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mann, Günther Witek, Ingo Stelzer, Leif Otto Nielsen, John Forbes Olesen, Jens Gravesen,
Andreas Bærentzen, Natalie Mossin, Søren Hansen, Jakob Knudsen, Claes Bockhoff, prof.
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Abstract

This thesis is a study of plate shell structures – a type of shell structure with a piecewise
plane geometry, organized so that the load bearing system is constituted by distributed
in-plane forces in the facets. The high stiffness-to-weight ratio of smoothly curved shell
structures is mainly due to their curved shape. A plate shell structure maintains a high
stiffness-to-weight ratio, while facilitating the use of plane structural elements.

The study focuses on using laminated glass panes for the load bearing facets.

Various methods of generating a plate shell geometry are suggested. Together with Ghent
University, a script has been developed for an automated generation of a given plate shell
geometry and a corresponding finite element (FE) model.

A suitable FE modelling technique is proposed, suggesting a relatively simple method
of modelling the connection detail’s stiffness characteristics. This modelling technique
is used to model a plate shell structure with a span of 11.5 meters in the FE software
Abaqus. The structure is analyzed with six different connection details with varying
stiffness characteristics, to investigate the influence of these characteristics on the struc-
tural effects. Based on these investigations, and FE analysis of other plate shell models,
the structural behaviour is described.

Possible methods of estimating the stresses in a given plate shell structure are proposed.

The non-linear behaviour of a plate shell structure is investigated for varying parameters,
such as facet size, imperfections, and connection characteristics. The critical load is
compared to that of a similar, but smoothly curved, shell structure.

Based on the investigations throughout the study, a set of guidelines for the structural
design of plate shells of glass is proposed.
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Resumé

Denne afhandling omhandler skive-skaller. Dette er en type skalkonstruktion, der best̊ar af
plane elementer, hvor geometrien er organiseret s̊aledes, at det primære bærende system
udgøres af fordelte membrankræfter i facetterne. Det høje stivheds/vægt forhold for
jævnt krumme skalkonstruktioner skyldes primært deres krumme form. Skive-skaller har
ligeledes et højt stivheds/vægt forhold, men har yderligere den fordel at de er konstrueret
af plane konstruktionselementer.

I denne afhandling fokuseres p̊a at bruge laminerede glas-elementer som de lastbærende
facetter.

En række metoder, der kan anvendes til at danne skive-skallers geometri, præsenteres. I
samarbejde med Ghent Universitet er der udarbejdet et script, der kan generere en given
skive-skals geometri, og en tilhørende finite element (FE) model.

En metode til at modellere en given skive-skal i et FE program præsenteres. Denne metode
anvender en forholdsvis simpel modellering af en given samlingsdetaljes stivhedsegen-
skaber. Metoden er anvendt til at modellere en skive-skal med et spænd p̊a 11,5 meter, i
FE programmet Abaqus. Konstruktionen er analyseret for seks forskellige samlings-
designs med varierende stivhedsegenskaber, for at undersøge hvilken indflydelse disse
egenskaber har p̊a konstruktionens virkemåde. Andre skive-skaller er ligeledes analy-
seret i Abaqus. Med udgangspunkt i disse resultater er konstruktionstypens virkemåde
beskrevet.

Metoder til at estimere spændinger og nedbøjninger i en given skive-skal foresl̊as.

Den ikke-lineær opførsel af skive-skaller undersøges for varierende parametre, s̊asom facet
størrelse, imperfektioner og samlingens stivhedsegenskaber. Den beregnede kritiske last
sammenlignes med den kritiske last for en lignende, men jævnt krum, skalkonstruktion.

Baseret p̊a de præsenterede undersøgelser foresl̊as en række retningslinier for design af
skive-skaller.
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Chapter 1

Introduction

This thesis is a study of plate shell structures of glass – a type of shell structure that
consists of plane elements of glass, and no additional load bearing structure.

1.1 Background

1.1.1 Shell structures

A shell structure is a structural surface, which is shaped and supported so that it can carry
load primarily by in-plane forces [24] [49]. Both in-plane compression and in-plane tension
forces can develop in a shell structure. A structural surface where only in-plane tension
forces are present is termed a tension structure. Pre-stressed cable nets and membrane
structures belong to this category [40].

The stiffness of a shell structure is highly dependent on the shape of the surface and
the support conditions, and not so much on the thickness of the surface. Efficient shell
structures (i.e. appropriately shaped and supported) can span 500 to 1500 times the
surface’s thickness. This facilitates large spans, since the self weight of the structure is
very low. Figure 1.1 shows two examples of shell structures, both of them concrete shells.

Reinforced concrete is a building material well suited for smooth shell surfaces, since it
is directly moldable and can be cast on-site, creating a continuous surface. For concrete
shells, the major challenges lie in the scaffolding and formwork during construction [19].

For other building materials such as steel, wood or glass, creating a curved, continuous
shell surface is troublesome. For building purposes, these materials are traditionally
available in straight (1D) or plane (2D) elements of limited size. It is therefore of interest
to approximate the smoothly curved shell surface by using straight or plane elements.
Figure 1.2 shows two examples of shell structures with a piecewise plane surface – the
geometry is built up by plane triangles. In these two structures, the glass panes have no
load bearing role, other than carrying load to the panes’ support lines. The structure
primarily carries load to its supports by concentrated axial forces in the triangulated
lattice structure. More information on lattice shell structures can for example be found
in [41].
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Introduction 1.1 Background

(a) Deitingen Raststätte, Deitingen, Switzerland, by
Heinz Isler. Photo: de.wikipedia.org.

(b) Los Manantiales Restaurant, Mex-
ico City, by Félix Candela. Photo:
Dorothy Candela.

Figure 1.1: Examples of shell structures.

(a) Great court at British Museum, by
Foster and Partners. Illustration from
[50].

(b) BG Bank courtyard, Berlin,
by Frank Gehry. Photo:
travel.webshots.com

Figure 1.2: Examples of facetted shell structures with triangulated geometry.

1.1.2 Glass structures

The shell structures in Figure 1.2 use glass as a cladding material. However, the high
stiffness and compressive strength of glass, and the continuous improvement of glass
manufacturing techniques, allow for a broader use of the material.

Load carrying glass structures are seen in modern buildings in a growing number of
varieties – glass beams, glass fins in facades transferring horizontal loads, glass columns,

2 Department of Civil Engineering - Technical University of Denmark



1.1 Background Introduction

shear transferring glass panes, glass floors, and other applications. Figure 1.3 and Figure
1.4 illustrate two examples of new applications of load carrying glass structures. Figure
1.3 shows glass columns at the headquarters of Danfoss in Denmark. Figure 1.4 shows
the glass dome at the Institute for Lightweight Structures and Conceptual Design (ILEK)
at Stuttgart University.

Figure 1.3: Load bearing glass columns at the headquarters of Danfoss, Denmark, by Schmidt,
Hammer & Lassen. Each column carries a vertical load of 250kN . Photo: Rambøll.

Figure 1.4: Glass dome at ILEK [16]. The glass segments are doubly curved laminated glass
with a total thickness of 10mm, connected by glued butt joints with a width of 10mm. The
diameter of the shell structure is 8.5m. Photo: ILEK.

Glass is a material which displays no plastic deformation before failure. Small flaws in the
glass surface causes stress concentrations at the crack tips when the surface is loaded in
tension, and this reduces the tensile strength considerably compared to the compressive
strength.

Common for the design of various structural glass elements are that they are designed to
meet these specific properties of glass; a high compressive strength, a relatively low tensile
strength, and brittle behaviour. For information about the material components in glass,
specific material properties, manufacturing techniques (such as toughening, lamination

Department of Civil Engineering - Technical University of Denmark 3



Introduction 1.1 Background

etc.), the reader is referred to some of the existing publications on glass in building [13]
[26] [48] [60].

1.1.3 Plate shell structures

A shell structure with a triangulated facetted geometry primarily carries load by concen-
trated tension and compression forces in the edges and vertices of the geometry, i.e. in
the bars and nodes. Research done primarily at the Royal Danish Academy of Fine Arts,
School of Architecture, has shown that for any given stable1 triangulated facetted struc-
ture, a dual facetted structure exists, which primarily carries load by distributed in-plane
forces in the facets [12] [55] [57] [58]. Such a system is termed a plate shell structure in
the following. Principally, every vertex in the triangulated system has been replaced by a
plane. As every facet in a triangulated system is triangular, every vertex in a plate shell
system will connect three facet corners.

Two dual facetted systems are shown in Figure 1.5.

Figure 1.5: Dual facetted systems. Left: triangulated system. Right: plate shell system.
Illustration from [56].

Statically, the three-way vertices in a plate shell structure has the consequence that the
vertices are irrelevant for the stability of the system; the stability of the system is based
on distributed in-plane forces in the facets, which are transferred along the facet edges.
This means that the geometry of a plate shell structure is organized so that the facets
constitute the primary load bearing structure. This eliminates the need for structural
components other than the facets themselves.

Plate shell structures appear in nature in many different scales [59]. Figure 1.6 shows a
few examples. The three-valence vertices are clearly recognizable. The non-continuous
surface enables growth in the connection lines.

At the Danish Building Research Institute in Denmark, a Ph.D. study on spatial stability
of shell structures [9] resulted in the realization of a plate shell structure in plywood,
with a span of about 9m. Built in 1993, the model is still intact (2009), apart from some
material deterioration of the facets. The structure is shown in Figure 1.7.

1The term “stable” as used in this context refers to the structure’s statical determinacy. A stable
structure is not a mechanism, and is either statically determinate or indeterminate.

4 Department of Civil Engineering - Technical University of Denmark
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(a) Coccolithus pelagicus
(a nannoplankton). Photo:
The Natural History Mu-
seum, London.

(b) Sea urchin. Illustration
from [59].

(c) Turtle. Photo:
outdooralabama.com

Figure 1.6: Plate shell structures in nature.

 
Figure 1.7: Full scale model of plate shell structure in 19mm plywood, located at the Danish
Building Research Institute, Denmark. Designed by Henrik Almegaard. Illustration from [9].

1.2 Statement of problem

Based on the background information in Section 1.1, the possibility of designing a plate
shell structure with glass facets is an appealing idea; a plate shell structure of glass com-
bines a light-weight structural concept (the shell), and manageable production methods
(plane elements of limited size), with the unique aesthetic qualities of glass.

Since the geometry of a plate shell is organized so that the stabilizing forces are dis-
tributed in the facets, this structural principle is especially well suited for glass, where
stress concentrations should be avoided due to the brittleness.

The main goal of this thesis is to facilitate the design and construction of plate shell struc-
tures, particularly with glass facets. The research in plate shells conducted at the Danish
Architectural School primarily focused on the principal stability of facetted structural sys-
tems, and the concept of duality. Based on the results from that research, the intention
of the present study is to develop more specific knowledge about the structural behaviour
of plate shells, leading to guidelines for the design of physical plate shell structures. This
goal is approached by addressing the following questions:

• What is a plate shell structure? What are the basic characteristics, and how can

Department of Civil Engineering - Technical University of Denmark 5
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the geometry be generated?

• How does the structure work? What are the relevant design parameters, and how
do these influence the result?

• How can such a structure be realized?

Figure 1.8: Visualization of a plate shell structure with glass facets. Prepared by
M. Rippman, ILEK.

1.3 Scope of this study

The questions above are addressed by a combination of academic research and practical
engineering. Correspondingly, the thesis is organized so that it can be read in two levels;
the main text aims to present information which is relevant for the design engineer. Elab-
orations on methods and results, certain theoretical aspects and other issues relevant for
a continuation of the research, are placed in footnotes.

Possible methods of creating the geometry are suggested in Chapter 2. Generating
the geometry for a plate shell structure can be troublesome with existing CAD tools.
The reason for this is that the position of the facetted shape’s edges and vertices is not
explicitly defined in space (as they are for a triangulated geometry); they are implicitly
defined as the intersection lines and points between the facet planes (which are explicitly
defined). The suggested methods for generating the geometry are illustrated by a series
of examples.

To facilitate easy generation of the plate shell geometry, and transformation of the geom-
etry into a finite element (FE) model, a Python-script for the free software tool pyFormex
has been developed in cooperation with Ghent University. The script can generate a plate
shell geometry based on user input in the form of a list of points. The script can adapt
the geometry to a user defined structural height and span, create connection lines with

6 Department of Civil Engineering - Technical University of Denmark



1.3 Scope of this study Introduction

user defined stiffness parameters, and export this information as a FE model to Abaqus2,
including information about materials, element type, element meshing, boundary condi-
tions and loads.

In Chapter 3 a modelling technique for FE analysis of plate shells is suggested. Specifi-
cally, modelling of the connections is focused upon.

The structural behaviour of plate shells is investigated in Chapters 4 and 5, assuming
geometrically linearity (i.e. no large displacements and no buckling). This investigation
is divided into two parts. The first part (Chapter 4) deals with in-plane forces in the
structure. The second part (Chapter 5) deals with bending moments in the facets. In
both parts, emphasis is on describing the different structural effects physically, in order to
provide the design engineer with an intuitive understanding of the structure’s behaviour.
Based on this explanation, FE analysis in Abaqus is used to verify the structural effects,
and to quantify the consequences in terms of stresses, displacements etc. Finally, based on
the findings of the FE analysis, simple approximate calculation methods are developed,
to facilitate a fast and easy estimation of stresses and displacements for a given plate
shell design. These tools are developed to provide the designer with an overview of the
structure in a preliminary design phase.

The behaviour of plate shell structures when including effects from geometrically non-
linearity is studied in Chapter 6. This potential area of research is very large, and the
study in Chapter 6 should be seen as an introductory investigation into the topic, with the
aim to provide a general feel for the structure’s non-linear behaviour. Design parameters
such as faceting pattern, overall facet size, imperfections and connection characteristics
are varied, and the results are compared. Also, the results for the plate shells are com-
pared to the non-linear behaviour of a similar smooth shell structure.

The question of how to design the detail that connects the facets is addressed in Chapter
7. The functional requirements and wishes for the connection detail are discussed; based
on this discussion, three different detail designs are suggested. Two of these designs have
been tested experimentally.

The findings throughout the study are collected into a set of proposed design guidelines
in Chapter 8. Topics that have not been studied in the thesis are brought up, and a
design approach for these is suggested.

Chapter 9 sums up the main conclusions of the thesis, and suggests a direction for
further research.

2Abaqus is a general-purpose finite element analysis program for mechanical and structural engineer-
ing [5].

Department of Civil Engineering - Technical University of Denmark 7
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Chapter 2

Plate shell geometry

This chapter aims to provide some practical tools for the generation of plate shell geom-
etry.

A smooth curved surface is characterized by its Gaussian curvature, which can be positive
(convex shape), negative (non-convex/saddle shape) or zero (developable, for example a
cone segment) [9]. Surfaces of non-zero Gaussian curvature are termed doubly curved.
In the present study, only doubly curved shapes of positive curvature, i.e. convex shell
shapes, are considered.

A smooth convex shell surface can be approximated by a facetted surface. The relevant
methods of determining such a facetted geometry can be divided into two principally
different approaches: Point-based faceting (triangulation) and plane-based faceting (plate
shell geometry).

In a point-based facetted geometry three points are used to define each plane (facet). By
distributing points on a smoothly curved surface and connecting these points with straight
lines (while obeying certain rules), a triangulated geometry of piecewise plane triangles
can be defined (as in [9]). Figure 2.1a shows an example of a point-based triangulated
geometry. More information about triangulating a smooth surface can for example be
found in [45].

 

(a) Point-based geometry (b) Plane-based geometry

Figure 2.1: The two basic types of facetted convex geometry. (Illustration: Ture Wester.)

In a plane-based facetted geometry the smooth convex surface is approximated by a num-
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Plate shell geometry 2.1 Creating plane-based facetted geometry

ber of planes, meaning that the position and orientation of each plane is defined in space,
and the facets’ boundaries are produced by determining the intersection lines and points
of these planes [28]. In such a system, three planes define a point, so three facets will
meet in every vertex of the geometry [55]. Figure 2.1b shows an example of a plane-based
facetted geometry. To illustrate this concept, imagine cutting off slices of an apple with
plane, random cuts until all the peel is gone. The resulting geometry is a plane-based
facetted geometry, and three planes/facets will meet in every vertex. It can be shown
that as the number of facets on a given convex plane-based facetted surface increases, the
average number of edges on each polygonal facet will approach six [55].

These two basic types of facetted geometry1, point-based and plane-based, can princi-
pally be described as each other’s dual. For more information about the geometric and
structural duality between point-based and plane-based systems see for example [55]. A
short introduction to the concept of duality was also given in Section 1.1.3.

As mentioned earlier, we will limit the present study to convex shell shapes2.

While point-based systems are a common sight in shell structures, and geometrically
studied in many contexts, plane-based facetted systems are less well known. For this
reason, most CAD systems cannot handle a plane-based facetted geometry in an effective
way. The first challenge in the design of a plate shell structure lies therefore in how to
generate and manipulate a suitable geometry. Section 2.1 focuses on possible methods
of generating a suitable pattern, and how to transform the pattern into a plane-based
facetted geometry. Section 2.2 presents a Python script for the software tool pyFormex
which can generate a finite element model of a plate shell, ready for export to Abaqus.
The script is written by Benedict Verhegghe, Ghent University, in cooperation with the
author [14].

2.1 Creating plane-based facetted geometry

In the following, a number of methods for producing plane-based facetted geometries are
proposed. The focus is on collecting some practical tools to facilitate the faceting process,
and to explore some possibilities of using, varying and expanding these tools.

Since the geometry is plane-based, we basically wish to define the position and orientation

1A third family of facetted geometries have quadrangular facets. Geometrically and structurally,
these are hybrids of plane-based and point-based systems. The possibility of patterning and the choice
of “overall” shape, are constrained by certain geometrical conditions [10] [53]. Structurally, the system
is a mix of a plate shell structure (with in-plane shell action in the facets) and a lattice structure (with
concentrated forces in the edges and vertices).

2When performing a plate based faceting of a non-convex surface (i.e. with negative Gaussian curva-
ture) special conditions apply [9]. The facets of such a geometry are hourglass-shaped, and the topology
(i.e. which planes intersect each other) is not uniquely determined by the facets’ position in space. Also,
the hourglass-shaped facets have concave corners, and there will be large stress concentrations in these
concave corner points, as shown analytically in [42]. For facets of glass this will result in cracks.

10 Department of Civil Engineering - Technical University of Denmark
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for the plane of each facet in space. This can be done by distributing points on a smoothly
curved surface (in this case limited to being convex), and in each of these points determine
the tangent plane to the smooth surface [28]. As described above, the intersection lines
and points of these tangent planes determine the boundaries of the facets. Most of the
methods described in Sections 2.1.1, 2.1.2 and 2.1.3 deal with how to distribute the tangent
points on a smooth convex surface – these sections propose ideas about possible patterns,
and how to manipulate these patterns.

Instead of defining tangent planes to a convex surface, other methods of defining the
facets’ position in space could be of interest. The facet planes could for example be
determined by a dual-manipulation of a triangulated geometry [57], or determined by
using the support function representation of a smooth surface and the resulting facetted
geometry [11]. The present study only focuses on determination of the facets via tangent
planes.

2.1.1 Mapping a plane pattern

Consider a pattern of points defined in a plane. We wish to map the points onto a convex
surface, and determine the tangent planes to the surface in those points. This mapping
inevitably distorts the pattern. Depending on the mapping method, we can maintain
certain characteristics of the pattern, like certain lengths or angles, but all characteristics
cannot be maintained simultaneously. The larger the difference between the original shape
(here: a plane) and the surface, which we map the pattern onto, the more distorted the
mapped pattern becomes.

Some different mapping methods are possible, see for example [45] and [34]. In the
following, three simple procedures are suggested. (1.) Parallel projection, (2.) central
projection and (3.) a mapping suggested by the author, which in the following is referred
to as an “parametric” mapping. In Table 2.1 the three methods are illustrated by some
examples in order to show the strengths and weaknesses of the different procedures in a
given context. The example shows a regular pattern mapped onto a spherical dome with
the ratio h/l, where h is the dome height and l is the span of the dome.

Department of Civil Engineering - Technical University of Denmark 11
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Parallel projection Central projection Parametric mapping

h

l

 

  C

 

I 

I

  C 

  s   smax 

  xmax 
  x      C 

x
xmax

= s
smax

Section I – I

The points are projected ver-
tically onto the convex sur-
face. (This is actually a spe-
cial case of a central projec-
tion, where C is infinitely dis-
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dially onto the convex surface
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point in the plane is kept as
the relative position of the
point on the convex surface,
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This method is generally easy
to implement. It can be used
on a large variety of con-
vex shapes, analytically deter-
mined as well as free form.
The larger the angle between
the original pattern plane and
the convex surface’s tangent
plane, the larger the distor-
tion of the pattern in that
area.

This projection can be used
on a large variety of con-
vex shapes, analytically deter-
mined as well as free form.
In the example above, this
method yields a large distor-
tion of the pattern when the
curvature of the convex sur-
face is large.

This mapping method yields a
relatively smooth distribution
of the original pattern onto
the convex surface in the ex-
ample above - for small curva-
ture as well as large curvature.
It is limited to surfaces where
the smallest distance between
any given point on the surface
and an appointed origin on
the surface can be determined
(i.e. the length of the geodesic
curve). A section of a sphere
and a paraboloid of revolution
(where the appointed origin
is the centre of rotation) are
such shapes.

Table 2.1: Three methods used to map a regular pattern onto a section of a sphere.

12 Department of Civil Engineering - Technical University of Denmark



2.1 Creating plane-based facetted geometry Plate shell geometry

Figure 2.2 shows a series of examples, where a pattern in a plane has been mapped onto a
smooth convex surface, and the tangent planes to the surface have been used to construct a
plane-based facetted geometry. All three examples use the parametric mapping technique,
and they have been generated using first a Matlab script3 written by the author, and
after that the pyFormex script presented in Section 2.2.

Penrose
pattern

Fibonacci
pattern

Kaleidoscopic
pattern

Figure 2.2: Three examples of a plane-based facetted geometry, generated by mapping a plane
pattern onto a section of a sphere, and determining the tangent planes to the sphere in these
points.

The first example in Figure 2.2 uses a five-fold symmetry as plane pattern. The intersec-
tion points of a Penrose tiling (rhombus version) define the points in the pattern.4

The middle example in Figure 2.2 uses a pattern of points based on the Fibonacci se-
quence.5

3The Matlab script can map an array of points in the plane onto either a spherical dome or a
paraboloid of revolution (both of varying span and height), using either parallel, central or parametric
mapping. The script also supports the mapping of a pattern defined on a cone, as illustrated in Figure
2.7 (page 16). Besides generating an array of points which can be used as input to pyFormex, the script
can produce input to the software Nydrool, written by Klavs Feilberg Hansen [27]. Nydrool can, among
other features, generate a plane-based facetted geometry, based on a group of defined planes in space.
The Matlab script can be attained by contacting the author.

4The resulting plane-based facetted geometry is merely a different version of the original five-fold
symmetry. A certain facet shape belongs to each possible “cluster” of tiles in the original Penrose tiling.
Therefore, the number of possible facet shapes is finite – even quite small (9 shapes in total). Depending
on the curvature of the smooth shape (here a spherical shape of relatively high curvature), the original
pattern is distorted to a certain degree.

5The points are determined by (r; θ)n = (
√

n; 2πϕn), where (r; θ)n is the nth point in polar coordinates
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In the third example in Figure 2.2 a more or less random pattern of a rotational symme-
try has been defined, mapped onto a spherical dome and used to construct a plane-based
facetted geometry.

Another possibility for the construction of a plane pattern is shown in Figure 2.3. Some
of the points in a regular pattern (with three principal directions) have been slightly
adjusted, so that they sketch up a certain desired shape6. (The example shown here is
most likely too finely facetted to be feasible as a structure.)

Figure 2.3: A plane regular pattern is adjusted to outline a butterfly, and used to produce a
plane-based facetted geometry.

2.1.2 Mapping a spatial pattern

A large difference in shape between an original pattern basis (which in Section 2.1.1 was a
plane) and the convex surface onto which the pattern is mapped, yields a certain distortion
of the original pattern. Generally, the larger the difference, the larger the distortion. We
now wish to explore the possibility of defining the original pattern on a surface which
is not a single plane – a surface which serves as a better approximation to the mapped
pattern. This is partly to have a smaller geometric difference between the original pattern
and the mapped pattern, and partly to extend the possibilities for different patterning
schemes.

and ϕ is the Golden number, ϕ = 1+
√

5
2 , [36]. Since the nature of the Fibonacci sequence is crossing

spirals (a two-way pattern), and the nature of a randomly produced plane-based geometry is polygons
with six edges in average (a three-way pattern), the plane-based geometry in Figure 2.2, middle image,
is a mix of these two tendencies. Therefore, a given spiral can be found by following a limited number of
neighbouring facets, where after it dissolves as the hexagonal nature of the facets take over.

6The original, regular pattern is defined by the corner points of a pattern of equilateral triangles.
The best result comes from keeping the pattern adjustments so small that the topology of the original
hexagonal facetted shape is kept, meaning that all facets remain hexagonal. Generally, the further the
points are moved from their initial location, the more the length of the resulting facet edges are influenced.
Small edge lengths may be difficult to connect with a physical connection detail. An appealing feature
about the shown geometry is that the outlined image does not reveal itself directly. The image is sketched
up by facet edges which are perpendicular to the image contour, which is much more subtle than if the
image had been directly outlined. For the same reason, if the “hidden image” is too complex, the meaning
is more or less lost in the facetted geometry.
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Figure 2.4: Construction of the Zeiss Planetarium in Jena, Germany, designed by Walther
Bauersfeld in 1923 [29].

 

Figure 2.5: Geodesic triangulation of sphere (left), and the dual plane-based geometry (right).
Illustration from [55].

Figure 2.4 shows a geometry that in the 1950’ies became known as a geodesic sphere, when
Buckminster Fuller patented the geometric layout [25]. The geodesic sphere is generated

as shown in Figure 2.5, where the faces of an icosahedron7

 

 
 

 are subdivided into smaller
triangles. The corner points of these triangles are mapped onto an enveloping sphere,
and connected with straight lines, thereby forming a triangulation of the sphere. A plane-
based geometry, dual to the geodesic sphere, can be generated by determining the tangent
planes to the corner points of the triangles, and letting these planes intersect each other.
The triangulation and the dual plane-based geometry are shown in Figure 2.5.

The geometry in Figure 2.5 uses an icosahedron

 

 
 

 as basic polyhedron, but the two

other regular polyhedra with triangular faces (the tetrahedron8
 

 
 

 

and the octahedron9

 

 
 

 

) can also serve as basis for a geodesic shape, see Figure 2.6. The icosahedron serves as
a better approximation to the sphere than the octahedron and especially the tetrahedron
– the facets are much more homogenous when based on the icosahedron.

