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greater details.
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Abstract

At present no consistent methods are available for a complete structural analysis of con-
crete structures. There are no methods which are capable of predicting crack pattern,
crack widths and development in structural stiffness in the serviceability state while at
the same time being able to model the response of the structure all the way to failure.
With respects to models dealing with durability and life time predictions of RC struc-
tures there is a lack of methods capable of supplying information about cracking to the
durability estimates. Thus models capable of predicting crack growth, crack patterns and
crack widths in RC structures are required.

Analysis of structures with complex geometry will often require the use of numerical tools
such as the finite element method. Therefore it is seen as essential that a model for crack-
ing of RC structures fits within the framework of this method.

This thesis is concerned with the modeling of cohesive crack growth in concrete within the
framework of the eXtended Finite Element Method (XFEM). The major part of the work
is concerned with the modeling of crack growth in the bulk concrete from a computational
point of view.

The cornerstone in the XFEM is the enrichment of the displacement field in elements
cut by the discontinuity. The development of proper enrichment schemes for elements
for cohesive crack growth has been a focus area in the research presented in this thesis.
The proposed enrichments are based on local partitions of unity and the enrichments only
influence elements cut by the discontinuity. A direct enrichment scheme for fully cracked
elements is proposed. The enrichment scheme is able to model the same variations in
the displacement field as other XFEM elements found in the literature. The proposed
enrichment scheme is, however, more straight forward and is easily implemented. The
enrichment is implemented for the constant strain triangle (CST) and the linear strain
triangle (LST). The performance of the elements is illustrated by modeling of fracture in
two benchmark fracture tests for concrete - the notched three point bending test (TPBT)
and the notched four point shear beam (FPSB). Good results are obtained with respect
to predicting crack paths and determining the full load-deformation responses applying
the fully cracked elements.

Applying the enrichment scheme proposed for fully cracked elements or the schemes found
in the literature, the crack-tip element is not capable of modeling equal stresses at each side
of the crack. Furthermore elements that are not capable of holding the crack tip within
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the interior of the element do not allow computation of all possible load-displacement
states as it is normally required in a general non-linear procedure. Therefore, a consistent
XFEM element, capable of modeling equal stresses at each side of the crack in the tip-
element, and capable of holding the crack tip at any point within the element, is proposed.
The capability to model equal stresses at each side of the crack in the crack-tip element
is achieved by addition of extra enrichments to elements cut by the discontinuity. The
extra enrichments are, like the enrichment applied for the fully cracked elements, element
local and influence only elements cut by the crack. This enrichment scheme is developed
for the CST element and the performance of the partly cracked element is illustrated
by modeling of fracture in the TPBT specimen and in the FPSB. Applying the partly
cracked CST element the prediction of the crack paths are improved and more smooth
crack paths are achieved. Also more smooth load-deformation responses are obtained.

The interaction between the bulk concrete and the reinforcement is the governing factor
for the load carrying capacity of RC structures. Regarding the capability of the model
to include reinforcement the long time goal may be the formulation of a ”super” element
capable of modeling the overall physical behavior of reinforcement embedded in concrete.
As a step towards a super element a cohesive XFEM interface element for modeling of
the bond zone between reinforcement and concrete is developed. The interface element
is developed in a plane 2D version capable of being partly cracked. The performance of
the interface element is tested by modeling of fracture in the previous considered TPBT
specimen. A nice smooth crack profile is obtained applying the interface element and
good results are obtained with regard to the load-deformation response when the crack
is propagated element by element. When the crack-tip is located inside an element the
load-deformation response becomes somewhat tortious.



Resumé

P̊a nuværende tidspunkt er der ingen tilgængelige konsistente metoder for en fuldstændig
analyse af betonkonstruktioner. Der er ingen metoder, der er i stand til at forudsige
revnemønstre, revnevidder samt udvikling i stivheden for konstruktioner i anvendelses-
grænsetilstanden samtidig med, at de er i stand til at modellere det strukturelle respons
hele vejen frem til brud. I relation til levetidsmodeller for betonkonstruktioner er der man-
gel p̊a metoder, der er i stand til at tilføre levetidsmodellerne information om revnedan-
nelse. Modeller, der kan forudsige revnevækst, revnemønstre og revnevidder i armerede
betonkonstruktioner, er p̊akrævede.

Analyse af konstruktioner med komplekse geometrier vil ofte kræve anvendelse af nu-
meriske værktøjer som fx. den finitte element metode. Derfor vil det være fordelagtigt
s̊afremt metoder til modellering af revnevækst er kompatible med den finitte element
metode.

Denne ph.d.-afhandling omhandler kohæsiv revnevækst i beton inden for rammerne af
”the eXtended Finite Element Method”, XFEM. Hovedparten af forskningsarbejdet er
relateret til modellering af revnevækst i uarmeret beton ud fra et modelleringsteknisk
perspektiv.

XFEM er baseret p̊a berigelse af flytningsfeltet i elementer, der er gennemsk̊aret af en
diskontinuitet. Udviklingen af fornuftige koncepter til berigelse af flytningsfeltet - i ele-
menter til kohæsiv revnevækst - har været i fokus i den udførte forskning. De præsenterede
koncepter for berigelsen er baseret p̊a lokale enhedsflytningsfelter (partition of unity). De
foresl̊aede berigelser er elementlokale, og kun elementer der er gennemsk̊aret af diskonti-
nuiteten berøres af berigelsen. Et direkte og enkelt koncept for berigelsen af elementer,
der er gennemsk̊aret af en diskontinuitet i elementets fulde længe, er præsenteret. De
foresl̊aede elementer er i stand til at modellere samme variation i flytningsfeltet som an-
dre XFEM elementer for kohæsiv revnevækst fundet i litteraturen. Den anvendte berigelse
af flytningsfelter er imidlertid konceptuelt enklere og lader sig nemt implementere. Den
foresl̊aende berigelse er implementeret for CST elementer, der kan reproducere konstante
tøjninger, samt for LST elementer, der kan reproducere en lineær tøjningsvariation. El-
ementernes egenskaber er illustreret ved modellering af revnevækst i traditionelle brud-
mekaniske tests, som kærvet trepunktsbøjning (TPBT) samt revnevækst i den s̊akaldte
firepunktsforskydningsbjælke (FPSB). Gode resultater er opn̊aet med hensyn til s̊avel
forudsigelse af revnemønster samt bestemmelse af det fulde last-flytningsrespons med an-
vendelse af de fuldt revnede elementer.
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N̊ar berigelseskoncept for de fuldt revnede elementer eller berigelseskoncepter fra littera-
turen anvendes, er revnespidselementet ikke i stand til at modellere identiske spændinger
p̊a begge sider af revnen. Anvendelsen af elementer, der ikke er i stand til at indeholde
revnespidsen i et vilk̊arligt punkt inden for elementet, muliggør desuden ikke beregning af
alle mulige last-flytningstilstande, som det normalt er p̊akrævet i en generel ikke-lineær
beregningsprocedure. Derfor præsenteres ogs̊a et delvist revnet XFEM revnespidselement,
der er i stand til at modellere identiske spændinger p̊a de to sider af revnen. Elementet er
i stand til at h̊andtere en vilk̊arlig placering af revnespidsen inden for elementet. Mulighe-
den for at modellere identiske spændinger p̊a begge sider af revnen er opn̊aet ved tilføjelse
af ekstra berigelser af flytningsfeltet. De ekstra berigelser er som berigelsen af de fuldt
revnede elementer baseret p̊a en lokal partion of unity. Det foresl̊aede berigelseskoncept
er implementeret for CST elementet. Elementets egenskaber er illustreret ved modeller-
ing af revnevækst i de tidligere anvendte tests, TPBT og FPSB. Ved anvendelsen af det
delvist revnede element opn̊as en bedre bestemmelse af revnemønsteret - det er glattere.
Ligeledes f̊as et glattere last-flytningsrespons.

