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Abstract

The dissertation investigates the phenomenon of excessive pedestrian-induced lateral vi-
brations as observed on several high-profile footbridges. In particular, the temporary
closures of both Paris’ Solferino Bridge (1999) and the London Millennium Bridge (2000)
have led to an understanding on the part of engineers and architects of the need to evalu-
ate the potential for footbridge vibrations that can be attributed to pedestrians. Within
the scientific community, the closures have also led to the initiation of a new tract of
research, focused on the understanding of pedestrian loading, bridge response and their
interaction. In the last decade, a significant amount of research has been carried out in
this field. As a consequence, numerous other bridges of different length and type have
been found prone to similar excessive lateral vibrations when exposed to large pedestrian
crowds.

However, only few national and international codes of practice and official design
guidelines currently exist to help the designer address this issue. Most of these are based
on the main hypothesis, that pedestrian-induced lateral loads can be modelled as velocity
proportional or as negative dampers, resulting from the synchronised lateral movement
of pedestrians. This excitation mechanism is often characterised as Synchronous Lateral
Excitation (SLE). Reports from a limited number of controlled pedestrian crowd tests
have verified the existence of a transition point at which a rapid increase in the lateral
bridge response is triggered. This disproportionate increase in the lateral vibration re-
sponse is caused by a dynamic interaction between the pedestrian and the laterally moving
structure, although the governing mechanism which generates the load is still disputed.

In this thesis, a comprehensive literature review is presented, solely focused on pedestrian-
induced lateral forces, their effect on footbridges and existing theoretical models of human-
structure interaction. It is shown that different hypotheses exist about the nature of this
interaction, many of which are only supported by theoretical modelling and lack suffi-
cient experimental evidence to support their applicability. Especially, the importance
of human-structure synchronisation for the development of large footbridge vibrations is
questionable.

Therefore, an extensive experimental campaign has been carried out to determine
the lateral forces generated by pedestrians during walking on a laterally moving tread-
mill. Two different conditions are investigated; initially the treadmill is fixed and then
it is laterally driven in a sinusoidal motion at varying combinations of frequencies (0.33
– 1.07Hz) and amplitudes (4.5 – 48mm). The experimental campaign involved 71 test
subjects who covered approximately 55 km of walking distributed on almost 5000 indi-
vidual tests. An in-depth analysis of the movement of the pedestrians that participated
in the experimental campaign reveal that synchronisation is not a pre-condition for the
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development of large amplitude lateral vibrations on footbridges, as walking frequencies
remain largely unaffected by the lateral motion. Instead, large amplitude vibrations are
the result of correlated pedestrian forces in the form of negative damping that can be gen-
erated irrespective of the relationship between the walking frequency and the frequency
of the lateral movement. These forces are self-excited in the sense that they are generated
by the movement of the body’s centre of mass, which in turn is caused by the lateral
acceleration of the underlying pavement.

Due to the random nature of the human-induced loadings and a large scatter in the
experimental data, a novel stochastic load model for the frequency and amplitude depen-
dent lateral forces is presented. The parameters in the model are based directly on the
measured lateral forces from the experimental campaign. Thereby, the model is currently
the most statistically reliable analytical tool for modelling of pedestrian-induced lateral
vibrations. It is shown that the modal response of a footbridge subject to a pedestrian
crowd is sensitive to the selection of the pacing rate distribution within the group, the
magnitude of ambient loads and the total duration of the load event. The selection of
these parameters ultimately affects the critical number of pedestrians needed to trigger
excessive vibrations in a particular simulation.

Finally, a simplified frequency dependent stability criterion is presented, for which
the critical number of pedestrians needed to cancel the inherent modal damping of a
footbridge can be obtained.



Resumé

Denne afhandling omhandler vandrette fodgængerinducerede svingninger svarende til dem
der bl.a. blev observeret på Londons præstigefulde gangbro, Millennium Bridge i året 2000
og Solferino-broen i Paris i 1999. I særdeleshed har den midlertidige lukning af førnævnte
broer gjort ingeniører og arkitekter bevidste om de potentielle svingningsproblemer som
fodgængere kan forårsage i gangbroer. Som en følge heraf er der opstået en ny forskn-
ingsretning som søger at forstå effekten af fodgængerinducerede laster på gangbroer og
kvantificere interaktionen mellem fodgængere og et vandret bevægende underlag. I det
sidste årti er antallet af videnskabelige publikationer indenfor dette område steget stødt
og stadig flere tilfælde af broer der har oplevet lignende voldsomme svingninger er blevet
offentliggjorte.

Til trods for dette findes der på verdensplan kun et fåtal normer og retningslinjer med
vejledninger til undgåelse af disse problemer i nye gangbroer. Disse vejledninger bygger
typisk på en antagelse om at fodgængerinducerede vandrette laster er proportionale med
broens svingningshastighed, hvorfor deres effekt kan modelleres som negative dæmpere
hidrørende fra en synkroniseret bevægelse af fodgængerne. Denne ekscitationsmekanisme
er ofte karakteriseret som Synkroniseret Vandret Ekscitation (e. Synchronised Lateral Ex-
citation – SLE). Observationer fra et begrænset antal fuldskala gruppeforsøg har eftervist
forekomsten af en form for ustabilitet, karakteriseret ved en uforholdsmæssig stigning i den
vandrette respons ved en forøgelse af antallet (udover et kritisk antal) af fodgængere på
broen. Fænomenet skyldes en form for interaktion mellem fodgængerne og den vandrette
bevægelse af broen, men de styrende mekanismer i forbindelse med lastfrembringelsen
debatteres stadig.

I denne afhandling præsenteres et omfattende litteraturstudie der omhandler fodgæn-
gerinducerede vandrette laster, deres effekt på gangbroer og teoretiske modeller af interak-
tionen derimellem (e. Human-Structure Interaction). Det vises her at der eksisterer forskel-
lige hypoteser vedrørende interaktionens karakter. Mange af disse beror udelukkende på
teoretiske modeller og mangler fyldestgørende empirisk dokumentation til at understøtte
og retfærdiggøre deres anvendelse. I særdeleshed betvivles vigtigheden af personers synkro-
nisering til broens svingninger som forudsætning for udvikling af voldsomme sideværts
svingninger.

I dette studium er der udført eksperimentelle undersøgelser, hvis formål er at bestemme
de laster som hidrører fra personers gang på et vandret bevægeligt underlag, nærmere
betegnet et løbebånd. Lasterne er bestemt under to forskellige forhold. I den første del
fastholdes løbebåndet mod vandret bevægelse hvorefter den anden del er karakteriseret
ved en påtvungen sinusformet bevægelse ved forskellige kombinationer af frekvens (0.33-
1.07Hz) og amplitude (4.5-48mm). Dette studie omfattede 71 personer der tilsammen
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tilbagelagde 55 km fordelt på næsten 5000 individuelle forsøg. En detaljeret analyse af
forsøgspersonernes bevægelsesmønstre afslørede at synkronisering mellem personen og det
bevægelige underlag ikke er nødvendig for at forårsage store vandrette svingninger i gang-
broer. Derimod fremkommer de store svingninger fra hastighedskorrelerede kræfter i form
af negativ dæmpning, der kan opstå uafhængigt af forholdet mellem gangfrekvensen og
frekvensen af den vandrette bevægelse. Disse kræfter fremkaldes af accelerationer af krop-
pens tyngdepunkt forårsaget af underlagets bevægelse, hvorfor de beskrives som selvin-
ducerede (e. self-excited).

Grundet den store spredning i forsøgsresultaterne, samt det faktum af menneskeinduc-
erede laster generelt er underlagt en stor usikkerhed, er der udviklet en stokastisk model
der beskriver frekvens- og amplitudeafhængigheden af de vandrette laster hidrørende fra
fodgængere. Parametrene i modellen er baseret direkte på forsøgsresultaterne og udgør
dermed et robust og statistisk pålideligt værktøj til modellering af fodgængerinducerede
vandrette vibrationer. Det demonstreres her, at responsen af gangborer udsat for last fra
menneskegrupper er følsom over for valg af diverse inputparametre. Disse tæller blandt an-
det fordelingen af gangfrekvenser i gruppen, størrelsen af lasten fra de øvrige omgivelser
eksempelvis vind, samt lastvarigheden. Valget af disse parametre har en afgørende be-
tydning for antallet af fodgænger, der kan forårsage voldsomme svingninger i et givet
scenarie.

Afslutningsvis præsenteres et forenklet stabilitetskriterium der kan anvendes til at
bestemme det kritiske antal personer som kan ophæve konstruktionens dæmpning og
dermed forårsage voldsomme svingninger.
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Chapter 1

Introduction

Traditional structural design is governed by the load carrying capacity of the structural
members. General requirements in codes of practice are mostly based on verification of
this, the so-called Ultimate Limit State. With recent advances in computer based mod-
elling of structures and the use of high-strength materials, the ability of engineers to
meet the architects’ demand for long and lightweight spans has increased. However, as
structures become longer and lighter, their susceptibility to vibration caused by dynamic
forces increases. In fact, many modern structures which are designed for human occu-
pants are prone to vibrations due to one or more natural frequencies within the range of
typical human activity such as walking, running, bouncing or jumping. These structures
are typically footbridges (Živanović et al., 2005a), open plan offices (Ohlsson, 1982; Pavic
and Reynolds, 2002a,b), staircases (Kerr, 1998), gymnasia (Ji and Ellis, 1994; Bachmann
et al., 1996a) or grandstands (Kasperski, 1996). Although cases of crowd related struc-
tural failure exist (Wolmuth and Surtees, 2003), vibrations caused by human occupants
are in most cases a matter of comfort, rather than structural strength or integrity. With
an increasing demand for service-life performance of modern structures and low toler-
ance for perceptible vibrations, vibration serviceability design of structures has become an
increasingly important discipline in civil engineering.

1.1 Vibration serviceability of footbridges

Research within vibration serviceability of civil engineering structures covers a wide range
of structures and potential excitation sources. A widely used terminology in vibration ser-
viceability is that of the ISO 10137 standard (ISO 10137, 2007). Here distinction is made
between the vibration source, the transmission path and the vibration receiver (Živanović
et al., 2005a). The vibration source covers all possible sources to the dynamic loading but
in the work presented in this thesis, the source is limited to human-induced excitation.
The transmission path deals with a description of the structure, e.g. a footbridge, in
which the vibration is transferred from the source to the receiver and is characterised by
its mass, stiffness and damping properties. Finally, the receiver is the person or the object
for which the vibrations should be assessed.

Early research into vibration serviceability of footbridges is dated back to the seventies,
with the work of Blanchard et al. (1977) to define design guidelines for the assessment
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Introduction 1.2 Excessive lateral vibrations of footbridges

Figure 1.1: The London Millennium Footbridge (Picture from http: // www.
cambridge2000. com/ gallery ).

of human-induced vertical vibrations of footbridges. His work was later incorporated
into several international bridge design codes, such as BS5400 (BS 5400, 1978) the On-
tario Highway code (OHBDC, 1983) and even the guidelines issued by the Danish Road
Directorate (DRD, 2002). Although the effect of pedestrian crowds on footbridges was
investigated by other researchers (Peterson, 1972; Matsumoto et al., 1978; Wheeler, 1981,
1982), only a simplified single pedestrian load scenario was included in the aforemen-
tioned standards. Furthermore, no provisions were deemed necessary for calculating the
lateral response or the possibility of developing excessive crowd-induced lateral vibrations
although this phenomenon was described by Peterson (1972) a few years earlier.

1.2 Excessive lateral vibrations of footbridges

Until the beginning of the new millennium, this entire research topic had not gained
much public attention. Although the problems with current codes of practice had already
been made clear by e.g. Rainer et al. (1988), Fujino et al. (1993), Pimentel and Waldron
(1997), and Snæbjörnsson and Sigbjörnsson (1999), most modern design codes such as
the British (BS 5400, 1978), American (AASHTO, 1997), Canadian (OHBDC, 1983),
European (ENV 1995-2, 1997) and Scandinavian (DRD, 2002; Bro 2004, 2004) standards
all relied on oversimplified methods for verification of footbridge serviceability.

On June 10th, 2000, one of the world’s most innovative pedestrian bridges was opened
to the public for crossing. The London Millennium Bridge over the River Thames in
London, designed by a team of world renowned architects Foster and Partners, sculptor
Sir Anthony Caro and engineers Ove Arup Partnership. The structure is novel in that
it is main suspension cables traverse below the bridge deck (Fig. 1.1) and it features a
much smaller ratio sag-to-span ratio (around 1:60) than conventional suspension bridges.
It was estimated that between 80 000 – 100 000 people crossed the bridge on the opening
day, with up to 2000 people on the bridge at any one time (Dallard et al., 2001b). Within
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minutes after its opening, the structure started moving laterally with amplitudes up to
about 100mm. These unexpected lateral vibrations caused city authorities to close the
bridge only two days after its inauguration. In the following 18 months, Arup designed,
tested and implemented a passive damping system to control the vibrations (Dallard et al.,
2001a). Interestingly, it was realised that the lateral vibrations were not an artefact of
the innovative design of the London Millennium Bridge, but had been observed on several
occasions in the past. This included the prestigious Solferino Bridge in Paris, which was
closed temporarily, immediately after its opening in 1999 (Dziuba et al., 2001).

None of the existing codes of practice or design guidelines were able to predict these
excessive lateral vibrations. Therefore, a new branch of research within vibration ser-
viceability initiated, to understand the potential negative effect of pedestrian crowds on
footbridges. A series of international conferences were established, solely devoted to re-
search and developments concerning footbridge structures. The first conference was es-
tablished in Paris 2002, entitled Footbridge 2002 and subsequently several national and
international research projects were initiated to update current codes of practice and to
develop design guidelines specifically for dynamic design of footbridges (FIB, 2005; Sétra,
2006; Butz et al., 2007; Willford and Young, 2006; Brownjohn et al., 2009; NA to BS EN
1991-2 UK, 2008).

1.3 The research problem

At this point it is well-known that both the pedestrian-induced load as well as the response
of pedestrians to vibration is governed by randomness and depends on a vast number
of biological, mechanical as well as psychological parameters. The main effects of this
randomness are that (i) each pedestrian within a group will induce different load and react
differently to a vibratory environment (inter-subject variability) and (ii) small variations
in the walking pattern of each pedestrian (intra-subject variability) causes the load to be a
narrow-band random process rather than a perfectly periodic one. In addition, the intra-
subject variability can cause the same pedestrian to behave differently in two nominally
identical situations (Griffin, 2004).

In relation to footbridges, a large amount of research has been published in recent
years which can broadly be split into two categories, vertical and lateral pedestrian-
induced vibrations. For the vertical direction the research has mainly been focused on
the following:

• An accurate quantification of the loading and its randomness (Brownjohn et al.,
2004b; Willford and Young, 2005; Sahnaci and Kasperski, 2005).

• The development of stochastic load models (Živanović, 2006; Tubino and Piccardo,
2008; Pedersen and Frier, 2010; Li et al., 2010).

• Simplified response evaluation techniques (Butz, 2006, 2008; Georgakis and Ingólf-
sson, 2008; Ingólfsson et al., 2008b).

• Analysis of footbridge response to normal pedestrian traffic (Živanović et al., 2005c;
Kasperski, 2006; da Silva et al., 2007; Gudmundsson et al., 2008; Živanović et al.,
2010).
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The complexity of modelling pedestrian-induced loading is further increased as human-
human interaction may force people to walk at a different speed when walking in a crowd
compared to the normally preferred walking speed of the individuals. Furthermore, the
interaction between the flexible structure and the pedestrians is not well understood. In
particular, the effect of crowds on the apparent modal properties of bridges is currently
an unknown quantity, although recent research suggests that the presence of pedestrians
increase the damping of predominantly vertical vibration modes (Živanović et al., 2005b,
2009; Jørgensen, 2009).

For the lateral direction, the existence of a form of instability in which large lateral
vibrations can develop under crowd loading has been observed and verified on numerous
occasions (Brownjohn et al., 2008; Ingólfsson et al., 2010a). It is commonly accepted that
this instability, which has become known as Synchronous Lateral Excitation, or simply
SLE, occurs due to synchronisation (or lock-in) of the pedestrian movement to that of
the footbridge. This human-structure synchronisation is in fact the most severe type
of interaction, but recent research suggests that it is not a necessary condition for the
development of SLE. When studying the published literature in this area, it may be
divided into three categories:

1. Crowd tests of as-built bridges to verify the existence of SLE. Often a number
of pedestrian crowd scenarios are presented and the results evaluated in terms of
critical number of pedestrians to cause diverging vibration amplitudes.

2. Experimental tests using either instrumented platforms, shaking tables or other
equipment to measure the lateral loads directly from a limited number of pedestrians
at few combinations of vibration frequencies and amplitudes.

3. Theoretical load or response evaluation models, which are only partly supported by
experimental studies or full scale measurements.

Each of the above mentioned research entities have provided valuably insight into the
potential of crowds to cause large lateral footbridge vibrations. However, it is apparent
that there is a general need for statistically reliable data on the pedestrian-induced lateral
forces on a moving surface to verify existing models and demystify the governing mech-
anisms behind SLE. In particular, the question whether synchronisation is necessary for
the development of SLE remains unanswered and little is known about the relationship
between the pedestrian load and the frequency and amplitude of the lateral motion.

The working hypothesis is that in order to predict the lateral response of footbridges
subject to crowd loading and thereby predict their potential to SLE, relies on an under-
standing of the interaction between the pedestrian and the laterally moving structure.
In particular the development of motion-induced forces, i.e. forces which occur at the
frequency of the structural vibrations and are caused by this interaction, are not well un-
derstood. Therefore, the main purpose of this thesis is to carry out extensive experimental
investigations and provide statistically reliable data on the lateral pedestrian-induced load
as a function of the lateral vibration frequency and amplitude. The measured forces will
subsequently be used in a stochastic modelling framework, in which both the inter-subject
and intra-subject variability are taken into account. Monte Carlo response simulations
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are carried out to demonstrate the capabilities of the modelling framework and to test
the sensitivity of the model to various input parameters. In the final part of this thesis,
a frequency-dependent criterion for lateral stability of bridges subject to crowd loading is
developed.

1.4 Thesis outline

The work presented in this thesis is structured into seven chapters (part I) and five
scientific papers (part II). Part I is an extended summary, which provides the necessary
references to and link between the appended papers.

In this first chapter (Chapter 1), a formal and broad introduction to the research topic
in general has been given, and the scientific hypothesis which has driven this work was
presented. In Chapter 2, a detailed background review relating to pedestrian-induced
vibrations of footbridges is given, with main emphasis on pedestrian-induced lateral loads
and their effect on low-frequency footbridges. The review includes past research into
human-induced loadings, development of load models and vibration criteria as well as
several examples of bridges which have experienced excessive lateral vibrations under
crowd loading.

In Chapter 3, a preliminary experimental investigation is presented, utilising a labo-
ratory platform, constructed at the laboratory of DTU Civil Engineering.

In Chapter 4, the results from an extensive experimental campaign are presented,
which involve measured footfall forces from seventy-one individuals walking on both a
rigid and laterally oscillating instrumented treadmill. In Chapter 5, the results from
the experimental campaign were used to develop a novel stochastic time-domain pedes-
trian load model, for predicting the response of footbridges to crowd loading. Chapter 6
presents a simplified and conservative criterion for the determination of the the potential
of excessive lateral vibrations.

Finally, a summary of the main conclusions from the research work as well as recom-
mendations for future research are presented in Chapter 7.
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Chapter 2

Background review

This chapter is primarily related to material presented in the literature review of Ingólfsson
et al. (2010a) (Paper I of this thesis), which is focused on crowd-induced lateral loads and
responses of bridges. The emphasis of Ingólfsson et al. (2010a) is placed on published
cases of excessive bridge vibrations and the current state-of-the-art in the development
of analytical load and response models. In this chapter an extended introduction to the
topic is given starting with a short background on human locomotion and the generation
of Ground Reaction Forces (GRFs). This section is an addition to the content presented
by Ingólfsson et al. (2010a) and is essential for a full understanding of the research problem
at hand. A brief summary of the content of the literature review (Ingólfsson et al., 2010a)
is given with an extended section summarising different interaction mechanisms. Finally,
a new section has been added relating to human response to lateral vibrations, which
primarily contains references to research into human perception in high-rise buildings
subject to wind-induced vibrations. With these additions, a broad introduction is given
to the research field and is not restricted to the material published by Ingólfsson et al.
(2010a).

2.1 Human locomotion

Walking is the fundamental form of human locomotion and the most common mean of non-
vehicular transportation. Walking is an extremely complex process which has fascinated
scientists throughout history, dating back to Aristotle’s fundamental curiosity about the
gait of animals (Aristotle, 350 B.C.), Leonardo da Vinci’s (1452 – 1519) interest in the
human body or Borelli’s (1608 – 1679) pioneering work on the movement of humans
and animals (Baker, 2007). Significant improvements in the field were made following
World War II, caused by a need for an improved understanding of human locomotion
for treatment of war veterans and the necessary development of protheses (Rose, 1983;
Andriacchi and Alexander, 2000). In the last few decades, design of bipedal robots has
contributed to an increased understanding and quantification of human balance control
(Vaughan, 2003) and with the rapid development in modern technologies, techniques for
clinical gait analysis have improved (Andriacchi and Alexander, 2000).

According to Perry (1992), walking can be characterised as a controlled fall where the
body repeatedly falls forward from a stable position onto a contralaterally swinging limb.

9



Background review 2.1 Human locomotion

This way, the driving forces of the locomotion are the fall of the body weight and the
inertia force from the forward swing of the contralateral limb. The stance limb is used as
a rocker to maintain the momentum created by the fall.

Different types of walking exist (normal walk, march, stroll etc.), but common for all
is that at all times there is ground contact with at least one foot. A complete gait cycle
(two successive footfalls) is characterised by two phases, the stance phase and the swing
phase (Perry, 1992). The stance phase is the phase in which the foot is in contact with the
ground, defined from initial contact (or heel strike) until the toe lifts off the ground (toe
off). The swing phase is the subsequent phase in which the same foot is in the air until its
heel strike, which completes the gait cycle (see Fig. 2.1). During a normal gait cycle, the
stance phase lasts approximately 60% of the time and during approximately 20% of the
time, both feet are in contact with the ground (during the initial and the terminal double
limb stances respectively) (Perry, 1992). The exact duration of each period within the
gait cycle depends on the walking speed as well as individual characteristics (Andriacchi
et al., 1977). Particularly, the duration of the double support shortens as the walking
speed increases (Racic et al., 2009). The stance phase may be further subdivided into
five gait phases (Initial Contact, Loading Response, Mid-Stance, Terminal Stance and
Preswing) whereas the swing phase is subdivided into three phases (Initial Swing, Mid-
Swing and Terminal Swing) to fully characterise the gait cycle (see Fig. 2.1).

Figure 2.1: Human gait cycle (reproduced from Uustal and Baerga (2004)).

2.1.1 Human Ground Reaction Forces

During walking, the GRF occurs due to the acceleration and deceleration of the body’s
centre of mass. The GRF from a single footstep is transferred to the ground through
contact with the foot during the stance phase of the gait. In general, the GRF is a
three dimensional vector with varying length and direction, but is conveniently projected
onto three (perpendicular) axes, determined by the forward direction of the walk. The
principal directions are vertical (Superior-Inferior), longitudinal (Anterior-Posterior) and
lateral (Medial-Lateral) (Racic et al., 2009). In Fig. 2.2, a characteristic shape of the
GRF as projected onto the three main directions is shown, both for a single footstep as
well as for repetitive (assumed identical) footsteps.
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The largest component of the GRF is usually the vertical one which can be char-
acterised by three local maxima/minima in the time history (F7-F9) (Andriacchi et al.,
1977). The first maxima (F7) occurs after the initial heel contact and the second maxima
(F9) occurs during the terminal stance whereas F8 represents the local minimum between
these two peaks. Similarly, with reference to Fig. 2.1, the time instances of the peaks in
the horizontal loads can be linked to different phases of the gait cycle. In this thesis, the
focus is on the medio-lateral component of the GRFs and a more elaborate discussion on
the topic is provided by Ingólfsson et al. (2010a).

Figure 2.2: Typical shape of the ground reaction forces projected onto vertical, anterior-
posterior and medio-lateral directions for (left) a single footstep and (right)
for consecutive footsteps (reproduced from Živanović et al. (2005a)).

It should be mentioned that for civil engineering applications, the GRFs are usually
quantified in the frequency domain through the body-weight normalised Fourier ampli-
tudes, known as Dynamic Load Factors (or simply DLFs) (Rainer and Pernica, 1986;
Rainer et al., 1988; Bachmann and Ammann, 1987; Bachmann et al., 1996b; Kerr, 1998;
Sahnaci and Kasperski, 2005) or through the Power Spectral Density (PSD) (Eriksson,
1993, 1994; Brownjohn et al., 2004b; Ricciardelli and Pizzimenti, 2007). The reason for
this is that low-frequency structures are primarily excited by repetitive footfalls when the
step frequency is close to a structural resonance frequency. Therefore, an accurate descrip-
tion of the spectral properties of the loading process is more important than an accurate
representation of the temporal shape of each footfall. Different methods of modelling the
medio-lateral loads are presented by Ingólfsson et al. (2010a), but for the treatment of the
vertical component of the GRF, reference is made to the literature review by Živanović
et al. (2005a) or that of Racic et al. (2009).
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2.1.2 Variability in gait parameters

According to Racic et al. (2009), the gait parameters are typically defined through three
spatial quantities (the stride length, step length and step width) and two temporal quan-
tities (walking speed and step frequency). The step length is defined as the linear distance
(in the walking direction) from the heel strike of one foot to the heel strike of the other
foot, whereas the stride length is the distance between two consecutive heel strikes of the
same foot. The step frequency is also denoted pacing frequency or pacing rate. There
is a geometric relationship between the step length (ls), step frequency (fs) and forward
walking speed (vs), written as:

vs = fsls (2.1)

The relationship between the three gait parameters (vs, fs and ls) is complicated as
pedestrians vary most of their temporo-spatial and kinetic gait parameters, (including
both the step length and frequency) when changing their walking velocity (Bejek et al.,
2006). Yamasaki et al. (1991) found that female subjects tend to walk with a shorter step
length and higher step frequency than their male counterparts at the same speed, but that
both parameters increased with increasing walking speed. Milner and Quanbury (1970)
showed that for natural walking at different forward velocities, both the step frequency
and step length are approximately proportional to the square-root of the velocity. More
generally, the relationship can be written as a power law of the type: fs = avbs, where
the exponent b, has been reported in the range 0.5 to 0.58 (Yamasaki et al., 1991; Kuo,
2001). The selection of step length and frequency is governed by the strategy of humans
to minimise the metabolic energy consumption at a given walking speed (Kuo, 2001).
Bertram and Ruina (2001) investigated the relationship between the walking speed and
step frequency at different types of constraints during treadmill walking. At various
walking speeds, people were instructed to walk either freely, at a fixed step frequency or
fixed step length. It was shown that the shape of the (fs, vs)-curve varied considerably
depending on the particular constraint. In Fig. 2.3, the variation in the pacing frequency
(step frequency) and the step length are shown as functions of the walking speed from
two different studies.

Gait variations may be classified into two different groups; intra-subject variability and
inter-subject variability. Intra-subject variability is related to gait variability of the same
person in different situations. This counts random fluctuations in the gait parameters
during continuous walking (Hausdorff et al., 2001) as well as day-to-day variability (Terrier
and Schutz, 2003; Terrier et al., 2005) illuminated in scatter in measured gait parameters
of the same person in two or more nominally identical situations. On the other hand inter-
subject variability is related to the variability in the gait parameters between different
people.

Human locomotion is not a static quantity, but changes throughout the lifetime. For
instance, the biomechanical strategy of young children taking their first steps is to min-
imise their risk of falling, which for adults changes to minimising the metabolic energy
expenditure (Vaughan, 2003). This change in locomotion causes a natural variation in the
gait parameters with age. In Fig. 2.4, the free (unrestricted) walking speed is shown as
a function of age, illustrating this variability. In a long time scale, this change in walking
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Figure 2.3: Variation in (left) the pacing frequency and (right) the step length as func-
tion of the walking speed (Figure based on data from Yamasaki et al. (1991)
and Bertram and Ruina (2001)).

speed as function of age can be viewed as an intra-subject variability as the free walk-
ing speed of the same person changes in time. On the other hand, in a group of people
at different ages, inter-subject variability is a reason for the distribution of free walking
velocities.

Kasperski (2007) noted that several factors, physical, physiological and environmen-
tal, influence the free walking speed. In a study by Bornstein and Bornstein (1976),
on the so-called Pace of Life in 20 different cities, it was shown that the mean walk-
ing speed (vs) increases with the population size (Npop), following a logarithmic law:
vs = 0.26 logNpop + 0.015 [m/s]. Bornstein (1979), points out that the population size is
not the sole contributor to difference in the walking speed, but ergonomical, cognitive,
social and economic factors which are different between large and small cities may be
the determinants of a faster pace of life in larger cities. In a similar study by Wirtz and
Ries (1992), the observations of Bornstein and Bornstein (1976) and Bornstein (1979)
were confirmed, but it was argued that the population composition influenced the aver-
age walking speed. This is supported by the observation that larger cities tended to have
higher proportion of young males (20-30 year-old) and lower proportions of elderly people
(larger than 60 years). In a recent study by Finnis and Walton (2007), the mean walking
speed from 51 different cities (including the data from Bornstein and Bornstein (1976) and
Bornstein (1979)) did not show the same significant correlation with the population size.
Factors such as climate, cultural values, travel purpose, general life-style and body size
may contribute to different walking speeds between different cities (Wirtz and Ries, 1992;
Levine, 1999). In relation to dynamic loading of footbridges, the step frequency (and
thereby walking speed and step lengths) are important modelling parameters and several
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field studies as well as laboratory investigations have been carried out within the civil
engineering community to determine these quantities. Ingólfsson et al. (2010a) presents
a summary of relevant studies and further references.

Figure 2.4: Relationship between the preferred walking speed as a function of age for
men and women (Figure from Smith (1995)).

2.2 Crowd-induced lateral bridge vibrations

Until the beginning of the new millennium, engineering consultants and scientists were
only concerned with vertical response of footbridges subject to pedestrian crowds. In The
British Standard, BS 5400 (BS 5400, 1978), which was the first code to deal specifically
with serviceability of pedestrian structures due to walking excitation, did not have any
provisions for checking lateral responses and to the author’s knowledge, neither did any
other international codes of practice.

Therefore, it drew great attention when two high profile footbridges, pont de Solférino
in Paris and the London Millennium Bridge, suffered from excessive lateral vibrations and
had to be closed for public shortly after their inauguration in 1999 and 2000 respectively.

These bridges are far from being the first or the only bridges that have experienced
this phenomenon, with the first reported incidents dated back to the late fifties (Sun and
Yuan, 2008; Blekherman, 2005). Probably the first scientific assessment of the potential
negative effect of pedestrian crowds on low frequency footbridges was offered by Peterson
(1972) (as reviewed by Bachmann and Ammann (1987)), who explained that when the
lateral movement of the centre of gravity of the body has a frequency which matches
the natural frequency of the footbridge, resonant vibrations occur and people synchronise
their walking to the movement of the structure (Bachmann, 1992). This explanation was
based on observation made on a steel footbridge in Germany (Fig. 2.5) which experienced
strong lateral vibrations during an crowd event.

An often cited incident of lateral footbridge vibrations is related to the Toda Park
Bridge in Japan (Fig. 2.5). The bridge, which connects a boat race stadium with a
railway station, experienced strong lateral vibrations when large crowds of people would
leave the stadium to cross the bridge. Fujino et al. (1993) concluded that these vibrations
were an order of magnitude larger than what could be calculated when assuming resonant
walking frequency of all pedestrians and mutually independent (random) phases. Video
analysis was used to track the head movement of randomly selected pedestrians and it
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was found that up to 20% synchronised their walking to the movement of the bridge.
The phenomenon was described in a similar way to that of Bachmann (1992), i.e. small
oscillations in the bridge cause some pedestrians to synchronise their walking, which in
turn increases the oscillations and the number of synchronised pedestrians (Fujino et al.,
1993). However, they also pointed out that at very large vibration amplitudes, people
will not be able to continue walking and thereby the vibrations become self-limited.

Figure 2.5: Toda Park Bridge in Toda City, Japan (top) (Pictures from Nakamura and
Kawasaki (2006, 2009)) and a steel arch footbridge across Main at Erlach,
Germany (bottom).

In the appended literature review (Ingólfsson et al., 2010a), several other reports
of bridges with similar problems are summarised with references to relevant scientific
publications.

2.2.1 Results from full-scale measurements

After the incidents in Paris and London, engineers became more focused on avoiding the
possibility of what had become known as Synchronous Lateral Excitation (SLE). Several
full-scale measurements have been carried out on different bridges, both as an integrated
part of their design (Brownjohn et al., 2004a; Mistler and Heiland, 2007; Hoorpah et al.,
2008; Caetano et al., 2010a,b) and for the purpose of understanding the behaviour of ex-
isting bridges that have experienced strong lateral vibrations (Dziuba et al., 2001; Dallard
et al., 2001a; Nakamura, 2003; Rönnquist et al., 2008; Macdonald, 2008). In Ingólfsson
et al. (2010a), an in-depth presentation of these tests is provided and herewith only some
main conclusions are summarised.

On the London Millennium Bridge, controlled pedestrian crowd tests were carried out
to verify and understand the observations made on the opening day. It was observed that
for a certain number of pedestrians, the bridge response was limited, whereas a small
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increase in the number of pedestrians (beyond a critical number) often resulted in diverg-
ing lateral response (Dallard et al., 2001a). Based on back-calculations of the measured
acceleration response, the important finding was made that the pedestrian force had a
component strongly correlated with the lateral velocity of the structure, in the form of
negative damping. This suggested that the pedestrians input a velocity proportional load
F (t) = cpu̇, where cp is a pedestrian damping constant (found as cp = 300Ns/m), u(t)
is the bridge displacement and dot represents differentiation with respect to time. This
lead to the development of Arup’s stability criterion, written in terms of the number of
pedestrians needed to cancel the inherent structural damping, and thereby cause insta-
bility. For uniformly distributed pedestrians, the stability criterion takes a particularly
simple form (Dallard et al., 2001a):

Ncr =
4πfMζ

cp
1

L

∫ L

0

[Φ(x)]2 dx

. (2.2)

The critical number of pedestrians thereby depends on the modal properties of the struc-
ture where M , ζ, f and Φ(x) are the modal mass, damping, frequency and mode shape
of the particular mode in question and L is the bridge length.

In fact, the ability of the stability criterion in Eq. (2.2) to provide a reasonable pre-
diction the critical number of pedestrians has been verified on other bridges. Full-scale
pedestrian tests on the Mezzanine Bridge at Singapore’s Changi Airport, verified that
excessive lateral vibrations could be triggered with 150 people occupying the structure,
whilst Arup’s stability criterion predicted only a slightly lowe critical number of pedestri-
ans (Brownjohn et al., 2004c).

On the Coimbra footbridge in Portugal, a rapid increase in the lateral vibration am-
plitude of the bridge was observed for small increase in the number of people beyond
the theoretically determined critical number of pedestrians (Caetano et al., 2010a). This
observation was made during controlled crowd tests on the structure, prior to its opening
and prior to the installation of laterally active tuned mass dampers.

On the Cliffton Suspension Bridge in UK (Macdonald, 2008), the velocity proportional
coefficient, cp, was determined in a similar way to that of the Millennium Bridge. Mea-
sured acceleration response during crowd induced vibrations was used to show that the
pedestrian-induced loading could reasonably be modelled as being velocity proportional
with parameter cp in the range 160 – 210Ns/m.

This suggests that models which rely on the development of negative damping caused
by pedestrians can be used for prediction of pedestrian-induced vibrations. The challenge
seems, first of all, to determine what the negative damping depends on and then to
quantify how it varies with frequency and to determine its sensitivity to pedestrian-specific
parameters (inter- and intra-subject variability). This aspect is treated in more detail in
Chapter 4 and Chapter 5.

2.2.2 Lessons learned from full scale testings

In new long span footbridges, the possibility of excessive lateral vibrations is a serious
threat to the design and the role of full scale measurements of bridges prior to their

16 Department of Civil Engineering - Technical University of Denmark



2.3 Interaction mechanisms Background review

opening is increasingly becoming an integrated part of the design process. In particular,
for bridges that are deemed susceptible to human induced vibrations, full scale testing is
vital for several reasons.

• The structural response (and critical number of pedestrians) depends on the inherent
structural damping, which cannot accurately be predicted without testing.

• External damping devices, such as tuned mass dampers, depend on an accurate
tuning to the structural properties (Butz et al., 2008), which is usually only possible
through experimental modal identification.

• Due to uncertainties in the phenomenon governing SLE and the general lack of
experimental data from different bridges, controlled crowd tests are needed for 1)
investigating the possibility of SLE and finding its trigger (e.g. critical crowd den-
sity) and 2) for the purpose of verifying the selected solution strategy.

2.3 Interaction mechanisms

As highlighted before, the development of large lateral vibrations is related to an inter-
action between the pedestrian and the movement of the underlying surface, also denoted
Human-Structure Interaction. Another type of interaction occurs amongst pedestrians
when each individual is spatially or visually restricted by the presence of other pedes-
trians, denoted Human-Human Interaction. In this section, both types of interaction
mechanisms will be discussed.

2.3.1 Human-human interaction

When the pedestrian walking is completely unrestricted (spatially and visually), their
walking characteristics may be determined from the free walking speed and normal gait
parameters as discussed in Section 2.1. Footbridges are bounded physically (e.g by
the handrails) and often constitute a narrow passage between two points subject to bi-
directional pedestrian traffic. Thereby, the walking may become spatially restricted. De-
pending on the particular crowd density, different levels of interaction may occur amongst
the pedestrians, which may cause deviations in their walking pattern from that of the
unrestricted walk. In Fig. 2.6, different crowd densities are illustrated, indicating that
even at the lowest densities an interaction between the walker could be expected. As pos-
tulated by Ricciardelli and Pizzimenti (2007), the most extreme type of human-human
interaction occurs in large density regions where the pedestrians will synchronise and
walk a common frequency and phase. However, in everyday situations, this extreme form
of human-human interaction is not expected to occur. Therefore, an understanding of
the real correlation amongst pedestrians in a crowd is vital for the understanding and
quantification of the total crowd induced loading of footbridges.

A considerable amaount of research has been carried out in the past to understand
and quantify the interaction amongst human beings in crowds, both in the fields of urban
design and planning of pedestrian facilities (Tanaboriboon et al., 1986; Lam et al., 2002;
Ishaque and Noland, 2008; Papadimitriou et al., 2009) and in relation to crowd dynamics
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Figure 2.6: Examples of different crowd densities on a stress ribbon footbridge in Por-
tugal (Pictures from Cunha et al. (2008)).

for evacuation during catastrophic events (Stanton and Wanless, 1995; Lee and Hughes,
2007; Kuang, 2008).

In an early study on the dynamic behaviour of footbridges, Wheeler (1981, 1982)
addressed the modelling of pedestrian streams. He noted that a consequence of increasing
the number people on the bridge is a regimentation into a common forward speed and
pace frequency and that the pacing frequency drops due to slower walking speeds, but
without people falling in step. Although several studies exists to support the former
statement (Andersen, 2009; Venuti and Bruno, 2007; Bruno and Venuti, 2008), very little
is know about the variation of the gait parameters and degree of synchronisation amongst
pedestrians as a result of an increase in the crowd density. In recent years some preliminary
studies have been carried out and some tentative conclusions are summarised below (as
reviewed by Ingólfsson et al. (2010a)):

• Mean pedestrian step frequency (as well as speed and step length) decreases with
an increase in the crowd density.

• The inter-subject variability measured as the standard deviation of individual step
frequencies within the group decreased with an increase in the crowd density (except
in one study that showed constant inter-subject variability).

• The intra-subject variability measured as individual gait variations increase with
the crowd density.

• Collective phase synchronisation between individuals does not occur. Occasionally
phase synchronisation between pairs of individual walkers can occur.

Based on these conclusions, it seems that human-human interaction is mainly governed
by a modulation of the walking velocity of the group dictated by the forward movement
of the crowd. As the crowd density increases, the distribution of step frequencies within
the crowd decreases (i.e. a more narrow distribution is obtained). In response to the
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change in walking speed, the pedestrians modulate their step length and step frequency
(as shown in Fig. 2.3, Section 2.1.2) and both the resulting average step frequency and
the standard deviation decrease with increasing crowd densities. This effect is shown
qualitatively in Fig. 2.7 and more or less corresponds to the initial description of human-
human interaction as provided by Wheeler (1981). In Fig. 2.7, the parameters fFree and
ρFree correspond to the free and unrestricted average step frequency and crowd density
respectively, whereas ρM represents the jam density, i.e. the density for which people
cannot continue to walk.

Figure 2.7: Schematic view of the relationship between the average crowd density and
step frequency distribution.

2.3.2 Human-structure interaction

The human body is a complex mechanical system with inherent mass, stiffness and damp-
ing properties (Griffin, 2004). When a human-being occupies a structure, a combined
human-structure system is formed. The term human-structure interaction covers the
two-way feedback within the human-structure system. It is well-known and generally
accepted that in low-frequency vertical vibrations, the presence of passive occupants add
to the overall structural damping and mass (Sachse et al., 2003). Few studies exist on
the effect of walking pedestrians on the human-structure system, but early studies (Ohls-
son, 1982; Pimentel and Waldron, 1997) noted a drop in the dynamic load on flexible
floors during walking as compared to measurements on a rigid floor (see Živanović et al.
(2005a)). This is well in line with the results from recent studies which indicate that
walking people add to the overall mass and damping of vertically vibrating structures
(Živanović et al., 2005b, 2009; Jørgensen, 2009).

Department of Civil Engineering - Technical University of Denmark 19



Background review 2.3 Interaction mechanisms

The problem of human-structure interaction has two aspects; one is the modifications
to the apparent structural (dynamic) properties such as mass, damping and stiffness
(human-to-structure) and the other is related to the changes in the pedestrian walking
pattern as a result of the structural movements (structure-to-human). Although these
two aspects cannot be treated entirely independently, it is a convenient discretisation of
the problem. This also highlights the need for coupling between biomechanicists who
are mainly concerned with adjustments in gait parameters in different circumstances and
civil engineers who have mostly focused the research into quantification of changes of the
forces or the additional mass and damping from the occupants.

For crowds walking on a laterally flexible bridge, excessive bridge vibrations are a
consequence of human-structure interaction, but the nature of this interaction is not fully
understood. Based on the experimental observations made by Fujino et al. (1993) and
later Yoshida et al. (2002) it was concluded that the head movement of a large proportion
of the crowd was synchronised with the movement of the underlying pavement and thereby
the development of large pedestrian forces was attributed to synchronisation. This has
become a commonly accepted view, i.e. that synchronisation of the pedestrians walking
to the lateral oscillation of a bridge is a necessary condition for the development of SLE
and that pedestrians tend to spread their legs further apart and change their walking
frequency and phase to match that of the floor (McRobie et al., 2003).

In the field of biomechanics, few studies exist on the effect of lateral surface movement
on the walking characteristics. Kay and Warren Jr (2001) used a visual stimulation to
study the temporal correlation between lateral sinusoidal oscillations of the visual field (at
frequencies between 0.075 - 1.025Hz) and the lateral movement of the test person’s neck.
They concluded that the pedestrian pacing frequency locked to the driving frequency in
a large range of frequencies (0.65 - 0.925Hz). It should be pointed out that the visual
stimulus was a narrow hallway which vibrated at a very large (fictive) amplitude of around
0.32m. Recently, McAndrew et al. (2010) presented studies of both visual stimulation as
well as physical perturbations of a treadmill during walking. The treadmill was driven
into lateral oscillations at combinations of four distinct frequencies (0.16, 0.21, 0.24 and
0.49Hz), each with different amplitudes (50, 40, 70 and 25mm). Interestingly, the step
width increased considerably, the pacing frequency increased and step length decreased
during the lateral vibrations. Furthermore, the lateral movement of the neck (C7 verte-
bral) was monitored and its power spectral density featured peaks at each of the vibration
frequencies as well as at half the pacing frequency. This shows that forces are generated
at these frequencies but without synchronisation between the walker and the treadmill.

For walking on a laterally oscillating surface, Brady et al. (2009) introduced the terms
Fixed to Base and Fixed in Space to discriminate between pedestrians that translate
laterally with the base and those who hold a fixed position in space and allow the treadmill
to move beneath them. Experiments carried out at low frequency (0.2-0.3Hz) and large
amplitude (127mm) lateral vibrations showed that the step width generally increased as
a consequence of the vibrations. Pedestrians who were fixed in space had a tendency to
step wider with the left foot when the base was moving to the right and narrower when
it was moving to the left. For pedestrians fixed to the base, the opposite tendency was
true. This asymmetry in the gait and the ability of pedestrians to input energy into (or
extract energy from) the structure thereby depends on whether they are fixed in space or
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fixed to base.
Erlicher et al. (2010) suggested that the lateral pedestrian-induced force can be mod-

elled as the restoring force of a modified hybrid Van der Pol/Rayleigh oscillator. By
tuning the parameters of the oscillator, lateral GRFs as measured on a rigid surface were
reproduced with a good accuracy. The model can be applied on a laterally moving floor
where initial analysis shows that the load amplitude of the fundamental harmonic in-
creases with the vibration amplitude and that the frequency of the oscillator is entrained
by the frequency of the moving floor (Trovato et al., 2009). As reviewed by Ingólfsson
et al. (2010a, 2011), several other existing models rely on the assumption that pedestrians
synchronise with the moving structure (Strogatz et al., 2005; Butz, 2006; Venuti et al.,
2007; Nakamura et al., 2008; Bruno and Venuti, 2009; Bodgi, 2008) and neglect the pos-
sibility of the development of large vibrations at lateral frequencies away from the mean
excitation frequency (i.e. at half the step frequency).

Recently, Macdonald (2008) argues that synchronisation is not a necessary trigger of
SLE. This conclusion is based on the initial work by Barker (2002) and three important
observations made during crowd-induced lateral vibrations of the Cliffton Suspension
bridge in Bristol (UK):

1. The natural frequency of the dominant lateral vibration mode (0.53Hz) was well
outside the range of normal walking (0.9-1.0Hz).

2. Large amplitude vibrations were observed simultaneously in two vibration modes
(at 0.53Hz and 0.76Hz).

3. The measured vertical response did show signs of excitation at twice the modal
frequencies as expected if the pedestrians walked in synchrony.

According to Brownjohn et al. (2004a) and Dallard et al. (2001a), the lack of corre-
lated vertical forces at twice the frequency of the lateral motion question the necessity of
synchronisation to trigger SLE. Subsequently, Macdonald (2009) presented a simplified
mechanical model (inverted pendulum) of the human body combined with lateral bal-
ance control from biomechanical studies. The model was used to verify the Millennium
Bridge observation that velocity proportional load can be generated such that pedestrians
act as negative dampers on a structure. The surprising issue was that the pedestrians’
walking frequencies remained unaffected, and the model does therefore not rely on human-
structure phase synchronisation.

2.4 Critical number of pedestrians

As reviewed by Ingólfsson et al. (2010a), many analytical models of pedestrian-induced
lateral loads exist which differ considerably both in complexity as well as in the basic
assumptions upon which they rely. Probably the most simple model to date is that
of Dallard et al. (2001a) in which the critical number of pedestrians needed to trigger
instability can be obtained in closed form (see Eq. (2.2)). Alternatively, still relying on
linear dynamics, an equivalent pedestrian-induced load can be defined as a harmonic load
(point or uniformly distributed) applied at the resonance frequency. The load intensity
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is defined through an equivalent number of pedestrians which may depend on random
vibration theory (Sétra, 2006), the number of synchronised pedestrians (Danbon and
Grillaud, 2005; Fujino et al., 1993) or through fitting of experimental data (Rönnquist,
2005).

As mentioned in the previous section (Section 2.3.2), several models rely on the as-
sumption of human-structure synchronisation. The most pronounced example of this is
the model of Strogatz et al. (2005) which is formulated in the framework of coupled oscil-
lators known from nonlinear sciences (Strogatz and Stewart, 1993). The model assumes
that the pedestrians react to a small stimulus from the bridge, either through acceler-
ation (Strogatz et al., 2005) or displacement (Eckhardt et al., 2007), and modify their
instantaneous phase depending on the motion of the bridge. The equations of motion
become nonlinear as the development of the pedestrian phase depends on the vibration
response. Simplified expressions for the development of instability have been obtained in
closed form for these models and are summarised in Table 2.1. According to the French
Road Directorate (Sétra, 2006), human-structure synchronisation occurs when the lateral
acceleration of the bridge exceeds a certain threshold (0.10 – 0.20m/s2), but until then,
the pedestrian walking remains random. Lateral vibrations have frequently occurred at
vibrations lower than the average walking frequency1, e.g. the first mode of the Mil-
lennium Bridge at 0.5Hz. According to Piccardo and Tubino (2008), this situation can
occur if the DLF of the first load harmonic is displacement proportional. Thereby, lower
frequency modes are parametrically excited by the pedestrian load, provided that the
relationship between the modal frequency (f0) and the walking frequency (fw = fs/2)
is 2:1 (i.e. fw = 2f0). Based on the model, a stability criterion was derived, written in
terms of a critical number of pedestrians. A more elaborate review of each load model
is presented by Ingólfsson et al. (2010a). In Fig. 2.9, a graphical comparison between
the formulas in Table 2.1 are shown. The calculation is based on a half-sine mode shape,
uniform distribution of pedestrians on the bridge, modal mass 150 tons, damping 1% of
critical and model specific parameters as listed in Table 2.1 and shown in Fig. 2.8. In
Fig. 2.9, the average walking frequency, f̄w, is taken in the range 0.9 – 1.0Hz and the
minimum critical number of pedestrians used in the figure.

2.5 Human response to lateral vibrations

Human beings are very sensitive to vibrations and vibrations in structures occupied by
humans are therefore mostly a matter of serviceability rather than structural strength or
integrity. Several factors, mechanical, physiological and psychological strongly affect the
human perception of vibrations. The mechanical factors are such as the type of vibra-
tion (e.g. sine, random, etc.), magnitude, frequency, direction, duration of vibration etc.
(Tamura et al., 2006). The physiological parameters that may affect the vibration percep-
tion are weight, age, gender, race, posture, activity during vibration etc. (Kanda et al.,
1994). The psychological parameters count visual and acoustical effects, persons earlier
experience with vibrations, mood, etc. (ISO 10137, 2007; Duarte and de Brito Pereira,

1Here the term walking frequency (fw) is introduced as half the step frequency (fs = 2fw), referring
to the excitation frequency of the pedestrian-induced lateral load. The walking frequency is also denoted
the gait cycle frequency.
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Table 2.1: Comparison between different expressions for the critical number of pedestri-
ans needed to trigger excessive lateral bridge vibrations.

Model Ncr Parameters

Dallard et al. (2001a) 2ω0ζM
cpΨ

cp = 300Ns/m

Newland (2003, 2004)
2ζM

mpαβΨ

α = 2/3
β = 0.2
mp = 70 kg

Roberts (2005a,b)
(1 + α̃2)

2

Mr2

mpΨHn,av

α̃ ∈ [0; 1]
(here α̃ = 1)
r = f0/f̄w

Eckhardt et al. (2007)
16
√
2πζMκσfw

G1

κ = 0.57m/s
σfw ∈ [0.05; 0.10Hz]
(here σfw = 0.075Hz)
G1 = 25N

Strogatz et al. (2005)
8
√
2πζMω2

0σfw

G1κ̃
κ̃ = 16m−1s−1

Sétra (2006)1
0.0086ζ (aLimM)2

Υ̃ (f0) Ψ̃G2
1

aLim ∈ [0.10; 0.20m/s2]
(here aLim = 0.15m/s2)
Υ̃ (f0): Fig. 2.8

Sétra (2006)2
0.292 (aLimMζ)2

Υ̃ (f0) Ψ̃G2
1

Piccardo and 4Mπfw
mpgβDLFinΨ

√
[r2 − 1/4]2 + r2ζ2

fw ∈ [0.80; 1.05Hz]
Tubino (2008) DLFin = 2m−1

g = 9.82m/s2

1 Sparse and dense crowds
2 Very dense crowd

Ψ =
1

L

∫ L

0

[Φ(x)]
2
dx

Ψ̃ =

[
1

L

∫ L

0

Φ(x)dx

]2

Hn,av =

∫ 1+Δr

1−Δr

r
[(
1− r2

)2
+ (2ζr)

2
]−1/2

dr, here Δr = 0.1

f̄w: average walking frequency of the crowd
σfw : standard deviation of walking frequencies
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Figure 2.8: Frequency dependent mode shape function used by Sétra (2006).
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quency for the models in Table 2.1.
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2006). As such, there is a large inter-subject variability in the vibration felt by different
people. Furthermore, the same person is likely to react differently to the same vibration,
causing a considerable intra-subject variability (Griffin, 2004).

The vibration felt by a pedestrian crossing a footbridge is generally non-stationary
and the exposure time may be small compared to the overall duration of the crowd event.
Živanović and Pavic (2007) introduced the concept of conditional probability for subjective
evaluation of footbridge vibrations. The conditional probability P (U |A) is defined as the
probability of discomfort (U) at a certain vibration level (A).

A great deal of work has been published on both whole body and hand transmitted
vibrations, much of which is summarised in the Handbook of Human Vibration by Griffin
(2004). The literature review by Živanović et al. (2005a) presents several investigations
related to footbridge vibrations, most of which concern vertical vibrations and is not
within the scope of this thesis. Here, the focus is solely on human response to lateral
whole body vibration, with the aim to provide a brief overview of current state-of-the-art
with application to footbridges.

2.5.1 Quantification of vibrations

It is customary to measure oscillatory motion through acceleration, e.g. in terms of
absolute peak, peak-to-peak or some time average of the acceleration. Typically, RMS
(root-mean-square) value of the acceleration response is used:

aRMS =

√
1

T

∫ T

0

[a(t)]2 dt (2.3)

where a(t) is the acceleration time history, and T is the averaging time. The reason for
using RMS acceleration as a general way of quantifying vibrations is the convenience of
measurement and analysis (Griffin, 2004).

Another measure of human exposure to vibrations is the VDV (Vibration Dose Value)
which is often used for non-stationary vibrations and vibrations where the characteristics
vary in time. The VDV is defined as (Griffin, 2004):

aVDV =

(∫ T

0

[a(t)]4 dt

) 1
4

(2.4)

For footbridges, Barker et al. (2005) and Barker (2007) argue that VDV value of accel-
eration is a better means of evaluating the human comfort than the peak or the RMS
value. However, it has been shown that for pedestrians crossing a footbridge vibrating
dominantly in a single mode, there is a linear correlation between the perceived peak ac-
celeration, the maximum 1 s RMS and the VDV value of the acceleration perceived during
crossing. This suggests that any of these measure are equally applicable for assessment
of the human response to vibration on footbridges (Živanović and Pavic, 2007).

2.5.2 Research on human response to vibration in buildings

Human response to lateral vibrations related to footbridge design has scarcely been inves-
tigated. More attention has been paid to comfort of occupants of structures such as high
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rise buildings (Chen and Robertson, 1973; Irwin, 1981), control towers (Denoon et al.,
1999, 2000), offshore platforms (Irwin, 1978) and during transportation in cars, ships,
trains, airplanes etc.

Chang (1973) used results from the aerospace industry to create comfort criteria
thresholds for maximum allowable acceleration. Different categories were defined, but
the limit for perceptible vibrations was defined as 0.05m/s2 over the entire frequency
range relevant for tall buildings.

Goto (1983) used a motion simulator to recreate low frequency horizontal building
motion and also found that the perception threshold is in the region 0.05m/s2. Interest-
ingly, it is stated that the acceleration limit for walking is 0.5m/s2 to 0.7m/s2. However,
it is not reported how these values depend on the frequency of the motion or whether this
is peak or RMS acceleration.

Hansen et al. (1973) conducted interviews with 107 users of two buildings with lateral
sway frequencies in the range 0.17Hz to 0.19Hz and 0.24Hz respectively, following a
storm event. The limiting RMS value of the acceleration was chosen similarly to the
aforementioned values as 0.05m/s2 and defined such that less than 2% of the occupants
(in the top third of the building) would complain each year (Hansen et al., 1973). It is
worth noticing, that in the calculation of the RMS value of the acceleration, an average
time of 20 minutes was used.

Irwin (1978) collected the results from several studies to define guidelines for upper
magnitudes of whole body vibrations for three categories of structures; buildings, offshore
structures and bridges. For buildings, two different sub-categories were defined, one for
storm induced motion and one for frequently induced motion of buildings. For storm
induced vibrations, the threshold value is given in Fig. 2.10 as curve 1a, defined for the
worst 10 minutes of a storm with a return period of at least 5 years. If obeyed, not more
than 2 per cent of the people that experience the maximum vibration will complain. The
lower threshold of perception of motion was put forward by Irwin (1978) as curve 1b in Fig.
2.10, intended for frequently induced motion of sensitive buildings, e.g. hospital operating
theaters. For residential buildings, offices and workshops, Ashley (1977) proposed that
the base curve (curve 1b) criteria should be multiplied with weighting factors to take into
account that larger allowable acceleration is acceptable in these buildings (Irwin, 1978).
Interestingly, a criterion for allowable horizontal acceleration in a footbridge due to storm
is given as curve 6 in Fig. 2.10. This allowable acceleration for bridges is higher than
for buildings as it takes into account the (low) probability of occurrence of the storm
and the assumption that only few pedestrians will cross the bridge during such an event.
This criterion is not directly applicable to vibrations induced by pedestrians, however it
is interesting to note the order of magnitude proposed in the study.

Melbourne and Cheung (1988) argue that for some structures, there may be a need
to investigate the serviceability for different return periods. In a later study, Melbourne
(1998) proposed the following equation for the maximum allowable peak acceleration (in
m/s2):

â =
√

2 ln f0T

(
0.68 +

lnR

5

)
exp (−3.65− 0.41 ln f0) , f0 ∈ [0.06Hz, 1.0Hz], (2.5)
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where f0 is the structural frequency, T is the event duration (usually 10 minutes) and R
is the return period (in years). The first term in the equation is the peak factor for a
Gaussian process, the second term is scaling factor taking into account different return
periods than 5 years and the final term is the analytical equation for curve 1a in Fig.
2.10.

A recently proposed approach related to human comfort on footbridges subjected to
(random) wind vibrations was proposed by Flaga et al. (2008a). The criteria was based
on earlier studies and standards within the field and is shown in Fig. 2.10.

The concept of base curves, representing equal human perception to vibration over the
frequency range has been adopted in the ISO 2631 (ISO 2631-2, 1989, 2003) and BS 6472
(BS 6472, 1992) standards relating to human response to whole body vibrations. Similarly
to Irwin’s definition, the base curve represents the vibration perception threshold and
different multiplication factors are applied for different types of structures. Guidelines on
selecting appropriate multiplication factors are provided in ISO 10137 (ISO 10137, 2007)
and BS 6472 (BS 6472, 1992).
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Figure 2.10: Comparison between different studies on human response to horizontal vi-
brations in (left) buildings and (right) for footbridges.

Department of Civil Engineering - Technical University of Denmark 27



Background review 2.5 Human response to lateral vibrations

2.5.3 Human response to lateral footbridge vibrations and ’lock-in’

Apart from the studies of Flaga et al. (2008a) on comfort of pedestrians on footbridges
to wind induced vibrations, they also studied the comfort requirements for men-induced
vibrations of footbridges (Flaga et al., 2008b). Three different comfort criteria lines are
defined, firstly a base curve (M1) not to be exceeded for frequent (daily) events, secondly a
curve (M1.7) for events occurring more rarely than once per week and finally a curve (M10)
for vandal loads considering only the Ultimate Limit State of the structure. All three
curves are shown in Fig. 2.10. it is noted that peak acceleration has been transformed
into RMS values for the sake of comparison with the results from the studies on building
occupants (Fig. 2.10, left) by dividing the peak acceleration criterion with

√
2.