7The icosahedron is a regular polyhedron with 20 equilateral triangles and 12 vertices.
8The tetrahedron is a regular polyhedron with 4 equilateral triangles and 4 vertices.
9The octahedron is a regular polyhedron with 8 equilateral triangles and 6 vertices.

Department of Civil Engineering - Technical University of Denmark 15



Plate shell geometry 2.1 Creating plane-based facetted geometry

Figure 2.6: Three examples of plane-based geodesic domes, based on a tetrahedron, an octa-
hedron and an icosahedron respectively. Illustrations from [55].

The number of subdivisions of the original polyhedron’s faces can be varied, thereby
producing a finer or coarser geodesic faceting.

Non-regular polyhedra can also be used as basis for a pattern, thereby facilitating a wide
variety of different facetted layouts.10

Another possibility for defining a spatial pattern is to define the pattern on a cone. This
is especially relevant for a pattern of a repetitive rotational symmetry. The procedure
is illustrated in Figure 2.7. Consider a plane pattern that repeats itself n times in a
polar rotation around a centre. The fact that the pattern is repeated makes it possible
to remove a part of the pattern without changing the local topology of the pattern. One
or more repetitions are therefore removed, and the remaining plane pattern is “gathered”
into a cone shape. From this cone shape, the pattern is mapped onto a convex shape,
ideally with a height-to-span ratio similar to that of the cone.11

(a) Repetitive pattern de-
fined around a centre.

(b) The reduced pattern is
gathered into a cone.

(c) The points are mapped
onto a convex surface.

(d) A triangulation of the
surface can be generated.

(e) Tangent planes to
the surface are determined,
and brought to intersect
each other as shown.

 

(f) The resulting plane-
based facetted geometry.

Figure 2.7: Generation of a plane-based facetted geometry from a pattern on a cone.

10Polyhedra can be a very useful basis for describing a pattern, since they are piecewise plane and
therefore easy to handle analytically and/or in CAD. Also, if the smooth surface that the pattern is
mapped onto is not of rotational symmetry, choosing a non-regular polyhedron for the pattern basis can
be a way of avoiding too large difference between the original pattern and the mapped pattern.

11This feature is implemented in the Matlab script mentioned in footnote 3 in this chapter.
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This method can yield a result which is a variation of the geodesic dome, but it can also be
used for other geometries. Some examples are shown in Figure 2.8. To the left is a regular
pattern of points (with 3 principal directions), where varying parts of the geometry are
cut away. To the right is a Penrose pattern, generated as described on page 13, also with
varying parts cut away.

Figure 2.8: Mapping of two different patterns defined in a cone. To the left a regular pattern
with 3 principal directions. To the right a Penrose pattern.

2.1.3 Using multiple layer patterns

Consider a pattern of points in a plane, or in space. The points can be divided into two
groups (or more). The first group of points is mapped onto a smooth convex surface.
The second group is mapped onto a surface with the same shape, but a slightly different
size. The result is two “layers” of points. By using these points to produce a plane-based
facetted geometry, the relative size of the facets can be manipulated. If the scaling of
the two surfaces are too different from each other, some facets will disappear from the
resulting facetted geometry12. The principle of the concept of multiple layer patterns is

12Generally, the scaling of the different layers of the smooth surface should be almost alike. In most
cases, a 1-15h difference in scale is appropriate. The suitable span of difference in scale depends on the
curvature of the geometry, and the relative size of the facets. For a geometry of low curvature or a fine
faceting, the difference in scale should be in the low end of the of the suggested range.
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illustrated in Figure 2.9; in the image to the left three points are defined on the same
surface (illustrated by a section through the surface). In the image to the right one
point is mapped onto a surface with a slightly different (larger) scale than the other two
points. As a consequence, the relative size of the facets change. Some examples using the
two-layer concept are shown in Figure 2.10.

Naturally, the points can be divided into more than two groups, if so desired.

a < a

Figure 2.9: Principle sketch of the multiple layer patterns.

β = 7h β = 12h

β = 3h β = 7h

Figure 2.10: Four examples of the use of two layers of points. β refers to the applied difference
in scale between the two surfaces.

2.2 pyFormex script

To facilitate an automated generation of the plane-based geometry of a plate shell struc-
ture, and a finite element (FE) model to run in Abaqus, a script has been developed
for the software tool pyFormex. pyFormex is a powerful free software currently under
development by B. Verhegghe et al. at Ghent University [4]. pyFormex contains a Python
implementation of Formex algebra pioneered by H. Nooshin [43] and was developed for
the automated design of spatial structures by means of sequences of mathematical trans-
formations [4] [54].

In the following, the pyFormex script is presented from the design engineer’s point of
view. For a more thorough technical description of the programming procedures in the
script, the reader is referred to [14].
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2.2 pyFormex script Plate shell geometry

The pyFormex script is written by B. Verhegghe, based on requests from and discussions
with the author.

Table 2.2 and 2.3 gives an overview of the user defined input, and the script’s output.
Figure 2.11 illustrates the different steps in the geometry generation.

As previously described in this chapter, a plane-based facetted geometry is generated by
determining the position of each facet’s plane in space. In the pyFormex script, this is
achieved by loading a text-file with a list of points, all of which are points on a convex
surface (an example is illustrated in Figure 2.11(a)). Such a file can be generated by one
of the procedures suggested in Sections 2.1.1, 2.1.2 and 2.1.3.

The pyFormex script generates a triangulated convex surface based on the loaded list
of points (Figure 2.11(b)). The facets’ normals are determined for each point, either
analytically from a known expression of the surface (for example a spherical surface), or
from the triangulation (using the mean normal of the triangles surrounding the point).
Using the facets’ normals, the facet planes are constructed and brought to intersect each
other, creating the plane-based facetted geometry, as illustrated in Figure 2.11(c). The
geometry is then cut by a plane at a specified ground level (Figure 2.11(d)), and is scaled
to meet a specified span size and height13.

The script prepares the basic facetted geometry for the modelling of the connections (the
modelling technique is described in detail in Section 3.2.1, page 27) by offsetting the facet
edges in the facet plane, towards the facet centre (Figure 2.11(e)), and the joint areas are
defined (Figure 2.11(f)).

Material properties (glass facets), boundary conditions (supported against translations
along the boundary) and load (self weight) are defined by the script, as well as a number
of geometry sets to facilitate an efficient handling of the model in Abaqus.

Finally, the pyFormex script exports all data, including mesh seeds and element type, in
the format of an Abaqus/CAE Python script. Running the exported script in Abaqus
will create the model, including element mesh, and prepare the analysis job for submission.
For non-linear analysis some adjustments must be made before job submission14.

13This is possible without warping the facets, since points in a plane will remain in a plane after scaling
in one or more directions.

14The predefined step, where load is defined, is changed into “Static, Riks”, and geometrically nonlin-
earity is switched on in the step definition. The non-linear parameters are chosen suitably. Imperfections
can for example be added in the form of ∆z = f(x, y) (an imperfection value is added to the vertical
position of each node, depending on the nodes position in the ground plane, as described in Chapter 6).
However, running the necessary algorithm for the nodes is problematic, since the nodes are described in
relative coordinates for each facet and joint, and a list of nodes is therefore not directly extractable from
the Abaqus input-file. The following is a description of how the model is modified, so that all nodes
are listed in absolute coordinates in one single list in the input-file (which can also be useful in other
situations): 1. Save the model under a different name. 2. Mesh the structure as desired. (This mesh
cannot be altered later.) 3. Delete all sets, boundary conditions, steps and constraints. 4. Use “Display
Group” to view facets only. 5. Use “Create Mesh Part” (mesh module) to gather all facet elements into
one part. 6. Repeat step 4 and 5 for joint elements. 7. Suppress all instances. 8. Create instance
consisting of the two new parts. 9. Assign section to the two new parts (part module). 10. Merge mesh
(assembly module). 11. Define steps, loads, boundary conditions, output requests and job.
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Point array The user creates and uploads a file containing a list of
points (in cartesian coordinates) on a convex surface.

Ground plane The user states the position of the ground plane, at
which the geometry will be cut and the structure will
be supported.

Span and height The basic geometry can be stretched to meet a given
size in the ground plane and in the height.

Connections The user specifies the geometric layout of the joint
strips, which will model the connections. (The connec-
tion modelling technique is described in detail in Section
3.2.1, page 27.)

Mesh The general element size, or the number of elements
along certain edges, is specified. The element type is
chosen among a list of shell elements.

Table 2.2: User defined input to the pyFormex script.

Table 2.2 lists the key input elements for the pyFormex script, defined interactively by
the user. Table 2.3 lists the output (the FE model), when the resulting Python script is
run in Abaqus.
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Python script The output of the pyFormex script is a Python
script, ready to run in Abaqus, which results in an
Abaqus/CAE FE model with the features described
below.

Geometry Facets and joint strips are defined as surfaces. Each
facet or joint strip is an individual Abaqus part, and
the coinciding edges of the parts are connected by tie
constraints15.

Material parameters The facet material is defined as glass; a linear elastic,
isotropic material, with E-modulus 70GPa, Poisson’s
ratio 0.22 and density 25kN/m3. The joint strip ma-
terial is also linear elastic and isotropic. The material
parameters can be adjusted by the user in Abaqus, so
that the joint strips represent the stiffness of a given
connection detail, see Section 3.2.1 (page 27).

Mesh The structure is meshed by Abaqus according to the
element size specified by the user in the script.

Sets Geometric sets (surface sets and line sets) are defined
by the script for convenient handling of the geometry
in Abaqus. The sets are useful if the user wishes to
specify other element sizes in certain areas (for example
a finer mesh in all facet corners), or when applying loads
to the structure.

Loads Gravity load is applied to the structure by the script.
Other loads must be applied by the user in Abaqus16.

Boundary conditions The structure’s boundary in the ground plane is sup-
ported against translation.

Analysis output A request for analysis output is defined by the script, re-
questing stress components in upper, middle and lower
surface of the shell elements, translations, rotations, sec-
tion forces and section moments.

Job A job is defined by the script, ready to be submitted for
analysis in Abaqus.

Table 2.3: Output of the pyFormex script.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.11: Illustration of the stepwise plate shell geometry generation in the pyFormex
script.

15In Abaqus, parts are the building blocks of an Abaqus/CAE model. Parts are put together to
create an assembly that can then be meshed and analyzed. A tie constraint is a method to define a
fixed link between two parts [3]. In this case, that coinciding edges of two parts must have identical
displacements.

16There are plans for a further development of the script, to apply snow and wind load in pyFormex.
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Chapter 3

Modelling plate shells

This chapter aims at developing an appropriate method for creating a FE model of a plate
shell. The intention is to develop a modelling technique which is as simple as possible,
while reproducing the most important structural aspects of the structure.

Particularly, a simple representation of the physical connection detail is in focus, since
modelling the actual detail with every geometric feature, and using “exact” material prop-
erties would be unrealistically cumbersome. It is deemed more valuable to use a simpler
model, the limitations of which are well known.

In the following, the structural behaviour of plate shells is briefly described, so that it can
serve as basis for choosing an appropriate modelling technique. The description is based
on the research presented in the subsequent chapters.

Consider a plate shell structure, sufficiently supported to behave as a shell structure (see
Sections 4.1 and 4.2). When the facets are loaded by out-of-plane load, they will be
subjected to bending (see Section 5.1). Via bending the load is carried to the edges of
the facets. Because of the angle between adjacent facets, and because the structure is
supported so that in-plane forces can develop, the out-of-plane load is transformed into
in-plane forces at the facet edges [12] (see for example the illustrations in Table 4.1,
page 37). This transformation results in in-plane forces which are perpendicular to the
connection lines. In addition to these, in-plane forces parallel to the connection lines may
also develop.

These in-plane forces can be described as the structure’s shell action. The high structural
efficiency (i.e. high stiffness to weight ratio) of plate shells is a result of this shell action.

Each facet can be seen as supported out of their own plane on the surrounding facets. Since
the surrounding facets have a finite stiffness, and since the physical connection detail also
has a finite stiffness, each facet is supported along its edges by supports of finite stiffness.
If the connection detail behaves as a hinge (a line hinge, allowing rotations about the
facet edge direction), the facet edges are free to rotate. For a connection detail of larger
stiffness against rotations, the facet edges are more restrained against rotation. In that
case, the connection detail will be loaded by bending moments from the facet edges.

23



Modelling plate shells 3.1 Connection stiffness parameters

3.1 Connection stiffness parameters

Since the stiffness characteristics of the physical connection detail have a significant role
in the local support of each plate shell facet, these stiffness characteristics must be repro-
duced with adequate precision in the FE model.

Since we wish to have a relatively simple description of the stiffness components, a linear
correlation is assumed to exist between the various types of movement in the connection
and its resistance, so that the connection detail’s stiffness components can be described
by linear springs – translational and rotational. The consequences of a possible non-linear
stiffness behaviour (for example load-dependent stiffness, creep, and changes due to wear)
will be discussed where relevant in the subsequent chapters.

The most important stiffness components are shown in Figure 3.1. They are

• a rotational stiffness km, linking the bending moment m22 to the rotation of the
plate edge ϕ, and

• an axial stiffness kn, linking the in-plane force n22 to the plate’s movement in its
own plane, perpendicular to the edge.

These two stiffness components will be discussed more into detail further down in this
section.

1 

2 3 

m22 
m12 

n21 
n22 

q23 

 
 
 
 
 
 
 
 
 
 

φ

Δy 

Symmetry line 

 
 m22 = km φ  
 
 
 
 
 

n22 = kn Δy  
 
 
 
 
 
 
 
 

L C 

Figure 3.1: Definition of the two most significant stiffness components in the connection;
rotational stiffness km and axial stiffness kn. The red block represents the physical connection
detail. The terms refer to local directions, relative to the regarded facet edge.

In addition to the rotational stiffness km and axial stiffness kn the connection will also
have a finite stiffness against other deformations.

• A stiffness in the connection detail against curvature of the plate edge (primarily
associated to m11). Depending on the connection design, this is most likely negligible
compared to the stiffness of the plates themselves.
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• A stiffness against in-plane shear displacements in the connection kv,i.

• A stiffness against out-of-plane shear displacements in the connection kv,o.

On page 29 in Footnote 3 a comparative study suggests that an imprecise reproduction
of the shear stiffness parameters in a FE model of a plate shell, results in relatively small
errors on the stresses and buckling load.

The two key stiffness parameters are assumed to be the rotational stiffness km, and the
axial stiffness kn.

Rotational stiffness km

As illustrated in Figure 3.1 the rotational stiffness km links the bending moment m22 to
the rotation of the plate edge ϕ. If km is small, the plates will act as if connected to each
other by a line hinge, and almost no bending moment m22 will be transferred between
the plates. If km is large, a certain amount of bending moment m22 will be present in the
connection.

If km is so large that the connection attracts significant bending moments, the detail must
also be strong enough to be able to transfer them.

Referring to the definition of km (in Figure 3.1), this parameter ties the bending moment
m22 in a connection to half of the sum of the connected plates’ edge rotations. It has
been defined this way because in a design load case two adjacent plates will most likely
have similar edge rotations. If the plates do not rotate similarly, for instance if one of the
plates is smaller than the other or affected by a smaller load, the connection detail will
rotate, so that both plates have similar rotations relative to the connection.

Axial stiffness kn

As illustrated in Figure 3.1, the axial stiffness kn ties the normal force n22 in a connection
to half of the sum of the connected plates’ in-plane movement, perpendicular to the
connection.

The axial stiffness kn primarily has influence on two behavioral issues: (1.) the in-plane
movements when straight plate edges transfer axial in-plane forces from the overall shell
action, and (2.) the tendency of straight plate edges to deform (curve).

The first issue has little effect on the stress distribution in a linear calculation of the
structure. In a non-linear analysis, however, the stiffness against in-plane movements of
the plates seems to have an effect on the buckling load. This effect is studied in Chapter
6.

The second of the two issues is clarified in the following: when the edge of a facet curves
out of the facet plane, the distance to the edge of the neighbouring plate will vary along
the edge, because of the geometric conditions. The principle is illustrated in Figure 3.2.
This means that if the plate edge curves, the connection detail will be affected by in-plane
deformations perpendicular to the edge. Therefore, if the connection detail has a large
stiffness against these deformations (i.e. axial stiffness kn), the plate edge will be some-
what restrained from curving.
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w

Figure 3.2: The distance between the facet edges change when the edge deforms out of the
facet’s plane.

Parameter values
In Chapter 7 three different connection details are suggested, each of them with advantages
and drawbacks. There are two variants of each detail. The stiffness parameters of these
six details are estimated and discussed in Chapter 7. The parameters are summarized
in Table 3.1. These values are used in the FE analysis of plate shells throughout the
thesis. (The order in which the connection details are listed in the table is determined by
certain aspects of their structural behaviour – it thereby differs from the order in which
the details are described in Chapter 7. )

An additional variant has been added in Table 3.1 for comparison purposes: a butt joint
of glass, with the same geometry as the listed glued butt joints (i.e. with a joint thickness
of 15mm, and a joint width of 10mm – see page 90 in Section 7.4).

Illustrations of the three connection details, taken from Chapter 7, are shown in Figure
3.3.

Connection detail km kn kv,i kv,o

(kN) (kN/mm2) (kN/mm2) (kN/mm2)

Glued-in line hinge 0.6 5 1 6

Glued-in plate (3mm aluminum) 16 5 1 6

Glued butt joint

– Eadhesive = 1kN/mm2 71 3.8 1.0 1.0

– Eadhesive = 2.5kN/mm2 176 9.4 2.6 2.6

Friction connection

– Klingersil 100 0.5 0.08 1

– EPDM 5 0.02 0.02 0.1

Glass joint 4.1× 103 220 86 86

Table 3.1: Estimated stiffness parameters for six variants of connection details, plus a pure
glass joint. The values are summarized from Chapter 7.
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(a) Glued-in plate connection (b) Friction connection (c) Glued butt joint

Figure 3.3: Three connection details suggested in Chapter 7.

3.2 FE modelling technique

The plate shell facets are modelled by surface elements, characterized by a mid-plane and
a thickness. Strains are thereby assumed to vary linearly through the plate thickness.
Since the facets are subjected to bending as well as in-plane forces, it is appropriate to
model them by shell elements (an element type which includes both types of behaviour).

The connection detail’s stiffness parameters are implemented in the FE model by reducing
the size of each facet, so that a small gap exists between the facet edges, and then
adding a strip of elements which connects the facets. The width, thickness and material
characteristics of the connecting strip of elements are chosen, so that the strip represents
the stiffness of the connection detail. This procedure is described in detail in Section
3.2.1.

The plate shell models’ boundary conditions are modelled as infinitely stiff supports
(against translations but not rotations). The physical supports of an actual plate shell
will have finite stiffness against movements. However, it has not been found necessary
to model these, as the structure’s maximum stresses are typically not located near the
ground plane. If necessary, the same procedure as the modelling of connections can be ap-
plied to model the supports; a strip of elements can connect the external support with the
structure, and the characteristics of these elements can be chosen so that they represent
the physical support detail.

In Section 3.2.2 the FE model of a specific plate shell is described in detail. This model
is used for FE analysis throughout the report.

The convergence of the resulting stresses is discussed in Section 3.2.3. This discussion
leads to general suggestions about element size.

3.2.1 Modelling of connections

In all FE calculations in the present study the connection stiffness parameters are im-
plemented in the FE model by adding a thin strip of elements between the glass facets,
illustrated by the grey areas in Figure 2.11f (page 22). This element strip is referred
to as a joint strip in the following. The width, thickness and material characteristics of
the joint strip are chosen, so that the joint strip represents the requested stiffness. The
connection stiffness parameters were introduced in Section 3.1.

In this section the following issues are addressed:

• How the parameters of the joint strip are chosen, so that the joint strip represents
the desired connection stiffness parameters.
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• The accuracy of this representation of the connection stiffness.

• The parameters used in this thesis.

The rotational stiffness, km, of the joint strip can be shown to be given by1

km =
1

6

t3j
w

Ej (3.1)

where km is defined as given in Figure 3.1 (page 24), tj is the thickness of the joint strip
elements, w is the width of the joint strip (i.e. distance between the plate edges), see
Figure 3.4. Ej is the E-modulus of the joint strip elements.

w

tj@
@R

Facet mid-plane

Figure 3.4: Section perpendicular to a joint line.

In (3.1) a plane stress distribution is assumed, so Poisson’s ratio for the joint strip el-
ements, νj, should be set to zero. The joint material is modelled as linear elastic and
isotropic.

The axial stiffness, kn, of the joint strip is given by2

kn =
2tj
w

Ej (3.2)

The shear stiffness parameters are found correspondingly:

In-plane shear stiffness: kv,i = 2tj
w

Gj,12

Out-of-plane shear stiffness: kv,o = 2tj
w

Gj,13

(3.3)

In (3.3) Gj,12 and Gj,13 are the shear-moduli for in-plane and out-of-plane displacements
respectively, for an orthotropic material (in a shell element). If the joint strips are mod-
elled with an isotropic material, we have

Gj,12 = Gj,13 = Gj =
Ej

2(1 + ν)
(3.4)

For a connection design with given stiffness parameters, the joint strip width, thickness
and material parameters can be chosen so that the connection’s stiffness parameters are
represented by the joint strip elements.

1This is shown by considering the resistance in a plane section of the element strip against a small
mutual rotation of the connected plates. Effects from the initial angle between the connected plates is
considered negligible. A plane stress distribution is assumed.

2This is shown by considering the resistance in a section of the element strip against a small in-plane
movement of the connected plates, perpendicular to the plate edge/joint.
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If the modelled joint material is isotropic, only two of the four stiffness parameters can be
correctly reproduced. The remaining two parameters will be implicitly given. In section
3.1 it was argued that the rotational and axial stiffness parameters (km and kn) were the
key parameters in determining the structural behaviour. By choosing a joint strip width
w, and using (3.1) and (3.2) we get for an isotropic joint

tj =

√
12

km

kn

(3.5)

and

Ej = km
6w

t3j
(3.6)

The resulting shear stiffness parameters are then implicitly given by (3.3), where Gj,12 =

Gj,13 = Ej

2
since Poisson’s ratio is set to zero.

If the joint strips are modelled with an orthotropic material, the in-plane and out-of plane
shear-moduli can be chosen independently of the E-modulus, so that kv,i and kv,o can be
reproduced explicitly. From (3.3) we get

Gj,12 = kv,i
w
2tj

Gj,13 = Gj,23 = kv,o
w
2tj

(3.7)

Comparative numerical tests have been run on two plate shell models with isotropic and
orthotropic joint strip material respectively (and otherwise identical properties), show a
maximum error of 5% on linear stresses, and 4% on the buckling load when using the
isotropic material3. A maximum error of 5% is considered negligible. The joint strips
are therefore modelled by an isotropic material in all analysis in this thesis. (Some
combinations of connection stiffness parameters may result in larger errors.)

The parameters listed in Table 3.2 can be used in a FE model to represent the connection
details given in Table 3.1 (page 26). w has been set to 10mm. ν is set to zero to model
a plane stress distribution (except for the glued butt joint, see below). tj and Ej are
determined using (3.5) and (3.6) respectively. (The pure glass joint is left out.) The joint
material is isotropic.

For the glued butt joint, the modelled joint strip resembles the actual connection detail,
and therefore the joint strip is given the stiffness parameters of the adhesive directly.

3 The plate shell models used for the comparison are FacC ImpA Nonuni and
FacC ImpA Nonuni Ort – both models are described in detail in Appendix A. These models
apply the glued-in plate connection detail (see Section 7.2, page 84). The isotropic joint material
models the shear stiffness parameters with relatively large errors. (The actual glued-in plate con-
nection: kv,i = 1kN/mm2, kv,o = 6kN/mm2. The isotropic representation of the connection yields:
kv,i = 2.5kN/mm2, kv,o = 2.5kN/mm2.) A non-uniform load is chosen as the load applied to the
structure, since a non-uniform load results in larger shear forces in the connections than a uniform load,
thereby “activating” the shear stiffness more. A linear calculation has been carried out, and the principal
stresses have been compared in 3 different locations; at a facet mid-point, at a facet edge mid-point,
and at a connection end-point. This comparison showed a maximum error of 5% on the stresses (the
largest error was located at a connection end-point). Also, a geometrically non-linear calculation has
been carried out on the two models. The buckling load of the models were compared; the difference was
4% (see also page 79).
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The joint strips are interrupted at a small distance (80-100mm) from the facet corners,
so that the corner areas are not connected (see the detail to the left in Figure 3.5). The
reason for this is discussed in Sections 4.2 and 5.1.

Connection detail w ν tj Ej

(mm) (−) (mm) (kN/mm2)

Glued-in line hinge 10 0 1.2 20.8

Glued-in plate (3mm aluminum) 10 0 6.15 4.07

Glued butt joint

– Eadhesive = 1kN/mm2 10 0.45 15 1.0

– Eadhesive = 2.5kN/mm2 10 0.45 15 2.5

Friction connection

– Klingersil 10 0 49 0.051

– EPDM 10 0 55 0.0018

Table 3.2: Values to be used in a FE model of a plate shell, to model the connection stiffness
parameters summarized in Table 3.1 (page 26). w and tj are defined in Figure 3.4.

Precision of the joint modelling technique

The precision of the joint modelling technique described above has been investigated by
running simple tests in Abaqus: two rectangular glass plates were connected by a joint
strip with a given width, thickness and material parameters, and via the plates, the joint
was subjected to uniform bending and uniform tension. These tests showed that the joint
strip provides the expected rotational and axial stiffness4. A coarse element mesh in the
joint, even with poorly shaped elements (i.e. with large side-length ratio), provides good
precision for the rotational and axial stiffness. For linear FE analysis, one element across
the joint width is therefore regarded as sufficient.

While the joint strips serve as a good representation of the connection stiffness parameters,
the sectional forces are calculated with less precision5. Especially near the ends of the
joint strips, the sectional forces in the joint strip may be too erratic to be of use. In this
case, the sectional forces in the glass edge can be used instead.

Naturally, the stresses in the joint strip elements should not be used, as the thickness of
the elements has no direct physical meaning.

4The following parameters were varied in the tests. Joint width (10mm and 20mm). Thickness and
E-modulus (chosen according to the six sets of parameters in Table 3.2). Number of element over the
width (1, 2 and 4 elements). Number of elements along the joint (10 and 100 elements). All the tests
showed errors of less than 2% on the expected stiffness.

5In a FE calculation, sectional forces are derived from the structural displacements/strains, and are
therefore always equally or less precise.
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3.2.2 Description of plate shell FE model

The plate shell structure shown in Figure 3.5 has been modelled in Abaqus, and used
for structural analysis repeatedly throughout the thesis. The model is referred to by the
name FacC. This model, and other models referred to in this thesis, are described in
detail in Appendix A.