Sammenvirkningen mellem beton og armering i armerede betonkonstruktioner er den
styrende faktor for evnen til at optage last. Vedrørende modellens evne til at inkludere
armering er det langsigtede perspektiv formuleringen af et s̊akaldt superelement, der vil
være i stand til at modellere de overordnede fysiske egenskaber af armering indstøbt i
beton. Som et skridt frem mod et s̊adan superelement præsenteres et kohæsivt XFEM
interfaceelement til modellering af skillefladen mellem beton og armering. Interfaceele-
mentet er udviklet i en plan udgave og er i stand til at være delvist revnet. Interfaceele-
mentets egenskaber er illustreret ved modellering af revnevækst i TPBT bjælken. Med
anvendelsen af interfaceelementet opn̊as en pæn, glat lukkende revne. Med hensyn til
last-flytningsresponset opn̊as gode resultater, n̊ar revnen propageres element for element,
mens nogen ujævnhed af responset er konstateret, n̊ar revnespidsen er i den indre del af
elementet.
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Chapter 1

Introduction

Concrete-like materials were used by the Greeks as early as 500-300 BC and it were
used for important Roman architectural master pieces such as Colosseum (72-80 AD) and
Pantheon (120-125 AD). Portland cement, the basis of modern concrete was, however,
not patented until 1824 by Joseph Aspdin. Twenty four years later steel was applied as
reinforcement in concrete for the first time when Jean Louise Lambot in 1848 build a
boat of concrete with embedded iron bars. In 1868 Joseph Monier patented a system for
reinforcing garden tubs and later also concrete beams. Since those early applications of
reinforced concrete the technology has developed rapidly and today reinforced concrete is
the most widely used construction material in the world. The annual (2005) consumption
of concrete has now raised to about 6 billion tons - equivalent to 1 ton per person on the
entire planet.

1.1 Analysis of Concrete Structures

Throughout the last century intense research has been carried out regarding methods
to determine the ultimate strength of reinforced concrete (RC) structures. Today well-
documented methods are available for estimating the ultimate strength of most RC struc-
tures. Methods based on the theory of linear elasticity are widely used - e.g. ACI Commit-
tee 318 (2002) - but also methods based on the theory of plasticity assuming a rigid-plastic
material behavior have proven to be successful and are today highly developed - see e.g.
Nielsen (1999). However, most of these methods require the use of empirical factors and
do not consider reinforcement arrangement in a fully consistent way. Most of the models
are further encumbered with size effects that also need to be handled through empirical
factors.

Regarding RC structures in the serviceability limit state the predictive capability of ex-
isting methods of analysis is limited. Predictions of the load-deformation-response of RC
structures in the serviceability state are often based on empirical rules - see e.g. DS 411
(1999). Attempts have been made to establish more consistent methods to predict the
behavior in the serviceability state. Christiansen (2000) and Christiansen and Nielsen
(2001) have developed a set of simple models suitable for hand calculation to predict the
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Introduction 1.2 A Fracture Mechanics Approach

structural behavior of reinforced concrete in plane stress. These models are based on the
diagonal compression stress field of concrete and have been extended to include a devel-
oping crack phase to take into account tension stiffening. The models by Christiansen
are semi-analytical and only developed for simple geometries. Analysis of structures with
complex geometry will often require the use of the Finite Element Method (FEM) for
which the semi analytical approach is not suitable. A complete model for the structural
behavior of RC structures in the serviceability limit state must be able to predict the
complex cracking which takes place in the concrete during loading. Furthermore, it is
preferable if the model fits within the framework of the FEM to allow modeling of struc-
tures with complex geometries.

Extended knowledge of the complex mechanical interaction between concrete and rein-
forcement and the development of methods for modeling of RC structures in the service-
ability state will also be of great importance for the development of models capable of
describing the response of RC structures subjected to fatigue loading.

In the long term perspective consistent models that are able to predict development of
crack patterns and crack widths may also provide information in relation to durability
and service life prediction for concrete structures. The connection between the presence
of cracks in RC structures and corrosion of reinforcement has been known for a long time.
Several design codes specify requirements for allowable crack widths in concrete. On the
basis of early studies Beeby (1978) concluded that there is no significant relationship
between crack widths and corrosion. However, more recent studies by e.g. Schießl and
Raupach (1997) and Mohammed et al. (2001) show that the time to initiation of rein-
forcement corrosion depends on the crack width. For design purposes the service life of a
RC structures is often defined as the time to initiation of reinforcement corrosion. Other
studies (Arya and Ofori-Darko, 1996) reveal that the crack spacing is a governing factor
in the reduction of the rate of corrosion - i.e. from a corrosion point of view several small
cracks are more sever than one large crack. Therefore also the crack pattern plays an
important role in relation to durability.

Ongoing efforts in the research community are focused on the scope of developing proper
methods for modeling of reinforced concrete structures. A proper method must be capable
of predicting crack paths and crack widths in concrete and it must be able to model the
complex interaction between reinforcement and concrete.

1.2 A Fracture Mechanics Approach

Any method for structural analysis must be based on an appropriate physical model for
the material considered. Several properties of concrete make fracture mechanics relevant
when the scope is to model structural concrete. The fact that concrete structures are full
of flaws due to pores, air voids and shrinkage cracks, which may initiate further crack
growth when the concrete structure is loaded, points toward fracture mechanics. Also the
fact that concrete shows tension softening (see e.g. Karihaloo (1995)) due to localized
micro cracking motivates the application of fracture mechanics. Furthermore, today the
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1.2 A Fracture Mechanics Approach Introduction

tensile strength of concrete is neglected in most of the serviceability and the limit state
calculations. Ignoring the tensile strength in serviceability calculations maks it difficult
to model the presence and effect of cracks. The tensile strength of concrete is often sig-
nificant compared to the stresses associated with the applied loads in the serviceability
state and therefore important to take into account. This may be done applying a fracture
mechanics approach.

More than twenty years ago Hawkins (1985) listed twenty-nine provisions in the ACI Code
318 ”Building Code Requirements for Reinforced Concrete” that until then did not have
a thorough physical explanation but could be explained by the theory of fracture. The
twenty-nine provisions were mainly related to issues regarding minimum reinforcement
ratios for flexural and shear reinforcement and to ductility requirements. In the begin-
ning of the nineties the work of Hawkins was followed up by ACI Committe 446 (1992)
who listed five strong arguments for the application of fracture mechanics to structural
concrete:

(i) Energy requirement for crack growth.
What is important for cracking in a structure is not how the cracking is initiated but
how the cracking will propagate. The growth of any crack requires the consumption
of a certain amount of energy. Therefore the crack propagation can only be studied
through an energy based propagation criterion. A crack initiation criterion - e.g. a
crack strength is not sufficient.

(ii) Objectivity of load and response calculation
Early finite element calculations showed dependency on mesh size. The way to
obtain reliable results that are independent of element size require the energy dis-
sipated through cracking to be constant. A constant dissipation of energy - the
fracture energy - forms the corner stone of fracture mechanics of concrete.

(iii) Lack of yield plateau
For materials that exhibit softening the failure process does not result in the forma-
tion of plastic hinges at isolated locations, but takes place due to the propagation
of a fracture zone throughout the structure.

(iv) Energy absorbing capability and ductility
When considering a load displacement diagram for a structure loaded to failure the
area under the graph represents the energy consumed during the failure process. For
a softening type material the post peak response (the non reversible part) represents
the bulk of the absorbed energy and it determines the ductility of the structure.
Limit state analysis does not consider tension softening and therefore it can not
give an indication of the ductility of the structure.