According to ISO 10137:2007 (ISO 10137, 2007), it is recommended that the lateral
acceleration of walkways to pedestrian or wind induced vibration should not exceed 60
times the base curve, corresponding to RMS value of 0.21m/s2 at the frequency 1.0Hz
calculated using an average time of 1 s. In Appendix A2 of EN 1990 (EN 1990, 2005),
limiting values for the maximum allowable lateral acceleration of footbridges as 0.2m/s2

in normal use and 0.4m/s2 for exceptional crowd conditions.
These values deal only with the comfort of the pedestrians, but do not address the

probability of lock-in, which may occur for vibration amplitudes lower than the comfort
threshold. In a recently published guide on the design of footbridges, (fib (2005)), a lock-
in threshold of 0.08m/s2 for a vibration frequency of 1.0Hz is provided. However, it is
unclear how this value has been derived.

According to Baumann and Bachmann (1987), lock-in occurs at vibration amplitudes
exceeding 2 to 3mm (at 1.0Hz), corresponding to an acceleration of 0.08 to 0.12m/s2,
resulting in a synchronisation of as many as 80% of the pedestrians (Bachmann, 2002).

In an attempt to avoid the possibility of synchronous lateral excitation of footbridges,
a limit of 0.10m/s2 for the lateral peak acceleration of footbridges was proposed by the
French Road Authorities (Sétra, 2006). This limiting value was based on the full-scale
measurements performed on the Solferino Bridge in Paris during its closure (Charles and
Bui, 2005). It is further reported, that for accelerations exceeding this threshold, the
percentage of synchronised pedestrians increases and can reach values as high as 60%
for lateral peak acceleration of 0.9m/s2. The percentage of synchronised pedestrians was
determined from back-calculation of the measured vibration response as the equivalent
number of resoant pedestrians, needed to produce the measured acceleration response.
An interesting observation that was made during the crowd tests on the Solferino Bridge,
is that when the vibration occurs in a torsional mode (with both horizontal and vertical
motion) no lock-in was observed despite large vibration amplitudes (Sétra, 2006). The
authors explain that high horizontal acceleration levels are then noted and it seems their
effects have been masked by the vertical acceleration, (Sétra, 2006).

Also worth mentioning, is that Nakamura (2003) used the observations made during
the field tests of the Nasu Shiobara Bridge (M-Bridge) in Japan to propose a serviceability
criterion of 1.35m/s2 for lateral bridge vibrations. This serviceability criterion was defined
as the acceleration level for which the pedestrians often lose balance and stop walking.
Therefore, it should probably be treated as an extreme level of vibration which can be
accepted on footbridges, rather than a target serviceability critierion.
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Chapter 3

Preliminary Studies

3.1 Preface

As described in Chapter 2, a significant amount of research has been undertaken in the
last decade to quantify the pedestrian-induced lateral forces and the interaction of humans
with a laterally moving surface. Although the general conclusion is the same, i.e. there
exists a non-negligible interaction between pedestrians and a laterally moving structure,
there is still a dispute regarding its origin and the conditions under which and how it
develops.

The contradictory conclusions about the origin of the human-structure interaction
raises the following questions, which still remain unanswered:

1. What is the load induced by pedestrians walking on a laterally oscillating surface
as function of vibration frequency and amplitude?

2. Is synchronisation a necessary trigger for the development of diverging lateral vi-
brations?

3. How does the load depend on the walking characteristics of the pedestrian (i.e.
walking speed, pacing frequency and step length).

As a first step towards answering these questions, a preliminary experimental investi-
gation using a 17m long laboratory platform was carried out (Section 3.3). By measuring
the lateral acceleration response of the platform and monitoring the movement of the
pedestrians, the effect of single pedestrians and crowds were studied. The results from
the platform investigations were used as a basis for the development of a larger experi-
mental campaign. The results from the preliminary investigations are presented in this
chapter with the main emphasis of the work presented by Ingólfsson et al. (2008a) (Paper
II of this thesis).

3.2 Experimental determination of human-induced forces

In this section, a very brief introduction to different measurement techniques which were
considered for the experimental campaign is presented.
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3.2.1 Force plate measurements

A force plate is a relatively small plate (typically around 600x600mm), supported on a
load cell to measure the GRF generated by the human body during walking or standing.
Force plates are commonly used in relation to gait analysis and in biomechanics. The
first attempts to measure the GRF are dated back to the late nineteenth century (Baker,
2007), and in the 1930’s the first three-component mechanical force plate was developed
(Elftman, 1938). Today, forces plates are standard inventories in any gait laboratory and
in the last decade or so, it is increasingly being used for civil engineering purposes (Kerr,
1998; Sahnaci and Kasperski, 2005; Butz, 2006; Racic et al., 2009).

Measurements of the GRF through the use of force plates is not ideal due to their
limited size. During walking, a single force plate can only measure the GRF from a
single footstep, thus in order to capture a series of consecutive footsteps, an array of force
plates is necessary. Therefore, this was not considered further in relation to the research
presented herewith. A detailed discussion relating to technical aspects of force plates and
their applicability in civil engineering is given by Racic (2009).

3.2.2 Section models and assembly structures

When dealing with serviceability of pedestrian structures, the measurement of the GRFs
from a series of consecutive footsteps (ideally from continuous walking) is necessary. In
particular when investigating human-structure interaction, a certain exposure time is
needed to ensure a proper quantification of the phenomenon can be achieved. The best
case scenario is to be able to measure the GRFs from different pedestrians while crossing
a real-life footbridge under natural circumstances. However, for several reasons field tests
cannot replace laboratory investigations but should rather be treated as benchmark cases
to verify the models which are based on the laboratory tests.

In order to achieve realistic laboratory circumstances, several researchers have used
instrumented platforms to investigate human-structure interaction, (Hobbs, 2000; McRo-
bie et al., 2003; Butz et al., 2005; Rönnquist, 2005; Sétra, 2006; Živanović et al., 2009).
This offers advantages in that the structural properties can normally be modified quite
easily, the instrumentation is simple and access to the facility is more or less unlimited.
The shortcomings with building platforms or other assembly structures in the laboratory
is the space requirement and construction cost. Furthermore, many laboratory platforms
are either too short to capture more than only few footsteps and they tend to have a
very low modal mass, which means that the measured response during pedestrian tests is
larger than generally observed in the field (Rönnquist, 2005).

The laboratory of Civil Engineering at DTU has been used on earlier occasions to
study human-induced vertical forces using two different and custom built low frequency
footbridges with span of 12 m (Ingólfsson, 2006) and 16 m (Jørgensen, 2009) respectively.
Therefore, it was decided to carry out preliminary experimental investigations in the
laboratory, using a 17 m long suspended platform, to represent a footbridge with a low-
frequency lateral vibration mode.
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3.2.3 Treadmill Ergometer Devices

The use of treadmills to study human locomotion is widely accepted in the scientific
community and like the force plate, an instrumented treadmill is a standard inventory
item in many gait laboratories. An instrumented treadmill is hereby referred to as one
which is connected to the ground through load cells and thereby offers the possibility to
measure GRFs during continuous walking.

To the author’s knowledge, Brownjohn et al. (2004b) were the first researchers in
civil engineering to utilise an instrumented treadmill to quantify continuous pedestrian-
induced vertical forces. For the determination of pedestrian-induced lateral forces and for
investigations into human-structure interaction, treadmills have been used with succes on
a few occasions (McRobie et al., 2003; Pizzimenti and Ricciardelli, 2005; Sétra, 2006; Sun
and Yuan, 2008). The advantage is that the treadmill does not require much space and it
can be placed on top of short laboratory platforms or driven laterally by a shaking table.

The shortcoming with using a treadmill is that it may not completely resemble natural
walking and by imposing a fixed forward velocity, some freedom of the test subject to
vary his walking is restricted. As reviewed by Racic et al. (2009), it has been shown
that analysis of gait using a treadmill is equivalent to analysis of normal (overground)
walking. However, the applicability of treadmills to study human-structure interaction
has not been verified in the same way, as only few such experiments have been carried
out in the past. In addition, no benchmark data exists on the expected behaviour of
pedestrians on a laterally moving surface, which can be used as a comparison with the
the results obtained from treadmill experiments.

Having evaluated the advantages and shortcomings of different experimental proce-
dures, it was decided to carry out an experimental campaign using a laterally driven
instrumented treadmill to quantify the pedestrian-induced lateral forces from individuals.
This is presented in detail in Chapter 4.

3.3 Preliminary investigations

A preliminary experimental analysis was carried out in the laboratory of DTU Civil
Engineering, using an instrumented platform. The platform is made of concrete and is
cast as a prestressed double T-girder with overall length of 17m and weight 19.6 tons (Fig.
3.1).

The platform was constructed by the author to study pedestrian-induced lateral vibra-
tions. It has frequently been used by the author as well as students under his supervision
(Knudsen, 2007; Christiansen, 2008). The platform is suspended from hangers at one
end and fixed onto two flexible columns at the other end. The mechanical behaviour
is governed by a pendulum motion with a rotational rigidity at the end, see Fig. 3.2.
The experimentally determined fundamental natural frequency of the platform is 0.87Hz,
which could also be verified theoretically (0.81Hz) under the assumption that the shape
of the vibration mode is triangular (i.e. in-plane bending of the deck is neglected) (In-
gólfsson et al., 2008a). The difference in the measured frequency and the theoretical one
may be attributed to inaccuracies in e.g. the estimated rotational stiffness of the support
columns, the mass of the element or the assumed mode shape. At low amplitude vibra-
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tion, the viscous damping ratio was determined from free-decay experiments to be around
0.79% of critical damping.

Different pedestrian tests were carried out on the platform. In this thesis, the results
from five single pedestrian tests as well as crowd tests with varying number of participants
(from two to eight) are summarised.

Figure 3.1: Suspended concrete platform at the laboratory of DTU Civil Engineering

16 m

1 m

17 m

HangersH

Columns

B0

q

b

Accelerometer

Figure 3.2: A schematic view of the mechanical behaviour of the platform.

3.3.1 Single pedestrian tests

In the single pedestrian tests, a metronome was used to ensure that the pedestrian walking
frequency matched the natural frequency of the (empty) platform. It has been suggested
that the dynamic lateral load varies with the vibration amplitude when walking on a
laterally moving platform (Hobbs, 2000; McRobie et al., 2003; Rönnquist, 2005), thus the
purpose of this part of the research is to test that hypothesis. The structural response of
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the platform was measured1 and compared with that obtained by assuming no interaction
with the structure. For a linear structure with a triangular mode shape subject to a
moving harmonic force (starting from the fixed support), the envelope of the acceleration
response can be written in closed form as (Ingólfsson et al., 2008a):

ÿ(t) =
DLF ·W

M

1

4πζ2n

(
e−ω0ζt − 1 + ω0ζt

)
(3.1)

where ζ, M and ω0 are the modal damping, mass and angular frequency of the funda-
mental vibration mode of the platform respectively and n is the number of steps needed
by the pedestrian to cross the bridge. The weight of the pedestrian is denoted W and
DLF is an unknown dynamic load factor.

The expression in Eq. (3.1) was used to fit the envelope of the measured response
from the pedestrians using a numerical (nonlinear) least-square model. The parameter
DLF is unknown and the least-square problem was formulated to find a value of DLF
which provides the best fit. It was shown that for all five pedestrians, the model in
Eq. (3.1) provided a good fit to the measured acceleration envelope, suggesting that
the dynamic load factor remained (approximately) constant during the passage time of
the pedestrians (Ingólfsson et al., 2008a). The conclusion to be drawn from this study
is that for predicting the acceleration response of the platform, a simple linear model
is sufficient, suggesting that human-structure interaction did not noticeably change the
loading from the pedestrian. Furthermore, the back-calculated values of the DLF (mean
value 0.055, S.D. 0.022) were in the same range as reported by earlier studies derived from
fixed platforms (see Chapter 2).

During the tests, the maximum platform acceleration was lower than the lock-in
threshold (0.2m/s2) as defined by Sétra (2006). As noted by Ingólfsson et al. (2008a), this,
in combination with the triangular mode shape, relatively short passage time and tran-
sient effects associated with the bridge starting at rest, minimised the effect of any type
of human-structure interaction. Finally, by using a metronome to control the pacing fre-
quency, the phase of the walking is tied to that of the metronome, hence human-structure
synchronisation is unlikely to occur in such circumstances.

Further investigations were carried out by Christiansen (2008), using the platform.
Similar dynamic tests were carried out with up to 20 individuals crossing the platform
at various metronome-controlled as well as freely selected step frequencies. An effort
was put in to quantify the frequency dependent lateral DLF from back-calculation of the
measured response, similarly to that presented herewith. It was found that the DLF of the
fundamental harmonic depends on the relationship between the walking frequency and
the modal frequency of the platform. This dependency was such that the minimum value
of the DLF was obtained when walking at resonance, whereas the DLF would increase
on both sides of the resonance walking frequency. However, it proved difficult to obtain
reliable estimates of the DLF, particularly at walking frequencies away from the resonance
frequency of the platform. Therefore, the results should be taken with some precaution
and have not been used or published further. It should be noted that the DLFs of higher
harmonics could not be obtained. However, in contrast to the aforementioned results,

1The acceleration was measured with a tri-axial accelerometer (GeoSIG, AC-63, 5000mV/g), posi-
tioned at the hangar location (x = 16m), as shown in Fig. 3.2
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the results of Christiansen (2008) suggest that human-structure interaction is significant
under certain conditions and needs to be taken into account.

Christiansen (2008), also measured the lateral force in the absence of bridge motion
from twenty test subjects. The main conclusion was that the results were comparable to
those of other researchers, both in terms of magnitude and step frequency dependency.

3.3.2 Pedestrian crowd test

In addition to the single pedestrian tests, crowd tests were carried out to investigate the
possibility of developing large amplitude vibrations on the platform and to investigate
the possible onset to synchronisation. A total of seven crowd tests were carried out, each
with a duration of three minutes, in which the number of pedestrians was kept constant
by controlling their arrival onto the bridge. The pedestrians were asked to walk freely, i.e.
at their own selected pacing frequency. The number of people on the bridge was increased
from two pedestrians in the first tests, to eight in the last one, with an increment of one
person between each test (Ingólfsson et al., 2008a). Thereby, the forward speed of the
pedestrians was, to some degree, restricted by the speed of the crowd. Since the lateral
force could not be measured directly in the tests, the correlated pedestrian force, i.e. the
component of load in phase with the modal velocity, could only be obtained indirectly by
applying Arup’s method of back calculation (Dallard et al., 2001a):

Fcorr = 2ζMq̈ +M
Δq̈

π
(3.2)

where q̈ is the measured modal acceleration and Δq̈ is the change in acceleration
amplitude between two consecutive vibration cycles. During the crowd tests, lateral
acceleration amplitudes up to 0.28m/s2 (0.20m/s2 for 1 s RMS) were measured. No sign
of correlation between Fcorr and the lateral velocity amplitude was observed (see Fig. 3.3),
suggesting that the people did not synchronise with the lateral movement of the platform.
Analysis of video recordings were carried out by Knudsen (2007), who concluded that
the pedestrian pacing rates were determined by the pedestrian preferences and not the
platform movement. Without excluding the possibility of synchronisation on a laterally
moving platform, it was concluded that on the current setup no signs of the development
of lock-in were observed. This can be attributed to the limited length of the platform
(17m) or its triangular mode shape, causing a general low level of vibrations to be felt by
the pedestrians during the passage.

3.3.3 Tests on modified platform

In order to accommodate for the shortcomings associated with the triangular vibration
mode, the platform was modified. It was suspended at both ends, instead of only at
one end. In this setup the platform featured two natural vibration modes susceptible
to pedestrian-induced lateral vibrations; a sway mode and a twist mode with natural
frequencies around 0.63Hz and 0.93Hz respectively.
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Figure 3.3: Correlated pedestrian force per person as function of the structural velocity
for all crowd tests, calculated according to Eq. (3.2).

Modal survey

Different experimental techniques were used to determine the natural vibration character-
istics of the platform, including free decays, ambient vibration measurements (i.e. in the
absence of external loading) as well as forced vibrations2. In the forced vibration tests, the
lateral excitation was generated using an electrodynamic shaker (model APS 113). The
shaker was placed in one position of the deck, whilst accelerometers were moved to dif-
ferent locations. For each acceleration location, a pseudo-random force was created with
constant spectral energy content in the frequency range 0 to 40Hz. The force induced by
the shaker was measured indirectly, by measuring the acceleration of the reaction masses
and multiplying with the moving mass of the shaker.

In Fig. 3.4, the output from forced response tests, for 11 test points along the length of
the bridge deck is shown. The existence of two natural frequencies are clearly illustrated
in the graphs. The amplitude difference in each line in Fig. 3.4 (top-left) represents the
variation in the response (per unit force input) along the bridge deck. For mode two,
there is a considerable variation, which is due to the shape of the twist mode. In Fig.
3.4 (bottom), the results from the modal survey are summarised for the first two lateral
vibration modes. The estimated modal masses are based on the assumption that the
shape of the sway mode is uniform with constant modal ordinate along the length of the
platform and that the shape of the twist mode is purely triangular. Thereby, the modal
mass of the sway mode is equal to the total mass of the element, i.e. 19.6 t, whereas the
modal mass of the twist mode is only one-third of the total concrete mass, i.e. 6.5 t.

In Table 3.1, the modal characteristics of the first four vibration modes are presented.
It is noted that the lowest vertical vibration mode has a frequency of 4.71Hz and due
to its low damping it may be excited by vertical pedestrian-induced forces during the
crowd tests. However, as the frequency falls within the range of the third harmonic of

2The modal identification was carried out in collaboration with Dr. Stana Živanović from the Univer-
sity of Sheffield (now University of Warwick), during a research visit in December 2008. Post-processing
of ambient and forced vibration data were also carried out by Dr. Stana Živanović.
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the vertical pedestrian-induced force, it was assumed that the influence on the lateral
vibration behaviour would be minimal.
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Figure 3.4: Amplitude spectrum (cross FRF) (top-left) and phase spectrum (top-right)
between shaker input and acceleration response in different test points during
pseudo-white noise shaker excitation. Schematic view of the fundamental
sway mode (bottom-left) and the twist mode (bottom-right).

Table 3.1: Modal properties of the modified platform at the laboratory of DTU Civil
Engineering

Description Modal frequency (f0) Modal damping (ζ) Modal mass (M)

(Hz) (%) (tonne)

Fundamental sway mode 0.625 0.7 - 0.8 19.6

Lateral twist mode 0.93 0.7 - 0.8 6.5

Fundamental vertical mode 4.71 0.3 -

Fundamental torsional mode 6.27 0.7 -
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Pedestrian crowd tests

A single set of crowd tests was carried out with a varying number of pedestrians on the
bridge, Fig. 3.5. The idea of the test was to maintain a constant number of people on the
bridge during a period of few minutes. A number of volunteering pedestrians were asked
to form a straight line at one end of the platform (bridge entrance). The number of people
present on the bridge at any time instance was varied from 1 to 10 persons during the
tests. The constant number of pedestrians on the bridge was maintained such that every
time a person left the bridge, a new person was instructed to enter it. The person who
exited the bridge walked back to the entrance and re-entered the bridge when instructed
to do so. The total number of participants was therefore larger than the number of persons
on the bridge at any one time. This was the only way to maintain a constant number of
people on the bridge for a longer period of time, without conducting a circulatory test on
the platform itself. A circulatory test was deemed inappropriate, primarily because the
turn-zone would occupy a non-negligible portion of the surface area of the platform.

Figure 3.5: Pedestrians crossing the laboratory platform during a crowd test.

During the tests there were no visual signs of synchronisation between the pedestrian
walking and the vibration of the bridge. Vibrations in the sway mode seemed to develop
more strongly than those of the twist mode despite its higher modal mass and the fact
that the walking frequency of the pedestrians was closer to the natural frequency of the
twist mode.

In Fig. 3.6 (top), the acceleration time history of the response, measured at the corner
of the bridge deck, is shown, both for the raw unfiltered signal and a low-pass filtered
signal (with cutoff frequency 10 Hz). The response amplitude seems to gradually increase
with the number of people on the bridge, but no signs of instability, i.e. diverging vibration
amplitudes, are present in the data. An interesting observation is made when considering
the spectrogram of the acceleration response in Fig. 3.6 (middle), which confirms the
initial observation that both lateral vibration modes are excited during the crowd tests.
Furthermore, as shown in Fig. 3.6 (bottom), the response magnitude in the sway mode is
noticeably larger than that of the twist mode. This mechanism of multi-mode response,
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in which stronger vibrations are observed in the lower frequency mode was also described
by Macdonald (2008), who observed a similar behaviour on the Clifton Suspension Bridge
during an event with large pedestrian-induced lateral vibrations, see Section 2.3.2.

It should be noted that the acceleration level observed during the crowd test was
generally lower than 0.25m/s2 (filtered). This means that the vibration magnitude as
felt by the pedestrians is comparable to what could be observed on as-built footbridges
during pedestrian-induced lateral vibrations. Thereby, the platform provides a realistic
scale-effect and is representative of real footbridge vibrations. The twist mode features
a nodal point at midspan, which could resemble a short bridge section taken around
midspan of a longer structure. Then the sway mode would represent a fundamental
lateral vibration mode, whereas the twist mode represents the second lateral vibration
mode. For such a structure, the higher mode is primarily excited away from the centre
of the span as very little energy is transmitted to the mode around the nodal point.
Therefore, the comparison to a real footbridge is questionable in terms of load and modal
response of the twist mode.

3.3.4 Conclusions from platform tests

The concrete platform at the laboratory of DTU Civil Engineering was used in an attempt
to answer the research questions posed at the beginning of this chapter. Despite a large
effort, it proved difficult to determine the load from pedestrians through back-calculations
of the measured response without measuring the load directly. Back-calculations rely on
the response measurements as well as an accurate representation of the dynamic charac-
teristics of the structure in terms of natural frequencies, modal mass and damping. All
these quantities are known to be subject to variations and amplitude dependencies (Racic
et al., 2010). In its initial configuration, the fundamental vibration mode of the platform
was triangular. As discussed by Ingólfsson et al. (2008a), this configuration was found
inappropriate for studying human-structure interaction due to the triangular mode shape.
The modified platform proved more appropriate, but as already stated, the presence of a
twist mode is problematic as it is not a representative vibration mode of a real footbridge.

The platform tests have proven more successful in answering the research question re-
garding the importance of human-structure synchronisation for the onset of large lateral
vibrations. The results from the tests provided valuable insight into the mechanism of
human-structure interaction as it was found that synchronisation does not occur instan-
taneously when walking on a laterally vibrating surface (Ingólfsson et al., 2008a). On
the modified platform, it was shown that large vibrations could be developed in the low-
frequency sway mode during the pedestrian crowd tests. Visual observations made during
the tests and the simultaneous vibrations in the sway mode, question the importance of
human-structure synchronisation for the development of excessive vibrations.

However, without a direct measurement of the lateral forces it is difficult to make
a robust method for quantification of the pedestrian-induced loads. Therefore, further
instrumentation of the platform was considered. This involved applying an actuator with
load cells between the laboratory floor and the structure. This way, the structure could
be exited into vibrations at different amplitudes and frequencies during the passage of
pedestrians. The method was used successfully on a different assembly structure in the
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Figure 3.6: Time history (top) and spectrogram (middle) and a waterfall plot (bottom)
of the acceleration response during the pedestrian crowd tests.
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laboratory, where the vertical forces from single pedestrians and groups were measured
(Jørgensen, 2009). However, due to its weight, the inertia force of the platform is much
higher than the variation in the pedestrian-induced lateral force and due to its length, only
a limited number of steps could be measured. Therefore, it was decided not to carry out
further tests on the platform, but instead focus on the experimental campaign presented
in Chapter 4.
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Chapter 4

Experimental Campaign

As already mentioned, the laboratory platform proved insufficient for the purpose of this
research, as the lateral pedestrian-induced forces could not readily be measured and the
estimation of the forces relied on back-calculations of the measured response (Knudsen,
2007; Christiansen, 2008; Ingólfsson et al., 2008a).

Based on the conclusions of previous studies, a statistical characterisation of the lateral
GRFs over a range of frequencies and amplitudes is necessary for understanding the devel-
opment of large amplitude bridge vibrations. Since the driving mechanisms do not seem
to depend on an instantaneous synchronisation between the pedestrian walking and the
movement of the bridge, this characterisation should be based on a considerable number
of repetitive footsteps.

Therefore, an instrumented treadmill, driven in a lateral sinusoidal motion, was used to
measure directly the forces induced by pedestrians during continuous walking. A detailed
description of the experimental campaign and the main results are presented by Ingólfsson
et al. (2011, 2010b) (Papers II and III of this thesis).

The chapter is structured into seven sections. In the first four sections, an extended
summary of the experiments is given. In Section 4.5, the results from the static tests are
summarised together with some supplementary Fourier analysis of the measured forces. In
Section 4.6, the main results from the dynamic pedestrian tests are briefly summarised and
in the final two sections the conclusions from the experimental campaign are presented.

4.1 Background

The instrumented treadmill used in this study was constructed by Pizzimenti and Ric-
ciardelli at the University of Reggio Calabria as a part of the PhD thesis of Pizzimenti
(2004). In his thesis, a detailed description of the treadmill, its design and construc-
tion is provided. In addition a comprehensive study on the ground reaction force from
pedestrians walking on a fixed surface was carried out and presented, both in the thesis
(Pizzimenti, 2004) and later in a joint publications of the two researchers (Ricciardelli
and Pizzimenti, 2007). As reviewed by Ingólfsson et al. (2010a) (paper I of this thesis),
a frequency-domain procedure was used to quantify the pedestrian-induced load and in
particular, a Gaussian shaped PSD was introduced to fit the experimentally determined
PSD around each of the first five harmonics.
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For the case with treadmill motion, a pilot study was carried out by Pizzimenti (2004),
where the load from five test subjects were obtained at three different vibration amplitudes
(15 mm, 30 mm and 45 mm) ant at five different lateral vibration frequencies in the range
0.60 to 0.92 Hz. Pizzimenti (2004) identified two different mechanisms, the first one being
centred around half the pacing frequency and its higher harmonics and the second one
which occurs at the frequency of the lateral vibration. This component is caused by
the interaction between the treadmill motion and the movement of the pedestrian and
was denoted "the self-excited force". The self-excited portion of the load was further
subdivided into two components, one in-phase with the displacement and one in-phase
with the velocity of the treadmill, written in terms of body-weight normalised dynamic
load factors (DLFin and DLFout respectively):

F (t) = Fst(t) +DLFIn ·W sin (2πfLt)︸ ︷︷ ︸
In-phase load

+DLFOut ·W cos (2πfLt)︸ ︷︷ ︸
Out-of-phase load

(4.1)

For the five test subjects used in the pilot study, the contribution of the pedestrian
to the overall modal mass and damping of the structure, could be obtained directly from
the DLF of the self-excited force coefficients. The results from the pilot studies were
published by Pizzimenti (2004) and in a joint publication by Pizzimenti and Ricciardelli
(2005). It was shown that the in-phase component of the pedestrian load was generally
negative, meaning that the pedestrians add stiffness to the structure (or alternatively
decrease mass). For the out-of-phase component of the load, pedestrians act as negative
dampers at one combination of frequency and amplitude. The average DLFs found in the
tests, are shown in Fig. 4.1.
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Figure 4.1: Average DLF for the in-phase (a) and out-of-phase (b) components of the
self-excited pedestrian force (Figure reproduced from Pizzimenti and Riccia-
rdelli (2005)).

During the experimental work presented in this thesis, the treadmill was situated in the
laboratory of the Inter University Research Centre for Building Aerodynamics and Wind
Engineering (CRIACIV) in Prato. It was moved from the University of Reggio Calabria
in 2006 and subject to minor modifications prior to the work described in this thesis. The
modifications include a substitution of the hangers, from S-shaped bars to low-friction
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hinges (see Fig. 4.2). In addition, the inverters used to control the motors were substituted
and the gearing between the forward velocity of the treadmill and the motor rotation was
modified to allow for larger walking speeds. Finally, the accelerometers, displacement
measures and data acquisition is different from that used by Pizzimenti (2004). These are
described in Section 4.2. For a more detailed description of the mechanical modifications,
see Bonanni (2007).

4.2 Description of the Treadmill Ergometer Device

In brief, the treadmill ergometer device (Fig. 4.2) consists of three separate parts, stages
1 to 3. Stage 1 is a steel frame which is fixed onto the laboratory floor and stages 2 and
3 are connected to the base through low-friction guided rails. Stage 2 is a steel frame
which is driven in a lateral motion by an asynchronous motor (1.1 kW and 1.5 HP),
through a shank. The shank is mounted eccentrically on a rotating steel disc, allowing
for various vibration amplitudes (4.5mm, 10.0mm, 19.4mm, 28.7mm, 31.0, 38.3 and
48.0mm). Stage 3 consists of the walking surface (dimension 100x180 cm), made of a
steel frame system covered with plywood and a rubber belt. The connection between
stages 2 and 3 consists of a suspension system using four low friction hangers as well as
four flexural load cells (3.7711mV/N) for measuring the lateral force between the two
stages. The forward motion of the belt is driven by an asynchronous motor (1.1 kW and
1.5 HP) which is supported at stage 2. The separation of stages 2 and 3 is made to
minimise the weight (and thereby the inertia force) of the walking surface. Both motors
are controlled using Variable Speed Drive inverters allowing for variable walking speeds
and lateral vibration frequencies respectively.

The lateral motion of the treadmill is monitored with two high-sensitivity accelerome-
ters (PCB Piezotronics,type 393N12, 10V/g) connected to a 4-channel signal conditioner
(PCB Piezotronics, type 441A42) as well as a displacement laser (100mV/mm). The ac-
celerometers are placed at the two hanger locations (on one side of the treadmill) and the
displacement laser is located at the middle of the treadmill. The forward walking speed
is determined using an encoder mounted onto one of the cylinders which drive the tread-
mill belt. All signals were acquired with ±5V 24-Bit data acquisition modules (National
Instruments, cDAQ-9172+BNC 9234) with a sampling rate of 2048Hz.

The accuracy of the measured pedestrian-induced forces relies on an accurate calibra-
tion of the treadmill, in particular the contribution of the weight of stage 3 on the resulting
forces is of importance. For an empty treadmill, the measured force between stage 2 and
3 equals the inertia force of stage 3. Therefore, the total mass of stage 3 (100.38 kg) was
carefully measured by Bonanni (2007), who rebuilt the treadmill at CRIACIV. Prior to
the pedestrian tests, an extensive calibration scheme was undertaken, to establish the ex-
act relationship between the output voltage of the load cell and the expected inertia force
in the treadmill at all relevant combinations of vibration frequencies and amplitudes. In
each test, the calibration constant, k̂i, was defined as (Ingólfsson et al., 2011):

k̂i = MStage 3
σẍ,i

σV,i

(4.2)

where MStage 3 is the mass of stage 3, σẍ,i and σV,i are the standard deviations of the tread-
mill acceleration and voltage output from the load cells respectively. A clear linear trend
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Figure 4.2: Treadmill ergometer device.
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was observed with a linear correlation coefficient close to unity (ρ =0.99997). By applying
the calibration constant to transfer voltage into force, the error in the measurements can
be calculated as the difference between the calculated inertia force of the treadmill and
the measured force in the load cell. With an empty treadmill, the resulting lateral force
was measured for all relevant combinations of frequencies and amplitudes. The mean
value of the error, defined as the RMS value of the measured force (k̂σV,i) minus the RMS
value of the calculated inertia force (σẍ,iMStage 3), was found as 1.2N (S.D. 0.2N). This
error is considered acceptable for most practical purposes.

4.3 Description of the experiments

During the summer 2009, an extensive experimental campaign was undertaken, which in-
volved three fundamentally different tests on the treadmill (Ingólfsson et al., 2011, 2010b):

• Normal walking without lateral movement of the treadmill (static tests).

• Normal walking with a sinusoidal lateral movement of the treadmill at different
frequencies and amplitudes (dynamic tests).

• Walking with and without lateral movement of the treadmill at slower forward
velocities.

Generally, a large range of walking speeds should be investigated, both normal walk, faster
and slower walking speeds. At each walking speed, a number of vibration frequencies and
amplitudes should be tested. However, this calls for a very large number of tests that is
required for each test person. Therefore, it was decided to carry out a large number of tests
at normal walking speeds and focus primarily on the investigation of the frequency and
amplitude dependency of the measured force. However, few benchmark tests were carried
out with pedestrians walking at a slower forward speed, in order to obtain a qualitative
insight into the walking speed dependency on the measured forces.

Normal walk is herewith defined as walking on the treadmill at a forward speed se-
lected by the pedestrian in the absence of any lateral movement. After having selected a
comfortable walking speed, the test person carried out the static tests, with a total dura-
tion of 2min. Directly following the static tests, a number of dynamic tests were carried
out. The vibration amplitude was randomly selected and the pedestrian was asked to
walk continuously on the treadmill at a constant forward speed (the same as in the static
tests). During walking, the vibration frequency was increased in steps, from the lowest
frequency tested to the highest one. Each step lasted 30 s plus a transition interval in
which time the frequency was changed. Each person spent between one and two hours in
the laboratory, depending on their availability, which also dictated the number of ampli-
tudes tested by each pedestrian. Most of the test series were recorded with a digital video
camera. The entire experimental campaign comprised a total of seventy-one individuals
(45 male and 26 female), with characteristics as summarised in Table 4.1. The total test
matrix features combinations of various displacement amplitudes (4.5 to 48.0mm) and
vibration frequencies (0.33 to 1.07Hz). In Fig. 4.3, a graphical representation of the
test matrix is shown which indicates the number of individual tests carried out at each
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particular combination of frequency and amplitude. The test persons were obtained with
assistance from students and faculty members of the University of Firenze in Prato and
consisted of friends, family and colleagues of the author and his assistants. The volunteers
thereby represented a diverse group of people of different nationality, age, education and
occupation. All the tests were carried out in the period between May and August, 2009.

Table 4.1: Mean values and standard deviation (in brackets) of some characteristics
quantities of the test subjects.

Body mass Age Height Leg Ankle Wrist Speed Frequency

[kg] [years] [cm] [cm] [cm] [cm] [m/s] [Hz]

Male 82.3 33.9 178.2 103.1 23.6 17.2 1.30 0.85
(11.15) (19.63) (5.24) (4.81) (1.60) (1.05) (0.20) (0.07)

Female 61.4 32.1 164.4 95.4 21.9 15.2 1.27 0.87
(11.32) (10.03) (5.37) (4.00) (2.08) (1.05) (0.23) (0.09)

Total 74.6 33.2 173.0 100.2 23.0 16.4 1.29 0.86
(15.1) (10.4) (8.5) (5.8) (2.0) (1.4) (0.21) (0.08)
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Figure 4.3: Test matrix from experimental campaign.

In addition to the tests performed at user selected walking speeds, nine persons were
asked to repeat their experiments at three different walking speeds determined as 90%,
75% and 60% of the original normal walking speed. This was done to investigate intra-
subject variability in the loading and the effect of imposed slower walking speed on the
resulting GRFs. This has particular interest when modelling pedestrian crowds where the
walking speed is determined by the common forward velocity of the crowd, rather than
individual preferences.

To the author’s knowledge, the experimental campaign presented herewith, is the most
comprehensive set of tests on lateral pedestrian-induced forces which has been carried out
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to date, with more than 4800 individual tests covering the total walking distance of more
than 55 km.

4.4 Human-body accelerometers

As discussed in Chapter 2, it has often been postulated that human-structure synchroni-
sation is necessary for the development of SLE. However, visual observations during the
initial treadmill tests suggested that synchronisation was not as pronounced as generally
believed. Although the vibrations were clearly noticeable by the test subjects and even
annoying, no systematic form of synchronisation was observed. To verify this observation,
further analysis was carried out using tri-axial body-mounted accelerometers.

The accelerometers, which are wireless and time-synchronised, were originally devel-
oped at the Technical University of Denmark (Christensen and Dyekjær, 2007) and later
modified by Andersen (2009) for the specific purpose of studying the interaction amongst
individual pedestrians within a crowd. Due to their compact design, one body accelerom-
eter could be attached to the waist of the test subject whilst the other one could be
placed on the treadmill (see Fig. 4.4). A total of ten test subjects were monitored using
the body accelerometers to allow for simultaneous measurement of the body acceleration
whilst measuring directly the force transmitted to the structure. This part of the test
campaign is described in detail by Ingólfsson et al. (2010b).

Figure 4.4: Tri-axial accelerometer attached to the waist of the test person and onto
stage 2 of the treadmill.

4.5 Lateral forces without treadmill motion

The equivalent static pedestrian force refers to the lateral load transmitted to the ground
by pedestrians in the absence of lateral motion. As discussed in section Section 2.1.1,
the ground reaction forces are caused by the acceleration and deceleration of the human
body’s centre of mass. On a rigid surface this movement generates a narrow-band load
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with energy concentrations around half of the average step frequency (also defined as the
walking frequency, fw = fs/2) and its integer harmonics. A total of seventy-one different
test subjects participated in the experimental campaign, where each pedestrian walked
for two minutes on the treadmill without lateral motion at his/her own preferred forward
velocity. As discussed in Section 2.1.2, during walking the gait parameters are subject to
random fluctuations, which cause variations in the GRFs between each step. This intra-
subject variability causes a spread of spectral energy away from the main harmonics to
adjacent frequencies making the overall loading process a narrow-band random process
rather than perfectly periodic. In Fig. 4.5 three examples of measured force time-histories
and their associated square-root PSD1 are shown, indicating variations in people’s ability
to maintain constant gait parameters during continuous walking. It is also worth noting
that the distinct presence of even harmonics suggest that the gait is asymmetric with a
systematic difference between the left foot and the right foot.

4.5.1 Fourier series analysis of the measured force

The equivalent static force (i.e. in the absence of treadmill motion) may be quantified
in different ways depending on the application. In the time domain, the force is often
simplified as a truncated Fourier series with fundamental frequency, fw, equal the pedes-
trian walking frequency (Bachmann et al., 1996b; Živanović et al., 2005a; Ingólfsson et al.,
2010a).

From basic Fourier analysis it is recalled that any periodic function with fundamental
frequency f (or period of repetition T = 1/f) can be written as an infinite trigonometric
series (Sólnes, 1997):

F (t) =
a0
2

+
∞∑
j=1

cj cos (2πjft− φj) (4.3)

cj =
√
a2j + b2j tanφj =

aj
bj

(4.4)

aj =
2

T

∫ T

0

F (t) cos (2πjft) dt j ≥ 0 (4.5)

bj =
2

T

∫ T

0

F (t) sin (2πjft) dt j ≥ 1 (4.6)

(4.7)

It is further known that although not perfectly periodic, the pedestrian-induced force
signal is near periodic with fundamental frequency equal to the walking frequency, f1 = fw.
Therefore, in order to reduce the numerical energy leakage between spectral bins, the
length of the measured time series were modified such that they contain an integer number
of cycles with frequency equal the walking frequency. The original signal was sampled
at rate 2048Hz (Δt ∼= 4.88 · 10−4) with a total of N = 245 760 distinct data points,
tn = (n− 1)Δt, n = 1 . . . N . The analysis was carried out in steps:

1Square-root PSD is defined as the square-root of a single sided PSD, where the sum of the squares,
mutliplied with the frequency resolution, equals the variance of the parent signal.
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Figure 4.5: Examples of measured body weight normalised force time-histories (low-pass
filtered with cutoff at 8.0Hz) and the corresponding square-root PSD (av-
eraged over 8 non-overlapping rectangular windows) from 3 different single
pedestrians walking on a stationary surface.
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T1 = 1/f1
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Figure 4.6: Schematic representation of the preprocessing of the measured lateral GRF.

1. To identify the fundamental frequency, f1, the length of the force signal was in-
creased to the total length N = 2k in which all elements of F (tn) are zero for
tn > (N − 1)Δt. The exponent k is selected such that N > N and to obtain a
high frequency resolution (Δf = 1/

(
NΔt

)
). The new (zero-padded) force vector is

analysed with the fast Fourier transform (FFT) and the fundamental frequency f1
is determined as the first (large) peak in the resulting Fourier spectrum.

2. Based on the fundamental frequency f1 and the phase angle φ(f1) a new force vector
F̃ (t) is generated from the original force vector, F̃ (t) = {F (tn1), . . . , F (tn2)}. As
illustrated in Fig. 4.6, the time instances tn1 and tn2 are selected such that the new
force vector initiates at the maximum value of the first harmonic and contains the
maximum integer number of fundamental periods (T1 = 1/f1), possible within the
2 minute signal.

3. The new force signal F̃ (t) is now used in all subsequent data treatment. For sim-
plicity {̃} is omitted from now on and F (t) therefore refers to the modified time
series.

The Fourier transform of the new time series has a frequency resolution (Δf) which
is related to the walking frequency through an integer, i.e. f1 = fw = kΔf, k ∈ Z.
The Fourier series definition in Eq. (4.3) can be used to create a perfectly periodic
approximation to the walking force, Fp(t) using the walking frequency as the fundamental
frequency. Furthermore, since the even harmonics are generally low, only a number of
odd harmonics are included:

F (t) ∼= Fp(t) = c1 cos (2πfwt) +

np∑
j=2

cj cos (2π(2j − 1)fwt− φj) . (4.8)

It is noted that due to the selection of the initial time, the phase angle of the first harmonic
is zero and the remaining phase angles are therefore relative to the first harmonic. The
advantage of using this representation is that the DLFs (i.e. DLF2j−1 = cj/W ) and the
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phase angles can be extracted directly from the Fourier spectrum for the creation of a
simplified model which fits reasonably to the measured data. In Fig. 4.7 a comparison
between the measured pedestrian force and the use of the truncated Fourier series is shown.
The reproduced force, Fp(t), is generated from the first seven odd harmonics (np = 7). It
is worth noting that there is an energy leakage around the main walking frequency caused
by the imperfections in the walking as discussed in Section 2.1.2, being more pronounced
at the higher harmonics than at the first one. The shape of the reproduced force is
similar to that of the measured force, but does not contain the amplitude variations. This
observation is consistent with those of Brownjohn et al. (2004b) for the vertical component
of the GRF, measured during continuous walking.

The distribution of the DLFs of the first three harmonics and the associated phase
angles are shown in Fig. 4.8. For the fundamental harmonic, the mean value is 0.037
(S.D. 0.012) and for the third and fifth the values are 0.009 (S.D. 0.005) and 0.002 (S.D.
0.001) respectively. It is noted that the phase angle of the third harmonic is distributed
around π whereas that of the fifth harmonic is more or less uniformly distributed in the
range 0 – 2π.

The GRF is generated due to the inertia force produced by acceleration of the body
centre of mass. The force which is transferred to the ground through the foot is counter-
acted by an equal but opposite force in equilibrium with the the inertia force produced
by the acceleration of the centre of mass. Therefore, the acceleration of the centre of
mass (projected onto the medio-lateral direction) can be obtained directly from lateral
component of the GRF as:

ÿ(t) = − 1

mp

F (t). (4.9)

Here y(t) represents the lateral movement of the centre of mass, dot represents differen-
tiation with respect to time, mp is the body mass and F (t) is the measured lateral force.
Now, both the velocity as well as the displacement can be obtained through numerical
integration of the acceleration. As proposed by Erlicher et al. (2010), the numerical inte-
gration can be carried out in the frequency domain through the Fourier transform of the
lateral force. The pedestrian induced load (and acceleration) has been written as a sum
of trigonometric functions therefore the derivatives are easily obtained as:

ẏ(t) ∼= −
∞∑
j=1

cj
2π(2j − 1)fwmp

sin (2π(2j − 1)fwt− φj) (4.10)

y(t) ∼=
∞∑
j=1

cj

(2π(2j − 1)fw)
2 mp

cos (2π(2j − 1)fwt− φj) (4.11)

where it has been assumed that F (t) is a zero-mean signal. In fact, as the factors
2π(2j−1)fw and (2π(2j − 1)fw)

2 appear in the denominator of ẏ and y(t) respectively, low
frequency contributions are magnified and high-frequencies attenuated during the inte-
gration process. This means that a DC component in the force signal causes a linear drift
of the integrated velocity and a parabolic drift on the displacement. Therefore, the force
signal was high-pass filtered with a cutoff frequency at 0.5Hz to avoid the aforementioned
numerical problems.
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Figure 4.7: Body weight normalised time-history of the lateral GRF (top) and the asso-
ciated Fourier spectrum (middle and bottom) for a single test subject.
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harmonics in the perfectly periodic load model.
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By applying the numerical integration scheme presented in Eqs. (4.10) and (4.11),
the lateral velocity and displacement of the pedestrians’ centre of mass were determined.
An example of the calculated displacement and velocity is shown in Fig. 4.9. Again it is
noted that qualitatively the shape of the time-histories agree well with both the full time
histories as well as earlier reports regarding the pedestrian movement (Townsend, 1985;
Macdonald, 2009; Erlicher et al., 2010). However, a considerable intra-subject variability
is observed. This is most clearly seen in the phase plane plot, in which the radii of
the closed trajectories vary between cycles, questioning the applicability of the perfectly
periodic model. The Fourier model is advantageous as it can be used to obtain simplified
expressions for the load and it seems to render the temporal properties of the load fairly
well, in particular for walkers with more or less constant gait parameters. On the other
hand, walkers which feature a large intra-subject variability in the gait parameters, the
perfectly periodic model is incapable of reproducing the load properly. One measure of
the ability of the periodic model to represent the load is to compare the variance (or mean-
square value) of the load in the two models, σ2

Fp
/σ2

F . On average, only 43% (S.D. 15%)
of the variance is represented in the periodic model and only in 5 of 71 test subjects, the
variance of the perfectly periodic model exceeds 70% of the total variance. This stresses
the importance of taking into account the intra-subject variability in the load.

4.5.2 Equivalent "perfect" DLF

As shown in Fig. 4.7, the intra-subject variability makes the perfectly periodic description
of the loading insufficient due to the spread in energy away from the main load harmonics.
Thereby, the DLFs shown in Fig. 4.8, which are derived from the perfectly periodic model
in Eq. (4.8) underestimate the load of the particular load harmonic.
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Figure 4.10: Illustration of the perfectly periodic model used to calculate the DLF from
the experimentally determined Fourier spectrum of the pedestrian-induced
load.

Due to this spread of energy around the main harmonics, the load amplitude can be
quantified through an equivalent "perfect" DLF. A simple and straightforward way is to
link the DLF to the overall variance of the load around the particular harmonic, such
that the mean-square value of the equivalent force equals that of the measured force.
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Thereby, the DLF of the jth harmonic from the broad band model is written in terms
of the mean-square value of the measured force around the jth harmonic (σ̃2

F,j) in the
following way:

DLFj =

√
2 σ̃F,j

W
, Broad band model. (4.12)

where W is the pedestrian body weight. This type of model is herewith denoted the broad
band model for the equivalent DLF, as it equally includes the load contributions at all
frequencies between two adjacent harmonics. In Fig. 4.10, the definition of the equivalent
DLF for the broad band model is illustrated. In Fig. 4.11, the equivalent DLFs from the
static tests are shown as function of the individual walking frequency (normalised with
the average walking frequency of the population, fw).
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Figure 4.11: Equivalent DLF of the first five load harmonics using the broad band model
shown as function of normalised walking frequency.

As civil engineering structure are generally lightly damped, only load contributions
around the resonance frequency contribute significantly to the response. Therefore, DLFs
from the broad band model, generally provide a conservative estimate of the effect the
pedestrian loading on structures.

Eriksson (1994) used the so-called white-noise approximation to define a damping
dependent band-width (πζjfw) in which load contributions should be included when cal-
culating the DLF. The calculation of the bandwidth is based on the assumption that
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the underlying load is a white-noise process (or at least constant in the frequency range
which excites the structure). Even for lightly damped structures, the assumption of con-
stant load amplitudes in the bandwidth (πζjfw) may be conservative. This is due to
the narrow-band nature of the loading. This can be taken into account by using the ex-
perimentally obtained PSD to calculate the response, σ̃2

u,j, of a single-degree-of-freedom
(SDOF) system with unit stiffness, damping ratio ζ and natural frequency equal to the
the walking frequency. The equivalent DLF is thereby obtained by requiring that σ̃2

u,j

equals the mean-square response of the same SDOF system when subject to an equiva-
lent perfectly periodic force at resonance. The body weight normalised amplitude of the
perfectly periodic force becomes (Ingólfsson et al., 2011):

DLFj =
2
√
2ζ σ̃u,j

W
, Narrow band model. (4.13)

In Fig. 4.12, a comparison between the broad band model and the narrow band model
is shown for the DLF of the fundamental load harmonic. It is noted that as the structural
damping increases, the narrow band model approaches the broad band model. However,
for damping ratios usually encountered on footbridges, there is a considerable difference
between the two models.
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Figure 4.12: Equivalent DLF of the fundamental load harmonic for the narrow band
model as function of the damping ratio compared with the broad band model.

4.5.3 Power Spectral Density of GRFs

Due to the near-periodic nature of the loading process, it seems appropriate to define the
pedestrian load in the frequency domain in terms of its spectral properties. The PSD
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features a distinct peak at the walking frequency and decays quickly to almost zero. Ini-
tially, a Lorentzian profile was used to fit the experimentally determined spectral density.
This is convenient as it represents a first order auto-regressive process (Chatfield, 2004).
However, it was found that a Gaussian shaped spectrum provided a better fit to the data,
in particular at the higher harmonics, and was therefore chosen. The spectrum presented
herewith is a slightly modified version of that presented by Ricciardelli and Pizzimenti
(2007), as the constant C1 has been introduced. This type of spectrum originates from
wind engineering and was proposed by Vickery and Clark (1972) to fit the spectrum of
generalised lift force in models of vortex excitation. The PSD function, SF,j(f), is written
in a general (non-dimensional) form and represents the fitted PSD around load harmonic
j:

SF,j(f) · f
σ̃2
F,j

= Cj +
2Aj√
2πBj

exp

{
−2

[
f/(jfw)− 1

Bj

]2}
. (4.14)

The parameters Aj, Bj and Cj are determined by the data fit and σ̃2
F,j is the area of the

PSD (i.e. the total variance of the lateral force) around the jth harmonic. The parameters
Aj, Bj and Cj are summarised in Table 4.2 both for the model in Eq. (4.14) as well as
for the case where Cj = 0. As shown in Fig. 4.13, Eq. (4.14) provides a good fit to
the average PSD, in particular at the odd harmonics. The experimental PSD is obtained
as the average of seven 50 percent overlapping rectangular windows. Each window is
zero-padded to obtain a better frequency resolution. The average PSD is obtained as
the average spectral ordinate from all individual spectra at each distinct frequency. A
considerable variation in the shape between each individual is caused by the difference in
the ability of pedestrians to maintain constant gait parameters during walking. This intra-
subject variability is quantified through the width of the spectrum whereas the magnitude
of the load is obtained through the quantity σ̃2

F,j. The mean values of σ̃2
F,j (j = 1, . . . , 5)

and that with 5 percentage probability of exceedance (95% fractile) are listed in Table
4.2 for the first five load harmonics.

Table 4.2: Summary of parameters for the Gaussian shape spectrum for representation
of the pedestrian-induced lateral force. The numbers in the brackets represent
the case when C = 0.

j = 1 j = 2 j = 3 j = 4 j = 5

Aj 0.841 0.016 0.719 0.013 0.606
(0.900) (0.020) (0.774) (0.0258) (0.612)

Bj 0.041 0.027 0.025 0.026 0.026
(0.043) (0.031) (0.026) (0.064) (0.026)

Cj 0.527 0.043 0.738 0.065 0.081

σ̃F,j/W (mean value) 0.035 0.005 0.018 0.004 0.008

σ̃F,j/W (95% fractile) 0.054 0.008 0.025 0.006 0.012
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spectrum.
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4.6 Motion induced lateral forces

A variety of dynamic pedestrian tests were carried out in which the treadmill was driven
in a lateral sinusoidal motion at different frequencies and amplitudes whilst the lateral
GRFs from the pedestrians was measured. In the frequency domain, the load features
distinct peaks at the walking frequency and its integer harmonics. Peaks also occur at
the frequency of the lateral movement owing to the interaction between the motion of the
platform and the motion of the body centre of mass. The existence of these contribution
was shown by Pizzimenti (2004).

In Fig. 4.14, an example of the measured body weight normalised pedestrian-induced
force is shown during a lateral vibration at frequency 1.03Hz and amplitude 19.4mm.
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Figure 4.14: Example of a measured weight-normalised force time-history (low-pass fil-
tered with cutoff at 8.0Hz) and the displacement time history of the tread-
mill during a pedestrian walking test.

The portion of force, centred at the frequency of the lateral movement is denoted the
self-excited pedestrian force. The self-excited portion of the force has a particular interest
as it acts to modify the apparent modal properties (mass, damping or stiffness) of a given
structure depending on the phase angle between the self-excited force and the structural
movements. The most extreme type of human-structure interaction is the type of synchro-
nisation (or lock-in) where the self-excited force is in phase with the structural velocity and
thereby constantly inputs energy into the system. In the general case however, the move-
ment of the centre of mass is not synchronised with the underlying platform and consists of
the superposition of several harmonic signals at different frequencies. The instantaneous
phase between the lateral platform movement and that of the pedestrian’s centre of mass
is non-constant and the term synchronisation or phase locking are inapplicable. Even in
the absence of synchronisation, it is important to quantify the motion-induced portion of
the load, and therefore a generic method must be used which is applicable both in the
general case as well as in the special case of human-structure phase synchronisation.

With the focus being on the self-excited component of the pedestrian-induced force, the
fundamental frequency of interest is the frequency of the lateral motion fL ∈ [0.3; 1.070Hz].
Therefore, the length of the time series was modified such that it contains an integer num-
ber of cycles with frequency equal to the lateral oscillation frequency. The original signal
was sampled at a rate of 2048Hz (Δt ∼= 4.88 · 10−4) with a total of N = 61 440 distinct
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data points (tn = (n− 1)Δt, n = 1 . . . N), corresponding to an overall sampling time of
30 s. In Fig. 4.14, the dashed line represents the portion of the measured force which was
truncated to obtain an integer number of vibration cycles. The modification made to the
original time series is similar to that described in Section 4.5.1 for the equivalent static
force. In Fig. 4.15, the spectral properties of the time series in Fig. 4.14 are shown, both
for the original time series and the modified one. The open bars represent analysis carried
out on the original (full-length) signal and the filled bars show that of the modified signal,
such that it contains an integer number of lateral vibration periods. It is clear that a
considerable energy leakage occurs between adjacent spectral bins of the original signal.
This stresses the importance of including only an integer number of vibration periods in
the signal before taking the Fourier transform.
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Figure 4.15: Square-root PSD of the the lateral displacement and force (top) and the
real part of their single-sided cross spectral density (bottom) from the time-
histories in Fig. 4.14 (amplitude 19.4mm and frequency 1.03Hz).
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4.6.1 Cross spectral density between GRF and lateral displacement

The cross spectral density S̃F u̇(f) provides a frequency domain representation of the
covariance between the two quantities F (t) and u̇(t). It is a complex quantity, defined
as the Fourier transform of the cross-correlation function RF u̇(τ). This has a particular
interest, as it can be shown that the work done by the pedestrian-induced lateral force per
unit time PF , can be obtained directly from the cross spectral density (Ingólfsson et al.,
2011):

PF = lim
T→∞

1

Ttot

∫ Ttot

0

F (t)u̇dt =

∫ ∞

−∞
S̃F u̇(f)df (4.15)

The cross spectral density, S̃F u̇(f), is double sided where the contributions at negative
frequencies are complex conjugates of those on the positive side, i.e. S̃∗F u̇(f) = S̃F u̇(−f).
In the evaluation of the integral in Eq. (4.15), only the real part of the cross spectrum
(denoted the co-spectral density, CoF u̇) is of interest as all imaginary parts (quad-spectral
density QuF u̇) cancel out. Therefore, a single sided cross spectral density can be obtained
from the double sided spectral density as (Strömmen, 2006):

Re [SF u̇(f)] = 2Re
[
S̃F u̇(f)

]
f ≥ 0 (4.16)

In this case, the area under the real-valued single sided spectral density equals the covari-
ance between the processes F and u̇.

In Fig. 4.15, the real value of the single sided cross-spectral density is shown, both
for the original as well as for the truncated time series. Again, the importance of using
an integer number of vibration cycles is illustrated. For the original signal, two peaks
are observed around the lateral vibration frequency instead of just a single peak as ob-
served in the modified signal. Furthermore, due to the aforementioned energy leakage,
non-negligible contributions occur in the original signal at frequencies different from the
vibration frequency.

For finite length records, the cross spectral density is evaluated at discrete frequencies,fi,
and when the length of the time series is adjusted to contain an integer number of os-
cillation periods, the only contribution of interest is that at the frequency of the lateral
oscillation fi = fL. Therefore, the work done by the lateral force per unit time can be
re-written as:

PF = Re [SF u̇(fi)]Δf (4.17)

Δf = 1/
(
NΔt

)
(4.18)

where N is the length of the time series to be evaluated. In random vibration theory
(Strömmen, 2006), it is customary to normalise the Co-spectrum with the auto-spectral
densities of the two individual components (here F and u̇). Here, the normalised Co-
spectrum only has an interest at the frequency of the lateral motion, fL, and therefore it
is normalised with the variances σ2

u̇ and σ2
Fs

of the treadmill velocity and the self-excited
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force respectively2. This normalisation can be written as:

C̃oF u̇(fL) =
Re [SF u̇(fL)]Δf

σu̇σFs

(4.19)

σ2
Fs

= SF (fL)Δf (4.20)

The term σ2
Fs

can be interpreted as the variance of the self-excited load and the normalised
Co-spectrum thereby represents the cosine of the angle between the self-excited force and
the treadmill velocity. The phase angle, can also be evaluated directly from the cross-
spectral density, i.e.:

ϕF u̇(f) = arctan
QuF u̇(f)

CoF u̇(f)
(4.21)

cosϕF u̇(f) = C̃oF u̇(f) (4.22)

At each particular frequency, f , both F and u are simple harmonic functions, separated
by the phase angle ϕFu(f). The definition of this phase angle is as shown in Fig. 4.16.
The ordinate of the cross-spectral density is obtained as the covariance between F and
u at the frequency f , separated by the phase ϕFu(f). This is illustrated in the following
example:

F (t) = F0 sin (2πft+ ϕFu) (4.23)
u(t) = u0 sin (2πft) (4.24)

Re [SFu(2πf)]Δf =
1

2
F0u0 cosϕFu (4.25)

When the phase angle ϕFu(f) is defined in the interval [0; 2π], the angle between the
F and u̇ is obtained as ϕF u̇(f) = ϕFu(f)− π/2. Similarly, ϕF ü(f) = ϕFu(f)− π.

u u

u F

Figure 4.16: Illustration of the phase angle between a force F and structural displace-
ment u

4.6.2 Equivalent pedestrian damping and inertia forces

A simple and straightforward way to interpret the results from the tests is to define an
equivalent damping force, FD,eq(t), proportional to the lateral velocity and an equivalent

2Both the treadmill motion and the self-excited force only occur at the frequency of the lateral treadmill
motion, hence σ2

u̇
∼= Su̇(fL)Δf and σ2

Fs
= SF (fL)Δf
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inertia force, FI,eq(t), proportional to its acceleration (Ingólfsson et al., 2011):

FD,eq(t) = −cpu̇ = −cpu̇0 sin (ωLt+ ϕ) (4.26)
FI,eq(t) = −pmpü = −pmpü0 sin (ωLt+ ϕ+ π/2) (4.27)

where ωL = 2πfL, u̇0 and ü0 are the velocity and acceleration amplitudes of the lateral
vibration, mp is the pedestrian mass and ϕ is an arbitrary phase. The minus appears
as the equivalent inertia and damping forces are treated as external loads which appear
positive on the right-hand-side of the equation of motion (cp > 0 and p > 0 imply
negative structural damping and mass respectively). By imposing the condition that the
equivalent pedestrian load inputs the same energy per unit time as the measured force,
Ingólfsson et al. (2011) showed that the parameters cp and p can be determined through
the cross spectral density as follows:

cp =
Re [SF u̇(fL)]Δf

σ2
u̇

= C̃oF u̇(fL)
σFs

σu̇

(4.28)

mpp =
Re [SF ü(fL)]Δf

σ2
ü

= C̃oF ü(fL)
σFs

σü

. (4.29)

From Eqs. (4.26) and (4.27) the amplitudes of the velocity-proportional and the acceleration-
proportional loads are obtained as:

GD,eq = cpu̇0 =
√
2C̃oF u̇(fL)σFs (4.30)

GI,eq = mppü0 =
√
2C̃oF ü(fL)σFs . (4.31)

4.6.3 Results from a single pedestrian

As already mentioned, a series of single pedestrian tests was carried out. In each test
the person walked at several different combinations of lateral vibration frequencies and
amplitudes. In Fig. 4.17 an example of the output from a single pedestrian is shown as
function of the relationship between the lateral vibration frequency (fL) and the pedes-
trian walking frequency (fw) as measured in the static test. The normalised Co-spectrum
(evaluated at the frequency of the lateral motion fL) is an indirect measure of the phase
angle between the force and the displacement. Negative values of C̃oF u̇(fL) imply negative
cp and vice versa. For this particular test person, there is a pattern in the development
of C̃oF u̇(fL), generally being negative at low frequencies and around the average walking
frequency, but positive in other regions. The RMS value of the self-excited part of the load
is generally low at low frequencies, but increases both with the frequency and amplitude
of the lateral motion.

