difference between suc-
cessive values of tﬂe largegt eigenvalue's
magnitude (from 10~% to 10-
Y
A - 1
(o)
k=0
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K=LU triangular decomposition. The upper
~ -~ half band of K is replaced by the up-
per half band of U
', )
E(k—i) - E 2(k—1) matrix multiplication
Y
E E E(k) = E(k—i) the vector ) s obtained by
forward elimination + backward
substitution
K(k) - component of q(k) which has maximum magnitude
¥
Q =2 Q.. /) normalization
Se) T k) (k)
i
|y - _ﬁ\\ true
kk)x (eul) ¢ = STOP
(k)
r
False
Y
k- Lk + 1

%.7 Computer Program

The computer program includes the following subroutines:

FKIJL
SPLAN

SEVR

SEVRMD

)

function corresponding to (3.27).
A A A
uses FKIJL for computing Cii, £y, and L, of (%.25)

A R ]
from {(3.30) computes k = (uniform mesh) and par-
A ~4 N\
titions k as in Fig. 3.6(b).

>

Am Ay A
i 3*
from (3.30) and (3.9%) computes k = T~ k T
~ ~ ~J ~
(variable mesh) ard partitions f as in Fig. 3.6(b).

~d




ASGB2

AXTAL

DIASYM

CHOL

GIJK

GMATX

GMRIB
GEOM

ASBK

FORCE

PART

PARTMD
DIAEK
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together with ASGBL produce a similar effect as the
scheme (3.125). This subroutine is to be applied
to subdomains located to the right of a transversal
Intermediate stiffener (Fig. 3.11(a)) or to be
applied to a subdomain located above a longitudinal
intermediate stiffener (Fig. 3.11(b)).

the stiffener’'s matrix (3.67) (Table 3.1) is stored
according to (3.115) in a global matrix.

represents the effects shown in Fig. 3.10(b) produced
by homogeneous geometrical boundary conditions. This
subroutine 1s based on the scheme (3.132) which modi-
fies a global matrix and a column vector.

iolves the system of linear equations (3.103) where
X is stored in the computer as indicated in Fig.
3.140(b).

function corresponding to (3.49), (3.50) and (3.51).
computes the quantities Qijk (136, 16, 4) of (3.48)
making use of GIJK in accordance to (3.44).

determines r”, [E: E5 and [E'of (3.60),

ﬁf is calculated using (3.42). Since for a uniform
mesh s = Ef or for a variable mesh s = TF s T, the
matriX s can be established and partitioned if sub-
matricé;.

= -
s 1s stored in‘ﬁ* and‘§ * in accordance to scheme
(3.228) and Fig. 3.10(4d).

the geometric matrix for stiffeners (3.58) (or
(3.66)5) is computed and stored in a matrix g of an
adjJacent subdomain.

partitions a mabtrix kX 1n submatrices.
3* — -
given E, partitions the matrix E = E? gf T

similar to DIASYM except for the modification to the
column vector which is avoided.




ZERH
ZERV
ZER

SBUCK

DIGZ

BOUNDY

BMUL

CMAX

EIGB
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_H 3

creates a row of zeros in §  (Fig. 3.10(d), line A)
3 .

creates a dlagonal of zeros in § (Fig. 3.10(d),line B)

=it
creates a row and a diagona} of zeros in § (Fig.
3.10(4)).

uses FKIJL for computing Cii’ ciE’ E?E’ 533 of (3.38).

It
uses ZERH, ZERV and ZER to perform in § all the
modifications which arise from the geometrical
Bound. Cond.

considers the geometrical Bound. Cond. for the de-
flection of the plate at the external contour of the
plate, which remain constant for a given edge. The
matrices K and q are modified by DIASYM, S is modi-
fied by DIABK and § = is modified by DIGZ.

multiplies a matrix by a vector when only half of

-3
the band's matrix is given (for example § q).
=

the operation 84=R a+ § q is performed.
§ and g are shown in Fig. 3. 10(d) The operation
3*

S q is computed by BSYMT.

function which determines the component of maximum
magnitude in a veetor.

solves the matrix eigenvalue problem (3.113) accord-
ing to the lteration procedure of Art. 3.7. The sub-
routines BMUL and CMAX are needed in these computa-~
tions.

intermediate
stiffeners

Gz

a) Longitudinal intermediate b; Pransversal intermediate

stiffeners.
Fig. 3.14.

stiffeners.

The Plates show Tthe two cases for which the com-
puter program is applicable.
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Loads applied on the perimeter or distributed throughout the
plate (Fig. 3.11) can be handled by the computer program for
a specific mesh and location of stiffeners.

A A
For the given loading, several ratios ae/a1 can be analysed.

By changing the bending the torsional properties of the stif-
feners, 1t is possible to make several buckling calculations
which correspond to one plane stress distribution.

The following notation
AA
NGAM = number of plate's ratios ae/ai to be analysed.

NCASE= number of buckling analysis for each ratio Qa/éj

NE = number of subdomains
NU = O for a uniform mesh, otherwise NU # 0 for a variable
mesh.,

is used in the macro-flow chart of the computer program which
is given on the following page.
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A
The elements of D (3.19) and D (3.36)
are given by coefficients of the form (3.13).

D
\

{ GMRIB Calculation of [é,[é,[;,[; as indicated
Y

by (3.57)
A
SPLAN Copm Pl .. (see (3.25) and (3.30)
N eeey rv
+* +*
b, t as defined by (3.60)
! A A
(Pcommon NU, mesh properties, ratios ag/ai, zeo-
S metrical B.C. on the plate's edge, axial

stiffener's properties (3.61)1, ete.

¥
ri 1, NGAM Iteration 1
I I
I
|
|
I

I Plane stress analysis

y

IT Computation of &, 3, 1s the geometric global

matrix.

g

Bending and torsional properties of stiffeners

II ¥

Eigenvalue analysis
T

I
]

N
I
|
|
I
I
|



I Plane stress Analysis
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NU=0
B

IT Computation of Matrix S

A A
SEVR k = k

~

#*

A
k 1s partitioned

|

CAXTAL )

——0
]

iteration

A A
kK 1s placed inK

only called when the
subdomain is located
above a longitudinal
intermediate stiffe-
ner or when is lo-
cated to the right

of a ftransversal long-
itudinal stiffener.

— o~ — —— —— ——

incorporates axial
stiffener's energy
into X.

[N\

.C. for loads on the edges of
the plate.
for isolated poilnts in the pla-
te (displacements and loads).

B.C, of any kind,

CHOL

o>

accord-

W»

modifies ﬁ nd
ing to the B.C.

vy
i
>

Fal
solves K
Fa¥l

end to the plane stress
analysis.

computation of
uantities @
3.48). 1Jk

calculation of s

the gegmetric ma-
trix ((3,58) or
(5.667,)

i1s com-

puted for stiffe-~
ners adJacent to
the subdomain.

incorporates
parts of g into
S* according to
Fig. 3.10(d).
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IIT Eigenvalue analysis

N =0
. k' = ..-| see (3.20) (BOUNDY) The B.C. for the

deflection w are
# introduced into
PART k =k the maftrices ﬁ,

o -3
Partition of k S and 3 for
points located

1
4 {1, NCASE )=— ——— — — — — - 23322‘? plate's
Lberation The B.C. remain

/B.C. for the plate's de- constant for a
| flection, stiffener's bend- given edge.
ing and torsional properties

i

-

for S

w L J
need for satisfying

homogeneaus Geom. B.
C. at isolated points.

(3.61), and (3.61)) <::f’ -
y DIASYM) for X and g
K =20 1
{DIABK > for §
q = ﬂ_ ~
i~ "~ r
(picz )

|
€ AS€§§:>-F———— k is placed
into X.

