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SUMMARY 

Increasing interest in the exploration for High Pressure High Temperature (HPHT) petroleum 

reservoirs and for geothermal reservoirs calls for theoretical and experimental knowledge of 

temperature effects on sedimentary rocks. Sandstone is one class of sedimentary rocks of 

interest to both industries, and the physical understanding of temperature effects on mechanical 

properties as well as governing characteristics of fluid and heat transfer in sandstones can be 

essential for industrial success. 

With respect to temperature influence on elasticity and strength, sandstone samples from three 

wells in the central North Sea Basin were studied. The samples were collected from depths 

exceeding 5 km and in-situ temperatures above 170°C. This is relevant for drilling operations, 

because the success and safety of a drilling operation rely on accurate estimates of the 

subsurface effective stress field. Failure to take into account the significant temperature effects 

on both stiffness and strength properties may lead to inaccurate stress estimates and thus cause 

risk. With the intention of experimentally quantifying temperature effects on rock stiffness and 

strength properties, the three sandstones were tested in the dry state at temperatures from 

ambient to in-situ (170°C). Results show a material stiffening during increasing temperature, 

reflected in both static and dynamic elastic moduli. These observations can be attributed to 

thermal expansion of the constituting mineral particles by two mechanisms of different 

magnitude depending on the boundary conditions. Likewise, strength parameters derived from  

measurements of shear failure at ambient and in-situ temperature show strengthening with 

temperature. This observation may also be attributed to thermal expansion of constituting 

minerals. The effective stress field modelled from the conventional Biot equation implies 

isothermal conditions, but for non-isothermal conditions it is possible to include thermoelastic 

theory. Results of interpreting logging data by using the conventional as well as the non-

isothermal Biot equation to estimate the subsurface effective stress in a North Sea well show 

that the non-isothermal Biot equation predicts a smaller effective stress. Results further indicate 

the possibility of a neutral effective stress at great depth so that the overburden load may be 

carried solely by the pore pressure and thus might be floating on the highly overpressured older 

layers.  

Permeability is a key hydraulic property in both petroleum and geothermal engineering and of 

great interest with respect to sandstones. Commonly, conventional laboratories derive the 

apparent liquid permeability of core plugs from empirical or semi-empirical corrections to the 
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gas permeability derived from flow-through experiments. Correcting gas permeability derived 

from flow-through experiments to the apparent liquid permeability is conventionally denoted 

Klinkenberg correction. From flow-through experiments, liquid permeability on a series of 

outcrop sandstones shows good agreement with the apparent liquid permeability from classical 

Klinkenberg correction of gas permeability obtained at laminar flow conditions and thus 

compatible with linear Darcy’s law. In gas permeability experiments not only Klinkenberg 

correction is necessary, but also the confirmation of laminar flow so that the linear Darcy 

equation is valid. For this purpose an estimate of Reynolds number can be done based on 

apparent pore size as estimated from backscatter electron micrographs. For doing Klinkenberg 

correction, the number of gas permeability data points can be limited by availability of core 

material, so estimates of permeability may be based on one or more petrophysical properties, 

which may not be of hydraulic character. Estimation of permeability from non-hydraulic 

properties calls for an understanding of the governing petrophysical principles. Results of 

Nuclear Magnetic Resonance Spectrometry on the sandstone samples used for liquid flow-

through experiments show that the largest pores in the sandstones do not form a continuous 

path and consequently the smaller pores control the overall permeability.  

Because of minimal subsurface coring, assessment of depth variations in thermal conductivity 

is typically limited to applying empirical relations to downhole logging data, but by combining 

input parameters from the concepts of rock stiffness and permeability, it is possible to establish 

a new model for thermal conductivity. Provided a given mineralogical composition, the model 

can estimate formation thermal conductivity as a function of depth using solely parameters 

quantified through conventional log interpretation. The applicability is demonstrated by 

comparing measured data with model predictions of thermal conductivity with input from 

laboratory data of sandstones identical to ones used in permeability studies, as well as logging 

data from an exploration well of the Gassum Formation near Stenlille, Denmark.  
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SAMMENFATNING 

Stigende interesse for dybe olie-gas reservoirer samt geotermisk energi, hvor fællesnævneren 

er den høje temperatur i undergrunden, medfører et stigende behov for teoretisk og 

eksperimentel viden om sedimentære bjergarter. Sandsten er én type af sedimentære bjergarter, 

som er af interesse for industrien, hvor fysisk forståelse af temperatureffekter på stivhed og 

styrkeegenskaber og karakteristika for væske og varmetransport kan være bestemmende for 

den industrielle succes. 

Olie og gas reservoirer, begravet under Nordsøen på dybder større end 5 kilometer og ved 

temperaturer over 170°C, er ofte af sandsten, og det giver anledning til ønske om øget teoretisk 

og eksperimentel forståelse af temperatureffekter på stivheds- og styrkeegenskaberne. 

Stivheds- og styrkeegenskaber er knyttet til sikkerheden ved boring, og udeladelse af 

signifikante temperatureffekter kan lede til usikre estimater af materialeegenskaberne og 

derved føre til øget risiko ved dybe boringer. For at kvantificere temperatureffekter på stivhed 

og styrke, blev tre sandsten fra Nordsøen testet ved temperaturer fra stue- til in-situ temperatur. 

De resulterende statiske og dynamisk stivhedsparametre viser en øget stivhed med stigende 

temperatur. Dette kan tilskrives termisk udvidelse af de enkelte sandkorn gennem to 

mekanismer, som er forskellig i størrelsesorden samt bestemt af randbetingelserne. Klassiske 

styrkeparametre bestemt ved styrkeforsøg foretaget ved stue- samt in-situ temperatur viser øget 

styrke ved den høje temperatur, Dette tilskrives ligeledes termisk udvidelse af de enkelte 

sandkorn. Sikkerheden ved dybe boringer er også knyttet til estimater af de effektive 

spændinger i undergrunden, som til dels er styret af stivhedsegenskaber, hvilket ydermere øger 

nødvendigheden af viden om temperatureffekter. Modellering af de effektive spændinger ved 

hjælp af den konventionelle Biot-ligning, forudsætter isotermiske randbetingelser, men hvis 

termoelastisk teori inkluderes, kan en ikke-isotermisk ligning formuleres. Bruges den ikke-

isotermiske ligning i en boring i det dybe Nordsøbassin, viser resultaterne effektive 

spændinger, der er lavere end de konventionelt beregnede. Dette indikerer at ved stor dybde, 

er spændingerne neutrale, således at post-Triassic lag i princippet kan tænkes at flyde på ældre 

lag, som er under overtryk.  

I undergrundsindustrien inden for både olie/gas og geotermi er permeabilitet en vigtig 

hydraulisk egenskab. Konventionelle laboratorier afleder almindeligvis den tilsyneladende 

væskepermeabilitet ud fra empiriske eller semi-empiriske korrektioner af gaspermeabilitet målt 

ved gennemstrømningsforsøg på kerneprøver. Konventionelt betegnes dette som Klinkenberg-
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korrektion. Klinkenberg-korrektionens brugbarhed blev her eftervist på en række sandsten, 

hvor den tilsyneladende væskepermeabilitet (Klinkenberg-permeabilitet) afledt af målt 

gaspermeabilitet blev sammenlignet med direkte målt væskepermeabilitet. Det viste sig her 

væsentligt at sikre sig laminar gasstrømning, således at Darcy’s ligning gælder. Dette kan gøres 

ved at estimere Reynolds tal ud fra porestørrelse som observeret ved mikroskopi af tyndslib. 

Mængden af kernemateriale er generelt stærkt begrænset, hvilket resulterer i få 

permeabilitetsmålinger, og fører til nødvendigheden af estimater baseret på en eller flere 

petrofysiske egenskaber, som ikke direkte er af hydraulisk karakter. Dette kræver omfattende 

fysisk forståelse af de styrende petrofysiske egenskaber. For at illustrere, at de større porer ikke 

udgør en kontinuert pore, og at mindre porer styrer den overordnede permeabilitet, blev 

Kozeny’s ligning i kombination med kernemagnetiske resonansmålinger på en række 

sandstenprøver anvendt til at udlede permeabilitetsbidrag fra hver enkelt porestørrelse, og 

resultaterne bekræfter, at et bidrag fra de største porer er unødvendigt for at matche den målte 

væskepermeabilitet. 

Ydermere, som følge af minimal adgang til kernemateriale, vurderes dybdevariationer i termisk 

ledningsevne ofte ud fra log-data kombineret med empiriske relationer. Ved at anvende 

koncepter fra stivhed og permeabilitet til kvantificering af strukturen i sandsten kan en 

nyetableret model estimere termisk ledningsevne under forudsætning af kendt mineralogi. 

Modellen anvender udelukkende parametre fra standard logging og konventionel logtolkning. 

Den etablerede model benytter afledte parametre til at kvantificere tværsnittet for 

varmeoverførsel i enkeltkomponenter (faste og flydende), og inden for de fysiske grænser af et 

enhedsvolumen, opsummeres den samlede varmeoverførsel for at udlede et teoretisk udtryk for 

den effektive termiske ledningsevne. Ved at anvende laboratoriemålinger på de samme 

sandsten, som blev brugt til undersøgelsen af permeabilitet, samt brug af log-data fra Gassum 

sandstenen, blev den modellerede termiske ledningsevne sammenlignet med målt termisk 

ledningsevne. Resultaterne viser, at termisk ledningsevne fra den nyetablerede model er i bedre 

overensstemmelse med målinger end andre konventionelle modeller især for log-data. 
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1. INTRODUCTION 

Temperature is a common denominator in the increasing industrial interest in exploration 

for High Pressure High Temperature (HPHT) petroleum reservoirs and the utilization of 

geothermal reservoirs. This calls for increased theoretical and experimental knowledge 

with respect to temperature effects on key properties. For this reason the overall scientific 

goals for this thesis is to 1) provide new knowledge about temperature effects on rock 

stiffness and rock strength, as well as estimation of the temperature effect on downhole 

effective stress, and 2) establish a new model for thermal conductivity using contributions 

from solid and fluid constituents, as quantified from respectively rock stiffness and 

permeability. This work focus on the properties of sandstone. 

 

The scientific rationales behind 1) and 2) respectively are:   

 

1. As the petroleum industry targets deeply buried HPHT reservoirs in, e.g., the 

central North Sea, knowledge of temperature effects on the stiffness and strength 

properties of sedimentary rocks becomes critical. In the North Sea Basin as in 

other localities, HPHT reservoirs may be not only subject to high temperature and 

extreme stress-fields but also to high regional overpressure, which in combination 

give rise to challenges with respect to safety/control of drilling operations as well 

as to well stability.  