The motion-induced parameters cp and pmp are obtained from Eq. (4.28) and Eq.
(4.29) and depend on the Co-spectrum which determines the sign and relative magnitude
of the self-excited force component σFs . However, due to the normalisation with the
vibration amplitude (velocity and acceleration respectively), there is the possibility of
large variations in the values of cp and pmp. The same pedestrian force will give larger
values of cp and pmp at low amplitude vibration than at large ones.
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Figure 4.17: Results from a single pedestrian test subject (Subject # 45) in the dynamic
tests; (a) normalised Co-spectrum ordinate at the frequency of the lateral
motion; (b) RMS value of the self-excited portion of the load; (c) RMS
value of the residual of the pedestrian load; (d) the velocity and (e) the
acceleration proportional load coefficients.
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There are different ways to represent the results from the dynamic tests. In Ingólfsson
et al. (2011) emphasis is placed on the quantification of the velocity and acceleration pro-
portional load coefficients. These coefficients are derived from the cross-spectrum between
the lateral force and the treadmill displacement, which in turn can be represented phys-
ically as the dot product between the self-excited force and the treadmill displacement.
In Fig. 4.18, the phase angle between the self-excited force and the lateral displacement
is shown for the same test subject. For each dot in Fig. 4.18 (left), the distance to the
centre represents the RMS magnitude of the self-excited force. In Fig. 4.18 (right) a polar
histogram of the phase angle is shown, which clearly illustrates that phase angles in the
range 20 to 50 deg are the most common. In the histogram, the sign convention for the
resulting cp and p values is indicated.

F  ( ) deg
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  0

  0
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  0

  0
  0

Figure 4.18: Phase angle between the lateral displacement and the self-excited pedestrian
force for a single test subject (Subject #45), shown (left) as a function of
the load amplitude and (right) as a polar histogram.

4.6.4 Results from all pedestrians

In the previous section, the results from one single pedestrian were presented, illustrating
various parameters in the model and different ways to treat the data. In Ingólfsson et al.
(2011), the load coefficients cp and p calculated from all pedestrians are presented in
terms of mean values as well as their frequency and amplitude dependency. It is shown
that the mean values, cp and p, are both frequency and amplitude dependent. The
amplitude dependency is seen as a near-linear drop in the numeric value of cp and p
for increasing amplitudes (Ingólfsson et al., 2011), whereas the frequency dependency
is slightly more complex. At low frequencies, cp is generally negative but increases with
increasing frequency. Each curve in Fig. 4.19 (a) is made up of a near linear segment and a
near horizontal one, starting from negative values at low frequencies and becomes positive
and near frequency independent at higher frequencies. The frequency axis is normalised
with the mean walking frequency (fw) of the population, as measured in the static test.
The slope of the curve increases with decreasing vibration amplitudes and so does the
frequency at which the curve turns from positive to negative values. It is worth noting
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that the mass proportional constant p is generally positive at low frequencies, suggesting
that pedestrians decrease the overall modal mass of the structure, but add to the mass
at higher frequencies. This effect was explained by Pizzimenti and Ricciardelli (2005)
as added stiffness and was observed at all frequencies (≥ 0.60Hz) and amplitudes (15 –
45mm). It is interesting to note, that negative mass is observed in the same frequency
range, confirming the observation of Pizzimenti and Ricciardelli (2005).
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Figure 4.19: Average value of the pedestrian load coefficient, cp (a) and the mass pro-
portional load coefficient p (b) as function of the normalised frequency for
different lateral displacement amplitudes.

An alternative representation of the self-excited force is through its RMS value σFs

and the phase angle φFx, see Fig. 4.20 and Fig. 4.21. In Fig. 4.20, two general phenomena
can be observed; (i) for frequencies away from the natural walking frequency, there is a
near linear increase in the RMS value with frequency and (ii) at frequencies close to the
natural walking frequency, much larger values of σFs are observed, matching (and even
increasing) those measured in the static tests for the first load harmonic. The existence of
a self-excited force at frequencies away from the natural walking frequency suggests that
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there is an acceleration of the body centre of mass caused by the treadmill vibration and
potentially the contra-acting balancing of the pedestrian’s body. If the body engages in
a rigid body movement with the treadmill, the amplitude of the self-excited equals the
body mass times the lateral acceleration and phase angle equals 180 degrees. However, as
shown in Fig. 4.20 and Fig. 4.21, both the magnitude of the self-excited force is lower than
this and the phase angle varies with the frequency, suggesting a more complex interaction
between the pedestrian and the laterally moving structure. For comparison, the mean
value (solid line) and 95 percent fractile (dashed line) of the body-weight normalised
RMS value of the fundamental load harmonic from the static tests are indicated in the
figure.

The phase angle also shows a general frequency-dependent trend for frequencies away
from the walking frequency. At low frequencies, the phase angle is generally in the upper
half-plane suggesting an increased modal damping and at higher frequencies it moves to
the lower half-plane suggesting negative damping. This observation is in line with the
results from Fig. 4.19 (a). At frequencies close to the natural walking frequency, the phase
angle is much more scattered and is probably governed by timing between the footstep
and the vibration rather than a secondary movement of the centre of mass as a reaction
to the lateral vibrations. Both the smooth development in the phase as function of the
frequency and the linear increase in the self-excited force indicate that there is a common
underlying mechanism which controls the balancing of the body centre of mass, which
does not differ in nature between the individuals (although a considerable scatter in the
data is observed).

4.7 Investigation into human-structure synchronisation

Human structure synchronisation can be addressed in different ways. During the ex-
perimental campaign, several observations regarding the potential for human-structure
synchronisation were made. Ingólfsson et al. (2011), summarised some qualitative conclu-
sions, which were based on visual observations, analysis of video recordings of the tests
as well as testimonies from the participants:

1. Pedestrians react differently to the vibrating surface and only some of the pedes-
trians deliberately (or consciously) modify their walking to match a comfortable
phase. This would only occur during lateral oscillations at frequencies close to the
natural walking frequency.

2. The phase modification was not systematic as some pedestrians spread their legs
further apart whilst other would cross their legs.

3. During large lateral vibrations, some people complained that they would prefer to
walk at a slower forward velocity, in order to adjust their walking frequency to
better match the lateral vibration frequency. Typically, this occurred when the
lateral vibration frequency was slightly lower than the walking frequency and the
phase difference between the pedestrian and the treadmill drifts slowly apart. This
slow phase drift gives a feeling of alternating synchronised and non-synchronised
walking.
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Figure 4.20: Amplitude of the self-excited force as function of the normalised vibration
frequency at different amplitudes.
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Figure 4.21: Phase angle of the self-excited force as function of the normalised vibration
frequency at different amplitudes.
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4. Human-structure phase synchronisation is to a large extent governed by randomness.

5. The importance of human-structure synchronisation in relation to the generation of
self-excited forces in the form of negative damping is questionable.

Motivated by these observations, further analysis of the walking pattern of seven
individuals was undertaken using the waist-mounted tri-axial human-body accelerometers
described in Section 4.4. The instantaneous phase difference, φü,ÿ(t), between the lateral
acceleration of the pedestrian (ÿ) and that of the platform (ü) was determined through
the Hilbert transforms (˜̈y(t) and ˜̈u(t)) of the measured accelerations (Mormann et al.,
2000):

φü,ÿ(t) = φü(t)− φÿ(t) (4.32)

φÿ(t) = arctan
˜̈y(t)

ÿ(t)
(4.33)

φü(t) = arctan
˜̈u(t)

ü(t)
(4.34)

If the phase difference is constant, the pedestrian walking frequency matches the fre-
quency of the treadmill motion, whereas a drift in the instantaneous phase difference
indicates a different frequency in the underlying signals suggesting a difference in the
walking frequency and the lateral vibration frequency of the treadmill. If the drift is
slow, the frequencies are closely spaced but for widely spaced frequencies the drift occurs
more quick. By introducing the term mean phase coherence, the degree of synchronisation
between the movement of the bridge and that of the pedestrian can be quantified. The
mean phase coherence, Ru,y, defined as (Mormann et al., 2000):

Ru,y =

∣∣∣∣∣ 1N
N−1∑
j=0

eiφu,y(jΔt)

∣∣∣∣∣ (4.35)

where Δt is the sampling interval, N is the number of samples and i =
√−1. It is

noted that the condition R = 1 is reached if and only if the time series are completely
synchronised, i.e. for strict phase locking. The condition R = 0 is obtained for a uniform
distribution of phases, Mormann et al. (2000). Thereby, the mean phase coherence be
used to represent the instantaneous degree of synchronisation between the movement of
the body and that of the treadmill.

The analysis is presented in Ingólfsson et al. (2010b) (Paper IV of this thesis), where
it is shown that large mean phase coherence was only observed when the lateral vibration
frequency was close to the natural walking frequency of the pedestrian. This suggests
that that the walking frequency remained unchanged during the tests. However, as pos-
itive values of the velocity proportional coefficients were observed at most frequencies
(i.e. negative damping), it can be concluded that pedestrian-structure phase synchroni-
sation is not a necessary condition for the development of equivalent negative damping.
This observation stresses the importance of investigating in more detail the mechanisms
of human-structure interaction at all frequencies and moving beyond considering only
synchronisation as the sole contributor to excessive lateral bridge vibrations.
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4.8 Conclusions from experimental campaign

In the experimental campaign presented in this chapter, the lateral forces from 71 individ-
uals have been measured, both on a fixed floor and during lateral vibration. Since various
combinations of lateral vibration frequencies and amplitudes were tested, the results from
the experiments create a significant and unique database of pedestrian-induced lateral
forces.

The existence of self-excited pedestrian-induced loads has been verified and quantified
through equivalent velocity and inertia proportional coefficients, cp and p. In particular,
it was shown that both cp and p depend on the vibration frequency and amplitude
(Ingólfsson et al., 2011). Alternatively, the self-excited forces may be represented through
the amplitude and the phase angle between this force and the lateral displacement. This
approach was introduced in Section 4.6 of this thesis.

The very large scatter in the data stresses the complexity which is related to human-
induced dynamic loads and the reaction of pedestrians to a vibrating surface. Also, the
limited number of steps recorded during the 30 s pedestrian tests and the fact that people
may have been affected by the fictive circumstances associated with walking on a treadmill
as opposed to a real footbridge, may contribute to an increased scatter. However, based
on the results presented herewith, a probabilistic quantification seems necessary when
modelling the aggregate effect of crowds of pedestrians on footbridges.

Another important conclusion which was drawn from the study is related to the impor-
tance of human-structure interaction (Ingólfsson et al., 2010b). It was found that negative
pedestrian-damping can occur over a range of frequencies and that it does not depend
on human-structure phase synchronisation. This is important, as it has become a com-
monly accepted view that synchronisation is necessary for the development of excessive
vibrations. Therefore, load models which rely on phase synchronisation are insufficient
particularly for natural frequencies away from the average walking frequency.

Department of Civil Engineering - Technical University of Denmark 71



Experimental Campaign 4.8 Conclusions from experimental campaign

72 Department of Civil Engineering - Technical University of Denmark



Chapter 5

Stochastic load model

In this chapter, a novel stochastic load model for the frequency and amplitude dependent
pedestrian-induced lateral force is presented. The parameters in the load model are based
directly on measured lateral forces as presented in Chapter 4. Thereby, the load model
provides a statistically robust tool to predict the potential of bridges to excessive lateral
vibrations. The material presented in this chapter is primarily based on the manuscript
by Ingólfsson and Georgakis (2011) (Paper V of this thesis). In this chapter a brief
introduction to the load model is given and some main conclusions are summarised.

5.1 Time-domain load model

The core of the load model is the experimental data presented in Chapter 4 and the
philosophy adopted here is to use a simple, yet accurate representation of the loading.
Having quantified the equivalent damping of the pedestrians and shown that pedestrians
extract energy over a broad range of vibration frequencies, it is natural to quantify the
motion-induced portion of the load through damping and acceleration proportional loads.
The remaining load is centred around the walking frequency (being defined as half the step
frequency) and its integer harmonics. As a simplified approximation, this force is taken
as the equivalent static force, i.e. the force measured in the absence of lateral vibrations.
The pedestrian-induced lateral force is therefore written as a simple sum of the equivalent
static load Fst(t), and the motion-induced loads, quantified as equivalent damping and
inertia forces respectively:

F (t) = Fst(t) + cp (f0/fw, u0) · u̇︸ ︷︷ ︸
equivalent damping

+mpp (f0/fw, u0) · ü︸ ︷︷ ︸
equivalent inertia

(5.1)

The functions cp (f0/fw, u0) and p (f0/fw, u0) define the self-excited forces and depend on
the vibration frequency, f0, and amplitude u0. The lateral displacement of the pavement
is denoted u and fw is the pedestrian walking frequency.

The model is simple, but due to large randomness in the experimental data, it is
necessary to quantify each entity in the model using a probabilistic framework.
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5.1.1 Equivalent static forces

The equivalent static force is represented as a narrow-band stochastic process through the
non-dimensional Gaussian shaped PSD in Eq. (4.14), with parameters as given in Table
4.2. It is noted that the Gaussian function only contains information about the shape
of the PSD, whereas the amplitude information is obtained from the standard deviation
of the force around each harmonic, quantified through its log-normal shaped probability
distribution (Ingólfsson and Georgakis, 2011).

With the equivalent static force presented through its PSD, a pseudo-random time his-
tory for the jth load harmonic can be generated for the purpose of numerical simulations
through the following formulation (Shinozuka and Deodatis, 1991):

F (t) =
N−1∑
k=0

√
2SF (fk)Δf · cos (2πfkt+ ψk) (5.2)

SF (fk) =

NHarm∑
j=i

SF,j(fk) (5.3)

Δf =
1

NΔt
=

2

Ttot

. (5.4)

SF,j(fk) =
2Ajσ̃

2
F,j√

2πBjfk
exp

{
−2

[
fk/jfw − 1

Bj

]2}
. (5.5)

The parameters ψk are randomly generated phase angles, drawn from a uniform distribu-
tion, fk = kΔf , k = 0 . . . N−1 are the distinct frequency from which the power spectrum
ordinates are calculated, N is the total number of data points, NHarm is the total number
of load harmonics (here NHarm = 5) and Ttot is the total duration of the time series. The
power spectral density function SF,j(f) depends on the shape (parameters Aj and Bj in
Table 5.1) and the magnitude σ̃2

F,j = W 2DLF2
j/2. Du to scatter in the measured DLFs,

a log-normal distribution can be used to model their probability distributions (Ingólfsson
et al., 2011). The probability density functions are written in terms of the parameters χj

and ξj, which are listed in Table 5.1:

p(DLFj) =
1

DLFj ξj
√
2π

exp

[
− [lnDLFj − χj]

2

2ξ2j

]
. (5.6)

By using this representation of the load, the spectral content of the time series ap-
proximates that of the measured load. However, the temporal shape of the force does
not match the shape of a real footfall force since the model does not provide a relation-
ship between the values of the phase angles and the spectral ordinates. Alternatively,
a step-by-step model may be used for Fj(t), where each footfall is modelled as a per-
fectly periodic truncated Fourier series. The fundamental frequency of this series (i.e.
the walking frequency) can be varied to include an intra-subject variability in the model.
This way, both the temporal shape of the time series as well as its spectral content can
approximately be retained, (Živanović et al., 2007).

To the authors’ knowledge, there exist no analytical time-domain models, which are
capable of capturing both the temporal shape of the walking force and its frequency
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Table 5.1: Summary of parameters for the Gaussian shape spectrum for representation
of the pedestrian-induced lateral force.

j = 1 j = 2 j = 3 j = 4 j = 5

Aj 0.900 0.020 0.774 0.0258 0.612

Bj 0.043 0.031 0.026 0.064 0.026

χj -3.061 -5.004 -3.674 -5.315 -4.492

ξj 0.3078 0.2876 0.2169 0.2655 0.2818

content. Therefore, emphasis is placed on an accurate representation of the frequency
content, which is obtained by using the experimentally determined PSDs directly to re-
construct the load. Therefore, the simple representation in Eq. (5.2) is maintained in the
load model.

5.1.2 Motion-induced forces

The motion induced forces are defined through the velocity and acceleration proportional
coefficients cp and p respectively as obtained from the dynamic pedestrian tests, see Sec-
tion 4.6. In the treatment of the raw data, Ingólfsson et al. (2011) noted that the motion
induced forces showed a considerable frequency and amplitude dependency. The ampli-
tude dependency shows a near linear decrease in the numerical value of the coefficients cp
and p at all frequencies. The frequency dependency is slightly more complex.

In Ingólfsson and Georgakis (2011) the frequency dependency is dealt with by splitting
the data into nine different frequency regions depending on the relationship between the
vibration frequency of the structure and the walking frequency of the test subjects. The
nine regions are defined through bands bracketed by normalised frequency pairs {0−0.45},
{0.45 − 0.55}, {0.55 − 0.65}, {0.65 − 0.75}, {0.85 − 0.95}, {0.95 − 1.05}, {1.05 − 1.15},
{1.15−∞}. In each frequency bin, an expression of the type:

cp (f0/fw, u0) = θ0 (f0/fw) + θ1 (f0/fw) · u0 +X · θ2 (f0/fw) · eθ3(f0/fw)u0 (5.7)

p (f0/fw, u0) = φ0 (f0/fw) + φ1 (f0/fw) · u0︸ ︷︷ ︸
mean vale

+X · φ2 (f0/fw) · eφ3(f0/fw)u0︸ ︷︷ ︸
random error

(5.8)

is used to model the load coefficients (Ingólfsson and Georgakis, 2011). The first two
terms in Eqs. (5.7) and (5.8) represent the development of the amplitude dependent mean
values, whereas the final term is the random deviation which decreases with increasing
vibration amplitudes. In each bin, the parameters θ0, θ1, φ0, φ1 were determined by fitting
a linear function through the mean values of the load coefficients. The parameters θ2, θ3,
φ2, φ3 were similarly determined by fitting an exponential function through the standard
deviation as function of the amplitude. A more detailed description of the procedure
for determination of the load coefficient is presented by Ingólfsson and Georgakis (2011).
The parameters of the load model, θj and φj, j = 0, 1, 2, 3 are summarised in Table 5.2.
In all cases (except two), a significant linear correlation between the fitted variables was
observed with mean value ρ = 0.88 (S.D 0.06 for cp and 0.07 for p).
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In two of the frequency ranges, the correlation is low (ρ < 0.5) and therefore the am-
plitude independent mean values of the velocity and acceleration proportional coefficients
have also been provided (in brackets). These values have been used in the load model
presented herewith.

In addition, the linear functions are only used up to an amplitude of 50 mm, as this
is the range for which there exists experimental data. For larger amplitudes, a constant
value, corresponding to that at 50 mm amplitude is used.

Table 5.2: Parameters of the regression models in Eq. (5.7) and Eq. (5.8).

Frequency range θ0 θ1 θ2 θ3 φ0 φ1 φ2 φ3

f0/fw (Ns/m) (N s/m2) (Ns/m) (m−1) (-) (m−1) (-) (m−1)

0− 0.45 -100 2360 150.3 -21.6 0.460 -8.5 1.003 -28.1
0.45− 0.55 -18 1237 143.2 -18.2 0.801 -18.1 0.662 -20.5

(14.3) (0)
0.55− 0.65 73 -667 150.7 -23.5 0.680 -18.2 0.773 -25.2
0.65− 0.75 152 -2240 139.4 -24.7 0.270 -9.8 0.574 -24.8
0.75− 0.85 162 -2643 151.4 -30.6 -0.057 -3.5 0.408 -24.3
0.85− 0.95 101 -1055 342.0 -38.2 -0.158 -1.5 0.763 -44.6

(-0.197) (0)
0.95− 1.05 203 -5080 555.9 -42.3 0.074 -4.7 1.30 -36.9
1.05− 1.15 214 -3284 195.3 -13.1 -0.324 5.6 0.832 -35.4
1.15−∞ 129 -1858 166.5 -35.5 -0.362 4.3 0.309 -23.1

The parameter X is a first-order autoregressive process with an exponential auto-
correlation function. In discrete time, Xk , k = 1 . . . N is generated from a recursive
formula (Hogsberg and Krenk, 2007):

Xk+1 = exp [−ωcΔt]Xk + wk

√
1− exp

[− 2ωcΔt
]
. (5.9)

where N is the total number of time instances, Δt is the time separation and wk are
independent standard Gaussian variables. The parameter ωc is selected such that the
desired temporal correlation of the process is obtained. It is noted that the two extremes,
ωc = 0 and ωc → ∞, correspond to situations with full and no temporal correlation
respectively. In the first case, the stochastic variable X remains constant for all k and
when ωc → ∞, Xk are independent standard gaussian variables. For intermediate values
of ωc an exponentially decreasing temporal correlation is introduced, which can be used
to represent the intra-subject variability in the time series of the cp and p coefficients.
Currently, the parameter ωc, which controls the degree of intra-subject variability, can
only be determined qualitatively.

5.2 Application of model

5.2.1 Basic load parameters: a single pedestrian and crowds

The pedestrian load model is based on the experimental campaign which was presented
in Chapter 4. The nature of those experiments was such that lateral pedestrian-induced
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forces were determined for walking on a sinusoidally moving surface with constant ampli-
tude. Therefore, the load model deals with the response of pedestrians to a single-mode
vibration of varying amplitudes. For linear structures with viscously damped modes, the
modal equation of motion is written as:

q̈(t) + 2ζω0q̇(t) + ω2
0q(t) = p(t) (5.10)

u(x, t) =
∞∑
j=1

Φ(x)q(t) (5.11)

where ζ, ω0, q(t) and Φ(x) are the modal damping, angular frequency, modal displacement
and mode shape and u(x, t) is the physical bridge displacement. If it is assumed that the
mass normalised modal load, p(t), of a single pedestrian crossing the footbridge with a
constant forward velocity, vp, can be written as (Ingólfsson and Georgakis, 2011):

p(t) =
1

M

{
Fst(t)Φ(vpt) + (cpq̇(t) +mppq̈(t)) [Φ(vpt)]

2 for t0 ≤ t ≤ t0 + td

0 otherwise
. (5.12)

The modal mass is denoted M , t0 is the arrival time of the pedestrian onto the bridge and
td = L/vp is the time it takes a pedestrian to cross the bridge of length L. In Fig. 5.1, a
pseudo-random time series is shown for the normalised modal load at different vibration
amplitudes according to Eq. (5.12). For the generation of the figure, the walking frequency
was taken as fw = 0.85Hz and the body-weight normalised pedestrian load coefficients
were taken as cp/W = 0.1 s/m and p/g = 0.1 s2/m, respectively and the mode shape is
assumed to follow a unity-normalised half-sine. In the absence of modal displacement,
the modal load is governed by the equivalent static load as generated through the use
of Eq. (5.2), but as the vibration amplitude is increased (at frequency f0 = 1.0Hz), the
self-excited portion of the load becomes more pronounced.

The modal load from a crowd of Np pedestrians can be written as a simple summation:

p(t) =

Np∑
i=1

pi(t). (5.13)

The challenge lies in the determination of the pedestrian-specific modelling parameters
and their probability distributions. In particular the distribution of pacing rates within the
group is important (i.e. its mean value and standard deviation) as well as the relationship
between the crowd density and the forward walking velocity. As reviewed in Chapter 2 and
by Ingólfsson et al. (2010a), a large amount of information currently exists regarding the
natural choice of gait parameters (i.e. the combination of walking speed, frequency and
step length). This applies both for pedestrians in spatially unrestricted circumstances as
well as in crowds for which human-human interaction occurs. Therefore, when modelling
a particular crowd scenario, attention must be paid to a careful definition of the input
parameters in the simulations and often several different conditions should be checked to
ensure that the whole spectrum of possible cases has been covered.

In the benchmark simulations presented herewith, the pedestrians are modelled as
independent autonomous oscillators, where the load from each pedestrian is generated
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Figure 5.1: Pseudo-random time series of the pedestrian-induced lateral force from a
single pedestrian crossing a sinusoidal mode shape for different vibration
amplitudes.
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according to Eq. (5.2) – Eq. (5.6) with parameters according to Table 5.1. Initially,
the walking frequencies of all pedestrians are identical and they are assumed to arrive
to the bridge with a constant inter-arrival time. The randomness in the simulations is
introduced through variations in the pedestrian-induced loads (DLFs, cp and p values).

5.2.2 Numerical solution scheme

With amplitude dependent motion-induced pedestrian loads, the equation of motion be-
comes non-linear. Different solution techniques were tested, e.g. the fourth order Runga-
Kutta method (through the in-built Matlab function ODE45), nonlinear Newmark inte-
gration (Krenk, 2009) and modified time-stepping method based on a linear interpolation
of the excitation (Chopra, 2001). In a series of benchmark simulations, all methods
proved sufficiently accurate and provided nearly identical results for the time-history of
the response even at high acceleration levels, i.e. during periods with a large negative
damping.

The final selection was to use a modified time-stepping method, in which the structural
damping and modal mass was updated in each time step. When the time step and
the change in damping between each time step is sufficiently small, accurate results are
obtained for this method at a lower computational cost than the two other methods.

It should be noted that the mode shape of the structure is assumed to remain un-
changed throughout the simulation and all response calculations are based on the mode
shape as calculated for the empty bridge. Both the modal mass, damping and natural
frequency are allowed to vary between time steps in the numerical solution.

5.2.3 Treatment of output

Due to the large randomness in the data, both the vibration amplitudes and the potential
for excessive vibrations through the development of negative damping random. Therefore,
a suitable selection of the duration of the numerical simulation and a proper statistical
treatment of the data is important, such that each event (or simulation) is related to a
certain probability of exceedance. The concept of using extreme value analysis for the
treatment of simulated vertical response of footbridges was introduced by Ingólfsson et al.
(2007) and later used by Ingólfsson et al. (2008b) and Georgakis and Ingólfsson (2008)
to create a Response Spectrum design methodology. The Response Spectrum method
is based on a series of numerical Monte Carlo simulations in which the expected peak
response of a footbridge subject to a random crowd of a known intensity is provided as
a function of its return period. This methodology can be developed and implemented in
the treatment of the output from lateral load simulations to predict the critical number
of pedestrians of a footbridge for various return periods.

5.3 Validation of pedestrian load model

Several numerical response simulations have been carried out to validate the pedestrian
loading model and demonstrate its applicability for the prediction of pedestrian-induced
lateral vibrations. In Ingólfsson and Georgakis (2011), a more detailed analysis is pre-
sented, but herewith only the main results are presented followed by a short discussion.
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Table 5.3: Modal properties of the Millennium Bridge (without any external damping)
(Table reproduced with permission from Ove Arup and Partners)

Description Abbreviation Frequency Damping Modal mass

(Hz) (%) (tonne)

First lateral mode of central span CL1 0.48 - 0.49 0.75 - 0.77 128 - 130

First lateral mode of Southern span SL1 0.80 - 0.81 0.6 - 0.7 172

First lateral mode of northern span NL1 1.04 0.32 113

5.3.1 Response simulations

Several preliminary response simulations were carried out based on the following simplified
assumptions:

• The person’s body weight is a normally distributed random variable (μW = 727N,
σW = 145N).

• All pedestrians walk at a common walking frequency (μfw = 0.85Hz) and forward
velocity (μvw = 1.14m/s).

• The number of pedestrians on the bridge is gradually increased by 25 persons every
5 minute, until the total number of pedestrians has reached 300.

• The pedestrian inter-arrival time is constant and taken such that the total number
of pedestrians on the bridge remains constant during each five-minute interval.

• Three different vibration modes are considered, CL1, SL1 and NL1 of the London
Millennium Bridge (see Table 5.3).

In Fig. 5.2, the acceleration response of the first three modes (CL1, SL1 and NL1) of
the Millennium Bridge are shown for three distinct crowd simulations. It is noted, that for
simplicity, all three modes are assumed to follow a half-sine. The time scale in Fig. 5.2 is
normalised with the passage time of a single pedestrian. It is noted that in all three cases
instability is observed for less than 300 persons on the bridge (Dallard et al., 2001a). In
particular it is worth noting that nominally same crowd can cause large vibrations in all
three modes, despite their different natural frequencies. The results in Fig. 5.2 thereby
verify the potential of the model (qualitatively) to predict excessive lateral footbridge
vibrations.

5.3.2 Definition of instability

An important aspect relating to the problem of excessive pedestrian-induced vibrations
is the definition of instability (or excessive vibrations). A more elaborate discussion is
given by Ingólfsson and Georgakis (2011), so only a brief overview is presented here. The
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Figure 5.2: Simulated modal response of (left) CL1, (right) SL1 and (bottom) NL1 for a
gradually increasing crowd, walking at a common frequency (μfw = 0.85Hz).
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overall modal damping of the structure is defined as the inherent structural damping plus
the contribution of each pedestrian:

ζtot(t) =
1

2ωM

⎛
⎝C −

Np(t)∑
i=1

cpi(t) [Φ(vpit)]
2

⎞
⎠ . (5.14)

In Fig. 5.3, the development of the overall modal damping is shown for the same
simulations as presented in Fig. 5.2. Here, the term "linear response", means the response
of the structure when the self-excited loads are neglected. In Eq. (5.14), Np(t) indicates
the number of pedestrians present on the bridge at any given time instance, t. It is noted
that the point of initial zero-crossing of the damping (ζtot(t) < 0) occurs earlier than the
point at which large vibration amplitudes develop. Therefore, care should be taken on
how instability is defined.

According to Arup’s stability criterion, instability occurs when the pedestrian damping
cancels the inherent structural damping. When treating the simulated response, this may
be translated to the number of pedestrians present on the bridge during the time of initial
zero-crossing of the overall damping. On the other hand, people will not notice instability
unless it develops into excessive vibrations and therefore an acceleration criterion may be
used to quantify the critical number of pedestrians. According to Sétra (2006), a suitable
comfort level for lateral footbridge vibrations is 0.1− 0.2m/s2.

By comparing the acceleration response from Fig. 5.2 to the development of the
structural damping in Fig. 5.3, the difference in the two definitions and their impact on
the critical number of pedestrians are clearly illustrated.

A single realisation can only offer a qualitative view into the nature of the bridge
response and the development of the overall modal mass and damping and therefore
simulations of the response of CL1 have been repeated 200 times. In Fig. 5.4 (top), the
change in the modal mass is shown through the modification in the natural frequency of
the system and in Fig. 5.4 (bottom) the change in the overall modal damping ratio is
depicted. The figure shows the individual realisations, the mean value as well as the 5
and 95 percent quantiles. In addition, the realisation which corresponds to the response
in Fig. 5.3 is also emphasised in Fig. 5.4.

It is noted that the effect of the pedestrians on the natural frequency is quite minimal,
but it is worth noting that they act to decrease the apparent structural mass and thereby
raise the modal frequency. In Fig. 5.4 (bottom) it is noted that the modal damping
generally decreases with the number of people on the bridge but there are considerable
fluctuations due to the randomness in the pedestrian load coefficients.

5.3.3 Sensitivity analysis

In Ingólfsson and Georgakis (2011), it was also shown that the response characteristics of
different modes were affected by the selected pacing rate distribution (mean and standard
deviation), the level of ambient (background) noise and the duration of the response
simulations. All these factors influenced the number of pedestrians on the bridge when
instability was triggered (either defined as a damping or an acceleration criterion).

To demonstrate both the dependency on the walking frequency distribution as well
as the large difference between the two stability criteria, sixty response simulations were
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Figure 5.3: Modal damping for (left) CL1, (right) SL1 and (bottom) NL1 subject to a
gradually increasing crowd with a common step frequency (μfw = 0.85Hz).
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Figure 5.4: Changes in the modal frequency and damping of CL1 subject to a gradually
increasing crowd with a common step frequency (μfw = 0.85Hz).
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carried out for each mode in which six different average walking frequencies (with S.D.
0.075Hz) were introduced in the simulations. In each of the three modes (CL1, SL1 and
NL1), the average value of the critical number of pedestrians (defined in two different
ways) is shown as function of the pacing rate distribution. For NL1, the damping value
ζ = 0.7% was used in the simulations, which renders a more realistic estimate of the
bridge damping. The value of 0.32% (from Table 5.3) is based on poor quality data from
the experimental modal ID and does not necessarily render the real damping of the mode
(Ove Arup and Partners International Ltd., 2002).
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Figure 5.5: Mean value of the critical number of pedestrians for CL1, NL1 and SL1 as
function of the average walking frequency.

In Fig. 5.5 the results are shown, which illustrates both the frequency dependency of
the self-excited forces, but also the large difference in the predicted value of the critical
number of pedestrians, depending on the definition of instability. Also, it should be noted
that there is a random variation in the critical number of pedestrians, caused by the
randomness associated with the relatively small number of simulations at each frequency.
Interestingly, instability was not be triggered in the simulations when the mean walking
frequency was selected higher than 0.9 Hz. This is explained by the low ratio between
the vibration frequency and the pedestrian walking frequency.

It should be noted, that in its current form, the pedestrian loads depend only on the
relationship between the lateral vibration frequency and the walking frequency. Thereby,
any effects of changes in the walking speed are only taken indirectly into account.

5.4 Concluding remarks

The load model presented in this chapter can efficiently be used to predict the potential for
excessive lateral vibrations of footbridges. Care has to be taken in the definition of the the
pacing rate distribution, simulation time and the level of background noise. Variations in
these parameters, cause a variation in the predicted number of pedestrians. Furthermore,
it was shown by Ingólfsson and Georgakis (2011), that the definition of instability (or
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excessive vibrations) affects the critical number of pedestrians. As a simplified approach,
the development of the mean (or a certain quantile) negative damping (as shown in Fig.
5.4) can be used to provide an initial estimate on the potential for excessive vibrations.
This requires sufficient time to obtain steady negative damping and sufficient time to
build up excessive vibrations. Alternatively, a series of simulations can be undertaken
for particular crowd scenario where the parameters are varied and the output is treated
probabilistically.

Based on the benchmark tests, the predicted critical number of pedestrians needed to
cause large lateral vibrations of the first three modes of the Millennium Bridge, are within
the range as reported from the opening day. This, despite the difference in the natural
frequencies of the three modes.

However, it should be noted that the load model is only applicable for lateral vibrations
of a single mode. The effect of multi-modal response on the pedestrian-induced load is
therefore unknown. This issue is addressed further by Ingólfsson and Georgakis (2011).
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Chapter 6

Simplified stability criterion for
footbridges

The capability of the stochastic load model to simulate pedestrian-induced lateral vi-
brations and to predict the development of instability was demonstrated in Chapter 5.
However, numerical response simulations may be complicated to implement and can be
extremely time demanding in execution. Therefore, engineers will benefit from a simplified
stability criterion which can be used to estimate the potential of a certain bridge to insta-
bility in an easy an straight-forward way, similarly to the already known Arup formula.
In this section, a simplified stability criterion is proposed, based on the experimental data
presented in Chapter 5.

6.1 Condition for instability

During the temporary closure of the Millennium Bridge, full scale crowd experiments were
conducted with the main conclusion that pedestrian-induced loading can be modelled as
negative linear dampers, with the constant velocity proportional load coefficient cp =
300Ns/m, (Dallard et al., 2001a). This led to the classic stability criterion in Eq. (2.2)
written in terms of the limiting number of pedestrians needed to initiate excessive lateral
vibrations. As summarised in Table 2.1, several other simplified stability criteria have
been derived. The prediction of the critical number of pedestrians using those criteria,
differs considerably, see Fig. 2.9.

When comparing the susceptibility of different bridges to instability, it may be con-
venient to use the non-dimensional pedestrian Scruton number (Newland, 2004) defined
as:

Scp =
2ζM

Mp

. (6.1)

Here ζ and M are the modal damping and mass respectively and Mp is defined as the
modal mass of the pedestrians written in terms of the spatial distribution of the pedestrian
mass mp(x), i.e.

Mp =

∫ L

0

mp(x) [Φ(x)]
2 dx. (6.2)
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The Scruton number is a convenient non-dimensionalisation which allows a comparison
between bridges (and modes) with different damping and modal masses. Arup’s stability
criterion can be re-written as a criterion for the Scruton number in the following way:

Scp >
cp

2πf0m0

. (6.3)

wherem0 is the mass of single pedestrian (here taken as 75 kg). This criterion assumes that
the pedestrians are uniformly distributed along the mode shape. When cp = 300Ns/m,
as proposed by Dallard et al. (2001a), the criterion is as depicted in Fig. 6.1. Also in
Fig. 6.1 is the stability criterion which was developed by Newland (2004) for two different
degrees of assumed synchronisation. As reviewed by Ingólfsson et al. (2010a), several
bridges have experienced large lateral vibrations. In order to calculate the pedestrian
Scruton number during these vibrations, information is needed about the modal mass,
damping and pedestrian distribution. In few of these cases, all this information exists.
These cases count the Coimbre footbridge in Portugal, the Clifton Suspension Bridge in
the UK (two modes), Changi Mezzanine Bridge in Singapore and the Lardal footbridge in
Norway (Ingólfsson et al., 2010a). In Fig. 6.1, the filled markers represent the pedestrian
Scruton number for the above mentioned cases. The open markers represent less reliable
estimates from the Solferino Bridge in Paris and the Tri-Country Footbridge in Germany.
All the data points have been estimated from published cases of excessive vibrations,
based on the literature review by (Ingólfsson et al., 2010a) (Paper I of this thesis). As
shown in Fig. 6.1, the number of data points is not sufficient for a proper comparison
with the theoretical curves. However, it seems that Arup’s criterion is conservative, as
none of the observations are outside of the region defined as stable.

6.2 Experimental data

6.2.1 Simplified stability criterion

Based on the measured pedestrian load coefficient, the most simple stability criterion can
be obtained by neglecting the amplitude dependency and considering only the constant
value θ0 from Table 5.2, corresponding to the initial pedestrian damping coefficient. An
average stability criterion can be obtained by assuming either constant values of cp in each
frequency bin, or through some interpolation. The simplest interpolation is a piecewise
linear function which passes through each data point. Alternatively, a second order poly-
nomial fit has been used. The polynomial which provides the best fit is mathematically
expressed as:

c̄p0(r) = −794r2 + 1558r − 580; Ns/m 0.4 ≤ r ≤ 1.2 (6.4)
r = f0/fw. (6.5)

If this expression is substituted into Eq. (6.3) and all pedestrians are assumed to walk
at a common frequency f̄w, a criterion for the pedestrian Scruton can be obtained:

Scp(f0) >
−794

(
f0/f̄w

)2
+ 1558

(
f0/f̄w

)− 580

2πf0m0

. (6.6)
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Figure 6.1: Existing criteria for the minimum Scruton number for stability shown to-
gether with experimental observations as reported during events with exces-
sive vibrations on actual footbridges.
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Figure 6.2: Average value and standard deviation of the velocity proportional pedestrian
load coefficient as function of the non-dimensional frequency.
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where unit of m0 is [kg] (here m0 = 75 kg is used) and the unit of f0 is [Hz]. If further,
a distribution of walking frequencies is assumed, the criteria for the necessary Scruton
number is rewritten as:

Scp(f0) >

∫ ∞

−∞

−794 (f0/f)
2 + 1558 (f0/f)− 580

2πf0m0

pfw (f) df (6.7)

pfw(f) =
1√

2πσfw

exp

[
− (f − μfw)

2

2σ2
fw

]
(6.8)

where μfw is the average walking frequency and σfw its standard deviation. For most
practical values of σfw , the difference between Eq. (6.7) and Eq. (6.3) is small and for
simplicity, that in Eq. (6.3) is used in the following.

Although the distribution of the walking frequencies is less important, the mean walk-
ing frequency changes the stability criterion considerably. This effect is illustrated in Fig.
6.3, which shows the critical Scruton number as a function of the lateral bridge frequency
for various different selections of μfw .
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Figure 6.3: Criteria for the minimum Scruton number based on the average value of
the measured pedestrian load coefficients, shown for various values of the
average walking frequency.

6.2.2 Probability-based stability criterion

There is considerable amount of randomness present in the experimental data. This
is clearly seen from Fig. 6.2 in which the average pedestrian load coefficient is shown
together with single standard deviation error bars. It is further seen that the standard
deviation is almost constant (σcp

∼= 150Ns/m) in the first five frequency bins and the last
one, whereas it increases considerably around 0.9 ≤ r ≤ 1.0 to the values in the range
340Ns/m− 550Ns/m.
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A conservative model for the frequency dependent standard deviation (for a single
person) can be written as:

σcp(r) = σcp,0

(
1 + ΔσcpΨ(r)

)
(6.9)

where Δσcp,0 = 150Ns/m, σcp = 375Ns/m and Ψ(r) is a piecewise linear function taken
from Fig. 6.4.
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Figure 6.4: Function for the determination of the frequency dependent standard devia-
tion σcp(r) of the velocity proportional pedestrian load coefficient.

If the distribution of the load coefficients around the mean value are assumed to follow
a Gaussian distribution, the 95% fractile for a group of Np pedestrians can be obtained
as:

cp,95% = cp0 + 1.65σcp,Group. (6.10)

where σcp,Group is the total standard deviation of the overall pedestrian damping for the
total group. If it is further assumed, that the values of cp for each pedestrian are in-
dependent identically distributed random variables (IID), a simplified expression for the
standard deviation for a group of Np pedestrians can be obtained as:

σcp,Group =
√

Npσcp (6.11)

It is noted, that in the calculation of the aggregate effect of the group, it has been
assumed that all pedestrians contribute equally to the overall damping. Thereby, the
effect of the mode shape has been neglected (i.e. a uniform mode has been assumed). In
the case on non-uniform mode, the overall standard deviation takes a different form.

Based on the model in Eq. (6.11), a new stability criterion can be created, corre-
sponding to a Scruton number with 95% probability of bridge stability if not exceeded,
see Fig. 6.5. The criterion is generated for Np = 250 assuming an average pedestrian
walking frequency of 1.0Hz.
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Figure 6.5: Example of the criteria for the minimum Scruton number subject to a pedes-
trian crowd of 250 persons with mean walking frequency 1.0Hz.
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Chapter 7

Conclusions

In the past decade, a large amount of research has been carried out to understand the phe-
nomenon of human-structure interaction in the development of excessive crowd-induced
lateral vibrations on long-span footbridges.

As reviewed in Chapter 2, research in the field can broadly be split into three categories
(i) full scale measurements of crowd-induced vibrations on actual footbridges, (ii) experi-
mental laboratory investigations with single pedestrians and (iii) mathematical modelling.
Research in each of the three categories has been beneficial in increasing the understand-
ing of the underlying mechanisms that govern human-structure interaction. This research
has also increased the capability of predicting the onset to excessive vibrations. However,
there has been a gap between the mathematical modelling on one hand and empirical ob-
servations on the other. In particular the commonly accepted view that synchronisation
is a necessary trigger for the development of excessive lateral vibrations, is often used as
a basis in load models, despite a lack of clear experimental data to support such an hy-
pothesis. Published experimental data from several laterally vibrating footbridges suggest
that synchronisation of the pedestrian walking to the lateral movement is not a necessary
trigger for the development of large oscillations. In fact, to the author’s knowledge, there
exist no studies that explicitly show that pedestrian synchronise (or lock-in) their step
frequency to the lateral movement of a footbridge. Furthermore, only a limited amount
of data exists on lateral forces induced by pedestrians when walking on a laterally flexible
surface.

Therefore, the main objectives of this thesis was to (i) determine whether synchroni-
sation of pedestrians to the structural movement is a necessary trigger for development of
large lateral bridge vibrations and (ii) provide statistically reliable experimental data for
the lateral pedestrian-induced forces for a variety of different lateral vibration frequencies
and amplitudes.

In Chapter 3 the results from a series of preliminary laboratory studies are presented.
A 17m long suspended concrete platform was used in various pedestrian tests, in which
the measured acceleration response was used in an attempt to back-calculate the load from
the pedestrians. It was concluded that the laboratory platform could only be used to study
human-structure interaction from a qualitative point of view, since it was not possible to
measure the pedestrian-induced forces directly. The initial suspicion that synchronisation
is not as important as commonly believed were confirmed during the platform tests, but
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not further quantified.
The main body of work in this thesis is presented in Chapters 4 and 5, which deal with

the experimental campaign and the development and verification of a novel stochastic load
model.

The data gathered in the experimental campaign is based on measured forces from
71 pedestrians, walking on both a laterally fixed and oscillating surface at various ampli-
tudes and frequencies. Particular attention was paid on quantification of the self-excited
component of the pedestrian load through damping and mass proportional coefficients,
respectively. Analysis of the self-excited pedestrian load reveals that pedestrians (on av-
erage) input energy into the structure over a large frequency range. It is further shown
that the component in phase with the structural velocity can be modelled as a velocity
proportional force. The component in phase with the acceleration is also found to depend
on the frequency of the structure. It is observed that for low frequencies, pedestrians sub-
tract from the overall modal mass and add to the mass at higher frequency motion, with
an amplitude dependent transition. In addition to the frequency dependency, it is also
shown that the motion-induced forces are amplitude dependent. This amplitude depen-
dency is such that the negative pedestrian damping decreases with increasing amplitudes.
This means that the vibrations of any given footbridge may become self-limiting.

The very large scatter in the data, suggests that a probabilistic approach is necessary
for an accurate estimation of the susceptibility of a footbridge to excessive vibrations. In
particular, the critical number of pedestrian needed to trigger SLE may vary considerably
depending on the particular crowd occupying the bridge.

In Chapter 5 a stochastic load model is presented for modelling of the frequency and
amplitude dependent pedestrian-induced lateral forces. The model is shown to successfully
predict excessive lateral vibrations in a number of benchmark tests. Furthermore, the self-
excited pedestrian force has been quantified through an extensive experimental campaign
and is represented in a stochastic framework. It is shown that several parameters influence
the response characteristics, in particular the distribution of walking frequencies in the
group, duration of the load event, definition of instability and the level of background
noise.

Finally, a simplified probabilistic stability criterion is presented in Chapter 6 which
can be used for design purposes for providing a first estimate on the susceptibility of a
bridge to crowd induced lateral vibrations.

7.1 Recommendations for future work

7.1.1 Effect of walking speed

Currently, the models presented herewith are only applicable to normal free walking, and
the motion-dependent forces (or the self-excited forces) depend only on the relationship
between the frequency of the lateral movement and the walking frequency. However, as a
part of the experimental campaign, the load pedestrian-induced load at various (imposed)
walking speeds were also investigated for a limited number of people. A further processing
of the data should provide an indication of the effect of imposed walking speed. This may
prove important, in particular for the modelling of large crowds of people, where free and
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unrestricted walking is nearly impossible.

7.1.2 Refined load model and stability criterion

Herewith, the load model and the stability criterion is based on a the most simple rep-
resentation of the amplitude dependency of the pedestrian damping coefficient; a linear
function. An improvement to the load model can be made, by introducing functions that
can capture both the amplitude dependency as well as the frequency dependency of the
pedestrian load coefficients, whilst allowing for a reliable extrapolation to zero-amplitude.
The extrapolation to zero amplitude is important for the stability criterion and the choice
of mathematical function to fit the experimental data affects the predicted value of cp at
zero amplitudes.

7.1.3 Full-scale testing

There is a general lack of experimental data from full-scale observation of crowd-induced
lateral vibrations. Therefore, engineering consultants and researchers are strongly en-
couraged to carry out tests and monitor the vibration behaviour of any bridge that is
susceptible to excessive lateral vibrations. This is crucial for obtaining a better com-
parison between laboratory circumstances and the real behaviour of actual footbridges.
In particular, excitation of low-frequency modes seems under-estimated in the procedure
presented here.

It has been suggested that nonlinear phenomena such as parametric excitation or
autoparametric resonance are responsible for excessive bridge vibrations (Ingólfsson et al.,
2010a). This could participate to a quicker development of instability than found in the
work presented herewith. However, further analysis of the current experimental data is
necessary for investigating this phenomenon. To investigate the case where vertical loads
may excite lateral modes, different experimental setup has to be used, allowing for the
necessary geometrical coupling between the vertical and lateral modes. This has not been
covered within the scope of this thesis.

7.1.4 Combined vibrations

Both the London Millennium Bridge and the Clifton Suspension Bridge featured large
modal response in two vibration modes simultaneously. The load model presented in
this thesis is based on experimentally obtained forces during walking when exposed to
a single harmonic excitation. Therefore, investigating the effect of multiple modes on
the self-excited pedestrian forces is a natural continuation of the work presented in this
thesis. This could involve pedestrian tests where the base motion is a sum of one or more
harmonic components. Furthermore, little is know about the combined effect of vertical
and lateral vibration on the GRFs.

As the number of possible tests increases dramatically when including more vibration
frequencies in the signal or vertical vibrations, a more practical approach is to develop a
mathematical which describes the movement of the pedestrian body and thereby the forces
generated during walking on a laterally oscillating surface. If this model can successfully
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predict, or replicate the main results of the study presented in this thesis, it can be used
to model the combined effect of multiple vibration modes or directions.

96 Department of Civil Engineering - Technical University of Denmark



Bibliography

AASHTO. Guide Specifications for Design of Pedestrian Bridges. American Association
of State, Highway and Transportation Officials, August 1997.

R.K. Andersen. Pedestrian-induced vibrations: Human-human interaction. MSc Thesis,
Department of Civil Engineering, Technical University of Denmark, 2009.

T.P. Andriacchi and E.J. Alexander. Studies of human locomotion: past, present and
future. Journal of Biomechanics, 33:1217–1224, 2000.

T.P. Andriacchi, J.A. Ogle, and J.O. Galante. Walking speed as a basis for normal and
abnormal gait measurements. Journal of Biomechanics, 10(4):261–268, 1977.

Aristotle. On the Gait of Animals. 350 B.C.

C. Ashley. Proposed international standards for concerning vibration in buildings. In
Proceedings Symposium on Instrumentation for Ground Vibration and Earthquakes,
UK, 1977. Institution of Civil Engineers.

H. Bachmann. Case studies of structures with man-induced vibrations. Journal of Struc-
tural Engineering, 118(3):631–647, 1992.

H. Bachmann. "lively" footbridges – a real challenge. In Proceedings of Footbridge 2002,
First International Conference, Paris, November 2002.

H. Bachmann and W.J. Ammann. Vibrations in Structures. Induced by Man and Machine.
Structural Engineering Documents. International Association for Bridge and Structural
Engineering (IABSE), Zürich, Switzerland, 3rd edition, 1987.

H. Bachmann, W.J. Ammann, and et.al. Vibration Problems in Structures. Practical
Guidelines. Birkhauser, 2nd edition, 1996a.

H. Bachmann, A.J. Pretlov, and H. Rainer. Vibration Problems in Structures: Practical
Guidelines, chapter Appendix G: dynamic forces from rhythmical human body motions.
Birkhäuser, 1996b.

R. Baker. The history of gait analysis before the advent of modern computers. Gait &
Posture, 27:331–342, 2007.

97



BIBLIOGRAPHY BIBLIOGRAPHY

C. Barker. Some observations on the nature of the mechanism that drives the self-excited
lateral response of footbridges. In Proceedings of Footbridge 2002, First International
Conference, Paris, November 2002.

C. Barker. Footbridge pedestrian vibration limits background to response calculation.
International Journal of Space Structures, 22(1):35–43, 2007.

C. Barker, S. DeNeumann, D. Mackenzie, and R. Ko. Footbridge pedestrian vibration
limits. part 1: Pedestrian input. In Proceedings of Footbridge 2005, Second International
Conference, Venice, December 2005.

K. Baumann and H. Bachmann. Durch Menschen verursachte dynamische Lasten und
deren Auswirkungen auf Balkentragwerke (dynamic loading induced by persons and its
effect on beam structures). report 7501-3, Institute of Structural Engineering, Swiss
Fed. Inst. of Tech. (ETH), 1987. (in German).

Z. Bejek, R. Paróczai, Á Illyés, and R.M. Kiss. The influence of walking speed on gait
parameters in healthy people and in patients with osteoarthritis. Knee Surgery, Sports
Traumatology, Arthroscopy, 14:612–622, 2006.

J.E.A. Bertram and A. Ruina. Multiple walking speed-frequency relations are predicted
by constrained optimization. Journal of Theoretical Biology, 209(4):445–453, 2001.

J. Blanchard, B.L. Davies, and J.W. Smith. Design criteria and analysis for dynamic
loading of footbridges. In TRRL Suppl Rep and Symp on Dyn Behav of Bridges, number
275, pages 90–106. Transp and Road Res Lab, 1977.

A.N. Blekherman. Swaying of pedestrian bridges. Journal of Bridge Engineering, 10(2):
142–150, 2005.

J. Bodgi. Synchronization piétons-structure: Application aux vibration des passerelles sou-
ples (Pedestrian-structure synchronization: Application to vibration of flexible bridges).
PhD thesis, Ecole Nationale des Ponts - ParisTech, September 2008. (in French).

N. Bonanni. Valutazione sperimentale dell’azione antropica sulle passerelle pedonali (ex-
perimental evaluation of the human activity on a footbridge). BSc thesis, University of
Florence, 2007. (In Italian).

M.H. Bornstein. The pace of life: revisted. International Journal of Psychology, 14:83–90,
1979.

M.H. Bornstein and H.G. Bornstein. The pace of life. Nature, 259:557–559, 1976.

R.A. Brady, B.T. Peters, and J.J. Bloomberg. Strategies of healthy adults walking on a
laterally oscillating treadmill. Gait & Posture, 29:645–649, 2009.

Bro 2004. Vägverkets allmänna tekniska beskrivning för nybyggande och forbättring av
broar (SRA’s general technical description for new construction and improvement of
bridges). Svensk Byggtjänst, Stockholm, Sverige, 2004. (In Swedish).

98 Department of Civil Engineering - Technical University of Denmark



BIBLIOGRAPHY BIBLIOGRAPHY

J. Brownjohn, S. Zivanovic, and A. Pavic. Crowd dynamic loading on footbridges. In
Proceedings of Footbridge 2008, Third International Conference, Porto, 2-4 July 2008.

J. Brownjohn, E. Caetano, X. Cespedes, P. Charles, A. Cunha, P. Duflot, M. Feld-
mann, O. Flamand, C. Heinemeyer, W. Hoorpah, A. Low, F. Magalhaes, C. Meinhardt,
C. Moutinho, A. Pavic, D. Taylor, S. Zivanovic, T. Zoli, and K. Zoltowski. Footbridge
Vibration Design. Taylor and Francis, 2009.

J.M.W. Brownjohn, P. Fok, M. Roche, and P. Omenzetter. Long span steel pedestrian
bridge at Singapore Changi airport - part 2: Crowd loading tests and vibration miti-
gation measures. The Structural Engineer, 82(16):28–34, 2004a.

J.M.W. Brownjohn, A. Pavic, and P. Omenzetter. A spectral density approach for mod-
elling continuous vertical forces on pedestrian structures due to walking. Canadian
Journal of Civil Engineering, 31(1):65–77, 2004b.

J.M.W. Brownjohn, A. Pavic, and P. Omenzetter. Modeling and measuring dynamic
crowd loading on a long span footbridge. In Proceedings of the 2004 International
Conference on Noise and Vibration Engineering, ISMA, pages 751–765, 2004c.

L. Bruno and F. Venuti. The pedestrian speed-density relation: modelling and application.
In Proceedings of Footbridge 2008, Third International Conference, Porto, 2-4 July 2008.

L. Bruno and F. Venuti. Crowd-structure interaction in footbridges: Modelling, applica-
tion to a real case-study and sensitivity analyses. Journal of Sound and Vibration, 323
(1-2):475–493, 2009.

BS 5400. Steel, Concrete and compostite Bridges, Part 2: Specifications for Loads; Ap-
pendix C: Vibration Serviceability Requirements for Foot and Cycle Track Bridges.
British Standards Institute, London, UK, 1978.

BS 6472. BS 6472:1992 Guide to Evaluation of human exposure to vibration in buildings
(1 Hz to 80 Hz). British Standards Institute, 1992.

C. Butz. Beitrag zur Berechnung fußgängerinduzierter Brückenschwingungen (On the
calculation of pedestrian-induced vibration of bridges). PhD thesis, RWTH Aachen,
2006. (In German).

C. Butz. A probabilistic engineering load model for pedestrian streams. In Proceedings
of Footbridge 2008, Third International Conference, Porto, 2-4 July 2008.

C. Butz, F. Magalhaes, A. Cunha, E. Caetano, and A. Goldack. Experimental charac-
terization of the dynamic behaviour of lively footbridges. In Proceedings of Footbridge
2005, Second International Conference, Venice, 6-8 December 2005.

C. Butz, C. Heinemeyer, A. Keil, M. Schlaich, A. Goldack, S. Trometer, M. Lukić,
B. Chabrolin, A. Lemaire, P.O. Martin, A. Cunha, and E. Caetano. Design of Foot-
bridges - Guidelines and background document. HIVOSS, 2007. RFS2-CT-2007-00033.

Department of Civil Engineering - Technical University of Denmark 99



BIBLIOGRAPHY BIBLIOGRAPHY

C. Butz, J. Dist, and P. Huber. Effectiveness of horizontal tuned mass damper exemplified
at the footbridge in Coimbre. In Proceedings of Footbridge 2008, Third International
Conference, Porto, 2-4 July 2008.

E. Caetano, Á. Cunha, F. Magalhães, and C. Moutinho. Studies for controlling human-
induced vibration of the Pedro e Inês footbridge, Portugal. part 1: Assessment of
dynamic behaviour. Engineering Structures, 32:1069–1081, 2010a.

E. Caetano, Á. Cunha, F. Magalhães, and C. Moutinho. Studies for controlling human-
induced vibration of the Pedro e Inês footbridge, Portugal. part 2: Implementation of
tuned mass dampers. Engineering Structures, 32:1082–1091, 2010b.