I
| ) (one for each point).
3
I k = sl Jog (3-39) ’
| = EIGB solution to the
| eigenvalue
— [ J—.
| PARTMD D k=T k T | problem
™~ NN I
| k is parti- KO, a A, Ka=35aq
l tioned. ~ A A
|
|
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4. NUMERICAL RESYLTS OBTAINED BY THE RITZ-SUBDOMAIN METHOD

N e e e e e L i e e e e = e = = e e = e o b

L

Fig. 4.1, shows graphs of exact stresses (defined by (3.5)) for
a rectangular plate subjected to a sinusoidal load on a longi-
tudinal edge. These stresses are exact in the sense that they
solve a mathematical problem, as explained in Art. 5.1. The
same figure shows as well a comparison between the exact values
and results obtained using the Ritz-Subdomain method for the
mesh of Filg. %.2(a). It seems that the discontinuous stress
field given by the Ritz-Subdomain method can be very close to
the discontinuous exact stress field provided that the applied
external forces vary in a smooth pattern. Applications of the
Ritz-Subdomain method to problems with concentrated loads (not
presented here) have shown accurate results when small subdo-
mains are used near the loads. Of course the theoretical in-
finite stress at a concentrated load is represented in the
approximate method by a distributed stress of very high value
in the neighborhood of the load. Concentrated loads are com-
monly used when a high stress is known to exist near a point
and the actual distribution of stresses around such point is
unimown and of little importance.



—148°

s*=.043

sinusoidal load

)‘I 1
o}
U2=0 22 21 2
Q; a, i U2=0

rigidities

= 2,78,

1 H 1

(o] L 1
L0 1 2 3 4 5 8

Shearing stress resultont at Z,=-8,/2

T |Analytical |Computer stz ZERr:ﬁ
1 1.0 .00063 _ 2
5/6 | 38407 | 38423 S =
273 { 58042 | .58003 s*=
2/3 | 61974 | 61999
1/2] €6943 | 66943 Case 1
1/3| .59034 | 59031 5: fsaizf
1/6| 37637 | .37653 sz

0 |.0 .00056

@ R*R* R=stiffener's axial

h = plate's thickness
E = Young’'s modulus of the plate

] 1

-3 -2 -1t 0 1 2 3

Normal stres resuttant at Z,
N |Analytical [Computer
1 |-266568 [-2.68814
5/6|-1.52218 {-1.52194
2/3 |-063307 (-0.63276
1/2| 008324 | 0.08329
1/3| 0.77667 | 0.77649
/6| 155955 | 155930
0 | 2.55281 | 255383

¢

=0

- sinusoidal
S+

load

= ~ s*
021‘ 22
. —~~7,
= -
0]
1 1 i 1 lv_!_ L 1 L 1 1 ] I L 1.3
O 1 2 3 4 5°6 -3 -2-1 0 1 2 3
Shearing stress resultant at Z,=-4, Normal stress resultant at Z4z0
7 |Analytical [Computer N {Analytical [Computer
1 {.505066 |.505175 1 |-0.621533 |-0.622263
5/6].625681 |{.625601 5/6 |-0.320983 {-0.321066
2/3|.682107 |[.681828 2/3 [-0.123753 -0.123711
2/3 1671358 1.671399 1/2 ) 0015958 | 0015942
i/2 |.6844641 .6B4L326 Case 2 17310123233 | 0.123420
1/31.665821 |.665687 zzfsaia-s 1/610.225201 | 0.225273
1/6|620376 |.620258 ' 0 |0.347670 | 0.347587
0 ].546121  |[.546074

Fig.41. Plane stress analyses’ results.
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Sinusoidal load [— w=0 w=U,=0 w=0
t i i ] ] 1 Y 4 ]
2222
- 4111 [
oL L T 1| 1111 T 4
- 1111 2
= 2222
2222
"= w0 Up=0
a ] ol aZ 25
2_ ey Z o] ot 2 - | W =0
portion of 4,
(a) Uniform mesh (b} Variable mesh

Fig. 4.2. Lateral buckling of a simply supported stiffened plate

The stiffened, simply supported plates of Fig. 4.2 have been
analysed both using the Ritz-Subdomain method and the usual
Ritz method. The analysis by the Ritz Method as explained in
Art. 5.2 is perflormed by assuming a double Fourier series for
the deflection w together with the exact distribution of in-
plane stresses.

The plates in Fig. 4.2 have thickness h, flexural rigidity D
and Young's modulus E. In the notation of (5.14) Ehs+, Ehs*
and Ths are respectively the axial rigidities per unit length
for the upper, intermediate and lower stiffeners. Likewise

+#*
DI, (see (3.61)2) denotes the flexural rigidity per unit length
of the intermediate stiffener.
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Using the parameter

A =73 (4.1)

4z
the results for various analyses of critical loads P can be

written as follows:

1) s =0.043; s =5 =0; II -0
Ritz-Subdomain A = 29.669716
Ritz A = 29.662997
* — 3
2) s = 0.043; st =s" = 0; I, =12.5
Ritz-Subdomain A = T70.196128
Ritz A = 72.016434
3) 5 = 0,5; st = 57 = 0; II =0
Ritz-Subdomain A = 28.509359
Ritz A = 28.507864
Ritz-Subdomain A = 28.518222 (variable mesh Fig.
4.2(p))
4) s =0,5 st =5 =0; II = 12.5
Ritz-Subdomain A = 68.050357
Ritz A = 68.952423
5) s" = 0.043; st =s" = 0.5; Iz = 0
Ritz-Subdomain A= 32.031993
Ritz A = 32.037039
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It is observed that both the Ritz and Ritz-~Subdomain methods
give close results when the stiffener's flexural rigidity is
negligible I, = O regardless of the magnitude of the axial
rigidities. When I1 *# O the usual Ritz method gives a higher
critical load and therefore a higher error than the Ritz-
Subdomain method. Apparently the deflection pattern of the
Ritz-Subdomain method which is discontinuous in its second
derivatives along the interfaces of the subdomains can better
approximate the exact deflection pattern. The latter is dig-
continuous in some of its second derivatives at the places

were the flexural action of the stiffeners is considered.,

The buckling load obtained in 3) for the variable mesh shown

in Fig. 4.2(b) is slightly higher than the one obtained for a
uniform mesh. This probably occurred because the plane stress
analysis for the uniform mesh involved smaller subdomains ad-~
Jacent to the load which have been observed to lead to a better
approximation. For example the normal stress at the upper edge
on the center of the plate results in 1.006442 for the unirform
mesh and 1.006522 for the variable mesh (the exact value is 1.).

One Possible conclusion after examination of the previous
examples 1s that the Ritz-Subdomain method gives accurate
answers for cases where only stiffeners having axial rigidity
are considered. The effect of flexural and torsional rigigi-
tles of the stiffeners remain to be considered in more detail.

Fig. 4.3. shows several analyses performed by the Ritz-Subdo-
main method and an analytic method described in Art. 5.3. In
the figure the flexural and torsional rigidities of the stiffe-
ner have been denoted respectively by I; and J; (see (3.61)).
The fiber which connects the points of applications of the
loads has been assumed of infinite axial rigidity and the geo-
metric energy has been evaluated using (5.29).

The approximate results presented in Fig. 4.3 are at most 0.2%
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above the exact values when one half of the plate is divided
into 16 subdomains. The numerical results are equally accept-
able for unstiffened plates (low buckling loads) and for plates
with stiffeners of high flexural and torsional rigidities

(high buckling loads).

Two or more columns (rows) of subdomains between transversal
(longitudinal) stiffeners are desirable for obtaining reliable
results. This factor and the capacity of the electronic com-
puter available 1limit the number of stiffeners which can be
considered in the analysis.