In estimations of the effective stress-field, temperature effects are typically 

not included, and when associated with the safety during drilling operations 

inaccurate estimates may pose a risk when targeting HPHT reservoirs. The 

effective stress according to the classical Biot equation (Biot 1941) is primarily a 

function of the total stress (subsurface overburden), but also of the magnitude of 

total stress carried by the pore fluid. Through the effective stress coefficient 

(Biot’s coefficient), the latter depends on the elastic stiffness properties of the rock 

frame as well as the constituting mineral and consequently temperature effects 

may influence stiffness properties, and contribute to the effective stress.  

When applying Mohr-Coulomb’s failure criteria, temperature effects on 

parameters of rock strength determined on downhole sampled material or analog 

outcrop samples are typically not included, and when associated with the danger 
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of well collapse, temperature effects consequently pose a risk when targeting 

HPHT reservoirs.  

 

2. Accurate estimates of key formation properties such as thermal conductivity are 

essential for the industrial success of geothermal engineering. However, decisions 

on formation suitability from formation properties are typically limited to 

estimates from downhole logging campaigns, because tools developed for in-situ 

measurement of thermal conductivity are not yet part of standard logging 

campaigns. Consequently, prediction of thermal conductivity requires estimates 

from other downhole parameters.  

Scope of study 

The rationales in this study are scientifically addressed in separate studies, but concepts 

are interchangeably applied, giving the relation between studies. Chapter 3 to 6 

summarize the primary theoretical framework, results, and conclusions of each study 

whereas chapter 2 provide a brief overview of the materials used in experimental work. 

Appendix III provides a brief description of experimental procedures.     

For the scientific rationale of 1):  

The work concerning temperature effects on subject matters such as subsurface effective 

stress, rock stiffness, and rock strength is based on Orlander et al., I, Orlander et al., 2017c 

and Orlander et al., 2018b. The non-isothermal effective stress formulated from combined 

poro- and thermoelastic theory constitute the theoretical formulation of the mechanisms 

that control temperature effects on rock stiffness and strength. The possible consequences 

of including temperature effects on the subsurface effective stress are shown from a North 

Sea case study. From experiments conducted on a series of sandstone samples from the 

deep North Sea Basin at temperatures from ambient to in-situ, changes in stiffness and 

strength properties were investigated and quantified as a function of temperature. 

Chapters 3 and 4 summarize the work and primary results.  

For the scientific rationale of 2):  

The work concerning thermal conductivity in sandstones is divided into quantification of 

contributions to the overall thermal conductivity from fluid and solid constituents 
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respectively and is based on Orlander et al., II; Orlander et al., III;  Orlander et al., 2017a; 

Orlander et al., 2017b as well as Orlander et al. 2018a. By using concepts from rock 

stiffness and permeability respectively to quantify contributions to the overall thermal 

conductivity from solid and fluid constituents, a theoretical model of thermal conductivity 

with application to sandstone was established. On a series of outcrop sandstones, 

properties of thermal conductivity, stiffness, and permeability were measured and used 

for validation of the model prediction. Chapters 5 and 6 summarize the work and primary 

results.   



4 
 

2. EXPERIMENTALLY STUDIED SANDSTONE MATERIAL  

The focus of this thesis is on sandstone material in general, and both downhole-sampled 

and outcrop sandstone material was experimentally studied. Studies of temperature 

effects on stiffness and strength properties based on experimental work used downhole-

sampled material whereas studies on thermal conductivity and permeability used outcrop 

samples.  

2.1 North Sea sandstones 

Downhole sampled sandstone material originates from three North Sea HPHT wells and 

depths of 4.5 to 5.5 km and in-situ temperatures of approximately 170°C. The wells are 

denoted as O, H, and C respectively. 

As derived from thin section petrography, X-ray diffraction (XRD) and Energy 

Dispersive X-ray Spectroscopy (EDS), the samples from well O, H, and C contain quartz, 

feldspar, and phyllosilicates. Detected phyllosilicates include mica (illite) and chlorite. In 

H and O is calcite detected (Table 2.1). Presence of pyrite and organic matter is detected 

in sample O (Table 2.1). The presence of calcite is not detected from XRD in sample C 

but is indicated by chemical analysis of the carbonate content. The content is however 

only in the order of 1%.  

Table 2.1. Mineralogical composition of reservoir material as detected by XRD and EDS.   

Well Quartz Kali- 
feldspar 

Calcite Phyllo-
silicate 

Pyrite Organic matter 
(coal) 

O X X X X X X 
H X X X X   
C X X  X   

X indicated detected presence.  

For O samples, Backscatter Electron Micrograph (BSEM) images show quartz and calcite 

as dominating and load bearing minerals. However, the relative proportion of quartz and 

calcite vary between samples (Figure 2.1a and b). In addition to quartz and calcite, 

significant quantities of organic matter (coal) with pyrite is found in some O samples 

(Figure 2.1a, and c).  

BSEM-images of H material show quartz as the dominating, load bearing, and cementing 

mineral. The cementation is extensive, and calcite as well as feldspar minerals, also 
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detected by XRD, are embedded as single crystals in the solid frame. Phyllosilicates 

appear in the pore space (Figure 2.1d).  

BSEM-images of C material show quartz as the dominating mineral and load bearing, but 

with a significant quantity of feldspar and bands of phyllosilicate-bearing stylolites. 

Compared to O and H the cementation is relatively low (Figure 2.1e and f).  

Figure 2.1 BSEM-images of sandstone from well O, H and C, representing side-trim material 

from plugs. Q = quartz, C = calcite, K = feldspar, Ph = phyllosilicate, P = pyrite, PO = pyrite in 

organic matter. 

The measured range of grain density of 2.73-2.85 g/cm3 for O specimens corresponds to 

the presence of calcite and pyrite found by XRD and EDS analysis. Nitrogen porosity 

(ϕN) ranges from 0.05 to 0.12 and Klinkenberg corrected gas permeability (kK) is in 

general below 0.015 mD. Caused by the presence of highly porous organic matter, the 

relatively high specific surface from Nitrogen absorption (BET) of 6.5 m2/g (Table 2.2) 

does not represent the specific surface of the minerals. The carbonate content of O 

material ranges from 5 % to 37 % (Table 2.2). The significant range in characteristics for 

samples from well O, suggests great caution in direct comparison across individual 

samples.  



6 
 

A measured grain density of 2.64 g/cm3 for H specimens corresponds to the dominance 

of quartz minerals found by XRD and EDS analysis. Measured nitrogen porosity and 

Klinkenberg corrected gas permeability are around 0.12 and 0.12 mD respectively. The 

specific surface from BET is 0.9 m2/g as expected for a quartz dominated sandstone with 

pore-filling phyllosilicates and the carbonate content range is tight around 3% (Table 2.2).  

A measured grain density of 2.67 g/cm3 for C specimens corresponds well with findings 

from XRD analysis and the dominance of quartz in addition to a significant presence of 

the slightly heavier phyllosilicates. Measured nitrogen porosity is around 0.2, and 

Klinkenberg corrected gas permeability ranges from 0.3 to 105 mD, probably related to 

the extent and number of tight phyllosilicate stylolites. The specific surface by BET is 1.7 

m2/g corresponds to a sandstone with a significant presence of phyllosilicates. The 

carbonate content is low in accordance with results from XRD and EDS.   

Table 2.2. Range of measured properties of reservoir sandstone samples. 

 

Well 

Dry 

density, ρd 

Grain 

density, ρm 

N2  

Porosity, ϕN  

Klink. corr. 

Permeability, kK 

Specific 

surface, BET 

Carbonate 

content 

 g/cm3 g/cm3 - mD m2/g % 

O 2.39 - 2.56 2.73 - 2.85 0.03 - 0.14 <0.01 - 0.123 6.5 5 - 37 

H 2.30 - 2.38 2.63 - 2.64 0.11 - 0.13 0.11 - 0.22 0.9 1.1 - 4.2 

C 2.01 - 2.22 2.66 - 2.68 0.19 - 0.20   1.78 - 104.62 1.7 0.6 - 1.7 

 

2.2 Outcrop sandstones   

The outcrop sandstone material experimentally investigated in studies of thermal 

conductivity and permeability originate from 1) Fontainebleau, France, 2) Castlegate, 

USA, 3) Bentheim, Germany, 4) Obernkirchen, Germany and 5) Berea, USA. In studies 

of thermal conductivity and permeability respectively 19 and 13 samples were used.  

From semi-quantitative XRD analysis, quartz is the dominating mineral in all the studied 

outcrop sandstones (Table 2.3). From XRD analysis feldspar is detected in samples from 

Castlegate and Bentheim and phyllosilicates in Castlegate, Obernkirchen, and Berea 

samples. BSEM-images confirm quartz as the dominating, but also as the load bearing 

mineral and cementing mineral. The cementation degree however varies between 

sampling locations. With the exception of Fontainebleau sandstone phyllosilicates are 
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seen in all samples (Figure 2.2). Some Fontainebleau samples show weak grain contacts, 

presumably related to weathering. Bentheimer samples show no presence of 

phyllosilicates from XRD, but from BSEM clusters of kaolinite are detected (Figure 

2.2c). Thus, in accordance with Peksa et al., (2017) a clay content of 2.7 % is listed for 

Bentheimer sandstone in Table 2.3. 

Table 2.3. Mineralogical composition of outcrop material as detected by EDS and semi-

quantitative XRD.   

Formation Quartz Kali- 

feldspar 

Phyllosilicate 

 mass % of total solid 

Fontainebleau 100   

Castlegate 95.4 1.1 3.5 

Bentheimer 95.3 4.7 (2.7)a 

Obernkirchen 96.0  4.0 

Berea  95.0  5.0 
a(Peksa et al., 2017)  

 
Figure 2.2 BSEM-images of sandstone from well O, H and C, representing side-trim material 

from plugs. Q = quartz, C = calcite, K = feldspar, Ph = phyllosilicate, P = pyrite, PO = pyrite in 

organic matter.   



8 
 

Grain density close to 2.66 g/cm3 (Table 2.4) corresponds to the dominance of quartz in 

all samples. Nitrogen porosity ranges from 0.05 to 0.28 and permeability from 0.6 to 430 

mD and thus wide ranges are investigated. High measured specific surface by BET (Table 

2.4) corresponds to samples with presence of phyllosilicates as detected from XRD and 

BSEM (Table 2.3 and Figure 2.2).  

Table 2.4. Range in measured properties of outcrop sandstone samples. 