(v) Size effect
Fracture mechanics may opposite to strength criterions predict the effect of the
structural size on the failure load and ductility.

Department of Civil Engineering - Technical University of Denmark 5



Introduction 1.3 Computational Modeling of Reinforced Concrete Structures

Thus fracture mechanics may contribute to physical explanation of phenomena that
present codes only take into account using empirical formulas. Phenomena that in many
cases will be related to the serviceability state. An introduction to fracture mechanics
applicable to concrete will be given in Chapter 2 of this thesis. Cohesive crack models will
be identified as very suitable models for modeling of cracks in concrete and the proposed
FEM model for modeling of the structural response of concrete structures will be based
on fracture mechanics applying a cohesive model.

1.3 Computational Modeling of Reinforced Concrete Structures

Computational modeling of a reinforced concrete beam applying the FEM was carried
out almost forty years ago by Ngo and Scordelis (1967). In this seminal work the in-
fluence of cracking was investigated assuming a number of different crack patterns. The
effects of cracks was modeled by disconnecting nodes located at opposite side of the crack.
However the results obtained by Ngo and Scordelis (1967) showed mesh dependency and
thus revealed the requirement for energy based crack propagation criterions. Today, FEM
computations are often used for analysis of complex concrete structures. However, since
the majority of codes of practice are based on the theory of elasticity, e.g. ACI Com-
mittee 318 (2002), and since the implementation of models based on linear elasticity is
simple, most of the FEM computations for practical purposes are based on the theory of
linear elasticity. Commercial FEM codes like DIANA (Diana User Manual, 2003a) have
elements that allow the user to embed reinforcement in terms of bars or grids into beam,
curved shell or solid elements. The interaction between reinforcement and concrete in
such models is assumed to be either full bonding or no bond at all between reinforcement
and concrete.

FEM computations based on the theory of plasticity assuming a rigid-plastic material
behavior are more difficult but have been carried out in a number of examples. Early
examples include Damkilde and Kirk (1981) whereas more recent examples include the
work by Damkilde and Krenk (1997) where a system for limit state analysis and material
optimization based on the lower-bound theorem is proposed. In this work a number of
elements were considered: two- and three dimensional beam elements, truss elements,
triangular slab elements and shear and stringer elements for plates with in plane load-
ing. In the work by Poulsen and Damkilde (2000) limit state analysis of RC concrete
plates subjected to in-plane forces were considered whereas a lower bound limit analy-
sis of slabs with nonlinear yield criteria was carried out in Krabbenhoft and Damkilde
(2002). Despite their advantage in relation to structural optimization the computational
methods based on the assumption of a rigid-plastic material behavior are not widely used.

Common for the computational approaches referred to above are that they all focus on
the ultimate limit state. They do not predict crack paths and crack widths and are not
capable of predicting developments in e.g. stiffness in the serviceability state.

A number of FEM approaches allow modeling of cracks and crack propagation. The
models are conceptually different: whereas some require the crack path to be known be-
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fore hand others are capable of modeling crack growth independent of the mesh. Some
approaches model the cracks in a discrete approach, c.f. Figure 1.1(a), where the crack
location and the crack openings are known precisely. Other models smears the crack over
an element, c.f. Figure 1.1(b).

(a) (b)

Figure 1.1 Different approaches to modeling of crack propagation in three point bend-
ing beam: (a) discrete approach applying the XFEM, (b) smeared approach
(Jirásek and Zimmermann, 1998a)

Interface crack models allow inter-elemental crack propagation along predefined paths
and model cracks in a discrete approach. Interface models are well suited for modeling of
situations where crack paths are known a priori, however, this is rarely the case in real
concrete structures. In combination with remeshing techniques interface elements allow
modeling of unknown crack paths - see e.g. Yang and Chen (2005). However, remeshing
is computationally expensive making this approach less attractive.

Embedded crack models based on the pioneering work of Ortiz et al. (1987) may also
model cracks in a discrete approach. In embedded models cracks propagate through an
existing mesh independent of element boundaries. However, in embedded crack models
the strains on each side of the crack in a cracked element are not fully uncoupled as it is
preferred.

Smeared crack models based on the concept of a crack band (Bažant and Oh, 1983) model
cracking in a plasticity approach in which the exact location of the crack inside an element
is unknown. The interpretation of crack widths is difficult in smeared models and they
often show mesh dependency and locking. Models based on damage mechanics (Jirásek,
2004) may also be considered for modeling of fracture in concrete, however, this group of
models does not, like the smeared models, model cracks in a discrete approach and hence
have some of the drawbacks of the smeared models.

Recent approaches include element free methods (Belytschko et al., 1996) but these mod-
els do not fit within the framework of traditional FEM models. Among the most recent
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approaches for modeling of crack propagation is also the eXtended Finite Element Method
(XFEM) (Belytschko and Black, 1999; Moës et al., 1999). In the XFEM the displacement
field is decomposed into a continuous part and a discontinuous part allowing the element
to describe a discontinuity discretely within the element. Applying the XFEM, crack
growth is independent of the mesh. Furthermore, in the XFEM the uncracked parts on
each side of an element are uncoupled and hence XFEM elements have superior kinematic
properties compared to embedded crack models.

A more extensive review and discussion of the most relevant computational models for
fracture in concrete will be given in Chapter 3. As already indicated XFEM seems to be
the best suited method for modeling of crack propagation in concrete. The XFEM fulfills
the previous listed requirements in terms of capability to predict crack patterns and crack
widths in an efficient and mesh independent way. While most of the models mentioned
above have been applied to modeling of crack growth in the bulk concrete it is still an open
question how reinforcement may be included in computational models applying fracture
mechanics. When modeling the interaction between reinforcement and concrete it is of
major importance to include the hoop stress that builds up on the reinforcement. This
is known as the confinement pressure - or simply the confinement - and is mainly due to
dilation caused by the ribs on the reinforcement. At present there is no standard approach
on how to include the effects of confinement. Also regarding the constitutive parameters
applicable for the bond zone between reinforcement and concrete more research is still
needed.

1.4 Scope of This Study

At present no consistent methods are available for a complete structural analysis of con-
crete structures. There are no methods which are capable of predicting crack pattern,
crack widths and development in structural stiffness in the serviceability state while at the
same time being able to model the response of the structure all the way to failure. With
respects to models dealing with durability and life time predictions of RC structures there
is a lack of methods capable of supplying information about cracking to the durability
models. Models capable of predicting crack growth, crack patterns and crack widths in
RC structures are required.

This thesis is concerned with the modeling of cohesive crack growth in concrete within
the framework of the eXtended Finite Element Method (XFEM). The major part of the
work is concerned with the modeling of crack growth in the bulk concrete from a com-
putational point of view. Low order elements in terms of CST and LST elements are
considered to allow the modeling of real size civil structures in the long time perspective.
Regarding the capability of the model to include reinforcement the long time goal may be
the formulation of a ”super” element. A super element is an element capable of modeling
the overall physical behavior of reinforcement embedded in concrete taking into account
effects as confining pressure and combined separation and sliding between reinforcement
and concrete. As a step towards such a super element a cohesive XFEM interface element
for modeling of the bond zone between reinforcement and concrete is developed.
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1.5 Overview of the Thesis

The thesis opens with a short introduction to fracture mechanics and cohesive crack mod-
els. Then follows a review of finite element techniques that may be applied for modeling
of cohesive crack growth. A general introduction to XFEM will be given before getting
into the specific applications of XFEM to cohesive crack propagation .

The original contributions in the work are related to three papers forming the core of
the thesis. The scope of each paper will be given in detail in the individual chapters and
will not be repeated in great detail here. The two first papers are related to modeling
of crack growth in the bulk concrete while the third paper is related to the inclusion of
reinforcement in the model.