Although the effect of the stiffeners' axial, flexural and
torsional rigidities have been considered separatedly, the
same degree of approximation is expected when the three are
considered together.
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P ) . ey P
{ dity =
s axial rigidity= o
. N 1% =100
a;
A
a, IF a &, I” &
l 2 2 2 2
Analytical A=12.91734 A\ =100 1t%+12.91734 = 995.88 2396
Numerical A= 13.09610 A=1007489346
P P
v 15.35.3515¢15.35.35.15 portion
I;-‘- 50 ‘:‘32 of 02
Gz ) *
.35 ] I; =50
AN 15 —
b axial rigidity= 00— %P
Analytical A =506.399048 A = 506.399048
Numerical A =510.328000 A =507 410734
P . . ey P
axial rigidity=
Yo giaity =oo —\
V4 - ]
— — J;=10 "““
A '}
P P
Analytical A= 16.98704 A = 16.98704
Numerical A=17.14988 A = 16.99856
P axial rigidity =
2224 AR A
A5 Analytical A =16.98704
* ' 35 _
J2=10 l 3z Numerical )\ = 17.00666
I 15 n
2.211.2242.21.1.2.2 portion of &, L
P D

D =the plate’s flexural rigidity

Fig.4.3. Buckling of simply supported plates of ratio 1:2.
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4.3 Examples Where No Solution Is_Avallable
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Fig. 4.4 has been presented for illustrating the kind of graphs
or tables which can be elaborated for different loadings and
boundary conditions. The case of a very long plate (51/32 =8)
may be compared with a very long plate simply supported along
the longitudinal edges and clamped at the transversal edges.
The buckling load for such a plate i1s glven by Paa/D = 8m
which is slightly above the value obtained for the plate in
Fig. 4.4 for gi/ﬁé = 8.

Fig. 4.5 shows a second example which i1s a beam with five
transversal stiffeners. Especially for improving the plane
stress results, another subdivision into subdomains should be
tried. The one presented here indicates which problems can be
encountered when the buckling analysis cof such beams is at-
tempted.

Flg. 4.5 gives the relative dimensions of two sets of stiffe-
ners and the results obtained for simply supported or clamped
transversal edges of the beam. The buckling modes for critical
loads may be local or involving the total length of the beam.
The local buckling modes may be due mainly to shear forces or
malnly to compressive forces. The cases where the minimum (in
absolute value) critical loads were negative indicate that a
load pulling the beam downwards from the bottom flange 1s more
"aritical™ than the load applied downwards on the top flange.

When the minimum parameters ki, weére negative, the second eigen-
value 32 was obtalned solving, instead of (3.113), the problem.
(B~ Ml RV 3-%83 (4-2)

by applying the iteration process described in Art. 3.6. The
convergence to hi was slow when 12 was very close to 11 in ab-
solute value.

The results of the Table 4.1 also show that the type of beam

support may have considerable influence on the critical loads
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(compare 93.48 against 24.71). It seems best to consider the
beam supports carefully and to take into account the flexural
and torsional properties of the stiffeners usually placed at
the supports.




26~ zero movement normal

pa. | to the plate’s middle
2 _ b surface at the point of
D l application of the load
36 - ‘ Z ° 7
Z 7 la
34 - :2 . |&
7 2
32 ¢//////Z:///////////7/Z}7////,2:
30| 2 3
. 2 | 2 l
28 -
26
24 |-
22 -
20 '

D = the plates flexural rigidity.
Results obtained using a 5x5 mesh for half a plate.

4,78, | P4,/ D | /8, | PG/ D
1.000 | 36.4976 | 3.636 | 20.6152
1.333 | 27.3855 | 4.000 | 20.8438
1.600 | 23.8381 | 4.444 | 21.1701
2.000 | 21.4653 | 5.556 | 22.2633

2.667 20.4248 8.000 24.3378
3.077 20.3963

Fig.4.4. Critical load for a rectangutar plate.
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0238, 044, |
= ® 7Ty

= =T

. @ @ 1® |©@, 1T

h ! Cross

i section
®

063 167 166 159 159 100 .09 .096 portion of d;

61 = [598 62

i

n

-_I

T

movement along the support not allowed

S*% I¥ J* = area, modulus of inertia, torsional constant,
D= the web's flexural rigidity.

Stiff- 1 set 2 set
* L +* 3* k1
ener s* ET 0.4EJ 28 8EJ 8x0.4 BJ
A A A A A
ha2 DQ2 Da2 ha2 Da:2 Da2
1 1.10461 {110074.3 3i9.4
2 0.55284 | 2186.9 hy,8 same numbersas set 1
3 0.73739 2910.1 218.8
4 1.05344 | 11844 .2 311.6
Pa, Ph,, Pa, Pa,
Support Xi =5 Le = 5 Ki =5 k2 = 5=
Clamped. -119.91 127.53 ~70.4% 93.48
(155 eycles) (6 cycles) (27 cycles) (13 cyecles)
Local buckling due to shear | Local buckling by compression
in area A. in area B.
Simply -118.97 125,42 24 .71 Not computed.
sup- (173 cycles) (6 eycles) {10 cycles)
ported
Local buckling area A General lateral buckling*.

P .
The upper flange's lateral deflection increases towards the center.
The lower flange only undergoes torsion.

Fig. 4.5 Buckling Analysis of a Symmetric Beams.
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5. APPENDIX TQ CHAPTER 4,

--——T-l-

12

Bl
Téz

T]Z-q——

©

———-—‘t-

lo-

Fig. 5.1. Rectangular plate with an intermediate stiffener.

Fig. 5.1 shows a rectangular plate which has three longitudi-
nal stiffeners with axial rigidities (area times Young's mod-
ulus) R, R and RT. The quantities with a superscript "plus"
belong to the upper part of the plate and those with super-
seript "minus'" belong to the lower part. When eguations are
valid for any portion of the plate the superscript will not
be written. The thickness h, Young's modulus E and Poisson's
ratio v have been chosen constant for the plate, though the
formulae can be modified when such guantities differ befween
both parts of the plate. The stress tensor denoted by TaB is
given by (3,5) in terms of the strains which in turn are ex-

pressed by (3,2) in terms of the In-plane displacements Ua'
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The boundary conditions at the transversal edges are

U. = T = 0 at X, =

+ 2
2

(5.1)

The stresses at the longitudinal edges of the plate are glven

by analogous Fourier series expansions such as

o .7, n
- T T sinvnil
n=1
. m2n~12
n - ay

for the upper edge.

The compatibility of displacements at the interface X

can be expressed by

(5.2)

(5.3)

An analysis of eguilibrium of the stiffeners (analogous to
that of Fig. 3.5(a)) produces the following mechanical re-

guirements
+ =
Top = Too
+ - #*
Tio =Tip - R Uy 44
+ +
Top = 0
+ + +
Tiog ~RUy 44 =7

P

(5.6)
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A
and expressions at ig = 0 similar to those of ig = a, (the

sign of the shears ls taken to be positive as shown in Fig.
5.1)

The equations

e

Us,q =85 (T

11 ~ v T22) = -Eil’_l. ( 11),22 -V 11’,11) (5'7)

1 _ 1
Up gg = 55 L(BW)Tp 4 =Ty ol =-ggl(2+I0 501+ 555

can -be deduced using (3.5), (3.2), the definition of Airy's
stress function ¢ of (2.13%7) and the equilibrium equation

T + T =0

12,1 22,2

this last eguation to be used only for deducing (5.7)2.

The use of (5.7) in (5.4) and of (2.137) in (5.6) leads to the
expressions

+ +
1!”11 = C _ A (58)
+ ) ¥2=2
+ R + + +
1o " ER (Vo1 "V 110) = T
-
+ + -
Yoo =V gq TV op -V 4 w
+
(24v) ¥7pqq + ¥ ppp = (2491 599 *+ b oo
+ - $X2=a2

=
-
[N
[
il
=
L]
N
Y

1
=
-
[N
o
Il
=
[...\
no
t
g
=
w
o
1]
|
<
‘-é
Mo
n
1§]
[\
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.
Vg =0 3
%.=0
)
= R~ - = =
b 12 ~ Th (ﬂ’,221 =W oggq) =T
et

where w+ and § are two different stress functions.