 

Formation 

Dry 

density, ρd 

Grain 

density,  ρm 

N2  

Porosity, ϕN  

Permeability Specific 

surface, BET Klink.a kK Water, kw 

 g/cm3 g/cm3 - mD  m2/g 

Fontainebleau  2.32 - 2.53 2.65 - 2.66 0.047 - 0.234 0.3 - 140 0.3 – 430 0.03 

Castlegate 1.91 - 1.92 2.67 0.279 - 0.284 290 - 320 260 – 350 1.72 

Bentheimer  1.97 - 1.98 2.66 - 2.68 0.262 - 0.265  -   320 0.31 

Obernkirchen 2.15 - 2.21 2.67 0.175 - 0.196 4.5 - 7.3 1.5 - 3.5 1.06 

Berea 2.17 - 2.20 2.68 0.186 - 0.193 10 - 50 - 1.50 
aKlinkenberg corrected gas permeability  
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3. TEMPERATURE EFFECTS ON THE EFFECTIVE STRESS 

3.1 The concept of effective stress 

Originally introduced by Terzaghi in the 1920s, the concept of effective stress brought a 

theoretical formulation of the relation between total stress, pore pressure and the strain 

(effective stress) in a soil volume undergoing deformation. In the classical paper “General 

theory for three-dimensional consolidation”, Biot (1941) formulated a generalized elastic 

theory, where he introduced the coefficient, α, now denoted as Biot’s coefficient or the 

effective stress coefficient. For isotropic stress and isothermal conditions, Biot’s equation 

may be formulated as:  

eff tot ,Pσ σ α= −  (3.1) 

where σtot is the total stress, P is the fluid pore pressure and σeff is the effective stress. 

Biot’s coefficient and P are scalars, whereas σtot and σeff in principle are 3 by 3 tensors, 

but simplified and treated as scalars in the isotropic case because of stress symmetry. 

Equation 3.1 shows that the pore pressure is counteracting the total stress and defining 

the effective stress as reflected in the resulting deformation. Biot’s coefficient can by 

definition only obtain values between porosity and 1, and in the case of sedimentary rocks 

Biot’s coefficient is less than 1 (α < 1), and consequently only a fraction of the pore 

pressure (αP) in sedimentary rocks counteracts the total stress (equation 3.1). Biot’s 

coefficient is defined as: 

dra min1 /K Kα = −  (3.2) 

where Kmin is mineral bulk modulus, and Kdra is the drained bulk modulus, i.e., the frame 

bulk modulus, Kframe. The term modulus defines a measure of elastic stiffness and is hence 

a quantification of the resistance of a material to elastic deformation resulting from an 

applied stress. Kdra is typically determined from compressional and shear moduli of rocks 

in the dry state as Kframe = Kdry= Mdry – 4/3Gdry where 2
dry P,dryM Vρ=  and 2

dry S,dryG Vρ= are 

compressional and shear moduli and ρdry, VP,dry and VS,dry are dry density, dry 

compressional and dry shear wave velocities, respectively. 
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3.1.1 Estimating the grain contact area from Biot’s coefficient   

The frame stiffness of sedimentary rocks consisting of single grains cemented together to 

constitute a solid and porous frame is controlled by the degree of cementation as well as 

the stiffness (modulus) of constituting grains. It is measured under fully drained 

conditions. Stress and strain are by convention considered positive for respectively 

compression and compaction. The corresponding volumetric elastic strain, εb, resulting 

from changes in σtot and P in equation 3.1 can be expressed in a constitutive relation as: 

1
dra totb ( )K Pσ αε −= − , (3.3) 

which equate 

1
b tot dra,P P PKε ε ε ε α −= + = − ,  (3.4) 

where εtot is the volumetric strain from changes in the total stress, and in accordance with 

equation 3.1, εtot is in principle a tensor, but treated as a scalar in the present case. εP is 

the volumetric strain from changes in pore pressure. The resulting elastic compaction, εb, 

for α less than one (α < 1) is smaller than for α = 1, as only the reduced pore pressure (αP) 

counteract the total stress (equation 3.3 and 3.4). Because the pore pressure requires 

access to the pore walls to counteract the total stress, α conceptually represents the area 

with countering pore pressure and consequently the residual (1 – α) must represent the 

inaccessible cemented area, leading to the conceptual interpretation that the cemented 

contact area is equal to (1 – α). The concept of effective stress can thus relate Biot’s 

coefficient to the grain contact area (cemented area) as discussed by Gommesen et al. 

(2007), Alam et al. (2009), and Fabricius (2010). Fabricius (2010) illustrated the concept 

as in Figure 3.1 and show that knowledge of Biot’s coefficient conceptually provides a 

quantitative measure of the grain to grain contact area. 
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Figure 3.1. Conceptual sketch of a porous sedimentary rock with saturating fluid (white) and 

sediment particles (gray) connected by contact cement (after Fabricius, 2010) illustrating (1 – α) 

as quantification of the cemented area (grain to grain contact). 

3.2 The non-isothermal effective stress in sedimentary rocks 

Biot assumed isothermal conditions in his original formulation, as represented by the 

effective stress (equation 3.1), but Palciauskas and Domenico (1982) and McTigue (1986) 

later formulated the non-isothermal equivalent by combining poro- and thermoelastic 

theory. Defining compaction from poroelastic effects and contraction from thermoelastic 

effects as positive strain, the resulting non-isothermal volumetric strain εb,T for isotropic 

stress can be expressed as:   

dra

1
b, tot , ,T P T P TPK Tε ε ε ε ε α ε β−= + + = − = − , (3.5) 

where εtot + εP is the isothermal strain from equation 3.4, εT is the thermoelastic strain due 

to a temperature change, T, and β is the volumetric thermal expansion coefficient of the 

constituting mineral.  

Conversion between strain and stress in porous rocks is not straightforward for non-

isothermal conditions, because depending on the boundary condition, temperature 

increase is physically linked to changes in pore pressure. For a fluid saturated porous rock 

one can imagine two conditions where increased temperature are coupled respectively 

uncoupled with increase in pore pressure: 1) at undrained conditions and zero volume 

change, the difference in expansion of the fluid and solid constituents will lead to the 

necessity of a coupling term when increased temperature induce pore pressure increase; 

PP

1

1 – α

σtot
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2) at drained condition with a constant pore pressure, temperature increase induces 

changes only on the solid frame. This can be the case, where increased load on a water 

column simultaneously with a temperature increase lead to zero change in fluid density. 

Then pore pressure and temperature effects are uncoupled.  

Thermal strain, induced on the solid frame from increased temperature with pore pressure 

uncoupled from temperature increase, can physically only convert to stress when the 

boundary conditions are that of a rigid constraint. A rigid constraint implies that for a 

representative volume, the thermally induced volume change is zero, and as an equivalent 

to equation 3.5, the non-isothermal stress can under this condition be formulated as:  

eff, tot P dra, , ,T T P TP TKσ σ σ σ σ α σ β= + + = − = −  (3.6) 

where σP and σT are respectively the poro- and thermo-elastic stress.  

Equation 3.5 shows that strains from both pore pressure and temperature are counteracting 

εtot and consequently also σtot (equation 3.6) when conditions leading to the conversion of 

thermal strain to stress are present. Thus, in a representative volume, the counteracting 

poro- and thermoelastic volumetric strains (εP and εT), resulting from change in P and T 

may lead to negative εb,T (equation 3.5). However, only the surplus strain (the portion of 

εb,T leading to apparent εb,T < 0) can result in an overall volumetric expansion. 

Consequently the remaining εb,T leading to εb,T > 0 is converted to thermal stress when the 

total stress exceeds or is equal to the counteracting stress from pore pressure and 

temperature. With respect to thermal strain-stress conversion, the boundary condition of 

equation 3.6 is then:  

tot0T P Tσ σ σ σ≠ ⇔ ≥ + , (3.7) 

and by stating conditions of  σeff,T  ≥ 0 at all times, equation 3.6 becomes: 

tot ff ,

eff, tot P dra

0 , 0,
, , .

T P T e T

T T P TP TK
σ σ σ σ σ

σ σ σ σ σ α σ β

≠ ⇔ ≥ + ≥

= + + = − = −
 (3.8) 
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Thus, when the total stress exceeds the counteracting from pore pressure and temperature, 

a representative rock volume is rigidly constrained, and conversion of thermal strain to 

stress can follow. 

Table 3.1. Bulk modulus and the thermal expansion coefficient of common minerals.  

Mineral Bulk Modulus, 

Kmin, (GPa)  

Linear thermal expansion 

coeff., η, (10–6 K–1) 

Volumetric thermal expansion 

coeff., β, (10–6 K–1) 

Quartz 37a 7.7b,1, 13.5 b,2 34.7c 

Calcite 72a –4.4b,1, 23b,2 14.6c 

Feldspar 75.6a 1.3b,3, 13.5 b,4 19.8c 

Clay/shale 25a  31d 
aCitation in Mavko et al. (2009), bJohnson and Parsons (1944), cDerived as the sum of linear thermal 

expansion coeff., dEstimate based on work by McKinstry (1965), 1Parallel to c-axis, 2Perpendicular to c-

axis, 3Parallel to b-axis, 4Parallel to a-axis. 

By examining the non-isothermal effective stress, with respect to a representative volume 

in the subsurface, formation (e.g., σtot, P and T) and material properties (e.g., Kdra, Kmin 

and β) simultaneously control the resulting magnitude of σeff,T as well as the pre-condition 

for a strain to stress conversion (equation 3.8). However, it might not be the magnitude, 

but the respective ratios of Kmin and β that are controlling σeff,T because changes in pore 

pressure and temperature with depth are not necessarily equally proportional. For 

instance, depth correlation of subsurface temperature is as a first approximation linearly 

to great depth, whereas the pore pressure is typically not, because of overpressured 

formations. For a quartz dominated sandstone with respectively Kmin and β of 37 GPa and 

34.7·10–6 K –1 (Table 3.1) the ratio between Kmin and β approximate 106 GPa/K whereas 

for a calcite dominated limestone with Kmin and β of respectively 72 GPa and 14.6·10–6 

K–1, the ratio approximates 5·106 GPa/K (Table 3.1). There is thus a factor 5 difference 

between quartz and calcite and by imagining the two rocks at equal depth (equal σtot) and 

assuming equal frame stiffness (Kdra) the resulting σeff,T must be different, because of the 

different ratio.   
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3.3 Case study: the non-isothermal stress of the Hejre Field, North Sea 

By using data from the Danish oil field Hejre situated in the North Sea (Figure 3.2), it is 

possible to evaluate possible consequences of including non-isothermal conditions in 

estimation of the subsurface effective stress. 

 

Figure 3.2. Map of the central North Sea. 

Data from the Hejre field goes as deep as 5.4 km, and by using downhole measurements, 

Regel et al. (2017) estimated frame stiffness, Biot’s coefficient, overburden stress, 

temperature and the range of pore pressure in the depth interval from 3000 to 5400 meters 

depth (Figure 3.3).  