Paper I, ”A direct XFEM formulation for modeling of cohesive crack growth” deals with
the development of a direct scheme for cohesive crack growth applying fully cracked XFEM
elements. The simplification is related to the so-called enrichment of the displacement
field that introduces the discontinuous displacement field in elements cut by a discon-
tinuity. The enrichment scheme is applied to elements that are capable of being either
uncracked or fully cracked - i.e. in this work the crack-tip is always located on an element
boundary. The developed scheme is implemented for the 3-node constant strain triangle
(CST) element and the 6-node linear strain triangle (LST) element. The performance of
the scheme is tested by modeling of crack propagation in the notched three point beam
bending test (TPBT) and in the notched four point shear beam (FPSB).

Paper II, ”A consistent partly cracked XFEM element for cohesive crack growth” intro-
duces a new partly cracked XFEM element for cohesive crack growth. This new element
is capable of holding the crack-tip at any point within the element and hence allows the
modeling of all possible load-displacement states, as it is normally required in a non-linear
analysis. This is not possible when fully cracked elements are applied. From a computa-
tional point of view the capability to model all load-displacement states is favorable for
the stability of the computations. Furthermore, the proposed crack-tip element allows
modeling of equal stresses at each side of the crack in the crack tip element which can not
be done applying the previously proposed XFEM elements for cohesive cracking (Wells
and Sluys, 2001; Zi and Belytschko, 2003; Mergheim et al., 2005; Asferg et al., 2007b).
This improved representation of the stresses in the crack-tip element improves the com-
putation of crack growth direction and the new element yields a more smooth structural
response compared to the fully cracked elements. The scheme is implemented for the
CST element and by nodal averaging of stresses a stress interpolation is computed for the
element allowing solutions where stresses in the crack tip are equal to the tensile material
strength. The examples considered for the fully cracked elements are computed applying
the partly cracked element and the results are compared.

Paper III, ”Partly Cracked XFEM interface element”. Whereas the two first papers are
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concerned with the modeling of crack propagation in the bulk concrete the third paper
is related to the inclusion of reinforcement in the model. The paper is concerned with
the finite element aspects of the inclusion of reinforcement and does not concern the con-
stitutive conditions for the bond zone, which in its own possess a large research area. A
first step towards a super element modeling the interaction between reinforcement and
concrete is a cohesive interface element that is capable of being partly cracked. An XFEM
interface element capable of being partly cracked is developed in paper III and its per-
formance is illustrated modeling crack growth in the TPBT specimen also considered in
Paper I and Paper II.

In Chapter 7 the findings in the preceding chapters are summarized and final conclusions
are drawn. Suggestions for improvements of the proposed XFEM elements are given and
areas for further research are pointed out.
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Chapter 2

Fracture Mechanics for Concrete

This chapter gives a brief introduction to fracture mechanics applicable to concrete. Al-
though fracture of concrete in most structures must be described by non-linear fracture
mechanics the chapter opens by introducing the concepts of linear elastic (LEFM) fracture
mechanics, that also forms the basis for the non-linear fracture mechanics. For a more
detailed introduction to fracture mechanics reference is made to e.g. Karihaloo (1995) or
Shah et al. (1995).

2.1 Linear Elastic Fracture Mechanics

Griffith (1921) was the first to develop an analysis procedure based on energy consider-
ations for the fracture of brittle materials. Griffith explained why the observed tensile
strength of brittle materials is significantly lower than the theoretical tensile strength.

Griffith studied the influence of a sharp crack in a sheet of a brittle material loaded by
a constant remote stress field. Assuming that the entire fracture process takes place
at the crack tip, where the stress field is singular, Griffith found by the principle of
superposition, the change in potential energy of the system. From this he formulated the
”Griffith” fracture criterion for ideally brittle materials introducing the surface energy
density, γs, that is the energy required to create a unit traction-free crack surface:

πaσ2
c

E
= 2γs (2.1)

where a is half the initial crack length, E the modulus of elasticity, and σc is the maximum
applicable remote tensile stress c.f. Figure 2.2. Whereas the quantity 2γs accounts for the
energy dissipation in the studies by Griffith later studies revealed that an non-negligible
amount of energy is dissipated due to friction when fracture occurs. The material tough-
ness, Gc, includes the surface energy as well as the frictional energy.

Applying the toughness the fracture criterion may also be formulated in terms of a stress
criterion for σc:
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σc =

√

GcE

πa
(2.2)

If, for a given load σ < σc, the applied elastic energy is lower than the critical energy the
crack will not propagate. For loads causing σ > σc the crack will propagate catastrophi-
cally since for increasing crack length the critical stress decreases.

Irwin (1957) introduced the stress-intensity factor concept or the so called ”Irwin Cri-
terion for fracture of brittle materials”. Irwin showed that for the stress variation near a
sharp crack tip in a linear elastic material a square-root singularity, r−1/2, where r is the
distance to the crack tip, for r << a, is always found. For the description, of fracture
three fundamental modes have been defined for the crack opening. The three modes are
depicted in Figure 2.1. Mode I and Mode II are planar modes. Mode I is caused by
stresses normal to the crack face while Mode II is due to shear stresses along the crack
face. Mode III is an anti-plane mode caused by tearing loading. Like Griffith, Irwin
studied the so called Mode I fracture. While the square-root singularity is independent of
the crack opening mode, the stress intensity factor depends on the boundary conditions,
geometry and loading mode of the system. A stress intensity factor for each mode will
be required for the full description of generalized fracture. For Mode I, II and III, respec-
tively, the stress intensity factors are termed KI , KII and KIII .

Figure 2.1 The three opening modes for cracks. Mode I and Mode II are planar modes
while Mode III is a anti plane mode of deformation. From (Karihaloo, 1995)

Applying the stress intensity factor the stress components and the displacement field near
the crack tip may be obtained. Introducing a polar coordinate system with origin at the
crack tip, c.f. Figure 2.2, the leading terms of the Williams expansion (Williams, 1952),
for the stresses and displacements as function of the distance r and the angle θ for Mode
I, are:

σxx =
KI√
2πr

cos
θ

2

(

1 − sin
θ

2
sin

3θ

2

)
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σyy =
KI√
2πr

cos
θ

2

(

1 + sin
θ

2
sin

3θ

2

)

(2.3)

σxy =
KI√
2πr

cos
θ

2
sin

θ

2
sin

3θ

2

u =
KI (1 + υ)

E

√

2r

π
cos

θ

2

(

κ− 1

2
+ sin2 θ

2

)

(2.4)

v =
KI (1 + υ)

E

√

2r

π
sin

θ

2

(

κ− 1

2
+ cos2 θ

2

)

where u and v are the horizontal and vertical components of the displacement field. The
parameter κ is equal to (3 − 4υ) for plane strain and to (3 − υ)/(1 + υ) for plane stress.

σ

σ

θ

Figure 2.2 Sharp crack of length 2a in an ”infinite” body under Mode I loading.

The fracture criterion by Irwin (1957) is formulated in terms of the stress intensity factor
and introduces a new material parameter, the critical stress intensity factor - for Mode I
termed KIc. In the case where KI > KIc uncontrolled crack propagation leading to brit-
tle failure will occur while for KI < KIc the crack will not propagate. For the problem
studied by Griffith (1921) Irwin’s fracture criterion yields:

KIc = σ
√
πa (2.5)
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If Equation 2.2 is substituted into 2.5 the following result is obtained:

K2
Ic = EGc (2.6)

from which it is seen that the global energy balance by Griffith is equivalent to Irwins
local stress criteria. Stress intensity factors for a number of problems have been computed
and are found in handbooks like Tada et al. (1985).