The introduction of
m —
b=, + T b cosv X, (5.9)
n=1i
Into (2.136) leads to the eguations
¥ S +v4w =0 (5.10)
n,2222 ~ “Vn ¥n,22 n *n - .
in each portion of the plate is given by
(5.11)

Whose solution

+ - o2
bo T ¥ = % Ky
A
+ 1 oy
Yy =7 T by 9
Vn 1=1
— l 4 A.. =
bp =3 2 by oo
\Jn i=1

+

where for each n the constants hi
and where the functions

A A
and h; depend on the boundary
@; and m£ can be written as

* (5.12)

conditions
A -
¢1+ i e—\h(ae-xg) ; cp2+ - \h(ig"ae)mi
@' = e-\)n(}_C2 o) eyt = (T - 2p)ey"
colh = e—vniz 3oy = Vn(ae ‘}-{2)“’1“
5 = e_“n(a2 ") @y = vplap - %ples”
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The particular form of (5.12) has been chosen for avoiding
excessive growth of the exponential In the computations.

Substitution of (5.12), (5.11) and (5.9) in (5.8) results in
the system of llnear eguations

A
n+
A P _ T
5A>=[°n"n © 0 0 0 o T.] (5.13)
n-
-
n=1,2, .
Let
+
+ _ _R . + 4+
st = Tha, ;os, ="y (5.14)
3%
* R *#
5 = Ena R )
1
- R™ - =
5 = Eha, 58y =8V
Z9 = Yo
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A

The elements of the matrix K of (5.13) are given by

N> = >

N>

23

- = A > = >

A >

21 <

22 <

24 =

35 °

37 °

38 T

=2 ~e,
ﬁ22 ﬁ23
-2 —uié
-V, uié
0 —é2
-1 52
0 0
0 0
=1 + s; vy

1]

i
®

o
+
/4]

- %58,
Kol

O 0

0 0
Ul -2
-y -V,

i 1
A A
Ke7  Kgg
—él 'Zléi
A M
Kgr  Kgg

(5.15)
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A -
K85=-i+SnU1

A

Kgg = -2, * S (2+u121)

A -t - -——

KBT = - € + 85, U€,

A - — -
Kgg = (1-z1)e1 + s (--2+u1z1)e1

In the calculation of

to use
4 A A
+ +
P = ¥ Qi £ (5.
. =1 * °*
- 4 A_ A
¥ = X q, L.
n 521 i i
where - .
A v_X A A A v X A A
_ nz2 _ = . _ n 2 _
g o=e Tty =Rl sty =e Ly = vpkols
5152 -V aEéiéE 0 o |
At 0] eieé ) 0O
qQ = _ -
~ 0 0 1/eq —vnae/e1
0 0 0 1/e,
L — —
[ - - ]
0 0 ei vnae e,
A 0 0 0 -8
a = 1
1 vna2 0] 0
9] -1 C 0

stresses it has been found convenient

16)

pin g

plagh-2
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With the help of (5.16) and the notation

bt e (5.17)
the stresses can be written as 21 W
Tiiﬁ {-;invnaiﬁ B 22 "O M
T, P = ngi sinv a,§ /-\nJ é\j ) + Jco
A
) eosn®l (5 | (o)

(5.18)

where{ﬁh in the case of the upper part of the plate becomes

— —

A A A A A A
+ + + + 4+ +
9; + 29, dy Qx - 2qy qy
A A A A
+ + + +
/‘_U\l-n = ‘qi 'QE _Q3 _qq_ (5'19)

A A A A A
<+
a; + a) . oa} a - 9 -a,,

By using (5.19), the axial force carried by the intermediate
stiffener results in

x g¥ x 2 =
T =g (b pp = Wb 4,) =5 Z ey simyad (5.20)
Wwhere
3 _ _ A
Gn = le (Ani.j _AIlaJ) CJ _ (5'21)
'ﬂ=0.2

8n
G = 1 (5.22)
as
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Numerical Resultis.

The plate analysed has the following characteristics
A
ay/a; = 0.5; &y = 2/3; v= 0.3

A sinusoidal load has been applied to the Top edge of the
plate, i.e.

The results are glven by the matrix
A AT
[h"  h7]

as follows

3* + o

1) s 0,043; s =38 = 0,5

i

- 1.69283 0.883257 0.324864 0.122363

0.920436 -0.358673 -1.00098 -0.526750

2) s =0.043% sT =8 =0

1]
I

-2.95051 2.21321 1.00923 0.625182

2.90384 -1.73015 -1.75766 ~1.29307

3) s 0.5; 8 =8 =20

Il

-2.882% 2.13157 0.939086 0.677765

2.81008 -1..68288 -1.,75462 -1.17553%
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The lateral buckling of the plate of Fig. 5.1 is carried out
assuming a double Fourier series as the deflection pattern.
Considering an intermediate stiffener of bending rigidity
I*E*, the expression of virtual work {see (3.3)) for the lat-
eral buckling of simply supported plates becomes

a

2 2 #_
[ pv wevwan+ [ E'I Wy, 80, | 42, =
1 7 =a

a
9 #®
= - P[[T me,Yaw,admj‘o T W, 8w, |dZ,  (5.23)

9] 22=a2

L) - *
where TYa is given by (5.18) and t by (5.20).

Let

A
A a a
2 2 2
2

The deflection w is given by n, normalized coordinate functions
in the form

n
P
= y{m) |®i|

where the guantity Imil 1s proportional to the bending energy
corresponding to the function

®; = sinnpiﬁsinﬁpin (5.25)

Choosing an equal number of integers My and p, in (5.24), the
expressions
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py = (-0 + 1 (5.26)

pi = 2[1 = (pl '1)Vne] -1

give a symmetric functilon P, for any 1 = 1,2,+.++, ng-

substitution of (5.24) into (5.23) produces the eigenvalue
problem

ANKga=213 (5.27)
where

- - B .28
Ao = o (5.28)
Kii 1

I* sinmp.a,Sinmp
p.
K. .= S L 1% when p, =
SERNTNEEN :
RS
Kij= 0 when My * My
» 1B
Io = a2D
P 2.2 4 1™ sin®
|wil = [1 + Q—QL—) ] I, 8in T py 05
“i Y
S;4 = 2 [y no(*) + 2 pop (**) -
i3 = A o HiH 4 y PiP3
9 * rpnpTy 3 UO
- uipj(***) - piuj(** ) + 8 “1“3‘(* )+ T 6j_j]

84 =1
5., = 0 when 1 * J
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4 _ Y A _ o
(%) = n?i kgi[/\nik { CkSlnﬂpiﬂSinﬂDJﬂdﬂ +
- - o

A+ - A = - -
.s
+ 15k C] s_nnpinsinnpjndn] X

1

x [ sinm(2n-1)E cosnuiE cosnuJEdE
o

with similar formulae for (#i#), (##x), (#ts##) and

@ 1
(wwxxr) = e, sinmpa,sinmpa, Iosinn(En—i)gcosnuiE-
-COSﬁpJEdE
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This problem has already been mentioned in Art. 2.9. The plane
stress distribution is given by (2.142) and the buckling load
corresponds to the minimum of

a, a
[[¥%ex,  aa + j‘OEE*I*w2 az, + IOEG*J* 2| a2z,

202 2 Wr90
o _ Q Zi=a1 Zi=a1
faiw?e dZ,
© Zl=a1 (5.29)

Let B be given by (5.17) and let Ei be the coordinate E at

point i1 of Fig. 5.2(a). At the point Ei the symbol [---]E
i
will denote the jump of the guantity inside the brackets.
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P PP {PP PP P .P
J 1 2 -
Z2) Y Z; i v i v n
l 911 l Qzl a, /-/ S'zI
0 1 N 0 1 i-1 i m-11 m
JlP "21 \ A A
AP [RP [RP  [PusP
ot 1 Ei-14; .
a1 et a1 .|
f———————=] '

Infinite axial rigidity along the transversal
lines connecting non- zero loads

Fig.5.2. Simply supported stiffened plates.