Model FacC is a convex plate shell structure, where all facets are tangent planes to a
paraboloid of revolution. The structure’s height is 1.9 meters, and the maximum span
is 11.5 meters. The facets measure roughly 2 meters diagonally. The angle between
neighbouring facets is approximately 12 degrees.

The facets are all 15mm monolithic glass plates6, modelled by a linear elastic, isotropic
material with an E-modulus of 70GPa, and Poisson’s ratio of 0.22.

Figure 3.5: Plate shell model FacC, modelled in Abaqus.

The structure is supported against translations in all directions along the boundary.

In the performed linear analysis (see Chapters 4 and 5), the structure is loaded by two
load cases; a uniform load case, where a uniform pressure load of 1.0kN/m2 (directed
inwards) is acting on the entire structure, and a non-uniform load case, where the same
load is acting on half of the structure.

In the performed non-linear analysis (see Chapter 6), the structure is also loaded by both
a uniform load case and a non-uniform load case. The uniform load case is a uniform
distributed vertical load of 100kN/m2 (directed downwards). In the non-uniform load
case, the same load is acting on half of the structure, and the other half is loaded by a
vertical load of 25kN/m2 (directed downwards).

All structural parts are modelled with S4 shell elements, which is a general-purpose shell
element in Abaqus7. All calculations are linear, corresponding to small deformations,
unless something else is mentioned.

The model FacC in Figure 3.5 was produced by a student, T. Isgreen [31], before the
completion of the pyFormex script (see Section 2.2, page 18). The supported boundary
of the structure is not lying in one single plane8, and the joint strips are modelled a little

6For a discussion of the modelled glass thickness, see Section 8.2.1.
7S4 is a finite-membrane-strain element, which uses thin shell theory (i.e. ignoring out-of-plane shear

deformations) for small shell thickness, and thick shell theory (i.e. including out-of-plane shear defor-
mations) for larger shell thickness. Abaqus decides wether a thickness is small or large, compared to a
typical geometric length of the structure [2].

8Comparative studies indicate that this has negligible effect on the shell action in the structure, and
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differently than the modelling procedure described in Section 3.2.19. All other plate shell
models in the thesis have been generated using the pyFormex script, and therefore have
the supported boundary lying in one single plane, and joint strips defined as described in
Section 3.2.1. The effects of the above mentioned differences in modelling are considered
negligible.

3.2.3 Convergence of stresses

The discretization of real, continuous, structural parts into finite elements causes dis-
cretization errors. Generally, the smaller elements, the smaller discretization error [20].

To keep the number of nodes, and thereby the calculation time, as low as possible, we
wish to use finite elements which are as large as possible, while giving a stress response
of an adequate precision. Especially areas of large stress variations need a fine mesh (i.e.
small elements compared to the geometric dimensions) for the stress response to be well
described.

A model of a plate shell may have many areas with large stress variations – the corner
areas of each facet may be exposed to stress concentrations near the end of the joint strips.
However, the number of nodes will become far too large if all these stress concentrations
are to be analyzed with high accuracy. Instead, a relatively coarse mesh can be used in
general (8-12 elements per facet edge – see Figure 3.6, left), and a few facet corners can
be meshed with very small elements (Figure 3.6, right). A preliminary analysis with a
semi-fine mesh (Figure 3.6, middle) can identify which corners are most likely to have the
largest stress concentrations, and these corners can be meshed with small elements.

The procedure described above is possible, because even a very coarse mesh (of 6-8 ele-
ments per facet edge) has converged in terms of deformations10, with errors of less than
2%. The structural parts around an area with a fine mesh will therefore give the correct
structural resistance, even with a relatively coarse mesh.

In the present study, convergence of stresses has been verified in the studied models by
re-running a given analysis with a finer mesh in the area of focus, and checking that the
stresses have not changed more than 5% when the element side length is halved. In cases
where the stresses have not converged, this is explicitly mentioned in connection with the
referred results.

only influences the bending stresses to the extend that the lowest facets are smaller or larger, given an
alternative boundary cut.

9The joint strips in the model in Figure 3.5 are divided into two parts along the joint centre line,
and each half is in the same plane as the adjacent facet. Comparative studies indicate that this has
negligible effect on the resulting stiffness of the joint strip. The choice of joint parameters is made using
the modelling technique described in Section 3.2.1.

10This has been tested using the following plate shell models: FacC Plate, FacC hinge, FacF Plate
and FacStar (a description of the models can be found in Appendix A). A linear analysis has been run
on each model, using a relatively coarse mesh (6-8 elements per facet edge). Subsequently, a linear
analysis has been run on the same model, but with a relatively fine mesh (26-30 elements per facet edge).
The calculated deformations and rotations have then been compared for the two mesh densities. The
maximum difference found in any of these test was 1.5%.
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Printed using Abaqus/CAE on: Mon May 18 13:23:04 Romance Daylight Time 2009

Printed using Abaqus/CAE on: Mon May 18 13:34:21 Romance Daylight Time 2009

Printed using Abaqus/CAE on: Mon May 18 13:20:05 Romance Daylight Time 2009

Figure 3.6: Stress distribution in a detail of a model, for varying element sizes. Stress compo-
nent: Largest principal stress S1 in the upper surface. The stress contour scale is identical in
the three plots.
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Chapter 4

Shell action in plate shells

In this chapter and Chapter 5 the structural behaviour of plate shells is studied, assuming
small displacements. The present chapter focuses on shell action (i.e. in-plane forces) in
the structure, and Chapter 5 focuses on bending moments.

Section 4.1 sums up some information about shell structures in general.

In Section 4.2 the shell action in plate shell structures is studied. Initially, the different
structural effects are described physically, in order to provide the design engineer with an
intuitive understanding of the structure’s behaviour. Section 4.2.1 presents FE analysis
results of a plate shell model for 6 different sets of connection stiffness parameters. In
Section 4.2.2 these results, and results from other plate shell FE analysis, are compared to
the shell action in similar smooth shells. Finally, in Section 4.2.3 a method is suggested
for estimating in-plane forces in a plate shell. This method is developed to facilitate
an overview of the shell action in a plate shell structure in a preliminary design phase,
without the need for a full FE analysis of the structure.

4.1 Shell structures

Consider a curved structural surface. The surface is structurally effective if the curvature
and support conditions enables efficient in-plane forces to develop in the surface [49]. In
this case, the structural surface is termed a shell structure. The in-plane stiffness of a thin-
walled structural surface is many times greater than the bending stiffness, and therefore
the displacements of a shell structure are very small, given the amount of structural
material.

The thickness of a shell structure is typically determined by its buckling behaviour (see
Section 6.1), and in some cases also by bending moments near supports or free edges.

The direction and magnitude of forces in a shell structure depend on the structure’s shape
and support conditions. It is generally difficult – if not impossible – to predict the flow
of forces by hand calculations. For some simple shell shapes, such as spherical domes,
analytical expressions exist for a few simple load cases (see for example [49] and [52]), but
generally, FE analysis tools are necessary in order to determine the structural response
of a shell structure.
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4.2 In-plane forces in plate shell structures

A plate shell structure is a structural “hybrid”, carrying load by both shell action and
bending action. The overall structural behaviour of a plate shell structure shares an
important characteristic with a shell structure: the load is transformed into in-plane
forces, and is thereby carried to the supports by shell action. This entails a high structural
efficiency, which can be observed by comparing the shell displacements1 of a plate shell to
the displacements of an equivalent smooth shell2; the shell displacements of a plate shell
is typically just 2-3 times larger than the displacements of an equivalent smooth shell3. If
a vertical load on a given plate shell were to be taken to the supports by a single, plane
plate with the same span as the plate shell (i.e. same span, but pure bending action), the
plate thickness would have to be 40-60 times larger than the facet thickness, to have the
same deflection4.

Locally, the facets in a plate shell structure are subjected to plate bending, carrying the
load to the facet edges. At the facet edges, the load can be transformed into in-plane
forces, if the structure’s in-plane stiffness is sufficient. This transformation is statically
indeterminate, since the out-of-plane forces at the facet edges can also be balanced by out-
of-plane forces in the adjacent facets, corresponding to an overall bending behaviour of the
structure. This behaviour leads to much larger displacements in the structure. Section
5.2 describes this behaviour more into detail. In the following, the structure’s in-plane
stiffness is assumed to be so much larger than the overall bending stiffness that no overall
bending behaviour occurs, meaning that all out-of-plane shear forces are transformed into
in-plane forces at the facet edges.

The transformation of out-of-plane load into in-plane forces is described in Table 4.1.

1The term “shell displacements” refers to the displacement of the mid-point of a facet edge in the plate
shell. This area gives the best account of the structure’s shell action, as it is an area only slightly affected
by plate bending in the facets, or the tendency to uplift in the facet corners, as it will be explained later
on.

2“Equivalent smooth shell” in this context means that the shell geometry is similar, but smooth instead
of facetted, and that the thickness, material, support conditions and loads are the same.

3This comparison has been made on three plate shell models and their equivalent smooth shells. The
models are FacC plate, FacF plate and FacStar. The models FacC plate and FacF plate have
the same equivalent smooth shell; the model Smooth. The equivalent smooth shell to FacStar is the
model Smooth FacStar. The models are described in detail in Appendix A. The load is a uniform
distributed pressure load of 1kN/m2, directed inwards. The maximum deflection of the facet edge mid-
points in each plate shell is compared to the maximum deflection of the equivalent smooth shell. The
maximum deflections are: umax,FacC = 0.096mm, umax,Smooth = 0.044mm. umax,FacF = 0.13mm.
umax,FacStar = 0.059mm. umax,Smooth FacStar = 0.031mm.

4This can be realized by comparing the deflections stated in Footnote 3 to the linear deflections of a
circular plate, using the expression umax = (5+ν)qR4

64(1+ν)D , where q is the load, ν is Poisson’s ratio, R is the

plate radius and D is the flexural rigidity of the plate, D = Et3

12(1−ν2) . E is the E-modulus of the plate
material and t is the thickness. [52]
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Out-of-plane load on a facet causes bending
in the facet. Via plate bending, the load is
transferred to the facet edges as out-of-plane
shear. The bending moments are described
more into detail in Section 5.1. The principle
sketch to the right shows the load resultant
(red for action) and the out-of-plane shear
force resultant for each facet edge (blue for
reaction). (Illustration from [12].)

The out-of-plane shear forces at the facet
edges are transformed into in-plane forces
in the facet and the neighbouring facets5.
These in-plane forces are perpendicular to
the facet edges, and are referred to as
the axial in-plane forces. The out-of-plane
shear forces (and the balancing axial in-plane
forces) are not uniformly distributed along
the facet edges. (Illustration from [12].)

When the axial in-plane forces in a facet
are not in equilibrium, the resulting in-plane
force in the facet will be transferred to the
supporting plates by in-plane shear along
some of the edges6. A plate shell structure
can be shaped and designed so that these in-
plane shear forces are negligible for certain
loading situations, for example for the struc-
ture’s self weight.

When a facet is subjected to bending, the
facet edges will deform (curve), since the con-
nection detail and supporting plates have a
finite stiffness. As an edge deforms out of the
facet’s plane, the distance to the neighbour-
ing edge will change, because the plates have
a mutual angle (see the sketch to the right).
Since the connection detail has a stiffness
against this movement (strains perpendicular
to the longitudinal direction of the connec-
tion), in-plane forces will develop at the facet
edges, perpendicular to each edge, adding
to the axial in-plane forces described above.
The resultant of these forces (summed up
over an edge) is zero, but locally they can
become significant if the stiffness in the con-
nection detail is large.

 

 

w + Δw

w

Table 4.1: Transformation of external load into shell action in a plate shell.
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As it appears from Table 4.1, the in-plane forces are distributed in the facets (as opposed
to a triangulated lattice structure, where the shell action is constituted by concentrated
forces in the bars and nodes). At the facet edges of a plate shell facet, in-plane axial
forces (i.e. perpendicular to the edge) and in-plane shear forces are acting, balanced by
the external load and the neighbouring facets.

Because the facet corners have a tendency to lift, and the connection detail opposes this
movement, concentrated in-plane forces will develop in the corner areas, near the ends of
the connected part of an edge (referred to as a connection end). These in-plane stress
concentrations are reduced if the connections are shorter than the facet edges, leaving an
area in the corner zones unconnected and free to lift, see Figure 4.1. The reason for the
facet corners’ tendency to uplift, and the consequences in terms of the bending moments
in the facets, are studied in Section 5.1.

Possible stress
concentrations

@@I

���

Figure 4.1: Deformed plot of a vertex in a plate shell. In-plane stress concentrations will
develop at the ends of the connections.

The axial stiffness kn of the connection detail is defined in Section 3.1 (page 24). The
stress concentrations at the connection ends depend on the size of kn; larger kn-values
result in larger resistance against uplift of the corners, and thereby larger in-plane stress
concentrations.

4.2.1 Linear FE study of plate shell

The plate shell model in Figure 4.2, model FacC, has been analyzed in Abaqus for six
different sets of connection stiffness parameters. A detailed description of the model and
its six variants can be found in Appendix A. The six variants use the six connection details
in Table 3.1 (page 26).

The in-plane forces along the facet edge marked in Figure 4.2 are in focus. That particular
edge is chosen, because the largest in-plane forces in the structure for the applied load
occur there.

5This is only possible if the structure is adequately shaped and supported to work as a shell structure
6The relative size of the axial in-plane force resultants depends on a number of factors. If the angle

between the facet and the supporting plates is varying from plate to plate, the axial in-plane force
resultant will also vary (because of the force equilibrium shown elsewhere in the table (Table 4.1)). Also,
the axial force may vary because of the nature of the load. Finally, the relative size of the out-of-plane
shear force resultants (and thereby the axial in-plane forces) is statically indeterminate, and is therefore
dependent on the stiffness of the supporting plates, and the facet itself.
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Figure 4.2: In-plane forces are examined along the marked (red) glass edge. Model: FacC.

The structure is subjected to two different load cases. The first load
case (in the following termed the uniform load case) is a pressure
load of 1kN/m2 directed inwards on the entire structure. In the
second load case (the non-uniform load case), the same pressure
load is acting on only half of the structure – the loaded part is
marked in the image to the right.

The uniform load case is defined as a uniform pressure load because this results in similar
bending action in facets of similar size, regardless of their orientation in space. It has
been defined in this way, even though such a load is not physically realistic, because the
intention of the investigation is to study the various structural effects of the plate shell
system, rather than determine a specific degree of utilization. Likewise, the non-uniform
load case is defined so that it represents a asymmetric loading situation in general, and
is not a physically realistic load case.

In model FacC, the joint element strips representing the connection detail, are interrupted
100mm from the facet corners, so that the corner areas are not connected (see Figure 4.2).
Therefore, in the following graphs showing the in-plane forces along the marked glass edge,
the first 3 and last 3 force values are from nodes on the free part of the facet edge, near
the facet corners.

As described in Section 3.2.2, the maximum span of the shell is 11.5m, the height is 1.9m,
the facets measure roughly 2m in diameter, and the facet thickness is 15mm.

The axial and shear in-plane forces, n22 and n12, along the marked glass edge (see Figure
4.2) are plotted in the graphs in Figure 4.3. The orientation of n22 and n12 relative to
the studied edge is defined in Figure 3.1, page 24. The rotational stiffness km and axial
stiffness kn of the connection as well as the dimensionless factor km

knt2
are listed in the

graph legend in Figure 4.3.

The force resultants, N22 and N12, are found by integration of the in-plane forces along
the studied edge, and given in Table 4.2.
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 km  (kN) kn  (kN/mm2) km / (kn t2)
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 5 0.02 1.1 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-15

-10

-5

0

5

10

15
Uniform load

Position on glass edge from corner (m)

n 22
 (N

/m
m

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-15

-10

-5

0

5

10

15
Uniform load

Position on glass edge from corner (m)

n 12
 (N

/m
m

)

(a) In-plane forces for the uniform load case.
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(b) In-plane forces for the non-uniform load case.

Figure 4.3: Comparison of axial and shear in-plane forces along the glass edge marked in
Figure 4.2, for six different connection details.
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Uniform load Non-uniform load

Connection detail N22 N12 N22 N12

(kN) (kN) (kN) (kN)

Glued-in line hinge -6.6 -0.12 -6.5 3.9

Glued-in plate (3mm aluminum) -6.4 -0.10 -6.5 3.9

Glued butt joint

– Eadhesive = 1kN/mm2 -6.2 -0.06 -6.4 3.8

– Eadhesive = 2.5kN/mm2 -6.1 -0.06 -6.4 3.9

Friction connection

– Klingersil -6.0 -0.04 -6.1 3.4

– EPDM -5.7 -0.03 -5.4 2.2

Table 4.2: In-plane force resultants N22 and N12, found by integration of the in-plane forces
n22 and n12 plotted in Figure 4.3.

Discussion of the axial in-plane force, n22

When comparing n22 for the uniform and the non-uniform load case in Figure 4.3, the
distributions can be seen to be very alike. As argued in Table 4.1, n22 at a connection
depends on the load on the two connected facets. In this case, they are the same in the
two load cases, hence the similar n22 distribution.

As it appears from the n22 distributions in Figure 4.3, the size of the n22 peaks at the
connection ends is related to the size of the dimensionless factor km

knt2
; the smaller km

knt2
,

the larger n22 peak. As explained in Table 4.1, these peaks are caused by the connection
details’ resistance to curving of the facet edges. Larger kn values result in larger resistance
against curving, while larger km values results in less tendency for the facet edge to curve,
and thereby less resistance. Section 5.1 goes more into detail with this effect.

The axial in-plane force resultant N22 (see Table 4.2) is largely independent of the con-
nection stiffness parameters. Therefore, larger n22 peaks values at the connection ends
results in larger n22 forces at the middle of the edge.

The n22 peak forces in the two models with the largest peak values (the models with
the glued-in plate connection and the glued-in line hinge connection respectively) have
not converged fully. However, based on the experimental data on a physical glued-in plate
connection (referred to in Section 7.2), it is estimated that load dependent creep will cause
the large stress peaks to reduce somewhat. For this reason, in the present context the n22

peaks are merely recognized as being present for these types of connection designs, and
their actual value must be looked into by additional studies taking the creep into account.

The distance from the connection ends to the facet corners influences the n22 distribution.
This is not investigated into detail in this context, but work with various plate shell mod-
els has indicated that the n22 peak is reduced when the free edge length at the corners
is increased. This is also in concordance with the expectations, since a larger free edge
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length permits more movement of the facet corner, and thereby less restraint of the edge.
However, at the same time the force resultants must be transferred between the facets
over a smaller connected length, and this may affect the general stress level.

Discussion of the in-plane shear force, n12

In the uniform load case, the in-plane shear force resultant N12 is almost zero (see Table
4.2). There are relatively small n12 peaks at the connection ends, the value of which
depends on the connection stiffness parameters. These n12 peaks stem from the turning
of the large tension forces at the connection ends (see the n22 distribution in Figure 4.3
and the vector plot in Figure 4.4 below).

In the non-uniform load case, the in-plane shear force resultant N12 is not zero. The
value is about 60% of the axial in-plane force resultant N22. N12 is smaller for the model
with very low kn value – the EPDM friction connection – most likely because the lower
stiffness allows the shear forces to become more evenly distributed among the facets’ edges.

Illustration of the in-plane forces

Vector plots of principal in-plane forces in the model FacC adh1 (this is model FacC
with the glued butt joint with E = 1GPa) are shown in Figure 4.4 for the uniform load
case (left) and the non-uniform load case (right).

As the plots illustrate, in the uniform load case, where no resulting in-plane shear force
is present, the principal directions of the in-plane forces are parallel and perpendicular to
the edge line, except near the tension peaks at the connection end. The maximum and
minimum principal in-plane forces are almost equal (except near the the connection end),
meaning that the plate is under uniform compression in that area. The vector plot is
almost entirely symmetric around the mid-point of the edge line (not visible in the plot).

In the non-uniform load case, the principal axes form an angle of 45 degrees with the
edge line. This is because the state of almost uniform compression (where the principal
directions are easily turned) is superposed by pure shear (where the principal directions
are 45 degrees to the edge loaded by shear). The vector plot is no longer symmetric, but
repeats itself when rotated about the mid-point of the edge line (not visible in the plot).
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Uniform load Non-uniform load

Figure 4.4: Vector plots of in-plane forces near a corner of the studied facet.

4.2.2 Comparison to shell action in smooth shell

In this section, the results presented in Section 4.2.1 (model FacC), are compared to the
in-plane forces in the equivalent smooth shell structure, model Smooth. (For a definition
of the term “equivalent smooth shell” see footnote 2.) Also other plate shell models are
compared to their respective equivalent smooth shells in the present section.

Table 4.3 sums up some key values for the shell action in the plate shell edge, subject to
investigation in Section 4.2.1. These values can be compared to the results in Table 4.4,
which states the in-plane forces in the equivalent smooth shell, at a similar7 location on
the structure.

In Table 4.3, nij,nom is the nominal value of nij, found by dividing the force resultant Nij

by the edge length, 1.29m. nij,peak is the largest value of nij at the edge. nij,edge is the
value of nij at the edge mid-point.

In Table 4.4, n1,smooth and n2,smooth are the principal in-plane forces (maximum and
minimum respectively). n12,smooth is the maximum in-plane shear force, determined by
n12,smooth =

n1,smooth−n2,smooth

2
.

The following correlations can be deduced by comparing the results in Tables 4.3 and 4.4:

• The nominal axial in-plane force at the plate shell connection, n22,nom, is comparable
to the minimum principal force n2,smooth (i.e. largest compression) in the smooth
shell.

• The axial in-plane force at the edge mid-point, n22,edge, is 1.0 to 2.0 times larger
than the minimum principal force n2,smooth in the smooth shell. This ratio depends
on the peak-value, n22,peak.

7The principle stresses are found in model Smooth at a point with the same coordinates in the ground
plane as the mid-point of the investigated facet edge in model FacC.
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• For the uniform load case, where the in-plane shear force is negligible in the smooth
shell, the nominal in-plane shear force n12,nom in the plate shell is also negligible.

• For the non-uniform load case, the in-plane shear force is non-negligible in both the
smooth shell and the plate shell. The in-plane shear force at the facet edge mid-
point, n12,edge, is 1.4 to 2.4 times larger than the shear force in the smooth shell,
n12,smooth. This ratio is smallest for the model with very low kn value – the EPDM
friction connection – most likely because the lower stiffness allows the shear forces
to become more evenly distributed among the facets’ edges. n12,edge is independent
of the peak value, n12,peak (since the peaks in the two ends cancel each other).

n22,nom n22,peak n22,edge |n12,nom| |n12,peak| |n12,edge|
Connection detail

(N/mm) (N/mm) (N/mm) (N/mm) (N/mm) (N/mm)

Uniform load

Glued-in line hinge -5.1 13.1∗ -10.0 0.1 3.1∗ 0.1

Glued-in plate (3mm alu) -5.0 8.9∗ -9.0 0.1 2.4∗ 0.1

Glued butt joint

– Eadhesive = 1kN/mm2 -4.8 3.5 -8.3 0.1 1.0 0.1

– Eadhesive = 2.5kN/mm2 -4.7 3.4 -8.0 0.1 1.5 0.1

Friction connection

– Klingersil -4.7 –∗∗ -7.7 0.0 –∗∗ 0.1

– EPDM -4.4 –∗∗ -5.7 0.0 –∗∗ 0.1

Non-uniform load

Glued-in line hinge -5.0 13.5∗ -10.0 3.0 5.2∗ 3.4

Glued-in plate (3mm alu) -5.0 9.5∗ -9.2 3.0 4.9∗ 3.4

Glued butt joint

– Eadhesive = 1kN/mm2 -5.0 4.4 -8.6 2.9 4.4 3.3

– Eadhesive = 2.5kN/mm2 -5.0 4.6 -8.2 3.0 4.7 3.4

Friction connection

– Klingersil -4.7 –∗∗ -8.0 2.6 –∗∗ 3.3

– EPDM -4.1 –∗∗ -5.6 1.5 –∗∗ 2.0

Table 4.3: In-plane forces at a glass edge in model FacC. The glass edge is marked in Figure
4.2. The used terms are defined in the text above. ∗ This peak value has not converged in the
FE model (see page 41). ∗∗ No peak value.

44 Department of Civil Engineering - Technical University of Denmark



4.2 In-plane forces in plate shell structures Shell action in plate shells

n1,smooth n2,smooth |n12,smooth|
(N/mm) (N/mm) (N/mm)

Uniform load

-4.7 -5.0 0.2

Non-uniform load

-2.9 -5.7 1.4

Table 4.4: In-plane principal forces in model Smooth (equivalent smooth shell to model
FacC).

Figure 4.5 shows a contour plot of the minimum principal stress (i.e. largest compression)
in the surface mid-plane of model FacC plate (left) and the equivalent smooth shell,
model Smooth (right). The structures are loaded by the non-uniform load case (the left
half of each structure is loaded by 1kN/m2 pressure load, as described in Section 4.2.1).
Since the force peaks at the connection ends are not in focus in this plot, the contour
scale is adjusted so that only compression forces are shown. The scale is identical in the
two plots.

The stresses in the smooth shell can generally be recognized in the middle of the facets
in the plate shell. Stresses at the connections are larger, partly because of the developed
stress peaks, partly because of the shortened load transfer length, and partly because the
stresses are forced to follow certain “paths” (i.e. have certain orientations at the edges –
this is studied more closely later in this section). At some edges in the loaded (left) half
of the structure, the n22 force is superposed by in-plane shear, adding to the principal
stress, and forming the dark blue “compression bands” visible in the plot. In the left part
of the structure there is no out-of-plane load on the facets, and therefore there are no
n22 forces at the connections. The only in-plane forces that are transferred across these
connections are n12 forces.

If a given edge in the plate shell is parallel/perpendicular to a principal force in the smooth
shell, that edge will not transfer any n12 forces.
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Figure 4.5: Left: Model FacC plate. Right: the equivalent smooth shell, model Smooth.
Minimum principal stress (i.e. largest compression) in the surface mid-plane (units: N/m2 =
10−6N/mm2). The contour scale is identical in the two plots.

Figure 4.6: Model FacF plate. Minimum (left) and maximum (right) principal stress in the
surface mid-plane (units: N/m2 = 10−6N/mm2).

Figure 4.7: Model FacF plate. Minimum (left) and maximum (right) principal stress in the
surface mid-plane (units: N/m2 = 10−6N/mm2). The load is rotated 18 degrees relative to the
load case in Figure 4.6.
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Figures 4.6 and 4.7 show similar plots for model FacF plate – a plate shell structure
with the same “average” geometry as model FacC plate in Figure 4.5. The load is also
the same, as well as the connection detail and boundary conditions. Only the faceting
differs; the principal pattern is the same (geodesic type), but the facets are smaller in
model FacF plate. The angle between neighbouring facets is approximately 9 degrees –
in model FacC plate the angle is about 12 degrees. (Model FacF plate is described in
detail in Appendix A.) The contour scale for the minimum principal stress is the same
in Figures 4.5, 4.6 and 4.7. The “compression bands” and “tension bands” are visible on
both the left and right half of the structures.