By assuming a salinity of 90,000 ppm and by inserting pore pressure and temperature 

data from Figure 3.3b in the expression for brine density by Batzle and Wang (1992) one 

finds a density decrease in the order of 5%. The volume expansion from increased 

temperature is thus slightly higher than the volume decrease from compression. If 

assuming that this effect is negligible, each term in equation 3.8 becomes uncoupled. 

Further, if assuming isotropic stress symmetry and coefficients of thermal expansion from 

Table 3.1 corresponding to each lithology shown in Figure 3.3a, the range of non-

isothermal effective stress (σeff,T) can be calculated from equation 3.8 as a function of 

depth (Figure 3.3b). For comparison, in one case the isothermal effective stress, σeff, was 

derived from Biot‘s original formulation, and in one case from Terzaghi’s concept by 

assuming α = 1 (σeff,α=1), which is common in geotechnics.  

North Sea

Hejre
Danish Sector

DK
UK

NO
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Figure 3.3. North Sea case study. a) Estimates of temperature, drained bulk modulus and Biot’s 

coefficient as function of depth for the Hejre field. Estimates are from Regel et al. (2017). The 

coefficient of thermal expansion is estimated based of the respective lithology for each formation 

and Table 3.1. b) Calculated range of effective stress as function of depth. The overburden stress 

and pore pressure range is from Regel et al. (2017).  

In the studied lithological sequence, the derived σeff,T is practically constant with depth 

and closely approximates σeff,α=1 in the chalk and shale formations (Shetland, Cromer 

Knoll, and Tyne Groups) (Figure 3.2b). Approximating Biot’s coefficient equal to one, 
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leads to the assumption of σeff,α=1 = σeff, which is typically used in planning of well 

drilling, and in the investigated depth range, the assumption is most likely wrong but 

appear as a successful choice for estimation of the effective stress (Figure 3.2b).  

The pre-condition of equation 3.8 is violated in the Pre-Jura section showing that the 

thermal strain (εT) is only partly converted to stress so that the surplus strain presumably 

resulted in an expansion of the formation. Jointly, results from the case study indicate that 

sections or entire formations in the subsurface of the deep North Sea basin are 

experiencing neutral effective stress. Hence, overlying layers are in principle floating on 

overpressured layers below and because of the low stiffness to thermal expansion ratio of 

quartz (Table 3.1), the threshold is presumably located at depths where Triassic or 

Jurassic sandstones are found.   
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4. TEMPERATURE EFFECTS ON STIFFNESS AND STRENGTH 
PROPERTIES OF SANDSTONES  

Sampling of subsurface material inevitably involves equilibration of material to 

atmospheric conditions and in literature the equilibration is speculated to induce tensional 

forces in the grain contacts, leading to ruptures of the weakest contact cement (Holt 1994). 

The ruptured contacts cause a reduction in stiffness and are in the rock physical society 

denoted as micro-cracks posing a single bulk term. The term is, however, unfortunate for 

several reasons: 1) ruptures due to stress release and due to cooling are different in both 

physical principle and presumably in order of magnitude; and 2) ruptures originating from 

cooling must be considered homogeneously distributed but related to the mineralogical 

composition, whereas ruptures from stress release are not necessarily so, because of 

possible anisotropy in the subsurface stress field. Both outcrop and reservoir material 

were buried in the geological past before being brought to the surface and consequently 

micro-cracks are found in both material types. The timescale of equilibration to 

atmospheric conditions are however different in the two cases, but not the physical 

mechanisms resulting in micro-cracks. One important physical consequence of micro-

cracks is that sampled rock material cannot fully represent in-situ material because 

reestablishment of stress and temperature in the laboratory will not heal ruptured contacts.  

4.1 Temperature effect on rock stiffness 

By reestablishing in-situ stress and pore pressure conditions, several studies have shown 

increased frame stiffness for various lithologies, and the stiffening has been related to  

reestablishment of ruptured grain contacts (e.g. Banthia et al., 1965; Nur and Simmons, 

1969; Wu et al., 1991; Frempong et al., 2007 and Mavko and Vanorio, 2010). Denoting 

the effect as micro-crack closure, frame stiffening from stress is thus well documented 

and accepted in the geo-mechanical society. On the other hand, limited studies on rock 

stiffness at elevated temperature, including controlling mechanisms results in an 

incomplete picture of effects from temperature. Further, studies on stiffness properties as 

a function of temperature are generally written in context for three applications: 1) 

petroleum and geothermal industries, 2) nuclear waste deposits and 3) fire damage on 

buildings and monuments. Experimental studies with application in the petroleum and 

geothermal industries, as well as in nuclear waste deposits, generally concern 

temperatures below 300°C (e.g. Hughes and Cross, 1951; Hughes and Kelly, 1952; 
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Handin and Hager, 1958; Mobarak and Somerton, 1971; Timur, 1977; Rao et al., 2007; 

Hassanzadegan et al., 2011) whereas studies related to fire damage and to some degree, 

nuclear waste deposits include temperatures as high as 1200°C (e.g., Hajpál, 2002; Mao 

et al., 2009; Ranjith et al., 2012; Zhang et al., 2009 and Wu et al., 2013). The difference 

in context and application of experimental results is presumably directly correlated to the 

scatter in lithology, maximum testing temperature, and saturating pore fluids found in the 

literature. Independent of application, commonly stiffness properties are evaluated with 

reference to ambient temperature presumably because it is straightforward from an 

experimental and practical point of view. However, from a physical point of view, 

ambient temperature is as foreign to the material as temperatures above in-situ. Theories 

and properties derived from experimental data on both downhole sampled and outcrop 

material, consequently need evaluation with the material’s geological temperature history 

in mind. Such studies are limited, but include a publication by Timur (1977), stating 

temperature history as a factor affecting ultrasonic velocities is rocks. By contrast, 

addressing pre-consolidation as well as in-situ stress level and symmetry through the 

materials geological stress history is fully implemented in geo-mechanical societies.  

Material sampled from downhole are commonly limited in quantity, and consequently, 

outcrop materials are often used as an analog. However, failure to envisage differences in 

temperature history between downhole and outcrop material may give rise to difficulty 

when assessing temperature effects on, e.g., stiffness properties. This would suggest the 

use of analog material selected by equally envisaging the geological temperature history 

(i.e., maximum in-situ temperature) in addition to more conventional parameters (e.g., 

porosity, permeability, and mineralogy). Failure to envisage the geological temperature 

history in principle makes conclusions on, e.g., rock stiffness from temperature controlled 

experiments unique to the studied material; leaving high chance of finding a misguided 

use of analog materials. This again may lead to an unreasonable use of temperature trends 

in an evaluation of in-situ reservoir properties such as stiffness.  

Compared to ambient conditions, at experimentally reestablished in-situ temperature, a 

studied rock frame may either stiffen, soften or behave neutrally. However, the 

constituting mineral stiffness may behave differently to temperature than the frame 

stiffness. For example, the constituting quartz minerals in sandstones will experience a 

softening trend for increasing temperature (Orlander et al., I) whereas closure of micro-
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cracks by thermal expansion of the minerals following from the temperature increase 

should stiffen the frame. Similarly, if the boundary conditions are that of a rigid constraint 

and constant pore pressure, thermal expansion of constituting mineral reduces the 

resulting strain (εb,T) and the material thus behaves stiffer (equation 3.5). Hence, with 

respect to properties of the constituting mineral, the overall change in frame stiffness for 

reestablished in-situ temperature, are simultaneously controlled by the magnitude of 

stiffness versus temperature trends and the thermal expansion coefficient. The latter can 

induce potential stiffening by two different mechanisms described as:    

• Mechanism 1: consider a rock sample with a constantly applied total stress and pore 

pressure and with effective stress below the stress leading to full micro-crack closure. 

Restitution of temperature to previous equilibrium causes closure of contact cement 

ruptures (i.e., of micro-cracks) by thermal expansion of the constituting rock minerals, 

hence leading to stiffening of the rock frame. Because a rock volume is assumed 

homogeneous and un-fractured in the constitutive formulations in equation 3.8, it is 

incapable of describing this mechanism. Further, at a constant temperature, an 

increase in applied stress may enlarge the contact area in ruptures possibly created by 

thermal shrinkage, and continued stress increase will add to the number of contacts 

or increased contact area of existing contacts, thereby leading to stiffening. 

• Mechanism 2: consider the same rock sample, but with constantly applied total stress 

and pore pressure equivalent to full micro-crack closure and with the resulting strain 

εb in accordance with equation 3.3. Restitution of in-situ temperature will inevitably 

cause thermal expansion of the rock minerals, and the resulting strain may be in 

accordance with equation 3.5 and equal to εb,T, if applied stress and pore pressure 

respect the boundary conditions of rigidly constrained volume/rocks frame (σeff,T > 0). 

Assuming this is so, the rock frame might behave stiffer at in-situ temperature, 

depending on the proportion of the material petrophysical properties (Kmin and β). 

Physically, the stiffening can be caused by the conversion of the thermally induced 

strain to thermal stresses internally imposed on the rock frame. Thus, stiffening of the 

rock frame from thermal stress occurs only when σeff,T > 0 and is maximum when σeff,T 

= 0. 
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4.2 Temperature effects on rock stiffness - experimental results  

Experimental results of dry rock stiffness derived at different boundary conditions, and 

temperatures from ambient to in-situ on downhole sampled material from well O, H and 

C (section 2.1), compose the background for the arguments of Mechanisms 1 and 2 

respectively. As testing was done on samples in the dry state experiments are in principle 

drained.   

4.2.1 Mechanisms 1 – closure of micro-cracks from thermal expansion  

To determine if the grain contact area, acknowledged as (1 – α) (section 3.1), increases 

because of micro-crack closure by thermal expansion  (Mechanism 1), the stiffness of 

investigated sample materials was measured in a stress regime with partially closed 

micro-cracks and thermally unconstrained sample volume (See Orlander et al. I for 

argument on constrained sample volume).  

 
Figure 4.1. Changes in elastic moduli, Mdry, Gdry and Kdry for change in temperature versus axial 

stress level. Data are from Orlander et al., I. Gray marked represent hydrostatic stress symmetry 

and white constant confining of 2 MPa. Slopes of modulus versus temperature not significantly 

different from zero as determined from ANOVA analysis are plotted as zero. 
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At axial stress from 2.5 to 15 MPa and temperatures of ambient, 50°C 100°C 150°C and 

in-situ (170°C), dry elastic moduli of compression (Mdry) as well as shear (Gdry) derived 

from dry density and ultrasonic velocities show a slight increase in modulus for increased 

stress and with the exception of O material also a slight increase for increased temperature 

(Orlander et al. I). Deriving Kdry from Mdry and Gdry (section 3.1) and subsequently 

calculating slopes of Mdry, Gdry, and Kdry versus temperature, accounting for slopes not 

significantly different from zero, show O material unaffected by temperature. However, 

for H and C material the temperature affected Mdry and Gdry are counteracting, resulting 

in Kdry generally unaffected by temperature (Figure 4.1). By using a temperature corrected 

quartz modulus, Kmin of:  

5 2 3
min 3 2 10 4 1 10 38 1K T T− −= − ⋅ − ⋅ +. . .     (4.1) 

where T is the temperature in °C and Kmin is in GPa (Orlander et al. I). Biot’s coefficient 

derived from Kdry in general show none to minor temperature dependency (Figure 4.2), 

signifying closure of ruptured grain contacts by thermal expansion as minor in the 

investigated stress and temperature regime. Consequently, compared to micro-cracks 

closure by increased stress level the observed thermal stiffening is insignificant. 