The minimization of (5.29) and later the application of Green's
formula lead to an expression of the form*

a a
2 2
J‘O [M:Li]éia‘”’idze“.ro My 4 + _M12,2]§16w<i22+

33 L # ¥ 1

0§=§1

a # #
+ f 2[Pw,226w+E 1*w,22226w+G J*w,iggﬁw,i]_ L4z, = 0
o E=§
1

i
This form may be obtained from (1.112) considering the plate
initially flat and subjected only to the forces P.
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For simply supported longitudinal edges (22=O and 22=a2) the
conditions

W = Wyy = Wyyy = w,22 =0

eliminate the terms outside of the integrals in (5.30). 1In
this manner the boundary conditions af E:Ei become

#* 4
- D [w"ii + hY) m:gg]g -GJ w:221 = 0 (5-31)
1

o %
=) [w"lll + ( -V)w’221}g - E I UJ:2222 = P w:22
1

The expression
w =W, sin nmn (5.32)

satisfies the conditions for simply supported edges at m=0
and M=1. Substitution of (5.32) into the governing differential
equation of the problem

- D uw, =0 (5.33)

glves

amt oy s (5.34)

& Ny 2
"n,1111 “2(5.5) Wn,aa + ¢ 5 'n

With (5.32) the boundary condifions at E = Ei’ given by (5.31),
become

2 2
- - (B * o onm _
D [y, 19 = (G Wgl, + 6T G Wy = 0 (5.35)
1 o
nm\2
=D [Wy,a4q - (52") Wn,ads SBmRe*sty am2p y
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The solution ot (5.34) can be given in tThe form

+ 2y Uy E) coshx € + (23-P241H1§) sinhn 8
(5.26)
where w, = nm/y and the constants Zi, 22, Zj and Z, for each

n depend on the boundary conditions at the transversal edges
of the plate.

The function wn may be assumed symmetrical with respect to

E = % when the boundary conditions at the transversal edges
are identical. In this case (5.35)1 is satisfied immediately
and (5.35)2 produces the following expression

W,
n,111 (5.37)

W _
g=%

The first term in the right hand side of (5.37) constitutes
Fuler's buckling load for the stiffener and the second term
corresponds to the buckling load of the plabe without stiffe-

2 % ¥ s 2
P=(%—;) EI - 2D (55)

ners.

The condition

=0 at E = 3 (5.37)

wn,i
and simply supported edges at E = 0 and E = 1 produces the
following results
*_# i
P= (25T + 4T = (5.38)
2 2 tanh w_ - :

2
cosh 0%

W, o= 22 [2nn§ cosh 2 unE- (nn tanh un+1) sinh2 x E]
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The buckling of the plate wifthout stiffeners in (5.38) coincides
with the result given by Timoshenko for n = 1. Thus Timoshenko'
result corresponds to the exact solution of the problem discussed
here whose buckling mode is given by (5.38)2.

In a similar way, (5.37) and clamped edges at € = 0 and € = 1
lead to

2% 4+ sinh 2 #%

#_

P = (BM7E'T" 4+ opBT B = (5.39)
2 2 sinh N

W= 2, [2 H, & cosh 2 x_ E - sinh 2 Ko E -

L)

. H

n sinh n = . =

- - 2 % E sinh 2 u_ E]
K cosh o + sinh un n n

Fig. 5.2(b) shows a rectangular plate simply supported at the
longitudinal sides and divided up in m subdomains. A system

of loads PP, is applied at each line E = Ei where i = 0,1,...,
m+l. A stiffener of infinite axial rigidity is assumed at the
transversal lines where Pi # 0. Stiffeners with different bend-
ing and torsinal rigitities may be assumed at any of the m+l
fransversal lines.

It may be observed that at each intermediate stiffener an equa-
tion of the type (5.35) exists so that each subdomain's W, is
of the form (5.36) with different constants for different sub-
domains.

Let the subdomain Q; of Fig. 5.2(b) have ratios
a, = a1/£15 Y = 3-2/3-1 (5.40)

and a W_ given by (5.36), or alternatively by

4 —
W= I Z

(5.44)
]

x Sk



where
c, - e-nn(E—i)
‘, - e-ung
ny = ™M/

-17h=

s LR 1

i Ly = %ng Cj

and the coordinate E given by

E = (E = Ei) / (Ei = Ei—l)

Let

L

Using (5.42),
follow

The contribution of

(5.29) is given by

T

D -
8
g o, FAS

172

1€l

€ ] 1
%€ Ko, € -#y
- €
Mo un(l+nn) —% €

Kn(i—nn)E

(5.42)

(5.43)

(5.44)

Py

(5.45)

the subdomainto the virtual work expression

(5.46)
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where
k=T K T (5.47)
— —
2(1-~v)B 2(i-—\))u.n 0 0
EB+(1-v)(1+2un) 0 -2(1+y)e
Eﬁzgnnzu
2Y ay Syma. 2(1-y)B (v-1)(B+252)
_n2
23+2(1-v)(1—un)e“
132
B = (5.48)
*n
The virbtual work
. —
rE I (nn) 0 W, b
Da2 2yc1
D 8[w, w. ,a,] )
I . ¢"5" y(um)
172 Ba %,
2 W a,
— —Ui,17 L
(5.49)

corresponas to a stiffener located at € = E with a flexural
rigidity E I and a torsional rigidity G J .

The contribution of a load PP to the geometrical virtual work
in (5.29) is given by

PP. \2
7%3 (ng bwywy (5.50)
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The total virtual work of the internal forces is obtained
summing all the expressions of the type (5.46) and (5.49)

In a similar way the total geometric virtual work 1s the sum
of the expressions (5.50). These sums are expressed in matrix
form by

M, b0l K g = 5 9r 8 q (5.51)
~OoN A e

where lo = D/Pai and where the vector g consists of all the
quantities w,; Wiq 3 (i=1,...,m+l). The matrix S is diago-
nal and the matrix X is symmetric with a half band width of &4.
The resulting eigenvalue problem 1s given by (3.443) and can

be solved by the iteration process discribed in Art. 3.6.
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SUMMARY

Chapter 1 contains a discussion of the buckling of plates

using a two dimensional theory. The equations for the buckl-

ing of a dnitially flat plate include the initial nonlinear
in-plane stress field in addition to flexural actions given

by a linear bending measure. In the usual small bending theory
of plates, the use of a linear bending measure is Justified by
assuming small deflections. In the case of lateral buckling,

the main goal is to find a deformed state of the plate infinitely
close to a flat - deformed initial state (1.e. small deformations).

In chapter 2 a discussion is given of the different known trial
function methods together with the boundary and continuity con-
ditions which the functions to be used ought to satisfy. A brief
description of the application of numerical methods to buckling
of plates is also given. Some convergence studies are presented
which apply to the problem of plate-buckling.

In chapter 3 a particular application of the Ritz method is
explained. The plate's domain is divided in subdomains (Ritz-
Subdomain method) and on each subdomain different coordinate
functions are assumed. The total deformation field made by
the local coordinate functions must satisfy the continuity and
boundary conditions of the Ritz method. Two types of problems
are solved, namely, plane stress and eigenvalue problems for
stiffened plates.

Chapter 4 shows the comparison between the results obtained by
the Ritz-Subdomain method and other analytical or numerical re-
sults. The way of obtaining the alternative results is ex-
Plained in chapter 5.

The conclusion i1s that the Hitz-Subdomain method gives accurate
results provided that a reasonable number of subdomalns are
used especially near the applied loads.
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NOTATION
A matrix is represented in the form

where Kij is the element corresponding to the ith. row and

jth. column.