The Griffith/Irwin theory is based on the assumptions that the stresses and strains at the
crack tip tend to infinity and that during the fracture process energy is only dissipated
at one point (the crack tip). This contravenes the conditions of the linear elastic theory
relating small strains and Hooke’s law. Griffith (1921) therefore proposed that the crack
faces should be allowed to close smoothly forming a cusp due to large closing forces at
the crack tip. However, the first real attempt to include closing forces at the crack tip
region within the limits of the elastic theory was made by Barenblatt (1962) (Original
paper in Russian in 1959). Barenblatt assumed that smooth closure was achieved due to
large stresses with an, in general, unknown distribution acting over a small zone near the
crack-tip. The closing forces are also referred to as cohesive forces and the zone along
which they are present is refereed to as the cohesive zone, c.f. Figure 2.3, where c indi-
cates the length of the cohesive zone. Even though Barrenblatt’s model gives a physical
explanation of what is happening in the crack tip, the model essentially corresponds to
Griffith’s and Irwin’s crack models - i.e. Barrenblatt’s model reproduces the results of
LEFM.

Figure 2.3 Cohesive crack model due to Barenblatt. The length of the cohesive zone is
termed c while q(x) is the distribution of the cohesive stresses. (Karihaloo,
1995)

Parallel to Barenblatt (1962), Dugdale (1960) proposed a cohesive crack model for a
thin elastic-plastic sheet within the concepts of LEFM. In this model the distribution of
cohesive stresses is known, and the extend of the cohesive zone is assumed to be within
the same order of magnitude as the length of the crack. In Dugdale’s model the length
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of the cohesive zone is determined by a criterion for smooth crack closure in terms of a
criterion for vanishing stress intensity factor at the crack tip. This yields the relation in
(2.7) for the length of the cohesive zone, c

c

a
= 1 − cos

(

πσ

2σy

)

(2.7)

The applied stress is termed σ and σy is the yield stress of the material. At the crack tip
the cohesive stresses are assumed equal to the the yield stress of the thin plate considered.
The length of the cohesive zone, c, is normalized by half the initial crack length, cf. Figure
2.3. Also the model of Dugdale essentially reproduces the results of LEFM.

The model of Barrenblatt and Dugdale both assumes smooth closure of the crack and
no stress singularity at the crack-tip. In this thesis smooth closing crack models with no
stress singularities at the crack-tip will be referred to as cohesive models.

Several attempts to apply LEFM to concrete are found in the literature, for a review see
e.g. Karihaloo (1995). In many of those works, experiments revealed that the critical
energy release rate or the critical stress intensity factor depends on the specimen size.
This contradicts the theory of LEFM in which both measures are postulated to be mate-
rial parameters. Studies involving measurements of KIc for mortar and hardened cement
paste by e.g. Ohgishi et al. (1986) revealed, that, whereas KIc was found to be specimen
size independent for hardened cement paste, a specimen size dependency was found for
mortar. Only if the characteristic structural dimension of a given specimen is much larger
than the maximum particle size (45-135 times, c.f. Karihaloo (1995)), the stress intensity
factor is found to be independent of the specimen size. Only very few concrete structures
have structural dimensions that fulfill this requirement and therefore LEFM is not appli-
cable to most concrete structures. Expressed in other terms, the fracture process zone
(FPZ) in concrete is large and therefore LEFM is not applicable to concrete. The length
of the FPZ may be estimated applying the relation in Eq. (2.8).

lp ≈
EGf

f 2
t

(2.8)

Here E is the Young’s modulus, Gf the fracture energy and ft the material tensile strength.

Table 2.1 lists the length of the fracture process zone for various cementitious materials
and for glass which was the material Griffith used for his first investigations of fracture
mechanics.

Figure 2.4 illustrates the characteristic fracture properties for the three basic types of
materials - linear elastic, nonlinear plastic and quasi-brittle. The Griffith (1921) and Irwin
(1957) theories are applicable for the brittle fracture in the linear elastic case whereas the
cohesive model of Dugdale (1960) may be applied to non-linear plastic fracture when the
extended of the non-linear zone is small. Concrete belongs to the group of quasi-brittle
materials and in general concrete can not be modeled applying the concepts of linear
elastic fracture mechanics.
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Table 2.1 Typical length of fracture process zones for various materials, (Karihaloo, 1995)

Material lp,mm

Glass 10−6
Cement paste densified by silica fume 1
Hardened cement paste 5-15
Mortar 100-200
High strength concrete (50-100MPa) 150-300
Normal concrete 200-500

 
 
        (a) Linear Elastic           (b) Nonlinear plastic   (c) Nonlinear quasi brittle 
 

Figure 2.4 Characteristic features of fracture in (a) a linear elastic material, (b) Nonlinear
plastic (ductile metal), (c) a quassi-brittle material. L refers to the linear elastic
region, N to the nonlinear region, F to the fracture process zone. (Karihaloo,
1995)

2.2 Non-linear Fracture Mechanics

According to Table 2.1 the FPZ of cement paste is of the order 1mm while the FPZ of
structural concrete is of the order 200-500mm. The aggregates in concrete prevent the
brittle failure and a large fracture process zone arises because of progressive softening due
to micro cracking and crack bridging. Figure 2.5 shows a typical tensile load-deformation
response for concrete and illustrates the tension softening as effect of micro cracking and
crack bridging in the FPZ.

2.2.1 The Fictitious Crack Model

One of the most important cohesive crack models is the fictitious crack model (FCM) by
Hillerborg et al. (1976). The FCM was the first nonlinear fracture mechanical model for
concrete that included the FPZ. Following the concept of the cohesive models of Baren-
blatt (1962) and Dugdale (1960) a model where closing stresses act near the crack tip
and hereby ensure smooth crack closure was proposed. However, Hillerborg et al. (1976)
made no assumptions regarding the size of the FPZ and therefore the distribution of the
cohesive stresses near the crack tip must be known in the model. In the model the real
traction free part of the crack is ending in a fictitious crack, modeling the micro cracked
zone ahead of the real traction free crack. The model is known as the fictitious crack
model (FCM) and it is illustrated in Figure 2.6. The zone ahead of the fictitious crack
tip is assumed to remain elastic.
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Figure 2.5 Typical tensile load-deformation response for a concrete specimen (a), and the
fracture process zone ahead of the real traction-free crack(b). The fracture
process zone extends only over the tension softening region BCD and it can
be surrounded by a nonlinear, but not softening region, e.g. the region BA.
(Karihaloo, 1995)

 
 
 
 
 
 
 
 

 

Figure 2.6 (a) A real traction free crack of length a0 terminating in a fictitious crack with
remaining stress transfer capacity. (b) The material ahead of the fictitious
crack is assumed to remain linear elastic. (c) The material within the fracture
process zone is softening. (Karihaloo, 1995)
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When the crack propagates, energy is absorbed in the process of overcoming the closing
stresses. This amount of energy, the fracture energy, termed Gf , is equal to the area
under the tension softening curve, c.f. Figure 2.6.

Gf =

∫ 0

ft

w(σ)dσ =

∫ wc

0

σ(w)dw (2.9)

where ft is the uniaxial tensile strength of the material (In Figure 2.6 termed f
′

t ), w(σ)
is the stress-displacement relation σ(w) in the softening zone and wc is the critical crack
tip opening at which the crack becomes stress-free.

In the FCM the process of fracture is described through the stress-displacement relation-
ship (also known as the softening curve) σ(w) for the softening zone. Gf is equal to the
area under the softening curve.

Finally, it shall be emphasized that the fictitious crack model assumes the fracture process
zone to be of negligible thickness and hence models the cracks discretely.

2.2.2 The Crack Band Model

Another nonlinear approach for modeling of fracture in concrete is the crack band model
(CBM) proposed by Bažant and Cedolin (1979a,b, 1983) and further developed by Bažant
and Oh (1983). It is based on the hypothesis ”that fracture in a heterogenous material
can be modeled as a band of parallel, densely distributed micro-cracks with a blunt front”.
The application of the CBM to concrete is justified by the crack morphology in concrete
with aggregates of various sizes; a crack will not follow a straight line but be tortuous as
illustrated in Figure 2.7.