F.K. Chang. Human response to motions in tall buildings. ASCE Journal of the Structural
Division, 99(ST6):1259–1272, 1973.

P. Charles and V. Bui. Transversal dynamic actions of pedestrians. synchronization. In
Proceedings of Footbridge 2005, Second International Conference, Venice, 6-8 December
2005.

C. Chatfield. The Analysis of Time Series. An Introduction. Texts in Statistical Science.
Chapman & Hall / CRC, 6th edition, 2004.

P.W. Chen and L.E. Robertson. Human perception threshold of horizontal motion. ASCE
Journal of Structural Division, 98:1681–1695, 1973.

A.K. Chopra. Dynamics of Structures. Theory and Applications to Earthquake Engineer-
ing. Civil Engineering and Engineering Mechanics. Prentice Hall International Series,
2nd edition, 2001.

T. Christensen and L. Dyekjær. 3-aksial accelerationslogger med μsd-hukommelseskort
(3-axial acceleration loggers with μsd-memory card). Project report at DTU Civil
Engineering (in Danish), June 2007.

M. Christiansen. Fodgængerinducerede svingninger i gangbroer (pedestrian-induced vi-
brations of footbridges). MSc thesis, Department of Civil Engineering, Technical Uni-
versity of Denmark, 2008. (in Danish).

A. Cunha, E. Caetano, C. Moutinho, and F. Magalhaes. The role of dynamic testing in
design, construction and long-term monitoring of lively footbridges. In Proceedings of
Footbridge 2008, Third International Conference, Porto, 2-4 July 2008.

J.G.S. da Silva, P.C.G. Vellasco, S.A.L. de Andrea, L.R.O. de Lima, and F.P. Figueiredo.
Vibration analysis of footbridges due to vertical human loads. Computers and Struc-
tures, 85:1693–1703, 2007.

P. Dallard, A.J. Fitzpatrick, A. Flint, S.Le. Bourva, A. Low, R.M.R. Smith, and M. Will-
ford. The London Millennium Footbridge. The Structural Engineer, 79(22):17–33,
2001a.

100 Department of Civil Engineering - Technical University of Denmark



BIBLIOGRAPHY BIBLIOGRAPHY

P. Dallard, T. Fitzpatrick, A. Flint, A. Low, R.R. Smith, M. Willford, and M. Roche.
London Millennium Bridge: Pedestrian-induced lateral vibration. Journal of Bridge
Engineering, 6(6):412–417, 2001b.

F. Danbon and G. Grillaud. Dynamic behaviour of a steel footbridge. Characterisation and
modelling of the dynamic loading induced by a moving crowd on the Solferino footbridge
in Paris. In Proceedings of Footbridge 2005, Second International Conference, Venice,
6-8 December 2005.

R.O. Denoon, C.W. Letchford, K.C.S. Kwok, and D.L. Morrison. Field measurements of
human reaction to wind-induced building motion. In Wind Engineering into the 21st
Century, Rotterdam, 1999.

R.O. Denoon, R.D. Roberts, C.W. Letchford, and K.C.S. Kwok. Field experiments to in-
vestigate occupant perception and tolerance of wind-induced building motion. Research
Report No 803, Department of Civil Engineering, the University of Sidney, September
2000.

DRD. Belastnings- og beregningsregler for vej- og stibroer (Load and design specifications
for road- and footbridges). Danish Road Directorate, November 2002. In Danish.

M.L.M. Duarte and M. de Brito Pereira. Vision influence on whole-body human vibration
comfort levels. Shock and Vibration, 13:367–377, 2006.

P. Dziuba, G. Grillaud, O. Flamand, S. Sanquier, and Y. Tétard. La passerelle Solférino
comportement dynamique (dynamic behaviour of the Solférino bridge). Bulletin Ou-
vrages Métalliques, 1:34–57, 2001. (in French).

B. Eckhardt, E. Ott, S.H. Strogatz, D.M. Abrams, and A. McRobie. Modeling walker
synchronization on the Millennium Bridge. Physical Review E, 75:21110–1–10, 2007.

H. Elftman. The measurement of the external force in walking. Science, 88(2276):152–153,
1938.

EN 1990. EN 1990/A1:2002. Eurocode - Basis of structural design. CEN, European
Committee for Standardization, December 2005.

ENV 1995-2. ENV 1995-2:1997. Eurocode 5: Design of Timber Structures Part 2. Bridges.
CEN, European Committee for Standardization, Brussels, Belgium, 1997.

P.E. Eriksson. Low-frequency forces caused by people: Design force models. IABSE
International Colloquium, 69:149–156, 1993.

P.E. Eriksson. Vibration of Low-Frequency Floors - Dynamic Forces and Response Pre-
diction. PhD thesis, Chalmers University of Technology, Department of Structural
Engineering, Göteborg, March 1994.

S. Erlicher, A. Trovato, and P. Argoul. Modeling the lateral pedestrian force on a rigid
floor by a self-sustained oscillator. Mechanical Systems and Signal Processing, 24(5):
1579–1604, 2010.

Department of Civil Engineering - Technical University of Denmark 101



BIBLIOGRAPHY BIBLIOGRAPHY

FIB. Guidelines for the design of footbridges, bulletin 32. Fédération international du
béton (fib), November 2005.

K.K. Finnis and D. Walton. Field observations of factors influencing walking speeds. In
2nd International Conference on Sustainability Engineering and Science, 2007.

A. Flaga, M. Pantak, and T. Michalowski. Examination of own human comfort criteria
for footbridges in case of wind-induced vibrations. In Proceedings of Footbridge 2008,
Third International Conference, Porto, 2-4 July 2008a.

A. Flaga, M. Pantak, and T. Michalowski. Vibration comfort criteria for footbridges
for pedestrians on footbridges. In Proceedings of Footbridge 2008, Third International
Conference, Porto, 2-4 July 2008b.

Y. Fujino, B.M. Pacheco, S.I. Nakamura, and P. Warnitchai. Synchronization of human
walking observed during lateral vibration of a congested pedestrian bridge. Earthquake
Engineering & Structural Dynamics, 22(9):741–758, 1993.

C.T. Georgakis and E.T. Ingólfsson. Vertical footbridge vibrations: the response spectrum
methodology. In Proceedings of Footbridge 2008, Third International Conference, Porto,
2-4 July 2008.

T. Goto. Studies of wind-induces motion of tall buildings based on occupants’ reactions.
Journal of Wind Engineering and Industrial Aerodynamics, 13:241–252, 1983.

M.J. Griffin. Handbook of human vibration. Elsevier academic press, London, U.K., 2004.

G.V. Gudmundsson, E.T. Ingólfsson, B. Einarsson, and B. Bessason. Vibration service-
ability assessment of three lively bridges in Reykjavik. In Proceedings of Footbridge
2008, Third International Conference, Porto, 2-4 July 2008.

R.J. Hansen, J.W. Reed, and E.H. Vanmarcke. Human response to wind-induced motion
of buildings. ASCE Journal of the Structural Division, 99(ST7):1589–1605, 1973.

J.M. Hausdorff, Y. Ashkenazy, C.-K. Peng, P.Ch. Ivanov, H.E. Stanley, and A.L. Gold-
berger. When human walking becomes random walking: fractal analysis and modeling
of gait rhythm fluctuations. Physica A, 302(1-4):138–147, 2001.

R.E. Hobbs. Test on lateral forces induced by pedestrians crossing a platform driven
laterally. Technical report, Civil Engineering Department, Imperial College London,
London, UK, August 2000. A report for Ove Arup and Partners.

J. Hogsberg and S. Krenk. Adaptive tuning of elasto-plastic damper. International Journal
of Non-Linear Mechanics, 42:928–940, 2007.

W. Hoorpah, O. Flamand, and X. Cespedes. The Simon de Beauvoir footbridge in Paris.
Experimental verification of the dynamic behaviour under pedestrian loads and discus-
sion of corrective modifications. In Proceedings of Footbridge 2008, Third International
Conference, Porto, 2-4 July 2008.

102 Department of Civil Engineering - Technical University of Denmark



BIBLIOGRAPHY BIBLIOGRAPHY

E.T. Ingólfsson. Pedestrian-Induced Vibrations of Line-like Structures. MSc thesis, De-
partment of Civil Engineering, Technical University of Denmark, June 2006.

E.T. Ingólfsson and C.T. Georgakis. A stochastic load model for pedestrian-induced
lateral forces on footbridges. Engineering Structures, 2011. in press.

E.T. Ingólfsson, C.T. Georgakis, J. Jönsson, and F. Ricciardelli. Vertical footbridge vibra-
tions: Towards an improved and codifiable response evaluation. In third International
Conference on Structural Engineering, Mechanics and Computation, Cape Town, South
Africa, 10-12 September 2007.

E.T. Ingólfsson, C.T. Georgakis, and A. Knudsen. A preliminary experimental investi-
gation into lateral pedestrian-structure interaction. In Proceedings of the 7th European
Conference on Structural Dynamics, Southampton, 7-9 July 2008a.

E.T. Ingólfsson, C.T. Georgakis, and M.N. Svendsen. Vertical footbridge vibrations:
details regarding and experimental validation of the response spectrum methodology.
In Proceedings of Footbridge 2008, Third International Conference, Porto, 2-4 July
2008b.

E.T. Ingólfsson, C.T. Georgakis, and J. Jönsson. Pedestrian-induced lateral vibrations of
footbridges: Literature review. Unpublished manuscript, 2010a.

E.T. Ingólfsson, C.T. Georgakis, F. Ricciardelli, and L. Procino. Lateral human-structure
interaction on footbridges. In Tenth International Conference on Recent Advances in
Structural Dynamics, Southampton, 12-14 July 2010b.

E.T. Ingólfsson, C.T. Georgakis, F. Ricciardelli, and J. Jönsson. Experimental identifica-
tion of pedestrian-induced lateral forces on footbridges. Journal of Sound and Vibration,
330:1265–1284, 2011.

A.W. Irwin. Human response to dynamic motion of structures. Struct Eng Part A, 56A
(9):237–244, 1978.

A.W. Irwin. Perception, comfort and performance criteria for human beings exposed to
whole body pure yaw vibration and vibration containing yaw and translation compo-
nents. Journal of Sound and Vibration, 76(4):481–497, 1981.

M.M. Ishaque and R.B. Noland. Behavioural issues in pedestrian speed choice and street
crossing behaviour: a review. Transport Reviews, 28:61–85, 2008.

ISO 10137. ISO 10137:2007 Bases for design of structures - Serviceability of buildings
and walkways against vibration. International Organization for Standardization, 2007.

ISO 2631-2. ISO 2631-2:1989 Evaluation of human exposure to whole-body vibration -
Part 2: Continuous and shock-induced vibration in buildings (1 to 80 Hz). International
Organization for Standardization, 1989.

Department of Civil Engineering - Technical University of Denmark 103



BIBLIOGRAPHY BIBLIOGRAPHY

ISO 2631-2. ISO 2631-2:2003 Evaluation of human exposure to whole-body vibration -
Part 2: Continuous and shock-induced vibration in buildings (1 to 80 Hz). International
Organization for Standardization, 2003.

T. Ji and B.R. Ellis. Floor vibration. floor vibration induced by dance-type loads. Theory.
The Structural Engineer, 72(3):37–44, 1994.

N. Jørgensen. Human structure interaction: Influence of walking pedestrians on the
dynamic properties of footbridge structures they occupy. MSc Thesis, Department of
Civil Engineering, Technical University of Denmark, August 2009.

J. Kanda, Y. Tamura, K. Fujii, T. Ohtsuki, K. Shioya, and S. Nakata. Probabilistic
evaluation of human perception threshold of horizontal vibration of buildings (0.125 Hz
to 6.0 Hz). In Proceedings of the Structures Congress ’94, pages 648–653. Published by
ASCE, 1994.

M. Kasperski. Actual problems with stand structures due to spectatorinduced vibrations.
In Proceedings of the 4th European conference on structural dynamics, Florence, 5-8
June 1996.

M. Kasperski. Vibration serviceability for pedestrain bridges. Proceedings of the ICE:
Structures and Buildings, 159(5):273–282, 2006.

M. Kasperski. Serviceability of pedestrian structures. In Proceedings of the 25th IMAC
Conference, Orlando, Florida, 19-22 February 2007.

B.A. Kay and W.H. Warren Jr. Coupling of posture and gait: mode locking and para-
metric excitation. Biological Cybernetics, 85:89–106, 2001.

S.C. Kerr. Human Induced Loading on Staircases. PhD thesis, Mechanical Engineering
Department, University College London, London, UK, 1998.

A. Knudsen. Pedestrian-induced lateral vibrations of bridges. MSc thesis, Department of
Civil Engineering, Technical University of Denmark, 2007.

S. Krenk. Non-linear Modeling and Analysis of Solids and Structures. Cambridge Uni-
versity Press, 2009.

H. Kuang. Analysis of pedestrian dynamics in counter flow via an extended lattice gas
model. Physical Review E, 78(6), 2008.

A.D. Kuo. A simple model of the bipedal walking predicts the preferred speed – step
length relationship. Journal of Biomechanical Engineering, 123:264–269, 2001.

W.H.K. Lam, J.Y.S. Lee, and C.Y. Cheung. A study of the bi-directional pedestrian
flow characteristics at Hong Kong signalized crosswalk facilities. Transportation, 29:
169–192, 2002.

R.S.C. Lee and R.L. Hughes. Minimisation of the risk of trampling in a crowd. Mathe-
matical and Computers in Simulation, 74:29–37, 2007.

104 Department of Civil Engineering - Technical University of Denmark



BIBLIOGRAPHY BIBLIOGRAPHY

R.V. Levine. The pace of life in 31 countries. Journal of Cross-Cultural Psychology, 30:
178–205, 1999.

Q. Li, J. Fan, J. Nie, Q. Li, and Y. Chen. Crowd-induced random vibration of foot-
bridges and vibration control using multiple tuned mass dampers. Journal of Sound
and Vibration, 329:4068–4092, 2010.

J.H.G. Macdonald. Pedestrian-induced vibrations of the Clifton Suspension Bridge, UK.
Proceedings of the ICE: Bridge Engineering, 161(BE2):69–77, 2008.

J.H.G. Macdonald. Lateral excitation of bridges by balancing pedestrians. Proceedings of
the Royal Society A, 465:1055–1073, 2009.

Y. Matsumoto, T. Nishioka, H. Shiojiri, and K. Matsuzaki. Dynamic design of footbridges.
In IABSE Proceedings, volume P-17/78, pages 1–15, 1978.

P.M. McAndrew, J.B. Dingwell, and J.M. Wilken. Walking variability during contin-
uous pseudo-random oscillations of the support surface and visual field. Journal of
Biomechanics, 43:1470–1475, 2010.

A. McRobie, G. Morgenthal, J. Lasenby, and M. Ringer. Section model tests on human-
structure lock-in. Proceedings of the ICE: Bridge Engineering, 156(BE2):71–79, 2003.

W.H. Melbourne. Comfort criteria for wind-induced motion in structures. Structural
Engineering International, 1:40–44, 1998.

W.H. Melbourne and J.C.K.C. Cheung. Designing for serviceability accelerations in tall
buildings. In 4th International Conference On Tall Buildings, Hong Kong and Shanghai,
1988.

M. Milner and A.O. Quanbury. Facets of control in human walking. Nature, 227:734–735,
1970.

M Mistler and D. Heiland. Lock-in-Effekt beings Brücken infolge Fußgängeranregung
- Schwingungstest der weltlängsten Fußgänger- und Velobrücke (lock-in effect due to
pedestrian excitation of bridges - vibration test of the world’s longest pedestrian and
bicycle bridge). In D-A-CH Tagung, Vienna, 27-28 September 2007. (in German).

F. Mormann, K. Lehnertz, P. David, and C.E. Elger. Mean phase coherence as a measure
for phase synchronization and its application to the EEG of epilepsy patients. Physica
D, 144:358–369, 2000.

NA to BS EN 1991-2 UK. National Annex to Eurocode 1: Actions on structure - Part 2:
Traffic loads on bridges. CEN, European Committee for Standardization, May 2008.

S. Nakamura and T. Kawasaki. A method for predicting the lateral girder response of
footbridges induced by pedestrians. Journal of Constructional Steel Research, 65:1705–
1711, 2009.

Department of Civil Engineering - Technical University of Denmark 105



BIBLIOGRAPHY BIBLIOGRAPHY

S.I. Nakamura. Field measurements of lateral vibration on a pedestrian bridge. The
Structural Engineer, 81(22):22–26, 2003.

S.I. Nakamura and T. Kawasaki. Lateral vibration of footbridges by synchronous walking.
Journal of Constructional Steel Research, 62(11):1148–1160, 2006.

S.I. Nakamura, T. Kawasaki, H. Katsuura, and K. Yokoyama. Experimental studies on
lateral forces induced by pedestrians. Journal of Constructional Steel Research, 64:
247–252, 2008.

D.E. Newland. Pedestrian excitation of bridges - recent results. In Proceedings of the
Tenth International Congress on Sound and Vibration, pages 533–547, 2003.

D.E. Newland. Pedestrian excitation of bridges. In Proceedings of the Institution of
Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, volume
218, pages 477–492, 2004.

OHBDC. Ontario Highway Bridge Design Code. Highway Engineering Division, Ministry
of Transportation and Communication, Ontario, Canada, 1983.

S.V. Ohlsson. Floor vibration and human discomfort. PhD thesis, Chalmers University of
Technology, Göteborg, 1982.

Ove Arup and Partners International Ltd. London Borough of Southwalk Millennium
Bridge. Prototype test report 2: Damping test results. (Unpublished internal report),
February 2002.

E. Papadimitriou, G. Yannis, and J. Golias. A critical assessment of pedestrian behaviour
models. Transportation Research Part F, 12(3):242–255, 2009.

A. Pavic and P. Reynolds. Vibration serviceability of long-span concrete building floors.
Part 1: review of background information. The Shock and Vibration Digest, 34(3):
191–211, 2002a.

A. Pavic and P. Reynolds. Vibration serviceability of long-span concrete building floors.
Part 2: review of mathematical modelling approaches. The Shock and Vibration Digest,
34(4):279–297, 2002b.

L. Pedersen and C. Frier. Sensitivity of footbridge vibrations to stochastic walking pa-
rameters. Journal of Sound and Vibration, 329:2683–2701, 2010.

J. Perry. Gait Analysis. Normal and Pathological Function. SLACK Incorporate, 1992.

C. Peterson. Theorie der Zufallsschwingungen und Anwendungen (theory of random
vibrations and applications). Work Report 2/72, Structural Engineering Laboratory,
Technical University of Munich, 1972. In German.

G. Piccardo and F. Tubino. Parametric resonance of flexible footbridges under crowd-
induced lateral excitation. Journal of Sound and Vibration, 311:353–371, 2008.

106 Department of Civil Engineering - Technical University of Denmark



BIBLIOGRAPHY BIBLIOGRAPHY

R.L. Pimentel and P. Waldron. Validation of the pedestrian load model through the
modal testing of a composite footbridge. In Proceedings of the 15th IMAC Conference,
volume 1, pages 286–292. SEM, 1997.

A.D. Pizzimenti. Analisi sperimentale dei meccanismi di eccitazione laterale delle
passerelle ad opera dei pedoni (experimental analysis of the lateral pedestrian-induced
mechanism of excitation of footbridges). PhD thesis, Department of Civil and Environ-
mental Engineering, University of Catania, 2004. (in Italian).

A.D. Pizzimenti and F. Ricciardelli. Experimental evaluation of the dynamic lateral
loading of footbridges by walking pedestrians. In Proceedings of the 6th International
Conference on Structural Dynamics, Paris, 4-7 September 2005.

V. Racic. Experimental measurement and mathematical modelling of near-periodic human-
induced dynamic force signals. PhD Thesis, Department of Civil & Structural Engi-
neering, The University of Sheffield, November 2009.

V. Racic, A. Pavic, and J.M.W. Brownjohn. Experimental identification and analytical
modelling of walking forces: Literature review. Journal of Sound and Vibration, 326:
1–49, 2009.

V. Racic, J.M.W. Brownjohn, and A. Pavic. Reproduction and application of human
bouncing and jumping forces from visual marker data. Journal of Sound and Vibration,
329:3397–3416, 2010.

J.H. Rainer and G. Pernica. Vertical dynamic forces from footsteps. Canadian Acoustics,
14(2):12–21, 1986.

J.H. Rainer, G. Pernica, and D.E. Allen. Dynamic loading and response of footbridges.
Canadian Journal of Civil Engineering, 15(1):66–71, 1988.

F. Ricciardelli and A.D. Pizzimenti. Lateral walking-induced forces on footbridges. Jour-
nal of Bridge Engineering, 12(6):677–688, 2007.

T.M. Roberts. Lateral pedestrian excitation of footbridges. Journal of Bridge Engineering,
10(1):107–112, 2005a.

T.M. Roberts. Synchronised pedestrian lateral excitation of footbridges. In Proceedings of
the 6th International Conference on Structural Dynamics, Paris, 4-7 September 2005b.

A. Rönnquist. Pedestrian induced vibrations of slender footbridges. PhD thesis, Norwegian
University of Science and Technology, 2005.

A. Rönnquist, Strømmen, and L. Wollebæk. Dynamic properties from full scale record-
ings and FE-modelling of a slender footbridge with flexible connections. Structural
Engineering International, 4:421–426, 2008.

G.K. Rose. Clinical gait assessment: a personal view. Journal of Medical Engineering
and Technology, 7:273–279, 1983.

Department of Civil Engineering - Technical University of Denmark 107



BIBLIOGRAPHY BIBLIOGRAPHY

R. Sachse, A. Pavic, and P. Reynolds. Human-structure dynamic interaction in civil
engineering dynamics: A literature review. The Shock and Vibration Digest, 35(1):
3–18, January 2003.

C. Sahnaci and M. Kasperski. Random loads induced by walking. In Proceedings of the
6th European Conference on Structural Dynamics, Southampton, 7-9 July 2005.

Sétra. Footbridges, Assessment of vibrational behaviour of footbridges under pedestrian
loading. The Technical Department for Transport, Roads and Bridges Engineering and
Road Safety, November 2006.

M. Shinozuka and G. Deodatis. Simulation of stochastic processes by spectral represen-
tation. Applied Mechanics Review, 44(4):191–204, 1991.

R.A. Smith. Density, velocity and flow relationship for closely packed crowds. Safety
Science, 18:321–327, 1995.

J.Th. Snæbjörnsson and R. Sigbjörnsson. Footbridge dynamics and pedestrian induced
vibrations - a case study. In Proceedings of the Third International Conference on
Structural Dynamcis, Prague, June 1999.

J. Sólnes. Stochastic processes and random vibrations, Theory and practice. John Wiley
& Sons, Chichester, England, 1997.

R.J.C. Stanton and G.K. Wanless. Pedestrian movement. Safety Science, 18:291–300,
1995.

S.H. Strogatz and I. Stewart. Coupled oscillators and biological synchronisation. Scientific
American, 269:68–73, 1993.

S.H. Strogatz, D.M. Abrams, A. McRobie, B. Eckhardt, and E. Ott. Crowd synchrony
on the millennium bridge. Nature, 438(7064):43–44, 2005.

E.N. Strömmen. Theory of bridge aerodynamics. Springer, 2006.

L. Sun and X. Yuan. Study on pedestrian-induced vibration of footbridge. In Proceedings
of Footbridge 2008, Third International Conference, Porto, 6-8 July 2008.

Y. Tamura, S. Kawana, O. Nakamura, J. Kanada, and S. Nakata. Evaluation perception of
wind-induced vibration in buildings. Structures & Buildings, 159(SB5):283–293, 2006.

Y. Tanaboriboon, S. S. Hwa, and C. Hoong. Pedestrian characteristics study in Singapore.
Journal of Transportation Engineering, 112(3):229–235, 1986.

P. Terrier and Y. Schutz. Variability of gait patterns during unconstrained walking as-
sessed by satellite positioning (GPS). European Journal of Applied Physiology, 90(5-6):
554–561, 2003.

P. Terrier, V. Turner, and Y. Schutz. GPS analysis of human locomotion: further evidence
for long-range correlations in stride-to-stride fluctuations of gait parameters. Human
Movement Science, 24(1):97–115, 2005.

108 Department of Civil Engineering - Technical University of Denmark



BIBLIOGRAPHY BIBLIOGRAPHY

M.A. Townsend. Biped gait stabilisation via foot placement. Journal of Biomechanics,
18:21–38, 1985.

A. Trovato, S. Erlicher, and P. Argoul. Modeling the lateral pedestrian force on rigid and
moving floors by a self-sustained oscillator. In ECCOMAS Thematic Conference on
Computational Methods in Structural Dynamics and Earthquake Engineering, Rhodes,
Greece, 22-24 June 2009.

F. Tubino and G. Piccardo. Determinstic and stochastic approaches in the vibration
serviceability assessment of pedestrain bridges. In Proceedings of the 7th European
Conference on Structural Dynamics, Southampton, 7-9 July 2008.

H. Uustal and E. Baerga. Physical Medicine and Rehabilitation Board Review, chapter
Prosthetics and orthotics. Demos Medical Publishing, 2004.

C.L. Vaughan. Theories of bipedal walking: an odyssey. Journal of Biomechanics, 36(4):
513–523, 2003.

F. Venuti and L. Bruno. An interpretative model of the pedestrian fundamental relation.
C.R. Mecanique, 335:194–200, 2007.

F. Venuti, L. Bruno, and P. Napoli. Pedestrian lateral action on lively footbridges: A new
load model. Structural Engineering International, 17:236–241, 2007.

B.J. Vickery and A.W. Clark. Lift of across-wind response of tapered stacks. ASCE
Journal of the Structural Division, 98:1–20, 1972.

S. Živanović. Probability-based Estimation of Vibration for Pedestrian Structures due to
Walking. PhD thesis, Department of Civil & Structural Engineering, University of
Sheffield, February 2006.

S. Živanović and A. Pavic. Probabilistic approach to subjective assessment of footbridge
vibration. In 42nd United Kingdom Conference on Human Response to Vibration,
Southampton, UK, 10 - 12 September 2007.

S. Živanović, A. Pavic, and P. Reynolds. Vibration serviceability of footbridges under
human-induced excitation: a literature review. Journal of Sound and Vibration, 279
(1-2):1–74, 2005a.

S. Živanović, A. Pavic, and P. Reynolds. Human-structure dynamic interaction in foot-
bridges. Proceedings of the ICE: Bridge Engineering, 158(4):165–177, 2005b.

S. Živanović, A. Pavic, P. Reynolds, and P. Vujovic. Dynamic analysis of lively footbridge
under everyday pedestrian traffic. In Proceedings of the sixth European conference on
structural dynamics, 2005c.

S. Živanović, A. Pavic, and P. Reynolds. Probability-based prediction of multi-mode
vibration response to walking excitation. Engineering Structures, 29:942–954, 2007.

Department of Civil Engineering - Technical University of Denmark 109



BIBLIOGRAPHY BIBLIOGRAPHY

S. Živanović, I.M. Díaz, and A. Pavić. Influence of walking and standing crowds on
structural dynamic performance. In Proceedings of the 27th IMAC Conference, Orlando,
USA, 9-12 February 2009.

S. Živanović, A. Pavić, and E.T. Ingólfsson. Modelling spatially unrestricted pedestrian
traffic on footbridges. ASCE Journal of Strucutral Engineering, 136(10):1296–1308,
2010.

J. E. Wheeler. Prediction and control of pedestrian-induced vibration in footbridges.
ASCE Journal of the Structural Division, 108:2045–2065, 1982.

J.E. Wheeler. Crowd loading of footbridges. Technical report, Technical Report No. 23,
Main Roads Department, Western Australia, 1981.

M.R. Willford and P. Young. Improved methodologies for the prediction of footfall-induced
vibration. In Proceedings of the 6th European Conference on Structural Dynamics, 2005.

M.R. Willford and P. Young. A design guide for footfall induced vibration of structures.
Technical guide CCIP-016, The Concrete Centre, November 2006.

P. Wirtz and G. Ries. The pace of life - reanalysed: Why does walking speed of pedestrians
correlate with city size? Behaviour, 123:77–83, 1992.

B. Wolmuth and J. Surtees. Crowd-related failure of bridges. Proceedings of the ICE:
Civil Engineering, 156(3):116–123, 2003.

M. Yamasaki, T. Sasaki, and M. Torii. Sex difference in the pattern of lower limb move-
ment during treadmill walking. European Journal of Applied Physiology, 62:99–103,
1991.

J. Yoshida, M. Abe, Y. Fujino, and K. Higashiuwatoko. Image analysis of human in-
duced lateral vibration of a pedestrian bridge. In Proceedings of Footbridge 2002, First
International Conference, 10-12 November 2002.

110 Department of Civil Engineering - Technical University of Denmark



Part II

Appended papers

111





Paper I (Ingólfsson et al., 2010a)

”Pedestrian-induced lateral vibrations of footbridges: Literature review”

E.T. Ingólfsson, C.T. Georgakis & J. Jönsson

Unpublished manuscript

113



114 Department of Civil Engineering - Technical University of Denmark



Pedestrian-induced lateral vibrations of footbridges: Literature review

E.T. Ingólfssona,∗, C.T. Georgakisa, J. Jönssona,

aDeparment of Civil Engineering, Technical University of Denmark, Building 118, Brovej, 2800 Kgs. Lyngby, Denmark

Abstract

The earliest scientific descriptions of excessive pedestrian-induced lateral vibrations are dated back

to the 1970s, but it was not until the beginning of the new millennium that bridge engineers fully

comprehended the potential negative effect of pedestrian crowds on long-span footbridges. Following the

unexpected serviceability failures of Paris’ Solferino and London’s Millennium footbridges in 1999 and

2000, a new tract of research initiated, focused on understanding the phenomenon which has become

known as Synchronous Lateral Excitation (SLE).

In this paper, a comprehensive review of studies related to pedestrian-induced lateral vibrations of

footbridges is provided and is primarily based on studies published within the last decade.

Research in this field can generally be split into three categories; (i) full-scale testing of existing

bridges subject to crowd loading, (ii) laboratory studies on human-structure interaction between single

pedestrians and laterally moving platforms and (iii) mathematical modelling of the pedestrian-induced

load. It is shown herein, that a significant amount of research has been carried out within each of the three

categories, but there is only a limited interconnection, particularly between the mathematical models on

one side and the empirical observations on the other. The main purpose of this review is to provide this

link, through a detailed and critical review of publications within each of the three categories.

Key words: Pedestrian-induced lateral vibrations, Footbridges, Synchronisation, Full-scale testing, load

models, laboratory platforms, Ground Reaction Forces
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1. Introduction

With the promise of extensive urban regeneration, isolated segments of the landscape are being in-

creasingly connected by architecturally novel and challenging footbridges [1–3]. This has led to a boom

in footbridge design and construction, allowing recent examples to easily match road bridges in terms of

cost and span. The challenges in footbridge design lie in the fulfillment of the architectural demands for

long, light and slender structures. And whilst the architects and engineering consultants are constantly

improving material usage and cost, many new footbridges are experiencing excessive vibrations for which

extensive retrofit costs are being incurred. The temporary closures of both pont de Solférino in Paris

in 1999 and then the London Millennium Bridge in 2000, following excessive pedestrian-induced lateral

vibrations during their inauguration, [4, 5], are probably the most famous and publicised cases of this.

Subsequent research revealed that the potential negative effect of pedestrian-induced lateral forces on

footbridges was not limited to the innovative design of the two bridges, but had been observed on several

other bridges of different shapes, sizes and function in the past.

In fact, any bridge with sufficiently low natural frequency subject to a sufficiently large number of

pedestrians can suffer from similar excessive vibrations.

Therefore, an international conference devoted to the design and dynamic behaviour of footbridges

(also known as ”Footbridge 2002”) was established in Paris in 2002 and with 69 paper contributions it

attracted researchers, engineers and architects from all around the world. Several work groups were cre-

ated in the beginning of this century to define design guidelines for footbridges [6]. The first international

guide was published in 2005 by fib (federation internationale du beton) dealing with general design of

footbridges, including design from dynamics loads, [7]. The French Association of Civil Engineers and the

French road authority Sétra published in 2006 a comprehensive guide for dynamic design of footbridges

[5]. A European research project SYNPEX was established in 2003 for developing advanced load models

for synchronous pedestrian excitation and optimised design guidelines for steel footbridges. In 2007 and

2008, the results from their work were published as a guideline, [8–11]. A simultaneous effort commis-

sioned by the UK Highway Agency was undertaken by TRL Limited and Flint & Neill Partnership to

define design guidelines in the Highway Agency’s Design Manual for Roads and Bridges, [12–16]. The

methodology has further been adopted in the UK National Annex to Eurocode 1991-2:2003, [17, 18].

During the third international conference (”Footbridge 2008”) a workshop entitled ”Footbridges vibra-

tion design: worldwide experience” was held, featuring ten invited contributions with focus on design

recommendations, guidelines and case studies on human induced vibration and vibration mitigation. The

contributions have ben published in slightly modified versions as a book entitled ”Footbridge Vibration

Design” [19].

Following the extensive recent research effort, an increasing number of engineers now put an effort

in the design stage to accommodate the potential threat of pedestrian induced lateral vibrations, [20–

23]. Typical countermeasures involve the design of a vibration mitigation device such as a Tuned Mass

Damper (TMD) with subsequent experimental modal analysis and pedestrian response tests for tuning

and verification purposes [24–27].
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Despite this tremendous research effort, several questions relating to lateral pedestrian induced vibra-

tions still remain unanswered. Many examples of bridges have been reported as ’lively’ and an increasing

number of full scale pedestrian crowd tests have been perform to verify the existence of ”synchronous

lateral excitation” (SLE) and to determine the critical number of pedestrians needed to trigger SLE.

However, there is a general dispute about the basic mechanism of pedestrian-induced lateral forces and

several different hypotheses and pedestrian load models exist with origin from different corners of the

scientific community.

Pedestrian induced lateral vibrations is a sub-branch of a large research area within vibration service-

ability of structures and is mainly a concern for footbridges with natural frequencies of lateral vibration

modes below approximately 1.3Hz. In recent years several papers have been published within the field of

vibration serviceability of structures. Especially it is worth mentioning the review devoted to footbridge

structures by Zivanovic et.al. [28], in which a comprehensive overview of the entire field of vibration

serviceability is given. Also worth mentioning is the review by Racic et al. [29] focused on modelling of

human induced walking forces, largely seen from a bio-mechanical point of view and that of Venuti and

Bruno [30] which is primarily focused on crowd modelling for footbridge applications.

The purpose of this paper is to provide a comprehensive review of the state-of-the-art, with emphasis

on published cases of pedestrian-induced lateral bridge vibrations, the results from experimental studies

and the recent development in modelling of pedestrian loading and its effect on structures. The content

of this review is presented (nearly) chronologically and can be divided into five parts. Following an

introduction to early cases of lateral vibrations and lateral ground reaction forces from pedestrians on a

fixed floor, a thorough presentation of the work made during the retrofit period of the Solférino Bridge

in Paris and the London Millennium Bridge is given. Since 2002, more researchers have been devoted

to the determination of pedestrian loads on flexible footbridges and several attempts have been made to

quantify the interaction between a pedestrian and a laterally moving structure. The main results from

experimental studies on lateral loads on a moving structure are summarized in Section 5 and results from

reported full scale measurements of lively pedestrian bridges are presented in some detail in Section 6.

In the final section, a detailed description of the state-of-the-art in the development of pedestrian load

models and response evaluation techniques is given.

2. Early cases of excessive lateral bridge vibrations

To the authors’ knowledge, the earliest reported incidents of excessive lateral vibrations induced by

crowds are dated back to the late 1950’s, one involving a road/railway bridge in China (the Wuhan

Yangtze Bridge) in 1957 [31] and another one involving a pedestrian suspension bridge in Kiev following

its opening in 1958 [32].

This shows that the problem of crowd-induced lateral vibrations is not limited to footbridges. In fact,

several large road bridges around the world have suffered from this problem during exceptional crowd

events, such as opening day events [33], public demonstrations or festive events [4, 34]. Even the 120

year old Brooklyn Bridge in New York City swayed remarkably when traversed by crowds of pedestrians
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during a power black out, leading to several complaints from concerned citizens [35, 36]. Characteristic

for these cases is that there are no reports on how or whether these issues were assessed any further or

if they have been observed on other occasions.

The first assessment of lateral crowd induced excitation was offered by Petersen [37] (as reviewed by

Bachmann and Ammann [38]), who observed strong lateral vibrations of a steel arch footbridge at Erlach

in Germany, during crossing of about 300-400 pedestrians. The vibration occurred on the 110m main

span of the bridge at frequency around 1.1Hz and were explained as a consequence of a lateral sway

of the centre of gravity of the human body occurring at half the pacing frequency, resulting in resonant

vibrations and a synchronisation of the step with the oscillation of the bridge, [39]. In this particular

case, the vibration problem was solved by installing a horizontal Tuned Mass Damper (TMD).

Figure 1: Toda Park Bridge in Toda City, Japan (T-Bridge). (Figures from [40] (left) and [41] (right))

One of the most cited incidents of excessive lateral vibrations occurring in the last century is related

to the Toda Park Bridge in Toda City, Japan (T-bridge) [42, 43]. The bridge is a cable-stayed bridge

with the overall length of 179m divided into a main span (134m) and a side span (45m), see Fig. 1.

The frequency of the fundamental vibration mode was reported 1.0Hz but would drop to 0.91Hz when

fully congested with people. The bridge that connects a stadium and a bus terminal was traversed by

around 20 000 pedestrians following a boat race with up to 2000 people simultaneously on the bridge

(corresponding to a crowd density of 2.1 ped/m2). During this event, the lateral acceleration of the

bridge girder was an order of magnitude larger than predicted when assuming resonance pacing rate

of all pedestrians and mutually independent (random) phases. Video analysis was used to track the

head movement of randomly selected pedestrians and it was found that up to 20% synchronised their

walking to the movement of the bridge. This observation was used to describe the phenomenon of human-

structure phase synchronisation (or ”lock-in” as follows, [42]: ”First a small lateral motion is induced by

the random lateral human walking forces, and walking of some pedestrians is synchronised to the girder

motion. Then resonant force acts on the girder, consequently the girder motion is increased. Walking of

more pedestrians are synchronised, increasing the lateral girder motion. In this sense, this vibration has

a self-excited nature. Of course, because of adaptive nature of human being, the girder amplitude will

not go to infinity and will reach a steady-state”. It is worth noting that this description, although more

detailed, is essentially similar to that of Petersen [37], from 1972.

Finally two 3D steel truss footbridges designed by the world renown architect and structural engineer
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Santiago Calatrava, for the 1998 World Exposition in Lisbon exhibited strong lateral vibrations when

traversed by only few pedestrians. The bridges that connect the Orient Railway Station to the Vasca da

Gama Shopping Centre are now closed to the public, partly due to their poor dynamic performance [44].

3. Lateral footstep forces on a rigid surface

During walking, the ground reaction force (GRF) occurs due to acceleration (and deceleration) of the

centre of mass (CoM) of the body. In general the GRF is a three dimensional vector which varies in time

and space due to the forward movement of the person [29].

As reviewed by Zivanovic et al. [28], early studies on the lateral component of the GRFs were carried

out by Harper et al. [45], which revealed that the horizontal component of the force was generally very

small and that its lateral component is caused by balancing of the body during walking. Andriacchi et

al. [46] measured single footstep forces using a force plate and report that the peak force amplitudes

(vertical and lateral) increase numerically with an increase in the walking speed. Similar observations

were made more recently by Masani et al. [47]. Chao et al. [48] measured single footstep forces from

several persons and found that the peak lateral forces (F1 to F3 in Fig. 2) are around 4 to 5% of the

body weight for men and little less for women, but with a considerable difference between individuals.

It was further found that the sex-related variation in the GRF was more significant than the age-related

variation.
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Figure 2: Typical shape of a walking force from two footsteps (Figure reproduced from [28])

Several parameters influence the shape of the GRFs which is governed by large intra and inter-

subject variability. The intra-subject variability is related to changes in the GRF from the same person,

measured at two different time instances, whereas the inter-subject variability refers to the variability

between different people [28, 29]. Variations in the gait parameters during continuous walking is a form

of intra-subject variability which causes random fluctuations in the shape of the GRF from each footstep.

However, perfect periodicity in the walking is often assumed as it implies that the force time history of

a series of consecutive steps can be modelled as a Fourier series with fundamental harmonic equal the

duration of two consecutive steps (Fig. 2):

FL(t) =
n∑

j=1

Gj sin (2πjfwt− φj) . (1)

The fundamental frequency, fw, of the Fourier series therefore equals the walking frequency (defined

as half the pacing rate fp) and Gj and φj represent the load amplitude and phase angle of load harmonic
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j, respectively. Often the load amplitude is defined through the body weight normalised dynamic load

factor (DLF), DLFj = Gj/W . According to Bachmann and Ammann [38] the value of the first five DLFs

are DLFj = {0.039, 0.01, 0.042, 0.012, 0.015}, j = 1 . . . 5. In a later publication by same authors, the

values DLF1 = DLF3 = 0.1 are suggested for design purposes [49].

Other researchers have similarly determined the DLFs from measured GRFs using instrumented force

plates [50, 51]. Butz [50] reports that the mean value for the fundamental DLF is 0.038, which is based

on measurement from 98 persons at various age crossing an outdoor catwalk with integrated force plates.

Crowe et al. [52] measured DLFs for both the first and the second load harmonics and the mean values

were reported as DLF1 = 0.046 and DLF2 = 0.003 .

Non-zero load harmonic at even integer harmonics implies that the walking is imperfect. As already

indicated, this intra-subject variability is caused by small variations in the load pattern for each step

during the walking, e.g. due to difference between GRF from strong and weak leg [53]. In a load

modelling perspective, this was initially addressed by Brownjohn et al. [54] who measured continuous

vertical loads using an instrumented treadmill and subsequently suggested that the load could be treated

as a narrow-band random process.

Later, Pizzimenti [55] used an instrumented treadmill to measure the lateral component of the GRFs

from 66 individuals and Ricciardelli and Pizzimenti [56] defined DLFs for an average (perfectly periodic)

footprint as the sum of the contributions in the Fourier spectra of the measured force in a narrow band

around the frequency of the respective harmonic. The characteristic values (with 95% probability of

non-exeedance) of the first five DLFs were reported as DLFj,k = {0.04, 0.0077, 0.023, 0.0043, 0.011},
j = 1 . . . 5. In their model, the band width was taken as Δfj = πζjjfw (jfw: frequency of jth load

harmonic, ζj : a structural damping, assumed 1%) following the approach of Ohlsson [57] and Eriksson

[58].

Due to the non-deterministic nature of the loading, a frequency-domain representation was offered by

Pizzimenti and Ricciardelli [59] through a characteristic Power Spectral Density (PSD) for the first five

load harmonics. The general (non-dimensional) form was given as:

SFL
(f) · f
F̃ 2
Lj

=
2Aj√
2πBj

exp

{
−2

[
f/jfw − 1

Bj

]2}
(2)

where Aj and Bj are parameters determined by the data fit and F̃ 2
Lj is the area of the PSD around the

jth harmonic, see Table 1.

Studies have shown that there is a variability between overground and treadmill locomotion and in

particular an increase in the cadence and a decrease in the stance period have been observed for walking

on treadmills [60, 61]. According to Sahnaci and Kasperski [62], force plate measurements only capable

of measuring single footsteps introduce a bias in the GRF opposed to natural walking because the test

subjects have to adjust their walking speed and step length when approaching the force plate. For

this reason they used a platform supported on load cells, allowing measurements of GRFs for several

consecutive footsteps. The fundamental DLF from 251 (195 male and 56 female) test subjects is shown

in Fig. 3. It is noted that the fundamental load amplitudes (with characteristic value DLF1,k = 0.04) as
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Table 1: Parameters for PSD in Eq. (2) according to Pizzimenti and Ricciardelli [59]

j = 1 j = 2 j = 3 j = 4 j = 5

Aj 0.96 0.73 0.879 0.55 0.74

Bj 0.0616 0.039 0.0288 0.037 0.025(
F̃ 2
Lj/F̃

2
L

)
k

0.81 0.050 0.277 0.047 0.072

F̃ 2
L (mean) 0.0012W 2

F̃ 2
L (characteristic) 0.0020W 2

reported by Ricciardelli and Pizzimenti [56] are generally lower than those in Fig. 3. According to Sahnaci

and Kasperski [51] this difference may be attributed to a general difference between GRFs as measured

on a treadmill compared to overground walking. However, since this value represents an equivalent DLF

which takes into account imperfections during walking and the narrow band of the structure, a direct

comparison between the DLFs from the two studies is not possible. A further discussion on the difference

between treadmill and overground walking is presented by Racic et al. [29].

Figure 3: Measured DLFs for the first load harmonic. (Figure from [53])

A promising method to overcome the trade-off between short duration measurements on platforms

of limited length and the subjectivism associated with treadmill walking is to use pressure insoles to

measure the GRF from walking. Fong et al. [63] describes a system capable of measuring all components

of the GRF, but to the authors’ knowledge GRFs from continuous walking have not yet been published.

The investigations presented in this section are related to the lateral GRFs measured on rigid surfaces

such as single footprint force plate fixed to the ground, a treadmill or laterally restrained platforms.

However, for bridges with low natural frequencies, the effect of the lateral motion on the GRF and the

change in the crowd dynamics due to human-structure interaction must be accounted for. Until the

beginning of this millennium, only few studies existed about the effect of a laterally moving surface on

the GRFs. However, with the serviceability failures of pont de Solférino in Paris and the Millennium
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Bridge in London a new tract of research was established, devoted to the understanding of the interaction

between pedestrian walking and a laterally moving surface and in particular its effect on the lateral GRF.

Therefore, the remaining part of this review is based on research carried out in the period between 2000

and 2010.

4. Paris pont de Solférino and London Millennium Bridge

On December 15, 1999, pont de Solférino footbridge (now called Passarelle Léopold-Sédar-Senghor)

across the Seine in Paris, linking the Musee d’Orsay to the Tuileries Gardens was opened to the public

for crossing. On the opening day of this 140m long steel arch footbridge, unexpected lateral oscillations

developed and the bridge was subsequently closed to the public. A comprehensive test program was

undertaken which involved modal testing of the structure, pedestrian crowd tests and installation of 14

TMDs with subsequent testing and monitoring of the bridge. In November 2000, the bridge was reopened

after almost a year of temporary closure.

An almost identical scenario played out in London, which involved the Millennium Bridge, designed by

a team of architect Lord Norman Foster (Foster and Partners), sculptor Sir Anthony Caro and engineering

consultants Ove Arup Partnership. The London Millennium Bridge, which connects St. Paul’s Cathedral

with the Tate Modern Gallery was the first entirely new bridge across the Thames in London for over a

century, or since Tower Bridge was completed in 1894 [64]. The bridge is an extremely shallow suspension

bridge in three spans; a south span of 108m, a central span of 144m and a north span of 81m. The

bridge deck has a width of 4m and consists of aluminium box sections creating a very light superstructure

(2 t/m) [4]. In the design competition submission, the bridge was described as a ”’thin’ blade of stainless

steel and cables, whilst at night it will appear as a ’blade of light’” [65].

Figure 4: Pont de Solférino in Paris (left)(Picture from http://www.mimram.com/) and the London Mil-

lennium Bridge (right).

On the opening day, 10 June 2000, large lateral vibrations occurred when between 80 000 and 100 000

people crossed the bridge, with up to 2000 people on the deck at any one time [4, 34]. Large amplitude

vibrations in four different vibration modes were reported; on the Southern span at frequency around

0.8Hz, at the central span in the first and second lateral vibration modes at 0.48Hz and 0.95Hz respec-
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tively and more rarely on the Northern span at frequency around 1Hz. On 12 June 2000, it was decided

to close the bridge for pedestrian traffic, while a retrofit solution could be developed and implemented.

During the next 18 months an extensive test program, similar to that in Paris was undertaken. One of the

main observations made on the opening day was that the bridge exhibited a stability-like behaviour. The

bridge vibrated excessively when congested by a large crowd of people, but if the number of pedestrians

was reduced or if they stopped walking, the bridge vibration would reduce substantially [4, 66].

On 14 June, an interesting attempt to explain the cause of the excessive vibrations was provided by

Professor Josephson, in a letter to The Guardian [67], stating that ”the problem has little to do with

crowds walking in step: it is connected with what people do as they try to maintain balance if the surface

on which they are walking starts to move”.

4.1. Full scale testing of pont de Solférino

The full scale testing of the bridge involved a modal identification of the empty structure which

revealed ten vibration modes with frequencies lower than 5Hz, three of which were identified as critical;

a horizontal (lateral) mode with coupled torsional movement at frequency 0.81Hz and two torsional modes

at 1.94Hz and 2.22Hz respectively. The generalised mass of the first vibration mode was reported as

approximately 400 t [68]. The damping ratios (of the empty structure) were extremely small, but increased

considerable with the presence of stationary pedestrians (in total 116 people) [69]. This human-structure

interaction for passive (standing) people is well known [70], whereas the effect of walking on the apparent

modal damping is less researched. However, recent research suggests that also walking pedestrians add

damping to perceptibly vibrating structures in the vertical direction [71–74]. The characteristics of the

first six vibration modes are shown in Table 2.

Table 2: Modal properties of pont de Solférino without added damping

Description Frequency Damping Damping Modal mass

(empty) (with 116 people)

(Hz) (%) (%) (tonne)

Symmetric horisontal mode 0.81 (0.70)1 0.38 (3.5)1 1.6 400

First anti-symmetric vertical mode 1.22 - - not reported

First anti-symmetric torsional mode 1.59 0.2 - 0.5 - not reported

First symmetric vertical mode 1.69 0.49 - not reported

First symmetric torsional mode 1.94 0.50 1.36 not reported

Second symmetric torsional mode 2.22 0.28 1.60 not reported

1 After installation of 6 horizontal TMDs.

The first series of crowd tests was performed on the bridge in February 2000 using up to 122 pedes-

trians test subjects performing different types of rhythmic activities. Dziuba et al. [69] report that a

large number of pedestrian could produce excessive lateral response of the first mode with acceleration
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amplitudes up to 0.6m/s2 (displacement 24mm). A total of 14 TMDs (weight 2500 kg) was installed on

the bridge, 6 of which were designed to suppress horizontal vibrations. As such, the modal frequency of

the fundamental lateral mode dropped to around 0.7Hz and damping increased to 3.5%.

In 2002, another test campaign was arranged, which involved up to 386 volunteering pedestrians.

In the main crowd tests (with inactive TMDs), the number of pedestrians on the bridge was gradually

increased to a maximum of 207 to 229 people and the walking speed of the pedestrians was varied between

very slow and slow walk in an attempt to match the natural frequency of the first mode without enforcing

a controlled walking frequency. In each of the three tests and for each walking speed the group circled

the bridge for about 15 minutes. The equivalent number of resonance pedestrians was defined by Charles

and Bui [75] as:

Neq =
π

2

√
2

T

∫ t+T

t

F (τ)q̇(τ)dτ

F1p

√∫ t+T

t

[q̇(τ)]
2
dτ

(3)

where T is the modal period, F (t) is the lateral modal force and F1p is the amplitude of the first load

harmonic of an equivalent single resonant pedestrian walking at a frequency that matches the modal

frequency. The modal displacement is denoted q(t) and the dot represents a differentiation with respect

to time. The physical interpretation of Neq is the number of uniformly distributed and synchronised

equivalent pedestrians, which input the same amount of energy into the mode per oscillation period as

that of the entire group [75]. The dynamic modal pedestrian force was derived from back-analysis of the

measured acceleration response.

In Fig. 5, an acceleration time history is shown from one of the crowd tests together with the

equivalent degree of synchronisation defined as Neq/N . Charles and Bui [75] note that the three peaks in

the response are due to uneven distribution of the pedestrians during the tests. Based on the circulating

tests as well as the transient tests with a large number of people crossing the bridge in one group, it was

concluded that excessive lateral vibrations could be initiated and that synchronisation of the pedestrian

movement to that of the bridge occurred when the acceleration reaches a threshold of about 0.1 to

0.15m/s2. It was further found that around 140 pedestrians were needed to obtain acceleration response

exceeding 0.1m/s2.

4.2. Full scale testing of the London Millennium Bridge

In July 2000, some initial full-scale tests were carried out on the bridge with around 100 employees

from Arup. According to Dallard et al. [4], these tests were made to refine the load models for the

pedestrians. To the authors knowledge, no results from these tests have been published.

The retrofit solution adopted on the Millennium Bridge consisted of 37 viscous dampers and 29 pairs

of vertical TMDs. Prior to their installation, a modal identification of the structure was performed

to validate the theoretical models and to test the effect of three prototype dampers. A custom made

horizontal actuator with a moving mass of 1000 kg was used to identify the lateral vibration modes,

11



0.6

0

0.2
0.3
0.4
0.5

A
cc

el
er

at
io

n 
(m

/s
  )2

D
eg

re
e 

of
 sy

nc
hr

on
is

at
io

n 
(-

)

Time (s)

0.1

-0.1

-0.5
-0.4
-0.3
-0.2

-0.6

Figure 5: Lateral acceleration response and degree of synchronisation during circulations of an increasing

number of pedestrians walking randomly at slow speed (Figure reproduced after [75]).

Table 3: Modal properties of the Millennium Bridge without added damping (Table reproduced with

permission from Arup Partnership [76])

Description Frequency Damping Modal mass

(Hz) (%) (tonne)

First lateral mode of central span (CL1) 0.48 - 0.49 0.75 - 0.77 128 - 130

First lateral mode of Southern span (SL1) 0.80 - 0.81 0.6 - 0.7 172

Second lateral mode of central span (CL2) 0.95 - 0.99 1.3 145 - 148

First lateral mode of northern span (NL1) 1.04 0.32 113∗

Third vertical mode of central span (CV3) 1.15 - 1.16 0.80 155

Fourth vertical mode of central span (CV4) 1.54 - 1.55 0.55 140

Fifth vertical mode of central span (CV5) 1.89 - 1.91 0.58 - 0.65 135

Sixth vertical mode of central span (CV6) 2.32 - 2.33 0.95 135

∗ Estimated from FE analysis due to poor quality measurements
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Figure 6: Crowd tests on the London Millennium Bridge (Shown with permission from Arup Partnership).

whereas a counter-rotating eccentric mass shaker was used for the vertical ones. Four lateral and four

vertical vibration modes were identified for the empty structure, see Table 3, [76–78].

On 19th December 2000, 275 Arup employees were used for crowd tests on the structure, (Fig. 6) with

the primary purpose to validate the pedestrian loading model and to verify the stability like behaviour

as observed during the opening days. In total, 14 different pedestrian crowd tests were made, most in

which the number of pedestrians on the bridge was gradually increased. In Fig. 7 two different lateral

acceleration response time histories are shown (measured in two different test series); on the left the

response of the northern span (NL1) is shown and on the right, the response of the central span (CL1).
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Figure 7: Lateral accelerations measured on the Millennium Bridge during different crowd tests. Left:

Vibrations of the northern span at frequency 1.0Hz (Figure from [34]). Right: Vibrations of the centre

span at frequency 0.48Hz (Reproduced with permission from Arup Partnership).

The test verified the initial observations that for a certain number of pedestrians, the response was

limited, but a small increase beyond a critical number resulted in diverging response amplitudes. From

simple energy considerations, it could be shown that the magnitude of the correlated (modal) pedestrian
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force, Fcorr, being the component in phase with the modal velocity could be written as [4]:

Fcorr = FD + 2M
1

ω0

dq̈0
dt

(4)

where FD is the damper force (cq̇0 for linear viscous damping), M is the modal mass, ω0 is the angular

modal frequency and q̇0 and q̈0 are the amplitudes of the velocity and acceleration respectively. An

important finding from the pedestrian tests is that the correlated pedestrian force was strongly related to

the velocity of the structure, which suggests that pedestrians act as negative dampers on the structure,

Fig. 8. However, an equally important observation was that the vertical response of the structure at twice

the modal frequency did not show any disproportional increase in the response which would be expected

as a consequence of synchronisation of the stepping frequencies. In January 2002 final pedestrian tests

were made after installation of the damping devices and since its reopening no excessive vibrations have

been reported on the bridge.
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Figure 8: Correlated pedestrian force per person as function of the local velocity of the structure, derived

from the response in Fig. 7 (right) as observed on the Millennium Bridge (Figure reproduced from [4]).

4.3. Laboratory tests

In addition to the full-scale testing of the London Millennium Bridge, a series of laboratory tests were

undertaken during the eighteen month retrofit period. The experimental campaign involved walking on

spot on a shaking table at the University of Southampton [4] and walking across a 7.3m laterally driven

test platform at Imperial College (see Fig. 9) [79]. It was reported that the lateral DLF increases with the

vibration amplitude but is vibration frequency independent. The tests also revealed that the probability

of ”lock-in” increases with the vibration amplitude, from between 30 -40% at 5mm amplitudes up to

around 80% at 30mm [80]. A summary of published test results is shown in Fig. 10. The number of

people used in the tests and the statistics of the results are not presented in the papers but the results

provide a useful insight into the complexity of human-structure interaction in the lateral direction.

The research project related to the Solférino bridge was initiated by the French Road Directorate and

involved a suspended laboratory platform (7m by 2m) with a variable lateral frequency in the range 0.5

to 1.1Hz [75]. The dynamic (modal) pedestrian force was derived from the displacement response and its

derivatives, obtained through numerical differentiation. Both transient response tests and tests where a
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treadmill was placed on the platform were carried out and the main conclusions from the tests were that

the peak value of the pedestrian force varies from 20 to 100N, with mean value of the first load harmonic

being 35N, but no correlation with the velocity of the structure was observed. Further, it was concluded

that a synchronisation phenomenon was observed with a distinct threshold of around 0.15m/s2, [5, 75].

Figure 9: Platform tests commissioned by the French Road Directorate (left) and Arup (right), (Pictures from

[75] and http://www.arup.com/millenniumbridge/.)

McRobie et.al. [81] constructed a suspended platform (weight 1.2 – 2.0 t) with a lateral frequency

between 0.7Hz and 0.9Hz equipped with a treadmill to study human-structure interaction and the

potential for lock-in. Generally, it was observed that people tend to spread their feet further apart

and walk at the same frequency (with constant phase) as that of the platform. The displacement of the

rig was measured and by back-analysis of the response it was reported that the load amplitude could

reach 300N with the component in phase with the platform velocity (the correlated pedestrian force) up

to 100N at 100mm vibration amplitudes [81]. The authors further describe the load as a consequence of a

sudden change in the walkers gait rather than a velocity dependent increase. They argue that the increase

in the overall correlated force observed on the Millennium Bridge could be attributed to an increased

probability in gait transition (more pedestrians changed gait) as the vibration amplitude increased, which

is consistent with the results presented in Fig. 10.

Video analysis was used by Fujino et.al. [42] to track the lateral head motion of randomly selected

pedestrians during congested periods on the T-Bridge in Japan. They found that the amplitude of the

head lateral motion increased with the lateral bridge amplitude and they concluded that in order to

maintain body balance, people widen their gait. According to Fujino et.al. [42], laboratory experiments

using a laterally moving platform, showed that people synchronise to a lateral motion for amplitudes in

the range 10 − 20mm. On the T-bridge, the steady-state vibration amplitude reached approximately

10mm causing 20% of the pedestrians to synchronise to the vibration [42]. This is slightly lower than

what the results from the Imperial College tests indicate (Fig. 10), where the probability of ”lock-in” is

30 − 50% for a vibration amplitude of 10mm.