The transpose of the matrix X is EF‘

A column vector of n components can be written as

Wy
T W

E £ [wi w2 LI R ] Wn] = :2
W

n

Vectors are denoted, for example, as ﬁ, ?.
The remaining symbols are defined in the following pages

In particular pages 3, 4, 5, 6, 40, 41, and 42 contain de-
finitions for various symbols.
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LIST OF SYMBOLS

deformed surface base vectors 6
undeformed surface base vectors 6
fundamental undeformed surface tensor 6
determinant of anaJ &
constant in (2.1) and (2.2) 4o
differential operators 45
overall dimensions of a reectangular subdomain
Fig.3.116 92
dimensions of a rectangular subdomain oz
constant diagonal matrix (3.64) 109
second fundamental tensor of the deformed

surface (1.29) 11
second fundamental tensor of the undeformed
surface (1.54) 15
prescribed beody forees other than inertila 34
second fundamental tensor of the deformed

surface at the initial state 36
constant in (2.1) and (2.2) 40
constants in {(3.13) g4
coefficients of (3.26) a7
coefficients of (3.37) 99
flexural stiffness matrix (}.%7)2 for ribs 105
constant in (3.67) 110
constant defined by (5.48) 175

undeformed plate's contour (1.14)
plate's contour where forces are prescribed

plate's contour where displ. are preseribed

xc O o o

deformed plate's contour
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tensor of elastic constants (in-plane) (1.64)

designates a point i of a contour C where
the torsional moment 1is discontinuofis (1.73)

plate's contour where follower forces are
prescribed (1.121)

domain's contour at X1=const. (2.40)
domain's contour at X2=const.

contour where bending moments are prescribed
(2.115)2

contour where rotations are prescribed
(2.116)2

subdomain's contour with applied loads
vector defined by (1.43)

=3Y- aa 0
=det dYG

tensor of constants relating bending moments
and bending measures

plate's flexural rigidity (1.80)
minimum of a tunctional (2.64)

constants to be determined from an orthogonal
process (2.128)

constants in the expression (3.13)

integrands of (3.25) in the plane stress case
coefficients of the polynomial in (3.26)
matrix element in (3.37)

surface permutation tensor (1.16)3

Young's modulus of elasticity

linear strain measure for the adjacent state
which includes effects of a nonlinear initial
state

section 1.3, (1.99)

section 1.4, (1.107)
section 1.4, (1.125)2

22

35
50
51

71

71

96
13

13
135

19
25
59

79
o4
97
o7
99

20

29
37
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linear in-plane straln measures corresponding;
respectively to a Ritz solution and to the

exact solution 66

number of coordinate functions for each

displacement in each subdomain (2.125) 77

constants in (2.140) 82

modulus of elasticity for a stiffener 104

constants defined by (5.14) 162

stress tensor defined wrt. i 33 (1.21) 9

stress tensor defined wrt. ga;xj (1.30) 11

stress tensor defined in section 1.3 wrt.

aa;'a'3 in (1.124) and (1.126) 37

force per unit length on a face with a unit

normal n, (1,118) 3
8 2

prescribed force per unit length of the contour

€4 in the undeformed configuration 8

force per unit length on a face Y in the

deformed configuration (1.21) 9

Stress tensor defined wrt. 3a (1.45) 13

force per unit length on the face y in the
deformed configuration (1.6%) 18

forece components acting on the contour ¢
respectively for the initial and adJacen%
states 28

stress vector.,in the initial undeformed state
defined wrt. 3& 30

force acting on the contour C, of the initial
configuration 1" 50

related to a linear strain measure by (1.109)2 3],

components of the force per unit length of
contour Cf where follower forces exist 35

function defined on a surface (2.18) 4y

funetional to be minimized where U satisfies
homogeneous geometrical B.C. 43
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£y functions defined on the contour sy (2.24) 46
Fi(m) functional to be minimized where , satisfies
inhomogeneous geometrical B.C. (2.55) 57
A
f‘j functions which define homogeneous geometrilcal
B.C. {2.56) 57
#0 ~*it -
F(n) components of F(n) in the directlons Ay (3.31) 98
A
£; subdomain's generalized loads in the direction
Xo (3.32) 98
?;F# shorthand notation in (3.69) a9
Fyi...3Fy value of ¥ at the corners of a subdomain 99
Fy, value of ¥ at the corner & 116
A
£ subdomain's generalized loads 122
A
)3 global matrix of generalized loads (3.101) 123
31 base vectors in the undeformed state (1.5) 5
GIJ fundamental tensor in the undeformed config-
uration (1.6) 5
gd base vectors in the deformed configuration 7
o arbltrary function {2.48) 55
13K 1nte§ra1 in the subdomain's geometric matrix
(3.4%) 101
G* shear modulus of elasticity for a =tiffener 104
g* geometric matrix for a stiffener (3.53) 105
h plate's thickness 20
HO;Hi differential operators (2.27) 47
Ho the adjoint of the operator H_ (2.47) 55
HO(E,Ei) cubic polynomials (3.9) g0
Hi(g,gi) cubic polynomials (3.9) 90
H;;Hi derivatives of the cubic polynomials {(3.9)
wrt. the variable § (3.11) 93
A
b; parameters in the displacement U_ corresponding

to a subdomain (uniform mesh) © (3,47 95
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integral in the subdomain's matrix (3.44) 101
A
vector proportional to R, (3.45) 102
subdomain's parameter in the displ. U for a
variable mesh (3.90) a 120
vector which includes the parameters for the
in-plane displ. in a subdomain (3.117) 128
vector which includes the parameters for the
in-plane displ. in a subdomain adJacent to a
stiffener 128

parameters of the stress functions (5.11) for a
rectangular plate divided in two rectangles 161

functional of the Least Squares method (2.41) 52
funetional of Courant's method (2.46) 54

functional of the AdJoint Variational method
(2.48) 55

inteﬁral in the subdomain's geometric matrix
(3.44)

101
modulus of Inertia for a stiffener 104
ratio (3.61),: stiffener's flexural rigldity/
plate's rigiaity / stiffener's length 107
ratio in (3.28) 168
quadratlie functional (2.1) 40
quadratiec functionals of an eigenvalue problem
(2.28) 7
integral in the subdomain's geometric matrix
(3.44) 101
torsion constant for a stiffener 104
ratio (3.61).: stiffener's torsional rig-
idity/ plate®s rigidity/ stiffener's length 107
constant in (2.68) 60
constants in section 2.6 63
system of linear functions 84
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subdomain's in-plane stiffness (3.30) for
uniform mesh parameters

subdomain's in-plane stiffness matrix (3.98)
global in-plane stiffness matrix (3.112)

subdomain's flexural stiffness matrix for
uniform mesh parameters

subdomain's flexural stiffness matrix (3.108)
global flexural stiffness matrix (3.112)

in-plane stiffness matrix for a subdomaln
adjacent to an intermediate stiffener (3.119)

linear functional (2.2)

number of mechanical B.C. (2.20)
linear functional in (2.55)
index identifying the norm (2.86)

index identifying the norm (2.103)
index identifying the norm (2.102)

nodal parameters of the displ. Ui for a stiff-

o8
122
123

100
125
126

128
41
45
57
6l

67
67

ener segment between nodes 1 and 2 in a uniform

mesh subdivision (3.5%)

same as above for a variable mesh (3.63)
nodal parameters of the displ. U, for a stiff-
ener between nodes 2 and 4 in a aniform mesh
subdivision (3.78) '

the order which the displ. U, at a node 1
occupies in the global vecto} of parameters

order which the deflection W at a node k
occupies in the global vector of parameters

triangular matrix

tensor of mements referred to the deformed
surface (1.18)

momegg per unit length of deformed contour
(1.1

moment per unit length of deformed face Y
(1.21),

104

108

116

127

131
139

8

8
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moment per unlt length of undeformed face Y