A tabulated overview of the in-plane forces at a chosen edge in model FacF plate, and
the in-plane forces in the equivalent smooth shell, can be found in Appendix B.

The shell action in a different plate shell layout, model FacStar, is illustrated in Figure
4.8, along with the shell action in the equivalent smooth shell, model FacStar Smooth.
The smooth shell shape is a section of a sphere. The size of the facets is more uneven
than in the examples above. The angle between neighbouring facets is approximately 18
degrees. The connection detail is the same as above (the glued-in plate connection). The
maximum span is 10.0m, the maximum height is 3.3m, and the facet thickness is 15mm.
The load is a distributed vertical load of 1kN/m2, acting on the left half of the structure.
A detailed description of the two models can be found in Appendix A.

Figure 4.8e and 4.8f are vector plots of the principal stresses in the surface mid-plane of
the areas marked in 4.8c and 4.8d. The presence of shear at the connections is evident
from the angle (about 45 degrees) between the principal stresses and the connection lines;
the orientation of the connection lines guides the orientation of the principal stresses. This
increases the stress level, since the stress flow becomes less optimal than in the smooth
shell. Also, as the flow of stresses is interrupted at the corner areas, the stress level at the
middle parts of the connections increase, since the same force resultant must pass over a
smaller length. In the middle of the facets, the stress flow is very similar to the smooth
shell.

A tabulated overview of the in-plane forces at a chosen edge in model FacStar, and the
in-plane forces in the equivalent smooth shell, can be found in Appendix B.
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(a) Plate shell geometry (b) Equivalent smooth shell geometry

(c) Minimum principal stress (i.e.
largest compression) in the surface
mid-plane.

(d) Minimum principal stress in the surface
mid-plane.

(e) Vector plot of mid-plane principal stresses
at the area marked in (c).

(f) Vector plot of mid-plane principal stresses
at the area marked in (d). The vector scaling
is different than the plot in (e).

Figure 4.8: Plate shell model FacStar and its equivalent smooth shell, model Fac-
Star Smooth. The contour scale is the same in (c) and (d) (units: N/m2 = 10−6N/mm2).
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4.2.3 Estimating in-plane forces in a plate shell

Based on the investigations in the previous sections, a simple method for estimating the
in-plane forces in a plate shell is suggested in this section.

It may be a very time consuming task to generate a FE model of a plate shell structure, if
a suitable generation tool – for example the pyFormex script presented in Section 2.2 – is
not directly applicable (or available). It will therefore be of practical value to be able to
estimate the stresses in a plate shell by simple approximate calculations, at early stages
of the design. This section deals with how to estimate the in-plane forces in plate shell
facets. Section 5.1.3 focuses on estimating the bending moments.

Note the basis for the estimation method: results from the models FacC, FacF and
FacStar have been used to develop the method. For plate shells with a different overall
shape and/or other geometric parameters and stiffness characteristics, the estimation
method may be unsuitable8.

The estimation method should only be used for preliminary design.

As we have seen, the in-plane forces in the analyzed plate shells are closely related to the
in-plane forces in their equivalent smooth shells. Therefore, when we wish to estimate
the in-plane forces in a given plate shell, we can start by determining the in-plane forces
in its equivalent smooth shell. (For a definition of the term “equivalent smooth shell”
see footnote 2.) A smooth shell structure is relatively simple to model and analyse in
suitable FE software9. When the in-plane force distribution is known in the smooth shell,
the in-plane forces in the plate shell connections at a given location may be estimated as
follows:

n22,peak = −n2,smooth · k1 where k1 ≈ 0− 5
n22,edge = n2,smooth · k2 where k2 ≈ 1.0− 2.1

|n12,peak| = |n12,edge|+ |n22,peak| · k3 where k3 ≈ 0.1− 0.3
|n12,edge| = |n12,smooth| · k4 where k4 ≈ 0.5− 4.0

(4.1)

In (4.1) n22,peak and n12,peak are the peak values of the axial and shear in-plane forces at
the plate shell connection. n22,edge and n12,edge are the axial and shear in-plane force, at
the mid-point of a connection in the plate shell. n2,smooth and n12,smooth are the in-plane
minimum principal force and maximum shear force in the equivalent smooth shell, at a
similar location on the structure. The stress terms in (4.1) are illustrated in Figure 4.9.

k1 − k4 are factors, expressing the correlation between stresses in the plate shell and
its equivalent smooth shell. The values have been determined using results from the
investigations in Sections 4.2.1 and 4.2.2, by determining the maximum and minimum
ratio between the observed stresses in the plate shells and the principle stresses in the

8The author expects other convex shell shapes to show a similar correlation between the behaviour
of the plate shell and its smooth equivalent, but this should be looked more closely into by additional
research.

9Also, for some simple smooth shell shapes with some simple load cases, analytical expressions exist
for determining the in-plane stresses, see for example [49] and [52]. This method of determining the forces
is naturally also applicable.
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equivalent smooth shells. (The used results are tabulated in Appendix B.)

n22,edge

n22,peak

n12,edge

n12,peak

n2,smooth

n2,smooth
n1,smooth

n1,smooth

Figure 4.9: Illustration of the terms in (4.1).

The following discussion sums up the observed tendencies in the investigations in Sections
4.2.1 and 4.2.2, to help the designer estimate suitable values for k1 − k4 in a given design
situation.

k1 The n22 peak value at a connection end, n22,peak, mainly depends on two effects:
the facet corners’ tendency to lift, and the resistance in the connections against this
movement. The facet corners’ tendency to lift depends on the flexural stiffness of
the plate and the rotational stiffness of the connection km. The resistance in the
connections against lift of the facet corners depends on the axial stiffness of the
connection kn, and the angle between the facets. A combination of a large kn-value
and a low km-value may result in large n22,peak-values, depending on the stiffness of
the plates, and the angle between the facets. Further studies must look into the size
of n22,peak for other plate shell layouts than the ones tested in this thesis – until such
results are available, the designer should estimate k1 in (4.1) based on an assessment
of the balance between the corner lift tendency and resistance, while contemplating
the results shown in this work.

k2 The larger n22 peak value at the connection ends (n22,peak), the larger n22 at the
facet edge middle (n22,edge). Therefore, if k1 is large, k2 should be chosen in the high
end of the range given in (4.1).

k3 The shear force peak, n12,peak, is a consequence of the axial force peak, n22,peak – a
high n22,peak results in a high n12,peak. Therefore, if k1 is large, k3 should be chosen
in the high end of the range given in (4.1).

k4 The value of n12,edge – and thereby k4 – depends on the orientation of the non-
uniform part of the load, relative to the faceting pattern. It is recommended to use
the maximum k4 value, k4 = 4.
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Chapter 5

Bending moments in plate shells

In this chapter and Chapter 4 the structural behaviour of plate shells is studied, assuming
small displacements. As stated in Section 4.2, a plate shell structure is a structural “hy-
brid”, carrying load by both shell action and bending action. In Chapter 4 shell action
was studied, and the present chapter focuses on bending action in the structure.

Locally, the facets in a plate shell structure are subjected to plate bending, carrying the
load to the facet edges as described in Section 4.2 (see for example Table 4.1, page 37).
At the facet edges, the load is transformed into shell action, if the in-plane stiffness of the
structure is sufficient. Section 5.1 describes this local plate bending behaviour, and how
the local bending behaviour varies with the connection stiffness parameters.

If the structure’s in-plane stiffness is low or non-existing, the out-of-plane forces at the
facet edges can also be balanced by out-of-plane forces in the adjacent facets, correspond-
ing to an overall bending behaviour of the structure. This behaviour leads to much larger
displacements in the structure. Section 5.2 focuses on such a non-local bending behaviour.

5.1 Local plate bending in plate shell facets

This section focuses on local bending behaviour in plate shell facets. The structure’s
in-plane stiffness is assumed to be so much larger than the overall bending stiffness that
no overall bending behaviour occurs, meaning that all out-of-plane shear forces are trans-
formed into in-plane forces at the facet edges.

The largest local bending moment in a plate shell facet occurs in one of three possible
locations (or nearby): the facet centre, an edge mid-point, or at a connection end. These
three types of areas are indicated in Figure 5.1.
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Figure 5.1: Deformed plot of plate shell, showing three types of areas on a facet where bending
moments are in focus.

Section 5.1.1 describes the bending behaviour by first focusing on the behaviour of a
polygonal plate, and then extending this description to the bending behaviour of a plate
shell facet, by adjusting the boundary conditions. In Section 5.1.2, the effects of the
local bending behaviour in plate shell facets is illustrated numerically, using FE analysis
of plate shells. Finally, in Section 5.1.3 a method is suggested for estimating the local
bending moments in a plate shell.

The relevant bending moment terms and their orientation are illustrated in Figure 5.2.
As was the case in the study of in-plane forces, the terms refer to local directions, relative
to the regarded edge.

2
1

m12

m12

m12m12

m22m22

m11

m11

Figure 5.2: Local orientation of bending moment terms at a facet edge.

5.1.1 Plate bending in a polygonal plate

To describe the plate bending behaviour of a plate shell facet, we will first focus on a
simply supported plate of convex polygonal shape1. When it is loaded by a uniformly
distributed out-of-plane load, the plate centre will deflect in a shape that resembles the
deflection of a circular plate as much as possible, as this is the energetically most efficient.
If the translational support has a finite stiffness, the plate edges will therefore tend to
curve, and the plate corners will tend to lift. If the translational support is of infinite
stiffness (i.e. the edges are simply supported), the edges are forced to remain straight when
the plate is loaded; torsional bending moments will develop at the edges, and a bending

1A convex polygonal plate has straight edges, and all corner angles are less than 180 degrees. In this
thesis, only convex facets are considered, see the introduction to Chapter 2, and footnote 2 in Chapter 2.
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moment singularity will occur in all corners with an angle of more than 90 degrees [42].2

Now consider the same plate, but supported against rotations as well as translations along
the boundary (clamped). In such a plate, no singularity will develop, regardless of the
size of the corner angles3.

In a plate shell facet (which is a plane, polygonal, convex plate like the plates described
above), the boundary is supported by supports of finite stiffness, translational as well
as rotational. The above mentioned singularity will therefore be reduced to a bending
moment concentration, and a concentrated out-of-plane reaction force in the corner4. Be-
cause of the plate’s support conditions, concentrated in-plane forces will develop in the
facet corners as described in Section 4.2 (page 38). This in-plane stress concentration can
be significantly reduced by shortening the connections, so that the connected lengths are
shorter than the facet edges, and a part of each facet corner is free to lift. (This is for
example illustrated in Figure 3.5, page 31.)

As described in Section 3.1 (page 25), the rotational stiffness of the connection detail, km,
ties the bending moment m22 in the connection to the plate edge rotation (see Figure 3.1,
page 24). If km is small, the plates will act as if connected to each other by a line hinge,
and almost no bending moment will be transferred between the plates. If km is large,
a certain amount of bending moment will be transferred through the connection. This
means that the ratio between the bending moment at the facet centre and the bending
moment at the facet edges depends on the value of km.

To illustrate the effects discussed in this section, Figure 5.3 shows deformed plots of a

2This footnote gives an explanation for the bending moment singularity in a simply supported plate
corner of more than a 90 degree angle. According to the boundary conditions we have m22 = 0 along
the boundary. The constitutive conditions for plate bending states that m11 = D(κ11 + νκ22), m22 =
D(κ22 + νκ11) and m12 = D(1 − ν)κ12. (Here D is the flexural rigidity of the plate D = Et3

12(1−ν2) , κ11

and κ22 are curvature in the 1- and 2-direction respectively, κ12 is the twist, ν is Poisson’s ratio, E is
the plate material’s E-modulus and t is the plate thickness.) Therefore we have also m11 = 0 along
the boundary. Since m11 = m22 = 0 at the boundary, only the torsional moment m12 6= 0. In the
plate corner, where torsional bending moments from two edges meet, a singularity will arise, since the
existence of pure torsional bending moments from two sides is inconsistent, when the angle at which they
meet is not 90 degrees; the principal directions (for the curvature and bending moments) are governed
by the supported edges, and in the corner they are contradictory. In a 90 degree corner (for example in
a rectangular plate) the singularity will not arise – the torsional bending moment will be in equilibrium
with a finite concentrated reaction force in the corner, in accordance with ordinary Kirchhoff-Love plate
theory [52]. This concentrated force is infinitely large when the corner angle is larger than 90 degrees
[42]. The singularity also results in infinitely large bending moments at the corner.

3This footnote gives an explanation for the absence of bending moment singularity in a plate corner,
regardless of the corner angle, when the plate boundary is clamped. According to the boundary conditions
we have m22 6= 0 along the boundary. We then have m11 = −νm22, according to the constitutive
conditions (see footnote 2). The curvature is defined as κ11 = −w,11, κ22 = −w,22 and κ12 = −w,12.
Since w,2 = 0 along each edge, we have w,12 = 0 and thereby m12 = 0 along each edge. Since there is no
torsional bending moments along the boundary, there are no concentrated reaction forces in the corners,
and hence no singularities [42].

4The singularity disappears because the plade edges are allowed to curve, thereby permitting coinciding
principal directions (for the curvature and bending moments) in the corners.
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facet from the plate shell model FacC. The deformed facet is shown from four different
variants of the model, each with a different connection detail (see Appendix A). The
deformation scale factor is the same in the four plots.

km = 5kN , kn = 0.02kN/mm2.
(a) Friction connection, EPDM.

km = 0.6kN , kn = 5kN/mm2.
(b) Glued-in line hinge.

km = 71kN , kn = 4kN/mm2.
(c) Glued butt joint, Eadh. = 1kN/mm2.

km = 16kN , kn = 5kN/mm2.
(d) Glued-in plate.

Figure 5.3: Deformed facet from the plate shell models FacC EPDM, FacC hinge,
FacC adh1 and FacC plate respectively.

The following details can be observed in Figure 5.3:

• When km is relatively small and kn is very small (Figure 5.3a), the facet edges curve
and the corners lift.

• When km is almost zero and kn is large (Figure 5.3b), the edges are only slightly
curved, (even though km is smaller than in 5.3a), because the large kn-value re-
strains the edges against curving. Where the edges are free of the connection detail,
the corners tend to lift. This may in some cases result in significant m11 bending
moments at the connection ends.

• When km is very large and kn is large (Figure 5.3c), the edges are almost straight
since the plate edge is almost clamped (minimizing torsional bending moments along
the edge). For the same reason, the deflection of the plate centre is significantly
smaller than in 5.3b and 5.3a.

• When km is moderately large and kn is large (Figure 5.3d), the plate edges curve
slightly, but the tendency to corner uplift is smaller than in 5.3b. This is because
km is larger in 5.3d than in 5.3b.

Depending on the connection stiffness parameters, the maximum bending moment in
a plate shell facet will occur either in the facet centre, near an edge mid-point or at a
connection end (as indicated in Figure 5.1). If km is large compared to the facet’s bending
stiffness (see Section 5.1.3, page 57) the maximum bending moment may occur at the facet
edges. If km is small, the maximum bending moment will most likely occur at the facet
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centre. As it will be shown by numerical examples in Section 5.1.2, for certain conditions
(small km, large kn, relatively large facets and relatively large angles between the facets)
the largest bending moment may occur at a connection end.

5.1.2 Linear FE study of plate shell

In Section 4.2.1 (page 38) the in-plane forces in six variants of model FacC were studied
at a chosen facet edge. In the present section, the same series of analysis is used to study
the bending moments at the same edge in FacC. Only one of the two load cases studied
in Section 4.2.1 is referred to in the present section, namely the uniform load case; the
bending response is almost identical for the non-uniform load case5, and it is therefore
left out.

The bending moments m11 and m22 along the studied edge are plotted in Figure 5.4. (The
bending moment terms are illustrated in Figure 5.2, and the studied edge is marked in
Figure 4.2, page 39.)

 
 
 

 km  (kN) kn  (kN/mm2) km / (kn t2)
 0.6 5 0.00053 

 16 5 0.014 

 71 3.8 0.083 
176 9.4 0.083 

 100 0.5 0.89 
 5 0.02 1.1 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-50

0

50

100

150

200
Uniform load

Position on glass edge from corner (m)

m
11

 (N
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-150

-100

-50

0

50
Uniform load

Position on glass edge from corner (m)

m
22

 (N
)

Figure 5.4: Bending response in the plate shell FE model described in Section 4.2.1, for the
uniform load case.

The m22 bending moment (Figure 5.4, right) generally increases for connection details
with larger rotational stiffness km. km = 0, corresponding to a hinged connection, will

5Local bending moments at a connection are almost entirely dependent of the local loading situation
on the two connected facets. In the uniform load-case and the non-uniform load case referred to here and
in Section 4.2.1, the external load on the two facets connected by the studied connection, is the same.
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result in m22 ≈ 0, and for km →∞, m22 will correspond to the facets being continuously
connected. The m22 plot in Figure 5.4 shows that m22 has a small positive value6 along
the edge of the hinged connection. This is because the bending moment is taken from
the integration points of the edge elements, and thereby at a small distance from the
actual facet edge. The smaller elements along the edge, the smaller distance between the
integration points and the edge, and hence the smaller the positive m22-value for a hinged
connection. This “error” repeats itself for the other connection details also, but is only
directly readable for the hinged connection, where m22 is known at the edge.

The m11 bending moment (Figure 5.4, left) does not load the connection detail directly
– stresses from this bending term are internal in the facet. Like the n22 peak values, the
m11 peak values increases for decreasing value of the dimensionless factor km

knt2
, except for

model with the EPDM friction connection which has a very low axial stiffness kn. For
that model, the m11 distribution is smooth along the edge. m11 is primarily tied to the
curvature of the edge7, and for a low kn the edge curves smoothly.

For the connection details with larger kn-values, the facet edges are more restrained from
curving. At the connection ends, the facet corners can lift freely, causing a large local
curvature of the edge in this area, and hence a large local m11 bending moment. Gener-
ally, the larger km the smaller local m11 at the connection ends, because of the reduced
tendency to corner uplift. For connection details with large km and large kn, m11 has
negative values along the edge, because m11 ≈ νm22 when the edge curvature is almost
zero7.

Table 5.1 lists the maximum bending moment near the middle of the studied edge
(m22,edge), near the edge’s connection ends (m11,conn.end), and near the middle of the facet
(mfac.middle). For all combinations of connection stiffness parameters, the maximum bend-
ing moment will occur in one of these three types of locations on the structure.

As it appears from the table, the maximum bending moment does not occur near a
connection end for any of the tested combinations of connection stiffness parameters. Of
the six analyzed connection variants, the bending moment at a connection end is largest
for the glued-in hinge connection, as expected from the discussion in Section 5.1.1. The
analyzed structure is a relatively extreme case, combining a large kn-value and km ≈ 0
with a geometry with large facets and a relatively large angle between the facets.

6As it appears from the definition of the terms (Figure 5.2), a positive bending moment corresponds
to a “sagging moment”, with compression in the upper surface, and tension in the lower surface of the
plate.

7See the constitutive conditions in footnote 2.

56 Department of Civil Engineering - Technical University of Denmark



5.1 Local plate bending in plate shell facets Bending moments in plate shells

Connection detail m22,edge m11,conn.end mfac.middle

(N) (N) (N)

Glued-in line hinge 12 194 218

Glued-in plate (3mm aluminum) -46 135 183

Glued butt joint

– Eadhesive = 1kN/mm2 -110 69 140

– Eadhesive = 2.5kN/mm2 -138 43 120

Friction connection

– Klingersil -120 35 135

– EPDM -12 93 232

Table 5.1: Comparison of maximum bending moments at the studied edge in model FacC.

5.1.3 Estimating bending moments in plate shell facets

Based on the investigations in the previous sections, a simple method of estimating the
largest bending moments in a plate shell facet is developed, and presented in this section.
The method should only be used for preliminary design of convex plate shells. In Section
4.2.3 (page 49) a similar method is presented for the approximation of in-plane forces in
plate shell facets.

In most cases, the largest bending moment in a plate shell facet will occur in the facet
centre, or near the middle of one of the facet’s edges8. The bending moment in these
two locations can be estimated by first determining the bending moments in a circular
plate, supported by the same rotational stiffness, and then adjust the results to account
for the polygonal geometry and the free corners. The following estimation method uses
this approach.

Circular plate

Figure 5.5 shows a section through the centre of a circular plate, loaded by a uniform
out-of-plane load, for three different support conditions: simply supported edge (left),
clamped edge (middle), and the edge fully supported against translations and supported
against rotations by a finite stiffness (right). The diagrams in the bottom of the figure
show the corresponding bending moment (mr in polar coordinates).

By use of ordinary Kirchhoff-Love plate bending theory for small displacements [52],
expressions for the maximum plate deflection u, the bending moment at the plate edge
medge (orientated like m22 in Figure 5.2), the bending moment at the plate middle mmid,
and the rotation of the plate edge ϕ, can be specified for the simply supported plate and
the clamped plate respectively, see Table 5.2.

8As discussed on page 56, for structures with large facets, large angles between the facets, hinged
connections (km ≈ 0), and a large axial stiffness in the connections, the bending moment at a connection
end may exceed the maximum bending moment at the facet middle.
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Figure 5.5: Section through centre of a circular plate, for three different support conditions.
Top sketches: displacements. Bottom sketches: bending moment mr. Illustration from [39].

Circular plate

Edges simply supported Edges clamped

us = 5+ν
1+ν

1
1024

qd4

D
uc = 1

1024
qd4

D

medge,s = 0 medge,c = − 1
32

qd2

mmid,s = 1
64

(3 + ν)qd2 mmid,c = 1
64

(1 + ν)qd2

ϕs = qd3

64D(1+ν)
ϕc = 0

Table 5.2: Analytical expressions for u, medge, mmid and ϕ for a circular plate.

In Table 5.2, the plate is loaded by a uniform load q, the plate diameter is d, the plate
material is isotropic and linear elastic with Young’s modulus E and Poisson’s ratio ν.
The plate thickness is t. D = Et3

12(1−ν2)
. Index s is used for the s imply supported plate,

and index c is used for the clamped plate.

When the plate edge is supported by a finite rotational stiffness, the value of u, medge,
mmid and ϕ will lie between the extreme values corresponding to a simply supported
plate (a rotational stiffness of zero) and a clamped plate (infinite rotational stiffness).
We wish to find the solution where the forces in the plate are in equilibrium, for a given
linear rotational spring stiffness, km. The problem can be described by the following three
correlations:

1. The clamped circular plate is subject to the same moment distribution as the simply
supported plate, superposed by a uniform bending moment (uniform mr in polar coordi-
nates). The value of this superposing bending moment is just sufficient to cancel the edge
rotation of the simply supported plate. If the circular plate’s own resistance against edge
rotation from a uniform moment acting at its edge is denoted kp we have the correlation:

medge,c = kp(ϕs − 0) (5.1)

2. For the circular plate supported by a linear rotational stiffness km, the reaction bending
moment at the edge medge is

medge = kmϕ (5.2)

where ϕ is the rotation of the plate edge. The bending moment and rotation angle in
(5.2), are not denoted with an index s or c, since it is a solution lying between the two
extremes – medge,s < medge < medge,c and ϕc < ϕ < ϕs.
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3. For the circular plate supported by a linear rotational stiffness km, the reaction bending
moment is balanced by the bending compliance of the plate:

medge = kmϕ = kp(ϕs − ϕ) (5.3)

(5.1) and (5.3) yield the following correlation:

medge = α ·medge,c (5.4)

where a rotational restraint factor α has been introduced, defined by

α =
km

km + kp

, α ∈ [0; 1[ (5.5)

When α = 0 there is no rotational restraint, corresponding to a simple support (hinged).
When α ≈ 1 the plate edge is fully clamped. α increases (thereby increasing the bending
moment in the support) when

• the rotational support stiffness km increases

• the plate diameter d increases

• the plate thickness t decreases

The first term is self-evident. The second and third term state that the more flexible the
plate is, the larger influence the connection stiffness will have.

The plate’s stiffness against edge rotation from a uniform bending moment acting at its
edge, kp, is determined by (see for example [52]):

kp =
medge,c

ϕs

=
Et3

6d(1− ν)
(5.6)

We have now seen that the bending moment at the support of a circular plate with
rotational spring support varies linearly with α. Also the bending moment at the plate
middle mmid, the plate edge rotation ϕ and the deflection of the plate u varies linearly
with α. We have

u = (1− α)us + αuc (5.7)

medge = αmedge,c (5.8)

mmid = (1− α)mmid,s + αmmid,c (5.9)

ϕ = (1− α)ϕs (5.10)
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Polygonal facet in plate shell

We now wish to adjust the expressions found above for the circular plate, so that they yield
approximate values for the bending behaviour of a plate shell facet. The adjustment will
be done so that the expressions estimate the bending moment in the facet middle mmid,
the maximum bending moment along the facet’s edges medge, the out-of-plane deflection
of the facet (relative to its edge mid-points) u and the maximum rotation of the facet’s
edges ϕ.

Naturally, the bending behaviour of a plate shell facet differs somewhat from that of a
circular plate. The differences are caused by the different geometry, the un-supported
corner zones and the finite translational support stiffness. Even so, a calibration process,
where the expressions for the circular plate are adjusted by a factor, has resulted in
expressions of sufficient precision for a preliminary design.

Table 5.3 shows the adjusted expressions for mmid, medge, u and ϕ in a plate shell facet,
in the two extreme situations corresponding to km = 0 and km →∞ respectively.

Plate shell facet

with 4, 6 or more edges (for pentagons: see below)

Edges hinged (km = 0) Edges clamped (km →∞)

us = 1.1 · 5+ν
1+ν

1
1024

qd4

D
uc = 1.1 · 1

1024
qd4

D

medge,s = 0 medge,c = −1.4 · 1
32

qd2

mmid,s = 0.9 · 1
64

(3 + ν)qd2 mmid,c = 1.3 · 1
64

(1 + ν)qd2

ϕs = 1.1 · qd3

64D(1+ν)
ϕc = 0

Table 5.3: Approximate expressions for u, medge, mmid and ϕ for a plate shell facet, for km = 0
and km →∞ respectively.

In Table 5.3 E and ν are Young’s modulus and Poisson’s ratio for the isotropic, linear
elastic facet material, and t is the facet thickness. q is the uniform load perpendicular to
the facet. D = Et3

12(1−ν2)
.

d is a measure for the mean facet diameter, determined as the mean value of the distance
between opposing edge mid-points. For a pentagon, d is defined as the mean value of
the distance between each edge mid-point and its opposing corner, multiplied by a factor
0.91. For polygons with a larger, uneven number of edges, d is defined in the same way
as for the pentagon, but with no additional factor.

When the terms in Table 5.3 have been calculated, and α is determined by (5.5), mmid,
medge, u and ϕ can be found by using (5.7), (5.8), (5.9) and (5.10) respectively.