 

Figure 2.7 (a) Actual crack morphology, (b) actual stresses and their smoothing for a
cross section in the tension softening zone. (Bažant and Oh, 1983)
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In the CBM the fracture process zone is modeled as a band of parallel and uniformly
distributed micro-cracks over a given crack band width hc and the deformation due to
cracking is interpreted as an inelastic strain. Stable crack propagation is modeled by
progressive micro-cracking within the crack band and the crack propagation is described
by a the stress strain relationship c.f. Figure 2.8(b)

 
(a) Crack band

 
(b) Stress strain curve

Figure 2.8 Crack band model for fracture of concrete: (a) microcrack band fracture, (b)
stress-strain curve for the microcrack band. (Shah et al., 1995)

In the CBM the crack opening displacement is equal to the product of the crack band
width and the fracture strain. The fracture energy - the energy consumed due to the crack
advance per unit area of the crack band - is the product of the area under the stress-strain
curve in Figure 2.8(b) and the band width:

Gf = hc

(

1 +
E

Et

)

f
′2
t

2E
(2.10)

E being the modulus of elasticity, Et the strain-softening modulus, f
′

t the tensile strength
of the material and hc the crack band width.

The ultimate strain at rupture is therefore related to the width of the crack band

εu =
2Gf

f
′

thc

(2.11)

The CBM was proposed with reference to finite element modeling and due to the expres-
sion of the displacement jump in terms of inelastic strains it is easily implemented in FE
codes. In FE analysis the crack band is related to the element size and Bažant and Oh
(1983) recommends hc to be taken as three times the maximum aggregate size.

2.3 Bridged Crack Models

In a material like concrete the process of fracture may be observed on different scales
spanning from the fracture of atomic bonds on the smallest scale to phenomena as ag-
gregate and fiber bridging on the largest scale. Crack propagation in concrete may thus
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be seen as a multi-scale problem that requires cohesive laws to be introduced at differ-
ent length scales. The multi-scale concept of cracking has been discussed by a number
of authors - see e.g. Bao and Suo (1992) or Li and Maalej (1996). The concept of a
multi-scale cohesive law is illustrated in Figure 2.9 (Stang et al., 2006b). On each scale
the cohesive law represents a characteristic mechanism reflecting the average nature of
the bond including the presence of defects: atomic bond seperation on the smallest scale,
separation of grain interfaces, micro-crack ligament stress-transfer, and aggregate or fibre
bridging at the largest scale. The concept that a cohesive law introduces a length scale
through a characteristic crack opening wc was proposed by Needlemann (1990).

 

Figure 2.9 Schematic illustration of a multi-scale cohesive law. Note that the x-axis is
logarithmic. (Stang et al., 2006b)

I principle all the cohesive laws would have to be considered in an analysis, however, such
a level of detailing in e.g. a finite element analysis would require unreasonable fine meshes.
In bridged crack models the energy corresponding to length scales smaller than a certain
scale wi

c is lumped into a single point corresponding to applying LEFM to scales smaller
than wi

c and only applying the cohesive law to the larger length scales. The concept of a
bridge crack is depicted in Figure 2.10

The criterion for crack propagation for bridged crack models is expressed in terms of a
stress intensity factor criterion: a crack propagates in Mode I when KI = KIc where

KIc =
√

E ′Gi
F (2.12)

and

Gi
F =

∫ wi
c

0

σw (w) dw (2.13)

Bridged crack models have been applied to modeling of crack propagation in various
reinforced materials and was recently also applied for modeling of crack propagation in
cementitious composites by Ferro (2002).
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Figure 2.10 Bridged crack model. (Stang et al., 2006b)

According to Cox and Marshall (1991) cohesive crack models with smooth crack closure,
i.e. vanishing stress intensity factor at the crack-tip, may be considered as a special case
of the general bridged crack model. Whether a bridged crack model may be approximated
with a cohesive crack model depends on the ratio between the fracture energy associated
with the crack tip and the fracture energy associated with the cohesive law. In Stang
et al. (2006b) the applicability of bridged crack models versus the FCM for modeling of
concrete fracture was investigated. Based on a semi-analytic model it was found that the
FCM gives a good description of fracture in concrete.

2.4 Determination of Fracture Mechanical Parameters

From the above discussion of models for crack propagation it appears that the FCM pro-
posed by Hillerborg et al. (1976) possess the required properties for modeling of discrete
crack growth in concrete. In the models developed later in this thesis the FCM will be
applied, however, before applying the FCM, it is relevant to shortly discuss how the re-
quired fracture mechanical parameters are obtained from experiments.

The FCM requires the stress-displacement relation σ(w) in the softening zone to be known.
In the work by Østergaard (2003) fracture mechanical test methods for the determina-
tion of fracture mechanical parameters were investigated in details. This study illustrates
that an uniaxial tension test applying non-rotating boundary plates is the direct method
to obtain the softening curve. As alternative to the uniaxial tension test the fracture
mechanical parameters may be be determined either by the notched three point bend-
ing test (see e.g. RILEM (1985)) or by the wedge splitting test, originally proposed by
Linsbauer and Tschegg (1986) and further developed by Brühwiler and Wittmann (1990).

Whereas the uniaxial tension test is the direct way to the fracture mechanical parame-
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ters, the three point bending test and the wedge splitting test requires inverse analysis to
determine the fracture mechanical properties. An effective procedure for inverse analysis
was proposed by Østergaard (2003). In this case the inverse analysis is based on the
hinge model proposed by Olesen (2001). For a more general review of methods for inverse
analysis reference is made to Østergaard (2003).

Focus in this thesis is on the modeling of Mode I fracture and hence this introduction
to fracture mechanics has been focused on Mode I. However, the model that is proposed
for modeling of fracture in concrete is general with respect to handling of different modes
of fracture including mixed mode fracture. Determination of mixed mode constitutive
parameters is, however, not a trivial task and considerable efforts are focused on this task
in the concrete research community. Published works regarding mixed mode parame-
ters for concrete includes the works by Hassanzadeh (1991) and Nooru-Mohamed (1992).
Mixed-mode constitutive models were also considered by Carol et al. (1997, 2001), who
proposed the concept of a shrinking crack surface. This mixed-mode model was applied
by Gálvez et al. (2002) in their study of mixed-mode modeling of fracture in concrete.
Walter and Olesen (2006) proposed a mixed-mode model for modeling of the interface
between concrete and steel.
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Chapter 3

FE Modeling of Crack Growth in
Concrete

In general the basic objective of a computational analysis of a reinforced concrete structure
is to predict not only the load deformation response at any load level up to failure of the
structure but also the formation of cracks. To handle the process of cracking the method
applied must be able to:

⋄ Identify locations where cracks will initiate.

⋄ Model crack propagation.

⋄ Model development in crack widths.

⋄ Model crack coalescence and hereby localization phenomena.

⋄ Model the process all the way to rupture.

As indicated in the previous sections the application of non-linear fracture mechanics may
contribute to the fulfillment of this goal.

In this chapter a brief review will be given of the most popular techniques available for
computational modeling of localized crack propagation in concrete within the framework
of finite element modeling. Methods like the element free Galerkin method (Belytschko
et al., 1996), which is capable of modeling fracture but does not fit within the framework
of standard FE codes, will not be treated. For a more thorough review also including a
thorough introduction to damage mechanics, which is outside the scoop of the present
thesis, reference is made to e.g. Jirásek (2004).