In more recent papers [82, 83], Yoshida et al. also used the T-bridge to investigate the synchronisation

of pedestrians, through an image processing technique. The data was used to estimate the pedestrian
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Figure 10: DLF and probability of ”lock-in” for pedestrians walking on a vibrating surface. (Figure reproduced

after [4])

forces and they report that during vibration amplitudes of 9mm the average correlated pedestrian force

amplitude is around 3.3N [82], which is considerably lower than the forces reported from the Millennium

Bridge (Fig. 8).

In a later publication by Yoshida et.al. [83] it was concluded that on average 60% of the pedestrians

had synchronised their pacing frequency to the lateral vibration frequency of the bridge during an event

with large lateral response. Here the term ”synchronisation” was attributed to pedestrians walking at a

frequency ±0.1Hz the vibration frequency of the bridge (approximately 0.9Hz), but not necessarily at

constant or equal mutual phases. Bearing in mind that the typical standard deviation on pacing rate is

0.05 to 0.10Hz [84], a considerable number of pedestrians will fall within the group of being synchronised,

simply because their natural choice of footfall rate falls within the above mentioned boundaries.

4.4. Early analytical approaches

Arup’s hypothesis, supported by the pedestrian crowd tests, is that the lateral pedestrian force has

a component in phase with (correlated pedestrian force) and proportional to the velocity of the bridge

during ”lock-in”, see Fig. 8. In this case, the correlated pedestrian force can be expressed as [4]:

Fcorr(t) = cpu̇(t) (5)

where cp = 300Ns/m is the velocity proportional lateral force coefficient and u̇(t) is the lateral velocity

of the bridge. This finding led to Arup’s stability criterion which can be expressed in terms of a critical

number of pedestrians that will cancel the inherent structural damping and eventually lead to excessive

vibrations, [4]:

Ncr =
4πζf0M

cp
1

L

∫ L

0

[Φ(x)]2dx

. (6)
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The quantities, ζ, M , f0, Φ(x) represent the modal damping ratio, mass, frequency and shape of the

lateral mode in question and L is the overall bridge length. This formula is also referred to as Arup’s

formula or Arup’s stability criterion.

A different interpretation was given by Danbon and Grillaud [68], who define the load of the correlated

(or synchronised) portion of the pedestrians as:

F (x, t) = Gbρφ(u) cosωt (7)

where G = 23N is an average value of the amplitude of the first load harmonic from a pedestrian

walking on a stationary surface, b is the width of the footbridge, ρ is the crowd density (persons/m2)

and φ(u) is the portion of the pedestrians who are synchronised with the lateral movement of the bridge.

The parameters in the model were determined from fitting the model to the measured response on the

Solférino bridge. The synchronisation function φ(u) was chosen as a bi-linear function, such that the

synchronisation increases linearly from 5% (at u = 1 – 2mm) to maximum (φ = 0.80 – 1.0 ) when u = 5

– 6mm.

Based on the results of the laboratory experiments at Imperial College, Newland [85, 86] presented

a feedback model of synchronous lateral excitation in which the feedback force is proportional to the

displacement of the structure rather then the velocity. Mathematically, the feedback model was ex-

pressed in terms of the Fourier transforms X(iω) and Y (iω) of the modal excitation force and the modal

displacement respectively:

Y (iω) = H(iω) {X(iω) + α(iω)Y (iω)} . (8)

The complex frequency response function and the modal force exerted by the pedestrians per unit

modal displacement are denoted H(iω) and α(iω) respectively. Furthermore, he assumes that the nature

of the synchronisation is such that people will naturally fall into step with each other and adjust their

phases such as to increase the motion of the bridge to a maximum. This assumption leads to a stability

criterion similar to the one in Eq. (6). The justification for assuming that people will adjust their phases

such that the maximum response is based on a description of pedestrian behaviour given by Dallard et.al.

[34].

In a later paper, Newland [87] proposed a simplified load model in which the load transferred to

the pavement by the walker is modelled as two inertia force terms: ”The first arises from the natural

displacement of a person’s centre of mass while walking on a stationary pavement, and the second from

the additional displacement that occurs as a consequence of movement of the pavement”, [87]. The model

takes the following form:

F (t) = m0βÿ(t) +m0αβü(t−Δ) (9)

where y(t) is the natural movement of the pedestrian’s centre of mass, u(t) is the movement of the

pavement, m0 is the mass of a single pedestrian and Δ is a time lag. The coefficient α = 2/3 was derived

based on the platform test at Imperial College presented in Fig. 10 and β is a synchronisation factor.
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Based on this model, the damping ratio required for the bridge to be stable was derived as function of

the modal mass of the bridge, M and that of the pedestrians, Mp, as ζ > 1
2αβMp/M .

It is worth mentioning an interesting analogy to wind engineering presented by McRobie and Mor-

genthal [88] where the non-dimensional ”Pedestrian Scruton Number” was proposed as a measure for the

susceptibility of a pedestrian bridge to excessive vertical vibrations. Newland [85] used this analogy to

define the pedestrian Scruton number for lateral vibrations as:

Scp =
2ζM

Mp
(10)

where Scp is the pedestrian Scruton number, M is the modal mass of the bridge and Mp is the modal

mass of pedestrians. Now Arup’s stability criterion in Eq. (6) can be rewritten in terms of a minimum

Scruton number as:

Scp >
cp

2πf0m0
. (11)

Newland’s stability criterion can also be written this way, to yield Scp > αβ as a criterion for stable

bridge behaviour, [87].

5. Lateral footstep forces on a moving surface

The importance of human-structure interaction was highlighted with the the problems associated

with the Solférino Bridge in Paris and the London Millennium Bridge. As such, several researchers have

investigated the behaviour of pedestrians walking on various forms of laterally moving surfaces.

5.1. Walking on instrumented platforms

Rönnquist [89] measured lateral GRFs during crossing of a 4m long suspended platform with ad-

justable lateral frequencies which varied between 0.75Hz, 0.84Hz, 0.95Hz and 1.14Hz. For each platform

frequency, three different pacing rates were selected and the total of 1087 footsteps were recorded, but

using only four different test persons. The study revealed that the lateral load increases with the lateral

acceleration of the platform and also as the walking frequency approaches the natural frequency of the

platform, [89]. Rönnquist and Strømmen [90] defined an equivalent DLF, calculated such that a single

waveform with weight normalised amplitude DLFeq contains the same impulse as the overall weight nor-

malised measured footstep force. An expression for the DLF as a function of the pedestrian detuning

away from the resonance frequency (fw − fn) and the structural acceleration was given in [90] as:

DLFeq = 0.145− 0.1 exp

{
−
(
0.45 + 1.5 exp

[
−1

2

(
fw − fn
0.07

)2
])

ü1.35
0

}
(12)

where ü0 is the amplitude of the structural acceleration and fw − fn is the pedestrian de-tuning from

the natural frequency of the structure. Ronnquist [89] also defined the first four DLFs of the lateral

force obtained from a Fourier analysis of two consecutive footsteps. The DLF of the first harmonic was

almost identical to that in Eq. (12) and is not repeated here. The DLF for the higher harmonics were
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DLF2 = 0.010 + 0.008 ü and DLF3 = 0.015 and DLF4 = 0.005 . No information was provided regarding

the phase of the load harmonics, thus no distinction is made between added mass or added damping

(positive or negative). Furthermore, the platform used in the study was light and the measured footstep

forces are applicable to accelerations in excess (up to 2m/s2) of what is normally considered acceptable

on a footbridge. However, Rönnquist and Strømmen state that for this reason their results provide a

conservative estimate to the load induced by pedestrians on a laterally moving surface [89].

Butz [50] used a laterally driven platform equipped with four integrated force plates (see Fig. 11) to

measure GRFs from 98 different persons and to quantify their degree of synchronisation. The platform

(length 12m) was driven in a sinusoidal lateral motion at frequencies ranging from 0.6 to 1.5Hz with

displacement amplitudes in the range 3 to 40mm. The lateral GRFs were measured for slow, normal and

fast walking speed. Three different degrees of synchronisation were reported; 1) crossing is completely

synchronised, 2) crossing is not completely synchronised, but the pedestrian changes to synchronised

walking during a passage, and 3) not synchronised or negatively synchronised (i.e. adds damping to

structure). It was found that persons with natural walking frequency (i.e. as measured on a fixed floor)

within ±0.1Hz from the lateral vibration frequency, will potentially synchronise to the structural motion

and those with a lower initial walking frequency have a larger probability to synchronise than those with

a higher one. Butz [50] further reports that the measured DLFs tend to increase (slightly) with the lateral

platform acceleration amplitude, but due to large scatter in the data, the following values were suggested

for design:

DLF1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.04, unsychronised pedestrians or fixed floor;

0.055, ü0 ≤ 0.5m/s2;

0.075, ü0 > 0.5m/s2.

(13)

Figure 11: left: Laterally driven platform at RWTH Aachen (Picture from [8]). Middle: Laterally driven treadmill

at the University of Reggio Calabria (Picture from [55]). Right: Instrumented treadmill on a shaking table at

Tongji University (Picture from [31]).

A different approach than those described earlier was taken by Nakamura et al. [91], who used

an instrumented shaking table to investigate walking on the spot when subject to lateral vibrations

with frequencies ranging from 0.75 to 1.25Hz at displacement amplitudes 10 to 70mm. Five tests

subjects, equipped with accelerometers on their waist, were asked to walk on the spot while a simultaneous
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measurement of the GRF was made. It was found that the weight-normalised force increased almost

linearly with the vibration amplitude at all frequencies from around 0.10 at 10mm amplitude to around

0.16 at 70mm. It is a bit unclear how this force is defined, i.e. if it is a peak value, RMS or DLF of first

load harmonic, therefore the two values can only be treated qualitatively. A synchronised pedestrian was

defined as one walking with the same frequency as that of the shaking table and the tests revealed that

only at the frequencies 0.87Hz and 1.00Hz the pedestrian tended to synchronise, the probability for this

being 20% and 40 to 50% in the two cases respectively. This observation is generally in agreement with

those of Butz [50], as described earlier. However, due to the limited number of pedestrians used in the

tests and the unnatural circumstances for the walking, the results should be taken with some precaution.

5.2. Walking on laterally moving treadmills

The utilisation of instrumented treadmills for the determination of pedestrian-induced forces offers

some advantages opposed to platforms of limited length where only a single or few consecutive footsteps

can be recorded. In particular, the possibility to measure continuous time-histories of the pedestrian-

induced forces has attracted some researchers.

Sun and Yuan [31] fixed an instrumented treadmill on a force plate which in turn was fixed onto a

shaking table, Fig. 11. Seven different pedestrians were asked to walk (freely) on a treadmill at two

different walking speeds 1.0m/s (3.6 km/h) and 0.83m/s (2.99 km/h) subjected to different combinations

of lateral vibration frequencies (0.65 to 1.2Hz) and amplitudes (4 to 50mm). A simple equation was

proposed for the DLF of the first load harmonic as function of the vibration amplitude, u0 (in [m]) of the

structure:

DLF(u0) = 1.18u0 + 0.05 foru0 < 0.05m (14)

It was observed during the tests that when u0 > 0.05m, people could not continue to walk steadily and

had to hold the handrail to maintain their balance, hence the limit in Eq. (14). Sun and Yuan [31]

report that for small vibration amplitude, the relative pedestrian phase is variable (non-constant), but

as the amplitude increases the phase becomes (almost) constant and the walking frequency changes to

the vibration frequency. Further, they find that on average the pedestrian load is 140.8 deg ahead of the

bridge motion with standard deviation 17.9 deg. Based on their studies a qualitative equation for the

probability of synchronisation as function of the vibration amplitude (u0) and vibration frequency (fs)

was proposed [31]:

ρs(u0, fs) =
u0

u0 + c1
e−c2(fs−1)2 (15)

with c1 and c2 as unknown parameters.

Pizzimenti [55] constructed an instrumented treadmill which could be driven in a sinusoidal lateral

motion at predefined combinations of frequency and amplitude (see Fig. 11). In a pilot study, the loads

from five different test subjects were obtained at three different vibration amplitudes (15mm, 30mm and

45mm) and at five different lateral frequencies in the range 0.60 to 0.92Hz. From the PSD of the load,
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Figure 12: Examples of the PSDs of the lateral pedestrian force as a function of the lateral vibration frequency

(fL) where the solid line represents Ffw and the dashed line FfL for fixed vibration amplitudes of 15mm (a) and

30mm (b), respectively (Figure reproduced from [59]).

two different force components were observed, the first one is centred around the walking frequency and

its higher harmonics and the second one occurs at a frequency equal the vibration frequency and was

denoted ”the self-excited force”, [59]. The pedestrian-induced lateral force was therefore written as the

sum of these two components:

F (t) = Ffw(t) + FfL(t) (16)

where fw is the frequency of the first load harmonic (i.e. the walking frequency) and fL is the lateral

vibration frequency. In Fig. 12 the PSD of the total lateral force for one test subject is shown for two

different vibration amplitudes, 15mm and 30mm. The self-excited force was further subdivided into an

in-phase (with displacement) and out-of-phase lateral pedestrian load components as:

FfL(t) = DLFinW sin (2πfLt) + DLFoutW cos (2πfLt) (17)

The DLFs (DLFin and DLFout) were determined by using a nonlinear least-square-fit where the function

in Eq. (17) was fitted to the measured force, [55]. The mean value of the measured DLFs from the

five test subjects are shown in Fig. 13. According to the definition of the pedestrian-induced load in

Eqs. (16) and (17), DLFin > 0 implies that the pedestrian adds to the modal mass, whereas DLFin < 0

was explained as added stiffness [59]. Similarly, DLFout > 0 corresponds to negative damping. Two

interesting phenomenon were observed, firstly pedestrians seem to act as negative mass on the structure

(or positive stiffness) over the entire frequency range, which is contradictory to common belief that a

pedestrian adds to the modal mass of the structure. Furthermore, only for one combination of frequency

and amplitude, the pedestrians act as negative dampers.

Motivated by the need of statistically reliable data for the pedestrian-induced lateral forces, Ingólfsson

et al. [92] carried out an extensive experimental campaign using the instrumented treadmill from Pizzi-

menti’s work [59]. The campaign focused on studying the lateral forces generated by single pedestrians

during continuous walking on both fixed as well as laterally driven treadmill. The lateral forces were

measured from seventy-one individuals at varying combinations of vibration frequencies (0.33 – 1.07Hz)
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Figure 13: Average DLF for the in-phase (a) and out-of-phase (b) components of the self-excited pedestrian force.

(Figure reproduced from [59])

and amplitudes (4.5 – 48mm). By covering more than 55 km of walking distributed over almost 5000

individual tests, the data comprises the largest database of pedestrian-induced lateral forces that has

been published to date. The results from the pedestrian tests were presented in terms of the velocity and

acceleration proportional pedestrian load coefficients cp and �p respectively. The velocity proportional

coefficient (or pedestrian negative damping constant) was determined such that the work done by the

real (measured) pedestrian force on the lateral displacement of the treadmill should equal the work done

by an equivalent linear viscous damper with coefficient −cp (due to the selected sign convention). The

following expressions were derived for cp and �p [92]:

cp =
2

u̇2
0

1

Ttot

Ttot∫
0

F (t)u̇(t) dt =
2Cov [F (t), u̇(t)]

u̇2
0

(18)

�pmp =
2

ü2
0

1

Ttot

Ttot∫
0

F (t)ü(t) dt =
2Cov [F (t), ü(t)]

ẍ2
0

(19)

where Cov[ ] is a covariance operator and Ttot is the total duration of the load process. In Fig. 14, the

results from the experimental campaign are shown (a)-(b) as probability distributions and as frequency

dependent mean values taken across all test subjects and vibration amplitudes. The frequency axis is

normalised with the mean walking frequency of the pedestrian test subjects. It should be noted that

positive values of cp and �p indicate an overall decrease in the modal damping and mass of the structure

occupied by the pedestrian. The following main conclusions could be deduced from the study [92]:

1. Pedestrians extract energy from the structure (act as negative dampers) at most of the frequencies

that were tested.

2. At lower frequencies pedestrians decrease the overall modal mass, but add to it at higher frequencies.

3. The load coefficients generally decrease (numerically) with increasing vibration amplitude, suggesting

a certain self-limiting effect of the load.
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4. Large scatter in the data makes a deterministic description of the experimental data impossible.

Instead the load coefficients must be quantified through their probability distributions.
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Figure 14: Probability distributions of (a) damping proportional coefficient, cp, and (b) inertia proportional

coefficient, �p, at different frequencies shown as functions of the normalised frequency and mean value ± one

standard deviation of (c) cp and (d) �p.

In a complimentary study, Ingólfsson et al. [93] studied the walking pattern of few test subjects that

were instrumented with a waist-mounted accelerometer. By analysing the relative phase between the

pedestrian movement and the movement of the underlying surface, it was shown that human-structure

synchronisation is not a pre-condition for the development of positive values of the velocity proportional

load coefficients, cp, (i.e. negative damping) which may lead to excessive lateral vibrations.

5.3. Concluding remarks

Experimental studies on human walking on laterally moving platforms have generally been used to

determine the pedestrian-induced lateral loads, their dependency on the vibration characteristics and

to investigate the type of human-structure interaction, in which pedestrians possibly synchronise their

walking to the movement of the underlying surface through alterations in their gait. As illustrated in

the previous sections, several different experimental studies have been carried out which have provided a

useful insight into the problem. For instance, there seems to exist a general agreement that the amplitude
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of the pedestrian-induced lateral load increases with the vibration amplitude. A comparison between the

DLF of the first lateral load harmonic as reported in different studies are summarised in Table 4.

Table 4: Comparison between fundamental DLFs from different studies.

Reference General expression Amplitude range

Bachmann and Ammann, [38] 0.039 fixed surface

Bachmann et.al., [49] 0.10 fixed surface

Kasperski, [53] Fig. 3 fixed surface

Ricciardelli et.al., [94] (Mean value) 0.05fw − 0.011 fixed surface

Ricciardelli et.al. [94] (95%) 0.05fw + 0.001 fixed surface

Pizzimenti and Ricciardelli [59] (Mean value) Fig. 13 0 - 45mm

Butz, [50] 0.038 fixed surface

0.055 ü0 < 0.5m/s2

0.075 ü0 > 0.5m/s2

Rönnquist and Strømmen, [89] Eq. (12) 0 - 2m/s2

Dallard et.al., [4] Fig. 10 0 - 30mm

Sun and Yuan, [31] 1.18u0 + 0.05 u0 < 0.05m

Furthermore, many investigators have shown that human-structure synchronisation can only occur

when the normal (or freely selected) walking frequency is close to the lateral vibration frequency. The

large vibrations observed in the fundamental lateral mode of the Millennium Bridge at frequencies well

below the normal walking frequency (0.5Hz) render the importance of phase synchronisation for the

development of excessive vibrations questionable. As presented in this review, there is a general dispute

regarding the fundamental nature of human-structure interaction and the importance of synchronisation.

However, synchronisation should be regarded as the most extreme form of pedestrian loading, but not a

necessary onset for excessive vibrations.

6. Full scale measurements of other footbridges

As modal identification techniques are increasingly improving and both the hardware and software

for vibration measurements is becoming more compact and user friendly, full scale testing of footbridges

is an increasingly important tool in the assessment of pedestrian-induced vibrations of footbridges. This

includes both the determination of modal properties, [95–97] and measurements of the response to large

pedestrian crowds.

Even in the newest version of the Eurocode (Annex A2 of EN 1990:2002 [98]) it is stated that if

the comfort criteria (defined as 0.2 - 0.4m/s2 for lateral vibrations) is not satisfied with a significant

margin, provisions for installation of dampers may be necessary and that ”in such cases the designer

should consider and identify any requirements for commissioning tests”.
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In this section an extensive summary of various full scale measurements of bridges susceptible to

human induced lateral vibrations have been collected and are presented in a chronological order.

6.1. Changi Mezzanine Bridge

The Changi Mezzanine Bridge, Fig. 15 is a shallow arch steel bridge of welded hollow circular and

rectangular sections, with a 140m main span (between the arch supports) and two 30m side spans.

The bridge is situated at Changi International Airport in Singapore connecting two passenger terminals

through the Rail Terminal, [99]. The bridge was designed by Skidmore, Owings & Merrill LLP architects

and Arup (New York) and construction began in June 2000.

As a consequence of the problems with the opening of the Millennium Bridge in London, a study on

the vibration serviceability under human induced loading was commissioned, including modal testing of

the structure and response measurements to pedestrian crowd loading. Two critical vibration modes were

identified, a symmetrical lateral vibration mode (LS1) at frequency 0.9Hz with damping ratio 0.4% of

critical and modal mass around 453 000 kg (estimated from FE model) and a symmetric torsional mode

(TS1) with frequency 1.64Hz, damping 0.4% of critical and an estimated modal mass around 147 000 kg

[99]. It was estimated using Arup’s formula for the critical number of pedestrians Eq. (6), that around

140 people were enough to cause divergent lateral vibration amplitudes [100].

Figure 15: The Changi Mezzanine bridge at Singapore’s Changi Airport (Curtesy of J.M.W. Brownjohn).

The pedestrian crowd tests were performed in February 2002 and involved up to 150 volunteers in

six different tests. In the main test the number of pedestrians was gradually increased until all 150

pedestrians circled the bridge, walking at their own comfortable speed [101]. The results from these

tests revealed that a disproportional increase in the amplitude of the LS1 occurred as the the number of

pedestrians increased at a vibration frequency slightly lower than that of the empty structure (0.88Hz,

attributed to the added mass of the pedestrians). During the circulatory tests (with 150 pedestrians

on the bridge), the amplitude of the lateral vibrations seemed to continue growing until the pedestrians

were asked to stop. At that point the lateral vibration amplitude was 0.17m/s2 (or 5.5mm). A similar
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disproportional increase of the vertical response was not found and in fact no distinct peak in the vertical

response at twice the frequency of the lateral mode was observed as expected if the pedestrian footfall

was synchronised. Brownjohn et al. [101] further notes that for a reduced crowd size of 100 people, large

excessive vibrations initiated only during some of the subsequent tests. This indicates that the critical

number of pedestrians is not a constant, but rather a random variable with an unknown distribution.

Following the results from the dynamic analysis and the experimentally observed instability, two

lateral TMDs (500 kg each) were installed to increase the damping of LS1 to 1.65% and thereby the

(theoretical) critical number of pedestrians to 560 people, [101, 102].

6.2. Nasu Shiobara Bridge (M-Bridge)

In Japan, a very light (0.4 t/m2) suspension bridge across the Maple Valley in Nasu Shiobara (M-

bridge), built in 1999 with a main span of 320m (see Fig. 16) is situated in an area which attracts many

tourists and has been known to vibrate excessively when crowded by pedestrians. The vibration occur

primarily in modes with frequencies 0.88Hz (third asymmetric mode) and 1.02Hz (fourth symmetric

mode) dependent on the position of people on the bridge [41, 103].

Figure 16: The Nasu Shiobara suspension footbridge in Japan (Picture from [41]).

In November 2002, field measurements were performed where accelerometers were mounted, both

on the waist of few test persons and on the bridge. The pedestrians were asked to cross the bridge

during a period with normal traffic and therefore varying vibration amplitudes. The estimated crowd

density during the tests was between 0.7 and 1.3 persons/m2, but generally with a non-uniform spatial

distribution [103].

In Fig. 17, a record of pedestrian and bridge movement is shown at two different bridge locations.

According to Nakamura [103] the pedestrian walking frequency was synchronised to the girder vibration

and the pedestrian phase was around 120 to 160 deg ahead of the bridge motion. Nakamura further

explains that in some of the tests, pedestrians lost balanced and stopped walking, causing a ”detuning”

of the pedestrian phase, but when the pedestrian started walking again, he/she would synchronise to the

girder movement again. An example of this detuning and subsequent tuning is shown in Fig. 17. At

(peak) vibration amplitudes about 10mm (or 0.30m/s2 at frequency 0.88Hz) the pedestrians could feel

the vibrations and some characterised them as uncomfortable, without it affecting their normal way of
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walking. At vibration amplitudes of 0.75m/s2 (25mm), some pedestrians had difficulties with walking

and occasionally touched the handrail. At 1.35m/s2 (45mm) people often lost balance and some even

stopped walking.
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Figure 17: Lateral displacement of the M-Bridge at quarter-span shown with the lateral displacement of the

pedestrian (Figure reproduce from [41]).

6.3. Lardal footbridge

The Lardal footbridge is situated in a recreational area and crosses the River Numedals̊agen in Norway,

Fig. 18. When inaugurated in 2001 it gained some publicity when considerable vibrations developed in

the first lateral mode at 0.83Hz when traversed by a group of pedestrians larger then a certain threshold,

[104].

The bridge is a shallow arch glue-laminated timber bridge with steel cable reinforcement in certain

parts of the main span. The distance between the arch supports is 91m with two 13m long approach

spans. It was found that the first vibration mode has a damping ratio 2.5%, modal mass 18 000 kg and

a mode shape that could reasonable be approximated by a half sine with wavelength of 80m. However,

it was also observed, that the first lateral mode had a strong vertical and torsional component, with the

centre of rotation underneath the bridge deck, such that the motion can be described similarly to that

of an inverted pendulum [89].
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Figure 18: The Lardal timber footbridge in Norway (Picture from [90])

During on-site measurements of the bridge vibrations it was found to be extremely lively, with hor-

izontal acceleration response exceeding 1m/s2 for as few as 40 pedestrians, see Fig. 19. Based on the

measured acceleration response a simple linear trend between the number of pedestrians on the bridge

and the peak acceleration was observed [90]:

ü0,max = 0.024Nped (20)

Ronnquist et al. [105] report that as the lateral movements increase, more people tend to synchronise

but a direct quantification of the number of phase synchronised pedestrians is not provided.
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Figure 19: Measured peak acceleration as function of the number of pedestrians on the Lardal footbridge (Figure

based on [89])

6.4. Coimbre Footbridge

The Coimbre Footbridge (also known as the Pedro and Inês footbridge), across the river Mondego in

the city of Coimbre, Porgtugal, was built in the period 2005 to 2006 and inaugurated in November 2006.

The bridge was designed by AFAssociados and Ove Arup Partnership, [106, 107] and is shown in Fig.

21. The bridge is a shallow arch bridge with a total length of 274.5m divided into a main span (110m),

two approach spans (64m) and shorter spans at each end connecting the river bank to the bridge. The
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bridge deck is constructed as a steel-concrete composite box girder (width 4m) and the arches are made

of steel box girders. The bridge is peculiar in that it is anti-symmetric about a longitudinal axis which

does not follow a straight line, but each half of the bridge consists of two half-arches that are offset 4m

from each other and meet to form a 8 by 8m square at midspan [106].

(a) (b)

Figure 20: Coimbre Footbridge (a) and pedestrian crowd tests (b) (Pictures from [108])

At the design stage the bridge was found susceptible to both lateral and vertical pedestrian induced

loading and a comprehensive study on its serviceability was commissioned and undertaken by the Labo-

ratory of Vibration and Monitoring from the University of Porto [25]. The analysis identified one lateral

vibration mode prone to excessive lateral vibrations, at frequency between 0.7 and 0.78Hz.

The critical number of pedestrians calculated according to Arup’s formula Eq. (6) predicted that

145 pedestrians (crowd density of 0.2 person/m2) were required to trigger SLE1. The formula was also

used inversely, to determine the required amount of damping (5%) to avoid SLE for a crowd density of

1 person/m2. A total of eight TMDs were designed to control pedestrian induced vibrations, one for the

firsts lateral vibration mode (weight 4920 kg) and seven for vertical modes in the frequency range 1.55Hz

to 3.06Hz [25].

In April 2006, both ambient and free vibration tests were performed on the structure prior to instal-

lation of the glass in the handrails and the timber deck. These tests revealed that the natural frequency

of the first lateral vibration mode is around 0.91Hz with damping as low as 0.5 to 0.6% and modal

mass around 205 t (determined from an updated FE model), [109]. The ambient vibration test showed

a large variation in the estimated damping and the free vibration tests were used to provide a more

narrow band of estimates [110]. During controlled pedestrian crowd tests, it was found that when the

number of pedestrians exceeded about 70 people, the vibration response showed a divergent behaviour.

The peak midspan acceleration was around 0.2m/s2 for 70 pedestrians but rose to about 1.2m/s2 for

145 pedestrians, see Fig. 21, [108, 111]. This observation matches the critical number of pedestrians

(Ncr = 73 ) as predicted by Arup’s formula, when using the measured modal characteristics and the

1Synchronous Lateral Excitation (SLE) is common denominator for excessive pedestrian-induced lateral vibrations,

exhibiting a disproportional (or diverging) vibration amplitudes for a small increase in the load
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updated FE model as input parameters. A redesign of the dampers was performed and the final solution

involved 6 individual lateral TMDs with a total weight 14.8 t to provide a theoretical damping of 7.8%.

However, this value of the theoretical damping was never reached, and subsequent forced vibration tests

of the structure showed an effective damping of only 4%, [108].
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Figure 21: Results from pedestrians crowd tests (a), reproduced after [111] and maximum daily accelera-

tion of mode 1 during the first year of service (b), from [97].

A long-term monitoring of the bridge vibrations was subsequently implemented [24], and during the

first twelve months the acceleration response of lateral vibration modes has never reached amplitudes

higher than the comfort threshold, defined as 0.1m/s2 [97]. The measured daily maximum acceleration

is shown in Fig. 21.

6.5. Passarelle Simone de Beauvoir

This 304m long footbridge in Paris is the 39th bridge across the River Seine, Fig. 22. It was designed

by Feichtinger Architects and RFR Inénieurs and inaugurated on July 13, 2006. It features a 190m

main span which is a combined shallow arch and a stress ribbon with a walkway on both levels that join

approximately at quarter spans, [21]. During design nine modes were deemed to be susceptible to human

induced loadings, three of which were predominantly lateral. The frequencies of these lateral modes were

0.46Hz (mode 1), 0.96Hz(mode 3) and 1.12Hz (mode 5) respectively, with mode 3 being localised to one

of the approach spans of the bridge.

An extensive series of tests and damping provisions were commissioned in order to secure the service-

ability of the structure. The test involved modal identification prior to and after the final design and

implementation of TMDs respectively. The existence of the two lateral modes (number 1 and 5) was

verified using a dynamic exciter. The experimentally determined frequencies and damping ratios were

0.56Hz and 0.56% and 1.12Hz and 0.53% for mode 1 and 5 respectively. No information regarding the

modal masses has been provided. Viscous dampers were installed near the bridge supports to suppress the

vibrations of the lateral vibration modes, but subsequent modal identification revealed that the damping

in mode 1 and 5 only rose to 0.77% and 0.58% respectively [26].

The pedestrian crowd tests were performed on 10 July 2006 with 120 volunteering participants. The
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Figure 22: Passarelle Simone de Beavoir (during design known as Passarelle Bercy-Tolbiac) across River Seine in

Paris (Picture from [112]).

Figure 23: Random walking of 120 pedestrians during crowd tests on 10 July 2006, (Picture from [26])
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tests involved groups of varying sizes circulating the bridge, ranging from 20 to 120 people, Fig. 23. Both

modes 1 and 5 were excited during the crowd tests with maximum displacement of 30mm in mode 1

(0.37m/s2) for a crowd of 80-100 people walking randomly. Hoorpah et al. [26] report that twice this

amplitude was reached when a group of 60 people walked in step using a metronome to control the pacing

rate. Although large vibration amplitudes can be reached during controlled walking tests, these levels

were not observed on the opening day where about 400 people occupied the structure simultaneously.

Furthermore, a great amplitude dependency of the damping was observed in mode 1, increasing from less

than 1% at low vibration amplitudes < 5mm to values around 2.5% at amplitude around 30mm. Also,

an increase in damping has been observed over time, so the owners have not made further measures to

dampen the lateral vibration modes. Instead a long-term vibration monitoring system has been installed

and will provide valuable data for future assessment of the bridge vibratory behaviour.

6.6. Clifton Suspension Bridge

The Clifton Suspension Bridge in Bristol was designed by I. K. Brunel and completed in 1864, Fig. 24.

The bridge has a main span of 214m and the width of the bridge deck is 9.5m. The Clifton Suspension

Bridge is a one-lane road bridge with pedestrian walkways on either side of it [113].

Figure 24: The Clifton Suspension Bridge in Bristol, UK (Courtesy of John Macdonald).

Ambient vibration measurements revealed 27 vibration modes in the range 0.2 to 3.0Hz, four of which

were predominantly lateral. In particular, two lateral vibration modes that react strongly to pedestrian

induced vibrations were identified, L2 with natural frequency of 0.524Hz and damping 0.58% and L3

at 0.746Hz with damping 0.68%. The other two lateral modes had natural frequencies and damping

0.240Hz and 3.68% (L1) and 0.965Hz and 3.51% (L4) respectively.

During a two week monitoring of the bridge in the summer of 2003, two occasions were particularly of

interest, both events occurred during the annual Bristol International Balloon Fiesta, where the bridge

was traversed by large crowds of pedestrians. Based on videos from a security camera monitoring the
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entrance of the bridge, it was estimated that during an approximately two hour period, between 150 and

450 people were constantly on the bridge causing large vibrations in the aforementioned lateral modes

(L2 and L3) with L2 being the dominant one. The maximum measured accelerations were 0.13m/s2

(11.3mm) in mode L2 and 0.11m/s2 (4.5mm) in mode L3 respectively. The lateral vibrations of the

bridge experienced a stability like behaviour. Small vibration amplitudes were recorded until the number

of pedestrians reached about 200 people. In a short period of time the number of people on the bridge

doubled, whereas the displacement amplitude in the low frequency mode L2 increased by an order of

magnitude. Subsequently, large response of mode L3 was initiated and for a while both vibration modes

reacted strongly to the pedestrian induced loading, Fig. 25.
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Figure 25: Results from full-scale measurements on the Clifton Suspension Bridge showing (a) the lateral

displacement amplitudes of mode L2 and L3 as well as the correlated pedestrian force as function of

lateral bridge velocity for mode L2 (b) and mode L3 (c) (Figures reproduced from [113]).

It was noteworthy that vibration mode L4 with a natural frequency of 0.965Hz did not react (strongly)
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to the pedestrian induced loading, which according to Macdonald [113] is attributed to its high level of

damping.

Macdonald used a similar methodology to that of Dallard et al. [34] to determine the correlated

pedestrian force (or in-phase force) and, as shown in Fig. 25 (b)-(c), a near linear relationship between

the force and the bridge velocity was observed. The calculated critical number of pedestrians (270 people

for mode L2 and 350 for mode L3) was consistent with the observations made on the bridge, Fig. 25

(a). However, the value of the velocity proportional load coefficient, cp, (from Eq. (5)) was found lower

than the value 300Ns/m as reported from the Millennium Bridge. Macdonald noted that this difference

is partially caused by inaccuracies in the modal mass and damping estimates.

The observation made on the Clifton Suspension Bridge was used to argue that, although the re-

sponse behaviour of the bridge fits the assumption of negative damping, the mechanism does not neces-

sarily involve synchronisation of step frequencies to the natural frequencies of the bridge. The fact that

the vibrations occurred simultaneously in two vibration modes (L2 and L3) and initiated in the lower

frequency mode with frequency further away from comfortable pacing rates, suggests that a different

mechanism than synchronisation is responsible for these vibrations. Furthermore, the measured vertical

bridge response did not show any frequency peaks at twice the frequency of the lateral modes, which

would be a consequence of phase synchronisation.

6.7. Weil-am-Rhein footbridge

The Weil-am-Rhein footbridge, also known as the ”Dreiländerbrücke” (Tri country bridge), connects

the German town Weil-am-Rhein to the town Huningue in France at the border to Basel in Switzerland,

Fig. 26. It is a steel-arch bridge with a suspended walkway which features a record breaking clear span

of 230m. The bridge, designed by Feichtinger Architects and Leonhardt, Andrä und Partner (LAP)

engineering bureau, was opened in the summer of 2007. It consists of two steel arches, a main arch which

spans the river in a vertical plane and second arch with a smaller cross section that inclines to almost

meet the main arch at midspan, [114].

Figure 26: Weil-am-Rhein footbridge (Picture from [112])

The bridge designers identified three vibration modes susceptible to pedestrian induced lateral loading,

all featuring symmetrical bending of the bridge deck (mode 3, 4 and 5). A subsequent modal identification
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of the bridge revealed the frequencies of these modes as 0.90Hz, 0.95Hz and 1.00Hz, about 10% higher

than predicted by the designers [115]. The damping is reported low (i.e. < 1%) but no information is

given about the modal mass. Franck [116] estimated the modal mass of mode 5 to around 105 t.

Strobl et al. [114] used a value cp = 94Ns/m to calculate the critical number of pedestrians, corre-

sponding to a correlated lateral force of 5N per pedestrian at approximately 0.3m/s2 (i.e. 20% of the

load amplitude from pedestrians walking on a rigid surface 25N). The reason for selecting 5N is based

on the observations on the Toda Park Bridge in Japan [42] where 20% of the pedestrians were reported

in synchrony with the bridge vibrations. The estimated number of pedestrians needed to trigger SLE was

reported as 500 people (density of 0.24 pedestrians/m2), [114]. Conversely, the damping needed to secure

stability for a crowd density of 2.0 pedestrians/m2 was calculated as 16.5% of critical, which would call

for a 10 t TMD [114].
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Figure 27: Crowd tests on 13 January 2007 (Picture from [114]) (left) and measured midspan acceleration during

a crowd test (Figure reproduced from [115]), (right).

On 13 January 2007, prior to the opening of the bridge, pedestrian crowd tests were carried out with

more than 800 volunteers. In the first test, the crowd was asked to cross the bridge (from one side) at their

own normal walking pace. In this scenario, lateral acceleration amplitudes between 0.19 and 0.45m/s2

were recorded without any evidence of diverging vibration amplitudes. Mistler et al. [115] attributes

this to the general slow walk of people. In the second test, the group was asked to cross the bridge at

a slightly higher pace and to avoid pausing during the crossing of the bridge. In this case, excessive

lateral vibrations were observed in mode 5 at 0.96Hz with amplitudes up to 1.7m/s2 and peak-to-peak

displacement around 80mm, see Fig. 27. It was further pointed out that for safety reasons the walking

tests were stopped prematurely. This happened while the vibration amplitude was constantly increasing,

thus much larger vibration amplitude may have developed if people were allowed to continue walking.

According to Mistler et al. [115], normal walking became impossible for vibration amplitudes exceeding

1.0m/s2 and many people started to sway, increased their gait width and held on to each other or the

hand rail during this crowd test.

Although the bridge clearly reacts strongly to pedestrian induced lateral loading, no dampers have

35



been installed on the bridge. One reason is that under normal walking conditions, as observed in the first

tests, SLE was not be triggered, but only when people were instructed to increase their walking speed.

Further, the owners believe that the crowd size needed to trigger SLE is a rare event and that lateral

vibrations will therefore not be a problem on a daily basis, [27, 114, 116].

6.8. Summary of full-scale measurements

In new long span footbridges, the possibility of excessive lateral vibrations is a serious threat to the

design and the role of full scale measurements of the real dynamic behaviour of the bridge prior to its

inauguration is increasingly becoming an integrated part of the design process. In particular, for bridges

that are deemed susceptible to human induced vibrations, full scale testing is vital for several reasons.

Firstly, the structural response (and critical number of pedestrians) depends on the inherent structural

damping, which cannot accurately be predicted without testing. Secondly, external damping devices, such

as TMDs, depend on an accurate tuning to the structural properties [117], which is usually only possible

through experimental modal identification. Finally, due to uncertainties in the phenomenon governing

SLE, and the general lack of experimental data from existing bridges, controlled crowd tests are needed

for 1) investigating the possibility of SLE and finding its trigger (e.g. critical crowd density) and 2) for

the purpose of verifying the selected solution strategy.

A well engineered and successfully completed test program, cannot only further the understanding of

the problem with lateral footbridge vibrations, but also contribute to a more safe and economic design,

which is based on the actual dynamic properties of the bridge instead of those estimated during the design.

The Coimbre footbridge (Section 6.4) is a prime example of the importance of full-scale measurements, as

the total damper mass installed on the bridge to suppress SLE, was much larger than anticipated during

the design process. This was a consequence of wrongly assumed damping during the design and partly

because of a desire to provide extra damping to take into account different uncertainties related to the

dynamic behaviour of the structure [108].

Provided that pedestrians generally act as negative dampers on low-frequency lateral vibration modes

then all bridges with frequencies in the range 0.4 to 1.3Hz, with or without externally added damping

have a potential to suffer from SLE if just the critical number of pedestrians is reached. The main concern

of the designers will then be to determine the probability of occurrence of the critical crowd density such

that an informed decision about the amount of external damping needed can be taken or even avoided

altogether as was done with the Weil-am-Rhein bridge. Before this can be done with any certainty, more

crowd tests are needed to establish a statistical description of the correlated pedestrian force. To date

only few reports have been made where the correlated pedestrians force has been determined based on full

scale measurements of crowd induced vibrations. More information is needed about the effect of bridge

frequency, crowd morphology, structural parameters (damping, mass, Scruton number), event duration

etc.

Furthermore, controlled laboratory experiments should be carried out to understand and quantify

the governing mechanism of the interaction between a pedestrian and a laterally moving platform. A
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successful link between laboratory experiments, mathematical modelling and full scale crowd tests must

be established in order to fully comprehend and eventually predict the onset of SLE in future bridge

design.

7. Recent development modelling of pedestrian induced lateral excitation

In recent years, several new load models and response evaluation techniques have been published

relating to pedestrian-induced lateral vibrations of footbridges. These models originate from a variety of

different scientific disciplines and thereby differ considerably. A critical review of the models proposed for

crowd-induced lateral loading of footbridges is presented, classified according to their nature, i.e. firstly

linear load and response models are presented (Section 7.1). These models are based on linear dynamics

and direct resonance excitation and the group effect is taken into account through random distribution

of one or more of the input parameters, typically pacing rate and phase. Next, nonlinear models char-

acterised by either a nonlinear loading caused by human-structure interaction or by nonlinear modal

coupling of vibration modes characterised by an integer relationship between their natural frequencies

are presented. In the third part of this section, a more comprehensive modelling approach is reviewed

in which the dynamics of the moving crowd is taken into account through a macroscopic modelling of

the crowd-structure system. This section also provides a brief introduction to the dynamics of moving

crowds with emphasis on quantifying human-human interaction.

7.1. Linear response models

Linear response models are here classified as those where the lateral vibrations are caused by direct

resonance, i.e. by pedestrians walking at frequencies close the natural frequency of one or more lateral

vibration modes.

7.1.1. Equivalent number of ’perfect’ pedestrians

The term ’perfect’ pedestrian, refers to the assumption that the lateral (or vertical) load time history

from series of consecutive footsteps can be represented as a truncated Fourier series with fundamental

period equal to the duration of two steps (or single footstep for vertical loading). As discussed in Section 3,

this assumption implies that the load from each footstep is perfectly replicated and thereby intra-subject

variability in the loading is neglected. The response from a group of pedestrians can be calculated as a

multiplication of the response from single perfect pedestrian walking with a frequency that matches the

natural frequency of the mode in question. This method is particularly preferred in codes of practice and

design guidelines for evaluation of the vertical response of footbridges due to its simplicity. The effect

of the group is taken into account through an effective number of pedestrians, that produces the same

response as that of the entire group:

F (t) = neG1 sin (2πfnt) (21)
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where fn is the frequency of the mode in question. The effective number of pedestrians depends primarily

on several crowd specific and structural parameters. For lateral human-induced vibrations, the effective

number of resonance pedestrians has been deduced from video recordings of the motion of pedestrians

walking on an actual footbridge, see Section 2, or through energy considerations as on pont de Solférino,

see Eq. (3) in Section 4.1. The idea of an effective number of pedestrians has been implemented in

the Sétra guideline [5] as 10.8
√
Nζ for a sparse or dense crowd and 1.85

√
N for a very dense crowd.

These results are based on stochastic response simulations for vertical footbridge response and do not

take into account synchronisation of pedestrians with the movement of the bridge. The movement of

the bridge, u, was accounted for by Danbon and Grillaud [68] who defined the effective number of

pedestrians through a bilinear synchronisation coefficient φ(u) as described in Section 4.4. Ronnquist

[89] determined an equation for the equivalent number of pedestrians, which was obtained by fitting a

mathematical expression to the ratio between measured (peak) response from a group of N people to the

simulated response of a single pedestrian crossing at resonance:

ne = 35− 34 exp

(
−
[
N

60

]1.6)
. (22)

In Fig. 28 a comparison between different definitions of the effective number of pedestrians is shown.
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Figure 28: Comparison between different definitions of the effective number of resonance pedestrians.

7.1.2. Critical number of pedestrians

Roberts [118, 119] used linear dynamics to create a stability criterion for susceptibility of bridges

towards SLE. He argued that the lateral acceleration of the body CoM is in equilibrium with the lateral

force induced by the pedestrians, which for Np equally distributed pedestrians over the bridge length L

becomes:

Npmp

L

∂2up(x, t)

∂t2
= −F (x, t) (23)

where mp is the average pedestrian weight and up(x, t) is the lateral displacement of the CoM. By

assuming that the movement of the CoM is sinusoidal, Eq. (23) was solved together with the equation
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of motion governing the bridge vibration. A stability criterion was obtained for the condition where the

amplitude of the bridge vibration exceeds that of the body CoM:

Ncr =
1 + α2

2α

Mn

mp

αL

∫ L

0

[Φn(x)]
2
dx

ω2
n

ω2
wHn,av

(24)

In Eq. (24), Mn and Φn are the modal mass and mode shape of mode n and Hn,av is an averaged value

of the dynamic amplification, accounting for variations in the pacing rate amongst pedestrians and L is

the bridge length. The proposed value of Hn,av to be used in design is tabulated in [119]. Further, in

Eq. (24) account is taken for the possibility of non-uniform pedestrian distribution, through the factor

α ∈ [0; 1], such that αL is the portion of the bridge occupied by pedestrians. The average angular walking

frequency is denoted ωw = 2πfw.

In another paper by the same author, [120], a method to calculate the steady-state response of a bridge

subject to loading from a group of partially synchronised pedestrians is presented. The model is based

on the assumption that the pedestrians are uniformly distributed along the span and that they can be

treated as stationary oscillators. The model includes a qualitatively defined non-dimensional function, β,

as the proportion of pedestrians whose motion is synchronised with the bridge motion (both in frequency

and phase). The function β depends on the crowd density ρ, the bridge displacement u and a threshold

value um which is the maximum bridge amplitude at which pedestrians are able to continue walking:

β = (1− 0.4ρ)

[
1−
(

u

um

)2
]

(25)

It is noted that contrary to common belief, the degree of synchronisation decreases with an increase in

vibration amplitude and the density.

7.1.3. Stationary response due to random incoherent crowds

Due to inter- and intra-subject variability, the response evaluation is often done in a probabilistic

sense. One of the earliest attempts is that of Matsumoto et al. [121] who showed that for a flow of

identical pedestrians arriving randomly to a bridge with flow intensity λ (pedestrians/second) the RMS

value of the vertical acceleration response is
√
λT0 that of the single pedestrian, with T0 being the passage

time of the pedestrian. An often used interpretation of his results is that the response of a group of N

pedestrians is
√
N times that of a single pedestrian. This applies only for the RMS value of the response,

whereas the peak response depends on the observation time, or return period of event, and cannot be

predicted this way [84]. Furthermore, the model of Matsumoto et al. [121] assumes identical pedestrians

and the distribution of walking frequencies in a real crowd is not accounted for, which for lightly damped

structures may lead to overly conservative estimates of the response [84]. It is also worth noting that N

follows the Poisson distribution and represents an average number of pedestrians on the bridge.

The distribution of pacing frequencies within the crowd were taken into account by Dallard et al. [4],

who proposed the following approximate formula for the standard deviation of the vertical footbridge
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response for a sinusoidal vibration mode:

σq̈n =
G(fn)

4Mn

√
πNfn
ζn

pfw(fn) (26)

where G(fn) is the load amplitude at the natural frequency fn, and pfw(fn) is the probability density

function for the walking frequency (with mean μfw and standard deviation σfw), evaluated at the modal

frequency fn. The method was derived for predicting vertical response of footbridges, but can equally

well be applied for lateral vibrations in the absence of human-structure interaction.

In fact, Roberts [120] presented a similar probabilistic response evaluation technique for predicting

the lateral pedestrian-induced vibrations, where the load is modelled as N stationary and uniformly

distributed harmonic oscillators, each with amplitude G1. Under the assumption that the instantaneous

phase of the response is randomly distributed with a constant probability density the standard deviation

of the modal acceleration response, valid for a group of unsynchronised pedestrians, is obtained as:

σq̈n =

√
N

2L

G1Hn,av

Mn

√∫ L

0

Φ2
n(x)dx. (27)

The intra-subject variability in the load can be accounted for, by representing the pedestrian load

through its PSD. Ricciardelli et al. [122] proposed that for laterally stiff footbridges with uniformly dis-

tributed pedestrians and crowd density low enough for avoiding human-human interaction, the stationary

RMS value of the modal acceleration could be calculated using the well-known white-noise approximation

[123]:

σq̈n =
1

2Mn

√
πNfn
ζn

SFe(fn)
1

L

∫ L

0

[Φ(x)]
2
dx (28)

fnSFe(fn) =

∫ ∞
0

fnSF (fn/fw)p(fw)dfw (29)

where SFe(fn) represents the PSD of the equivalent load of one pedestrian and SF (fn/fw) is the PSD

of a single pedestrian from Eq. (2). It is easily shown that Eq. (26) and Eq. (28) are identical when

the excitation is perfectly harmonic and the mode shape is sinusoidal. In this case the PSD of a single

person SF (fn) =
1
2G

2(fn) δ(fn− fw) is substituted into Eq. (29) to yield the approximation in Eq. (26).

7.1.4. Stationary response due to coherent crowds

Brownjohn et al. [99] pointed out that synchronisation amongst humans happens in clusters where

small groups of pedestrians walk in step and that the correlation decreases with the distance between

the pedestrians. With analogy to turbulent buffeting wind load, they define a coherence function

coh(f, x1, x2) ∈ [0, 1] was defined to take into account the correlation amongst pedestrians as function of

their spatial separation. However, no suggestion for the shape of the coherence function is given and only

the two extremes, no correlation (coh(f, x1, x2) = δ(x1 − x2)) and full correlation (coh(f, x1, x2) = 1)

are analysed. An expression for the PSD of the acceleration response at point x along the bridge deck is
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derived as:

SÜ (f, x) = Φ(x)2 |H(f)|2 SP (f)

∫ L

0

∫ L

0

Φ(x1)Φ(x2)coh(f, x1, x2)dx1dx2 (30)

SP (f) =

[
N

L

]2
G2(f)

2
pfw(f) (31)

where H(f) is the frequency response function (FRF) for acceleration, SP (f) is the PSD of walking loads

per unit length, N is the number of people on the bridge, L is the bridge length, G(f) is the amplitude of

the relevant load harmonic and W is the weight of one pedestrian [99]. The RMS acceleration response is

obtained from the PSD through integration over the frequency domain σ2
ün

(x) =
∫∞
0

SÜ (f, x)dt. Although

Eq. (30) was derived for estimation of vertical response to footbridges, it may also be applicable to lateral

vibrations in the absence of human-structure interaction.

7.1.5. Peak response due to random crowds

Frequency domain procedures assume that the load process is a stationary stochastic process and

provide only information about the stationary response variance (and RMS). In an attempt to distinguish

between peak and RMS accelerations, a spectral load model was created using Monte Carlo response

simulations [50, 124]. The 95% fractile of the lateral peak modal acceleration amplitude is given as:

q̈0,max = kq̈,95% σq̈ (32)

where kq̈,95% is the peak factor which depends on the crowd density, but is given in the range 3.63 to

3.77 . The variance of the acceleration response, σ2
q̈ , of modes with sinusoidal shape is given as:

σ2
q̈ =

CkF N

M2
n

k1(fn)ζ
k2(fn) (33)

where C is a constant and k1(fn) and k2(fn) are both polynomial functions with parameters determined

from Monte Carlo response simulations, see [124]. It is worth noting that this spectral load model is only

valid when the average walking frequency within the crowd coincides with the natural frequency of the

mode in question. In other cases, Butz [125] proposes a reduction factor to reduce the peak acceleration:

kred = exp

{
−1

2

(
fw,m − fn

Bred

)}
(34)

where Bred is a constant determined from simulations, fw,m is the average walking frequency and fn is

the natural frequency of the relevant bridge mode.

7.1.6. Summary of linear load and response models

Due to their simplicity, linear models are generally preferred for design guidelines and codes of prac-

tice. Often, as illustrated in the proceeding sections, closed form solutions can be obtained for either the

expected response amplitude or the critical number of pedestrians needed to trigger SLE and thereby time

consuming response calculations can be avoided. However, linear models are based on idealised assump-

tions about the pedestrian-induced load, the structural behaviour, the interaction amongst pedestrians

and interaction between pedestrians and the laterally vibrating structure.
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7.2. Nonlinear dynamic models

Dynamic models are nonlinear if the governing equations contain nonlinear terms. A typical non-

linearity in civil engineering is inelastic material behaviour, large displacements, nonlinear damping or

response dependent loading. For vibration serviceability of footbridges, the materials are usually in their

elastic range and the damping is typically assumed viscous (or equivalent viscous), but in the presence

of human-structure interaction the loading becomes non-linear. A special type of dynamic non-linearity

is modal coupling, which exists in structures with a certain geometric coupling between two (or more)

vibration modes when the relationship between their natural frequencies are integers (or near integers).

7.2.1. Modified Arup models

Based on the observed pedestrian behaviour on the T-Bridge during an event with large lateral

vibrations, Nakamura [126] proposed modifications to the Arup model in Eq. (5) (described in Section

4.4). The modification is based on the assumption that pedestrians will reduce their walking speed, or

completely stop, when the lateral velocity of the bridge deck becomes large. Therefore, the response of

the bridge will not reach infinity but is limited to a certain level. The following equation for the modal

pedestrian load was proposed:

FP = k1k2H[q̇(t)]G(f0)MP g (35)

H[q̇(t)] =
q̇(t)

k3 + |q̇(t)| (36)

G(f0) = 1.0 (37)

where q̇(t) is the modal velocity of the bridge, MP g is the modal self weight of the pedestrians and

f0 is the frequency of the lateral vibration mode under consideration. The coefficient k1 = 0.04 is the

fundamental DLF of the pedestrian (according to [38]) and k2 is the percentage of pedestrians which are

synchronised to the bridge vibration. The function H[q̇(t)] describes the nature of the synchronisation

where k3 should be determined by trial and error such that it corresponds to measured data, [126]. The

synchronisation coefficient, k2 = 0.20 , was used, based on the observations made on the T-bridge and

those established from laboratory platform tests, [40]. By matching the measured steady-state girder

response to the response predicted by the load model, the value k3 = 0.01m/s was obtained. It is worth

noting that with these coefficients, the load amplitude predicted by the Arup model in Eq. (5) is 48N

for a bridge velocity of ẋ = 0.16m/s whereas the modified model in Eq. (35) only predicts modal loads

around 5N for the same velocity. The parameter k3 = 0.01 was estimated from back-analysis of the

measured response of two different bridges (T-Bridge and the M-Bridge) under different crowd conditions

[40], but its determination is sensitive to the accuracy of k1 and k2, thus more data is needed before

conclusive evidence regarding the probability of synchronisation and thereby the coefficient k3 can be

made.

Another model, which is based on the assumption that the pedestrian load can be related to the bridge

velocity is that of Ingólfsson and Georgakis [127]. By treating the motion-induced portion of the load
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as velocity and inertia proportional loads, the total pedestrian-induced lateral load, F (t), was written as

the equivalent static force plus the additional equivalent damping and inertia forces respectively:

F (t) = Fst(t) + cp (f0/fw, u0) · u̇︸ ︷︷ ︸
equivalent damping

+mp�p (f0/fw, u0) · ü︸ ︷︷ ︸
equivalent inertia

. (38)

The equivalent static force, Fst(t), was defined through its averaged Gaussian shaped PSD (see Eq.

(2)). The functions cp (f0/fw, u0) and �p (f0/fw, u0) define the self-excited forces and its dependency on

the vibration frequency, f0, and amplitude u0. The model is based on measured forces from sixty-six

pedestrian test subjects walking on a laterally driven treadmill at a range of lateral vibration frequencies

and amplitudes (see Section 5) [92]. Apart from this frequency and amplitude dependency, the results

from the campaign were governed by a large randomness, thus the pedestrian load coefficients were

presented in a probabilistic framework [127]:

cp (f0/fw, u0) = θ0 (f0/fw) + θ1 (f0/fw)u0 +X · θ2 (f0/fw) eθ3(f0/fw)u0 (39)

�p (f0/fw, u0) = φ0 (f0/fw) + φ1 (f0/fw)u0 +X · φ2 (f0/fw) e
φ3(f0/fw)u0 (40)

The parameters θ0, φ0, θ1 and φ1 describe the development of the mean load coefficient as functions

of the lateral frequency and amplitude and were determined by fitting a linear equation to the measured

mean values of cp and �p. The parameters θ2, φ2, θ3 and φ3 were determined by fitting an exponentially

function to the standard deviations of the measured values of cp and �p. The stochastic variable X was

introduced as a discrete-time Gaussian Markov process. The main strength of the model is that the

self-excited force components are based on an extensive experimental campaign and thereby represent

a statistical reliability. Ingólfsson and Georgakis [127] demonstrated the applicability of the model to

predict excessive lateral vibrations of both low frequency modes, i.e. around 0.5Hz and modes with

frequencies closer to the natural walking frequencies. Due to the randomness in the load and the frequency

dependency of the load coefficients, a single response simulation is not sufficient when predicting the

susceptibility of a bridge to SLE, but instead a range of different conditions must be investigated and the

probability of occurrence of these events should be evaluated.

7.2.2. Amplitude dependent DLF

Based on the experimental work of Sun and Yuan [31] (see Section 5), an expression for the total load

from a group of N pedestrians was given as:

F (t) =
N · ρs(u0) ·DLF(u0) ·W

u0

(
u cos (ϕ) +

u̇

ω
sin (ϕ)

)
(41)

where DLF(u0) is displacement dependent (Eq. (14)) and ρs(u0) is the probability of synchronisation

according to Eq. (15), ω is the angular frequency of the mode in question, ϕ is the phase angle between

pedestrian loading and displacement u(t) of the structure and W is the pedestrian weight. This equation

is nonlinear, since the DLF is proportional to the displacement amplitude, however also the probability

of synchronisation depends on u0. Based on the load model, Sun and Yuan [31] derive an analytical

stability criterion, consisting of three coupled equations, which must be solved numerically in order to

determine the possibility of SLE.
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7.2.3. Modal coupling (autoparametric resonance)

In linear dynamics, the structural response only occurs at the natural frequencies of the structure

(from transient loads) and at frequencies equal to the excitation frequency. However, non-linearities

may cause steady-state structural vibrations at frequencies different from those of the input [128]. Two

important nonlinear phenomena are parametric excitation and modal interaction. Parametric excitation

occurs if the load acts through a parameter of the system and modal interaction is especially pronounced

if two modes have natural frequencies that are related by an integer or near-integer relationship (e.g.

f1 ∼= 2f2) [129]. In both cases large vibrations can occur at frequencies different from the excitation

frequency, even when the excitation is weak.
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Figure 29: (a) Vertically loaded elastic pendulum with a linear spring and (b) response characteristics of the

pendulum for ωs = 2Ω = 2ωp.