(1.30)2 11
tensor moment referred to the undeformed sur-

face (1.}0)2 11
moment per unit length of contour Cy (1.48) 14

number of discontinuities of the torsional
moment on the contour €, (1.73) 22

torsional moment per unit length of contour
¢, (1.78) | 23

bending moment per unit length of contour C1

(1.78) 23
moment tensor at the initial state referred

to the undeformed configuration (2.105) 31
flexural moment per unit length in the initial
state (1.105) 31
increment of flexural moment per unit length

of contour C1 in the adjacent state (1.105) 31
prescribed torsional moment per unit length of
contour C, (1.112) 32
prescribed bending moment per unit length of
contour C, (1412) 32
plate's mass per unit undef. area (1.118) 34
nenlinear moment tensor at the deformed

initial state (1.124) 37
differential operators (2.28) y7
the adjoint operator of M, (2.53) 56
components of the unit vector normal to the
undeformed plate's contour (1.14) 6
unit normal vector with components Ny (1.70) 21
number of points collocated on the domain

(2.35) 4o
number of points collocated on the contours

sy (2.35) 49
number of subdomains 76

number of coordinate functions (5.24) 167
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1nteger58 O&=20 for longltudinal stiffeners
tl

and 02=1 r transversal stiffeners (3.125) 130
load parameter PFig. 1.1 1
eritical load parameter Fig.1.1 1

prescribed load per unit undeformed area (1.19) 8

?gmpo?ents of the load per unit deformed area
.19

components of the load per unit undeformed

area (1.56) 16
prescribed load component per unit undeformed

area at the initial state (1.97) 28
prescribed load per unit undeformed area at

the initial stage (1.105) 31
increment of the load per unit undeformed area

at the adjacent state (1.105) 31
components of B* (1.130) 38
positive weighting functions (2.41) 52
static and dynamic load parameters (2.118) 72

tensor of shear forces in the deformed slab
(1.17) 8

?hear)force per unit length of deformed contour
1.17

tensor of shear forces in the undef. slab(1.45) 13

parsmeters which multiply coordinate functions

(2.71) 48
second set of unknown parameters of the

Extended Kanterovick's method 50
parameters which expand the adjoint

function (2.54) 56
constants in (2.68) 60

unknown subdomain's parameters included in
a trial function (2.125) 77

kth parameter in a trial solution with n coor-
dinate functions (2.133) 80
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parameters in the Fourier series (2.143) 84
the set ineludes all the coefficients which

are necessary for calculating the subdomain's
geometric matrix (3.48) 102

matrix function used for transforming the
matrices resulting from the stiffeners (3.67) 110

global parameters in the plane stress analysis 120

global parameters in the eigenvalue analysils 120

vector proportional to G* (3.10%4) 124
starting vector for an iteration soclution of an
eigenvalue problem 138
vector in the kth iteration in the solution of

an eigenvalue problem 140
position vector in Fig. 1.2 4
position vector in Fig. 1.2 4

first residual defined on the domain 1 (2.28) 47
residuals on the contours ¥ (2.29) and (2.30) 47

constants defined by (3.91) 120
relates local and global parameters in the

plane stress analysis (3.96) 121
relates the local parameters of a stiffener's
segment with the global parameters (3.97) 122
relate local and global parameters in an
elgenvalue analysls as given by (3.107) 124

axial rigidities of the stiffeners in Fig.5.1 158

contours where geometrical B.C. are pre
scribed (2.22) 45

contours where mechanical B.C. are prescribed
(2.22) 45

contours where homogeneous geometrical B.C.
are prescribed in Art. 2.6 63

in-plane stress tensor for "dynamic" loads
(2.118) 72
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subdomain's geometric matrix in a uniform mesh
subdivision %3.43)

stiffener's cross sectional area

ratios (3.61): stiffeners axlal rigidity/
plat®}s axial rigidity / stiffener's length

subdomain's geometric matrix (3.108)

global geometric matrix (3.112)

matrices which together form 3 Fig.3.10
"~

101
104

107
125
126
136

ratio of stiffener's rigidity / plate's rigidity

/ length (5.14)
quantities given by (5.1%)

tangent wctor to an undeformed contour (1.72)

%n-plﬁne geometrically linear stress tensor
1.92

in-plane geometrically linear stress tensor as
given by (1.101)

in-plane geometrically linear stress tensor
corresponding to a unit load system (1.117)

maximum order of derlvatives in a qQuadratic
functional (2.16)

time in (2.118)

matrix used for computations of torsional and
geometric matrices for ribs (3.57)

any symmetric 4x4 matrix (3.67)

discontinuous shearing stresses along stiff-
eners (3.83)

transformation diagonal matrix (3.92)
in section 5.3, (5.45)

transformation diagonal matrix 32x32 (3.95)

stress tensors for the stiffened plate of
Fig. 5.1

displacement vector, initial state

162

162
21

27

29

34

1l
72

105
110

117

121
174

121

158
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inerement of the displ. vector at the
adjacent state Pig.i.1

in-plane displ. components {1.15)
prescribed in-plane displ. (1.69)

in-plane displ. at the initial state (1.90)
real function {2.1)

trial function (2.31)

the adjoint funetion (2.47)

the adjoint trial function (2.5%4)

exact solution of a minimum problem (2.62)
loecal trial funetion (2.125}

discontinuous displ. along stiffeners
Art. 3.4

triangular matrix in Art. 3.6

total displ. at the adjacent state Fig.1.1
displacement functions (1.14)

real function (2.1)

sequence of functl ons with finite energy (2.65)

normalized exact solution to an eigenvalue
problem (2.75)

value of the displ. U1 at the corner 1 of a
subdomain (3.10)

value of the displ. U2 et the corner i of a
subdomain (3.14)

vector of the parameters at the corner i of a
subdomalin for the displ. Ui(uniform mesh)(3.45)

same as above for displ. U2
indicates the norm in {(2.99)
indicates the norm in (2.103)2

£

parameters at the corner I of a subdomain for
the deflection w (vniform mesh) (3.34)

117
139

1

10
59

61

90

94

o4
67
68

99
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Eh same as above (variable mesh ) (3.105) 124
W auxiliar vector in Art. 3.6 . 139
W) value of W at the k' iteration,Art. 3.6 140
W amplitude in (5.32) 171
W, value of W_ at nodal lines (5.44) 174
xi coordinate system in the deformed position

Fig. 1.2 4
xI coordinate system, undef. position

Mg. 1.2 4
s
X any point on a 2-dimensional domain 4o
Xy local cartesian coordinates (3.7) 89
Xy global cartesian coordinates Fig. 3.4 118
X auxiliar vector 1in Art. 3.6 139
o " n
YJ point to be "collocated" (2.35) 49
Y, coordinates defined by (3.23) 96
Y;Y vectors of local parameters for a stiffener
o placed between nodes 1 and 2 -- the first

one is for flexural computations and the

second one for torsional (unif. mesh) (3.5%) 104
2;;2: same as above (variable mesh) (3.63) 108
z1 coordinates in Fig. 1.2 b
g“ vector of local parameters in eigenvalue

computations (unif. mesh) (3.34) 99
2 same as above (variable mesh) (3.105) 124
2; cartesian coord. system, Fig. 5.1 158
z, coefficients in (5.44) 162
Z vector of 4 constants (5.36) 172
Ogdene30y indices 43
Ei parameters in an orthogonal expansion (2.130) 79
b subdomain's length / plate's length (3.22) 96
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indices 1n (2.16) gy
constant in (3.67) 110
equal to 1 for uniform mesh and egqual to ay
for variable mesh (3.68)5 111
transv. length / long. length (subdomain)(3.7) 89
transv. length/long. length (plate) (3.22) 96
integrals in the geometrie matrix for ribs
(3.57)5 105
symbol of variation 2
Kronecker's delta tensor (1.7) 5
symbol of varlation defined in (1.50) 14

nonlinear strain measure

section 1.2, (1.36) 12
section 1.2, nonlinear only in » (1.49) 14
section 1.2, nonlinear only in U% (1.87) 26
section 1.3, (1.98) 29
section 1.4, (1.106) 31
a positive small number 42
defined 1n the line above (5.45) 174
matrix of the integrals (3.25) 97
matrices of the integrals (3.38) 99
functions in (5.46) for the plane stress