3.1 Interface Elements

When Hillerborg et al. (1976) proposed the concept of the fictitious crack model, they
also illustrated its applicability to finite elements by modeling of crack propagation in a
concrete beam subjected to pure bending. The symmetry of the problem was utilized and
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only half the beam was considered. The crack was propagated node by node along the
symmetry line. Corresponding values of crack depth and the moment yielding stresses
equal to the tensile stresses in the node at the crack tip was computed. This modeling
strategy may be seen as an early application of the, today well known, interface tech-
nique that has been adopted in several of the commercial FE programmes. Among others
ABAQUS (2004b) and DIANA (Diana User Manual, 2003a) have a number of cohesive
interface elements based on traction-separation descriptions for modeling of cohesive crack
growth. Figure 3.1 depicts the configuration of a standard 3-node two dimensional inter-
face element where σ and τ are the normal, respectively, the shear stresses acting across
the interface. δn and δt are the corresponding crack openings. As indicated in the figure
the thickness of the interface element is often set to zero and a large dummy stiffness is
applied for the interface until the crack opens. � � ��δ σ � � ��δ τ�	 ≈

Figure 3.1 Configuration of standard 2D interface element

The relationship between the gradients of stress and crack opening in the normal and
tangential direction is given by:

[

σ̇
τ̇

]

=

[

D11 D12

D21 D22

] [

δ̇n
δ̇t

]

(3.1)

Regarding modeling of crack growth in concrete, interface elements have been used in a
number of applications, e.g. Rots (1988) and Stankowski et al. (1993). More recent ex-
amples include 3D modeling of bond between reinforcement and concrete in frame corners
(Lundgren, 1999) and axisymmetric modeling of pull out of reinforcement in early age
concrete (Østergaard, 2003). An other example is given in Walter (2005) where the bond
between steel and cement based overlays for strengthening of orthotropic steel bridge
decks was modeled applying interface elements capable of handling mixed mode cohesive
cracking. Interface elements were also applied for fiber pull out of fibers in ”Engineered
Cementitious Composites” by Dick-Nielsen et al. (2006). Also when notched specimens
subjected to symmetric loading are considered, e.g. in conjunction with fracture mechan-
ical experiments, interface elements may be applied - examples of this will be given later
in this thesis.

If the crack path is not known beforehand interface elements have been placed along all
element boundaries in a given mesh to allow propagation of cracks along different paths.
This technique poses improved capabilities for modeling of unknown crack path but unless
very fine FE meshes are considered the results of the analysis will be locked to the chosen
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mesh in the sense that only predefined crack paths may be modeled. Examples of this
technique includes a micro-mechanical analysis of concrete performed by Carol et al.
(2001). An alternative approach to the modeling of an a-priori unknown crack path is
the coupling of interface elements with methods for remeshing where the mesh is updated
to conform with the propagating crack. Recent examples of combined use of interface
elements and remeshing for modeling of crack propagation in concrete includes the works
of Prasad and Krishnamoorthy (2002) and Yang and Chen (2004, 2005). Remeshing
is, however, computationally costly and hence interface elements are not preferable for
modeling of fracture in real RC structures.

3.2 Smeared Crack Models

Another fairly widespread group of models in commercial finite element programs is the
group of smeared models - see e.g. ABAQUS (2004a) or (Diana User Manual, 2003b). In
the smeared approach the displacement jump across a crack is not modeled explicitly in
terms of a discontinuity in the displacement field for the cracked element. One ”model”
crack in the smeared approach does not necessarily model one single physical crack but
may model the average effect of micro-cracks in a given volume surrounding a given
material point. This property makes it difficult to interpret the outcome of a smeared
analysis with respect to estimating e.g. crack widths. The smeared approach follows the
concept applied in modeling of plasticity and the total strain is, c.f. Eq. (3.2), decomposed
into an elastic part, εe, modeling the deformation of the uncracked material and an
inelastic part, εcr, modeling the contribution due to cracking. The inelastic part is also
refereed to as ”the cracking strain”

ε = εe + εcr (3.2)

In the discrete approach, applied for e.g. interface elements, the traction-separation re-
lation in terms of the softening curve (see e.g. Figure 2.6(c)) is applied directly. In the
smeared approach the traction-separation relation has to be transformed into a stress-
strain relation. The cracking strain, εcr, is set equal to the crack opening, w, divided by
the width of the localization band, h. In a simple model h may be set equal to the width
of the finite elements in which cracking localizes:

εcr =
w

h
(3.3)

Assuming a local coordinate system, (m,n), aligned with the crack, n being normal to
the crack, stresses and strains are related through a function f . Considering pure Mode I
the relation for the normal traction, σn, and the normal strain,εn, across the element is:

σn = f (εn
cr) (3.4)

Utilizing the relation between crack opening and band width, the stresses may be ex-
pressed in terms of the crack opening, w:

f (εn
cr) = fw (hεn

cr)

Department of Civil Engineering - Technical University of Denmark 25



FE Modeling of Crack Growth in Concrete 3.2 Smeared Crack Models

(3.5)

σn = fw (w)

Where fw is the softening law, previously termed σ(w), that may be obtained by fitting
of experiments. A number of sophisticated models have been proposed for fitting of the
softening curve for concrete - se e.g. Hordijk (1991) or Østergaard (2003). However, often
an exponential, bilinear or linear softening law is applied in computations.

The first examples of modeling of cracking in concrete applying the smeared approach
dates back to the sixties (Rashid, 1968) - i.e. before Hillerborg et al. (1976) proposed the
fictitious crack model and Bažant and Oh (1983) proposed the concept of a crack band.
In this early application of the smeared approach the stiffness orthogonal to the crack
was set to zero when cracking occurred - i.e. the effect of softening was not modeled and
no post-peak response was obtained in the numerical computations. However, the crack
band model by Bažant and Oh (1983) introduced in Chapter 2 is capable of modeling
various softening laws and hence may model the post peak response too.

In Bažant and Oh (1983) the crack direction is assumed to remain fixed i.e. it is assumed
that all micro cracks referring to a given material point have almost the same orientation.
In general the crack in a fixed model transfers shear tractions that produce relative sliding
of the crack faces and in simple models the shear traction is taken as proportional to the
shear crack strain. Introducing the so-called shear retention factor, β, the proportionality
factor is βG, where G is the shear modulus of elasticity and β < 1. In the later approach
by de Borst and Nauta (1985) the fixed crack formulation was generalized to a multiple
crack model, allowing several model cracks with different orientations, to be introduced at
the same material point. Another way of taking into account changes in the crack pattern
due to changing stresses is the rotating crack concept (Gupta and Akbar, 1984). In this
model the possible existence of cracks with various orientations is taken into account by
continuously adjusting the orientation of a single crack.

Rots (1988) performed a thorough analysis of smeared models for crack growth in concrete
and observed that the models suffer from stress locking in terms of spurious stress trans-
fer across widely open cracks. For fixed crack models applying a nonzero shear retention
factor, locking is primarily due to shear stresses generated by rotation of the principal
stress direction after crack initiation. For the rotating crack models the spurious stress
transfer is due to a poor kinematic representation of the discontinuous displacement field
around the macroscopic crack, c.f. Jirásek and Zimmermann (1998b). Figure 3.2 depicts
an example of stress locking in a notched three point beam bending specimen modeled ap-
plying CST elements and a rotating smeared crack model (from Jirásek (2004)). Whereas
good results are obtained for the pre-peak response the post-peak response is incorrect.
When the crack has propagated all the way to the top of the beam the model predicts a
significant non-negligible load carrying capacity.