Precision of the estimated values

As explained earlier, the approximate expressions above should only be used for prelimi-
nary design of plate shells.

The adjustment of the approximate expressions has been performed by comparing FE
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results of bending moments, deflections and rotations from 16 facets from analyzed plate
shell models, to the same values determined using the approximate expressions. This
comparison is documented in Appendix C. The deviations found between FE results and
the estimated values are within the following margins:

medge: -10% to 20%
mmid: -10% to 20%
u: -10% to 15%
ϕ: -20% to 30%

A positive error means that the estimated value is higher than the FE result.

The approximate expressions assume a similar edge rotation of the regarded facet and its
surrounding facets. When this is not the case, for example if the size of the facets varies
significantly, this will affect the precision of the estimate, and the deviations may exceed
the values above.

For facets of irregular shape, the approximate expressions yield more conservative results
than if the facet had been of regular shape (all other things being equal).

The ratio between connected edge length and total edge length is in the range of 0.75 and
0.85 for all the facets used in the adjustment of the expressions. The applicability of the
expressions has not been tested for ratios outside this range.

5.2 Other bending moments in plate shells

As discussed earlier, when a facet in a plate shell structure is subjected to local bending by
an external out-of-plane load, the facet carries the load to its edges, where it is transformed
into shell action; the out-of-plane shear forces at the facet edges are balanced by in-
plane forces in the facet itself, and in the neighbouring facets. However, the out-of-
plane shear forces at the facet edges can also be balanced by out-of-plane shear forces
in the neighbouring facets. This corresponds to a “non-local” bending action, where the
structure carries the load to the supports by overall plate bending.

Since the structure is statically indeterminate (here meaning that it can carry the load
by both shell action and non-local plate bending), the ratio between the two modes of
functioning in a given plate shell structure is determined by the structure’s stiffness.

Deformations from bending action are generally much larger than deformations from shell
action. Therefore, if the structure is shaped and supported so that it can carry the load
effectively by shell action, the deformations will be small, and the non-local bending
action will be negligible. If, on the other hand, the structure for some reason has large
deformations, the non-local bending action will become active.

• If the plate shell (or a part of it) is shaped so that shell action involves relatively
large deformations, non-local bending moments may become significant. This may
be the case in areas where the structure has low curvature (small angles between
neighbouring facets), or in the area near a free edge.
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• If the plate shell is not sufficiently supported to develop in-plane forces, the structure
will carry the load entirely by non-local plate bending [9]. This will result in large
deformations. Such a case is illustrated in Figure 5.6. (The figure is presented more
into detail further down in the text.)

The arguments above can also be used for a smooth shell, which like the plate shell is stat-
ically indeterminate, in the sense that it can carry load by both shell action and bending.
The ratio between the two modes of functioning in a smooth shell structure is determined
by the structure’s stiffness and support conditions.

In a plate shell where non-local bending moments occur, these will primarily be in the
form of torsional moments m12 at the connections. m22 at the connections will result in
relatively large deformations, because of the reduced stiffness against rotations in the con-
nection lines, whereas m12 is unaffected by this compliance. This appears from Figure 5.6,
where two plate shell structures are compared (models FacF plate and FacF 3points).
The structures are identical, apart from their boundary conditions. The structure to the
left is supported against translations along its entire boundary. The structure to the right
is supported in 3 points, as indicated in the figure. The difference in scale of deformations
is 1000.

The plots in the bottom of Figure 5.6 show the principle stresses in the upper surface of
the structure. Stresses from the bending moments are superposed by stresses from the
in-plane forces in the plots, so the vectors do not directly represent the bending moments.
Nevertheless, it is apparent that in the structure to the right, where non-local bending
moments are present and local bending moments are not, torsional bending moment is
transferred across the connection.

Non-local bending moments in a plate shell must be determined by a FE analysis of the
structure.
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Def. scale:
300 Def. scale: 0.3

Figure 5.6: Two plate shells models: FacF plate and FacF 3points. The models are identical
except for their support conditions, see Appendix A. Scaled deformed plots, and details showing
principle stresses in the upper surface.
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Chapter 6

Non-linear investigations

This chapter focuses on the structural behaviour of plate shell structures when effects from
geometrically non-linearity are included. This potential area of research is very large, and
the study in the present chapter should be seen as an introductory investigation into the
topic. The aim of the study is to promote an intuitive understanding of the non-linear
behaviour of a facetted shell, in order to direct further research in the area, or (in a design
situation) to help set up appropriate FE models for analysis.

Section 6.1 is a short summary of buckling of shell structures, taken from the literature.

The non-linear behaviour of plate shells is addressed in Section 6.2.

6.1 Buckling of shell structures

This section summarizes established knowledge about buckling of shell structures, to the
extend that it is relevant for the non-linear study of plate shells. The information can for
example be found in [18], [24],[37], [38] and [51].

In a thin-walled shell structure, the membrane stiffness is many times greater than the
bending stiffness, if the structure is shaped and supported appropriately.

Consider a shell structure loaded in compression by a given load of increasing magnitude.
Until the load reaches a certain level, the shell carries the load mainly by membrane
action. Energy is then stored in the structure mainly as membrane strain energy, and the
corresponding displacements are small. This is referred to as the prebuckling state.

When the load level reaches a critical load, certain displacements can take place without
adding any load. Buckling occurs at this load level, as membrane strain energy from
compression is converted into bending strain energy, with large displacements as a con-
sequence. The displacements that arise during buckling are referred to as the bifurcation
buckling mode. The term true bifurcation buckling refers to a situation where the bifur-
cation buckling mode has zero amplitude until buckling occurs.

The structure’s state after buckling, referred to as the postbuckling state, can be either
stable or unstable1. The postbuckling state is stable if the load-bearing capacity of the

1Note that the term “stable” here is used in a different context than in Chapter 1.
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structure increase with increasing amplitude of the bifurcation buckling mode. An ex-
ample of a structure which is stable in its postbuckling state is a simply supported plate
under compression in its own plane. The postbuckling state is unstable if the load-bearing
capacity decreases with increasing amplitude of the bifurcation buckling mode. If a part
of the load is not removed after the buckling has taken place, the structure will collapse.
Spherical shell structures belong to this category. A neutral state, where an arbitrary
size of the bifurcation mode is possible at the critical load level, can be formulated as an
eigenvalue problem. This is a linearized model of the elastic stability of the structure, in
which it is assumed that no (or negligible) displacements take place in the prebuckling
state.2

In an ideal structure, where there are no geometric or material imperfections, and where
the displacements in the prebuckling state are negligible, the linearized model of the
elastic stability yields the critical load with a good approximation. In any real structure
true bifurcation buckling does not exist, because no real structure is free of imperfections.
Imperfections include geometric imperfections (for example from construction, support
settlements and geometric changes due to creep and shrinkage), material imperfections
(inhomogeneities etc.), residual stresses, temperature movements and/or stresses, and
other effects. Imperfections reduce the critical load, compared to the linearized bifurcation
load. The difference between the bifurcation load of the perfect structure, and the critical
collapse load of the imperfect structure, depends on the amplitude of the imperfection.

The collapse load of a shell structure with imperfections can be determined by a geomet-
rical non-linear FE-calculation, where imperfections have been assessed and implemented
in the model. The load is applied in steps, each for which the displacements are calcu-
lated, and equilibrium is found for the deflected structure. The deflected structure is then
basis of the following load step. Generally, the stiffness of the structure decreases with
increasing load. FE software which can handle geometrically non-linear analysis, apply
various methods for the stepwise attaining of the equilibrium state.

A dome shell structure is unstable in the postbuckling state. Since the load is not reduced
on the structure when buckling occurs, the structure will collapse. The collapse happens
almost instantly. For a shell structure, which has geometric and material imperfections,
the actual load-bearing capacity can be 1/6th or as little as 1/10th of the critical load
corresponding to bifurcation of the perfect structure [51]. Therefore, it is essential in
a design process to assess possible geometric imperfections, and carry out geometrically
non-linear FE calculations on the imperfect structure. In most cases, a linear combination
of the lowest linear buckling modes for a shell structure are known to produce the worst
possible imperfection shapes for the structure, given a certain maximum amplitude of
deformation. The effect of imperfections of other types than geometric must also be
assessed.

2For a simply supported column, the solution to this problem is the Euler load, and the corresponding
bifurcation mode is a single or multiple sine arches.
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6.2 Non-linear behaviour of plate shells

The general information about buckling of shells summarized in Section 6.1 is not directly
applicable to plate shells, since a relatively large amount of bending action is present in
such a structure. In this section we will study non-linear behaviour of plate shells under
varying conditions, and compare the results to the behaviour of a similar, smooth shell.

Geometrically non-linear FE analysis have been carried out on the three structures shown
in Figure 6.1 – two plate shells (models FacC and FacF) and a smooth shell (model
Smooth). (See Appendix A for a detailed description of the models). Table 6.1 gives an
overview of the analyzed model variants.

Section 6.2.1 describes the basis of the analysis. Section 6.2.2 addresses the non-linear
behaviour of the facets, by describing how the local stiffness changes and internal forces
are rearranged, as the load level increases.

The structural response of the analyzed structures under varying conditions are compared
and discussed in Sections 6.2.3 to 6.2.5. As the results will show, failure due to buckling
is unlikely to happen in the studied structures, since other design parameters will govern
the load bearing capacity. A summary of the results is given in Section 6.2.6.

Coarse faceting, FacC Fine faceting, FacF Smooth shape, Smooth

Figure 6.1: The three analyzed structures. The span of all three structures is 11.5m.

6.2.1 Basis of FE analysis

The three shell structures in Figure 6.1 have been subjected to geometrically non-linear
FE analysis in Abaqus3. All three structures have the same “average” geometry, same
facet/shell thickness, uses the same connection detail (the glued-in plate connection) and

3In geometrically non-linear analysis, Abaqus applies an Arc Length method [21] to obtain equilibrium
for incremental load steps. The essence of the method is that the solution is viewed as the discovery
of a single equilibrium path in a space defined by the nodal variables and the loading parameter. It is
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Table 6.1: Overview of geometrically non-linear FE models.
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have the same boundary conditions. The maximum span of the structures is 11.5m, the
height is 1.9m, and the facet/surface thickness is 15mm. The structures are supported
against translations along the boundary.

Table 6.1 gives an overview of the analyzed models. The names used in the table for the
different models are organized in three keys (some also have a fourth part), stating (1) the
structure’s geometry, (2) possible imperfection and (3) the applied load case. In the discus-
sion of the results, the various FE models are referred to by their names given in Table 6.1.

 

25 kN/m2100 kN/m2

As it appears in Table 6.1, two load cases have been studied –
a uniform and a non-uniform. In the uniform load case, the
reference load is a distributed vertical load of 100kN/m2 acting
downward4. In the non-uniform load case, a distributed verti-
cal load of 100kN/m2 is acting on half of the structure, and
25kN/m2 is acting on the other half (as in the sketch to the
right).

All the analysis in Table 6.1 have been run several times, with varying parameters (initial
load increment, maximum/minimum increment, number of increments), to verify the
results5.

When referring to a critical load in the discussion of the FE results, it is the load level of the
last load increment that did not yield negative eigenvalues in the search for equilibrium6.

6.2.2 Bending of the facets

This section focuses on the non-linear behaviour locally in the plate shell facets. Each facet
is loaded by both in-plane loads (shell action) and out-of-plane loads (bending action).
As the load level increases, the facet’s in-plane stiffness and out-of-plane stiffness change,
and this induces a rearrangement of the internal forces in the facets. A facet’s response
to in-plane load and out-of-plane load is described in the following.

assumed that the loading is proportional – i.e. all load magnitudes vary with a single scalar parameter.
In addition, it is assumed that the response is reasonably smooth - that sudden bifurcations do not occur.
The basic algorithm is the Newton-Raphson method. In the Arc Length algorithm, as it is implemented
in Abaqus, the increment size is limited by moving a given distance along the tangent line to the current
solution point and then searching for equilibrium in the plane that passes through the point thus obtained
and that is orthogonal to the same tangent line [2]. In each step the deformed structure serves as basis
for the next load step, hence the geometric non-linearity.

4This load is not a realistic load, as it is about 40 times larger than a realistic design load on the
structure. It serves only as a reference load.

5When more than one load path ends up at the same critical load (within 5%), and when the load step
at the critical load is not too large (less than 3-5% of the total load), the results are considered verified.

6When the solution contains a negative eigenvalue, the load may have overstepped a point of bifurca-
tion, and the resulting load-displacement path cannot be fully trusted without a more in-depth analysis
what happens at that load level.
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Pcr

In-plane load

uout−of−plane

(a) In-plane load

Out-of-plane load

uout−of−plane

(b) Out-of-plane load

Figure 6.2: Principle sketches of non-linear out-of-plane deflection of plate.

In-plane load

A plate7 subjected only to uniform in-plane compression will at first remain plane, and
carry the applied in-plane load by in-plane forces, with very small deformations in its own
plane, and no displacements out of its own plane. When the load reaches the buckling
load of the plate8 the plate has zero stiffness against out-of-plane movement, and at the
slightest disturbance the plate will display out-of-plane displacements (buckling). Such
a plate is stable in its post buckling state, and will keep on carrying increasing in-plane
load, with increasing out-of-plane displacements as a consequence [51]. This behaviour is
illustrated in Figure 6.2(a) by the full-drawn line.

If the plate has a small initial geometric out-of-plane imperfection, this will increase as
the in-plane load is applied. This behaviour is illustrated by the dotted line in Figure
6.2(a). As the in-plane load approaches the buckling load for the perfect plate, the out-of-
plane deflection will grow faster. After reaching the buckling load, the initial imperfection
becomes negligible compared to the increasing out-of-plane deflection, and the behaviour
of the imperfect plate will approximate that of the perfect plate.

Out-of-plane load

A plate (see footnote 7) subjected to out-of-plane load (bending action) will at first deflect
linearly out of its own plane. As the load and the deflection increase, an in-plane resis-
tance in the plate against out-of-plane deflection arises. This resistance is due to strain
in the middle plane of the plate, necessary for the plate to follow the deflected shape [51].
For a plate deflection of more than approximately 0.5−1.0 times the plate thickness, this
in-plane resistance becomes non-negligible. In the principle sketch shown in Figure 6.2(b),

7The plate is plane and of convex, relatively regular, polygonal shape. The plate is supported against
translation out of its plane, and is loaded by uniform in-plane compression.

8For a plate of regular hexagonal shape the linearized buckling load is determined by
ncr = 0.597 · Et3/(a2(1− ν2)), where ncr is the uniform line load along the plate boundary (in-plane
compression), E is the E-modulus for the plate material, t is the plate thickness, a is the geometric side
length and ν is Poisson’s ratio for the plate material [61]. In [61] the linearized buckling load for other
simple plate shapes can also be found.
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this results in an increasing stiffness of the plate as the out-of-plane deflection increase.
It is this in-plane stiffening effect which results in the stable post buckling behaviour,
referred to above.

In-plane and out-of-plane load

A facet in a plate shell is subjected to both in-plane and out-of-plane load. Therefore,
a stiffening effect will occur when the out-of-plane deflection becomes comparable to the
plate thickness, and a softening effect might occur as the in-plane load reaches the lin-
earized buckling load of the plate. The latter will not happen if large plate displacements
occur first. The interaction between these effect depends on the ratio between the in-plane
and out-of-plane utilization of the plate.

The displacements of a hexagonal facet in a plate shell are shown in Figure 6.39. (The facet
is taken from the model FacC Perf Uni.) The red curve is the vertical displacement of
the facet edge mid-point (representing the shell displacement of the structure, see footnote
1 in Chapter 4). The blue curve is the vertical displacement of the facet centre, where
the absolute value has been corrected for the edge displacement, so that the shown curve
is the plate deflection, relative to its edge mid-points.

The deflection in the plate centre displays an out-of-plane stiffening of the plate for
u/t ? 1. The overall stiffness of the structure is continuously lessening, until failure
occurs.
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Figure 6.3: Normalized displacements of a hexagonal facet in a plate shell structure.

As the out-of-plane displacement of the facet increases, the in-plane compression forces
from the shell action will “move away” from the plate centre, towards the plate edges. At
the same time, the large out-of-plane displacements will result in in-plane tension forces in
the facet centre, and a surrounding area with in-plane compression forces. As a result of
both effects, as the load increases, an in-plane compression ring will develop in the facet,

9The linearized buckling load of the plate can be determined as described in footnote 8 in this chapter
(– an approximate value, since the geometry is not a regular hexagon). This results in a critical in-plane
line load of ncr,plate = 115N/mm. When regarding a linear calculation of the plate shell model, the
in-plane forces are almost constant over the facets, and an in-plane force of 115N/mm corresponds to a
load of p = 22kN/m2 on the structure.
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and small in-plane tension forces will develop in the facet centre. This redistribution of
forces does not in itself cause failure of the structure, because the resulting compression
rings behave as frames in the facets’ plane.

Failure of the structure may occur when these frames fail due to local buckling. This is
the case in all investigations in the present study, as it will be presented in the follow-
ing sections. Other failure types may become relevant for other plate shell designs (for
example global failure of a more shallow dome).

6.2.3 Imperfections

This section studies the influence of imperfections on the non-linear behaviour of plate
shells. First, the question of how to impose imperfections to the perfect plate shell ge-
ometry is addressed. After this, results of the non-linear FE analysis are presented and
discussed.

Using linearized buckling eigenmodes

Typically, when determining the critical load for a smooth shell structure, one of the lowest
linearized bifurcation buckling modes (or a combination of several) is used as the imperfect
geometric shape: one or more of the lowest bifurcation modes is given an amplitude, based
on the estimated geometric precision of the physical structure, and geometric non-linear
FE analysis is performed on the imperfect geometry.

Such a procedure is not applicable when designing a plate shell, since a large number of
the lowest bifurcation modes refers to linearized plate buckling of the facets. In [7] a linear
buckling analysis was carried out on a plate shell. The first 50 bifurcation modes were
local buckling of facets (individual or a combination of several), and the corresponding
eigenvalues were within a 10% range, relative to each other.

If such a bifurcation mode is used for the initial imperfections it will have a very little
effect on the results, since such an imperfection is negligible compared to the plate bending
deformations that arise as the load increases.

The approach of using linearized buckling modes as initial imperfections is therefore not
applicable to a plate shell structure.

Physically realistic imperfections

For a plate shell, the realistic imperfections stemming from production tolerances, erec-
tion inaccuracies, creep in connections and interlayer, and support settlements, can be
assessed given the special characteristics of this type of structure. Generally, the following
conditions apply:

A The facets can generally only remain plane if the overall geometry is perfect or
almost perfect. In a point-based system, imprecise bar lengths will result in changes
in the shell curvature. In a plane-based system such as a plate shell, overall changes
in the shell curvature can generally only happen if the facets become non-plane.
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B The facets are likely to remain plane or almost plane, given their relatively high
bending stiffness. Compared to a plate in another context with a similar span and
out-of-plane load, the thickness of the facets is relatively large10.

Items A and B above imply that the plates locally can have small translations and ro-
tations, to the extend that the ensuing geometric deviations can be taken up by the
connection tolerances. A plate shell is therefore unlikely to have large geometric imper-
fections. If the facet production, the placement of the supporting structure, and the
erection procedure lacks precision, the structure simply cannot be assembled.

Imperfections implemented in the FE analysis

In the present study, two different types of “imperfection bumps” have been added to
the perfect geometry of the three structures in Figure 6.1. The two bump shapes are
shown in Figure 6.4. These imperfections are not physically realistic for plate shells as
argued above. An implementation of physically realistic imperfections (and the ensuing
residual stresses in facets and connections) has not been in focus in the present study. The
intent of the analysis is to do an introductory investigation into plate shells’ imperfection
sensitivity.

Soft bump 2 · rsoft

asoft

Sharp bump 2 · rsharp

asharp

Figure 6.4: Two types of bumps are added to the perfect geometry.

Each type of bump is given an amplitude (a), a radius (r) and a point of origin (location
of the maximum value), and the bump value is added to the vertical value of each node
of the structure. The soft bump is a cosine surface11, and the radius is chosen relatively
large. The sharp bump12 has been implemented particularly for the facetted shell, to
depict a situation where a vertex for some reason is in a lower position than intended.
The radius of the sharp bump is chosen so that it is comparable to the side length of the
facets.

The imperfection combinations given in Table 6.2 have been applied to the three FE
models.

10The large thickness of the glass facets is due to safety reasons (2-3 layer laminated glass panes),
practical reasons regarding the connection detail (see for example the description of the glued-in plate
connection on page 84), and an aesthetical wish for low plate deflections (they should not be visible in
reflections in the facets).

11Soft bump: f(r, θ) = f(r) = 0.5asoft(1 + cos(r π
rsoft

))
12Sharp bump: f(r, θ) = f(r) = asharp(1− sin(r π

2rsharp
))
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rsoft/m asoft/mm rsharp/m asharp/mm

Imperfection A 5 50 1 25

Imperfection B 5 100 1 50

Imperfection C 5 150 – 0

Table 6.2: Imperfections added to the perfect shell geometries in Figure 6.1.

When considering the amplitude of the imperfections in Table 6.2, the maximum size of
imperfection A corresponds to about 1/150th of the total span of the plate shell. Imper-
fection B is like A, but the amplitude is twice as large, which is an unrealistically large
imperfection; B is included to explore the sensitivity of the solution to A. C has the same
maximum amplitude as B, but in the shape of a soft bump.

Only imperfection C (where there is no sharp bump) is applied to the smooth shell, see
Table 6.1.

Figure 6.5 shows the centre of the bumps on the three analyzed structures.

• • •

Figure 6.5: Center of the imperfection bumps.

Results

Critical loads of the non-linear models comparing imperfection sensitivity are given in
Table 6.3.
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Coarse faceting, pcr / Fine Faceting, pcr / Smooth shell, pcr /

FacC kN/m2 FacF kN/m2 Smooth kN/m2

Perfect geometry

FacC Perf Uni 84 FacF Perf Uni 74 Smooth Perf Uni 107

FacC Perf Nonuni 82 FacF Perf Nonuni 73 Smooth Perf Nonuni 80

Imperfection A

FacC ImpA Uni 78 FacF ImpA Uni 71

FacC ImpA Nonuni 80 FacF ImpA Nonuni 68

Imperfection B

FacC ImpB Uni 57 FacF ImpB Uni 64

Imperfection C

FacC ImpC Uni 76 FacF ImpC Uni 57 Smooth ImpC Uni 104

Table 6.3: Critical loads, comparing imperfection sensitivity. For an overview of non-linear
models, see Table 6.1. The imperfections (type A, B and C) are given in Figure 6.4, 6.5 and
Table 6.2.

The results in Table 6.3 can be compared from three different perspectives:

• Geometry. When comparing the results where no imperfections are present, the
critical load of the two plate shells is found to be reduced 15 − 25% compared to
critical load of the smooth shell. The plate shell with coarse faceting generally has
a higher critical load than the plate shell with fine faceting.

• Imperfections. The critical load of the perfectly shaped smooth shell is only
reduced slightly (3%) by the introduction of a relatively large imperfection. This is
most likely due to the relatively large curvature of the shell shape. The plate shells
are somewhat more sensitive to imperfections. For imperfection A, the reduction
of the critical load is 4− 8%. Larger imperfections (imp. B and C) result in larger
reductions (up to 33%).

• Load distribution. The two plate shells seem to be more robust to non-uniform
load than the smooth shell. The critical load of the smooth shell is reduced 25% in
the non-uniform load case compared to the uniform load case, where as the critical
load of the plate shells is almost the same.

In those plate shell analysis where the structure’s failure mode is clearly visible from the
results, the failure mode is a single sine wave over a facet edge. Figure 6.6 shows a detail
of the plate shell model FacC, just before and after failure. Figure 6.7 show a similar
detail from the plate shell model FacF.
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Figure 6.6: Contour deformation plots (detail) of FacC Perf Uni at the critical load level
(before and after failure). The contour scale is consistent in the two images. The difference in
load level in the two images is 6%.

Figure 6.7: Contour deformation plots (detail) of FacF Perf Uni at the critical load level
(before and after failure). The contour scale is consistent in the two images. The difference in
load level in the two images is 10%.

6.2.4 Connection stiffness

This section studies the influence of the connection stiffness parameters on the non-linear
behaviour of plate shells.

The connection stiffness parameters generally used in the non-linear analysis in this chap-
ter correspond to the glued-in plate connection design. In the following study, these
parameters have been varied, to investigate the effect on the critical load.

The plate shell with fine faceting has been used, since any effects from the connection
stiffness is likely to be enhanced in this model because of the larger number of connections.
Imperfection A is added to the perfect geometry, and the load is uniform.

The FE models listed in Table 6.1 under the headline “Connection stiffness” have been
analyzed. In two models the rotational stiffness km is reduced to 50% and 25% respectively,
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and in three models the axial stiffness kn is reduced to 50%, 25% and 5% respectively.
Table 6.4 lists the models, the relevant connection stiffness parameters and the joint
parameters used in the models.

The calculated critical load of the models are given in Table 6.5. (The note “standard”
indicates that the connection stiffness parameters in this model are the same as used in
the other non-linear studies in this chapter.)

Model km kn tj Ej

(kN) (kN/mm2) (mm) (kN/mm2)

FacF ImpA Uni (standard) 16 5 6.15 4.07

Reduction of km

FacF ImpA Uni km50 8 5 4.38 5.71

FacF ImpA Uni km25 4 5 3.10 8056

Reduction of kn

FacF ImpA Uni kn50 16 2.5 8.76 1.43

FacF ImpA Uni kn25 16 1.3 12.4 0.50

FacF ImpA Uni kn05 16 0.25 27.7 0.045

Table 6.4: Connection stiffness parameters and joint parameters used for modelling, for the
models listed in Table 6.1 under “Connection stiffness”. tj and Ej have been determined as
described in Section 3.2.1 (page 27).

Model pcr / kN/m2

FacF ImpA Uni (standard) 71

Reduction of km

FacF ImpA Uni km50 68

FacF ImpA Uni km25 69

Reduction of kn

FacF ImpA Uni kn50 67

FacF ImpA Uni kn25 52

FacF ImpA Uni kn05 25

Table 6.5: Critical loads, comparing varying connection stiffness parameters. For an overview
of non-linear models, see Table 6.1.

The results in Table 6.5 clearly indicate a correlation between the critical load and the ax-
ial stiffness kn. A reduction of the axial stiffness seems to result in a reduced critical load.
This correlation has also been observed in [7] and [8], where a plate shell was subjected to
non-linear FE analysis. Those results showed a strong influence of the axial stiffness on
the critical load, and almost no influence of the rotational stiffness km.13 Correspondingly,

13The structure that was investigated in [7] and [8] had a different geometry and the axial stiffness kn
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the results in Table 6.5 indicate only a slight reduction of the critical load for a reduced
rotational stiffness.