 

Figure 4.2. Change in Biot’s coefficient with change in temperature versus axial stress level for 

sandstone samples. Data are from Orlander et al., I. Gray marked represent hydrostatic stress 

symmetry and white constant confining of 2 MPa. 

Recalling that results are obtained from volumetrically unconstrained samples, one could 

imagine a larger stiffening effect from thermal micro-crack closure in condition with a 
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conditions where stress levels correspond to a constrained sample volume and where 

micro-cracks are not closed by the stress. Hence, the present data do not provide the full 

picture of micro-crack closure by thermal expansion of constituting minerals.    

4.2.2 Mechanisms 2 – stiffening from an increase in internal stress 

To determine if thermally induced internal stress in the rock frame can lead to stiffening 

(Mechanism 2) the rock stiffness of investigated samples was measured in a stress regime 

with full micro-cracks closure and thermally constrained sample volume (See Orlander 

et al. I for argument on constrained sample volume). Two samples were at identical 

confining stress, but at either ambient or in-situ temperature brought to failure by 

increasing axial stress and the static E-modulus was derived from stress-strain curves 

(Figure 4.3). From continuously, measured ultrasonic velocities and deformation 

corrected density the dynamic E-modulus, Edyn, was derived.  

Static E-modulus of O specimens show an incomplete picture of temperature effects 

because stiffening and softening changes for different confining stress (Figure 4.3) and 

discrepancies in stiffening and softening trends are found from dynamic E-modulus, 

adding further to the incomplete picture for O material (Figure 4.3). Significant 

heterogeneity on the sample scale (Chapter 2) is probably making comparison across 

samples unreasonable. On the other hand, the high degree of homogeneity found in H and 

C specimens (Chapter 2) makes direct comparison of temperature effects on the rock 

stiffness at high stress levels possible and for H as well as C material both Esta and Edyn 

are higher at in-situ temperature (Figure 4.2) when the confining stress is above 3 MPa. 

The higher stiffness at in-situ temperature is interpreted as thermal strain converted to 

increased internal stress thus increasing the stiffness as suggested in mechanism 2.   
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Figure 4.3. 1st row) Stress-strain curves at ambient and in-situ temperature. 2nd row) 

Axial stress versus, static and dynamic E-moduli. Esta is derived from stress-strain curves 

using a running least squares best fit with a length of 5 MPa. Data are from Orlander et 

al., I. 

4.3 Temperature effect on rock strength - experimental results 

Arguments made in section 4.1, on the common lack of considerations to the materials’ 

geological temperature history, with respect to temperature effects on the frame stiffness, 
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misguided use of analog material and contradictory conclusions from experimental 

results.  

A material’s shear strength is in classical rock mechanics commonly, described from 

Mohr-Coulomb’s failure criteria by the material’s effective stress friction angle (φ´) and 

cohesion (c´) (Jaeger et al., 2007). φ´ describes the material’s frictional shear resistance 

and, c´ the bonding between grain contacts (cohesion). The shear strength of rock material 

is commonly derived from a series of triaxial failure tests and a critical state (failure 

criteria) defined from the measured peak stresses in the p´ - q work frame, where p´ is the 

mean effective stress and q is the deviatoric stress, defined as:  

' ' '
1 2 3

' ' 2 ' ' 2 ' ' 2
1 2 2 3 1 3

1´ ( )
3
( ) ( ) ( )

2

p

q

σ σ σ

σ σ σ σ σ σ

= + +

− + − + −
=

,  (4.2) 

where σ´1, σ´2, and σ´3 are the normal stresses and the standard notation is that σ´1 is the 

axial stress, whereas σ´2 and σ´3 are the radial.  

Temperature-induced stiffening of the rock frame was in the previous section related to 

the thermal expansion of the constituting minerals and for temperature induced 

strengthening similar arguments can likewise be related to thermal expansion. For most 

sedimentary rocks, conditions leading to shear failure follow stress levels of full micro-

crack closure and strengthening by a thermally induced closure of micro-cracks is thus 

unfeasible. However, a thermal stress induced by thermal expansion of constituting 

minerals can lead to strengthening. Consider a rock volume exposed to thermal strains 

due to a temperature increase, and assume conditions leading to the conversion of thermal 

strain to stress (section 3.2). The thermal stress (σT) will thus induce internal stresses, 

consequently leading to increased frictional forces in the grain contacts, and result in 

increased shear resistance and friction angle. On the other hand, as frictional forces do 

not induce changes to the physical bonding of the grain contacts, the cohesion is 

unaffected by changes in internal stress, when assuming that the cementing minerals have 

only negligible strength variation with temperature.  

The mean effective stress p´ and the deviatoric stress q, derived from the axial peak stress 

as well as the confining stress of the conducted experimental work, gives an incomplete 
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picture of temperature effect for O-material, and as for the stiffness (section 4.2), 

discrepancies in petrophysical characteristics are presumably the cause. p´ - q diagrams 

of peak (failure) stresses of H as well as C material, show increased strength at in-situ 

temperature (Figure 4.4), and the material’s friction angle (φ´) is approximately 4 degrees 

higher. On the other hand, the cohesion is practically unaffected by temperature. As the 

stress conditions leading to mechanical failure in the conducted testing allow for 

conversion of thermal strain to stress, the increased shear resistance (friction angle) 

observed from ambient to in-situ temperature is a direct consequence of increased 

frictional forces in the grain contacts resulting from increased internal stress. 

Figure 4.4 p´ - q diagrams of dry H and C material at ambient and in-situ temperature. Data are 

from Orlander et al., 2018b.  
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5. PERMEABILITY OF SANDSTONES - CONTROLLING PORE SIZE 

From the classical Darcy definition, permeability describes the transport properties of a 

fluid passing through a connected pore space in, e.g., sedimentary rocks. Further, 

permeability is an intrinsic hydraulic material property and in the subsurface industry, a 

key parameter where reliable predictions are essential.  

5.1 Klinkenberg corrected permeability 

Permeability is in principle independent on properties of the flowing fluid, but 

experimental studies have shown a pore pressure dependency on gas permeability, kg (the 

“Klinkenberg effect”). Klinkenberg (1941) suggested an empirical method for correction 

of kg to the equivalent intrinsic liquid permeability. On various lithologies with different 

petrophysical characteristics, the correction method has been used in numerous studies 

and is the basis for theoretical or empirical modification (e.g., Sampath and Keighin, 

1982; Civan, 2009; Tanikawa and Shimanoto, 2009; Moghadam and Chalaturnyk, 2015; 

Al-Jabri et al., 2015; Li and Sultan, 2017). For liquid flow, Poiseuille’s law as 

implemented by Kozeny (Kozeny, 1927) considers zero velocity at the pore wall due to 

friction arising from the small molecular mean free path in the fluid (order of inter-

molecule distance) and consequently inter-molecular collisions are dominating the liquid 

flow. On the other hand, for gas flow, Klinkenberg (1941) argued that a non-zero gas 

velocity at the pore wall for a given pressure gradient causes a higher permeability 

compared to the equivalent liquid permeability (Klinkenberg, 1941). Klinkenberg 

proposed to derive the equivalent liquid permeability (Klinkenberg corrected 

permeability, kK), by theoretically extrapolating the mean free path of the applied gas to 

that of a liquid and accordingly utilize the pressure dependence on the mean free path. 

Klinkenberg derived kg from the classical Darcy’s law at a series of pressures and made 

a linear correlation of kg versus the inverse mean pressure (1/Pm) and by extrapolating to 

zero 1/Pm determined the equivalent liquid permeability (kK). The validity of Darcy’s law 

for deriving kg is however inherent to the procedure, in practice meaning laminar flow 

conditions and a linear flow versus pressure relation.  
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5.2 Reynolds number in porous media 

The Reynolds number (Re) defines the inertia to viscous force ratio and are in hydraulics 

commonly used to distinguish laminar and turbulent flow conditions. However, between 

the laminar and the turbulent flow conditions, there is a transition zone, where the flow is 

laminar but non-linear, and the classical Darcy’s law no longer is valid. Re is for a conduit 

derived from the hydraulic diameter, d, fluid discharge Q, fluid density ρf and dynamic 

fluid viscosity μ. The interstitial Reynolds number (Reapp) expressed by Huang and 

Ayoub, 2008 for a porous medium is:  

f app
app

qd
Re

ρ
µ

= ,  (5.1) 

where the hydraulic diameter (d) is substituted by an apparent length scale (dapp), in 

principle characterizing the pore diameter, and q is the average flux, typically determined 

from measured discharge, cross sectional area, A, and porosity, ϕ (q = Q/Aϕ-1). The flow 

is essentially laminar as well as with a linear relation between discharge and pressure 

leading to the validity of Darcy’s law when Reapp do not exceed some value between 1 

and 10 (Scheidegger, 1960 and Bear, 1972). 

5.3 Modelling permeability from Kozeny’s equation and NMR 

The permeability in a homogenous sedimentary rock relates to the specific surface and 

porosity in accordance with Kozeny (1927) as:  

2
P

k c
S
φ

= ,  (5.2) 

where SP is the specific surface respect to the pores. Kozeny defined c as an empirical 

parameter, in practice accounting for the geometry of the pore space, including flow 

obstruction as well as heterogeneity. By envisaging the pore space as orthogonally 

arranged and interpenetrating conduits constituting the total porosity, Mortensen et al. 