Blekherman [32] investigated an elastic pendulum with a linear spring subject to vertical forcing, see

Fig. 29. The equations of motions governing the movement (x and ϑ) of the system were obtained using

Lagrange’s equation:

ẍ+ ω2
sx = −2ζsωsẋ+ (1 + x) ϑ̇2 + ω2

p cosϑ+
P0

Ml
cos (Ωt) cosϑ− ω2

p (42)

(1 + x) ϑ̈+

[
ω2
p +

P0

Ml
cos (Ωt) cosϑ

]
= −2ϑ̇ẋ− 2ζpωpϑ̇ (43)

where ωs, ωp, ζs, ζp are the angular frequencies and damping ratio of the spring mode and pendulum

modes respectively, P (t) = P0 cos(Ωt) is the external load, l is the pendulum length and M is the

pendulum mass. The system of equations (42) and (43) present two coupled nonlinear second order

differential equations. The loading term in Eq. (43) is proportional to cosϑ, thus there is a risk of

parametric excitation for certain values of Ω. Furthermore, the coupling between the modes also present

a risk of internal resonance [129]. Blekherman [130] derived the steady-state response for the pendulum

and the spring motion respectively and found that in the case ωs = 2Ω = 2ωp there are two regions of

interest, a linear and a nonlinear region, see Fig. 29. In the linear region the amplitude of the spring

mode increases linearly with the applied load whereas the amplitude of the pendulum mode is zero. When

the force amplitude reaches the bifurcation point, the amplitude of the vertical vibrations is limited (and
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independent of the forcing applied) and the vibration of the pendulum mode experience a rapid increase

(jump).

According to Blekherman [32], the vibrations on the London Millennium Bridge could be explained

by autoparametric resonance between the second lateral mode at 0.95Hz and the third vertical mode

1.89Hz on the central span. The main argument is that there is a 2:1 ratio between the modal frequencies

and the amplitude of the lateral load experienced a jump for a small increase in the vertical load (due

to a small increase in the number of pedestrians on the bridge). Also mentioned are the vibration

problems of the T-Bridge in Japan, were a relationship of 1:1:2 between the natural frequency of the

stay cables (1.0Hz), the frequency of first lateral mode (0.9 -1.0Hz) and the third vertical mode (2.0Hz)

was observed. Fujino et al. [131] used a scaled 3-degree-of-freedom (3DOF) model of a cantilever beam

supported by a taut string where the same relationship between the natural frequencies of the beam

modes and the fundamental string mode were created. It was found that autoparametric resonance could

be obtained in this system for a load acting at the natural frequency of the vertical beam mode, causing

lateral vibrations in both the cable stays and the beam at half the excitation frequency, similarly to the

pendulum investigated by Blekherman. However, Fujino et al. [42] argue that parametric excitation was

not the cause for large amplitude vibrations on the T-Bridge. First of all, the vertical vibration levels

in the girder which are needed to trigger the autoparametric resonance were not observed on the bridge.

By investigating the relative phases of the response measurements, they concluded that the lateral cable

vibrations were triggered by lateral vibrations of the bridge deck, but not parametrically by the vertical

girder motion as anticipated according the experiments reported by Fujino et al. [131].

In a later paper, Blekherman [130] used a double pendulum model to represent the first anti-symmetric

torsional mode at frequency 1.59Hz and the first lateral modes at frequency 0.81Hz of Pont de Solférino.

Because of the near 2:1 relationship between the modal frequencies, it was claimed that the bridge could

have a similar behaviour to that of the elastic pendulum (see Fig. 29). Furthermore, Blekherman used the

results from the full scale measurements of the Pont de Solférino to support this observation. For a small

group of 16 pedestrians marching in step at the natural frequency of the torsional mode, the dominant

frequency in the response was the same as the step frequency. When the group size was increased to 61

pedestrians, large vibrations developed in the lateral mode at half the pacing frequency and the response

was governed by vibrations of both modes with the lateral one dominating. This suggests that there exists

a critical load parameter (e.g. number of resonance pedestrians) that cause divergent lateral vibration

amplitudes, similar to what is predicted for the double pendulum. However, since the lateral load occurs

at half the pacing frequency, the large response can be caused by direct resonance of the lateral mode,

where the force is non-linearly dependent on the vibration amplitude causing the rapid jump in the

observed response. In Table 5, the natural frequencies of several footbridges which have suffered from

large lateral pedestrian induced vibrations are listed. Table 5 can be used as a basis for judging the

susceptibility towards autoparametric resonance between vertical (or torsional) and lateral modes.
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Table 5: Comparison of the characteristics of different bridges subject to excessive lateral pedestrian induced

vibrations

Bridge description Bridge type Span fL fV

[m] [Hz] [Hz]

Park Bridge, Kiev (UA) [32] Suspension 4001 1 2

Bridge over Main, Erlach (DE) [38] Steel arch 110 1.1 -

Bosporus bridge, TR [33] Suspension 1074 - -

Auckland Harbour, NZ [4] Suspension 244 0.67 -

Queen’s park bridge, UK [4] Suspension - - -

T-Bridge, JP [42] Cable stay 134 0.9-1.0 0.7, 1.4, 2.0

M-Bridge, JP [41, 103] Suspension 320 0.88, 1.02 -

Alexandra Bridge, CA [4] Steel truss 172 -

NEC Bridge, Birmingham (UK) [4] Steel truss - 0.7 -

Pont de Solférino, Paris (FR) [5, 68] Steel arch 140 0.81 1.22, 1.592, 1.69

LMB Southern span, UK [4] Shallow susp. 108 0.8

LMB Central span, UK [78] 144 0.48, 0.95 1.15, 1.54, 1.89, 2.32

LMB Northern span, UK [4] 81 1.0

Changi Mezzanine Bridge, SG [101] Steel arch 140 0.9 1.6

Lardal Bridge, NO [105] Timber arch 91 0.83 1.45, 2.85

Coimbre Bridge, PT [108, 111] Steel arch 110 0.91 1.54, 1.88, 1.95, 2.54

Simone de Beauvoir, Paris (FR) [26] Steel arch 190 0.56, 1.153 0.72, 1.04, 1.153, 1.53

1.64, 1.78, 2.2, 2.3

CSB, Bristol (UK) Suspension 194 0.52, 0.75 0.9, 1.15, 1.38, 1.65

Weil-am-Rhein, (DE) [115] Steel arch 230 0.96 1.624, 1.904, 2.184

1 Total bridge length.

2 Torsional mode.

3 This mode has both lateral and vertical components.

4 Unclear if these frequencies are vertical, lateral or torsional.

7.2.4. Parametric resonance excitation

In the previous section, the potential threat that vertical loads may excite lateral vibration modes

through nonlinear modal coupling was discussed. Another possibility is that if the lateral force is nonlin-

ear, e.g. through a displacement dependency, lateral vibration modes with natural frequencies equal half

the walking frequency, may be excited into parametric resonance. It has been shown that the pedestrian-

induced load is amplitude dependent [31, 79, 90]. Newland [87] related the Fourier transform of the

modal pedestrian force to that of the lateral bridge displacement, based on the results of the platform

tests carried out at Imperial College in 2000 [79].

Piccardo and Tubino [132] defined an equivalent time-domain model, in which the lateral pedestrian-

induced force is proportional to the displacement:

F (x, t) = λ [DLF1 +DLFinu(x, t)] gmp(x) cosωwt. (44)

The parameter λ defines the percentage of synchronised pedestrians, DLF1 equals the load amplitude

in the absence of lateral motion, DLFin is the proportion of the body weight in phase with the bridge
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displacement, g is the acceleration of gravity, mp(x) is the pedestrian mass distribution, u(x, t) is the

displacement of the bridge and ωw is the forcing frequency (angular walking frequency). Following the

approach of Piccardo and Tubino [132], using non-dimensional parameters, the equation of motion of a

single mode is written as:

ÿ + 2ηẏ +
[
δ − 2ε cos 2t̃

]
y = κ cos 2t̃ (45)

where the non-dimensional space and time variables are y = qj/L and t̃ = 1
2ωwt respectively with qj

being the modal displacement of mode j and L the bridge length. The remaining parameters in Eq. (45)

are non-dimensional variants of the modal parameters of the bridge.

Equation (45) is a non-homogeneous damped Mathieu equation, which is characterised by the para-

metric excitation in y [129]. Piccardo and Tubino [132] analyse the characteristics of this equation using

a perturbation technique and find that the susceptibility to instability depends on the damping ζj , fre-

quency ratio ωj/ωw between the natural modal frequency and the forcing frequency and the mass of

synchronised pedestrians λMpj to the modal mass Mj . The stability criterion is given as:

Mpj

Mj
<

ω2
w

2gλDLFin

√√√√[4 ω2
j

ω2
w

− 1

]2
+ 16

ω2
j

ω2
w

ζ2j (46)

The minimum number of people needed to cause instability is obtained in the case ωw = 2ωj . The stability

criterion assumes that the fraction λ of the pedestrians synchronise their pacing rate (and phase) to the

frequency ωw. Piccardo and Tubino [132] used the London Millennium Bridge as a benchmark test

to verify the applicability of the procedure and find that when assuming that 30% of the pedestrians

synchronise at a walking frequency ωw/(2π) = 0.96Hz (pacing rate 1.92Hz), which is exactly twice the

frequency of the first central span lateral mode (0.48Hz), the stability criterion in Eq. (46) compares

well with the observations made on the bridge.

The stability criterion is very sensitive to the relationship between the pacing rate and the modal

frequency and a very rapid increase in the critical number of pedestrians is observed when ωw deviates

from 2ωj . In order to verify this model, it is necessary to know the actual distribution of pedestrian pacing

rates. Furthermore, the methodology does not explain the excessive vibrations observed at frequencies

around 1Hz, but only those in the lower frequency range. It is also worth noting that the expression in (44)

states that the pedestrian load has a sinusoidal component (DLFingmp(x) cosωwt) which is multiplied

by the displacement time history u(x, t). This assumption has not been verified as the platform tests

at Imperial College only showed a correlation between the amplitudes of the pedestrian-induced lateral

load and the platform motion. Therefore, further experimental verification of the basic load assumption

in (44) is needed.

7.2.5. Pedestrian phase synchronisation

Phase synchronisation originates from the theory of coupled oscillators, primarily known from large

biological and chemical systems [133]. In particular the phenomenon of collective synchronisation, de-

scribed as ”... an enormous system of oscillators spontaneously locks to a common frequency, despite
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the inevitable difference in the natural frequencies of the individual oscillators” [134] has caught the

attention of researchers working with pedestrian-induced vibrations. The first attempt to describe the

lateral vibrations of the London Millennium Bridge within the framework of coupled oscillators was given

by Strogatz et al. [135] who state that ”wobbling and synchrony are inseparable”. Their model is based

on a set of coupled nonlinear ordinary differential equations which 1) describe the modal response of the

structure and 2) the development of the phase of each pedestrian in relation to that of the bridge [135]:

q̈(t) + 2ζω0q̇(t) + ω2
0q(t) =

G

M

N∑
j=1

sinΘj(t) (47)

Θ̇j(t) = ωwj + cq0(t) sin (Ψ(t)−Θj(t) + α) (48)

The modal mass, damping and angular frequency are denoted M , ζ and ω0 respectively, q(t) is the modal

response, G = 30N is the pedestrian force amplitude, ωwj is the angular walking frequency in the absence

of bridge motion and Θj(t) is the phase, both for pedestrian j. The parameter α, denotes the initial phase

between the pedestrian-induced load and the bridge displacement. The change in phase is governed by

the parameter c which denotes the sensitivity of the pedestrian to bridge motion, the bridge amplitude

q0(t) and total phase Ψ(t) + α, defined such that:

q(t) = q0(t) sinΨ(t) (49)

q̇(t) = ω0q0(t) sinΨ(t). (50)

Strogatz et al. derived a closed form solution for the critical number of pedestrians that cause

instantaneous synchronisation in the simple case where α = π/2 and the (initial) distribution pωw
(ω) of

walking frequencies is symmetric about the modal frequency ω0 [135]:

Ncr =
4ζ

π

K

Gc pωw
(ω0)

(51)

The only unknown in this equation is the coefficient c which was calibrated against the data from the

Millennium Bridge to the value of 16m−1s−1. The assumption α = π/2 is similar to that of Newland

[87], which is a worst-case scenario for the input force, i.e. being in phase with the modal velocity. If the

pedestrian walking frequencies are normally distributed, (with standard deviation σωw
mean frequency

equal the modal frequency) the critical number of pedestrians becomes:

Ncr =

√
2

π

4ζK

Gc
σωw (52)

The basic idea in this type of load model, is that the walking frequencies of the pedestrians (which

initially are randomly distributed), lock-in to the frequency of the bridge if the external stimulus (the

vibration amplitude) is strong enough and/or if the initial pacing rate is close to the vibration frequency.

According to Abrams [65], the model described above will be valid for modes with natural frequencies in

the range 0.75 to 1.25Hz.

In later publications by the same authors [136, 137], the expression for the phase development Eq. (48)

was modified such that the pedestrians react to the acceleration of the bridge rather than its displacement,
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i.e. the modified expression reads:

Θ̇j(t) = ωwj − cq̈(t) sin
(
Ψ(t)−Θj(t) + α

)
. (53)

It was shown that the critical number of pedestrians could be obtained under similar simplified

assumptions as described above and that the parameters of the model could be calibrated against the

results from the Millennium Bridge. Abdulrehem and Ott [138] analysed the modified model by Eckhardt

et al. [136] in Eq. (53) and showed that the critical number of pedestrians increases quadratically with

the average pacing rate and the modal frequency.

As stressed by the authors [65, 135, 136], the modelling framework is meant as a qualitative description

of the coupled pedestrian bridge system and experimental justification for the choice of load model is

needed together with a statistical description of the involved parameters. Although capable of explaining

excessive lateral vibrations for bridge modes with frequencies around 1Hz, in its present form the model

cannot capture the excitation of lower frequency modes such as that on the Clifton Suspension Bridge or

the London Millennium Bridge.

7.2.6. Pendulum walking models

At the first international footbridge conference in Paris 2002, Chris Barker [139] proposed a very

simple load model for the lateral load induced by a walking pedestrian:

F (t) =
W

2Lleg

⎧⎪⎨
⎪⎩
−s+ 2 (u(t)− u(0)) for 0 ≤ t ≤ π/ωw

s+ 2 (u(t)− u(0)) for π/ωw ≤ t ≤ 2π/ωw

(54)

where W is the pedestrian weight, s is the gait width, Lleg is the length of the leg, ωw = 2πfw is the

angular walking frequency and u(t) is the lateral motion of the bridge deck (assumed simple harmonic).

The basic assumption in the load model is that the maximum lateral force can be determined by resolving

the ’static’ vertical body force into a lateral force through the leg inclination. It is further assumed that

centre of mass of the body moves in a straight line along the longitudinal axis of the bridge. In the

absence of lateral bridge movement, this assumption means that the lateral force is constant during one

step cycle.

According to the model, large lateral response may be expected for uncorrelated crowd of pedestrians,

walking at frequencies away from the natural frequency of the lateral mode. The author argues that this

is, in fact, what was observed on the Millennium Bridge in London and that a dramatic review of

current load models may be necessary, somewhat in line with the statement of Professor Josephson [67]

as discussed in Section 4. It should be noted however, that the main assumption that the centre of mass

of the body moves in a straight line, violates the equilibrium condition, which states that a lateral GRF

is caused by the inertia associated with a lateral acceleration of the body.

Inspired by the work of Barker [139], Macdonald [140] developed a load model that accounts for

the lateral movement of the pedestrian’s centre of mass and he further developed a control scheme for

controlling the gait, based on research related to human balance. The basic assumption is that the lateral
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force exerted by the pedestrian is obtained as the overall inertia force associated with the movement of the

body centre of mass. The governing differential equation for the movement of the pedestrians becomes:

ÿ + ω2
w (s− y) = −ü (55)

where y is the movement of the centre of mass, s is the lateral position of the centre of pressure, u is the

lateral bridge displacement and ωw is the angular walking frequency. The force exerted by a pedestrian

on laterally moving surface is thereby obtained as:

F = −mp (ü+ ÿ) = −mpω
2
w (s− y) (56)

Based on this model, it was shown that the lateral movement of the centre of mass, in the absence of

bridge motion, is approximately sinusoidal. The acceleration however, is not sinusoidal and the resulting

lateral forces compare well in shape and magnitude to measured lateral force time histories.

Interestingly, Macdonald [140] argues that the lateral foot placement is the most efficient means of

maintaining balance rather than the timing of the footstep, as studied by Johnson [141]. In other words,

pedestrian need not to synchronise with the movement of the bridge to walk comfortably on a vibrating

footbridge. The balancing strategy from Hof et al. [142] involves only control of the lateral position of

the centre of pressure, i.e. s, which ensures that the centre of mass does not pass the centre of pressure

with a certain margin of safety.

Through numerical simulations, Macdonald showed that by using this model, a lateral force component

at the natural frequency of the bridge occurs, despite that the pedestrians walks with a constant walking

frequency away from that frequency. Further, it was shown that the force components in phase with the

velocity and acceleration of the bridge respectively are proportional to displacement amplitude, suggesting

that pedestrians can be treated as added mass and damping. The amplitude (and sign) of these force

components, depend on the natural frequency of the bridge, see Fig. 30. In the frequency interval 0.7

- 1.7Hz, the pedestrians act as negative dampers and in the interval 0.3 - 1.2Hz the equivalent added

mass per pedestrian is negative with up to 61% of the body mass [140]. This observation is in line with

findings of other researchers [59, 113], however a further experimental verification of this observation is

needed. Macdonald’s load model has obtained a considerable amount of attention in the UK since it

was first published, illuminated through a BBC radio interview and a Nature News article [143] entitled

”Millennium Bridge wobble explained”. However, results of the model show a high sensitivity to the

selected control scheme, complimentary experimental data is needed to determine the correct scheme and

to calibrate the model.

7.3. Comprehensive modelling of human-structure dynamic system

In this section, a review of a more comprehensive modelling approach is given which is based on a

macroscopic treatment of the pedestrian crowd. Ricciardelli and Pizzimenti [56] argue that uncorrelated

pedestrians enter a bridge and if the crowd density ρ is lower than a certain critical value, the crowd

can be treated as a non-synchronised group. If the response of the bridge due to the non-synchronised
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Figure 30: Simulated equivalent damping coefficient (a) and added mass (b) per pedestrian shown with

estimated values from full scale measurements. LMB: London Millennium Bridge [4], CMB: Changi

Mezzanine Bridge [101], CSB: Clifton Suspension Bridge, [113], Solid curve: Control law based on relative

velocity of the centre of mass, Dashed curve: Control law based on absolute velocity of the centre of mass

(Figure reproduced from [140]).

group (or due to another external source) exceeds a critical threshold the pedestrians synchronise with

the structure which must be accounted for in the modelling. If the vibration amplitude is limited or if

the pedestrian mass is lower than a critical value needed to maintain amplitudes larger than the critical

threshold, the crowd remains uncorrelated and the response can be calculated without accounting for the

structural movement. If the pedestrian density somewhere on the bridge is larger than a critical value this

portion of the pedestrians tend to synchronise their step as a consequence of human-human interaction.

If the portion of pedestrians in step produce response exceeding the lock-in threshold, human-structure

interaction also occurs. Otherwise, the pedestrian loading remains independent of the movement of the

structure. Although simplified, this idea touches upon two important effects that must be accounted for

when modelling human induced vibrations; (i) the human-human interaction and (ii) human-structure

interaction. Human-structure interaction is the potential change in the walking pattern of an individual

(e.g. walking speed, frequency, phase or step length or width) due to the movement of the structure and

human-human interaction is the change due to the surrounding people.

7.3.1. Dynamics of a moving crowd and human-human interaction

Dynamic pedestrian-induced lateral loading is generally narrow-banded and is concentrated around

the average walking frequency of the pedestrians or its multiple harmonics. For lightly damped structures,

like most footbridges, a precise description of the frequency content of the loading is vital in order to

accurately predict the response. This is a difficult task since it is governed by the walking characteristics

of the pedestrians within the crowd. A crowd of pedestrians is an extremely complex system and a

complete description of the walking pattern of each individual is only possible in a probabilistic sense.

Several studies on the walking characteristics of crowds have been undertaken in the past, often

in relation to urban design and planning of pedestrian facilities [144, 145] and in studies related to

evacuation of structures during catastrophic events [146–148]. Modelling of pedestrian flow can be made
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on a microscopic level where each pedestrian is modelled uniquely or macroscopically where the crowd is

modeled through its average characteristics [145]. A widely used approach to the modelling of macroscopic

pedestrian flow is the continuum approach where the governing parameters are the crowd intensity density,

ρ (expressed in persons/m2), the (mean) crowd velocity, v, and the pedestrian flux, ρ · v, (persons/m/s)

[149, 150].

The relationship between the density and the flux may be expressed using the mass conservation

equation in its Eulerian form either in 2D [149] or 1D (which is more relevant for pedestrian bridges) as

follows, [151]:

∂ρ

∂t
+

∂

∂x
(ρ · v) = 0 (57)

This continuity equation is interpreted as the change in density over time in an interval dx equals the

flux through the boundary. In order to solve this partial differential equation, a characterisation of the

pedestrian walking speed is necessary.

7.3.2. Spatially unrestricted pedestrian behaviour

The walking speed determines the time spent by each pedestrian on the footbridge and the importance

of this parameter is further illuminated through the geometric relationship between the walking speed,

the step length and the pacing rate, vp = lpfp. In relation to design of footbridges, walking speed of

pedestrians has been reported in the range from 0.75m/s for slow walking to 1.75m/s for fast walking,

[152]. In recent years other researchers have investigated the walking characteristics of individuals in

order to map their natural choice of walking speed and pacing rate [30]. A summary of different studies

related to the average unrestrained walking characteristics of pedestrians is shown in Table 6. Typically

researchers report a relationship between the pacing rate of a person as a function of the freely selected

(unrestricted) walking velocity. A linear relationship of the type:

fp = avp + b (58)

is often used, e.g. by Pachi and Ji [153] who report b = 0 and a = 1.33m−1 for men and a = 1.49m−1

for women. Zivanovic et al. [154] uses a similar expression with b = 0.355Hz and a = 1.075m−1. Their

observations are based on data obtained from 939 different pedestrians during a 6.5 hour monitoring of an

indoor footbridge. Based on the freely selected walking characteristics of 116 pedestrians walking along

a 72 m corridor, a linear fit of the above-mentioned type to the data yielded b ∼= 0 and a = 1.326m−1

[94]. Ingólfsson et al. [84] used the results from different studies [155–157] to formulate a power law for

the relationship between pacing rate, velocity and step length:

fp = 1.62v0.35p . (59)

This model is advantageous as it fulfills the boundary condition that fp(0) = 0 whilst it allows non

constant values for the stride length, opposed to the linear law from (58).

Kasperski [53] points out that both physical, psychological and environmental parameters determine

the walking velocity of a person and the average walking velocity measured in 20 different cities in Ger-
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many is in the range 1.41m/s to 1.55m/s for men and 1.36m/s to 1.46m/s for women. The observations

were made for people walking freely in the respective city centres, [158] (reviewed in [53]).

Table 6: Comparison between unrestraint average walking characteristics according to different studies.

N Walking speed (m/s) Pacing rate (Hz)

Study Men Women Total Men Women Total

Matsumoto et al. [121] 505 - - - - - 1.99

Zivanovic et al. [159] 1976 - - - - - 1.87

Morgenroth [158] (after [53]) 6000 1.49 1.41 1.45 - - -

Ricciardelli and Pizzimenti [56] 116 1.44 1.37 1.41 1.81 1.86 1.84

Sahnaci and Kasperski [62] 251 1.37 1.36 1.37 1.80 1.91 1.82

Pachi and Ji [153] 1 400 1.35 1.25 1.30 1.80 1.86 1.83

Pachi and Ji [153] 2 400 1.46 1.37 1.42 1.97 2.03 2.00

Zivanovic et al. [154] 939 1.51 1.45 1.47 1.89 1.98 1.94

Butz [50] 98 - - - 1.80 1.89 1.84

Venuti and Bruno [160] 3 - 1.34αGαT - - -
1 Measured on two different footbridges

2 Measured on floors in two different shopping malls

3 The coefficient αG depends on the geographic location (1.05 for Europe, 1.01 for USA and 0.92 for

Asia) and the coefficient αT depends on the travel purpose, (1.20 for Rush hour/Business, 1.11 for

Commuters/Events and 0.84 for Leisure/Shopping).

7.3.3. Human-human dynamic interaction

As the crowd density increases, the possibility of free movement becomes restricted and people will

need to adjust their walking speed to the speed of the surrounding crowd, [30, 161].

Bertram and Ruina [162] used twelve test subjects to investigated the change in the pacing rate for

an imposed change in the walking velocity. The results from their study were used by Bruno and Venuti

[163] to formulate the following law for the lateral forcing frequency as a function of the walking speed:

fw =
(
0.35v3p − 1.59v2p + 2.93vp

)
/2 (60)

Human-human interaction denotes the interaction (and possibly synchronisation) that occurs within

a crowd of pedestrians and the change in walking pattern as a consequence of the presence of other

pedestrians on the bridge. Probably the most pronounced type of human-human interaction occurs when

the pedestrian density increases not allowing each pedestrian to walk freely according to his/her own

preferences. Tentative values in the range 0.2 to 0.5 ped/m2 have been suggested as a limit value for

free unrestrained walking [7, 11, 161]. However, Butz et al. [164] reported that during a harbour fair in

Duisburg a pedestrian stream with density of 0.3 ped/m2 occupied a footbridge and the average pacing

rate in the group was about 1.5Hz, considerably lower than what is usually reported for unconstrained
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walking. This observation is confirmed by the tests performed on the London Millennium Bridge where

a near linear decrease in walking velocity for increasing crowd density was observed, even at very low

crowd densities [165].

Experimental investigations relating to human-human interaction were performed by Zoltowski [166]

who found that the pedestrian pacing rate decreases with decreasing crowd densities. Butz [50] used a

group of 18 persons who were asked to walk in one group with density varying from 1.2 to 3.0 ped/m2

to show a linear relationship between the forward velocity of the group and the average pacing rate.

Further, the standard deviation of the pacing rates within the group generally increased with the velocity

and decreased with the density of the group [50]. Similar experiments were conducted by Andersen

[167] who used up to 80 volunteers walking in six different conditions (free walk to 1 ped/m2) to reveal

that the average pacing rate, walking velocity and stride length decreased for increasing crowd density.

However, the standard deviation of pacing rate remained nearly constant. The same study also showed

that the distribution of individual phases was random with a near-uniform distribution at all tested

crowd densities, suggesting limited phase synchronisation as a result of human-human interaction. This

agrees with observations of 1200 pedestrians walking normally over different footbridges as reported by

Barker [16]. In a recent study devoted to human-human interaction it was shown that the inter-subject

variability, measured as the standard deviation of individual walking frequencies within the group, tends

to decrease with an increase in the crowd density, [168]. In the same study, it was also shown that as

the crowd density increases, intra-subject variation in the walking frequency of each individual tends to

increase.

An excellent review of the interdisciplinary studies relating to human-human interaction, was given

by Venuti and Bruno [30, 160] and Bruno and Venuti [163], where a general form of the Kladek formula

from vehicular traffic to represent the average walking speed of the crowd as a function of the crowd

density was proposed:

v = vM

{
1− exp

[
−γ

(
1

ρ
− 1

ρM

)]}
. (61)

Here vM is the mean maximum velocity, ρM is the the maximum density causing the crowd to stop

which depends on the travel purpose and the geographic location [160]. The parameter γ = βρM is a

fitting parameter determined by the type of pedestrian activity (leisure β = 0.245 , commuter β = 0.214

and rush hour β = 0.273 ). Other pedestrian speed-density relations are given in the review by Ishaque

and Nolan [169] or Venuti and Bruno [30].

The general lesson learned from studies of human-human interaction is that the main effect of an

increase in the crowd density is the change in the walking speed of the pedestrians. As the crowd density

increases, the ability of people to walk at their own preferred speed decreases, thus the distribution of

individual walking speeds (and thereby walking frequencies) becomes more narrow (i.e. the inter-subject

variability decreases). To the authors’ knowledge, there is no experimental evidence to support the

assumption that pedestrians tend to fall into collective synchronisation when the crowd density increases.

This is probably because the step length of each pedestrian remains variable (random) although the
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forward velocity is the same for all pedestrians.

7.3.4. Continuous crowd modelling approach

With analogy to fluid dynamics, Venuti et.al. [151, 170] introduced a new explanation of crowd-

structure interaction on a footbridge. The footbridge is modelled as a 1D beam and the equation of

motion is written in modal coordinates as:

Mi(ρ)q̈i(t) + Ciq̇i(t) +Kiqi(t) = Pi(t, ρ, q̇i, q̈i) (62)

u(x, t) =
∞∑
i=1

Φi(x)qi(t) (63)

where Mi(ρ), Ci, Ki and Φi(x) are the modal mass, damping, stiffness and mode shape respectively of

mode i, qi(t) is the modal coordinate, u(x, t) is the physical displacement and dot denotes differentiation

with respect to time. For simplicity the index i will be omitted from now on. The modal pedestrian load,

P (t, ρ, q̇, q̈), is a function of the crowd mass density, ρ and of the modal coordinate q, making the equation

of motion non-linear. Furthermore, The modal mass is the sum of a contribution from the structural

mass Ms and that of the pedestrian crowd Mp.

The physical pedestrian force, F (x, t), is modelled as the sum of three contributions, Fs due to

uncorrelated pedestrians, Fps due to human structure synchronisation and Fpp due to synchronisation

amongst pedestrians (human-human synchronisation) [171].

The average walking frequency of the crowd is determined as function the crowd velocity v according

to Eq. (60), [172]. The total number of pedestrians is denoted n and nps is the number of pedestrians

synchronised with the movement of the structure and thereby induce a force at the structural frequency

f0. Following the studies reported by Pizzimenti [59], the force is divided into a part in phase with the

velocity of the structure and one in phase with the acceleration, both of which are assumed to increase

with an increase in the bridge oscillation [172]. The remaining pedestrians, n − nps, are assumed to

walk at the average pacing rate determined from Eq. (60) where a total number npp walk in phase due

to human-human interaction and the rest walk at a random phase, [171]. The number of synchronised

pedestrians is determined through the synchronisation coefficients Sps and Spp, defined as:

Sps(ü0, fr) =
[
1− e−b(ü0−üc)

] [
e−50(fr−1)2e−20u̇0/π

]
(64)

Spp(ρ) =
1

2

[
1 + erf

(
aρM

[
ρ− ρsync + ρc

2

])]
(65)

where a = 3.14 , b = 2.68 , fr = fw/f0, ü0 is the envelope of the acceleration time history, ρsync is the

crowd density that corresponds to total synchronisation (proposed as 1.8 ped/m2) of the pedestrians and

ρc is the upper limit for unconstrained free walk, proposed as 0.3 ped/m2, [171].

In this load model, the modelling of the pedestrian crowd is governed by Eq. (57) where the free

walking speed, determined from Eq. (61) is multiplied with a correction function g(ü0), which lowers the

walking speed as the platform vibration increases, [171]. To the authors’ knowledge, no studies have been

performed to determine the effect of structural vibrations on the walking speed of pedestrians and only
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limited experimental evidence exists for the synchronisation coefficients. However, the authors of the

load model performed a thorough comparison between simulated response and the measured response on

the T-Bridge in Japan which showed a good agreement, both in terms of vibration amplitude and degree

of synchronisation [171, 173].

Bodgi et al. [174, 175] used the same framework, i.e. a macroscopic modelling of the pedestrian flow

assuming that the crowd behaves like a compressible fluid. The governing equations for the structure and

crowd respectively are Eqs. (62), (63) and (57). The ’closure’ equation, which defines the relationship

between the crowd density and velocity is adopted from Venuti et al. [170], whereas the pedestrian load

is assumed slightly differently [175]:

F (x, t) = G1 sin (2πf0t) ρbS(u̇, ρ) (66)

S(u̇, ρ) =

⎧⎪⎨
⎪⎩
Sp(ρ) ü(x, t) ≤ ümin

Sps(u̇) otherwise

(67)

Sp(ρ) =

⎧⎪⎨
⎪⎩
8.6

√
ζ/

√
ρbL ρ ≤ ρc

1.75/
√
ρbL otherwise

(68)

where b is the width of the bridge deck, L is its length, f0 is the lateral frequency of the relevant

mode, ümin = 0.1m/s2 is defined as a vibration perception threshold and Sps(u̇) is a velocity dependent

synchronisation function of a similar form to that in Eq. (65). The load amplitude is taken as a function of

the walking speed, G1 = 0.6191Ns/m×v+35.5171N. According to Bodgi et al. [175], the synchronisation

coefficient S(u̇, ρ) defines the equivalent number of pedestrians walking with the same frequency as that

of the lateral mode in question producing the same load as the entire crowd and is based on the tests

reported in Sétra [5].

In a later paper by Bodgi et al. [176] they propose a different load model. This time the inspiration

comes from the Kuramoto equation which was discussed in Section 7.2.5, coupled with the Eulerian

description of the crowd:

F (x, t) = ρ(x, t)bG1 sinΘ(t) (69)

∂Θ

∂t
(x, t) = ωw +

ε

2
Au(t) |Φ(x)|

[
Ψ̇s(t)

]2
sin (Ψ(t)−Θ(x, t)) (70)

Ψ̇(t) = ω0(t) (71)

Here ωw is the (initial) angular pacing frequency, Au is the maximum displacement of the footbridge

during the last two oscillations, Φ(x) is the mode shape of the relevant mode with angular frequency

ωs(t) and ε is a constant that determines the sensitivity of the phase coupling between the pedestrian

and the structure. In this framework, a different closure equation has been proposed [176]:

v(x, t) =
1

π
lpCs(x, t)Cρ(x, t)

∂Θ

∂t
(x, t) (72)

where lp is the free step and the functions Cs(x, t), ∈ [0, 1] and Cρ(x, t), ∈ [0, 1] reduce the pedestrian step

length with an increase in structural vibrations and local crowd density respectively. The parameters
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of the model were calibrated such to match approximately the critical number of pedestrians on the

Millennium Bridge [176]. Further analysis of the performance of this model is presented in the PhD

thesis of Bodgi [177]
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ABSTRACT

This paper presents results from a preliminary experimental study on lateral human-structure
dynamic interaction on footbridges using an instrumented platform. The platform has a natural
frequency close to the average walking frequency of pedestrians and consists of a suspended
concrete girder. With a length of 17m and weight of 19.6 ton, the platform provides a realistic
comparison to an actual footbridge. Based on experiments with single pedestrians walking
across the platform at resonance, the fundamental dynamic load factor is determined using only
the recorded acceleration signal. Furthermore, tests were made with small groups of people
to investigate their tendency to synchronise their walking to the motion of the platform. By
analysing the recorded acceleration response and video data from the tests, the pedestrian pacing
rate distribution and correlated pedestrian force have been identified. Finally, the results from
this study are compared to previous full-scale as well as section model measurements.

1. INTRODUCTION

In recent years, several bridges have experienced excessive lateral vibrations due to pedestrian
induced loadings. Most of these have been attributed to pedestrian ”synchronisation” with the
vibrating bridge [1–3]. Several researchers within the engineering community have attempted
to measure the forces from pedestrians, directly or indirectly, using different experimental se-
tups. Some have used instrumented platforms [4, 5] whereas others have used treadmills [6–8]
to simulate the vibration of the structure. The interaction between a pedestrian and a moving
structure is complex and may depend on several parameters such as bridge frequency, vibration
amplitudes, modal mass and damping. Therefore, in order to understand and quantify this in-
teraction, the platform must provide a realistic comparison to an actual footbridge. Generally,
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the platforms used have been light and/or short. For short platforms, a limited number of steps
can be recorded and they do not allow for a smooth development of the response. Light plat-
forms have a tendency to provide accelerations in excess of what is usually found on an actual
footbridge due to their low modal mass.

In this paper, a new experimental setup is presented. It consists of a 17m long instrumented
platform with a natural frequency close to the average walking frequency (here defined as half
the pacing rate) of human beings, see Fig. 1. The vibration characteristics of the platform are
described and results from single pedestrian experiments are presented where the acceleration
response is measured for walking with a frequency matching the natural frequency of the plat-
form. In a subsequent analysis of the response, the dynamic load factor (DLF) of the first load
harmonic is estimated using a nonlinear data fit. Finally, preliminary investigations into crowd
induced vibrations are made, based on experiments with small groups of people.

Figure 1. Instrumented platform.

2. INSTRUMENTED PLATFORM

An instrumented platform has been constructed at the Department of Civil Engineering, Tech-
nical University of Denmark. The platform is a double T-girder made of prestressed concrete
with the overall length of 17m and weight 19.6 tons, see Fig. 1. At one end the platform is
supported by two columns that act as a rotational spring in the horisontal plan and at the other
end it is suspended by two hangers allowing a horisontal motion of the free end. The setup is
schematically drawn in Fig. 2. The acceleration response of the platform was measured at the
hanger location, i.e. 16m from the simple support of the structure.

2.1 Dynamic properties

For a theoretical estimate of the dynamic properties of the bridge, Lagrange’s equations can be
used, [9]:

d

dt

(
∂L
∂q̇

)
− ∂L

∂q
= 0 (1)

The function L ≡ T − V is the Lagrangian, T is the kinetic energy, P is the potential
energy and q(t) is the generalised coordinate. If it is assumed that the bending stiffness of the
concrete deck (in the horisontal plan) is much larger than the stiffness of the remaining system,
the platform will move as a rigid body in a triangular mode with Φ(x) = x/L. The modal mass
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Figure 2. Schematic representation of the platform.

of the structure is determined from the mode shape and the mass distribution as M = 6530 kg.
When using ϑ as the generalised coordinate and the notation from Fig. 2 it is shown in [10] that
the natural frequency of the system can be obtained as:

f0 =
ω0

2π
=

1

2π

√
3

2

(2krotH +mgLL0)

mHL2
∼= 0.81Hz (2)

where krot = 3EIB2
0/2l

3
column is the rotational stiffness of the columns with EI and lcolumn as

their bending stiffness and length respectively. The total mass of the girder is denoted m.
The natural frequency of the system was also determined experimentally by means of sim-

ple free-decay experiments. The natural frequency was determined as f0 = 0.87Hz, i.e.
slightly higher than the theoretical estimate. The same experiments revealed a damping ratio
ζ = 0.79%.

3. DLFS FROM SINGLE PEDESTRIAN TESTS

A series of single pedestrian tests have been undertaken on the laboratory platform. Initially,
five test subjects were asked to cross the platform at predefined pacing rates controlled by a
metronome. The walking frequency was selected such that it matches the natural frequency of
the structure. Each test subject repeated the test three times.

3.1 Methodology

In the mathematical modelling of the bridge response it is assumed that the force induced by
the pedestrian can be written as:

F (x, t) = αW sin (2πfwt) δ (x− vwt) (3)

where α is the DLF, W , fw and vw are the pedestrian weight, walking frequency and walking
velocity respectively. This is the simplest way of representing the pedestrian load but it neglects
the intra-subject variability (reasonable for the first harmonic, [11]), it takes only one load
harmonic into account and it assumes that the walking speed is constant. Furthermore, any type
of human-structure interaction is neglected, i.e. all parameters are independent of the motion
of the structure. This assumption is not necessarily justifiable and several researchers have
indicated that there is indeed an interaction that needs to be taken into account, [4, 6, 7]. The
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presence of this interaction will be investigated during the subsequent response analysis. In
modal coordinates, the pedestrian load from Eq. (3) is written as:

P (t) =

∫ L

0

F (x, t)Φ(x)dx = αW sin (2πfwt) Φ (vwt) (4)

Let y(t) be the envelope of the response time history of the load in Eq. (4) acting at res-
onance. It was shown in [12] that there is a simple relationship between the envelope of the
response and the amplitude of the load:

dy =

(
1

2

F0

K
− yζ

)
ω0dt (5)

where F0 is the amplitude of a load function of the type F (t) = F0 sinω0t and K is the modal
stiffness. In this case F0 = αWΦ (vwt). It is noted that Eq. (5) is a first-order differential
equation. The envelope of the acceleration response is obtained as the full solution to Eq. (5)
multiplied with ω2

0 , thus:

ÿ(t) =
αW

M

1

2πζε

(
e−ω0ζt − 1 + ω0ζt

)
(6)

where ζ and ω0 are the structural damping and the angular frequency respectively and ε = 2ζn
with n as the number of steps needed by the pedestrian to cross the bridge.

The purpose of the experiments is to determine the applicability of the mathematical model
from Eq. (3) and determine the DLF of the fundamental load harmonic. This is done by
analysing the measured acceleration response from the single pedestrian experiments and at-
tempt to fit the envelope function from Eq. (6) to the measured data. To extract the peak values,
a digital low-pass filter is used to eliminate higher frequency components and to locate the local
maxima in the time series.

The fitting model M(x, t) is a function of time, t, and one or more yet unknown parameters
that are determined by the data fit. The residuals are expressed as the difference between the
fitting model, M(x, t), and the actual data points, ÿi as:

fi(x) = ÿi −M(x, ti), i = 1, . . . ,m (7)

A least square problem is formulated to find x∗, a local minimiser for a function of the form:

F (x) =
1

2

m∑
i=1

[fi(x)]
2 (8)

In general x can be a vector of several variables and M(x, t) can be an arbitrary nonlinear
function. In the case presented in this paper, the fitting model is the envelope function in Eq.
(6) with only a single parameter to fit, i.e. x = [α] and the data points ÿi are the local maxima
extracted from the filtered time series. The structural parameters are as reported in section 2.1.

3.2 Test results

Figure 3 shows an example of a recorded acceleration time history together with the fitted func-
tion for test person 1. The results for all five test subjects and the pedestrian related data from
the experiments are summarised in Table 1. In all cases, the algorithm used to solve Eq. (8) con-
verged to a solution with an accuracy similar to that of pedestrian 1, indicating that the simple
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Figure 3: Measured acceleration response. (–) original unfiltered acceleration time history, (–)
low-pass filtered acceleration, (o ) local acceleration peaks, (–) fitted function.

load model successfully predicts the acceleration response of the structure. Therefore, the result
indicate that the DLF did not change with the vibration amplitude and since the pacing rate was
fixed by a metronome at resonance, this parameter also remained constant. Thus, during the
short passage time of the pedestrians, human-structure interaction did not occur. The vibration
felt by the walker was always lower than the comfort criterion threshold of 0.2m/s2 according
to the Eurocode [13] and in most cases also lower than the lock-in threshold of 0.1m/s2 as de-
fined in [14]. A combination of a triangular mode shape, the transient effect associated with the
bridge starting at rest and the general low level of vibration probably eliminated any possibility
of synchronisation during the single pedestrian tests. Further investigations into synchronisation
and lock-in are presented in connection with the crowd experiments in section 4.

Table 1. Pedestrian data and results from the experiments.
Pedestrian no. Traverse time Fitted DLF Average DLF Weight Load amplitude

[s] [-] [-] [-] [-] [kg] [N]

1 16 0.053 0.063 0.047 0.054 54 29

2 12 0.033 0.037 0.038 0.036 68 24

3 11 0.045 0.036 0.038 0.040 73 28

4 15 0.067 0.056 0.045 0.056 83 46

5 13 0.097 0.092 0.082 0.090 103 91

Average value, μX 0.0553 76.2 44

Standard deviation, σX 0.022 16.3 28

Coefficient of Variation, COV 0.39 0.21 0.64
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3.3 Comparative study

In an extensive literature review, [15] different values for the DLFs were summarised. Accord-
ing to [16] the value of the first DLF is α1 = 0.039 but in a later publication, the value α1 = 0.1
is suggested, [17].

Based on treadmill experiments, a relationship between the DLF and the pacing frequency
was established, [18]. Due to scatter in the measured data, two equations were presented for the
DLF of the first harmonic as function of the structural frequency:

α1 = 0.05fw − 0.011 0.6Hz ≤fw ≤ 1.1Hz Mean value (9)
α1 = 0.05fw + 0.001 0.6Hz ≤fw ≤ 1.1Hz 95% fractile (10)

These values are somewhat lower than those reported in [19] where several consecutive foot-
steps were measured on a rigid platform with the length of 6m. Figure 4 shows the measured
fundamental DLFs as function of the step frequency (pacing rate) according to [19].

The above mentioned DLFs are based on measurements on a rigid surface. There are few
examples of lateral DLFs for a vibrating or flexible surfaces in the literature. However, some of
the attempts that have been made are summarised in the following. Based on platform tests, an
expression for the DLF as function of the walking frequency and the structural acceleration is
presented in [5] as:

α1 = 0.145− 0.1 exp

{
−
(
0.45 + 1.5 exp

[
−1

2

(
fw − fn
0.07

)2
])

a1.35

}
(11)

where a is the structural acceleration and fw − fn is the difference between the walking fre-
quency and the natural frequency of the structure. Based on the tests performed at Imperial
College [4], a relationship between the first lateral DLF and the displacement amplitudes at two
different vibration frequencies were presented, see Fig. 5.

The results from different studies are summarised in Table 2 and it shows that the results
from present study generally agree with earlier reported values, both in terms of mean values
data scatter.

Figure 4: Measured DLFs for the first load
harmonic. (Figure from [19])

Figure 5: DLFs as function of displace-
ment amplitude of the underlying surface
according to [2].
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Table 2. Comparison between DLFs based on different studies.
Reference General expression α1(1.74Hz) Amplitude range

Bachmann and Ammann, [16] 0.039 0.039

Bachmann et.al., [17] 0.10 0.10

Ricciardelli et.al., [18] (Mean value) 0.05fw − 0.011 0.033 Rigid surface

Ricciardelli et.al. [18] (95%) 0.05fw + 0.001 0.045 Rigid surface

Kasperski, [19] Fig. 4 0.01 - 0.08 Rigid surface

Dallard et.al., [2] Fig. 5 0.05 - 0.10 0 - 30mm

Ronnquist and Strömmen, [5] Eq. (11) 0 - 2m/s2

Present study 0.055 0 - 0.1m/s2

4. CROWD TEST

Crowd studies were undertaken to investigate the onset of lock-in between the pedestrian and
the bridge deck. The test series comprise seven individual tests, each of duration 180 sec. In
each test the number of pedestrians on the bridge was kept constant such that a steady vibration
state was reached. The number of pedestrians was varied from two in the first test, to eight
in the last one. The total of 16 test subjects were used during the tests. Their average weight
was 76 kg with standard deviation 14 kg. The participants were asked to walk in a single line
at their own preferred speed. Their arrival time onto the bridge was controlled such that an
approximately uniform distribution of pedestrians was obtained. The walking frequencies were
determined for each pedestrian from video recordings of the experiments. During the tests, the
mean walking frequency was in the range from 0.88Hz – 0.93Hz with coefficient of variation
0.04 in all of them.

During the closure of the Millennium Bridge in London, several full scale experiments with
large crowds of pedestrians were performed. It was found that the lateral pedestrian force has
a component in phase with (correlated pedestrian force) and proportional to the velocity of the
bridge. The total correlated pedestrian force was derived in [2] as:

Fcor = 2ζMq̈ +M
Δq̈

π
∝ v(t) (12)

where M , ζ and q̈ are the modal mass, damping ratio and acceleration respectively and v(t) is
the velocity of the structure. This finding led to Arup’s stability criterion which can be expressed
in terms of a critical number pedestrians that will cause excessive vibrations, [2]:

Ncrit =
4πζf0M

k
1

L

∫ L

0

[Φ(x)]2 dx

(13)

Here k = 300Ns/m is the lateral walking force coefficient that defines the linear relationship
between the correlated force per person and the velocity of the underlying surface (local veloc-
ity), [2]. Using the parameters for the laboratory bridge, a critical number Ncrit = 6.7 ped is
obtained. This means that according to Arup’s assumptions, excessive vibrations are expected
for a ”crowd” of 6-7 people continuously on the bridge.
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Figure 6: Acceleration response measured during crowd test with seven persons on the bridge
(left) and correlated pedestrian force per person as function of the local velocity (right).

The total correlated pedestrian force from the experiments has been calculated using Eq.
(12). This force was divided by the number of people involved in the test to get the average
modal force and then divided by the root mean square mode shape to convert it into a physical
force. The modal acceleration was converted into a modal velocity and multiplied with the
same factor. The procedure is similar to the one used for the Millennium Bridge in London and
reported in [2].

Figure 6 shows a typical record of the acceleration time history and the lateral pedestrian
force as function of the local velocity of the structure. Figure 7 shows a comparison between
the results from the Millennium Bridge in London, as presented in [2], and the results from
the laboratory studies. As shown, there were no signs of correlation between the force and the
velocity of the structure in any of the tests performed on the bridge, indicating that lock-in did
not occur for up to eight pedestrians on the bridge and acceleration responses up to 0.28m/s2

(0.20m/s2 for 1 s. RMS). It is noted that this acceleration exceeds the synchronisation threshold
as defined in [14].
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Figure 7: Correlated pedestrian force per person as function of the velocity of the structure.
Left: Results presented from the Millennium Bridge (Figure from [2]). Right: All results from
the crowd tests using 2-8 pedestrians. Notice the different coordinate scales.
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Further investigations included video analysis from the crowd tests to determine the phase
angle between pedestrian and the bridge movement for all the pedestrians with a walking fre-
quency matching the natural frequency of the structure. This analysis is presented in [10] and it
showed that there was no tendency for people to synchronise their phase with the movement of
the structure.

The lack of synchronisation can possibly be attributed to the triangular mode shape which
causes a general low level of vibration felt by the walker during the first part of the passage.
This means that the high acceleration amplitudes were only felt by the walkers for a limited
period of time, not enough to synchronise.

5. CONCLUSIONS

Based on the pedestrian tests, following main conclusions can be drawn:

1. For the experimental configuration described in this paper the simplified model can repro-
duce the measured acceleration response with a reasonable accuracy, despite that human-
structure interaction and imperfections in the walking were neglected.

2. A simple method involving a non-linear single variable data fit can be used to determine
the fundamental DLF for test subjects walking at resonance.

3. The measured DLFs agree with values reported in the literature both in terms of mean
value and scatter.

4. During the crowd tests, there were no signs of synchronisation (lock-in) between the
pedestrians and the structure despite large vibration amplitudes, indicating that the syn-
chronisation depends on more than the immediate acceleration felt by the walker.

The acceleration response measured on the platform is the same order of magnitude as that
expected on an actual footbridge. This means that the platform can be used to study human-
structure interaction under realistic conditions. Future studies will include more test subjects,
a variation of the walking frequency and changes to the structure in terms of mode shape and
natural frequency.
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a b s t r a c t

This paper presents a comprehensive experimental analysis of lateral forces generated

by single pedestrians during continuous walking on a treadmill. Two different

conditions are investigated; initially the treadmill is fixed and then it is laterally driven

in a sinusoidal motion at varying combinations of frequencies (0.33–1.07 Hz) and

amplitudes (4.5–48 mm). The experimental campaign involved 71 male and female

human adults and covered approximately 55 km of walking distributed between 4954

individual tests. When walking on a laterally moving surface, motion-induced forces

develop at the frequency of the movement and are herewith quantified through

equivalent velocity and acceleration proportional coefficients. Their dependency on the

vibration frequency and amplitude is presented, both in terms of mean values and

probabilistically to illustrate the randomness associated with intra- and inter-subject

variability. It is shown that the motion-induced portion of the pedestrian load

(on average) inputs energy into the structure in the frequency range (normalised by

the mean walking frequency) between approximately 0.6 and 1.2. Furthermore, it is

shown that the load component in phase with the acceleration of the treadmill depends

on the frequency of the movement, such that pedestrians (on average) subtract from the

overall modal mass for low frequency motion and add to the overall modal mass at

higher frequencies.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The widely publicised closure of Paris’ Solférino and London’s Millennium footbridges in 1999 [1] and 2000 [2] have led
to an understanding on the part of engineers and architects of the need to evaluate the potential for footbridge vibrations
that can be attributed to pedestrians. Within the scientific community, the closures has also led to the initiation of a new
tract of research, focused on the understanding of pedestrian loading, bridge response and their interaction. A plethora of
research on the topic now exists [3–10] and as a consequence, numerous other bridges of different length and type have
also been found prone to similar excessive lateral vibrations when exposed to large pedestrian crowds [11–15].

Only few national and international codes of practice and official design guidelines currently exist to help the designer
address this issue. Most of these are based on the main hypotheses, that pedestrian-induced lateral loads can be modelled
as velocity proportional loads or as ‘‘negative dampers’’, resulting from the ‘‘synchronised’’ lateral movement of
pedestrians. This pedestrian lateral excitation mechanism is often characterised as synchronous lateral excitation (SLE) or
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human–structure ‘‘lock-in’’ [2,11,16]. The UK National Annex to Eurocode (EN 1991-2) [17], the HIVOSS guidelines [18] and
the fib (2005) recommendations [19] are for the most part based on this hypothesis. Alternatively, the French Road Agency
(Sétra) has published a guideline in which the lateral acceleration, calculated assuming random pedestrian behaviour,

Nomenclature

a parameter in a power law fit
Aj fitting parameters in a spectral load model
b parameter in a power law fit
Bj fitting parameters in a spectral load model
cp velocity proportional pedestrian load

coefficient
cp mean value of the velocity proportional pedes-

trian load coefficient
ĉp estimated error of the velocity proportional

pedestrian load coefficient
CoFx co-spectral density between F and x

DLFj dynamic load factor of load harmonic j

DLFj mean value of the dynamic load factor of load
harmonic j

f frequency
fL frequency of the lateral motion of the

treadmill
fn natural frequency of a single-degree-of-

freedom system
fNy Nyquist frequency
fp pedestrian pacing frequency
fw pedestrian walking frequency
f w mean pedestrian walking frequency
F pedestrian-induced lateral force
F̂ measurement error
FD damping force
FD,eq equivalent pedestrian damping force
FE elastic restoring force (spring force)
Fi lateral force peaks (i=1y3)
FI inertia force
FI,eq equivalent pedestrian inertia force
Gj amplitude of load harmonic j

Hn frequency response function of a single-
degree-of-freedom system

k̂ calibration constant
Kn stiffness of a single-degree-of-freedom system
mp pedestrian body mass
M mass of stage 3 of the treadmill

ergometer device
Nav number of windows used to calculate a

particular PSD
p probability density function
PD,eq average work done by FD,eq per unit time
PF average work done by F per unit time
QuFx quad-spectral density between F and x

SF PSD of F
SF,j PSD of F around load harmonic j

SF x cross-spectral density between F and x

SF _x cross-spectral density between F and _x
t time
Ttot total signal duration
Tw fundamental period of lateral pedestrian-

induced load

vp pedestrian walking speed
W body weight
x lateral displacement of the treadmill
_x lateral velocity of the treadmill
€x lateral acceleration of the treadmill
x0 lateral displacement amplitude of the

treadmill
_x0 lateral velocity amplitude of the treadmill
€x0 lateral acceleration amplitude of the treadmill
df frequency resolution in a spectrum
Df bandwidth
zn damping ratio of a single-degree-of-

freedom system
mX sample mean of X
x parameter in the lognormal distribution
r linear correlation coefficient
Rp acceleration proportional pedestrian load

coefficient
Rp mean value of the acceleration proportional

pedestrian load coefficient
R̂p estimated error of the acceleration propor-

tional pedestrian load coefficient
sDLFj standard deviation of the DLF of load harmonic j
s2
F total area of the PSD of F (total signal variance)

sF̂ standard deviation of the error of the pedes-
trian-induced load

~s2
F area of the PSD of F in a specific

frequency range
~s2
F,j area of the PSD of F around load harmonic j

sF _x total area of the cross-spectral density
between F and _x

~sF _x area of the cross-spectral density between F

and _x within a specific frequency range
~sF €x area of the cross-spectral density between F

and €x within a specific frequency range
~s2
u,eq total area of the equivalent power spectral

density of u
~s2
u,j area of the PSD of u around load harmonic j

ŝV standard deviation of the measured voltage
signal from load cells

s2
X sample variance of X

sx standard deviation of x
s €x standard deviation of €x

fj phase angle of load harmonic j

fxF phase spectrum between x and F

j phase angle
w parameter in the lognormal distribution
o angular frequency
oL angular frequency of the treadmill motion
Cov[] covariance operator
E[] expected value operator
F ½� Fourier transform operator
Re[] real part operator
Var[] variance operator
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should be limited to 0.10 m/s2. The value is chosen, so as to avoid SLE [20] and thus the destabilising effect of excessive
negative damping. The limit is based on research carried out during the temporary closure of the Solférino Bridge. Results
from a limited number of controlled pedestrian crowd tests indicated that there is a transition point at which a rapid
increase in the lateral bridge response is triggered. The transition is explained as random pedestrian walking that becomes
‘‘synchronised’’ when lateral bridge accelerations increase beyond 0.10 m/s2.

Although the current codes of practice and guidelines help to improve the designer’s ability to predict the potential for
large amplitude lateral footbridge vibrations, it should be recognised that they are based on a limited understanding of the
actual phenomenon. This can be understood by examining the origins of the physical models they rely on. Those that
utilise the concept of negative damping, employ an empirically derived velocity-proportional pedestrian damping constant
cp=300 N s/m, which represents an averaged value for each pedestrian, derived from back calculations of the measured
modal response during specific controlled crowd tests on the Millennium Bridge [2]. The constant is assumed to remain
unchanged, regardless of frequency of bridge motion. Furthermore, its determination is highly susceptible to
experimentally obtained parameters, such as mode shape, modal mass and pedestrian distribution; rendering the
universality of its application questionable. Similarly, the Sétra guidelines rely on a binary frequency-independent
acceleration criterion, which suggests that the same probability of synchronisation is assigned to all pedestrians
independent of the ratio between their walking frequency and the lateral vibration frequency of the bridge.

In recent years, various researchers have studied the mechanics of pedestrian-induced lateral forces on a laterally
vibrating surface. Different hypotheses exist about the complex nature of the human–structure interaction and unlike
current codes of practice and design guidelines which are primarily based on empirical full-scale observations, many of
these hypotheses are supported by theoretical modelling of the interaction [21–25], which lack the proper experimental
evidence to support their applicability.

In this paper, an in-depth examination of frequency-dependent lateral forces produced by a pedestrian are analysed and
presented. An extensive experimental campaign was carried out, where the characteristics of the lateral forces from 71
volunteering pedestrians were measured during treadmill walking, both on a fixed surface and during lateral sinusoidal
motion at different combinations of frequencies (0.33–1.07 Hz) and amplitudes (4.5–48 mm). Emphasis is placed on the
treatment of both the motion-induced forces, defined as equivalent velocity and acceleration proportional coefficients, and
those measured on a fixed surface. All of the data are presented in a probabilistic manner which illustrates the randomness
associated with both intra- and inter-subject variability.

2. Mechanics of pedestrian-induced lateral forces

2.1. Laterally fixed surface

During walking, a person generates a ground reaction force, or simply GRF, through the acceleration (and deceleration)
of the centre of mass of their body. In general, the GRF can be represented by a three-dimensional vector which varies in
time and in space due to the forward movement of the person [8].

The lateral components of the GRF are small, compared to the vertical ones, and are generated through the balancing of
the body [26]. The shape of a generalised lateral force time history is shown in Fig. 1. A single footstep is characterised by
three lateral force peaks, F1 to F3, with values around 4–5 percent of the body weight [27]. However, several factors
influence the shape of the walking force which is governed by large intra- and inter-subject variability. The intra-subject
variability denotes differences in the GRF of the same pedestrian measured at two different time instances and depends on
the type of footwear, walking speed and random variations in the gait, mood of the person, etc. [8,28]. The inter-subject
variability refers to the variability between different people and depends on physiological parameters of the pedestrians,
age, gender, race, etc. [29].