In one model (FacC ImpA Uni Cor in Table 6.1 – the plate shell with coarse faceting,
imposed by imperfection A, and subjected to the uniform load) the joint elements are
modelled so that they connect the full length of the facet edges. In FacC ImpA Uni Cor
the critical load is increased by 5% compared to FacC ImpA Uni, which is an identical
model apart from the unconnected facet corners (the joint elements end 100mm from the
facet corners). The unconnected facet corners thereby appear to be of minor importance
to the critical load.

6.2.5 Modelling technique variations

Some variations in the FE modelling technique have been studied:

• The use of a different element type in Abaqus. In stead of S4 elements, S4R
elements have been used. S4R (R for reduced integration) has only one integration
point, where S4 has four14.

• Variation of the element size. The same model has been analyzed three times, using
three different general element sizes.

• The connection stiffness has been modelled by an isotropic joint material, and (in an
otherwise identical model) by an orthotropic joint material. As described in Section
3.2.1 (page 28), when using an isotropic joint material the shear stiffness parameters
will not be modelled correctly.

The calculated critical load of the relevant models are given in Table 6.6, 6.7 and 6.8. For
an overview of non-linear models, see Table 6.1.

Model Element type pcr / kN/m2

FacC Perf Uni S4R S4R 77

FacC Perf Uni (standard) S4 84

FacF Perf Uni S4R S4R 75

FacF Perf Uni (standard) S4 74

Table 6.6: Critical loads, comparing two element types (S4 and S4R).

The results in Table 6.6 indicate a difference of up to 8% on the critical load when using
S4 and S4R elements respectively. The computational time is reduced 20-30% by using

was much lower – about 5% of the values tested here. The rotational stiffness km was comparable to the
values modelled in the present study.

14S4R is computationally less expensive than S4. S4 does not have hourglass modes, and generally
has a higher solution accuracy [1]. In linear FE analysis of a plate shell in [31] the use of S4R and S8R
elements resulted in a few elements with large numerical errors.
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Model Number of elements pcr /

per facet edge kN/m2

FacF Perf Uni Esmall 10-13 75

FacF Perf Uni (standard) 8-10 74

FacF Perf Uni Elarge 5-7 73

Table 6.7: Critical loads, comparing varying element sizes.

Model Modelled pcr /

joint material kN/m2

FacC ImpA Nonuni Ort Orthotropic 77

FacC ImpA Nonuni (standard) Isotropic 80

Table 6.8: Critical loads, comparing how accurately the shear stiffness in the connections are
modelled.

S4R. For most practical purposes, a feasible approach could be to perform two non-linear
analysis on the same structure, using S4 and S4R elements respectively. If the difference
in the resulting critical load is negligible, the computationally quicker S4R element may
be used for further analysis.

The results in Table 6.7 imply that a mesh density of about 5-7 elements along the facet
edges is sufficient for the determination of the structure’s critical load. The failure modes
for the plate shell structures studied in this chapter is a single wave over a facet edge (see
the images in Figures 6.6 and 6.7). For such a failure mode, 5-7 elements along the glass
edge is sufficient to describe the structural behaviour with adequate precision. Naturally,
the stress peaks in the connection end areas are not determined very well with such a
coarse mesh, but the results in Table 6.7 indicate that this has negligible effect on the
calculated critical load of the structure.

The results in Table 6.8 indicate a small difference (4%) in the critical load, when the joint
material is modelled by an isotropic material, instead of an orthotropic material which
reproduces the shear stiffness parameters correctly. As shown previously in a linear FE
analysis (page 29 and footnote 3 in Chapter 3), the error on the peak stresses is less than
5% when using an isotropic joint material instead of an orthotropic.

6.2.6 Summary of non-linear study

As the non-linear investigations in Section 6.2 have shown, structural failure due to buck-
ling is not likely to happen for the analyzed structures – the allowable displacements and
the ultimate strength of the structural elements is far more critical15.

The results in Section 6.2 indicate the following tendencies for the non-linear behaviour

15The allowable displacements and the strength of the structural elements is not elaborated upon in
the present study (except briefly in Chapter 7, where the descriptions of possible connection details refer
to some experimental results).
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of the analyzed plate shells. The critical load of the plate shells is generally comparable
to the critical load of the equivalent smooth shell; changing the smooth shell surface into
a plane-based facetted surface, and thereby introducing bending moments and connection
lines with reduced stiffness, seems to result in a reduction of the critical load of 0-40%.
The reduction is larger if the axial stiffness of the connection detail is low. For the ana-
lyzed structural shapes, the plate shell is more sensitive to imperfections than the smooth
shell, and it is less sensitive to non-uniform load16.

Since only one overall shell shape is investigated in the present study, the results cannot
be used for general conclusions about the non-linear behaviour of plate shells. Other cor-
relations between smooth and facetted shells may exist for other shell shapes – especially
if the shell shape is more shallow, and hence more sensitive to imperfections.

16A smooth shell shape can be shaped so that it is optimal for the predominant load case. The term
“optimal” can be understood and implemented in different ways when shaping the structure. Some
examples are: shapes where only compressions forces are present (funicular structures [17]), hanging
forms (a variant of funicular structures [19]), shapes where the largest stress has been minimized or
where the stresses are as uniform as possible [15] [47]. The shape can be optimized using more than one
load case, but generally, the optimality of the shape is highly dependant on the load distribution.
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Chapter 7

Design of connection detail

The connections between the facets in a plate shell structure are in many ways the weak
link of the structure. The connections will most likely have less strength and stiffness
than the facets, and at the same time the largest forces are likely to occur in the connec-
tions. Tolerances must primarily be taken up in the connections, during assembly of the
structure. Repair work must be facilitated by the connection design. If the structure is
leaking, it will be at the connections. If the facets are insulating units, the largest heat
loss will most likely be at the connections. The connections will be the first part of the
structure to deteriorate, unless a glass pane is accidently broken.

A list of functional requirements and wishes for the connection design is set up and
discussed in Section 7.1. The list is in prioritized order. These items have served as a
basis for the three design suggestions sketched up in sections 7.2 to 7.4.

7.1 Functional requirements for the connection detail

Appearance

The appearance of the connections is of very high importance. The connections should
appear slender and light, so that the basic reason for choosing this structural principle
becomes clear: the facets are the structure – the connections merely transfer loads be-
tween the facets. If the connections look large and heavy, they will appear as if carrying
the load, and the special meaning of the plate shell principle will be largely lost.

Strength and stiffness

The strength of the connection detail must be sufficient to withstand the loads it attracts,
given its stiffness. Details with a high rotational stiffness km (see Section 3.1, page 25) are
loaded by a relatively large bending moment (depending on the size and thickness of the
facets). Details with a very low rotational stiffness km and a large axial stiffness kn may
have large in-plane tension forces at the ends of each connection line. (These effects are
studied in Chapters 4 and 5.) If the connection detail cannot sustain the loads it attracts
via its stiffness, it will fail.
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Design of connection detail 7.1 Functional requirements for the connection detail

The connection detail should transfer loads between the facets, without causing signifi-
cant stress concentrations in the glass.

Construction

The connection detail should be as simple as possible to assemble, to ensure connections
that are visually homogeneous, and have the desired strength and stiffness.

A key issue in the design of the connection detail is tolerances. As previously discussed
(Section 6.2.3, page 72), an imperfect geometry can generally only be realized by warping
the facets, or by taking up some translations and rotations in the connections. Warping
the facets (which have a relatively large bending stiffness, see for example footnote 10
in Chapter 6) may cause large restraining forces in the connections, and they will most
likely be difficult to assemble. The connection detail should therefore be able to take up
whatever tolerances that may occur.

Solutions with adhesives may be difficult to implement on site with optimal quality, due
to the possibility of unclean surfaces, and unfavorable temperature and humidity condi-
tions. If possible, work with adhesives should be completed before the facets arrive at the
site.

Temperature movements

Temperature movements in the connection detail should not induce significant stresses in
the detail or in the glass. This means that materials with a different thermal expansion
than the glass must not be fixed too rigidly to the glass.

Failure safety

Given a situation where the load on a connection succeeds the detail’s strength, and the
detail therefore fails, a certain capacity for yielding enables a redistribution of forces,
relieving the detail for some of the load. Such a yielding capacity is desirable.

In case of failure in a connection, it should preferably be visible by simple visual inspection,
so that action can be taken to prevent further damage of the structure.

Also, an extra safety in case of connection failure is desirable. For example, if a fric-
tion connection clamped around the facet edges fails, the connected facets could balance
against each other, still held together by the otherwise failed detail.

If fracture occurs in the laminated glass facets, the broken facet will remain in one piece,
due to the lamination. The connection detail should remain attached to the facet edges,
so that the broken facet does not fall out of the structure.

Long term behaviour and wear

If parts of the connection detail display time dependent behaviour, such as creep, the
consequences must be assessed. Will the creep rate become negligible after a period of
time? How does the creep rate respond to fluctuations in temperature and air moisture?
What will happen to the forces in the connection, and to the structure as a whole, when
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creep occurs?

If the creep rate is load-dependent, this may enable a favorable relaxation of peak stresses
at the connection ends, followed by a reduction of the creep rate to a negligible level.

The load-transferring part of the connection should preferably be protected from direct
sunlight, rain, ice and physical impact, or have a suitable resistance against these factors.
The part of the connection which is directly exposed to weathering should preferably be
replaceable, for example a silicone sealant.

The service life of the structure is likely to be governed by the connections, unless these
are replaceable.

Water tightness

The connection detail should provide good water tightness, and it should be possible to
fix a leak by replacing or adjusting parts of the connection.

Repair work and maintenance

In case a facet needs replacement, it is preferable that the connection detail can be
disassembled without harming the surrounding facets, so that the broken facet can be
removed, and a new facet can be fastened. The fastening method for the new facet can
possibly be different than the original connection detail.

The connection detail should be designed so that water and dirt does not accumulate
anywhere, and so that cleaning is as easy as possible.

Insulating properties

In stead of facets of laminated glass, insulating glass units (IGU) can be used as facets,
thereby greatly improving the insulating properties of the structure.

Only one layer in the IGU should be active in the structural shell action, meaning that
the connection detail should only connect one layer in the IGU. This is to avoid the risk
of movements and stresses around the spacer that could induce a puncture of the IGU.

Figure 7.1: IGU in plate shell connection.

The glass layer which is active in the shell
action must be laminated glass. A sec-
ond pane can be supported on a spacer as
shown in Figure 7.1 – the connection de-
tail in the illustration is the glued-in plate
connection described in Section 7.2. The
second pane will then be active in the lo-
cal plate bending (because of the enclosed
volume of air), but not in the shell action.

The connection detail should be designed, so that the linear thermal transmission in the
connection lines is minimized.

Department of Civil Engineering - Technical University of Denmark 83



Design of connection detail 7.2 Glued-in plate connection

7.2 Glued-in plate connection

This section describes the first of three suggested plate shell connection details. Sections
7.3 and 7.4 describe the other two.

The glued-in plate connection detail consists of a plate (or another mechanical item),
embedded into the glass facet edge using a structural adhesive.

For this connection design, the plate shell facets are built up by three layers of glass,
laminated together using SentryGlass r©Plus (SGP) interlayer [23].

SGP interlayer
Heat-strengthened glass
Structural adhesive

Continuous plate

Figure 7.2: Glued-in plate connection.

The sketch in Figure 7.2 is a section perpendicular to the connection line between two
facets. As illustrated in the figure, the edge of the middle pane of the three glass layers
is offset a small distance from the edge of the two other panes, creating a canal along the
facet’s circumference. A plate, continuous in the direction of the glass edges, is glued into
the edge canal by a structural adhesive, as shown in the figure. The rotational stiffness
of the connection can be adjusted by choosing the thickness and material of the glued-
in plate appropriately. When choosing the plate thickness, it must be ensured that the
thickness is sufficient to sustain the stresses it attracts and, especially for thin plates, that
there is no risk that the plate will collapse. The length of the plate is chosen relative to
the edges it connects – to allow for uplift of the facet corners, the plate length should be
shorter than the connected edges.

In the plate corners, the gaps can be filled with a dark silicone, to maintain the appear-
ance of the dark strip over the entire edge length, and to obtain water tightness in these
areas.

The glued-in plate connection design has been tested experimentally at the Technical
University of Denmark [32]. In these tests, the edge canal depth is 20mm, the canal’s
height is 12mm, the free gap between the connected plates are 16mm, and the glued-in
plates are 4mm aluminum (alloy 6061-T6), with a width of 50mm. The structural adhesive
is DP490 from 3M [6], a two component epoxy adhesive also used for a glued butt joint
connection in the glass dome at the Institute for Lightweight Structures and Conceptual
Design (ILEK), Stuttgart University [16] (see also Section 7.4). The tests indicate a
rotational stiffness of km ≈ 40kN , and an in-plane shear stiffness of kv,i ≈ 2.5kN (these
stiffness parameters are introduced in Section 3.1, page 24). The tests also indicate a
slight creep tendency at a relatively high load level, which seems to decrease and become
negligible after a few days. Failure has not been attained in in-plane shear (maximum
shear force applied: 150N/mm, short term load). Failure was attained in bending for a
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bending moment of approximately 700N – the failure mode was yielding in the aluminum.

Parameters for a glued-in plate connection design have been estimated, prior to the exe-
cution of the above-mentioned experiments. These values are used in the conducted FE
analysis throughout the thesis. The values are estimated assuming a glued-in aluminum
plate with a thickness of 3mm. The estimated stiffness parameters are as follows:

Rotational stiffness km = 16kN
Axial stiffness kn = 5kN
In-plane shear stiffness kv,i = 1kN
Out-of-plane shear stiffness kv,o = 6kN

(7.1)

Advantages

The glued-in plate connection is deemed the most promising of the suggested connection
details for large plate shell structures. Therefore, the advantages and drawbacks of this
detail are elaborated in the following.

The connection will appear as a dark strip with a width of 50− 70mm. The entire detail
is embedded in the glass pane, so no extra height is added to the facet surfaces at the
connection, and in the centre line only a strip of 10−20mm width will be without a glass
surface. Its strength considered, it is a slender connection, which will hardly appear as
the primary load bearing system.

The above-mentioned ongoing experimental research indicates a high strength of the de-
tail. This could perhaps imply an even smaller total width of the connection than sug-
gested above.

The detail is ductile in bending, as bending failure is in the form of yielding in the
aluminum, apparently with no damage to the adhesive.

The connection detail can take up relatively large tolerances in all directions during as-
sembly.

The slight tendency to creep in the adhesive will to some extend reduce the stress peaks at
the connection ends. The creep rate appears to reduce quickly and become insignificant.

The load bearing part of the connection can be covered by a replaceable silicone joint,
which will protect the detail from weathering.

The laminated glass facets can be extended to become IGU’s without increasing the width
of the connection noticeably (see Figure 7.1).

Drawbacks

One half of each connection line can be glued in a workshop (so that the aluminum plate
protrudes from the edge), but the opposing facet edge must be glued on site.

Failure in the adhesive is unlikely to be visible, unless it causes large dislocations in the
structure.

It will be difficult to replace a broken facet.
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Other comments

Tests have been made where the adhesive was replaced by a mortar suitable for glass
structures, HILTI HIT-HY 70 [30]. To ensure a good load transfer between the mortar
and the glass, thin strips of perforated stainless steel where glued to the inner, horizontal
surfaces of the edge canal. The stiffness and strength of HIT-HY 70 is comparable to that
of DP490, and the mortar shows a higher resistance to increased temperatures during fire.
However, because of the mortar’s short curing time, it was difficult to position the cast-in
plate and achieve a satisfactory appearance of the connection. If an improved production
method can be developed, the cast-in solution may be preferable to the glued solution.

The glued-in (or cast-in) plate’s material and thickness can be modified to meet specific
demands. The plate may also be replaced by other items, which are glued into the edge
canal in a similar way. The detail can for example consist of two seperat fittings, glued
into opposing edge canals in the workshop, and assembled mechanically on site.

SGP interlayer
Heat-strengthened glass
Structural adhesive

Continuous line hinge

Figure 7.3: Glued-in hinge connection.

Figure 7.3 shows a possible variant where the glued-in item is a line hinge. This connection
detail is included as a variant in the FE analysis throughout the thesis, to investigate the
structural response when the connection’s rotational stiffness is very low and the axial
stiffness is relatively high. In Figure 7.3 the detail is sketched as an actual hinge, but it
could have a large variety of shapes, with useful characteristics such as an easy mechanical
assembly on site.

The estimated stiffness parameters for the glued-in line hinge connection are as follows:

Rotational stiffness km = 0.6kN
Axial stiffness kn = 5kN
In-plane shear stiffness kv,i = 1kN
Out-of-plane shear stiffness kv,o = 6kN

(7.2)

These parameters do not take into account that there may be a small movement in the
detail before it starts taking up load. Such a movement may result in smaller stress
concentrations at the connection ends.

7.3 Friction connection

Two continuous profiles (aluminum, steel, glass fiber reinforced polymer (GFRP) or an-
other suitable material) are clamped around the edge of a single monolithic sheet of glass.
The connection is illustrated in Figure 7.4.
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Friction interlayer
SGP interlayer
Heat-strengthened glass
Clear silicone
Continuous profile

Figure 7.4: Friction connection.

A strip of a softer material serves as interlayer between the profiles and the glass, to secure
a good transfer of friction forces, to avoid stress peaks in the glass caused by unevenness
in the profiles, to allow for different temperature movements in the glass and the profiles,
and possibly to introduce a rotational compliance in the connection. Prestress is applied
to the interlayer by tightening the screws that hold the profiles together. A second layer of
glass is laminated to the connected layer, so that a smooth outer surface can be attained.

The larger the rotational stiffness in the connection, the larger bending moment in the
connection, and thereby the larger the necessary bending strength of the detail. The
optimal solution could therefore be an interlayer which is relatively soft, while at the
same time ensures a good friction. The problem is, however, that a soft material may not
withstand the prestress which is necessary to attain sufficient friction.

The major advantage of the friction connection detail is that it is simple to assemble and,
if necessary, disassemble.

The friction connection has been tested experimentally, comparing two different friction
transferring interlayers; EPDM and Klingersil r© [39]. EPDM is a synthetic rubber with
good weather-resistance, used for many purposes, including as friction transferring inter-
layer. Klingersil [35] is a plate material of carbon fibres embedded in a synthetic rubber,
developed for use in gaskets under high pressure and temperature. Klingersil has pre-
viously been applied as interlayer in friction connections in glass structures [60]. Like
EPDM, Klingersil shows good weather-resistance. The stiffness of Klingersil is signifi-
cantly higher than that of EPDM1.

The variant using EPDM as interlayer showed poor strength and a low stiffness in the
tests2. Additional tests may show that the detail is applicable to plate shells where only
little strength is needed in the connections. The detail is included in the list of variants
used for the FE analysis throughout the thesis, to investigate the structural response
when the connections’ axial stiffness is very low.

1An absolute value for the difference in stiffness cannot be given, as the behaviour of especially EPDM
is highly dependent on the geometry of the EPDM item, and the stress state. The difference in stiffness
is in the range of 20-300.

2A prestress of approximately 5.5N/mm2 was applied to the 10mm wide EPDM strips. The tests
showed an in-plane shear stiffness of 10 − 30N/mm2 and a bending stiffness of 4 − 7kN . The force-
displacement curve was highly nonlinear, and appeared to be very dependent on the rate with which the
load was applied. A relaxation test revealed a 65% reduction of the prestress within the first hour, and
a clear tendency to continuing relaxation after that. (No data available for longer load durations.) The
in-plane shear strength was 3 − 4N/mm (30 minutes after tightening the screws to the full prestress).
The bending strength is irrelevant, as the rotations became very large before the detail failed.
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The estimated stiffness parameters for the friction connection using EPDM interlayer are
as follows:

Rotational stiffness km = 5kN
Axial stiffness kn = 0.02kN
In-plane shear stiffness kv,i = 0.02kN
Out-of-plane shear stiffness kv,o = 0.1kN

(7.3)

Tests of the friction connection using Klingersil as interlayer showed a higher axial and
rotational stiffness3. Since the rotational stiffness is large, the connection will be loaded
by relatively large bending moments. The bending capacity of the detail may not be
sufficient for the plate shell FacC, investigated in Chapters 4 and 5 (see Figure 3.5, page
31). That plate shell structure has facets of roughly 2m diameter. A structure with
smaller facets will have smaller local bending moments, and the friction connection may
in that case be suitable.

The estimated stiffness parameters for the friction connection using Klingersil interlayer
are as follows:

Rotational stiffness km = 100kN
Axial stiffness kn = 0.5kN
In-plane shear stiffness kv,i = 0.08kN
Out-of-plane shear stiffness kv,o = 1kN

(7.4)

7.4 Glued butt joint

Ultimate slenderness and transparency could be achieved by connecting the facets with
a glued butt joint, like the joining method used in the glass dome at ILEK in Stuttgart
[16], shown in Figure 1.4 (page 3). The glued butt joint, applied to the plate shell, is
illustrated in Figure 7.5.

SGP interlayer
Heat-strengthened glass
Structural adhesive

Figure 7.5: Glued butt joint.

Because of the facetted geometry, the plate shell has different forces in the connections
than the smooth dome at ILEK. The predominant load in the connections of the ILEK
dome are in-plane forces, which lead to a relatively low stress level. In the ILEK dome,
the maximum stress in the adhesive is 0.6N/mm2, determined by FE analysis [16]. In the

3A prestress of approximately 5.5N/mm2 was applied to the 10mm wide Klingersil strips. The tests
showed an in-plane shear stiffness of 0.5−0.7kN/mm2 and a bending stiffness of 70−130kN . A relaxation
test showed a 13% reduction of the prestress within the first 24 hours, and apparently no further relaxation
after that (monitoring duration 96 hours). The in-plane shear strength was 12− 17N/mm. The bending
strength was more than 250N (failure was not achieved, but the stiffness appeared to reduce somewhat
at around 200N).
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plate shell, the stress level from in-plane forces is similar, but it is superposed by stresses
from local bending in the facets.

In Section 5.1.3 approximate expressions for bending moments in plate shell facets were
presented. In Figure 7.6 these expressions are used to investigate the bending stresses in
a glued butt joint, for different values of facet size, facet thickness, and E-modulus of the
adhesive. Stresses from in-plane forces must be added to determine the maximum stress
in the adhesive.
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Figure 7.6: Bending stresses in the glued butt joint for varying parameters. “Thickness”
denotes the thickness of the joint and the facet.

The load is 1kN/m2 perpendicular to the facet. The adhesive is assumed to be linear
elastic, and the stress is assumed to vary linearly over the joint thickness. The joint
width4 is set to 10mm. The facet thickness and joint thickness are equal. Poisson’s ratio
for the adhesive is set to ν = 0.45.

4A variation of the joint width is not shown here. Calculations using the approximate expressions
from Section 5.1.3 show that the stress level is increased 5 − 10% if the joint thickness is reduced from
10mm to 7mm, and that the stress level is reduced 2− 5% if the joint thickness is increased from 10mm
to 13mm.
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A specific design value for the allowable stress in the adhesive cannot be determined
based on available data. Experimental data in [16] indicates that the structural adhesive
DP490 from 3M [6] has the most suitable characteristics for the connection, compared
to a series of other structural adhesives available at that time (2005)5. Before using the
glued butt joint in a full scale plate shell structure, the capacity of the joint should be
determined through experimental investigations, for varying temperature conditions, air
moisture contents and load durations. Based on the above-mentioned data in [16] and
the current perfectly intact state of the glass dome at ILEK, the long time strength for
DP490 under varying weather conditions is expected to be within the range of 0.5N/mm2

to 2N/mm2.

Based on that information, and the parameter study in Figure 7.6, a plate shell using
the glued butt joint should be a relatively small structure with a span of 3 − 4m, with
relatively thick facets (15mm or more) measuring roughly 0.6− 0.8m in diameter.

The stiffness parameters used in the FE analysis throughout the thesis are based on a
joint with thickness 15mm, width 10mm, and a constant E-modulus (i.e. not time-, load-,
temperature and moisture-dependent) of Eadh = 1GPa and Eadh = 2.5GPa in two vari-
ations of the connection respectively. The resulting stiffness parameters are determined
using (3.1), (3.2) and (3.3), where Ej is replaced by Eadh

1−ν2 corresponding to a plane strain
condition instead of plane stress6.

For adhesive E-modulus Eadh = 1GPa we get:

Rotational stiffness km = 71kN
Axial stiffness kn = 3.8kN
In-plane shear stiffness kv,i = 1.0kN
Out-of-plane shear stiffness kv,o = 1.0kN

(7.5)

For adhesive E-modulus Eadh = 2.5GPa we get:

Rotational stiffness km = 176kN
Axial stiffness kn = 9.4kN
In-plane shear stiffness kv,i = 2.6kN
Out-of-plane shear stiffness kv,o = 2.6kN

(7.6)

5Long time tensile tests at 23◦C on a butt joint measuring 10mm by 10mm indicated continuous creep
after 1200 hours with constant load, where the joint was subjected to a tensile stress of 2.75N/mm2. The
creep compliance in compression is likely to be smaller than in tension [22].

6The three expressions (3.1), (3.2) and (3.3) are derived based on a plane stress distribution in the
joint elements, since they are merely a numerical tool to adjust the parameters of the joint elements, so
that they represent the stiffness of the actual physical connection detail.
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Chapter 8

Guidelines for design of plate shell
structures

The aim of this chapter is to propose a set of guidelines for the design of plate shell
structures.

The studies done throughout the thesis are summarized, and attention is drawn to the
main issues. Some design aspects, which are relevant in a design situation but have not
been in focus in the present study, are brought up, together with suggestions for a possible
design approach. Also, relevant topics for further research are suggested.

8.1 Geometry

Deciding on a geometry for a plate shell involves two steps: Choosing an overall (smooth)
shape, and creating a plane-based facetted approximation to this shape. If glass is used
for the facets, the smooth shape should be convex, to avoid concave facet shapes. Areas
of very low curvature should be avoided. Generally, the overall structural “soundness” of
the final plate shell may, at early stages of the design, be roughly evaluated by analysis of
the smooth shape. If the smooth shell has areas with large in-plane stresses and/or large
displacements, the corresponding plate shell will most likely have similar problems.

The creation of the plane-based faceted geometry can be carried out using the methods
suggested in Section 2.1. Alternatively, other methods can be applied (some possibilities
are mentioned on page 11).

8.2 Determining stresses and displacements

In a preliminary design phase, the structural behaviour of a given plate shell design may
be estimated by using the methods described in Sections 4.2.3 (shell action) and 5.1.3
(bending action). The methods can be used to determine approximate values for in-
plane forces in the connections, bending moments in the connections, bending moments
in facets, and the out-of-plane deflection of the facet centres.
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It should be noted that only a few different plate shell designs1 have been used for the
development of the methods. It is the author’s expectation that the methods will also
apply to other plate shell designs – this should be looked into by further research2.