(1998) applied Poiseuille’s law to derive an expression for Kozeny’s factor, cM, assuming 

a homogenous distribution of specific surface. Accounting only for the shielding effect 

obstructing fluid flow the factor by Mortensen et al. (1998) is denoted shielding factor 

and for a circular conduit expressed as:  
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1

3

1 64 44cos arccos 1 4
3 3Mc πφ

π

−
   = − + +      

.   (5.3) 

The expression in equation 5.3 approximates a linear relation for porosities of interest to 

most sandstones and simplifies to (Orlander et al., II):  

0.155 0.175, 0.4Mc φ φ= + < . (5.4) 

Assuming surface contributions (interactions between the pore fluid and pore surface) as 

the dominating the transverse NMR relaxation, thus neglecting contributions from bulk 

relaxation in the fluid and molecular diffusion due to in-homogeneity of the magnetic 

field, the total transverse NMR relaxation, T2, reduces to: 

2 P
2

1 S
T

ρ≈  (5.5) 

where ρ2 is the surface relaxivity related to the solid surface. By combining equation 5.2, 

5.5 in accordance with Hossain et al. (2011) and thus substituting c with cM as well as 

expanding the expression to represent incremental permeability contributions from 

individual pore sizes, the incremental NMR permeability is expressed as: 

2
NMR, M NMR, 2, 2( )i i ik c f Tφ ρ= , (5.6) 

where, fNMR,i is the fraction of the porosity corresponding to T2,i. The incremental porosity, 

ϕ´inc,NMR, is defined as ϕfNMR,i. Summation of individual kNMR,i from the smallest pore 

define the cumulated permeability kNMR,cum and by assuming cylindrical pores, the pore 

size from NMR T2 relaxation time is expressed as: 

2 P 2 2 NMR 2 22
2 NMR

1 2 4 4rlS d T
T r l d

πρ ρ ρ ρ
π

 = = = ⇔ = 
 

, (5.7) 

where r is the pore radius, l is the pore length, and dNMR is the pore diameter. 

5.4 Application of Klinkenberg’s suggested practice on sandstones  

On a series of outcrop sandstones from Fontainebleau, Obernkirchen, Castlegate, and 

Bentheim (See chapter 2 for characteristics), the applicability of Klinkenberg’s original 
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method (section 5.1) for correction of gas permeability to the apparent liquid permeability 

of sandstones was investigated from liquid and gaseous flow-through experiments.  

Figure 5.1. 1st row) Reynolds number versus inverse mean pressure. Marking with F is 

Fontainebleau samples, O is Obernkirchen, C is Castlegate and B is Bentheimer. Data are from 

Orlander et al., II. The regions with Darcy conditions is marked in grey. 2nd row) Gas 

permeability versus inverse mean pressure defined as the mean of up and down stream pressure. 

Black markers are water permeability plotted at 1/Pm = 0.   

By taking into account, the constraints of valid Darcy condition, gas permeability, kg, was 

derived from Darcy’s law and the equivalent liquid permeability, kK from Klinkenberg 
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studies by Bloomfield and Williams (1995), as well as Huang and Ayoub (2008). The 

frequent failure to envisage the constraints of Darcy’s law indirectly influences the 

procedure of Klinkenberg correction and consequently induce a risk of misinterpreted 

results.   

Reynolds number was in this study estimated from equation 5.1 with input of dapp from 

an apparent pore size determined from BSEM images of the studied material. The derived 

Reynolds numbers indicate laminar gas flow for all Obernkirchen and Castlegate samples, 

but three Fontainebleau samples with porosity and kg above 0.05 and 2 mD respectively, 

show turbulence at the highest mean pressures (Figure 5.1 1st. row). The gas permeability 

derived for sample F7.1 and B11.11 only obeys the Darcy conditions at the lowest mean 

pressure, and consequently, the definition of a Klinkenberg corrected permeability is 

unfeasible (Figure 5.1 1st row). Results from sample F7.1 and B11.11 illustrate the 

importance of screening data of gas permeability for constraints to Darcy law and 

especially in high permeable material (>100 mD) where high specific fluid discharge 

caused by a high mean pressure increases the risk of laminar but non-linear or turbulent 

flow conditions.  

 
Figure 5.2. Cross plot of water permeability and Klinkenberg permeability. Data are from 

Orlander et al., II. Because of undefined kK sample F7.1 and B11.11 are not shown. 
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Comparing liquid/water permeability (kw) from flow-through experiments to the 

Klinkenberg corrected permeability kK derived from data sampled in agreement with the 

constraints to Darcy’s law (Figure 5.1 2nd row) shows good agreement and illustrates the 

capability of the suggested practice by Klinkenberg for sandstones (Figure 5.2). However, 

the findings of Figure 5.1 shows the necessity of extreme care in the evaluation of flow 

experiments with a high specific fluid discharge. 

Bourbié and Zinszner (1985) derived gas (air) permeability on a series of Fontainebleau 

samples with a wide porosity range and implied Klinkenberg correction as insignificant, 

thus assuming measured gas permeability equal to the liquid (kg = kw). Revil et al. (2014) 

likewise derived permeability from gas measurements on Fontainebleau samples with an 

identical porosity range, but stated use of Klinkenberg correction, so results in principle 

represent kw (kK = kw). However, results obtained by Bourbié and Zinszner (1985) and 

Revil et al. (2014) are identical (Figure 5.3) illustrating a discrepancy with respect to 

application of Klinkenberg correction. 

 
Figure 5.3. Cross plot of permeability and porosity. Comparison of studies on Fontainebleau. 

Dashed line is a feasible fit based on measured liquid permeability.    
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The results of kg and kK obtained by Bourbié and Zinszner (1985) and Revil et al. (2014) 

respectively do not include supporting measurements of kw and comparing results to 

measurements of kw on Fontainebleau sandstones from Doyen (1988), Chen et al. (2016) 

show kK and kg to be significantly higher than of kw (Figure 5.3). However, the tendency 

is pronounced at porosities above 0.1, whereas for porosities below 0.1 the agreement 

between gas and liquid permeability is good (Figure 5.3).  

A more feasible porosity-permeability trend appears less steep than results by Bourbié 

and Zinszner (1985) and Revil et al. (2014) when based on flow-through experiments 

using liquid (Figure 5.3) and the discrepancy of kg, kK > kw at ϕ > 0.1 is presumably related 

to one or more causes where the authors: 1) omitted to confirm the presence of valid 

Darcy conditions in flow-through experiments; 2) applied a too narrow range of mean 

pressures for classical Klinkenberg correction; or 3) applied an unsuitable empirical 

relation to the gas permeability. Application of empirical relations inherently implies 

caution, whereas omitting to confirm presence of valid Darcy conditions or using a too 

narrow range of mean pressures in experiments, emphasize screening of results for valid 

Darcy conditions by Reynolds number and pore size estimation from, e.g., BSEM images.   

 
Figure 5.4. Cross plot of water permeability and permeability predicted from Kozeny’s equation. 

Data are from Orlander et al., II. RMSEfont is derived using Fontainebleau samples.  
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Applying SP derived from BET measurements (Table 2.4) as well as cM calculated from 

equation 5.3 for prediction of permeability from Kozeny’s equation (equation 5.2) on the 

same series of sandstones (Figure 5.1 and 5.2) show for Fontainebleau samples good 

agreement with liquid permeability (Figure 5.4). For the clay-free Fontainebleau samples 

the agreement between predictions from Kozeny (kz) and measurements (kw) are 

presumably related to a homogenously distributed specific surface, in accordance with 

the pre-conditions of both Kozeny’s equation and cM. For the clay containing samples, 

the predicted Kozeny permeability is however significantly lower than kw (Figure 5.4). 

The offset is presumably related to overestimated SP from BET because of 

heterogeneously distributed clay causing violation of the pre-condition adherent to 

Kozeny’s equation. The surplus specific surface (SP) leading to kz < kw defines small pores 

in isolated areas that do not contribute significantly to permeability corresponding to 

findings from cumulated NMR permeability (kNMR,cum), where the contribution from 

pores smaller than 0.1 μm is below 10-4 mD (Figure 5.5 showing examples).  

 
Figure 5.5. Summarized plot of selected samples, using 10 µm/s Upper graphs show normalized 

incremental porosity versus NMR pore diameter using surface. Lower graphs shows incremental 

and cumulated NMR permeability versus NMR pore diameter. Markings with F is Fontainebleau 

samples, O is Obernkirchen, C is Castlegate and B is Bentheimer. Data are from Orlander et al., 

II. Measured water permeability, kw, is plotted as a horizontal line. Scratched area, is representing 

pore sizes cumulated from the smallest to kNMR,cum = kw. 
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For Castlegate samples with the highest specific surface (Table 2.4),  the specific surface 

of all pores controlling the permeability (i.e., except the isolated small pores) is relevant, 

because the full range of pore sizes is required for kNMR,cum to equal kw (Figure 5.5). For 

kNMR,cum to equal kw in the Obernkirchen samples requires only pores smaller than 3 μm, 

so the largest pores do not contribute to the permeability. However, the controlling surface 

is heterogeneously distributed, and the derived Kozeny permeability is an order of size 

smaller than the measured liquid permeability (Figure 5.4). 

Comparing pore size distributions and kNMR,cum of sample F7.1 and B11.11, the two 

samples appear identical below a pore size of 20-30 μm (Figure 5.5). B11.11 have larger 

pores, however these do not contribute to permeability (Figure 5.5) because the larger 

pores are obstructed by the smaller and thus do not form a continuous path in the pore 

space.  Consequently, fluid flow in sandstones is controlled by the smaller pores, and 

opposite to the common NMR practice, the large ineffective pores should be cut-off from 

the smaller pores.  
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6. MODELLING OF THERMAL CONDUCTIVITY IN SANDSTONES 

Assessment of depth variations in thermal conductivity are often limited to estimations 

from downhole logging data because of minimal access to core material. However, as 

standard logging campaigns do not yet include tools for in-situ measurements of thermal 

conductivity (e.g., Freifeld et al. 2008 and Moscoso Lembcke et al. 2016) estimation of 

the thermal conductivity from empirical relations or theoretical models based on other 

formation characteristics is required. Hartmann et al. (2005), as well as Fuchs and Förster 

(2014), published empirical work on logging based predictions of thermal conductivity, 

but the inherent constraints of empirical relations suggest great caution. Studies on 

modelling of thermal conductivity, λ, are numerous and include both theoretical and 

empirical models (Abdulagatova et al., 2009). Examining the literature, one finds that the 

theoretical models of λ use porosity, ϕ, as a key input parameter and provided knowledge 

of the constituents’ thermal conductivity; porosity also governs the theoretical bounds 

denoted as Wiener bounds (Wiener, 1904). The Wiener bounds are however only 

capturing a bare minimum of the rock texture from porosity and are generally too wide 

for practical use. Consequently, the geometric mean is commonly applied despite lacking 

physical meaning (e.g., Woodside and Messner, 1961a; Woodside and Messner, 1961b; 

Sass et al., 1971; Brigaud and Vasseur, 1989 and Troschke and Burkhardt, 1998) and is 

regarded as a good approximation. Further, the geometric mean is often applied as a 

mixing law for computation of the overall solid thermal conductivity (e.g., Fuchs and 

Förster, 2014). For isotropic and homogenous mixtures, Hashin and Shtrikman (1962) 

formulated more narrow bounds than the Wiener bounds (Zimmerman, 1989), and these 

are considered the most reliable bounds solely based on porosity and constituent thermal 

conductivity. Quantifying rock texture of a sedimentary rock solely through volume 

fractions (ϕ) gives an incomplete picture and consequently several studies relate effects 

of constituent texture (e.g., pore geometry, grain size and grain shape, etc.) on the overall 

thermal conductivity (e.g. Huang, 1971; Midttomme and Roaldset, 1998; Revil, 2000). 