analysis of Fig. 5.1 174
functions (5.42) which are valid for a sub-

domain in Fig. 5.2 174
variation of the strain measure in (1.28)2 10
a small quantity 62

nondimensional coordinate of a plate (5.17) 165

nondimensional coordinate corresponding to a
corner 1 of the subdomain in Flg. 3.2(c¢) 92
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rotation vector given by (1.23) 9
approximation in (1.32) 11
further approximation in (1.52) 15
linear bending measure {(1.44) 13
linear bending measure for the initial state 30
constant defined by (5.36) 172
elgenvalue in (2.28) b7
functional for the Adjoint Variational method
(2.51) 55
approximate eigenvalue obtained by the Ritz

method using n coord. funetions (2.81) 62
propertional fo the reciprocal of the critical
load (3.114) 126
kth iteratlion In the computation of the

smallest eigenvalue 140
minimum and second smallest eigenvalues

(in magnitude) (4.2) 154
transformation matrices defined by (5.19) 165
nonlinear in-plane measure (1.28) 10
nonlinear in-plane measure for the initial

state (1.124) 37
integers defined by (5.26) 168
Poisson's ratio (1.66) 20
constants depending on the integer n (5.3) 159
strain measure in (1.36) 12
defined in (2.16) for use in (2.17) iy
nondimensional coordinate (3.7) 89

nondimensional coord. at the corner i of =&
subdomain (3.8) 90

nondimensional global coord, (5.17) Fig.5.2 165

nondimensional coord. at nodal line i,Fig.5.2 170
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potential energy functional (1.1)

first and second variation of the functional T

virtual work of external forces (1.26)
potential energy of a flat plate (3.1)

in-plane strain energy of a flat rectangular
subdomain (3.21)

flexural energy of a rectangular subdomain
(3.39)

Strain energy expressions for ribs (3.68)

axia%)strain energy expressions for ribs
(3.6

total in~plane virtual work for a stiffened
plate (3.100)

total flexural virtual work for a stiffened
plate {3.110)

integers given by (5.26)

stress tensor for flat plates (1.83)

stress tensor corresponding to nonlinear in-
plane strain measures for the initial state
(1.97)

constants in (3.51)

the sum 1is taken for all subdomains

the sum is taken for all longitudinal
stiffeners (3.100)

the sum 1s taken for all transversal
stiffeners

stress at the longitudinal edges of the plate

in Fig. 5.1
terms in the Fourier expansion of o' (5.2)
constant term in the Fourier expansion of o

inerement of the in-plane nonlinear stress
tensor at the adjacent state (1.97)

axial force in stiffeners (3.82)

2
2
10
87

96

100
110
110

123

" 125

168
25

28
103
123

123

123

158
159
159

28

117
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shearing stress at the top and the bottom of
the plate in Fig. 5.1
terms in the Fourier expansion of <t (5.2}

axial force in an intermediate longitudinal
stiffener (5.20)

vector of the parameters involving the dls-
placement U, at a corner 1 of a subdomain
belonging td a variable mesh (3.90)

same as above for displ. U2

constants defined by (5.14)

coordinate functions (2.31)

local coordinate functions for the subdomain
QJ (2.1425)

vector of coordinate functions (3.17)

elements of the stress functions (5.11) for
a rectangular plate divided in two rectangles

value of a bicubic function between nodes
1 and 2 (3.53)

value of =2 bicublic function between nodes
2 and 4 (3.78)

welghting functions in the method of welghted
residuals (2.32)

function which satisfy homogeneous geometric
B.C. (2.57)

Airy's stress function (2.136)

Airy's stress functions (5.8) for the upper
and lower regions of the plate in Fig. 5.1

undeformed surface (1.14)

deformed surface (1.14)

area of a subdomain (2.37)

area of a domain including its boundary

normal deflection to the plate's undeformed
middle surface

158
159

165
120

120
162

77
95

161

104

116

48

57
81

158

37

49
63
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normal deflection @ prescribed on C

(1.69) 2

normal deflection at the initial deformed
state L1.106)2

sequg?ce of functions complete in energy
(2.7

exact solution to a linear eigenvalue
problem (2.111)

area of a subdomain (3.21)

21

34

62

70
96






10.
11.
12.
13.
14,
i5.

16.

Structural Research Laboratory

Technical University of Copenhagen, Denmark

REPORTS

Askegaard, Vagn and P. Thoft-Christensen:
Spandingsoptiske lag og tgjiningsmilere. 1967.

Mgllmann, H.: The Prineiple of Virtual Work
for Continuous Systems Derived by a Direct
Method. 1968.

Askegaard, Vagn: Production and Application
of Model Materials with Deslired Physical
Constants. 1968.

Mﬁéémann, H.: The Analysis of Shallow Cables.
19068.

Dyrbye, Claés: Damped Vibrations of Slender
Beams. 1968.

Mgllmann, H.: Analysis of Plane Prestressed
Cable Structures. 21969.

Nielsen, Lelf Otto: Beregning af bjslker og
rammer dynamisk pavirket ud over det elastiske
omrdde. 1968.

Brastrup, Mikael W.: On the Theory of Plastic
Plates. 1969.

Nielsen, Leif Qtto: Uniqueness Problems and
Minimum Principles in the Dynamic Theory of
Plasticity. 1969.

Byskov, Esben: Two Nearly Polygonal Holes.
Mathematical Crack Problems. 1969.

Brasstrup, Mikael W.: The Cosserat Surface
and Shell Theory. 1970.

Askegaard, Vagn: Anvendelse af modelanalyse.
1970.

Solnes, Julius: The Spectral Character of
Earthquake Motions. 1970.

Brasstrup, Mikael W.: Yield Lines in Discs,
Plates and Shells. 1970.

Mgllmann, H.: Beregning af hsngekonstruktioner

ved hjelp al deformationsmetoden. 1970.

Byskov, Esben: The Calculation of Stress
Intensity PFactors Using the Finite Element

Method with Cracked Elements. 1970.

out of
print

Qut of
print

Out of
print

Out of
print

Qut of
print

Out of

print

Oout of
print

Out of
print

Qut of
print



R 18.
R 19.

R 20.

R 24.
R 25.

R 26.
R 27.

R 30.

L M

Askegaard, V.: (Grundlaget for adhssion. 1970.

Summaries of Lecture Notes on Experimental
Stress Analysis. 1970.

Sgrensen, Hans Christian: Forskydning i jern-
betonbjsmlker. 1970.

Sgrensen, Hans Christian: Porskydningsforsdgg
med 12 jernbetonbjelker med T-tvarsnit. 1971.

Mgllmann, H.: Analysis of Hanging Roofs Using
the Displacement Method. 1971.

Haurbsk, Poul E.: Dampede svingninger i spend-
betonbjmlker. Svingningsforsgg med simpelt un-
derstgttede bjmlker. 1971.

Braestrup, M.W.: Yield~line Theory and Limit
Analysis of Plates and Slabs. 1971.

Dyrbye, Claés: Pendulum Vibrations. 1971.

Mgllmann, H.: Analytical Solution for a Cable
Net over a Rectangular Plan. 1971.

Nielsen, J.: Silotryk. 1972.

Askegaard, V., M. Bergholdt and J. Nielsen:
Problems in connection with pressure cell
measurements in silos. 1972.

Ramirez, H. Daniel: Buckling of plates by the
Ritz method using piecewise - defined func-
tions. 1972.

Thomsen, Kjeld & Henning Agerskov: Behaviour
of butt plate Joints in rolled beams assembled
with prestressed high tensile bolts. 1972.

Julius Solnes and Ragnar SigbJdrnsson: Structural

response to stochastic wind loading. 1972.

gut of
print

Publication
pending

Out of print




	abk-r028a.pdf
	abk-r028b.pdf