At a later stage in the design, a FE model of the plate shell must be created. If the py-
Formex script presented in Section 2.2 is used for creating the plate shell geometry, this
script can also be used for an automatic generation of an Abaqus model of the struc-
ture. If a pyFormex generation is not possible, the FE model can be created following the
guidelines in Chapter 3. In both cases, the connections between the facets are modelled
by a strip of elements, the stiffness of which must be adjusted to the actual connection de-
tail’s physical stiffness. Alternatively, other methods for modelling the connection detail’s
stiffness may be applied.

Based on the FE analysis of the plate shell, the structural behaviour can be assessed,
focusing on

• the overall displacements of the structure (the shell displacements, see footnote 1 in
Chapter 4)

• the local deflection of the facets

• bending moments in the facets

• in-plane forces and bending moments in the connections

• the non-linear behaviour of the structure (in terms of buckling load)

8.2.1 Facets

If the FE analysis shows small shell displacements, this indicates that the plate shell is
effective as a shell structure. This means that the bending moments in the facets are local
bending moments, as described in Section 5.1.

The necessary thickness of the facets is most likely governed by either the local deflection
of the plates, or by the local bending moment in the facet middle. If the rotational
stiffness of the connection detail is very large, the maximum bending moment may occur
at the facet edge.

1Plate shell models FacC, FacF and FacStar – see Appendix A.
2Further studies must look into the different structural effects (such as the in-plane peak forces at

the connection ends) for different shell layouts, i.e. with varying facet diameter, facet thickness, angle
between facets, curvature radius for the overall shape of the structure and connection stiffness parameters.
The results presented in this thesis cannot explicitly express the balance between the different structural
effects for other shell layouts (for example by describing the found results using dimensionless parameters),
because the governing correlations depend on the geometrical parameters raised to different exponents.
Hence, the deflection of a facet varies with the ratio d4

t3 , whereas the geometric resistance to corner lift
varies with the angle between the facets, or d

R . The rotational restraint factor varies with t3

d . (d is the
facet diameter, t is the facet thickness and R is the curvature radius.) The dimensionless results of one
combination of d, t and R can therefore not be reproduced in a different combination of these geometric
parameters.
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The interlayer in the laminated glass pane may over time loose some of its stiffness.
This will reduce the bending stiffness of the facets. In the FE model, the modelled facet
thickness can be reduced to an effective thickness, representing the facets’ reduced bending
stiffness by a thinner plate. The procedure for this reduction is described in [46]. Note
that stresses in the glass plies will not be correctly reproduced in the model; stresses must
be determined using the sectional forces, see [46]. The reduced facet thickness will result
in a minor error in the calculated shell deflections.

8.2.2 Connections

The connections are primarily loaded by in-plane forces and bending moments. Generally,
the stiffer the connection detail, the larger loads it attracts.

For some combinations of connection stiffness parameters, in-plane stress concentrations
may occur at each connection’s ends (see Chapter 4). Creep in the connection detail may
reduce these stress concentrations. Creep may also reduce the bending moment in the
connection, and increase the deflection of the facets. Generally, the consequences of time
dependent changes in the connection detail should be evaluated.

It will most likely be necessary to determine the strength and stiffness parameters of the
connection detail by experimental testing.

8.2.3 Buckling

As for all thin-walled structures loaded in compression, a critical load, at which the plate
shell will collapse due to buckling, must be determined. A geometrically non-linear FE
analysis must be carried out, in which the perfect plate shell geometry is imposed by
relevant imperfections.

Determining such relevant imperfections has proven troublesome; as described in Chapter
6, a linear buckling analysis is not suitable for defining the imperfection shapes. Because
of the nature of the plane-based geometry, the imperfections will most likely be relatively
small (see Section 6.2.3). A possible engineering approach, which has been applied in
the present study, is to impose relatively large imperfections to the perfect geometry in
the shape of a smooth “bump”, ignoring the fact that this is not a realistic imperfection
shape. A comparison of the critical load of this, imperfect, structure and the critical load
of the perfect structure, will indicate whether the structure is sensitive to imperfections.
If this is not the case, and/or if the critical load is much larger than the actual load on
the structure, no further action needs to be taken.

A relevant subject for further research is the determination of geometrically and struc-
turally possible imperfection shapes, and how to implement these in a FE model of a
plate shell.

Non-linear FE analysis of the plate shell structure, where the facet thickness has been
reduced corresponding to a softening of the interlayer (as described in Section 8.2.1), will
result in slightly conservative results for the critical load.
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8.3 Supports

The plate shell structures investigated in connection with this study have all been sup-
ported against translations in all three directions, along the entire boundary. (Supports
against rotations are not relevant for this type of structure.) Other support conditions
may be suitable, if the resulting stiffness of the structure is high enough.

Depending on the overall shape of the structure, the reaction forces will have a horizontal
component as well as a vertical. These horizontal forces may be taken up by a tension ring
following the boundary of the structure, rather than be taken to the supports. Depending
on the shape of the structure, the tension ring may also be loaded by bending moments.

The detail which connects the boundary facets with the supporting structure can be the
same as the general connection detail.

8.4 Construction

If the facet production, the supporting structure, and/or the erection procedure lacks
precision, then, due to the nature of the plane-based faceted geometry, the plate shell
structure simply cannot be assembled (see Section 6.2.3). The facets may locally have
small translations and rotations, to the extend that these geometric deviations can be
taken up by the connection tolerances.

It is therefore crucial for the realization of a plate shell structure that the connection
detail can take up the tolerances that the manufacturer and contractor will produce.

To erect the structure, the facets can be positioned on hydraulic jacks, or on a temporary
structure, and adjusted until their position is optimal. In this position, the connection
details can be assembled.

An optimal solution could be a connection detail system where the facets are simply
“clicked” together, with minimum use of scaffolding. This would require extremely low
tolerances in the facet production.

8.5 Fire strategy

A load-bearing glass structure is very vulnerable to heat from a fire. For a building
involving load bearing glass elements, a fire strategy, which accommodates the special
circumstances related to this type of structure, must be integrated into the design.

An increasing number of countries have introduced performance-based fire safety design
in their building regulations, and now permit construction of extraordinary structures,
which are not covered by the traditional classification system. A sufficient safety level
may be documented by calculations and experimental testing, instead of the application
of prescriptive rules.

Section 8.5.1 deals with the possible elements of a fire strategy, for a building project
involving a plate shell structure of glass.
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8.5.1 Glass plate shell structures and fire

A standard approach for protecting a load-bearing structure against fire is to cover the
structural parts by protective elements, designed to protect the structure from heat de-
veloped by the fire, or to design the structural parts with such an excessive load-bearing
capacity that a certain loss of strength during a fire is acceptable.

These strategies are not feasible for a glass shell structure. The use of fire resistant glass
might to some extend protect the glass sheets, but that would still leave the connections
exposed to the fire. It is therefore reasonable to ask the questions “how much heat can the
structure tolerate without failing” and “how can the temperature around the structure be
kept under a specified limit during a fire”. These questions are discussed in the following.

How much heat

If the glass panels are effected by large temperature gradients, the glass will crack [44].
The interlayer (SGP) will loose most of its stiffness at around 60 degrees Celsius [23]. This
will cause the bending stiffness of the facets to decrease about 50-75%, as a decreasing
amount of shear will be transferred between the layers. (The structure can be designed so
that this decrease in stiffness in itself does not result in failure.) At higher temperatures
the interlayer may catch on fire, and leak burning drops of SGP onto the floor area
underneath the structure.

If the connection detail involves an adhesive part, this will loose most of its strength and
stiffness at around 60-70 degrees.

To sum up, the structure may fail when the temperature exceeds 60-80 degrees, which
is a very low temperature in a fire situation. However, by shaping the structure so that
the connections mainly transfer axial compression when the structure is loaded by self
weight, the connections can be designed so that the facets can “lean” on each other when
the adhesive looses its strength. This could be a way of allowing a higher temperature.
Experimental testing and FE analysis must be used to show whether this effect can be
achieved, and to examine how sensitive such a system would be to small asymmetric loads.
This way, an allowable temperature of 100 degrees or more may be possible.

Keeping the temperature down

The temperature underneath the shell structure depends on a series of factors, including

• the nature and amount of materials on fire

• the energy release rate of the fire

• the flame height

• the flow of fresh air to the fire

• the flow of hot gasses away from the fire

Department of Civil Engineering - Technical University of Denmark 95



Guidelines for design of plate shell structures 8.6 Other design aspects

When the factors above have been estimated in a given design situation, an approximate
state of equilibrium can be found, in which the maximum temperature under the shell
structure can be determined [33]. Alternatively, a full computational fluid dynamics
(CFD) calculation can be used to find the temperature development.

First of all, direct contact between flames and glass must be avoided, so that high tem-
perature gradients do not occur in the glass. This can be achieved by increasing the
room height under the shell structure, and possibly also by setting limits for the allowable
amount of combustible material in the room.

The energy release rate of the fire can be kept low by installing a sprinkling system or a
water mist system. This reduces the temperature in the approximate state of equilibrium,
or in some cases extinguish the fire.

High temperature in a room containing a fire is most often a result of accumulated hot
gasses under the ceiling. The temperature can be kept down by fire ventilation, by which
the hot gasses are removed by a certain flow rate. The fire ventilation can be either
mechanical or natural. Given the very low design temperature in this case, mechanical
ventilation will probably be needed, to ensure the necessary air flow rate. The use of
fire ventilation might to some degree increase the energy release rate of the fire, since it
increases the flow of fresh air to the fire.

In addition to the strategy elements discussed here, it may also, for smaller shells, be of
interest to check whether the structure could be classified as a secondary structure, and
thereby possibly be allowed to collapse after a certain evacuation period. This way, it
would not be the state of equilibrium in a fully developed fire that would determine the
necessary fire safety precautions.

8.6 Other design aspects

In the following, issues which are also relevant for the design of a plate shell structure,
but have not been brought up in the present study, are mentioned, and some suggestions
are given for a possible design approach.

8.6.1 Support settlements

As discussed in Section 6.2.3, an overall shape change in a plane-based geometry can
generally only happen if the facets warp out of their own plane. In case of settlements in
the supporting structure, such an overall shape change may take place. The consequences
in terms of forces in the facets and the connections, should be evaluated. In Abaqus,
support settlements can be applied to the model to determine the structural response.

8.6.2 Temperature movements

As discussed earlier, temperature movements may cause stress concentrations in the glass,
if the connection detail is too rigidly fixed to the glass and displays a different thermal
expansion.
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In addition to this, temperature movements in the structure may cause overall shape
changes. As for the support settlements, the consequences for the structure should be
evaluated. A temperature load can be applied to the model in Abaqus. Alternatively,
if an analysis of given support settlements have shown negligible consequences for the
structure, a comparison of the shape changes may show that forces due to temperatur
movements are also negligible.

8.6.3 Glass fracture

Fracture in the glass may accidentally happen. Since the glass panes are laminated, a
fractured glass facet will remain in position, given that the connection detail remains
attached to the facet edges. However, the facet may have lost its stiffness (or parts of
it), and therefore it will not be fully active in the load bearing structure. Investigations
in [7] and [31] indicate that the structure is still effective as shell structure if a facet is
entirely removed. This must be verified for a given design, by performing FE analysis
on the structure, where a facet has been removed. Especially, the consequences for the
non-linear behaviour of the structure should be investigated.

8.6.4 Final remarks

The plate shell concept opens up for many possible design variations.

If openings in the structure are desired, a number of facets can be replaced by a frame,
with an opening panel attached.

Solar cells can be integrated into some of the facets, perhaps serving as sun shade on the
south facing part of the structure.

Some facets can have a coloured coating, a partly reflecting film, or other kinds of graphic
film, perhaps emphasizing a visual effect in the faceting pattern. Some facets may also
be of a different material than glass.
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Chapter 9

Conclusion

This chapter summarizes the conclusions of the present thesis, and comments on the ap-
plied working methods. Recommendations for future work are given in Section 9.1.

In Chapter 2 the main characteristics of a plate shell structure are drawn up: a plate
shell structure is a piecewise plane (i.e. facetted) structural surface, shaped and supported
so that external load can be taken to the supports by in-plane forces distributed in the
facets. The facetted geometry is organized so that three facets meet in every vertex. It is
this topological characteristic that enables the shell action to be distributed in the facets,
instead of acting as concentrated forces in the edges and vertices, as in the case of a
triangulated (lattice) shell structure.

The plate shell geometry is termed a plane-based geometry, because it is generated by
defining the position of each facet’s plane in space, and determining the edges and vertices
via the intersection lines and points of these planes. In Chapter 2, the author suggests
possible methods of generating such a plane-based geometry. All the suggested methods
are based on defining a pattern, projecting this pattern onto a convex surface, determining
the tangent plane to the surface in the projected points, and creating the plane-based
facetted geometry from these tangent planes. In some of the suggested methods, the
original pattern is defined on a surface which is not plane, such as a polyhedron or a
cone. This enables a smaller distortion of the pattern when it is projected, since the
shape difference between the original pattern and the projected pattern is smaller. Also,
it enables variations of patterns of rotational symmetry, since a part of the pattern can
be cut away, without changing the local topology of the pattern.

Also in Chapter 2, a pyFormex script for generating plate shell geometry is presented.
The script is developed in a cooperation between professor B. Verhegghe, Ghent Univer-
sity, and the author: professor Verhegghe has carried out the actual programming, based
on requests from and discussions with the author. The script can generate a plate shell
geometry, based on a list of points in space defined by the user. Additional input from the
user gives the necessary information to create a full FE model, ready to run in Abaqus.
The pyFormex script facilitates a fast and simple generation of both plate shell geometry
and FE model.
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In Chapter 3 the author outlines the structural behaviour of plate shells. Based on this
description, a method of modelling the structure in FE software is proposed. Focus is
upon modelling the structure by as simple means as possible, without loosing information
which has a non-negligible effect on the results.

A plate shell structure carries load by bending action locally in the facets, and shell ac-
tion in the structure as a whole. In FE software Abaqus, the facets are modelled by
shell elements, which include both bending and in-plane forces. The connection detail is
modelled by a strip of shell elements connecting two facets. The stiffness and geometry
of this strip of elements is chosen, so that it reproduces the physical connection detail’s
resistance against rotations around the joint line (rotation stiffness) and displacements
perpendicular to the joint in the facet’s own plane (axial stiffness). Comparative results
indicate that this simple representation of the joint, which ignores an imprecise represen-
tation of the the connection detail’s shear stiffness, produces negligible errors compared to
a joint representation where the shear stiffness parameters are modelled correctly. Time
dependent effects are not modelled, but the consequences are discussed in connection with
the calculations in Chapters 4 and 5.

As explained above, the author describes the structural behaviour of plate shell structures
as a combination of shell action (in-plane forces) and bending action (out-of-plane forces).
The two types of action are studied in Chapters 4 and 5 respectively.

Locally, each facet carries external out-of-plane load by bending, thereby taking the load
to the facet edges. At the edges, the out-of-plane shear forces are transformed into in-plane
forces, given that the structure is appropriately shaped and supported.

Generally, the shell action in a given plate shell has resemblance to the shell action in a
similar smooth shell. However, the in-plane forces in the plate shell are larger, because of
the geometric/statical restrictions on the flow of forces.

The local bending action and the shell action in a plate shell couples somewhat, because
the facet deflections caused by the bending causes the facet corners to lift. This corner
uplift results in in-plane tension forces near the facet corners, which adds to the general
in-plane stress state in the structure. The out-of-plane deflection of the facets, and the in-
plane tension stresses near the facet corners, depend on a series of geometric and physical
circumstances:

• The deflection of the plates increase if the rotational stiffness of the connection
detail decreases and if the bending stiffness of the facets decrease.

• The in-plane tension stresses near the facet corners generally increase if the de-
flection of the facets increase, if the angle between neighbouring facets increases,
and if the axial stiffness of the connection detail (i.e. resistance against movements
perpendicular to the facet edge) increases.

Hand calculation tools for estimating bending moments and in-plane forces in plate shells
are suggested by the author.
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The numerical results presented in Chapters 4 and 5 are found by FE analysis of
relatively few plate shell designs. This narrows the applicability of the numerical results
down to plate shells which are very similar to the analyzed designs. On the other hand,
there is a good accordance between the described physical behaviour of the structures and
the numerical FE results, and this strengthens the validity of this physical description.

The same philosophy is behind the developed tools for estimating bending moments and
in-plane forces in plate shells: the tools are based on relatively few numerical results and
therefore have limited documented applicability, but they express a simplified way of un-
derstanding how the plate shell structure works, and therein lies their actual value. By
knowing these tools and their origin, the designer can base her or his expectations for a
given plate shell design on a physical understanding of the structure, and thereby step
outside the domain of documented solutions.

In Chapter 6 an introductory study of the buckling behaviour of plate shells is carried
out. The starting point of the study is the buckling load of a given plate shell structure,
and the investigation focuses on how this buckling load varies with changes in the facet
size, load distribution, geometric imperfections and connection stiffness. Also, a com-
parative study is performed on a smooth shell structure of the same span and surface
thickness.

The investigated plate shell structure is relatively insensitive to imperfections and facet
size. The axial stiffness of the connection detail is seen to have a significant impact
on the buckling load, as a reduced axial stiffness results in a lower buckling load. The
buckling load of the plate shell is slightly reduced compared to the buckling load of the
similar smooth shell, and seems more sensitive to the introduced geometric imperfections.
However, none of the models where significantly sensitive to the imperfections. The plate
shell models seem less sensitive to the distribution of the load than the smooth shell.

The failure mode of the analyzed plate shell models is a single sine wave over a facet edge,
and thereby a local failure mode.

Some variations in the modelling technique have been studied, and these imply that a
relatively coarse mesh (with 5 - 7 elements along each facet edge) is sufficient to determine
the buckling load of a plate shell with adequate precision.

In the investigated plate shell structures the buckling load greatly exceeds the ultimate
strength of the structures, and will therefore not be the cause of failure. However, this is
not a general conclusion for plate shells. The buckling load of a more shallow dome will
most likely be lower, and the observed low imperfection sensitivity may change.

The design of a suitable connection detail is in focus in Chapter 7. The author suggests
a list of functional requirements for such a connection detail in prioritized order. Most
important are the following elements: a light and slender appearance, sufficient strength,
adequate stiffness, and a reasonable constructability. The author proposes three different
connection detail layouts: a glued-in plate connection (where a plate is glued into a groove
in the facet edge), a friction connection (a slender profile is clamped around the facet
edges), and a glued butt joint (similar to a welded butt joint, but using an adhesive).
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Experiments and calculated estimates suggests that the glued-in plate connection is the
most suitable for large span structures (up to 14-16 meter span). Depending on possible
production methods, the constructability of this design could be greatly improved by
replacing the glued-in plate with a glued-in fitting, prepared for a mechanical assembly
on site.

The friction connection has its clear advantage because of its easy assembly. This con-
nection detail will suit plate shells with a span of up to 8-10 meters.

The main advantage of the glued butt joint is its small visual impact. Because of the large
bending moments, which this connection detail attracts given its large rotational stiffness,
it is only suited for relatively small plate shells, with a span of 3-4 meters and relatively
thick facets.

Based on the studies in this thesis, Chapter 8 summarizes what a designer must take into
account when designing a plate shell structure. Apart from the issues handled throughout
the thesis (geometry generation, FE modelling, linear structural behaviour, buckling be-
haviour and connection design) Chapter 8 also draws attention to other design aspects,
such as support settlements, temperature movements, constructability, fire strategy and
glass fracture.

9.1 Future work

This section sums up issues for future work within the research of plate shell structures.

The primary task at hand is to conduct additional FE analysis on various plate shell
designs, and thereby expand and consolidate the numerical investigations shown in this
thesis. Geometric parameters are to be varied, such as overall diameter of the structure,
facet thickness, facet diameter, angle between neighbouring facets and uniformity in facet
size. Also, other shell shapes should be investigated, and the possibility of plate shells
with free edges should be addressed. For every studied plate shell variant, an equivalent
smooth shell should be analyzed and used for comparison of shell displacements and
in-plane forces.

Geometric considerations and FE analysis should be used to evaluate plate shells’ struc-
tural response to support settlements and temperature movements.

Time dependency in the connection detail must be reproduced appropriately in a FE
calculation. The question of how much creep/relaxation is needed for in-plane stress con-
centrations to reduce significantly should be addressed. Also, additional experimental
tests on the connection details should be carried out to study the time dependent be-
haviour of the details. Especially, wear due to possible large fluctuations in moisture and
temperature should be evaluated, as well as deterioration due to UV radiation.

The pyFormex script should be extended to accommodate an easy definition of wind and
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snow load on the modelled plate shell structures. Also, a joint strip between the supports
and the supported facets should be implemented, so that the elastic compliance of the
supports can be included in the model. The pyFormex script could also be extended to
accommodate the application of geometric imperfections to the models.

The performed study of the non-linear behaviour of plate shells should be significantly
elaborated upon, investigating the influence of span, overall curvature (shallowness), facet
thickness, and time dependency in the connection details. Attention should especially be
given to plate shell structures, where the load capacity of the equivalent smooth structure
is governed by its non-linear behaviour. Also, accidental load cases where one or more
facets have lost their stiffness due to severe glass breakage or failing connections, should
be investigated in non-linear analysis.

Research could be done in the field of other plate shell shapes than convex. Focus could
be on how to generate a non-convex plane-based geometry, and how to deal with the
ensuing stress concentrations in the concave corners on the glass facets.

The most important future work, however, is to actually build a plate shell, and learn
what is true, what is irrelevant, which issues we have forgotten to address or simply
underestimated. At ILEK, Stuttgart University, effort is currently made to raise funding
to build a plate shell in the ILEK garden, next to the glass dome shown in Figure 1.4.

Department of Civil Engineering - Technical University of Denmark 103



Conclusion 9.1 Future work

104 Department of Civil Engineering - Technical University of Denmark



Appendix A

Description of Abaqus models

This appendix contains a detailed description of the Abaqus models which are referred
to in the present work. Input files for all models (generated for Abaqus v. 6.7-1) can be
attained by contacting the author.

Some models have been analyzed in several variants, in which case these are described.

Five basically different layouts have been used:

FacC
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FacStar

 
 
 
 
 

 

Smooth FacStar
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Model name: FacC      (“C” for Coarser faceting pattern) 

Structural layout: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Generation of the geometry: 
 
A regular pattern is defined on an 
icosahedron (3 subdivisions of 
each edge.) 
The pattern points are mapped 
onto a paraboloid of revolution, 

using the parametric mapping method described in 
Section 2.1.1. 
In the mapped pattern points, the tangent planes to 
the paraboloid are determined, and brought to 
intersect with each other. 
The boundary of the structure is defined by cutting 
the bottom facets as shown. (As it appears, the 
boundary is not in a single plane, as is the case for 
the other models.) 
The joint strips (see Section 3.2.1) are divided into 
two parts along the joint centre line, and each half is 
in the same plane as the adjacent facet. (This 
separates the FacC model from other models 
investigated in the study – see e.g. the description of 
the FacF model.) 
100 mm of the facet edges are not connected at 
each facet corner. 
 
This plate shell geometry has not been generated by 
the pyFormex script presented in Section 2.2. 

Height, h: 1.9 m 

Span length, l: 11.5 m 

Facet thickness, t: 15 mm 

Facet mean diameter, dmean: ~ 2.0 m 

Radius of curvature, R: ~ 9.7 m 

Angle between adjacent facets, γ ≈ d/R: ~ 0.21 rad  (12 deg) 

Free part of facet edge, at facet corners: 100 mm 

E-modulus, facet material, E: 70 Gpa 

Poisson’s ratio, facet material, ν: 0.22 

Width of joint strip elements, w: 10 mm 

Other properties of joint strip elements: See the following description of the FacC model variants. 

Rotational restraint factor, α: See the following description of the FacC model variants. 

Boundary conditions: The facet edges at the lower boundary are supported against 
translations in all directions. 

Loads: See the following description of the FacC model variants. 

Mesh The element size is varying; along the facet edges the element 
size is 30-40 mm. In the facet centres the element size is 100-150 
mm. The mesh is illustrated in Section 3.2.2.  
The joint strips have 2 elements across the joint width. 
The Abaqus shell element S4 has been applied. 

 

h 

l 
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Variants of Abaqus model FacC 
 
The FE model FacC has been used for both linear analysis and non-linear analysis in Abaqus. In the following, 
the analyzed variants of the basic model are described. 
 

Linear analysis of the FacC model 
In the linear analysis, six different connection details have been modeled in turn, creating six variants of the 
FacC model. The connection details are described in Chapter 7.  
The FacC model variants used for linear FE analysis are: 
 

→ FacC_plate: FacC using the glued-in plate connection. 
→ FacC_hinge: FacC using the glued-in hinge connection.  
→ FacC_EPDM: FacC using the friction connection with EPDM interlayer.  
→ FacC_EPDM: FacC using the friction connection with Klingersil interlayer.  
→ FacC_adh1: FacC using the glued butt joint. E-modulus of adhesive: 1.0GPa.  
→ FacC_adh2: FacC using the glued butt joint. E-modulus of adhesive: 2.5GPa.  

 
The input parameters for the joint strip elements are listed in the table below. In all six variants, the joint strip 
material is isotropic. 
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Parameters for joint strip elements: 

Thickness, tj (mm): 6.15 1.2 55 49 15 15 

E-modulus, Ej (kN/mm2): 4.07 20.8 0.0018 0.051 1.0 2.5 

Poisson’s ratio, νj: 0 0 0 0 0.45 0.45 

Resulting stiffness parameters: 

Rotational stiffness, km (kN): 16 0.6 5 100 71 176 

Axial stiffness, kn (kN/mm2): 5 5 0.02 0.5 3.8 9.4 

In-plane shear stiffness, kv,i (kN/mm2): 2.5 2.5 0.01 0.25 1.5 3.8 

Out-of-plane shear stiffness, kv,o  (kN/mm2): 2.5 2.5 0.01 0.25 1.5 3.8 

Rotational restraint factor, α: ~ 0.4 ~ 0.02 ~ 0.2 ~ 0.8 ~ 0.7 ~ 0.9 
 
 
Two load cases are applied to the six FacC model variants, used for linear analysis: 
Uniform load case: Uniform pressure of 1.0 kN/m2 acting inwards. 
Non-uniform load case: Same load, acting on only half of the structure. The orientation of the loaded area 
relative to the faceting pattern is shown in Section 4.2.1. Contour plots shown in the thesis are oriented so that 
the load is acting on the left half of the structure. 
 

Non-linear analysis of the FacC model 
In the non-linear FE investigations, ten different variants of the model FacC have been analyzed. All ten 
models applies the same connection detail: the glued-in plate connection. Therefore, the parameters for the 
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joint strip elements, and the resulting stiffness parameters, are the same as for the model FacC_plate 
described above. The only exception is the model FacC_ImpA_Nonuni_Ort (described below) where the same 
connection detail is modeled, using an orthotropic joint material to compute the shear stiffness parameters 
more accurately. 
The non-linear FacC models apply two different load cases: 
Uniform load case: Uniform distributed vertical load of 100 kN/m2 acting downwards. 
Non-uniform load case: The same load is acting on half of the structure. The other half is loaded by a uniform 
distributed vertical load of 25 kN/m2 acting downwards. 
 