However, because pores and solids are smaller than a representative volume, emphasis 

should be on describing the cross sections between single pores and solids. Studies 

relating electrical resistivity (e.g., Revil, 2000) or elastic wave velocity (e.g., Horai and 

Simmons, 1969; Zamora et al., 1993; Kazatchenko et al., 2006) to thermal conductivity, 

indirectly relate cross sections of pores and solids respectively to the overall thermal 
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conductivity, and consequently predictions from these models are able to match specific 

data sets. The thermal conductivity of the solid constituents is in most sandstones several 

orders of size larger than that of the saturating fluid (water, for most practical 

applications) emphasizing quantification of the cross-section governing heat transfer 

between solids (grains). Studies by, e.g., Deissler and Eian (1952), Kunii and Smith 

(1959), Woodside and Messmer (1961b), Batchelor and O’Brien (1977), Hadley (1985), 

and  Hsu et al. (1994) evaluated the cross section governing solid heat transfer as particle 

to particle contacts, but addressed quantification through geometrical simplification of 

the solid rock texture, thus setting constraints on the particle shape. Other studies on 

thermal conductivity, e.g., Gegenhuber and Schoen (2012) and Pimienta et al. (2014) 

envisage sedimentary rocks as a continuous but porous and/or cracked mineral leading to 

a concept where the solid contacts are only addressed through mathematical modelling. 

Studies by, e.g., Woodside and Messner (1961a), Huang (1971) as well as Tarnewski and 

Leong (2012), divided a one-dimensional heat transfer through a sedimentary rock into 

three parallel heat transfer paths of solid, fluid, and solid-fluid in series, to represent 

individual contribution from the rock texture. This concept of parallel heat paths is the 

basis for establishment of a new thermal conductivity model where three parallel heat 

paths are constrained in a unit volume. Cross sections governing the three heat paths in 

this new model quantified through Biot’s coefficient and cM from Kozeny, in order to 

capture the rock texture.  

6.1 A new model of thermal conductivity from α and cM 

Following studies relating measures of frame stiffness to thermal conductivity (e.g., Horai 

and Simmons, 1969; Zamora et al., 1993; Kazatchenko et al., 2006; Gegenhuber and 

Schoen, 2012; and Pimienta et al., 2014), the cross section that governs heat transfer 

through the solid constituent is assumed equal to (1 – α) (section 3.1.1). The cross section 

of solid heat transfer can thus be derived from bulk density, and elastic wave velocities 

provided knowledge of constituting mineralogy (section 3.1). The cross-section 

governing heat transfer through the pore space in one direction in line with Poiseuille’s 

law is quantified by cM from section 5.3 by assuming that the cross section governing heat 

transfer, as well as fluid flow are equal. The cross section governing heat transfer through 

the pore space is then cMϕ and thus a simple function of porosity. 
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Figure 6.1. Conceptual illustration of a sandstone with distribution of minerals. 

A model of thermal conductivity based on the conceptual simplification of a sandstone 

(Figure 6.1) is established by acknowledging that most sandstones consist of several 

minerals, but only one load bearing (Figure 6.1). Vsus defines the non-load bearing fraction 

of the total solid volume and is assumed to be suspended in the pore space between the 

load bearing mineral (Figure 6.1). Assuming a purely conductive heat flow, thus 

neglecting presumably minor contributions from convection and radiation, the solid and 

fluid constituents in the inherent constraints of a unit cell are distributed in three parallel 

heat paths (Figure 6.2). The cross section of solid heat transfer (the cemented area) is in 

the established model quantified as (1 – α) whereas the cross section of heat transfer 

through the pore space as cMϕ (Figure 6.2). Using ϕ as a quantity of the total pore volume 

and (1 – ϕ) as the total solid volume the residual volumes of pores and solid are (α – ϕ) 

and (1 – cM)ϕ respectively. The residual load bearing solid from (α – ϕ), is thus (α – ϕ – 

Vsus), and arranged in series with Vsus and the residual pore space (Figure 6.2, central heat 

path). Assuming a constant thermal conductivity of each constituent, and summarizing 

contribution from the established distribution of constituents, the overall (effective) 

thermal conductivity λ is:  
1

2 sus susM
lbs M f M

f sus lbs

sus

(1 )(1 ) ( ) ,

( ) 0,
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λ λ λ

α φ

−
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where, λlbs, λsus, λf are thermal conductivities of the load bearing solid, the suspended non-

load bearing solid, and the saturating liquid or gaseous fluid respectively. The volume 

Vsus includes all suspended solids in accordance with  

Non-load bearing solid
in suspension with

residual pore space

Load bearing solid

Grain contact, (1 – α),
α is Biot’s Coefficient

Pore space open for flow
estimated as cMɸ where cM is

accounting for shielding effects
 in the pore space
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where Vsol, λsol, n and i are solid volume, solid thermal conductivity, the total number of 

non-load bearing solids and the ith solid, respectively. 

 
Figure 6.2. Partitioned rock unit volume showing the distribution of the load-bearing solid, the 

non-load bearing solid, connected pore space, and the residual pore space. 

6.2 Model validation 

The established model of thermal conductivity is in principle free of empirical constrains 

and constructed such that input may be quantified from standard well log data (e.g., 

ultrasonic velocity, density, neutron, Gamma Ray, and electrical resistivity). Further, 

provided knowledge or estimates of the mineralogy, the model uses a minimum number 

of input parameters to describe the texture of the modelled rock (section 6.1). In order to 

judge the ability of the established model to predict thermal conductivity with sufficient 

accuracy independent of saturating fluid, model predictions were validated from data of 

a series of sandstones identical to the ones used in the previous permeability study, as 

well as from a set of log data from the Gassum Formation. Laboratory data were 

compared to the conventional porosity-based bounds and geometric mean by Wiener and 

Hashin-Shtrikman, by assuming a solid constituent thermal conductivity of quartz, λS 

(Chapter 2), and fluid constituents of air, λA, and water, λW, for the dry and water saturated 

1 – α

α – ɸ – Vsus

Vsus

(1 – cM)ɸ

cMɸ

Direction of
heat flow

Load bearing solid

Pore space
Non-load bearing solid
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case respectively. Collected data of porosity and thermal conductivity, in general plot 

within the Hashin-Shtrikman bounds and the geometric mean provides a good 

approximation. However, data also show that the thermal conductivity found in sandstone 

cannot in both the dry and water saturated case be captured by the geometric mean (Figure 

6.3). Four Fontainebleau samples are outliers; presumably related to insufficient surface 

contact between the sample materials and measuring sensor as a consequence of 

weathered grain contacts (Figure 2.2 and 6.3). For these specific samples, data thus 

represent a material intermediate between sand and sandstone.  

Figure 6.3. Thermal conductivity versus porosity cross plots of outcrop sandstones. Data are from 

Orlander et al., III. Out-liers (Fontainebleau) are marked with a circle and not included in derived 

regression data. Bounds are calculated using thermal conductivity of λS = 7.7 Wm-1K-1, λA = 0.024 

Wm-1K-1 and λW = 0.62 Wm-1K-1 (Clauser and Huenges, 1995; Beck, 1976). a) in the dry state, b) 

in the water saturated state.  

Data of thermal conductivity were plotted versus Biot’s coefficient, in order to illustrate 

the relation between rock stiffness and thermal conductivity. Results show a decreasing 

thermal conductivity for increasing Biot’s coefficient and consequently decreased 

thermal conductivity for decreasing grain contact area (1 – α) (Figure 6.4). At the applied 

boundary conditions (see Figure 6.4) the solid heat transfer cross section is equal to the 

grain contact area, justifying the use of material stiffness for prediction of thermal 

conductivity as proposed by, e.g., Horai and Simmons (1969); Zamora et al. (1993); 

Kazatchenko et al. (2006); Gegenhuber and Schoen (2012) and Pimienta et al. (2014).  
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The general trends of thermal conductivity versus Biot’s coefficient are different for the 

dry and water saturated case, indicating a significant contribution from the saturating fluid 

are and a single empirical relation can hence not capture both the dry and saturated case 

(Figure 6.4).  

 
Figure 6.4. Measured thermal conductivity versus Biot’s coefficient cross plots of outcrop 

sandstones. Thermal conductivity is measured at ambient pressure, and Biot’s coefficient is 

derived at hydrostatic stress of 40 MPa using dry density and ultrasonic velocities (section 3.1). 

Data are from Orlander et al., III. A quartz mineral stiffness Kmin of 37 GPa (Carmichael, 1961) 

is assumed for all samples. Outliers indicated with a circle are not included in derived regression 

data. a) in the dry state, b) in the water saturated state. 

Differences in trends of thermal conductivity versus Biot’s coefficient consequently lead 

to introduction of the shielding factor, cM, in order to capture contributions from the 

saturating fluid on the overall thermal conductivity (section 5.3, equation 5.3 and equation 

6.1). Recalling, 1) that the heat transfer in the saturating fluid is assumed analog to fluid 

transfer, and 2) that permeability predictions from Kozeny’s equation and cM on the clay-

free Fontainebleau sandstones showed good agreement with liquid permeability (Figure 

5.4), corresponds to the agreement between model prediction of thermal conductivity 

from the established model and measurements (with the exception of weathered samples 

in the dry state) (Figure 6.5). However, clay containing samples likewise show good 

agreement, but comparing Root Mean Square Error (RMSE) from model prediction of 

the  geometric mean and this work, the latter is the best (Figure 6.3 and 6.5) illustrating 
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cM as a good measure of the cross section with heat transfer in the pore space of 

sandstones.  

 
Figure 6.5. Modelled thermal conductivity (equation 6.1) versus measured thermal conductivity. 

Data are from Orlander et al., III. For the load bearing mineral and saturating fluid, thermal 

conductivities are identical to Figure 11.1. For non-load bearing clay minerals is a value of 6.0 

Wm-1K-1 (after findings in Orlander et al., III) used. Volumes of Vsus were derived from Table 2.3. 

a) in the dry state, b) in the water saturated state. 

Model predictions in Figure 6.5 correspond to maximum contact area between grain 

contacts (full closure of micro-cracks because of stress), whereas measurement of thermal 

conductivities conducted at atmospheric pressure represents the minimum contact area. 