Due to the intra-subject variability, the time history of the walking force is a narrow-band random process, centred
around the fundamental lateral loading frequency, fw (defined as half the pacing frequency, fp) and its higher harmonics.
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Fig. 1. Typical shape of a walking force from (a) a single footstep and (b) a series of consecutive footsteps (figure reproduced from [5]).
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However, lateral walking forces are often modelled as a truncated Fourier series with a fundamental frequency, fw, based
on the simplified assumption that each footstep can be replicated from a single ‘‘characteristic’’ footstep (see Fig. 1):

FðtÞ ¼
Xn
j ¼ 1

Gjsinð2pjf wt�fjÞ (1)

where Gj and fj are the amplitude and phase angle of load harmonic j, respectively, and n is the number of load harmonics
included in the truncated Fourier series. In most cases, the load amplitude is defined through the body weight normalised
dynamic load factor DLFj = Gj/W. According to Bachmann and Ammann [30], the values of the first five load harmonics are
DLFj={0.039; 0.01; 0.042; 0.012; 0.015}, j=1y5. In a later publication by same authors, the values of DLF1 ¼DLF3 ¼ 0:1 are
suggested for design purposes [31]. However, no justification for the difference is given. Other studies aimed at finding the
DLFs from measured GRFs on stationary platforms indicate that they are independent of the walking speed and vary only
slightly between males and females [32–34].

Non-zero load harmonics at even integer harmonics imply that the gait is asymmetric and that the walking is imperfect. This
intra-subject variability was addressed by Pizzimenti [35], who used an instrumented treadmill to measure the continuous
GRFs of 66 individuals. Ricciardelli and Pizzimenti [28] defined DLFs for an average (perfectly periodic) footprint as the sum of
the contributions in the Fourier spectrum of the measured force in a narrow band around the frequency of the respective
harmonic. The characteristic values (with 95 percent probability of non-exeedance) of the first five DLFs were reported as DLFj
= {0.04; 0.0077; 0.023; 0.0043; 0.011}, j=1y5. In the frequency domain, Pizzimenti and Ricciardelli [36] present a
characteristic power spectral density (PSD), SF,j(f), for the first five load harmonics in a general (non-dimensional) form as

SF,jðf Þ � f
~s2
F,j

¼ 2Ajffiffiffiffiffiffi
2p

p
Bj

exp �2
f=jf w�1

Bj

� �2( )
(2)

where Aj and Bj are parameters determined by a data fit and ~s2
F,j is the area of the PSD around the jth harmonic.

2.2. Lateral human–structure interaction

When walking on a laterally oscillating surface, it has been postulated that people tend to spread their legs apart and
change their walking frequency and phase, to match that of the floor [16]. This alleged modification of the gait due to floor
oscillations has become known within the civil engineering community as human–structure synchronisation. Early works
by Fujino et al. [11] describe the concept of synchronisation. Their experimental studies on a human walking on a laterally
moving platform showed that the walking frequency became synchronised to the platform frequency for lateral
amplitudes in the range of 10–20 mm. This was used to explain the excessive lateral vibrations of the Toda Park Bridge in
Japan during periods when the bridge is congested by large crowds. However, details regarding the platform tests have not
been presented. Charles and Bui [37] defined the equivalent number of resonance pedestrians from back calculations of the
measured response on the Solférino bridge and Danbon and Grillaud [38] used their result to propose a load model, where
the number of synchronised resonance pedestrians increases linearly with the bridge displacement amplitude.

Strogatz et al. [21] offered a mathematical framework for the modelling of human–structure interaction, assuming that
each pedestrian reacts to a weak stimulus from the bridge, either through the lateral displacement [21] or the acceleration
[39]. If the stimulus is strong enough and the natural frequency of the bridge is close to the (original) walking frequency of
the individual, the pedestrian locks into synchrony with the structure. The models are presented in the same framework as
the theory of coupled oscillators, known from e.g. complex biological systems [40], but they lack any experimental
evidence that can confirm their capability to predict pedestrian-induced lateral vibrations. According to Butz [33], only
persons with natural walking frequency within 0.1 Hz of the lateral vibration frequency can synchronise with the
structural motion. Similar observations were reported by Nakamura et al. [41], who investigated walking on the spot on a
laterally moving shaking table. If the hypothesis that the correlated pedestrian force (or equivalent number of resonance
pedestrians) increases with the vibration amplitude, due to an increasing number of synchronised pedestrians, is true, then
the results by Butz [33] and Nakamura et al. [41] suggest that the susceptibility to SLE depends on the frequency ratio
between the pedestrian walking frequency and the frequency of the lateral movement. This is contradictory to the basic
assumption upon which current design recommendations are based.

An alternative approach is taken by Barker [42] who uses a simplified mechanical model of the human body centre of
mass to show that synchronisation of the step is not a necessary precondition for diverging lateral vibrations to occur.
Following along the same line, Macdonald [25] uses an inverted pendulum model to describe the lateral movement of the
centre of mass and comes to similar conclusion. He argues that balance control is a matter of foot placement rather than
timing of the step. His results are supported by full-scale measurements conducted on the Cliffton Suspension bridge
during a period with large crowd-induced lateral vibrations [15].

2.3. Laterally moving surface

The importance of human–structure interaction when modelling pedestrian-induced lateral loading on long span
footbridges has already been highlighted. Consequently, many researchers have attempted to measure pedestrian GRFs on
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a laterally moving surface. Shortly after the closure of the London Millennium Bridge, platform tests were performed at
Imperial College where it was found that the fundamental DLF increases with the lateral vibration amplitude and that at
frequency 1.0 Hz there is a 40 percent probability of synchronisation or ‘‘lock-in’’, for vibration amplitudes of 5 mm [43].
However, very few details regarding these experiments have been published.

Similar platform tests were commissioned following the closure of the Solférino bridge in Paris [20], with the main
conclusions being that the mean amplitude of the fundamental load harmonic is 35 N and that synchronisation with the
platform does generally not occur for lateral accelerations lower than 0.15 m/s2 [37]. Rönnquist [13] and Rönnquist and
Strömmen [44] report that the lateral load increases both with an increase in the lateral acceleration of the structure and
also as the walking frequency approaches the natural frequency of the platform. Similarly, Butz [33] reports that the DLF
for a synchronised pedestrian depends of the structure and for the non-synchronised pedestrian the fundamental DLF
should be taken as measured on a rigid surface. Common for all these tests however, is the fact that no distinction is made
between pedestrian forces in phase with velocity or acceleration of the structure.

Phase synchronisation was initially addressed by McRobie et al. [16] who report that the load amplitudes can reach
values as high as 300 N and the component in phase with the velocity of the structure can reach 100 N, when the vibration
amplitude of the structure is 100 mm. Sun and Yuan [45] performed walking tests with seven individuals, using an
instrumented treadmill fixed onto a shaking table. They concluded that for small vibration amplitudes, the relative phase
between pedestrian and structure is variable (non-constant), but as the amplitude increases the phase becomes almost
constant and the walking frequency changes to the vibration frequency. Furthermore, they find that on average the
pedestrian load increases linearly with the acceleration and is 140.81 ahead of the bridge motion (S.D. 17.91).

The experimental setup presented herewith (Treadmill Ergometer Device as described in Section 3) was initially
constructed by Pizzimenti [35] and used in a pilot study with five different test subjects. The lateral GRFs were measured,
and Pizzimenti and Ricciardelli [36] identified two different loading mechanisms; the first one centred around the walking
frequency and its integer harmonics and the second one, the self-excited force, occurring at a frequency equal the vibration
frequency. The self-excited force was further subdivided into in-phase and out-of-phase (with the displacement) lateral
pedestrian load components. It is reported that the in-phase component of the force obtain negative values over the entire
frequency range, which implies that pedestrians act as negative mass on the structure. This is in line with Macdonald’s
observations [25]. For the out-of-phase-component, pedestrians act as negative dampers, only for one combination of
frequency and amplitude. At other frequencies, they add to the overall structural damping [36]. Since only five test subjects
were used in the study and a limited number of frequencies and amplitudes were tested, the results can only serve as a
qualitative indicator.

3. Current experimental investigations

3.1. Test subjects

During the summer of 2009, 71 healthy human volunteers (45 male and 26 female) with an age distribution according
to Table 1, a mean height of 1.73 m (S.D. 0.01 m) and a mean weight of 74.4 kg (S.D. 15.1 kg) participated in an
experimental campaign to determine pedestrian-induced lateral forces on a laterally vibrating platform. The lengths of the
volunteers’ legs were measured as well as the circumference of their wrist and ankle prior to the tests.

All tests which involved human test subjects were carried out in accordance with The Code of Ethics of the World
Medical Association (Declaration of Helsinki) for experiments involving humans.

3.2. Experimental setup

A Treadmill Ergometer Device, positioned in the laboratory of the Inter University Research on Building Aerodynamics
and Wind Engineering (CRIACIV) at the University of Florence in Prato, Italy, was used to measure the lateral GRF during
walking, Fig. 2. The treadmill was built in 2003 at the University of Reggio Calabria [35] and moved to CRIACIV in 2006.

In brief, the treadmill consists of three separate parts, stages 1–3. The base of the treadmill, consisting of steel beams
fixed on the laboratory floor is denoted by stage 1. Stage 2, which is a steel frame connected to the base through guide rails,
such that it can move laterally, is driven by a motor. This motor controls the lateral vibration frequency of the system as
well as the amplitude. Stage 3 consists of the walking surface with the dimension 100�180 cm, which is made of a steel
frame system covered with plywood panels and a rubber belt. The belt is driven by a motor, which is attached to stage 2

Table 1
Age and gender distribution of test subjects.

0–18 years 19–35 years 36–55 years 455 years Total

Male 0 29 14 2 45

Female 1 16 9 0 26

Total 1 45 23 2 71
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and therefore moves with the motion of the platform. The connection between stages 2 and 3, i.e. the belt and the laterally
driven frame is twofold. First of all, it is vertically suspended from the supporting frame (at stage 2) using low friction
hinges and secondly it is laterally supported with four flexural load cells. Images of various components of the treadmill are
shown in Fig. 2. Both the motion of the belt and the lateral motion of the treadmill are driven by asynchronous 1.1 kW
(1.5 HP) motors equipped with gearboxes. Both motors are controlled with inverters for variable belt speed and vibration
frequencies, respectively. A schematic representation of the system is shown in Fig. 3. The experimental setup is a slightly
modified version of that described by Pizzimenti and Ricciardelli [36] and Ricciardelli and Pizzimenti [28].

3.3. Other equipment

The resulting horizontal lateral force between stages 2 and 3 is measured with four load cells. Each load cell can
measure up to 500 N with a sensitivity of 3.7711 mV/N. The motion of the treadmill is measured with two high sensitivity
(10 V/g) ICP accelerometers (PCB Piezotronics, type 393B12). The accelerometers are connected to a 4 channel signal
conditioner (PCB Piezotronics, type 441A42). Furthermore, the displacement of the treadmill is measured using a laser with
sensitivity 100 mV/mm. The walking speed is determined using an encoder that measures the rotation of the steel cylinder
which drives the treadmill belt. All signals were acquired with 75 V 24-Bit data acquisition modules (National
Instruments, cDAQ-9172 and National Instruments, BNC 9234) at a sampling rate of 2048 Hz.

3.4. Test procedure

Subjects were requested to perform two types of walking on the treadmill; one without lateral motion of stage 3 of the
treadmill (denoted static tests) and one with lateral sinusoidal movement at various vibration frequencies and amplitudes

Load cells

Belt motor

Motor for 
lateral vibrations

Guide rails

Stage 2

Stage 3

Hangers

Stage 1

Fig. 2. (a) A treadmill ergometer device and (b) a pedestrian test subject during a walking test.
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Fig. 3. A schematic overview of the treadmill ergometer device setup and the force equilibrium.
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(denoted dynamic tests). Initially, each subject was asked to walk on the treadmill and select a comfortable walking speed.
This walking speed was subsequently used in both the static and the dynamic tests. Only one static test with a duration of
2 min was performed, whereas each subject performed several dynamic tests of 30 s duration, with vibration frequencies
in the range 0.33–1.07 Hz and displacement amplitudes between 4.5 and 48 mm. Typically, each test subject spent
between 1 and 2h in the laboratory, depending on their availability and thereby the number of dynamic tests performed.
The order in which the dynamic tests were performed was determined by a combination of random and systematic
selections. After a successful completion of the static test, the displacement amplitudes of the treadmill were selected
randomly. The pedestrian was asked to walk continuously on the treadmill at each particular amplitude whilst the
frequency was increased in steps, from the lowest frequency tested to the highest one. Each step lasted 30 s plus a
transition time interval during which the frequency was changed. After sweeping through all the frequencies, a short break
was taken during which time the amplitude was changed. Generally, each subject was tested at both low, intermediate and
large amplitude vibrations. Most of the tests were recorded with a digital video camera and all comments from the test
subjects relating to the tests were recorded. The test matrix is given in Table 2, where the number in each cell indicates the
number of different subjects tested for that particular combination of frequency and amplitude.

A total of 71 static tests were performed and 4883 dynamic tests, covering the total walking distance of approximately
55 km.

3.5. Data post-processing

Initially, the DC components of all the measured signals were removed and subsequently the signals were re-sampled
from the original 2048 to 32 Hz, by applying a digital anti-aliasing lowpass FIR filter. The new (re-sampled) data were
further lowpass filtered with a cutoff frequency of 8 Hz for the static tests and 5 Hz for the dynamic tests. The spectral
densities presented herewith are generally estimated from an averaged periodogram of the measured time series. The
periodograms are obtained by dividing the original time series into a number of windows (possibly overlapping) and
calculating the discrete Fourier transform in each of them. No general rules can be made regarding the preferred shape of
the window (rectangular, raised cosine, etc.), its size or overlap percentage as it depends on the particular application as
well as a trade-off choice between the accuracy of the estimate and the desired frequency resolution [46,47]. Therefore,
different methods have been used depending on the particular application and in the following the frequency resolution,
df , number of averages, Nav, and the selected window function will be accounted for each time a new spectrum is
presented.

By taking advantage of the fact that the pedestrian-induced load is near-periodic with fundamental frequency equal the
(average) walking frequency, the most severe type of spectral leakage can be avoided by assuring that each window
contains an integer number of vibration cycles. This is achieved by identifying the dominant frequency in the signal from
the periodogram of the original time series, which has been zero padded to a much longer length (here 2048 s) for
enhancing the frequency resolution. Having identified the dominant frequency, the original time series is truncated such
that each window contains (as closely as possible) an integer number of vibration cycles. In the dynamic tests, the
fundamental period is taken as that of the lateral treadmill motion, determined from the periodogram of the zero-padded

Table 2
Test matrix which shows the number of different subjects tested at each particular combination of lateral vibration amplitude and frequency.

Frequency

fL/x0 (Hz)

Lateral vibration amplitude

4.5 mm 10 mm 19.4 mm 28.7 mm 31.0 mm 38.3 mm 48.0 mm

0 Static test—71 subjects

0.33 45 65 59 35 36 48 60

0.40 45 65 59 35 36 48 60

0.43 45 65 59 35 36 47 59

0.47 45 65 59 35 35 47 58

0.50 45 66 60 35 36 47 58

0.60 46 66 60 35 35 47 22

0.70 46 66 60 34 34 47 18

0.77 45 65 59 34 31 46 14

0.80 46 66 59 34 29 44 11

0.83 46 66 59 34 27 32 8

0.87 46 66 59 33 10 23 4

0.90 46 66 59 33 9 21 3

0.93 46 66 59 33 8 17 2

0.97 46 66 58 21 8 14 2

1.00 46 64 57 21 7 12 2

1.03 45 64 57 15 6 5 0

1.07 45 64 56 14 6 5 0
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displacement signal. This ensures that the self-excited portion of the pedestrian-induced load is represented by an integer
number of vibration periods.

3.6. Calibration of the treadmill

A dynamic calibration of the treadmill was performed prior to the pedestrian tests to verify the sensitivity of the force
transducers and to determine the accuracy of the measurements. The treadmill is constructed such that a sinusoidal base
motion with angular frequency oL and amplitude x0 is generated at stage 2, and stage 3 can therefore be treated as a
single-degree-of-freedom (SDOF) system subject to the base motion x(t). The stiffness of this SDOF system is governed by
the stiffness of the load cells, which for all practical purposes may be treated as rigid. The equilibrium of forces (see Fig. 3)
is written according to d’Alambert’s principle as [50]

FIðtÞþFDðtÞþFEðtÞ ¼ FðtÞ (3)

where FI(t) is the inertia force, obtained as the mass M of stage 3 multiplied with the acceleration €xðtÞ, FD(t) is the damping
force which is considered negligible, FE(t) is the elastic force in the system, i.e. the measured force in the load cells and F(t)
is the external (pedestrian-induced) lateral load which acts on stage 3.

A calibration of the treadmill was made for all amplitudes and all frequencies in the range 0.27–1.17 Hz in step of
0.03 Hz and similar post-processing as described in Section 3.5 is adopted. The measured acceleration signal is used to
calibrate the load cells. The calibration constant, k̂, defined as the transformation of the voltage output from the load cells
to force, is determined from the measured standard deviation of the acceleration and strain signals, respectively. For each
combination of lateral frequency and amplitude a value for the calibration constant was obtained as

k̂i ¼M
s €x ,i

sVi
(4)

where s €x ,i and sVi are the measured standard deviations of the acceleration signal and the load cell signals, respectively.
The load cells showed a linear behaviour with a linear correlation coefficient r¼ 0:99997.

3.7. Static pedestrian walking tests

In the following, the power spectral density (PSD) of the pedestrian lateral force is defined as either a continuous or a
discrete single sided spectrum such that

Var½F� ¼ s2
F ¼

Z fNy

0
SF ðf Þ dfffi

XN=2þ1

k ¼ 1

SF ðfkÞdf (5)

where SF(f) is the spectral ordinate at frequency f, fNy is the Nyquist frequency (half the sampling rate), df is the frequency
resolution of the spectrum and N is the number of samples in the discrete Fourier transform. An example of a typical
measured force time history and the corresponding normalised square-root PSD is shown in Fig. 4. The intra-subject
variability in the loading is illustrated by the varying load amplitude in the time history and quantified through the
distribution of the energy around the main load harmonics.
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Fig. 4. Example of (a) a measured weight normalised force time-history and (b) the corresponding square-root PSD from a single pedestrian walking on a

stationary surface (obtained with df ¼ 1=15 Hz and averaged over eight non-overlapping rectangular windows).
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3.7.1. Equivalent ‘‘perfect’’ DLF

The intra-subject variability in the load makes a deterministic (and perfectly harmonic) description, similar to that in
Eq. (1), only possible through an equivalent load amplitude [28,48]. The amplitude, or the equivalent perfect DLF, is
obtained by requiring that the mean-square value of the response, ~s2

u,j, of a SDOF oscillator (with natural frequency, fn),
caused by the component of the measured force around load harmonic j, equals the mean-square response, ~s2

u,eq, from
a perfectly periodic force applied at resonance. The mean-square value of the response from the measured force is
obtained as

~s2
u,j ¼

Z fn þ fw=2

fn�fw=2
SF ðf ÞjHnðf Þj2 df (6)

jHnðf Þj2 ¼
1

K2
n

1� f

fn

� �2
" #2

þ4z2n
f

fn

� �2
2
4

3
5
�1

(7)

where Hn(f), Kn, fn and zn are the frequency response function, stiffness, natural frequency and damping of the single-
degree-of-freedom system, respectively, and fw is the pedestrian walking frequency. The equivalent DLF can now be
obtained from the following expression:

~s2
u,eq ¼

1

4K2
nz

2
n

DLF2j W
2

2
¼ ~s2

u,j (8)

The equivalent DLF depends on the modal damping and takes into account the filtering effect of the structure and that only
load contributions in a narrow band near the natural frequency of the structure contribute to the vibration. As the modal
damping ratio zn and thereby the bandwidth may vary between structures, a conservative (upper-bound) value for the
equivalent DLF is obtained by requiring that the mean-square value of the measured force, ~s2

F,j, in the total bandwidth
between two harmonics ðDfj ¼ fwÞ equals the mean-square value of the perfectly periodic force:

~s2
F,jðDfjÞ ¼

Z ðjþ1=2Þfw

ðj�1=2Þfw
SF ðf Þ df ¼

DLF2j W
2

2
(9)

Therefore, two different equivalent DLFs can be calculated; one according to Eq. (8), denoted the narrow-band model
and one according to Eq. (9) denoted the broad-band model, i.e.

DLFj ¼
2
ffiffiffi
2

p
zn ~su,jKn

W
narrow-band model (10)

DLFj ¼
ffiffiffi
2

p
~sF,j

W
broad-band model (11)

The main problem with calculating the narrow-band DLF is that the accuracy of the spectral estimate decreases with a
decrease in the bandwidth. This means that for low values of damping, the accuracy of the variance, ~s2

u,j, and thereby the
equivalent DLF, relies on an accurate representation of the PSD in a very narrow band around the mean pacing rate. Due to
the limited length of the measured force signal (2 min), the desired resolution to calculate the DLF for the narrow-band
model is obtained through a combination of averaging, windowing and zero-padding of the data. Firstly, the data are
divided into seven windows with 50 percent overlap and pre-multiplied with a Tukey window (a rectangular function with
cosine side lobes of width nw/4, where nw is the number of data points in the window). In each window, the data was
subsequently zero-padded to the total length of 16 times the original length (approximately 8 min). The smoothed
(average) spectrum was then used to calculate the narrow-band DLFs and the zero-padding thereby works as a
smoothening interpolation between the distinct frequencies in the spectrum of the original time series.

3.8. Dynamic pedestrian walking tests

As mentioned in Section 2.3, a pedestrian walking on a laterally driven surface will exert forces at the walking frequency
and its integer harmonics, as well as at the frequency of the lateral oscillation. Following Ricciardelli and Pizzimenti [28],
the latter force component will be referred to as ‘‘the self-excited force’’. An example of the measured pedestrian force and
its PSD is shown in Fig. 5 for a lateral vibration amplitude of 19.4 mm at the frequency 1.06 Hz. The shape of the force time
history is considerably different from that of the static tests (Fig. 4), due to the presence of the self-excited force
component at the lateral vibration frequency. The two peaks in the PSD also provide clear evidence that the pedestrian
walking frequency is not synchronised with that of the treadmill, which is an important observation as many mathematical
models rely on that assumption. The potential for human–structure interaction is treated in more detail in Section 4.3.1.
Firstly, the nature of the self-excited component of the force must be quantified, as not only the amplitude but also its
phase (related to the treadmill motion) is of importance. This is done by dividing it into two terms, one in phase with the
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acceleration (inertial) and one in phase with the velocity (damping) of the treadmill, by considering the cross-covariance of
the force and the treadmill motion.

3.8.1. Work done by pedestrian-induced lateral force

In a situation where a pedestrian is synchronised with the structure (or locked-in), the relative phase between the self-
excited pedestrian force and the treadmill movement is constant and the phase angle can be determined. On the contrary,
for a non-synchronised pedestrian, the phase angle may vary in time, whilst the pedestrian is still transferring energy into
the structure. Therefore, the component in-phase with the velocity of the structure is determined through the average
work done by the pedestrian per unit time PF through integration of the product of the lateral pedestrian force F(t) and the
structural velocity _xðtÞ:

PF ¼
1

Ttot

Z Ttot

0
FðtÞ _xðtÞ dt (12)

The integration in Eq. (12) is more conveniently evaluated in the frequency domain by considering the cross-covariance
between the pedestrian force F(t) and the platform velocity _xðtÞ (at zero time lag). Recalling that the mean value has been
removed from both F(t) and _xðtÞ, the cross-covariance is written as [49]

Cov½F, _x� ¼ E½FðtÞ � _xðtÞ� ¼ lim
T-1

1

T

Z T

0
FðtÞ _xðtÞ dt¼

Z 1

�1
SF _x ðf Þ df (13)

SF _x ðf Þ ¼ lim
T-1

1

2pT F �fFðtÞgF f _xðtÞg ¼ i2pf � SFxðf Þ (14)

) SF _x ðf Þ ¼ CoF _x ðf Þ�iQuF _x ðf Þ ¼ i2pf � CoFxðf Þþ2pf � QuFxðf Þ (15)

fFxðf Þ ¼ arctan
CoFxðf Þ
QuFxðf Þ

(16)

Fig. 5. Example of (a) a measured body-weight normalised force time-history, (b) its corresponding square-root PSD, (c) the normalised cross-spectral

density between the measured lateral force and displacement and (d) the corresponding phase spectrum from a single pedestrian walking on a laterally

oscillating surface (frequency 1.06 Hz and amplitude 19.4 mm). The spectra in (b)–(d) are obtained with df ¼ 2=15 Hz and averaged over four non-

overlapping rectangular windows.
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where F fg is a Fourier transform operator, * denotes the complex conjugate and i2=�1. The cross-spectral density, SF _x ðf Þ, is
complex and may be written in terms of its real part, denoted the co-spectral density CoF _x ðf Þ, and the imaginary part called
the quad-spectral density, QuF _x ðf Þ. Thereby, the cross-spectral density contains both the cross-amplitude and the phase
between the processes F(t) and _xðtÞ. It is further noted that for practical use of the cross-spectral density, all imaginary
parts will cancel out, making only the real part of the spectrum of interest [49]. The last equality in Eq. (15) implies that the
cross-spectral density between F(t) and _xðtÞ can be evaluated directly from the cross-spectral density between F(t) and x(t),
simply by multiplying the spectrum with i2pf . This is convenient since the lateral treadmill displacement is measured
directly, whereas the velocity can only be obtained through numerical differentiation of the measured displacement. The
integral in Eq. (12) is now determined through integration of the cross-spectral density, either over the entire frequency
domain, PF ¼ sF _x , or over a specific bandwidth, ~sF _x ðDf Þ. The latter approach is advantageous as it excludes erroneous
contributions from correlated measurement noise or mechanical noise due to the possibility of non-perfect motion of the
treadmill, which may occur at frequencies different from the fundamental lateral vibration frequency, see e.g. Fig. 5(c).The
bandwidth is selected as Df ¼ 0:05 Hz centred at the lateral vibration frequency.

3.8.2. Damping and inertia proportional coefficients

It is now convenient to express the pedestrian force in terms of an equivalent damping force, FD,eq(t), proportional to the
velocity of the treadmill, and an equivalent inertia force, FI,eq(t), proportional to its acceleration so that

FD,eqðtÞ ¼ cp _xðtÞ ¼ cp _x0sinðoLtþjÞ (17)

FI,eqðtÞ ¼ Rpmp €xðtÞ ¼ Rpmp €x0sinðoLtþjþp=2Þ (18)

where oL ¼ 2pfL is the angular frequency, _x0 and €x0 are the velocity and acceleration amplitudes of the lateral vibration, j
is an arbitrary phase and mp is the pedestrian mass. The average work done by the damping force per unit time is
PD,eq ¼ 1

2cp _x
2
0. The velocity proportional constant cp is now obtained by imposing the condition that the pedestrian load

inputs the same energy per unit time as that of the equivalent load within the frequency bandwidth Df , thus
~sF _x ðDf Þ ¼ PD,eq. The portion of the total pedestrian mass Rpmp that contributes to the added mass of the structure is
determined similarly to cp, i.e.:

cp ¼ 2

_x20
~sF _x ðDf Þ (19)

Rpmp ¼
2

€x20
~sF €x ðDf Þ (20)

~sF _x ðDf Þ ¼
Z fL þDf=2

fL�Df=2
Re½SF _x ðf Þ� df ¼�2p

Z fL þDf=2

fL�Df=2
fQuFxðf Þ df (21)

~sF €x ðDf Þ ¼
Z fL þDf=2

fL�Df=2
Re½SF €x ðf Þ� df ¼�4p2

Z fL þDf=2

fL�Df=2
f 2CoFxðf Þ df (22)

An example of the application of the spectral analysis for the determination of the force coefficient cp and the phase
angle between the lateral pedestrian force and the treadmill displacement is shown in Fig. 5. According to the definition of
the coefficients cp and Rp, in Eqs. (17)–(18), the self-excited force appears positive on the right-hand side of the equation of
motion, thus positive values of cp and Rp indicate a decrease in the modal damping and mass, respectively.

3.9. Error estimation

From Eq. (3) it is apparent that in the absence of damping and external load, the measured force and the inertial force of
stage 3 should be equal in magnitude and opposite in direction. Having calibrated the load cell (see Section 3.6), an
estimate of the error can be made by considering the residual force F̂ ðtÞ, measured for an empty treadmill and defined as

F̂ ðtÞ ¼ FIðtÞþFEðtÞ (23)

At each combination of lateral vibration frequency and amplitude, the velocity and acceleration proportional
coefficients were calculated according to Eqs. (19)–(20), as well as the total standard deviation of the force. In Fig. 6 the
results from these calculations are shown, which indicate the level of error expected in the tests. For the velocity and
acceleration proportional load coefficients, the mean errors are �1.0 N s/m (S.D. 4.7 N s/m) and 0.3 kg (S.D. 2.3 kg),
whereas the mean error on the total force is 1.2 N (S.D. 0.2 N). For all practical purposes, these errors have been considered
acceptable.
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4. Results and discussion

4.1. Walking speed and frequency

The mean normal walking speed during the tests was 1.27 m/s (S.D. 0.23 m/s) for women and 1.30 m/s (S.D. 0.20 m/s)
for men, while the mean normal walking frequency was 0.87 Hz (S.D. 0.09 Hz) for women and 0.85 Hz (S.D. 0.07 Hz) for
men. The mean walking speed and walking frequency, f w, for all test subjects were 1.29 m/s (S.D. 0.21 m/s) and 0.86 Hz
(S.D. 0.08 Hz), respectively, whereas the mean weight of the subjects was 730 N (S.D. 148 N), with a considerable difference
between male (808 N and S.D. 110 N) and female subjects (603 N and S.D. 111 N). The probability distribution of the
normal walking frequencies, as observed in the tests, can be approximated reasonably with a normal distribution, whereas
the walking speed and the subject’s weight are more randomly distributed.

A slight correlation between the walking speed and the walking frequency was observed (with linear correlation
coefficient r¼ 0:6612). In Fig. 7 the pedestrian walking speed versus the walking frequency is shown, together with
compiled data from earlier experiments conducted by Pansera [51], Terrier et al. [52] and Ingólfsson [53]. Ingólfsson et al.
[54] used a power law of the type fw = avp

b to fit the experimental data (with a = 0.81 and b=0.35) which is also shown in
Fig. 7. Opposed to a linear regression, the advantage in using a power law is that it fulfills the boundary condition vp(0)=0,
whilst allowing for non-constant values of the stride length.

Furthermore, a slight linear correlation was observed between the pedestrian weight and the RMS value of the pedestrian load
ðr¼ 0:6720Þ. Their relationship is shown in Fig. 7, together with a linear regression, written as sF ¼ 0:041 W. The other physical
characteristics, such as length of leg or pedestrian height did not show signs of significant correlation with either the pedestrian
force or the walking speed and frequency, confirming similar observations made by Ricciardelli and Pizzimenti [28].

4.2. Static pedestrian walking tests

Little to no correlation between the DLFs and the walking frequency could be observed from the tests. In Fig. 8 the DLFs
of the first five load harmonics are shown as a function of frequency (normalised with the mean walking frequency of the
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population, f w), calculated assuming a broad-band model as described in Section 3.7. Also, in Fig. 8, the fundamental DLF
calculated using the narrow-band model is shown as a function of the damping ratio. It is noted that a considerable
difference between the DLF calculated using the broad-band and the narrow-band models is observed, particularly at low
structural damping ratios, as is characteristic for many long-span footbridges. This observation stresses the importance of
intra-subject variability when calculating pedestrian-induced excitation and that the DLFs which are calculated on the
basis of the broad-band model can be very conservative. Furthermore, the inter-subject variability in the DLFs is made clear
by the large scatter of the measured data and an accurate description of the loading from a group of pedestrians seems only
possible through probability distribution functions. The low mean value combined with large scatter suggests the use of a
skewed distribution as a fit to the measured data, e.g. the lognormal distribution with the probability density function:

pðxÞ ¼ 1

xx
ffiffiffiffiffiffi
2p

p exp � ½lnx�w�2
2x2

" #
(24)

The parameters w and x are related to the sample mean E½X� ¼ mX and variance Var½X� ¼ s2
X so that

w¼ lnmX�
1

2
ln 1þ sX

m2
X

 !
, x2 ¼ ln 1þ sX

m2
X

 !
: (25)

The experimentally obtained cumulative distribution functions of DLF1, DLF3 and DLF5 (from the broad-band model) are
shown in Fig. 9 together with the fitted lognormal distribution.
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The mean value of the DLFs and that with a 95 percent non-exceedance probability are shown in Table 3, both for the
narrow-band (when assuming zn ¼ 0:01) and the broad-band models. Clearly, there is a difference between these two
methods, as illustrated in Fig. 8 and since the DLF depends on the structural damping, the most conservative method in a
design situation is to use the broad-band model, in particular if the damping is uncertain or even unknown.

The results from the static tests compare generally well with the values reported by other researchers, see e.g.
Section 2.1, both qualitatively in terms of data scatter and frequency dependency and also quantitatively in terms of
characteristic values. In particular, the characteristic values of the DLFs reported by Ricciardelli and Pizzimenti [28] from
the narrow-band model (with zn ¼ 0:01) agree very well to those reported herewith, as expected since the experimental
setups are (near) identical and the test subjects are drawn from a similar pool of persons. It is further shown that the
lognormal distribution provides a reasonable fit to the data and may be used to model the probability distribution of the
DLFs. This is especially useful when modelling the pedestrian-induced loading in a probabilistic sense e.g. through Monte
Carlo simulations. It should be noted that these DLFs were measured in the absence of lateral vibrations and cannot be
used for estimating vibrations in footbridges where the self-excited part of the load cannot be neglected.

4.3. Dynamic pedestrian walking tests

Pedestrian walking tests were performed at different lateral oscillation frequencies, fL, and amplitudes, x0, with up to 66
test subjects at each particular combination of fL and x0 (see Table 2). In each test, both the velocity and acceleration
proportional constants cp and Rp were determined according to Eqs. (19) and (20), respectively. In Fig. 10, the mean value
cp for each lateral vibration frequency and amplitude is presented, both as a function of normalised frequency and
amplitude. The frequency axis is normalised by the mean walking frequency of the population, f w.

In Fig. 10(a), the curves are made of an initial near-linear segment (up to fL=f wffi0:8 on the horizontal axis), followed by
an almost horizontal segment. The slope of the linear segment and the value of the constant segment increases with
decreasing amplitude. At the lowest frequencies cp is negative (i.e. damping is added to the structure), but at higher
frequencies ðfL=f w\0:50Þ the coefficient is positive. In addition, in Fig. 10(b) there is a clear correlation between the mean
load coefficient and the displacement amplitude at most frequencies. In particular for fL=f w40:89, the negative damping
decreases with increasing amplitude, which demonstrates the self-limiting nature of the associated structural response. At
lower frequencies, the added damping decreases for an increase in the displacement amplitude.

The mean values of cp presented herewith are lower than 300 N s/m as reported from the LondonMillennium Bridge [2].
It should be noted that a direct comparison between load coefficients cp obtained in this study and that reported from the
Millennium Bridge is not possible, first of all because on the Millennium Bridge the result is based on a limited number of
full-scale experiments and may therefore represent a different fractile than the mean value. Secondly, the value of cp
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Table 3
Mean and characteristics values of the measured equivalent DLFs from the static pedestrian tests.

j=1 j=2 j=3 j=4 j=5

Broad-band model, DLF j (mean value) 0.047 0.007 0.025 0.005 0.011

Broad-band model, DLFj (95 percent fractile) 0.073 0.010 0.034 0.007 0.016

Narrow-band model ðzn ¼ 0:01Þ, DLF j (mean value) 0.028 0.003 0.017 0.002 0.008

Narrow-band model ðzn ¼ 0:01Þ, DLFj (95 percent fractile) 0.041 0.006 0.024 0.002 0.012
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reported by Dallard et al. [2] is estimated from back calculations of measured response and involves some inaccuracy in
several bridge and crowd specific parameters; particularly modal mass, shape, damping and spatial pedestrian
distribution. Based on the inverted pendulum model developed by Macdonald [15] the equivalent damping coefficient
per pedestrian walking on a laterally moving surface was shown to depend strongly on the lateral oscillation frequency,
with a maximum value of around 200 N s/m.

The mean value of the mass proportional constant, Rp, shows a clear dependency on the lateral vibration frequency. In
Fig. 11(a) it is shown that at low frequencies, Rp is positive and pedestrians therefore subtract from the overall modal mass
of the structure. This effect of the pedestrian mass has been explained as ‘‘added stiffness’’ by Pizzimenti and Ricciardelli
[36]. At higher frequencies however it becomes negative and near constant (at around 0.12–0.20), suggesting that
pedestrians (on average) add to the modal mass of the structure. The transition from positive to negative values of Rp

occurs in the frequency range fL=f w � 0:5520:85 and is amplitude dependent, i.e. for large amplitudes, the transition
frequency is generally lower. In Fig. 11(b), it is noted that at lower frequencies, Rp decrease as the lateral vibration
amplitude increases, but at higher frequencies it is near constant. The inverted pendulum model proposed by Macdonald
[25] predicts positive values for Rp (i.e. decreased modal mass) in the frequency range fL=f w 2 ½0:3;1:3� and maximum value
of 61 percent of the body weight. For lower frequencies, Rp becomes negative with a maximum value of �1 at fL=f w ¼ 0.
The results presented herewith contradict this, but as noted by Macdonald [25], the results from the inverted pendulum
model depend on the specific control law used for the pedestrian balance control and with a different control scheme,
positive values for Rp are predicted in the low frequency range and negative values in the higher frequency range, similar to
the results presented herewith.

Although the mean values show some clear frequency and amplitude dependency, it is stressed that a very large inter-
subject variability was observed in the tests, illuminated by the large scatter in the measured load coefficients. Therefore,
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the load coefficients are best described through their probability distribution and central moments (mean and standard
deviation). In Fig. 12(a)–(b), the experimentally obtained probability distributions of cp and Rp for different frequencies are
shown. In Fig. 12(c)–(d) the development of the mean value 7one standard deviation error bar of the same load
coefficients are shown as a function of the normalised lateral vibration frequency.

Further analysis reveals that the data scatter is particularly pronounced at low vibration amplitudes. The reason for this
is found in the definition of the load coefficients in Eqs. (19) and (20), where it is noted that _x20 and €x20 appear in the
denominator and therefore causes a large magnification at low vibration amplitudes. This phenomenon is illustrated in
Fig. 13, showing the mean value of the load and mass coefficients and the single standard deviation boundaries as a
function of the lateral velocity and acceleration, respectively. We note that for cp, the mean value is fairly constant over the
entire amplitude range, but the standard deviation decreases as the velocity increases. The mass coefficient, Rp, however,
seems to decrease with the acceleration, with a positive value at low accelerations and a negative value in the acceleration
range 0.1–0.4 m/s2.

4.3.1. Qualitative assessment of the potential for human–structure synchronisation

From the tests various qualitative observations regarding the potential for human–structure synchronisation were
made. In tests where the natural walking frequency coincided with the walking frequency of the test subject, people
reacted differently; some would adjust their steps to match a ‘‘comfortable’’ phase, whilst others walked unaffected by the
movement. Those who adjusted their phase to that of the treadmill, did so in different manner, i.e. some people spread the
legs further apart whilst others crossed their legs during walking and therefore the load induced is different in these two
situations. Furthermore, it was also observed that even the same person did not necessarily react in the same way in two
nearly identical situations.
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Most of the test subjects felt at some point during the tests that they were affected by the lateral vibrations. The
combination of low frequency and large amplitude was generally described as uncomfortable and several test subjects
mentioned a resemblance to walking on a rocking boat. When the vibration frequency was close to the walking frequency,
the vibration was often described as ‘‘clearly perceptible’’ or ‘‘annoying’’. The reason is that the relative phase between the
treadmill movement and the steps changes slowly and thereby the reaction force from the treadmill (as felt by the
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pedestrian) is constantly changing making it difficult to adapt to the vibration. This frequency range can be described as a
potential ‘‘lock-in’’ range where people might tend to adjust their walking frequency to that of the treadmill lateral motion.
In the tests presented herewith, this would be possible by adjustment of the stride length. However, a more efficient way
would be to adjust the walking speed, which was not possible due to restrictions posed by the nature of the test
equipment. Indeed, some of the test subjects made complaints that they would prefer to change their walking speed in an
attempt to avoid the uncomfortable feeling of walking at a frequency close to the vibration frequency. Typically, these
complaints would only occur during large amplitude vibrations, e.g. x0Z19 mm.

Additionally, it is worth pointing out that, although most of the pedestrians were affected by the lateral vibrations of the
treadmill, the large scatter in the data and the visual observations made during the tests suggest that synchronisation of
pedestrians walking on a laterally moving surface is neither generic nor obviously deterministic. Instead it is to a large
extent governed by randomness and whilst some people feel comfortable adjusting to the platform motions, others are
more comfortable walking at their own selected pacing rate. Whilst some people prefer adjusting their phase to match the
displacement of the treadmill, others choose to match the acceleration or velocity.

The observed randomness in the behaviour of the pedestrians and lack of obvious signs of human–structure
synchronisation, combined with the fact that negative damping could be generated at most frequencies, suggests that
synchronisation is not as important as generally believed. To confirm this, further analysis were undertaken on the walking
patterns of 7 test subjects that were instrumented with waist-mounted tri-axial accelerometers. These tests revealed that
synchronisation is not a pre-condition for the development of velocity (and acceleration) proportional pedestrian forces,
which may lead to large amplitude lateral vibrations in footbridges [55].

5. Conclusions

The data presented in this paper are based on measured forces from 71 pedestrians walking on both a laterally fixed and
oscillating surface at various amplitudes and frequencies.

Particular attention is paid on quantification of the self-excited component of the pedestrian load through a damping
proportional and a mass proportional coefficient, respectively. For both these coefficients, a large scatter is observed at low
vibration amplitudes, but decreases as the amplitude increases. Analysis of the self-excited pedestrian load reveals that
pedestrians (on average) consistently input energy into the structure in the normalised frequency range between
approximately 0.6 and 1.2 and that the component in phase with the structural velocity can be modelled as a velocity
proportional force. Interestingly, the coefficient of proportionality, cp, decreases with an increase in the vibration
amplitude and can therefore not be treated as a constant parameter (Fig. 10). Instead the load has a nonlinear component
due to this dependency. The decrease in negative damping as the vibration amplitude increases, suggest that the
pedestrian-induced loading is self-limiting. The component in phase with the acceleration is analysed and found to depend
on the frequency of the structure. It is observed that for low frequencies, pedestrians subtract from the overall modal mass
and add to the mass at higher frequency motion, with an amplitude-dependent transition.

The very large scatter in the data suggests that a probabilistic approach is necessary for an accurate estimation of the
susceptibility of a footbridge to excessive vibrations. In particular, the critical number of pedestrian needed to trigger SLE
may vary considerably depending on the particular crowd occupying the bridge.

Finally, since positive values of cp occur in a broad frequency range, synchronisation of the walking frequency to that of
the structure is not necessary for the development of velocity proportional loads, which can be represented in the form of
negative damping.
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ABSTRACT

In recent years, several high-profile footbridges have suffered from unexpected excessive pedestrian-
induced lateral vibrations. There is a commonly accepted view that the synchronisation of pedes-
trians to the lateral movement of a structure is necessary for the onset of a form of instability
which may lead to large lateral responses. Several recently published load models are based on
this assumption. Yet, few experimental studies exist to support this hypothesis. Therefore, an
extensive experimental campaign, involving 71 test subjects, has been carried out to determine
the lateral forces generated by pedestrians during walking on an instrumented moving treadmill.
The treadmill was driven sinusoidally in a lateral motion at various vibration frequencies and
amplitudes. Visual observations made during the experiments and testimonies from the walkers,
as well as subsequent analysis of video recordings, suggested that synchronisation is not as pro-
nounced as generally believed. To confirm this, further analyses were undertaken on the walking
patterns of 10 test subjects that were instrumented with waist-mounted tri-axial accelerometers.
In this paper, the results from these tests are presented. The tests reveal that synchronisation is not
a pre-condition for the development of large amplitude lateral vibrations on footbridges, as walk-
ing frequencies and phase angles remain largely unaffected by lateral motion at most frequencies



and amplitudes. Instead, large amplitude vibrations are the result of correlated pedestrian forces
in the form of “negative damping” that can be generated at all frequencies.

1. INTRODUCTION

Pedestrian-induced lateral excitation has become a major concern in the design of footbridges,
following the temporary closure of Paris’ Solférino and London’s Millennium footbridges in
1999 [1] and 2000 [2]. Subsequent research has revealed that numerous other bridges of dif-
ferent sizes and shapes are prone to similar excessive lateral vibrations when exposed to large
pedestrian crowds [3]. The vibrations have often been attributed to a synchronisation between
the pedestrian and the bridge, commonly denoted “lock-in” or “Synchronous Lateral Excita-
tion” (SLE), referring to the observation that pedestrians seem to modify their gait to match the
frequency and phase to that of the bridge [4, 5]. This has lead to the development of several
sophisticated pedestrian load models, which rely on this assumption [6–8]. Nevertheless, there
is a general dispute regarding the fundamental nature of human-structure interaction and the
importance of synchronisation.

Controlled pedestrian crowd tests performed on the London Millennium Bridge in 2000 val-
idated the observation made on the opening day, that for a certain number of pedestrians, the
bridge response was limited, whereas a small increase in the number of pedestrians (beyond a
critical number) often resulted in diverging lateral response [2]. An important finding from the
pedestrian tests, is that the pedestrian force was strongly related to the velocity of the structure,
suggesting that pedestrians act as “negative dampers” on the structure. This supports the idea
that excessive lateral vibrations occur when a critical number of pedestrians produce sufficient
negative damping to cancel the inherent structural damping. An equally important observation is
that the vertical response of the structure at twice the modal frequency did not show any dispro-
portionate increase, as an expected consequence of synchronised walking frequencies. Similar
observations on the lack of synchronised vertical loads during excessive lateral vibrations, have
been reported on other occasions [9, 10], but largely ignored in the load models that rely on
synchronised stepping.

Only a few days after the closure of the Millennium Bridge, the first attempt to explain the
excessive vibrations was offered by Josephson [11]: “the problem has little to do with crowds
walking in step: it is connected with what people do as the try to maintain balance if the surface
on which they are walking starts to move”. A very simplified model was proposed by Barker
[12], which demonstrates a feasible mechanism of human walking on a laterally moving sur-
face. Surprisingly, the model produces correlated pedestrian forces (i.e. net positive energy input
by the pedestrians) for an uncorrelated crowd walking at frequencies away from the vibration
frequency. This idea was further developed by Macdonald [13], who produced a plausible theo-
retical model for predicting both velocity and acceleration proportional pedestrian loads, through
the use of human balance control. The main problem with these models is that they lack experi-
mental evidence to support and justify their applicability.

In this paper, the hypothesis that synchronisation is necessary for generating correlated pedes-
trian forces is put to the test, by analysing the movement of single pedestrians walking on a lat-
erally moving treadmill at various combinations of frequencies (0.33 to 1.1 Hz) and amplitudes



(4.5 to 48 mm). Emphasis is placed on determining the correlation between the movement of a
the pedestrians and that of the treadmill using a set of two tri-axial accelerometers; one mounted
on the waist of the test person and one mounted on the treadmill. The results are presented and
related to the lateral forces produced by the pedestrians, quantified through equivalent velocity
and acceleration proportional coefficients.

2. EXPERIMENTAL STUDIES USING AN INSTRUMENTED TREADMILL

A treadmill, positioned in the laboratory of the Inter University Research Centre for Building
Aerodynamics and Wind Engineering (CRIACIV) in Prato, Italy was used to measure pedestrian-
induced lateral forces during walking, Fig. 1.

Figure 1: Picture of (a) experimental setup during a pedestrian walking tests, (b) motor for controlling belt
speed, (c) motor for controlling lateral oscillation of treadmill, (d) flexural load cells and (e) low friction
hinges.

The treadmill consists of three stages; stage one (the treadmill base) is fixed to the laboratory
floor, stage two is a laterally driven steel frame mounted on the base through guide rails and
stage three consists of the walking surface (100x180 cm). Stage three is made of a steel frame
system covered with plywood panels and a rubber belt. Stage three is vertically suspended from
the supporting frame (at stage 2) using low friction hinges, but also laterally supported with
4 flexural load cells (3.7711mV/N). Both the motion of the belt and the lateral motion of the
treadmill are driven by asynchronous 1.1 kW (1.5HP) motors which are controlled with inverters
for variable belt speed and vibration frequencies respectively. Various components of the system
are shown in Fig. 1. The lateral motion of the treadmill is measured with two ICP accelerometers
(PCB Piezotronics, type 393B12, 10V/g) and one displacement laser (sensitivity 100mV/mm).
All signals were acquired with ±5V 24-Bit data acquisition modules (NI, cDAQ-9172 and NI,
BNC 9234) at sampling rate 2048Hz.

During summer 2009, a total of seventy-one healthy volunteers (45 males and 26 females)



participated in an experimental campaign with two types of walking on the treadmill; one without
lateral motion (denoted static tests) and one with lateral sinusoidal movement denoted dynamic
tests). Each walker participated in one static test with a duration of 2 min and several dynamics
tests of 30 s duration at various combinations of oscillation frequencies (0.33 to 1.07Hz) and
displacement amplitudes (4.5 to 48 mm). Additionally, most of the tests were recorded with
a digital video camera and all comments from the volunteers relating to the tests were noted.
A total of 71 static tests were performed and 4883 dynamic tests, covering the total walking
distance of approximately 55 km. A detailed description of the tests and a presentation of the
results from the entire experimental campaign is provided elsewhere [14].

The results presented in this paper, are based on a detailed study of the walking patterns for
seven test subjects, using a set of two triaxial accelerometers; one attached firmly to the waist
of the test subject and one attached to the treadmill (stage two), see Fig. 2. The accelerometers,
which are wireless and time synchronised, were developed for the study of crowd synchronisation
at the Department of Civil Engineering of the Technical University of Denmark [15].

Figure 2: Pictures showing (a) Pedestrian test subject during a walking test, (b) a view of the accelerom-
eter which is attached to the waist of the test subject and (c) the accelerometer which is attached to stage
two of the treadmill.

3. ASSESSMENT OF HUMAN-STRUCTURE SYNCHRONISATION

When walking on a laterally oscillating surface, it has been postulated that people tend to spread
their feet apart and change their walking frequency and phase, to match that of the floor [5]. This
alleged modification of the gait due to floor oscillations has become known within the engineer-
ing community as human-structure synchronisation. According to Pizzimenti and Ricciardelli
[16], synchronisation may occur if the frequency of the lateral motion approaches the walking
frequency of the pedestrians, causing motion induced forces to develop at the frequency of the
lateral motion.

Unlike synchronisation, (dynamic) human-structure interaction is more general and is related
to the change in the pedestrian-induced loading due to bridge vibration and its potential effect on
structural parameters, i.e. mass, damping and stiffness. This means, that a two-way interaction



between a pedestrian and the laterally moving structure occurs, which does not necessarily de-
velop into synchronisation. In a situation where a pedestrian is synchronised with the structure
(or locked-in), the relative phase between the motion of the treadmill and that of the pedestrian
is constant, and the phase angle can be determined. On the contrary, for a non-synchronised
pedestrian, the phase angle may vary in time. The instantaneous phase, φs(t), of a signal, s(t),
can be obtained as:

φs(t) = arctan
s̃(t)

s(t)
(1)

where s̃(t) is the Hilbert transform of s(t) [17]. The phase difference between the lateral move-
ment of the pedestrian, u, and the treadmill, x, can now be expressed trough their instantaneous
phases:

φu,x(t) = φu(t)− φx(t) (2)

Further, a measure of the overall synchronisation is introduced through the mean phase coher-
ence, Ru,x, defined as [17]:

Ru,x =

∣∣∣∣∣ 1N
N−1∑
j=0

eiφu,x(jΔt)

∣∣∣∣∣ (3)

where Δt is the sampling interval, N is the number of samples and i =
√−1. It is noted that the

condition R = 1 is reached if and only if the time series are completely synchronised, i.e. for
strict phase locking. The condition R = 0 is obtained for a uniform distribution of phases, [17].

In Fig. 3, a characteristic example of the results from a pedestrian walking test is shown. In
this particular test, the lateral vibration amplitude is fixed at x0 = 10mm and the frequency of
the lateral motion of the treadmill is gradually increased from 0.33 to 1.07 Hz in 17 increments.
In each increment, a measurement of 30 s duration is recorded. This is illustrated in Fig. 3 (a)
and (b), showing the recorded lateral acceleration time histories of the treadmill, ẍ, and that of
the walker’s body, ü. In Fig. 3 (c) the instantaneous phases between the treadmill and the body
are shown as a function of time, where it is noted that the frequency of the lateral motion in-
creases gradually, whereas the frequency of the body sway is near constant. For comparison,
the pedestrian walking frequency as measured in the static test, is shown with a dashed line. As
illustrated in this particular experiment, and generally observed in all the tests, the frequency
of the body sway is (near) constant during the entire test session, suggesting a limited effect of
the treadmill motion on the walking frequency. In Fig. 3 (d) the instantaneous phase difference,
ϕü,ẍ, between ü and ẍ is shown as a function of time and in Fig. 3, (e) the corresponding mean
phase coherence, Rü,ẍ, is shown. At low vibration frequencies Rü,ẍ is negligible and the phase
variation occurs quickly due to the large difference between the two frequencies. As the lateral
vibration frequency approaches the walking frequency, the phase change is slower and Rü,ẍ in-
creases. Similarly, as the lateral vibration frequency increases beyond the walking frequency,
Rü,ẍ decreases again. When the walking frequency matches the lateral oscillation frequency of
the treadmill, Rü,ẍ is almost unity and the level of the instantaneous phase difference does not
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Figure 3: Results from a walking test with x0 = 10mm showing (a) lateral acceleration of the treadmill, ẍ,
and (b) lateral acceleration of the walker’s waist, ü, (c) instantaneous phase of ẍ and ü, (d) instantaneous
phase difference, (e) mean phase coherence and (f) displacement time-histories of u and x.



drift; although the phase does not remain strictly constant. In Fig. 3 (f), the lateral displace-
ment, obtained through numerical integration of the measured acceleration, of both the treadmill
and the body is shown during a time period where the walking frequency is close to the lateral
vibration frequency. Although the mean phase coherence is large, the movement of the pedes-
trian is not perfectly synchronised to the movement of the treadmill, instead there is considerable
amplitude and phase variation.
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Figure 4: Mean phase coherence as function of the normalised frequency for different lateral vibration
amplitudes. Each marker type represents one pedestrian.

The observations leading from the analyses of the characteristic example can be assumed
generic, as they remain unchanged for all the test subjects, i.e. the mean phase coherence is low
when the lateral vibration frequency is away from the normal walking frequency of the pedestrian
and increases gradually as the two frequencies approach each other. This also implies that the
walking frequency is dominated by the preferred walking frequency of the pedestrian rather than
the oscillation of the treadmill. In Fig. 4, the mean phase coherence is shown as a function of
the normalised frequency, where this effect is clearly illustrated. It is also noted that in a small
frequency range (approximately fL/fw ∈ [0.9; 1.1]), the mean coherence is large (Rü,ẍ > 0.9)
and therefore human-structure synchronisation might develop in this range. Even though, a large
phase coherence is necessary, it is not a sufficient condition for synchronisation. A large phase
coherence can be the result of a pedestrian walking naturally at a frequency that happens to
match that of the motion and which can be attributed to chance rather than synchronisation. The
mean phase coherence can thereby be used to determine the range for which human-structure
synchronisation can occur.

The results presented in Fig. 3 and Fig. 4 relate to the correlation between the movement of
the walker’s waist and that of the treadmill. It should be noted, though, that during the tests



the lateral ground reaction force generated by the pedestrians was also measured. In Fig. 5 (a),
the lateral force measured during a 30 s time interval is shown for the same walker used in the
characteristic example above. This corresponds to the time interval with the maximum phase
coherence (x0 = 10mm, fL/fw ∼= 1). During this test, the pedestrian-induced lateral force is
found to be in almost complete anti-phase (180 degrees) with the lateral displacement, which
essentially means that when the treadmill is at its mid-position and moving to the right, the
person puts his or her left foot on the ground. Similarly, when the treadmill is at its mid-position
and moving to the left, the person puts his or her right foot on the ground. The external force
produced by the pedestrian is thereby in phase with the acceleration of the treadmill and can
be treated as an additional (negative) inertial force which reduces the overall modal mass of the
structure which the pedestrian occupies. Similarly, if the pedestrian puts his foot (left or right) to
the ground when the velocity is zero (i.e. at maximum displacement amplitude), the pedestrian
force is proportional to the structural damping, positive or negative, depending on the sign of the
acceleration. In the general case however, the instantaneous phase and/or amplitude is variable
(as illustrated in Fig. 5 (b)) and the pedestrian induced force cannot readily be classified as added
inertia or damping. Instead, a deterministic quantification is only possible in terms of equivalent
forces.
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Figure 5: Two different examples of measured time-histories of the pedestrian-induced lateral force shown
with the lateral displacement of the treadmill.

4. EQUIVALENT PEDESTRIAN DAMPING AND INERTIAL FORCE

As proposed by Ingólfsson et al. [14], an equivalent damping force, FD,eq(t), proportional to the
velocity of the treadmill and an equivalent inertia force, FI,eq(t), proportional to its acceleration
are therefore defined as:

FD,eq(t) = cpẋ(t) = cpẋ0 sin (ωLt+ ϕ) (4)
FI,eq(t) = pmpẍ(t) = pmpẍ0 sin (ωLt+ ϕ+ π/2) (5)

where ẋ0 and ẍ0 are the velocity and acceleration amplitudes of the treadmill respectively and ϕ is
an arbitrary phase. The average work done per time unit of the damping force upon a harmonic



displacement at the same frequency and phase is PD,eq = 1/2cpẋ
2
0. The velocity proportional

constant, cp, is now obtained by imposing that the pedestrian load inputs the same energy per unit
time, PF , as that of the equivalent load. The average work, PF , is obtained through convolution
of the measured pedestrian-induced lateral force and the treadmill velocity:

PF =
1

Ttot

Ttot∫
0

F (t)ẋ(t) dt (6)

where Ttot is the duration of a pedestrian test. The portion of the total pedestrian mass, pmp, that
contributes to added mass on the structure is determined through convolution of the pedestrian
force and the acceleration of the structure. Thus, cp and pmp are now obtained as:

cp =
2

ẋ2
0

1

Ttot

Ttot∫
0

F (t)ẋ(t) dt =
2Cov [F (t), ẋ(t)]

ẋ2
0

(7)

pmp =
2

ẍ2
0

1

Ttot

Ttot∫
0

F (t)ẍ(t) dt =
2Cov [F (t), ẍ(t)]

ẍ2
0

(8)

where Cov[ ] is a covariance operator.
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Figure 6: Velocity proportional load coefficient, cp, as a function of the normalised frequency for different
lateral vibration amplitudes. Each marker type represents one pedestrian.

In Fig. 6 the velocity proportional coefficients, obtained from the analyses of the walking
patterns of the test pedestrians, are shown. For most frequencies and amplitudes, the pedestrian
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Figure 7: Acceleration proportional load coefficient, �p, as a function of the normalised frequency for
different lateral vibration amplitudes. Each marker type represents one pedestrian.

load coefficient is positive, suggesting that pedestrians generally act as negative dampers. In
particular, it is interesting to note that this is not only true at the frequency range with a large mean
phase coherence, but throughout the frequency range. This suggests that the synchronisation of
the lateral movement of the body to the motion of a bridge is not a necessary condition for the
generation of forces proportional to the lateral velocity, which could potentially cause negative
structural damping on a bridge. This has indeed been suggested before, [3, 10, 12, 13], but to
the authors’ knowledge, not yet been verified experimentally under controlled conditions. In
Fig. 7, the mass proportional coefficient, p, is shown as a function of normalised frequency, for
varying vibration amplitudes. Generally, p is positive in the low frequency region, but at higher
frequencies it is mostly negative.