The FacC model variants used for non-linear FE analysis are: 

→ FacC_Perf_Uni: FacC without imperfections, subjected to the uniform load case.  
→ FacC_Perf_Nonuni: FacC without imperfections, subjected to the non-uniform load case.  
→ FacC_ImpA_Uni: FacC, where the perfect geometry has been superposed by imperfection shape A 

(described in Section 6.2.3), subjected to the uniform load case.  
→ FacC_ImpA_Nonuni: FacC, where the perfect geometry has been superposed by imperfection shape 

A, subjected to the non-uniform load case.  
→ FacC_ImpB_Uni: FacC, where the perfect geometry has been superposed by imperfection shape B, 

subjected to the uniform load case.  
→ FacC_ImpC_Uni: FacC, where the perfect geometry has been superposed by imperfection shape C, 

subjected to the uniform load case.  
→ FacC_ImpA_Uni_Cor: The same model as FacC_ImpA_Uni, but where the joint strips cover the 

entire length of the facets. 
→ FacC_Perf_Uni_S4R: The same model as FacC_Perf_Uni, but applying Abaqus shell element S4R 

instead of S4. 
→ FacC_ImpA_Nonuni_Ort: The same model as FacC_ImpA_Nonuni, but with orthotropic joint material 

to compute the shear stiffness parameters accurately. Orthotropic joint parameters: w = 10 mm. tj = 
6.15 mm.  E1 = E2 = Ej = 4.07 kN/mm2. G12 = 0.81N/mm2. G13 = G23 = 4.88 kN/mm2.  ν12 = 0.  

 
A tabulated overview of these model names can be found in Section 6.2.
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Model name: FacF      (“F” for Finer faceting pattern) 

Structural layout: 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Generation of the geometry: 
 
A regular pattern is defined on an 
icosahedron (4 subdivisions of 
each edge.) 
The pattern points are mapped 
onto a paraboloid of revolution, 
using the parametric mapping 

method described in Section 2.1.1. 
In the mapped pattern points, the tangent planes to 
the paraboloid are determined, and brought to 
intersect with each other. 
The boundary of the structure is defined by cutting 
the geometry by a plane. 
The joints (see Section 3.2.1) are generated by 
offsetting the facet edges 5 mm towards the centre 
of each facet, creating a 10 mm gap between the 
facet edges. Each joint strip is defined as a plane 
surface connecting adjacent edges. 
80 mm of the facet edges are not connected at each 
facet corner. 
 
This plate shell geometry has been generated by the 
pyFormex script presented in Section 2.2. 

Height, h: 1.9 m 

Span length, l: 11.5 m 

Facet thickness, t: 15 mm 

Facet mean diameter, dmean: ~ 1.5 m 

Radius of curvature, R: ~ 9.7 m 

Angle between adjacent facets, γ ≈ d/R: ~ 0.15 rad  (9 deg) 

Free part of facet edge, at facet corners: 80 mm 

E-modulus, facet material, E: 70 GPa 

Poisson’s ratio, facet material, ν: 0.22 

Width of joint strip elements, w: 10 mm 

Thickness of joint strip elements, tj: 6.15 mm (varies in some of the non-linear models) 

E-modulus of joint strip elements, Ej: 4.07kN/mm2 (varies in some of the non-linear models) 

Poisson’s ratio of joint strip elements, νj: 0 

Rotational restraint factor, α: ~ 0.3 (varies in some of the non-linear models) 

Boundary conditions: See the following description of the FacF model variants. 

Loads: See the following description of the FacF model variants. 

Mesh Unless anything else is mentioned, the element size is constant, 
with an element side length of approximately 110 mm.  
Unless anything else is mentioned, there is one element across 
the joint strip width. 
The Abaqus shell element S4 has been applied. 

 
 

l 

h 
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Variants of Abaqus model FacF 
 
The FE model FacF has been used for both linear analysis and non-linear analysis in Abaqus. In the following, 
the analyzed variants of the basic model are described. 
 

Linear analysis of FacF 
Two variants of the FacF model have been used for linear analysis in Abaqus. They both apply the same 
connection detail; the glued-in plate connection. The joint strips are modeled by an isotropic material, and the 
joint parameters are given in the table above. 
 
The first variant of the FacF model for linear analysis (model name: FacF_plate) is supported against 
translations along the entire lower boundary. The model is analyzed for three load cases. A uniform load case, 
where a uniform pressure of 1.0 kN/m2 is acting inwards on the entire structure, and two non-uniform load 
cases, where the same load is acting on only half of the structure. The difference between the two non-uniform 
load cases is the orientation of the loaded area relative to the faceting pattern. This orientation of the load is 
shown in the sketches below (the hatched area is the loaded area). 
 
 
 
 
 
 
 
 
 
 
The second of the FacF model variants used for linear analysis (model name: FacF_3points) is supported in 
only three points, as illustrated in Section 5.2. This structure is loaded by a uniform pressure of 1.0 kN/m2, 
acting inwards on the entire structure. 
 

Non-linear analysis of FacF 
In the non-linear FE investigations, 14 different variants of the model FacF have been analyzed. Two different 
load cases are applied: 
Uniform load case: Uniform distributed vertical load of 100 kN/m2 acting downwards. 
Non-uniform load case: The same load is acting on half of the structure. The other half is loaded by a uniform 
distributed vertical load of 25 kN/m2 acting downwards. 
 
The FacF model variants used for non-linear FE analysis are: 

→ FacF_Perf_Uni: FacF without imperfections, subjected to the uniform load case.  
→ FacF_Perf_Nonuni: FacF without imperfections, subjected to the non-uniform load case. 
→ FacF_ImpA_Uni: FacF, where the perfect geometry has been superposed by imperfection shape A 

(described in Section 6.2.3), subjected to the uniform load case.  
→ FacF_ImpA_Nonuni: FacF, where the perfect geometry has been superposed by imperfection shape 

A, subjected to the non-uniform load case. 
→ FacF_ImpB_Uni: FacF, where the perfect geometry has been superposed by imperfection shape B, 

subjected to the uniform load case.  
→ FacF_ImpC_Uni: FacF, where the perfect geometry has been superposed by imperfection shape C, 

subjected to the uniform load case.  

Orientation of the load in the 
two non-uniform load cases. 
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→ FacF_Perf_Uni_S4R: The same model as FacF_Perf_Uni, but applying Abaqus shell element S4R 
instead of S4. 

→ FacF_Perf_Uni_Esmall: The same model as FacF_Perf_Uni, with a general element size of 75 mm, 
instead of 110 mm. 

→ FacF_Perf_Uni_Elarge: The same model as FacF_Perf_Uni, with a general element size of 150 mm, 
instead of 110 mm. 

 
In addition to the above mentioned 9 model variants, 5 model variants have been investigated where the 
connection stiffness parameters have been reduced: 

→ FacF_ImpA_Uni_km50: The same model as FacF_ImpA_Uni, except km is reduced to 50%. 
→ FacF_ImpA_Uni_km25: The same model as FacF_ImpA_Uni, except km is reduced to 25%. 
→ FacF_ImpA_Uni_kn50: The same model as FacF_ImpA_Uni, except kn is reduced to 50%. 
→ FacF_ImpA_Uni_kn25: The same model as FacF_ImpA_Uni, except kn is reduced to 25%. 
→ FacF_ImpA_Uni_kn05: The same model as FacF_ImpA_Uni, except kn is reduced to 5%. 

The relevant joint parameters are listed in Section 6.2.4, and are therefore not repeated here. 
 
A tabulated overview of the models used for non-linear analysis can be found in Section 6.2. 
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Model name: Smooth 
Structural layout: 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Generation of the geometry: 
 
The geometry is a symmetric section of a paraboloid 
of revolution. The geometry is a smooth 
approximation to the two plate shell geometries, 
FacC and FacF. 
 

Height, h: 1.9 m 

Span length, l: 11.5 m 

Thickness, t: 15 mm 

Radius of curvature, R: ~ 9.7 m 

E-modulus, E: 70 Gpa 

Poisson’s ratio, ν: 0.22 

Boundary conditions: The boundary is supported against translations. 

Loads: See the following description of the Smooth model variants. 

Mesh The general element size is 150 mm. 
The Abaqus shell element S4 has been applied. 

 

h 

l 
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Variants of Abaqus model Smooth 
The FE model Smooth has been used for both linear analysis and non-linear analysis in Abaqus. In the 
following, the analyzed variants of the basic model are described. 
 

Linear analysis of Smooth 
Only one variant of Smooth has been used for linear analysis. This model is termed Smooth_linear.  
Two load cases are applied in the linear analysis: 
Uniform load case: Uniform pressure of 1.0 kN/m2 acting inwards. 
Non-uniform load case: Same load, acting on only half of the structure. Contour plots shown in the thesis are 
oriented so that the load is acting on the left half of the structure. 
 
 

Non-linear analysis of Smooth 
In the non-linear FE investigations, three variants of the model Smooth have been analyzed. Two different 
load cases are applied: 
Uniform load case: Uniform distributed vertical load of 100 kN/m2 acting downwards. 
Non-uniform load case: The same load is acting on half of the structure. The other half is loaded by a uniform 
distributed vertical load of 25 kN/m2 acting downwards. 
 
The Smooth model variants used for non-linear FE analysis are: 

→ Smooth_Perf_Uni: Smooth without imperfections, subjected to the uniform load case.  
→ Smooth_Perf_Nonuni: Smooth without imperfections, subjected to the non-uniform load case. 
→ Smooth_ImpC_Uni: Smooth, where the perfect geometry has been superposed by imperfection 

shape C (described in Section 6.2.3), subjected to the uniform load case. 
 
A tabulated overview of the models used for non-linear analysis can be found in Section 6.2. 
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Model name: FacStar      (“Star” for star-formation pattern) 
Structural layout: 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Generation of the geometry: 
 
The shown pattern is defined 
in a plane. Two layers of 
points are created: a layer of 
points positioned like the red 
markings ( ), and a layer of 
points positioned like the black 
markings ( ). 
 

The two layers of points are each mapped onto a 
section of a sphere, using the parametric mapping 
method described in Section 2.1.1. The two spheres 
have the same centre, and a difference in radius of 
13‰.  
In the mapped pattern points, the tangent planes to 
the respective spheres are determined, and brought 
to intersect with each other. 
The boundary of the structure is defined by cutting 
the geometry by a plane. 
The joints (see Section 3.2.1) are generated by 
offsetting the facet edges 7.5 mm towards the centre 
of each facet, creating a 15 mm gap between the 
facet edges. Each joint strip is defined as a plane 
surface connecting adjacent edges. 
100 mm of the facet edges are not connected at 
each facet corner. 
 
This plate shell geometry has been generated by the 
pyFormex script presented in Section 2.2. 

Height, h: 3.3 m 

Span length, l: 10.0 m 

Facet thickness, t: 15 mm 

Facet mean diameter, dmean: small facets: ~ 1.4 m           large facets: ~ 1.9 m  

Radius of curvature, R: 5.4 m 

Angle between adjacent facets, γ ≈ d/R: ~ 0.31 rad  (18 deg) 

Free part of facet edge, at facet corners: 100 mm 

E-modulus, facet material, E: 70 Gpa 

Poisson’s ratio, facet material, ν: 0.22 

Width of joint strip elements, w: 15 mm 

Thickness of joint strip elements, tj: 6.15 mm 

E-modulus of joint strip elements, Ej: 6.10 kN/mm2 

Poisson’s ratio of joint strip elements, νj: 0 

Rotational restraint factor, α: 0.3 – 0.4 

Boundary conditions: The facet edges at the lower boundary are supported against 
translations in all directions. 

 
(The description of model FacStar continues on the following page.)

l 

h 
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(Description of model FacStar, continued:) 
 
Loads: Uniform load case: Distributed vertical load of 1.0kN/m2 acting on 

the entire structure. 
Non-uniform load case: Same load, on half of the structure. 
(Contour plots shown in the thesis are oriented so that the load is 
acting on the left half of the structure.) 

Mesh The general element size is constant, with an element side length 
of approximately 90 mm.  
There is one element across the joint strip width. 
The Abaqus shell element S4 has been applied. 

 
 
There are no other variants of the FacStar model.
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Model name: Smooth_FacStar 
Structural layout: 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Generation of the geometry: 
 
The geometry is a section of a sphere. The 
geometry is a smooth approximation to the plate 
shell geometry, FacStar. 
 

Height, h: 3.3 m 

Span length, l: 10.0 m 

Thickness, t: 15 mm 

Radius of curvature, R: 5.4 m 

E-modulus, E: 70 Gpa 

Poisson’s ratio, ν: 0.22 

Boundary conditions: The boundary is supported against translations. 

Loads: Uniform load case: Distributed vertical load of 1.0kN/m2 acting on 
the entire structure. 
Non-uniform load case: Same load, on half of the structure. 
(Contour plots shown in the thesis are oriented so that the load is 
acting on the left half of the structure.) 

Mesh The general element size is 150 mm. 
The Abaqus shell element S4 has been applied. 

 
 
 
There are no other variants of the Smooth_FacStar model. 
 

 

h 

l 



 



Appendix B

In-plane forces in three plate shells
and their equivalent smooth shells

In this appendix, in-plane forces n22,peak, n22,edge, n12,peak and n12,peak are listed for three
different plate shell models (FacC, FacF plate and FacStar) at a chosen edge. nij,peak

is the largest value of nij at the edge. nij,edge is the value of nij at the edge mid-point.

The principal in-plane forces in the equivalent smooth shells are also given: n1,smooth and
n2,smooth are the principal in-plane forces (maximum and minimum respectively). n12,smooth

is the maximum in-plane shear force, determined by n12,smooth =
n1,smooth−n2,smooth

2
.

Each force value in a smooth shell is taken at a point which has the same position in the
shell’s ground plane, as the mid-point of the studied facet edge in the plate shell.

The listed force values for model FacC are also given in Section 4.2.2.
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Model: FacC 
 
  Uniform load case: 1kN/m2 pressure load on the entire structure. 
 
 
 
 
 
 
 
 
 
6 variants of model FacC have been analyzed; a detailed description of the model and its variants 
can be found in Appendix A. 
The in-plane forces listed below are found at the edge marked in the illustrations above. 
The general element size along the edges is 30-40mm. 
The forces at the investigated edge have converged for the applied element size, except for the peak 
values in models FacC_hinge and FacC_plate. 
 

Model: FacC 

Load case 
n22,peak 
(N/mm) 

n22,edge 
(N/mm) 

|n12,peak|  
(N/mm) 

|n12,edge| 
(N/mm) 

Uniform load case 
Glued-in line hinge 13.1 -10.0 3.1 0.1 
Glued-in plate 8.9 -9.0 2.4 0.1 
Glued butt joint, Eadh = 1GPa 3.5 -8.3 1.0 0.1 
Glued butt joint, Eadh = 2.5GPa 3.4 -8.0 1.5 0.1 
Friction conn., Klingersil – -7.7 – 0.1 
Friction conn., EPDM – -5.7 – 0.1 
Nonuniform load case 
Glued-in line hinge 13.5 -10.0 5.2 3.4 
Glued-in plate 9.5 -9.2 4.9 3.4 
Glued butt joint, Eadh = 1GPa 4.4 -8.6 4.4 3.3 
Glued butt joint, Eadh = 2.5GPa 4.6 -8.2 4.7 3.4 
Friction conn., Klingersil – -8.0 – 3.3 
Friction conn., EPDM – -5.6 – 2.0 

  
 

Equivalent smooth shell model: Smooth 

Load case 
n1,smooth 
(N/mm) 

n2,smooth 
(N/mm) 

|n12,smooth|  
(N/mm) 

Uniform load case -4.7 -5.0 0.2 
Nonuniform load case -2.9 -5.7 1.4 

 
 
 

Non-uniform load case: 1kN/m2 
pressure load on the hatched area. 
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Model: FacF_plate 
 
  Uniform load case: 1kN/m2 pressure load on the entire structure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A detailed description of the model can be found in Appendix A. 
The in-plane forces listed below are found at the edge marked in the illustrations above. 
The general element size is 110mm. At the investigated edge, and in the surrounding facets, the 
general element size is 10mm. 
The forces at the investigated edge have converged for the applied element size. 
The given n22,peak force is the maximum n22,peak force value present in the structure. 
 

Model: FacF_plate 

Load case 
n22,peak 
(N/mm) 

n22,edge 
(N/mm) 

|n12,peak|  
(N/mm) 

|n12,edge| 
(N/mm) 

Uniform load case 7.1 -10.9 1.7 1.2 
Nonuniform load case 1 8.1 -10.9 4.2 3.5 
Nonuniform load case 2 6.8 -10.9 4.5 3.8 

 
 

Equivalent smooth shell model: Smooth 

Load case 
n1,smooth 
(N/mm) 

n2,smooth 
(N/mm) 

|n12,smooth|  
(N/mm) 

Uniform load case -4.7 -5.3 0.3 
Nonuniform load case 1 -3.9 -5.8 1.0 
Nonuniform load case 2 -3.6 -6.2 1.3 

 
 
 
 

Non-uniform load case 2: 
1kN/m2 pressure load on the 
hatched area. (Rotated 18 
degrees relative to the faceting 
pattern.) 

Non-uniform load case 1: 
1kN/m2 pressure load on the 
hatched area. 
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Model: FacStar 
 
 
 
 
Uniform load case:  
1kN/m2 vertical load on the entire structure. 
 
Non-uniform load case: 
1kN/m2 vertical load on the hatched area. 
 
 
 
A detailed description of the model can be found in Appendix A. 
The in-plane forces listed below are found at the edge marked in the illustration above. 
The general element size is 110mm. At the investigated edge, and in the surrounding facets, the 
general element size is 10mm. 
The forces at the investigated edge have converged at the applied element size.  
The maximum n22,peak force present in the structure (located at a different edge than the edge 
investigated here) is 12N/mm. That value has converged. 
 
 

Model: FacStar 

Load case 
n22,peak 
(N/mm) 

n22,edge 
(N/mm) 

|n12,peak|  
(N/mm) 

|n12,edge| 
(N/mm) 

Uniform load case 6.3 -4.8 1.3 0.01 
Nonuniform load case 7.4 -4.8 3.8 2.9 

 
 
 

Equivalent smooth shell model: Smooth_FacStar 

Load case 
n1,smooth 
(N/mm) 

n2,smooth 
(N/mm) 

|n12,smooth|  
(N/mm) 

Uniform load case -1.7 -3.0 0.7 
Nonuniform load case -1.1 -3.3 1.1 

 
 
 
 
 
 
 
 
 
 



 



Appendix C

Test of approximate expressions for
plate bending in facets

This appendix presents documentation for the stated precision of the approximate expres-
sions for plate bending in plate shell facets. The approximate expressions are presented
in Section 5.1.3.
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Approximate calculation
d mean / mm t / mm E / N/mm 2 ν p / kN/m 2 k p / N k m / N α u / mm m j  / N m m  / N  φ

Facet 1 2155 15 70000 0.22 1 23425 600 0.02 4.7 -5 208 0.0079
Facet 2 2155 15 70000 0.22 1 23425 5000 0.18 4.1 -36 194 0.0066
Facet 3 2155 15 70000 0.22 1 23425 100000 0.81 1.8 -165 133 0.0015
Facet 4 2155 15 70000 0.22 1 23425 71000 0.75 2.0 -153 139 0.0020
Facet 5 2155 15 70000 0.22 1 23425 176000 0.88 1.6 -179 126 0.0009
Facet 6 1769 15 70000 0.22 1 28536 600 0.02 2.1 -3 140 0.0044
Facet 7 1769 15 70000 0.22 1 28536 5000 0.15 1.9 -20 132 0.0038
Facet 8 1769 15 70000 0.22 1 28536 100000 0.78 0.9 -107 92 0.0010
Facet 9 1769 15 70000 0.22 1 28536 71000 0.71 1.0 -98 96 0.0013
Facet 10 1769 15 70000 0.22 1 28536 176000 0.86 0.7 -118 87 0.0006
Facet 11 1366 15 70000 0.22 1 36958 15780 0.30 0.6 -24 73 0.0014
Facet 12 1500 15 70000 0.22 1 33654 15780 0.32 0.8 -31 87 0.0018
Facet 13 1554 15 70000 0.22 1 32484 15780 0.33 1.0 -35 93 0.0020
Facet 14 1574 15 70000 0.22 1 32072 15780 0.33 1.0 -36 95 0.0021
Facet 15 1395 15 70000 0.22 1 36187 60000 0.62 0.4 -53 63 0.0008
Facet 16 1915 15 70000 0.22 1 26361 60000 0.69 1.4 -111 114 0.0017

Measured using FEM
u / mm % m j,FEM  / N % m m  / N %  φ % Origin of facet

Facet 1 4.1 15 -3 41 209 -1 0.0063 25 Hexagonal facet from FacC_hinge
Facet 2 4.2 -1 -28 21 218 -11 0.0059 12 Hexagonal facet from FacC_EPDM
Facet 3 2.0 -9 -135 18 126 6 0.0018 -15 Hexagonal facet from FacC_Klingersil
Facet 4 2.2 -8 -125 18 133 4 0.0022 -9 Hexagonal facet from FacC_adh1
Facet 5 1.7 -9 -155 14 113 12 0.0013 -27 Hexagonal facet from FacC_adh2
Facet 6 1.9 15 -2 29 141 0 0.0034 28 Pentagonal facet from FacC_hinge
Facet 7 1.7 13 -19 7 149 -11 0.0030 26 Pentagonal facet from FacC_EPDM
Facet 8 0.9 -2 -108 -1 79 16 0.0004 130 Pentagonal facet from FacC_Klingersil
Facet 9 0.9 11 -101 -3 84 14 0.0009 45 Pentagonal facet from FacC_adh1
Facet 10 0.7 14 -127 -8 72 20 0.0003 130 Pentagonal facet from FacC_adh2
Facet 11 0.5 10 -23 6 73 0 0.0011 31 Pentagonal facet from FacF_plate
Facet 12 0.8 2 -35 -10 97 -10 0.0018 3 Hexagonal facet from FacF_plate
Facet 13 1.0 -1 -36 -4 101 -8 0.0019 7 Hexagonal facet from FacF_plate
Facet 14 1.1 -5 -36 -1 102 -6 0.0019 11 Hexagonal facet from FacF_plate
Facet 15 0.4 2 -49 8 58 10 0.0006 28 Hexagonal facet from FacStar
Facet 16 1.2 15 -74 34 86 32 0.0016 8 Octagonal facet from FacStar

Notes
The deflections of the facets from FacC_EPDM have been adjusted by subtracting the mean deflection of the facet's
edge mid-points.

For small φ  values: The relative deviation of the values is large, because the values are compared to small numbers. 
The absolute deviation is not larger than for the other facets.

The octagonal facet (facet 16) is relatively uneven in shape ("oblong"), and the approximate results are therefore 
more on the safe side than the stated general precision.
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[24] Wilhelm Flügge. Stresses in Shells. Springer-Verlag Berlin Heidelberg New York,
1973.

[25] Michael John Gorman. Buckminster Fuller – Designing for Mobility. Skira, 2005.

[26] Matthias Haldimann, Andreas Luible, and Mauro Overend. Structural use of glass.
International Association for Bridge and Structural Engineering (IABSE), 2008.

[27] Klavs Feilberg Hansen. Geometrisk modellering til brug i datamat. Statens Bygge-
forskningsinstitut, SBI, 1991.

[28] Klavs Feilberg Hansen. A method for faceting double curved surfaces. International
Journal of Space Structures, 34(3), 1993.

[29] Werner Helmet. From the Arratus Globe to the Zeiss Planetarium. Gustav Fischer,
1957.

[30] HILTI. HILTI HIT-HY 70 for structural glass. www.hilti.co.uk, 2008.

112 Department of Civil Engineering - Technical University of Denmark



Bibliography

[31] Theis Vielsted Isgreen. Fem-modellering af facetterede skaller i glas. Master’s thesis,
Department of Civil Engineering, Technical University of Denmark, 2007.

[32] Stinne Hede Poulsen Jens Zangenberg Hansen. Glued connection in plate shell glass
structure. Master’s thesis, Department of Civil Engineering, Technical University of
Denmark, 2010.

[33] Björn Karlsson and James G. Quintiere. Enclosure Fire Dynamics – A first draft of
a student textbook. Lund University, Dept. of Fire Safety Engineering, 1998.

[34] William Karush. The crescent dictionary of mathematics. Dale Seymour Pubn, 1987.

[35] Klinger. Klingersil r© C-4500 product documentation. www.klinger.co.at, 2007.

[36] Ron Knott. http://www.mcs.surrey.ac.uk/personal/r.knott/.

[37] W.T. Koiter. Over de Stabiliteit van het Elastisch Evenwicht. PhD thesis, TH Delft,
1945.

[38] W.T. Koiter. On the stability of elastic equilibrium, NASA technical translation f10,
833. Technical report, NASA, 1967.

[39] Helle Krogsgaard. Undersøgelse af en samling til skivebaserede skalkonstruktioner
i glas. Master’s thesis, Department of Civil Engineering, Technical University of
Denmark, 2008.

[40] W.J. Lewis. Tension structures – form and behaviour. Thomas Telford Publishing,
2003.

[41] Zygmunt Stanislaw Makowski. Analysis, design and construction of braced domes.
Granada, 1984.

[42] O.G. McGee, J.W. Kim, and A.W. Leissa. Sharp Corner Functions for Mindlin
Plates. Journal of Applied Mechanics, 72(1), 2005.

[43] H. Nooshin. Algebraic representation and processing of structural configurations.
International Journal of Computers and Structures, 5(2-3), 1975.

[44] P.J. Pagni and A.A. Joshi. Glass breaking in fires. In Fire Safety Science – Proceed-
ings, Third International Symposium, pages 791–802, London, 1991. Elsevier Applied
Science.

[45] H. Pottmann, A. Asperl, M. Hofer, and A. Kilian. Architectural Geometry. Bentley
Institute Press, 2007.

[46] prEN13474 3. Glass in building - Determination of the strength of glass panes -
Part3: General method of calculation and determination of strength of glass by
testing. European Standard, November 2005.

Department of Civil Engineering - Technical University of Denmark 113



Bibliography

[47] E. Ramm, K.-U. Bletzinger, and R. Reitinger. Shape optimization of shell struc-
tures. IASS Bulletin of the International Association for Shell and Spatial Structures,
34(112), 1993.

[48] C. Schittich, G. Staib, D. Balkow, M. Schuler, and W. Sobek. Glasbau Atlas.
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A shell structure of glass combines a highly effective structural principle – the shell – with 
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