The possibility for quantification of possible effects from discrepancies in boundary 

conditions is however not included in the data set. The magnitude of increased thermal 

conductivity from increased stress leading to increased solid contact area differs in 

literature. Horai and Susaki (1989) and Abdulagatova et al. (2009) showed an order of 

0.1 Wm–1K–1 increase in thermal conductivity on sandstones following from a stress 

increase to 40 MPa, whereas Lin et al. (2011) showed an increase of 1 to 2 Wm–1K–1, but 

with a dependency of the saturating fluid. The stress effect on the thermal conductivity is 

presumably directly linked to closure of micro-cracks and thus to the material’s 

geological stress and temperature history, emphasizing the importance of envisaging the 
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material’s geological history in data evaluation.   

 
Figure 6.6. a) Depth plots of section from 1600 to 1700 meter showing porosity, Biot’s coefficient 

and modelled thermal conductivities from geometric mean and this work. Data are from Orlander 

et al., III. a) In-situ porosity, Biot’s coefficient clay volume, and thermal conductivity in the dry 

state. Further, with laboratory measured data points at ambient conditions. b) Measured thermal 

conductivity versus modelled thermal conductivity on Gassum sandstone. Round and squared 

markers show modelled results of respectively geometric mean and this work. 

Using logging data and corresponding core material of the Gassum Formation from an 

exploration well located on mid Zealand, Denmark, the established model was further 

validated. Dominated by 85% quartz and small amounts of feldspar and kaolinite, the 

Gassum Formation consists of sandstone with a series of clayey interlayered sections 

(Kjøller et al. 2011). The Gassum sandstone is thus similar to studied outcrop sandstones 
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(Chapter 2.2). Values of α, ϕ, and Vsus derived using conventional log interpretation were, 

combined with assumptions of constituent thermal conductivity identical to that of the 

outcrop samples, used as model input for prediction of thermal conductivity as a function 

of depth (Figure 6.6a). Comparing model predictions to thermal conductivity measured 

on slabbed core material show good agreement between modelled and measured thermal 

conductivity (Figure 6.6b). In general, but especially in the clayey sandstone sections with 

low porosity (Figure 6.6a), model predictions of this work provide better estimates of dry 

thermal conductivity, compared to the geometrical mean. No data of saturated thermal 

conductivity are available, but results from the dry case illustrate the model applicability 

as well as the concept of including rock stiffness and permeability in modelling of thermal 

conductivity.
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7. CONCLUSIONS 

From a non-isothermal extension of Biot’s original effective stress equation, the 

consequences for the subsurface effective stress are examined. From the simplified case 

study of deep North Sea basin, the effective stress estimated for isothermal conditions is 

presumably too high and the effective stress presumably neutral at large depth.   

Experimental results of dynamic and static elastic modulus of dry sandstone show that 

increased testing temperature stiffens the dry rock frame of three types of sandstone from 

the deep North Sea basin by two controlling mechanisms. Both mechanisms are related 

to the thermal expansion of constituting minerals, and in principle governed by the total 

stress level. The resulting magnitude of stiffening effects is however different for the two 

mechanisms. At stress levels with partial micro-crack closure, thermally induced closure 

of micro-cracks showed stiffening of the rock frame, but the stiffening is minor and 

insignificant compared to micro-crack closure by stress increase. At stress levels where 

the sample volume is thermally constrained, thermally induced stiffening by conversion 

of thermal strain to stress leads to a significant overall stiffening of the rock frame. 

Further, at stress levels leading to a thermally constrained sample volume, thermally 

induced increase in internal stress results in increased shear resistance and thus 

strengthening of the sandstone material. Experimental results of stiffness and strength of 

dry rocks, envisaging the maximum in-situ temperature of the investigated material, 

showed both stiffening and strengthening for increased temperature, but it is emphasized 

that extreme care should be taken if result is used as trends for other materials. Further, 

results are obtained solely from tests in the dry state, and thus possible effects of the 

saturation fluid are not included.   

The derived water and gas permeability from a sequence of liquid and gaseous flow 

through experiments on outcrop sandstones showed the applicability and importance of 

Klinkenberg correction, as well as validation of experimental flow conditions by use of 

Reynolds number. Reynolds number can with success be derived from an apparent pore 

size estimated from backscatter electron micrographs. Comparing measured liquid 

permeability to the permeability modelled from Kozeny’s equation using specific surface, 

from BET measurement and a theoretically derived Kozeny factor, showed good 
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agreement on clay free samples, because of the homogeneously distributed specific 

surface.   

By using NMR in combination with Kozeny’s equation permeability contribution was 

modelled for each pore size. Cumulating modelled contributions from the smallest pores 

to equal the measured liquid permeability, showed that the larger pores do not form a 

continuous flow path and are insignificant for the overall permeability.  

By using concepts from rock stiffness and permeability to quantify the rock texture a 

newly established model of thermal conductivity can provide predictions in good 

agreement with experimental results, using either laboratory or logging data as input. The 

established model is an improvement compared to conventional porosity-based models.   
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APPENDIX III – Experimental procedures 

Sample preparation   

Core plugs prepared from downhole sampled material were cored from a depth interval 

of 2-3 meters to secure maximum specimen similarity. All samples were cored and 

trimmed to the conventional plug size of approximate 1.5 inch (≈38 mm) diameter and 

twice the length (≈76 mm). For studies of thermal conductivity were core plugs likewise 

prepared to the conventional dimensions. For studies of permeability were core plugs 

prepared to a diameter of 25 mm and twice the length. For all plugs were end surfaces 

were paralleled and polished within 0.05 mm. 

Soxhlet extraction cleaning  

By Soxhlet extraction were core plugs from downhole-sampled material cleaned for salt 

using methanol and subsequently for hydrocarbons using toluene.  

Mineralogical composition 

The mineralogy of studied rock material was determined by X-Ray Diffraction (XRD) 

using Cu K-α radiation and a Philips PW 1830 diffractometer. Backscatter Electron 

Micrographs (BSEM) where recorded from polished thin sections and the XRD 

mineralogy corroborated by Energy Dispersive X-ray Spectroscopy (EDS) on the solid 

phases. The carbonate content was determined from crushed side-trims or plugs by HCl 

dissolution and NaOH titration.  

Porosity and grain density 

Nitrogen (N2) porosity, ϕN, and grain density, ρs, were measured on oven dried (60°C) 

and equilibrated core plugs using a porosimeter from Vinci Technologies.    

Specific surface area 

From nitrogen absorption on side-trims was area to mass ratio, SBET, (specific surface) 

calculated by multi-point inversion (Brunauer et al., 1938). The specific surface with 

respect to the bulk volume, SB, is derived from SBET, porosity, ϕ, and grain density, ρs as: 

B BET s (1 ),S S ρ φ= −  (AIII.1) 

which, with respect to the pore volume, equals 
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P B /S S φ= . (AIII.1)  

BET measurements were conducted using Autosorb iQ gas sorption system from 

Quantachrome Instruments. 

Electrical resistivity 

The electrical resistance was measured on brine saturated samples at ambient 

temperature, by connecting samples in electrical series with a variable resistor in a 1 kHz 

AC circuit of 5 volt (Figure I.1). As the electrical circuit consists of only two resistors, 

adjusting the variable resistor (R1) such that the voltage drop across the sample is half the 

supply are the sample resistance equal to R1 and the sample resistivity derived from 

sample length (L) and cross-sectional area (A) as:  

1
AR
L

ρ = . (6.3) 

 
Figure III.1. Sketch of experimental setup for electrical resistance measurements. 

Permeability 

Gas permeability, kg, of oven dried (60°C) samples were measured in a core holder 

designed for flow-through experiments at a 5 MPa confining stress. kg was derived by 

applying Darcy’s law on discharge and pressure data from flow-through experiments 

where argon gas flow was applying in the samples longitudinal direction. The discharge 

and pressure were measured at minimum three levels for each sample. The water 

permeability, kw, of saturated plugs were likewise from Darcy’s law and flow-through 

experiments.  
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Capillary pressure curves 

Pressures and injected volumes of mercury in chips of dry side-trims, were recorded using 

a Poremaster® PM 33-GT-12, mercury porosimetry analyser for capillary pressure test 

and, converted to pore throat size using Washburn’s equation.    

Thermal conductivity 

Using an ISOMET 2104 Heat Transfer Analyzer instrument from Applied Precision Ltd. 

(appliedp.com) was the dry thermal conductivity measured on core plugs in the dry state. 

On saturated samples was the saturated thermal conductivity measured using a C-Therm 

TCi instrument from C-THERM TECHNOLOGIES. Applied instruments both 

determined the thermal conductivity using a transient plane source placed directly on 

sample material at atmospheric pressure.  

Low field NMR, T2 distribution  

On saturated samples using a GeoSpec2 NMR Core Analyzer at atmospheric pressure 

and a frequency of 2.25 MHz and 35°C temperature, was Nuclear Magnetic Resonance 

(NMR) measured with a recycle delay (repetition time) of 25 s, 16.000 echos and CPMG 

inter echo spacing (τ) of 50 μs using the Carr-Purcel-Meiboom-Gill (CPMG) pulse 

sequences. Using the WinDXP (Oxford Instruments UK) software was the NMR T2 

relaxations spectra derived.  

Rock mechanical testing and static stiffness moduli 

First arrival times of one ultrasonic compressional wave and two perpendicular shear 

waves, generated and received by piezoelectric transducers (Figure II.2) with a central 

frequency of 0.2 MHz and 0.5 MHz respectively was used to derive compressional and 

shear wave velocities. Rock mechanical properties of downhole sampled specimens were 

determined in a triaxial cell designed with temperature control from ambient to 200°C 

(Figure II.2). Rock mechanical properties of outcrop material were solely determined at 

ambient temperature.  
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Figure III.2. Sketch of temperature controlled experimental setup for rock mechanical testing.  

High temperature testing 

The high temperature testing was separated branches of stiffness and strength. In the 

stiffness branch (Branch 2) where the axial stress kept below 15 MPa and samples 

subjected to loops of respectively hydrostatic as well as triaxial stress symmetry and a 

stepwise temperature increase of ambient 50°C, 100°C, 150°C and ≈170°C (Figure III.3). 

Deformation and ultrasonic velocities were during testing continuously recorded. 

Initiated directly subsequent to Branch 1, were samples in Branch 2 at in-situ temperature 

hydrostatically loaded to respectively 0.7, 3, 10 or 20 MPa where the confining stress was 

kept constant and axial stress increase until mechanical failure with continuously 

recorded axial deformation and ultrasonic velocities.  

 

Figure III.3. Sketch of temperature controlled experimental setup for rock mechanical 

testing. 
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Industrial interest in the exploration of deep petroleum reservoirs and geothermal 
energy calls for increased theoretical and experimental knowledge on sedimen-
tary rocks at elevated temperature. Sandstone is one class of sedimentary rocks 
both industries are targeting. Physical understanding of temperature effects on 
mechanical properties as well as the governing characteristics of heat transfer in 
sandstones may be significant for the industrial success, and for this reason the 
main research topics of this study.  
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