The results presented in Fig. 6 and Fig. 7 also indicate that the phase coherence is important
and in the frequency range around fL/fw ∼= 1, large values of cp occur, although these may
obtain both positive and negative values. This suggests that, when the phase angle between the
pedestrian and the structure is (near) constant, the covariance is larger and thereby the poten-
tial for large numerical values of cp increases. In this case, the nature of the synchronisation
(i.e. the timing of the footstep compared to the movement of the treadmill) decides the phase
angle between the pedestrian induced load and the structural movement and thereby whether the
pedestrian adds to, or decreases the overall structural damping and modal mass.

5. CONCLUSIONS

In this paper, the hypothesis that synchronisation is necessary for generation of correlated pedes-
trian forces (and thus large amplitude lateral footbridge vibrations) has been tested, by analysing



the movement of seven pedestrians walking on a moving treadmill. The movement of the pedes-
trians and their correlation with the motion of the treadmill was analysed using a set of two
tri-axial accelerometers; one attached to the waist of each walker and one attached to the tread-
mill. After a detailed analysis of the movement of the pedestrians some general conclusions can
be made:

1. A large phase coherence between pedestrian and bridge motion can only be obtained when
the frequency of the lateral motion is close to the natural pedestrian walking frequency (as
measured on a fixed treadmill). Since a large mean-phase coherence is a necessary con-
dition for synchronisation, it can be concluded that the pedestrian walking frequency and
phase angle are largely unaffected by the lateral movement of the treadmill and that syn-
chronisation can only occur when the relationship between the normal walking frequency
and the vibration frequency is near unity. However, negative damping from the pedestrians
was observed over nearly the entire frequency range, indicating that synchronisation is not
a necessary pre-condition for initiation of excessive lateral vibrations.

2. Models of pedestrian loading that rely solely on human-structure phase-synchronisation
are therefore insufficient, particularly for structural frequencies away from the the first
load harmonic. Furthermore, the scatter in the equivalent lateral forces obtained from the
tests suggests that the pedestrian-induced loading is governed by randomness. Therefore,
a probabilistic approach that relies on experimentally obtained forces and takes into ac-
count the randomness in the loading, seems necessary for an accurate estimation of the
susceptibility of a footbridge to excessive lateral vibrations.
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a b s t r a c t

In the past decade, several researchers have studied the phenomenon of excessive pedestrian-induced
lateral vibrations and full-scale measurements of various bridges under crowd loading have been carried
out. These tests have verified the existence of a form of instability for which a transition between limited
and excessive lateral vibrations occurs for a small increase in the number of people occupying the bridge.
This disproportionate increase in the lateral vibration amplitude is caused by a dynamic interaction
between the pedestrian and the laterally moving structure, although the governing mechanism which
generates the load is still somewhat disputed.

Theoretical work has also been undertaken, but unlike current codes of practice and design guidelines,
which are primarily based on the empirical full-scale observations, many of the theoretical hypotheses
lack the proper experimental evidence to support their applicability. Recently, an extensive experimental
campaign was carried out, in which the lateral forces generated by pedestrians during walking on a
laterallymoving treadmillwere determined for various combinations of lateral frequencies (0.33–1.07Hz)
and amplitudes (4.5–48 mm). It was shown that large amplitude vibrations are the result of correlated
pedestrian forces in the form of ‘‘negative damping’’, with magnitudes that depend on the relationship
between the pacing frequency and the frequency of the lateral movement.

Herewith, a novel stochastic load model for the frequency and amplitude dependent pedestrian-
induced lateral forces is presented. The lateral forces are modelled as a sum of an ‘‘equivalent static
force’’ and ‘‘motion-induced’’ (or self-excited) forces which are quantified through equivalent pedestrian
damping andmass coefficients. The parameters in themodel are based directly onmeasured lateral forces
from a large group of pedestrians. Thereby, themodel is currently themost statistically reliable analytical
tool formodelling of pedestrian-induced lateral vibrations. Through simplified numerical simulations, it is
shown that themodal response of a footbridge subject to a pedestrian crowd is sensitive to the selection of
the pacing rate distributionwithin the group, themagnitude of ambient wind loads and the total duration
of the load event. In a particular simulation, the selection of these parameters ultimately affects the critical
number of pedestrians needed to trigger excessive vibrations. Finally, as an example, it is shown that the
prediction of the critical number of pedestriansmatches well with observationsmade during the opening
of the London Millennium Bridge.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In long-span footbridges, the possibility of excessive pedestrian-
induced lateral vibrations is a serious threat to the design and
therefore provisions for the installation of mechanical damping
devices and full scale dynamic testing has become an integrated
part of their design process [1–3]. As the bridge spans increase,
the avoidance of crowd-induced lateral vibrations becomes more
difficult and the necessary amount of additional damping easily
exceeds the limit of what is practically possible or economically
acceptable [4]. In some cases, this means that modifications in the
initial structural layout may be necessary, e.g. to provide addi-
tional horizontal stiffness. Alternatively, an informed decision can

∗ Corresponding author. Tel.: +45 4525 1766; fax: +45 4588 3282.
E-mail address: eti@byg.dtu.dk (E.T. Ingólfsson).

be made to accept that excessive lateral vibrations may occasion-
ally occur. In this case dampers may be avoided or introduced to
provide the minimum amount of damping needed to avoid the
problem on a daily basis. This strategy was adopted for the newly
built Tri-Country arch footbridge in Weil-am-Rhein in Germany,
which features a record breaking clear span of 230m [5]. Shortly af-
ter its opening, full scale pedestrian testswere carried out, inwhich
the possibility of excessive lateral vibrations was verified. How-
ever, the conditions under which excessive vibrations occurred
were associated with a large crowd density with a low probabil-
ity of occurrence and hence no dampers were installed [5].

For design purposes, a successful implementation of this
strategy, relies on an accurate representation of the pedestrian-
induced load and the criterion for the number of pedestrians
needed to trigger excessive lateral vibrations. However, current
state-of-the-art guidelines [6–10] offer only a limited insight into
this field, as they are primarily based on empirical observations

0141-0296/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.engstruct.2011.07.009
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Nomenclature

α coefficient of a stochastic process
β coefficient of a stochastic process
δ Dirac delta function
Δf frequency resolution
Δt time separation
ζCL1 modal damping ratio for the fundamental lateral

vibration mode of the London Millennium Bridge
ζn modal damping for mode n
ζtot overall modal damping ratio, modified by the self-

excited force
θ0 fitting parameters in stochastic load model
θ1 fitting parameters in stochastic load model
θ2 fitting parameters in stochastic load model
θ3 fitting parameters in stochastic load model
μcp sample mean of the velocity proportional pedes-

trian load coefficient
μDLFj average DLF of load harmonic j
μfw mean loading frequency (gait cycle frequency)
μWp mean body weight
ξj parameter in the lognormal distribution
ρ linear correlation coefficient

p acceleration proportional pedestrian load coeffi-

cient
σ standard deviation
Σnm covariance structure
σDLFj standard deviation of DLF of load harmonic j
σ̃ 2
F ,j area of the PSD of F around load harmonic j
σfw standard deviation of the loading frequencies (gait

cycle frequencies)
σWp standard deviation of body weights
τ time separation variable
φ0 fitting parameters in stochastic load model
φ1 fitting parameters in stochastic load model
φ2 fitting parameters in stochastic load model
φ3 fitting parameters in stochastic load model
Φn mode shape for mode n
χj parameter in the lognormal distribution
ψ arbitrary phase angle
ωc coefficient of a stochastic process
ωn modal frequency for mode n
Aj fitting parameter in a spectral load model
Bj fitting parameter in a spectral load model
c damping per unit length
cp velocity proportional pedestrian load coefficient
DLFj dynamic load factor of load harmonic j
EI bending stiffness
F pedestrian-induced lateral load
f frequency
f0 frequency of lateral vibration
fCL1 natural frequency of the fundamental lateral vibra-

tion mode of the London Millennium Bridge
Fj pedestrian-induced lateral force for the jth load

harmonic
Fp pedestrian-induced lateral load
fp pacing frequency
Fst equivalent static pedestrian-induced lateral force
fw fundamental loading frequency (gait cycle fre-

quency) fw = fp/2
g acceleration of gravity 9.82 m/s2
L bridge length
ls pedestrian step length
m bridge mass per unit length
Mn modal mass of mode n

mp pedestrian body mass
Mtot overall modal mass, modified by the self-excited

force
N total number of data points
Ncr critical number of pedestrians
NHarm total number of load harmonics
Np number of pedestrians on the bridge
p probability density function
pn modal load for mode n
Q general load function
q0 amplitude of modal displacement
qn modal displacement for mode n
R autocorrelation
SF ,j PSD of F around load harmonic j
SF PSD of F
t time
t0 pedestrian arrival time onto the bridge
td pedestrian passage time
Ttot total duration of a time series
u lateral displacement
u0 lateral displacement amplitude
vp forward walking speed
w an independent standard Gaussian variable
Wp pedestrian body weight
X stochastic parameter
x space variable
Y stochastic parameter

from a limited number of pedestrian crowd tests carried out in
the beginning of the new Millennium, following the temporary
closures of both the Solferino bridge in Paris [11] and later the
London Millennium Bridge [12].

Research in this field can generally be split into three categories,
(i) full-scale measurements of existing bridges subjected to
crowd induced loading, (ii) experimental investigations of single
pedestrians under controlled (laboratory) circumstances and
(iii) mathematical modelling of the pedestrian-induced lateral
load. As reviewed by Ingólfsson [3], a significant amount of
research has been carried out in each of the three categories,
but there is a missing link which interconnects them, particularly
between the mathematical models on one side and actual field
observations on the other.

As an example, excessive lateral vibrations have often been
attributed to human–structure synchronisation, referring to the
observation that pedestrians seem tomodify their gait tomatch the
frequency and phase to that of the bridge [13,14]. This has led to
the development of several pedestrian loading models, which rely
on this assumption [15–18]. In the French design guidelines [8],
an acceleration criterion which defines the transition between
random and synchronised pedestrian walking is provided (as
0.1–0.2 m/s2). Nevertheless, there is a general dispute regarding
the fundamental nature of human–structure interaction and
the importance of synchronisation. To the best of the authors’
knowledge, none of the full scale tests that have been carried out
to date, have been able to verify the assumption that pedestrians
synchronise their walking frequency and phase to that of the
laterally moving surface. On the contrary, many researchers have
questioned the necessity of phase synchronisation [19–21] and
recently Ingólfsson et al. [22] showed that synchronisation of
pedestrians is not a necessary condition for the development of
excessive pedestrian-induced vibrations.

It has been proposed that nonlinear coupling (autoparametric
resonance), in which vertical or torsional modes predominantly
excited by vertical forces can cause autoparametric resonance in
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lateral vibration modes. This would occur for vertical load ampli-
tudes larger than a certain threshold, provided that the ratio be-
tween the natural frequencies of the lateral and vertical vibration
modes are related through an integer number (e.g. 1:2) [23,24].
Piccardo and Tubino [25] presented a load model for which a por-
tion of the lateral load was written as the product of a sinusoidal
loading term (with frequency equals half the pacing frequency) and
the lateral displacement of the bridge. This displacement propor-
tionality is a nonlinear phenomenon which can cause excitation of
vibration modes at frequencies other than that of the sinusoidal
loading term. The model was used to demonstrate that lower fre-
quency modes, e.g. the fundamental mode of the London Millen-
niumBridge at 0.5Hz, can be excited fromwalking at the frequency
1 Hz. Bothmodels are purely theoretical and lack experimental ev-
idence to support and justify their applicability. The displacement
proportional load in themodel of Piccardo and Tubino [25] is based
on experimental observations [26,27] in which it was shown that
the amplitude of the pedestrian-induced load increases linearly
with the displacement amplitude. However, this does not justify
the multiplication of the two time histories upon which the model
is based.

Macdonald [28], proposed that the lateral ground reaction force
(GRF) from the pedestrians could be modelled as the support force
of an inverted and actively controlled pendulum, which is repre-
sentative of the movement of the pedestrians’ centre of mass. He
argued that, instead of the timing of the footstep, the placement of
the foot is affected by the lateral motion of the underlying surface.
A simple benchmark test was used to verify that self-excited forces
in the form of negative damping could be developed when the
model was applied on a laterally moving surface, even at frequen-
cies different fromhalf the assumedpacing frequency. Themodel is
appealing in that it is based on a feasible mechanical model where
the GRFs match qualitatively well to measurements for a station-
ary surface. However, further justification for the selection of par-
ticular modelling parameters, e.g. the balance control scheme, is
needed to verify the general applicability of the model and to in-
clude the randomness associated with human walking.

Motivated by the general lack of statistically reliable data, an
extensive experimental campaign was carried out by Ingólfsson
et al. [29], to determine the lateral forces generated by pedestrians
during walking on a laterally moving treadmill at different combi-
nations of lateral vibration frequencies and amplitudes.

In this paper, a novel time-domain load model is presented
for the frequency and amplitude dependent pedestrian-induced
lateral forces. The model is presented in a stochastic framework
and is based on an in-depth quantitative analysis of the experi-
mental data collected by Ingólfsson et al. [29]. Despite its prob-
abilistic nature, the load model is simple in that the load is
represented through its Power Spectral Density (PSD) as measured
in the absence of lateral motion, whereas the pedestrian–structure
interaction is taken into account through velocity and accelera-
tion proportional loads. These motion-induced pedestrian loads
thereby act to increase or decrease the modal damping and mass
of the structure. The application of the loadmodel is demonstrated
throughnumerical response simulations, and the sensitivity of var-
ious input parameters, as well as its capability to predict excessive
footbridge vibrations are discussed.

2. Time-domain load model for pedestrian-induced lateral
vibrations

Conveniently, the pedestrian-induced lateral force can be
divided into two different components: an equivalent static force,
centred at frequency fw and its integer harmonics and one which
occurs at the frequency of the lateral motion, denoted the ‘‘self-
excited force’’. The frequency fw is related to the gait cycle duration

and represents the frequency of two nominally identical events
in the walking process [30]. Thereby, fw = fp/2, where fp is the
pedestrian pacing rate (or step frequency). The equivalent static
force represents the lateral force exerted by a pedestrian on a rigid
surface, whereas the motion-induced loads are those attributed
to the movement of the structure. This subdivision of the force
is commonly used in the field of wind engineering [31], but was
first used to describe pedestrian-induced loading of footbridges by
Pizzimenti and Ricciardelli [32]. The self-excited force is due to
an interaction between the pedestrian and the laterally moving
structure and can be further subdivided into two orthogonal
components, one in phase with the velocity, u̇, and the other
in phase with the acceleration, ü, of the structure. By treating
the motion-induced portion of the load as velocity and inertia
proportional loads, the total pedestrian-induced lateral load, F(t),
can be written as the equivalent static force plus the additional
equivalent damping and inertia forces respectively:

F(t) = Fst(t)+ cp (f0/fw, u0) · u̇︸ ︷︷ ︸
equivalent damping

+mp
p (f0/fw, u0) · ü︸ ︷︷ ︸
equivalent inertia

. (1)

The functions cp (f0/fw, u0) and 
p (f0/fw, u0) define the self-
excited forces and depend on the vibration frequency, f0, the
gait cycle frequency, fw , and the displacement amplitude, u0. The
function Fst(t) represents the time history of the equivalent static
force, modelled as a narrow-band random process, centred at
frequency fw andmp is the pedestrian body mass.

2.1. Equivalent static force

Due to the repetitive and near-harmonic nature of the pede-
strian-induced forces, they are often approximated as a sum
of perfectly periodic harmonic contributions, i.e. as a truncated
Fourier series [16,33]. As discussed by Ingólfsson et al. [29], the
intra-subject variability in the measured footfall forces makes a
deterministic andperfectly periodic representation of the load only
possible through equivalent load amplitudes that depend on the
structural damping. This damping dependency of the equivalent
load amplitude makes the perfectly periodic model unsuitable in a
general load model.

Instead the pedestrian-induced load can be represented in
the frequency domain directly through its PSD. Pizzimenti and
Ricciardelli [32] suggested that a Gaussian shaped function can be
used to fit the individual load harmonics of the PSD. Herewith, a
similar version is proposed, where the function, SF ,j(f ), represents
the fitted PSD around load harmonic j, i.e.:

SF ,j(f ) · f
σ̃ 2
F ,j

= 2Aj√
2πBj

exp

{
−2

[
f /(jfw)− 1

Bj

]2
}
. (2)

The parameters Aj and Bj are determined by the data fit and σ̃ 2
F ,j

is the area of the PSD around the jth harmonic. This formulation
is similar to that proposed by Vickery and Clark [34] to fit the
spectrum of generalised lift force, as used in wind engineering
models of vortex excitation.

In Fig. 1, the experimentally obtained PSDs are shown as
functions of the normalised frequency, f /(jfw), together with the
average spectrum for each of the first five load harmonics, (j =
1, . . . , 5).

The fitted PSDs using the expression in Eq. (2) are also shown
in Fig. 1 for the first five load harmonics. The parameters Aj and Bj
weredetermined through anonlinear least square fit and represent
the average shape of the PSD. The variance σ̃ 2

F ,j, which is a measure
of the overall energy content in the load process, can be taken such
that it represents a certain probability of exceedance, depending
on the particular situation.
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Fig. 1. Experimental PSD (obtained as the average of seven 50% overlapping rectangular windows, zero-padded to obtain the desired resolution) of the first five load
harmonics for each pedestrian shown with the average PSD for all pedestrians and the fitted Gaussian shaped spectrum.

Ingólfsson et al. [29] showed that the probability distribution
of the body weight normalised variance (expressed through
equivalent perfectly periodic DLFj) of load harmonic j, can be
modelled through a log-normal distribution with the following
probability density function:

p(DLFj) = 1

DLFj ξj
√
2π

exp

[
−

[
ln DLFj − χj

]2
2ξ 2j

]
. (3)

The parametersχj and ξj are related to the samplemean,μDLFj , and
variance, σ 2

DLFj
, so that

χj = lnμDLFj −
1
2
ln

(
1 + σDLFj

μ2
DLFj

)
, ξ 2j = ln

(
1 + σDLFj

μ2
DLFj

)
. (4)

The variance of the load can then be obtained from the DLF
as σ̃ 2

F ,j = W 2
pDLF

2
j /2, where Wp is the pedestrian body weight.

In Fig. 2, the experimentally obtained cumulative probability of
DLFj is shown for the first five load harmonics together with fitted
cumulative distribution functions (CDFs).
The pedestrian body weight, Wp, is generally a random variable,
with a probability distribution that depends on the particular
population to be modelled. No significant correlation between
the body weight and the DLF has been reported. Therefore, these
quantities can be treated as independent random variables when
modelling the pedestrian-induced load. The fitting parameters Aj
and Bj as well as the lognormal coefficients χj and ξj needed to
generate the spectral density for the first five load harmonics are
summarised in Table 1.

To the authors’ knowledge, there exist no analytical time-
domain models, which are capable of capturing both the temporal
shape of the walking force and its frequency content. Therefore,
emphasis is placed on an accurate representation of the frequency
content,which is obtainedbyusing the experimentally determined
PSDs directly to reconstruct the load.

Table 1
Summary of parameters for the Gaussian shape spectrum for representation of the
pedestrian-induced lateral force.

j = 1 j = 2 j = 3 j = 4 j = 5

Aj 0.900 0.020 0.774 0.0258 0.612
Bj 0.043 0.031 0.026 0.064 0.026
χj −3.061 −5.004 −3.674 −5.315 −4.492
ξj 0.3078 0.2876 0.2169 0.2655 0.2818

A pseudo-random time series of the equivalent static load from
a single pedestrian, can be generated as follows [35]:

F(t) =
N−1∑
k=0

√
2SF (fk)Δf · cos (2π fkt + ψk) (5)

SF (fk) =
NHarm∑
j=i

SF ,j(fk) (6)

Δf = 1
NΔt

= 2
Ttot

. (7)

The parameters ψk are randomly generated phase angles, drawn
from a uniform distribution, fk = kΔf , k = 0 . . .N − 1 is the
distinct frequency from which the power spectrum ordinates are
calculated, N is the total number of data points, NHarm is the total
number of load harmonics (here NHarm = 5) and Ttot is the total
duration of the time series. The power spectral density function
SF ,j(f ) is defined in Eq. (2) and depends on the shape (parameters
Aj and Bj in Table 1) and the magnitude σ̃ 2

F ,j = W 2
pDLF

2
j /2, defined

through their individual probability distributions (parameters χj
and ξj in Table 1).

In Fig. 3, a time-domain comparison is made between a sample
of measured pedestrian-induced lateral force and a pseudo-
random time series using the method outlined in this section
(Eq. (5)).
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Fig. 2. Experimental and fitted CDF functions for the equivalent perfectly periodic DLF of the first five load harmonics.

a b

Fig. 3. Samples from (a) a measured [29] and (b) a pseudo-random time-history of the weight normalised pedestrian-induced lateral force (obtained using fw = 0.85 Hz,
Δt = 1/64 s and N = 16 837).

2.2. Equivalent damping

The load model in Eq. (1) is based on the assumption that
motion-induced pedestrian loads can be modelled as velocity and
acceleration proportional, defined through the coefficients cp and

p. From the experimental work of Ingólfsson et al. [29], it was
shown that cp and 
p are functions of both the frequency and
amplitude of the lateral motion. In Fig. 4, the results from the study
of Ingólfsson et al. [29] are presented, showing the sample mean
value of the velocity proportional load coefficient,μcp , as functions
of both normalised frequency and lateral displacement amplitude.
The vibration frequency, f0, is normalisedwith half the average free
pacing frequency μfw of the pedestrian test subjects.

2.2.1. Statistical characterisation of damping coefficient
In a microscopic modelling perspective, it is more convenient

to relate the vibration frequency to the normal pacing frequency
of each individual rather than the population mean. Therefore, the
raw data from the study of Ingólfsson et al. [29] has been revisited.
Herewith, the test results have been divided into nine different
frequency regions depending on the ratio f0/fwi in each individual
test, where fwi = fpi/2 is the normal gait cycle frequency of test
subject i. The nine regions are defined through bands bracketed
by normalised frequency pairs {0–0.45}, {0.45–0.55}, {0.55–0.65},
{0.65–0.75}, {0.85–0.95}, {0.95–1.05}, {1.05–1.15}, {1.15–∞}. In
each frequency bin, the mean value of the damping coefficient has
been calculated at each particular vibration amplitude.

The number of frequency bins was selected as a trade-off
between the desire to obtain an acceptable frequency resolution
and the need for a sufficient number of samples in each bin, since
this influences the reliability of the statistics. The total number of
distinct data points, from which the pedestrian load coefficients
are obtained, is 4724. With 9 frequency intervals, the average
number of samples per frequency bin is 525. As the number of

tests at each combination of frequency and amplitude varied, the
number of samples used to calculate each distinct mean value,
varied from 15–197 with an average value of 75 samples.

In each frequency bin, a simple linear function can be used
to represent the relationship between the sample mean, μcp of
the measured velocity proportional load coefficient and the lateral
vibration amplitude u0. Owing to the large scatter in the data, a
stochastic model of the following type is proposed:

Y = θ0 + θ1u0 + Xσ (8)

where σ is an amplitude dependent standard deviation and the
term Xσ therefore represents a random deviation with zero mean
(E[X] = 0) and covariance, Cov [X(tn), X(tm)] = �nm, [36].
The scatter in the data decreases with the vibration amplitude
which can conveniently be approximated with an exponentially
decreasing standard deviation:

σ = θ2 exp [θ3u0] . (9)

The parameters θ0 and θ1 have been obtained by fitting Eq. (8)
(with X = 0) to the mean values of cp in each frequency range
and θ2 and θ3 were subsequently determined by fitting Eq. (9) to
the measured standard deviations of cp. The stochastic model for
generating pedestrian damping coefficient can now be written as

cp (f0/fw, u0) = θ0 (f0/fw)+ θ1 (f0/fw) u0

+ X · θ2 (f0/fw) · exp [θ3 (f0/fw) u0] . (10)

In Fig. 5, the average damping coefficient calculated in each
frequency range is shown as a function of the lateral vibration
amplitude together with ± one standard deviation error bar. Also
in Fig. 5, both the linear fits to the mean values, as well as the
exponential fits to the standard deviations are indicated.

In time-domain modelling, cp is a function of time t as the
amplitude u0 is generally a non-constant function of time. The time
series of cpi is generated at discrete time instances, tk, and depends
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a

b

Fig. 4. Mean value of the velocity proportional coefficient μcp as a function of
normalised frequency (top) and as a function of amplitude (bottom) (based on data
from Ingólfsson et al. [29]).

on the frequency ratio f0/fwi, the displacement amplitude, u0i(tk),
felt by pedestrian i at time tk. In addition, a random variation X(tk)
takes into account deviations of the instantaneous load coefficient
from the mean value. The pedestrian tests from which the results
in Fig. 5 are based upon, were carried out at constant vibration
amplitude, and represent an average value of cp taken over a
time period of 30 s [29]. Therefore, when generating a series of
instantaneous values of cpi(tk) (k = 1 . . .N), some assumptions
relating to the temporal correlation of X must be introduced.
Qualitatively, this correlation can be obtained if X is generated
as a first-order autoregressive process (or discrete-time Gaussian
Markov process), Xi+1 − αXi = βwi where wi are independent
standard Gaussian variables and α and β are coefficients of the
process. In continuous time, this corresponds to passing a white
noise through a linear first-order filter, with an exponential auto-
correlation function, R(τ ) = exp [−ωcτ ]. The coefficients α
and β for the discrete process may be obtained by solving the
Yule–Walker equations [37]. The recursive formula (with time
separationΔt) can be re-written in the following format [38]:

Xk+1 = exp [−ωcΔt] Xk + wi

√
1 − exp [−2ωcΔt]. (11)

The parameterωc is selected such that the desired temporal corre-
lation is obtained.

The use of Eqs. (10) and (11) to generate a time series of the
pedestrian damping coefficient is illustrated in Fig. 6 for different
values ofwc and compared with mean valueμcp(t) = θ0 + θ1u(t),
i.e. with X = 0. The example shows how a time series, cpi(tk),

is generated when the displacement amplitude u0i(tk) follows a
half-sine. This corresponds to the displacement amplitude felt by a
pedestrian crossing a footbridge (at constant forward speed)with a
half-sine mode shape and constant vibration amplitude of 50 mm.
In the example, the initial value of the random variation is X1 =
X(t1) = X(0) = −0.688 and thereby the initial value of the
pedestrian load coefficient is cp(t1) = cp(0) = −335.8 N s/m.
The two extremes, ωc = 0 and ωc → ∞, correspond to situations
with full and no temporal correlation respectively. In the first
case, the stochastic variable X remains constant and the pedestrian
damping coefficient follows a deterministic path along a certain
fractile of the cp(f0/fw, u0)-curve, determined by the initial value
of X (here X1 = −0.688). When ωc → ∞, Xk are independent
standard Gaussian variables. By allowing for non-zero values of ωc
an intra-subject variability is introduced, as illustrated in Fig. 6.
Currently, the parameter ωc , which controls the degree of intra-
subject variability, can only be determined qualitatively.

2.3. Equivalent inertia

Similarly to the velocity proportional coefficient the acceler-
ation proportional coefficient, 
p, was determined by Ingólfsson
et al. [29]. The coefficient is defined such that negative values of

p imply an overall increase in the modal mass of the structure
whereas positive values imply that the pedestrian acts as to reduce
the overallmodalmass. The stochasticmodel to generate
p is sim-
ilar to that in Eq. (10):


p (f0/fw, u0) = φ0 (f0/fw)+ φ1 (f0/fw) u0

+ X · φ3 (f0/fw) · exp [φ4 (f0/fw) u0] (12)

with parameters φ0 and φ1 determined by fitting an expression
similar to that in Eq. (8) (with X = 0) to the measured mean
values of 
p. The parameters φ2 and φ3 were determined by fitting
an expression of the type in Eq. (9) to the measured standard
deviations. The stochastic variable X is a discrete-time Gaussian
Markov process, with the recursive format as given in Eq. (11). In
Fig. 7 the average value of the acceleration proportional coefficient,
calculated in each frequency bin, is shown as a function of the
lateral vibration amplitude. Also in Fig. 7, the fitted expressions
through themean values and the standard deviations, respectively
are shown.

In Table 2, the numerical values of the fitting parameters in the
stochastic models in Eqs. (10) and (12) are summarised. In all cases
(except two), a significant linear correlation between the fitted
variables was observed with mean value ρ = 0.88 (S.D 0.06 for
cp and 0.07 for 
p).

In two of the frequency ranges, the correlation is low (ρ <
0.5) and therefore the amplitude independent mean values of the
velocity and acceleration proportional coefficients have also been
provided (in brackets). These values have been used in the load
model presented herewith.

3. Application of the load model: basic assumptions

3.1. The footbridge structure

The lateral deflection, u(x, t), of the footbridge structure is
assumed to satisfy the equation of motion for linear and viscously
damped straight beam with distributed elasticity EI(x), massm(x)
and damping c(x), neglecting rotational inertia, axial force effects
and shear deformations [39]:

∂2

∂x2

[
EI(x)

∂2u(x, t)
∂x2

]
+ m(x)

∂2u(x, t)
∂t2

+ c(x)
∂u(x, t)
∂t

= Q (x, t) (13)
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Fig. 5. Pedestrian damping coefficients as functions of the lateral vibration amplitudes in various frequency intervals.

where Q (x, t) is the external load function. If the structural
damping is assumed to be proportional, the equation ofmotion can
be decoupled into n ordinary second-order differential equations:

q̈n(t)+ 2ζnωnq̇n(t)+ ω2
nqn(t) = pn(t) (14)

u(x, t) =
∞∑
n=1

Φn(x)qn(t) (15)

where ζn, ωn, qn(t) and Φn(x) are the modal damping, angular
frequency, modal displacement andmode shape of vibrationmode
n, respectively. The mass normalised modal load, pn(t), is defined
as

pn(t)Mn =
∫ L

0
Q (t, x)Φn(x)dx (16)

whereMn is themodalmass ofmode n and L is the bridge length. In
the following treatment, it is assumed that only a single vibration
mode contributes significantly to the response and therefore the
subscript n is omitted from hereon.

3.2. Modal pedestrian load

It is assumed that each pedestrian walks with a constant speed
across the bridge, thus the spatial distribution of the pedestrian
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Fig. 6. Variation of displacement amplitude (left) and simulated pedestrian load coefficient for different temporal correlations (right), withΔt = 1/64 s and 0.95 ≤ f0/fw <
1.05.

Fig. 7. Pedestrian inertia coefficients as functions of the lateral amplitudes in various frequency ranges.

Table 2
Parameters of the regression model in Eq. (9).

Frequency range f0/fw θ0 (N s/m) θ1 (N s/m2) θ2 (Ns/m) θ3 (m−1) φ0 (–) φ1 (m−1) φ2 (–) φ3
(m−1)

<0.45 −100 2360 150.3 −21.6 0.460 −8.5 1.003 −28.1
0.45–0.55 −18 1237 143.2 −18.2 0.801 −18.1 0.662 −20.5

(14.3) (0)
0.55–0.65 73 −667 150.7 −23.5 0.680 −18.2 0.773 −25.2
0.65–0.75 152 −2240 139.4 −24.7 0.270 −9.8 0.574 −24.8
0.75–0.85 162 −2643 151.4 −30.6 −0.057 −3.5 0.408 −24.3
0.85–0.95 101 −1055 342.0 −38.2 −0.158 −1.5 0.763 −44.6

(−0.197) (0)
0.95–1.05 203 −5080 555.9 −42.3 0.074 −4.7 1.30 −36.9
1.05–1.15 214 −3284 195.3 −13.1 −0.324 5.6 0.832 −35.4
≥1.15 129 −1858 166.5 −35.5 −0.362 4.3 0.309 −23.1

load is determined by the Dirac delta function. The load induced
by a single pedestrian therefore becomes:

Q (x, t) =
{
F(t)δ

(
x − vpt

)
for t0 ≤ t ≤ t0 + td

0 for t > t0 + td, t < t0
(17)

where vp and t0 are the pedestrian walking speed and arrival time

respectively and td = L/vp is the pedestrian passage time. It
is assumed that the pedestrian load can be written as shown in
Eq. (1), i.e. as a sum of an equivalent static force and motion-
induced forces in the form of equivalent damping and inertia:

F(t) = Fst(t)+ cpu̇(t)+ mp
pü(t)

= Fst(t)+ cpΦ(x)q̇(t)+ mp
pΦ(x)q̈(t). (18)
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Fig. 8. Pseudo-random time series of the modal pedestrian-induced lateral force from a single pedestrian crossing a half-sine mode shape for different (constant) vibration
amplitudes.

The modal load from a single pedestrian can now be written as

p(t)M =
∫ x

0
Q (x, t)Φ(x)dx

=
⎧⎨
⎩
Fst(t)Φ(vpt)+ (

cpq̇(t)+ mp
pq̈(t)
) [
Φ(vpt)

]2
for t0 ≤ t ≤ t0 + td

0 for t > t0 + td, t < t0.
(19)

The coefficients cp and 
p are determined from the stochastic
models in Eqs. (10) and (12), respectively. The total load from a
group of pedestrians is obtained as the sum of the load from each
individual. Due to the vibration dependency of the load, linear
superposition of the response from each individual is not possible,
but instead the total pedestrian-induced loadmust be evaluated in
each time step.

In Fig. 8, three different pseudo-random time series are shown
for theweight normalisedmodal load (p(t)M/Wp) according to Eq.
(19), at different constant vibration amplitudes. For the generation
of the figure, the loading frequency was taken as fw = 0.85 Hz
and the body-weight normalised pedestrian load coefficients were
taken as cp/Wp = 0.1 s/m and 
p/g = 0.1 s2/m, respectively.
The mode shape is assumed to be a half-sine. Without bridge
motion, themodal load is governed by the equivalent static load, as
generated through the use of Eq. (3), but as the vibration amplitude
is increased (at frequency f0 = 1.0 Hz), the self-excited portion of
the load becomes more pronounced.

3.3. Other modelling assumptions

3.3.1. Body weight
The distribution of the pedestrian’s weight is assumed to follow

a normal distribution. In this paper, the mean value and standard
deviations are taken as μWp = 727 N and σWp = 145 N respec-
tively, based on statistical data for the Danish population [40].

3.3.2. Walking frequency distributions
With frequency dependent load coefficients cp and 
p, the

distribution of pacing frequencies in the crowd (mean value μfw
and standard deviation σfw ), are important modelling parameters.
For spatially unrestricted pedestrians, these parameters can be
determined by the free walking speed and the normal gait
parameters of each individual. Typical values for the average gait
cycle frequencies are in the range 0.9–1.0 Hz (S.D. 0.05–0.10 Hz)
and may depend on factors such as the travel purpose, visual
surroundings [41], or geographic location and the particular
‘‘pace of life’’ [42]. With footbridges being restricted by physical
boundaries (e.g. the hand rails), the spatially unrestricted walking
is only possible when a limited number of pedestrians occupy
the bridge. Several studies have shown that the forward walking
speed of the group decreases from the free walking speed to zero
as the crowd density approaches a certain ‘‘jam density’’ [43–45].
However, less is known about the relationship between the pacing
frequency distribution and the crowd density. Recent research
suggests that the mean value decreases with increasing density
and that the standard deviation either remains constant [45]
or decreases [46]. It has been suggested that synchronisation
amongst pedestrians occurs in large density crowds, but according
to [46], this only occurs in pairs or very small clusters of people.
Therefore, in the simulations presented herewith, the assumption
about random pedestrian arrivals and mutually independent
(and uniformly distributed) phase difference between pedestrians
is maintained and assumed unaffected by the crowd density.
However, as the average walking speed may vary with the
crowd density, several different pacing frequency distributions
are investigated. In the simulations, the gait cycle frequency
distribution is assumed to follow a normal distribution with mean
value μfw and standard deviation σfw .

3.3.3. Step length and walking speed
There is a physical relationship between the step length, ls, and

the forward speed, vp, of the pedestrian, which can be written in
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Fig. 9. The London Millennium Footbridge.

Table 3
Modal properties of the Millennium Bridge without added damping.
Source: Table reproduced with permission from Ove Arup and Partners.

Description Abbreviation Frequency (Hz) Damping(%) Modal mass (tonnes)

First lateral mode of central span CL1 0.48–0.49 0.75–0.77 128–130
Second lateral mode of central span CL2 0.95–0.99 1.3 145–148
First lateral mode of Southern span SL1 0.80–0.81 0.6–0.7 172
First lateral mode of northern span NL1 1.04 0.32* 113*

* The damping was estimated from poor quality data and the modal mass was obtained from an FE analysis.

terms of the pacing frequency as

vp = fpls = 2fw ls. (20)

Both the pacing frequency and the step length change with the
walking speed which is modelled through the following empirical
relationship [47]:

ls = 0.25f 1.86p = 0.91f 1.86w . (21)

3.3.4. Arrival time
The numerical simulations are based on the assumption that

each pedestrian in the loadmodel can bemodelled independently.
Each pedestrianwalks at a constant speed and the arrival of pedes-
trians to the bridge is modelled as a Poisson process. This means
that the arrival time of each pedestrian is a mutually independent
random variable, with uniform probability distribution, whereas
the inter-arrival time follows the exponential distribution.

4. Numerical response simulations

Herewith, the performance of the model is demonstrated
through numerical response simulations. The response simula-
tions employ the fundamental modes of the London Millennium
Bridge, as this structure was highly susceptible to pedestrian in-
duced vibrations and has exhibited strong vibrations in several
different vibration modes. Furthermore, as the bridge has been
subject to intensive investigations in the past decade it will serve
as a suitable platform for comparisonwith other numericalmodels
and full-scale measurements.

A number of different simulations are carried out. Initially, it
is assumed that all pedestrians walk at a common forward speed
with identical step frequencies to demonstrate some basic features
of the load model. Subsequently, the effects of background noise,
the duration of the load event and the distribution of pacing
frequencies on the response characteristics are investigated and
discussed.

4.1. Modal properties of the London Millennium Bridge

The LondonMillenniumBridge is an extremely shallow suspen-
sion bridgewith a total length of approximately 324m. It is divided
into 3 spans, the north span (80 m), the central span (144 m) and
the south span (100 m); see Fig. 9. On its opening day and during
subsequent full-scale pedestrian crowd tests, excessive lateral vi-
brations were observed in four vibration modes; on the southern
span at a frequency around 0.8 Hz, at the central span in the first

and second modes at frequencies around 0.5 Hz and 0.95 Hz re-
spectively and more rarely on the northern span at a frequency of
around 1.0 Hz [12].

Extensive modal identification of the empty structure revealed
a series of vibration modes susceptible to lateral as well as
vertical human-induced dynamic loads, [48,49]. In Table 3, the
experimentally determined modal properties for the first four
lateral vibration modes are summarised.

4.2. Fundamental lateral vibration mode (CL1)

A single response simulation is carried out using the funda-
mental lateral mode of the Millennium Bridge (CL1) as a bench-
mark. This mode is characterised by its low natural frequency
(fCL1 = 0.5 Hz) and structural damping (ζCL1 = 0.76%). As a first
test, the crowd size is gradually increased from 25 to 300 pedes-
trians, in steps of 25 every 5 min. Within each five minutes, the
flow of pedestrians is uniform, i.e. the inter-arrival times between
the pedestrians are kept constant. As a benchmark test, it is fur-
ther assumed that all pedestrians walk at the same forward speed
(1.14 m/s) and have identical gait cycle frequencies (0.85 Hz), cor-
responding to constant step length (0.67 m). However, the pedes-
trian body mass, the equivalent perfectly periodic DLFs and the
self-excited force coefficients (cp and 
p) are treated as random
variables as described in Sections 2 and 3.3 respectively.

In Fig. 10, the modal acceleration response of the footbridge
is shown as well as the total number of pedestrians on the
bridge. Both the linear footbridge response is shown (i.e. in the
absence of self-excited force components) as well as the nonlinear
response where the self-excited pedestrian load is included. From
the response time history, there is generally no difference between
the linear response and the nonlinear one during the first 40min of
simulation. However, approximately 45 min into the simulations,
the response increases considerably and within a few minutes
the acceleration exceeds an amplitude of approximately 0.2 m/s2
(21 mm), which could easily be characterised as excessive lateral
vibrations. From the spectrogramof themodal acceleration (Fig. 10
bottom), it is demonstrated that, during low level vibrations, the
dominant frequency components are those at the frequency of the
main harmonics. As the number of people on the bridge increases,
the self-excited portion of the load becomes more important and
during large vibrations, this component (at the modal frequency)
dominates the response.

The self-excited force is responsible for alterations in themodal
mass and damping ratio of the structure. Therefore, equivalent
and time dependent values for the instantaneous modal mass and
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Fig. 10. Modal acceleration time history (top) and spectrogram (bottom) of mode CL1, subject to a gradually increasing size of pedestrians walking with a common pacing
rate.

damping can be calculated as the initial modal mass and damping
modified by the acceleration and velocity proportional self-excited
pedestrian force components:

Mtot(t) =
(
M −

Np(t)∑
i=i

mpi
pi(t)
[
Φ(vpit)

]2) (22)

ζtot(t) = 1
2ωM

(
C −

Np(t)∑
i=i

cpi(t)
[
Φ(vpit)

]2) (23)

where Np(t) indicates the number of pedestrians present on the
bridge at any given time instance, t .

A single realisation can only offer a qualitative view into the
nature of the bridge response and the development of the overall
modal mass and damping and therefore the aforementioned
simulations have been repeated 200 times. In Fig. 11(top), the
change in themodalmass is shown through themodification in the
natural frequency of the system and in Fig. 11(bottom) the change
in the overall modal damping ratio is depicted. The figure shows
the individual realisations, the mean value as well as the 5% and
95% quantiles. In addition, the realisationwhich corresponds to the
response in Fig. 10 is also emphasised in Fig. 11.

It is noted that the effect of the pedestrians on the natural
frequency is quite minimal, but it is worth noting that they act to
decrease the apparent structural mass and thereby raise themodal
frequency. In Fig. 11 (bottom), it is noted that the modal damping
generally decreases with the number of people on the bridge but
there are considerable fluctuations due to the randomness in the
pedestrian load coefficients.

4.2.1. Critical number of pedestrians and prediction of excessive
vibrations

Traditionally, the critical number of pedestrians needed to
cause zero damping is calculated by using Arup’s formula [12]:

Ncr = 2ζωM

μcp
1
L

∫ L
0 [Φ(x)]2dx . (24)

With μcp = 73 Ns/m taken as the mean value of the pedestrian
load coefficient in the relevant frequency range (see θ0 in Table 2),
the critical number of pedestrians in CL1 is predicted as 165.

By considering the development of the overall damping as
shown in Fig. 11 (bottom), a similar definition of the critical num-
ber of pedestrians may be adopted, by determining the condition
for which the damping becomes negative (ζtot(t) ≤ 0).

It is interesting to note that in the benchmark simulation,
already at Np = 98, the overall damping turns negative, implying
the potential for instability, but in this case the damping quickly
turns positive again, excessive vibrations are avoided and the
amplitudes remain limited.When the overall damping approaches
zero, the structures becomes extremely sensitive to any loadwhich
acts at the modal frequency, e.g. from ambient wind which may
cause large vibration before zero structural damping is reached.
On the other hand, the damping may turn negative and remain
negative for a certain amount of time before large vibrations occur.
As illustrated in Fig. 11, the first zero crossing in the benchmark
simulation occurs after approximately 17 min. After 40 min, the
damping remainsmore or less negative. Excessive vibrations occur
a few minutes later.

Therefore, if the critical number of pedestrians is defined as that
needed to exceed a certain acceleration threshold, e.g. the comfort
criterion as specified according to Sétra [8] (0.15–0.20 m/s2), a
completely different result may be obtained, then for the zero-
damping criterion. In this case, the number of pedestrians on the
bridge when the acceleration exceeds a threshold of 0.20 m/s2 is
approximately 249 pedestrians.

When considering the 5% and 95% quantiles of the modal
damping, the time for which the damping turns negative varies
from around 21 min up to around 42 min. The average number of
pedestrians needed to cause negative damping is consistent with
the initial estimate of 165 pedestrians as indicatedwith the vertical
dashed line in Fig. 11.

4.2.2. Effect of background noise
The basic assumption of the pedestrian loading model is that

the lateral load is concentrated in narrow bands around the gait
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Fig. 11. Changes in the modal frequency and damping due to the self-excited portion of the pedestrian-induced lateral force during a response simulation of CL1 subject to
a gradually increasing size of pedestrians walking with a common pacing rate.

cycle frequency, its integer harmonics and at the frequency of the
structure in the form of velocity and acceleration proportional
loads. When the loading frequency is well separated from the
modal frequency, the only modal excitation (in the model) is
that from the self-excited loads. In reality however, there are
other possible sources of modal excitation that may prove to
be important for the bridge response and the potential for large
vibrations when the overall modal damping approaches zero.

In particular, wind loads provide ambient vibrations in the
structure and even at moderate wind speeds the resulting load
is small but non-negligible. Opposed to the pedestrian load, the
wind is broad band and therefore excites all structural modes.
The resulting load effect is highly damping dependent, which
means that as the overall damping approaches zero (due to the
self-excited pedestrian force), the response from ambient loads
at the modal frequency increases and large vibrations develop
quicker than in the absence of a direct resonance loading. In
Fig. 12, this is illustrated, where an uncorrelated pseudo-random
noise (with constant spectral density between 0 and 2 Hz) with
different magnitudes are added to the total modal load before
solving the equation of motion. The magnitude of the background
noise, measured as the standard deviation of the total force in the
bandwidth between 0 and 2 Hz, is 100 N and 500 N in Fig. 12 (top)
and (bottom) respectively.

By comparing the response in Fig. 10 with those in Fig. 12, it
is noted that as the magnitude of the background noise increases,
the time at which the acceleration criteria is exceeded decreases,
although the self-excited forces remain unchanged. Similarly,
the number of pedestrians present on the span at the time of
exceedance also decreases with the magnitude of the background
noise.

In the absence of background noise, the loading at resonance
is purely velocity proportional and therefore the transition from
stable (and limited) vibrations to excessive vibrations occurs
rapidly as the increase in vibration amplitude grows exponentially
(see Fig. 10 (top) for t ∼= 47 min). A damped system subjected to
resonance loading experiences a linear increase in the vibration

amplitude. Therefore, when the background noise is added, the
initial build-up of large amplitudes will be a combination of
a linear increase from the resonance part of the background
noise and an exponential increase from the self-excited load. The
transition between limited and excessive vibrations occurs slower
as the magnitude of the background noise increases; see e.g. the
comparison between the two time histories in Fig. 12.

4.2.3. Effect of the duration of the load event
The duration of the load event affects the results of the simula-

tions, e.g. when the background noise is large, excessive vibrations
will occur when the overall damping decreases. Furthermore, the
randomness in the underlying load process is responsible for a cer-
tain time dependency, often expressed in terms of the return pe-
riod of a certain event. In other words, an increase in the length of
the numerical simulation increases the probability of occurrence of
certain vibration amplitudes (or value of the total damping). This
means that the critical number of pedestrians needed to either can-
cel the inherent structural damping or cause an exceed of a certain
acceleration threshold generally decreaseswith an increased dura-
tion of the load event. This effect needs to be carefully considered
when interpreting the results of both full scale testing of real-life
bridges as well as those obtained from stochastic response sim-
ulations. In Fig. 13, two simulations are presented, one in which
the simulation time is twice that of the original simulation (top)
and another with a duration of twelve times the original simula-
tion time (bottom). In both cases, an increase in the duration of the
simulation has the effect of decreasing the number of people on the
bridge for which the acceleration threshold is exceeded.

4.2.4. Effect of the distribution of walking frequencies
The simulations presented so far assume that all pedestrians

walk at the same forward speed and with identical pacing
frequencies. If a distribution of frequencies within the crowd is
introduced (μfw = 0.85 Hz and σfw = 0.075 Hz), the simulated
response is that in Fig. 14. It is noted that by introducing a
distribution in the pacing frequencies, the walking speed varies
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Fig. 12. Modal acceleration time history of mode CL1, subject to a gradually increasing crowd of identical pedestrians with added background noise from ambient wind of
modal intensity 100 N (top) and 500 N (bottom) respectively.

Fig. 13. Modal acceleration time history of mode CL1, subject to a gradually increasing crowd of identical pedestrians for two different simulation lengths.

according to the relationships in Eqs. (21) and (20). To control
the number of pedestrians on the bridge in the simulation, the
average flow rate is kept constant, such that the average number of
pedestrians on the bridge varies from 0 to 300 in steps of 25 every
fifth minute. This means that the actual number of pedestrians
on the bridge is non-constant as shown in Fig. 14. This is a
consequence of the randomness associatedwith the Poisson arrival
process which governs the pedestrian arrival.

In general, the distribution of walking frequencies within a
group is a non-deterministic quantity which may vary consider-
ably between different groups of people depending on the partic-

ular crowd morphology, its density, the travelling purpose, mete-
orological conditions, etc. Therefore, a broad range of different gait
cycle frequency distributions have been modelled, ranging from
μfw = 0.5 Hz, corresponding to a very dense crowd, to μfw =
1.0 Hz, which represents an upper limit of the averagewalking fre-
quency in a group of spatially unrestricted pedestrians. The stan-
dard deviation of gait cycle frequencies was kept constant (σfw =
0.075 Hz). Furthermore, uncorrelated pseudo-random noise, with
constant spectral density between 0 and 2 Hz, was added to the
pedestrian induced modal load to simulate ambient excitation of
the bridge. The magnitude of this load was selected as 100 N. This
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Fig. 14. Simulated modal acceleration response of CL1 subject to a gradually increasing number of people with normally distributed walking frequencies (μfw = 0.85 Hz
and σfw = 0.075 Hz).

Fig. 15. Critical number of pedestrians for CL1 as functions of the average walking frequency.

value provides realistic values of ambient vibration response as ex-
pected on a footbridge. In each simulation, the number of pedes-
trians present on the bridge at the time instances of (i) initial
zero-crossing of the overall damping and (ii) first exceedance of
the acceleration threshold (a ≥ 0.2 m/s2) are collected.

In Fig. 15, the results are shown for sixty different crowd
simulations for six distinct average pacing frequencies, illustrating
the effect of both the distribution of pacing frequencies as well
as the definition of bridge instability. Generally, as the gait cycle
frequency approaches the modal frequency, the critical number of
pedestrians decreases. However, the randomness in the underlying
load process is responsible for a considerable scatter in the critical
number of pedestrians between individual nominally identical
simulations.

4.3. Fundamental modes of side-spans (NL1 and SL1)

The fundamental mode of the central span is characterised
as a low frequency mode, as it features a natural frequency
well below the freely selected average gait cycle frequency of
normal pedestrians. Thereby, CL1 is only excited by the self-excited
pedestrian-induced loads. The fundamental vibration frequencies
of the side spans are within the range of average walking (SL1 at
0.80 Hz and NL1 at 1.04 Hz) and are therefore both excited by
direct resonance from the equivalent pedestrian-induced load and
from the self-excited forces. In Fig. 16, two examples of simulated
modal acceleration responses are shown for a gradually increasing
crowd, similar to that used for CL1 (and shown in Fig. 10). In both
cases, excessive vibrations occur, but generally NL1 is more prone
to vibrations than SL1, due to its extremely low modal damping
combined with a low modal mass compared to the other modes
(see Table 3). Qualitatively, the simulated response for thesemodes
is similar to that of CL1, i.e. the critical number of pedestrians
calculated from Arup’s formula (146 for SL1 and 73 for NL1) is
generally lower than the number of people on the bridge during
the initiation of large vibrations. Furthermore, it is noted that large
vibration amplitudes occur more quickly. Due to the randomness

in the underlying load process and sensitivity in the simulations to
the pacing frequency distribution, the background noise and the
duration of the load event, the time series presented in Fig. 16
mainly serve as a demonstration of the capability of the model.

To demonstrate the frequency dependency of the results,
a series of load simulations, in which the critical number of
pedestrians (i) needed to cancel the inherent structural damping
and (ii) needed to cause lateral vibrations in excess of the
acceleration threshold 0.2 m/s2, have been carried out. In Fig. 17,
the results for all three modes (CL1, NL1 and SL1) are shown as
functions of the average gait cycle frequency. In the simulations,
it has been assumed that the standard deviation of the gait cycle
frequencies is 0.075 Hz, such that it renders a realistic crowd
morphology. The modal damping ratio of NL1 has been reported
as 0.32 (see Table 3), which is based on poor quality data obtained
from forced excitation of the central span. In the results presented
in Fig. 17, a damping ratio of 0.7% has been used, which is close to
that of SL1.

5. Discussion

5.1. Load model and statistical characterisation

The loadmodel presented in this paper is simple and is based on
themain assumption that pedestrian-induced lateral forces consist
of two primary contributions, the ‘‘equivalent static’’ force and the
‘‘self-excited’’ force. Its main strength is that the coefficients in
the load model are determined from a large database of almost
5000 time series of measured GRFs from seventy-one different
people. The complication in the model is the inclusion of the
randomness and the large inter and intra-subject variability which
was observed from the data.

However, this randomness is important, particularly that
related to the self-excited forces, as the standard deviations of the
measured load coefficients are of the same order of magnitude
as the mean value. A further complication to the model is the
strong dependency of the pedestrian load coefficients on both the
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Fig. 16. Simulated response of SL1 (top) and NL1 (bottom) for a gradually increasing crowd of pedestrians with common walking frequencies (μfw = 0.85 Hz).

Fig. 17. Critical number of pedestrians for CL1, NL1 and SL1 as function of the
average walking frequency.

frequency of the lateral motion as well as the amplitude. This
dependency was dealt with by splitting the measured data into
nine distinct frequency intervals, in which the data is treated
separately and independently. As illustrated in Figs. 5 and 7,
the amplitude dependency of the pedestrian load coefficients is
such that the mean values and standard deviations generally
decrease numerically with increasing vibration amplitudes. The
generalised linear function, which is used to fit average values,
and the exponential function used to fit the development of the
standard deviations provide reasonable fits to the data in most of
the frequency intervals. To avoid splitting the data into distinct
frequency bins, different fitting functions could be used, which
capture both the frequency and amplitude dependency of the load
factors. However, a simple format is chosen herewith such that
the main features of the load process can be captured, without
overcomplicating the mathematical expressions.

When the load from a single pedestrian is generated, the
Gaussian variableX , represents the deviation of the load coefficient
from the mean value. By including a temporal correlation, through

its representation as a discrete Gaussian Markov process, the
possibility of including intra-subject variability in the pedestrian
load coefficients is introduced in a fairly simple way; see Eq. (11).
As illustrated in Fig. 6, by tuning the parameter ωc , different levels
of temporal correlation (and thereby intra-subject variability) can
be obtained, with ωc = 0 being a limit case in which intra-subject
variability is neglected.

In this model, the pedestrian-induced load depends only on
the ratio between the lateral vibration frequency and the pacing
frequency, but not on the walking speed of the individual.
Furthermore, the PSD of the equivalent static force is assumed to
remain unchanged with frequency ratio, amplitude and walking
speed of the pedestrians.

5.2. Numerical simulations as a prediction tool

As presented herewith, the load model in Eq. (1) can efficiently
be used for predicting the potential for excessive lateral vibrations
of footbridges. However, there are several parameters that need
to be taken into account and quantified. As already shown,
the distribution of the pacing rate is an important modelling
parameter, but equally important is the definition of instability
and the probability associated with the event (i.e. the combination
of a particular crowd density and pacing rate distribution) in
which instability is triggered. If instability is defined as the
condition for which the overall damping becomes negative, it is
sufficient to analyse the time series of the overall bridge damping
and estimate the first-excursion probability. However, as already
noted, if the damping is sufficiently small, large vibrations may
occur due to small resonance loads, e.g. from ambient wind,
before the damping turns negative. On the other hand, if the
damping turns negative during a short period of time, without the
development of strong vibrations, then the bridge remains stable.
Alternatively, instability may be defined through an acceleration
criterion, i.e. through a comfort criterion. In this case, the comfort
criterion should be carefully defined as little data exists on the
vibration perceptions and annoyance of pedestrians subject to
lateral footbridge vibrations.

In Fig. 17, it was shown that there is a large difference between
the critical number of pedestrians in different simulations.
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However, common for all modes is that instability can be triggered
for less than 200 pedestrians, which is consistent with the
observations made on the London Millennium Bridge [50].

Finally, the simulations presented herewith have only dealt
with a simplified representation of the dynamics of the pedestrian
crowd. It has been assumed that the forward speed of the
pedestrians and pacing frequency remain constant and that no
interaction between the pedestrians occur. However, as pointed
out in this paper and on other occasions [3], a pedestrian crowd is
a dynamic system for which local variations in the crowd density
may occur with subsequent modifications in the walking patterns
of the individuals. These effects should be included in cases where
the pedestrian crowd is expected to undergo considerable local or
global variations in its density or if it is expected that the structural
vibrations affect the walking pattern of each individual.

5.3. Multi-modal excitation

It should be noted that the mathematical model, in its current
form, is only applicable for lateral vibrations of a single mode and
that the effect of multi-modal response on the pedestrian-induced
load is unknown. This is caused by the nature of the experiments
for which the quantification of the pedestrian load coefficients
is based upon. In these tests, a single harmonic lateral vibration
was imposed on the treadmill and therefore the resulting load
coefficients should be related to lateral motion at that particular
frequency and not in combination with other modes. The model
should therefore be used on a mode-by-mode basis and, for multi-
modal response, the susceptibility of each vibration mode can be
checked independently.

For a generalisation of the load model, further tests should
be carried out, in which multi-mode vibration is imposed on
the walking surface and the resulting pedestrian-load coefficients
quantified and compared with those of the single-mode response.
This may prove practically difficult as the number of tests to
be carried out, to cover a reasonable number of cases, may be
excessively large. Another strategy would be to use the measured
data, and the loadmodel presented herewith, to calibrate a feasible
mechanical model of the lateral GRF on a laterally moving surface.
Thismodel can subsequently be used inmore general settings, such
as multi-modal response or combined vertical and lateral motion.

Finally, the model cannot take into account nonlinear modal
coupling, the possibility of parametric excitation, excitation of
lateral modes through vertical loads, etc. Without excluding the
possibility that these phenomena may contribute to a quicker or a
different development of excessive lateral vibrations, there is not
enough empirical data to justify their inclusion in the modelling
framework.

6. Conclusions

The main conclusions from the study can be summarised in the
following.

1. A stochastic loadmodel has been presented formodelling of the
frequency and amplitude dependent pedestrian-induced lateral
forces of footbridge. The model is shown to successfully predict
excessive lateral vibrations in a number of benchmark tests.

2. The self-excited pedestrian force has been quantified through
an extensive experimental campaign and is represented in a
stochastic framework, which resembles the large inter and
intra-subject variability in the empirical data.

3. Several parameters influence the response characteristics, in
particular the distribution of pacing frequencies in the group,
duration of the load event, definition of instability and the level
of background noise.

4. In order to use the mathematical model as a tool for predicting
the susceptibility of a footbridge to excessive lateral vibrations,
a series of simulations must be carried out to fully comprehend
the randomness associated with the pedestrian-induced load
and uncertainties in the modelling assumptions.

5. The critical number of pedestrians predicted for the first three
modes of the London Millennium Bridge compare generally
well with observations reported from the opening day.
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