To avoid the locking problems Jirásek and Zimmermann (1998b) proposed that the ro-
tating crack model was combined with a damage mechanics model through a transition
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Figure 3.2 Locking in modeling of fracture in three point bending applying smeared ro-
tating crack model. (a) Geometry and loading, (b) fracture pattern, (c) load-
displacement diagram. From (Jirásek, 2004)

to scalar damage, whereby the model becomes capable of modeling the entire load defor-
mation response in a correct way. However, locking is not the only problem related to
the smeared models. Due to the relation between element size and crack bandwidth the
method may show mesh dependency. Instability due to the appearance of spurious kine-
matic modes was also observed by Rots (1988). Furthermore the non-continuous modeling
of the crack path as depicted in Figure 3.2 (b) is also counting against the application of
smeared models when the aim is to model localized crack growth.

3.3 Embedded Crack Models

A more recent approach to handle discontinuities within the framework of finite elements
is the concept of strain or displacement discontinuities embedded into standard finite ele-
ments. By embedding the discontinuity the kinematic representation of highly localized
strains is improved and stress locking, as observed in smeared models, may be avoided.
Embedded crack models may be seen as a method that combines the strongholds of the
traditional discrete models and the smeared concept. This section focuses on the concepts
of the embedded models more than the mathematical formulations behind them. For a
more extensive review of embedded crack models reference is made to e.g. Jirásek (2000)
or Jirásek (2004).

In most of the embedded crack models the parameters representing the discontinuity are
eliminated by condensation at the element level. Therefore, the enhancements of the strain
or displacement fields in embedded models are element local and do not have to be treated
as global unknowns like other degrees of freedom e.g. the nodal displacements.

Embedded crack models which describe a jump in the strain field, while the displacement
field remains continuous are referred to as weak discontinuity models whereas models ca-
pable of modeling a jump in the displacement field are referred to as strong discontinuity
models. Figure 3.3 depicts two types of weak discontinuities and one example of a strong
discontinuity.
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Figure 3.3 Elements with embedded discontinuities: (a) Elements with one weak discon-
tinuity (b) Element with two weak discontinuities (c) Element with one strong
discontinuity. After Jirásek (2000)

In the pioneering work of Ortiz et al. (1987) the resolution of shear bands was improved by
enhancing the strain field in quadrilateral elements such that a discontinuity in the strain
field could be captured - i.e. the discontinuity was modeled in a weak sense. Each element
was capable of holding one weak discontinuity line and hence two elements were required
to model the shear band - c.f. Figure 3.3 (a). The applied enhancement was based on
the individual approximation of stress and strains following the Hellinger-Reissner princi-
ple (see e.g. Zienkiewicz and Taylor (2000)). The requirement for two elements to model
the entire localization band, however, makes the width of the band element size dependent.

The weak discontinuity approach was improved by Belytschko et al. (1988) who proposed
two weak discontinuities to be included in one element whereby one element became ca-
pable of modeling the full width of the localization band, c.f. Figure 3.3(b). By doing so
the element size dependency of the model by Ortiz et al. (1987) was further reduced. In
the proposed model the width of the localization band is not determined by the computa-
tions but is assumed a material parameter that has to be specified. The enhancement in
Belytschko et al. (1988) is based on the three field Hu-Washizu variational principle (see
e.g. Zienkiewicz and Taylor (2000)) in which the displacement field, the strain field and
the stress field all are assumed independent. A number of improvements and extensions
of the applicability for the element holding two weak discontinuity lines were proposed
by the group of Belytschko, however, for further details and reference regarding those
improvements reference is made to Jirásek (2000). In the context of modeling of fracture
in concrete Sluys and Berends (1998) applied elements with a band of localized strains
similar to the concept suggested by Belytschko et al. (1988).

Among the first to consider a strong discontinuity to be embedded in an element was
Dvorkin et al. (1990) who considered cohesive cracking in concrete. However, the first
fully consistent variational derivation of an element with a strong discontinuity was car-
ried out by Lotfi and Shing (1995) who also considered the cracking of concrete. They
applied the Hu-Washizu principle and added a term representing the work of the cohesive
tractions and presented their model in the assumed strain concept (see e.g. Zienkiewicz
and Taylor (2000)).

28 Department of Civil Engineering - Technical University of Denmark



3.3 Embedded Crack Models FE Modeling of Crack Growth in Concrete

In the above short review, the different approaches have been categorized due to how the
discontinuity is modeled in terms of one or two weak discontinuity lines or one strong
discontinuity line within an element. Jirásek (2000) categorizes the elements due to how
the statics and the kinematics are modeled. Elements which satisfy the traction continu-
ity condition but do not model the kinematics of a strain or displacement discontinuity
properly are said to be formulated in a statically optimal symmetric (SOS) formulation.
The major drawback of the SOS models is that in the general case the SOS formulation
cannot reproduce the full stress relaxation around a widely open crack. SOS models there-
fore leads to spurious stress transfer. The elements suggested by Belytschko et al. (1988)
and Sluys and Berends (1998), both being based on weak discontinuities belong to the
group of SOS elements. However, also a number of elements with strong discontinuities,
belong to the group of SOS elements - se e.g. Jirásek (2000). Elements that are able to
reproduce the kinematics of the discontinuity but lead to an awkward approximation of
the traction continuity condition - i.e. the relationship between stresses in the bulk of
the element and the tractions across the discontinuity line - are referred to as belonging
to the kinematically optimal symmetric (KOS) formulation. In this formulation spurious
stress transfer is eliminated. The element of Lotfi and Shing (1995) belongs to the KOS
formulation. The third and last group of elements is the one that includes elements that
are capable of representing both the kinematic and the static aspect properly and those
elements are formulated within the statically and kinematically optimal nonsymmetric
(SKON) formulation. The formulation is refereed to as being nonsymmetric due to a
nonsymmetric tangential stiffness matrix. The SKON approach is capable of properly
representing complete separation at late stages of fracture without spurious stress trans-
fer. Elements belonging to the SKON formulation are based on the strong discontinuity
approach and examples of SKON elements are the ones by Dvorkin et al. (1990) and Oliver
(1996). In the SKON formulation there is no requirement for specifying the length of the
localization band. This is favorable because in general, it is not an objective quantity but
depends of the positioning of the discontinuity in the element.

A more recent application of embedded crack models for modeling of fracture in concrete
is by Jirásek and Zimmermann (2001). In this work an embedded crack model in the
SKON formulation is combined with smeared cracking. Transition from a smeared crack
to an embedded crack is implemented to stabilize the crack pattern and good results
are obtained for a number of benchmark tests such as the notched three point bending
beam, the notched four point shear beam and crack propagation in a concrete gravity dam.

From the review above it is evident that embedded crack models exhibit better perfor-
mance than the previous discussed approaches for modeling of fracture - interface elements
and the smeared approach. However, the drawbacks for the embedded models are that
the displacement approximation is nonconforming, strains in the separated parts of an
element remain partially coupled and in the case of the favorable SKON formulations the
stiffness matrix is nonsymmetric. Further comments will be given regarding the two first
drawbacks when comparing the embedded concept to the XFEM in the following section.
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3.4 The eXtended Finite Element Method

In this section a short introduction will be given to the eXtended Finite Element Method,
XFEM, focusing on the concepts for the method and the historical development. XFEM
is today probably the most widely used expression for this group of models, however, in
the literature similar models may also be found under expressions like Generalized Finite
Element (GFEM) or Partition of Unity Methods (PUM).

XFEM and embedded crack models (ECM) may at first be seen as fairly similar, they
are, however, conceptually quite different and the differences between the two models will
be pointed out through some illustrative conceptual examples.

In the XFEM proposed by Belytschko and Black (1999) and Moës et al. (1999) discon-
tinuities may propagate independently of the mesh. Like in the ECM models, XFEM
elements crossed by a discontinuity are enriched whereby the elements become capable of
describing the discontinuity. In the XFEM the displacement field consists of two parts, a
continuous and a discontinuous part. The continuous part is the standard displacement
field corresponding to the situation without any cracks. The discontinuous displacement
field is based on local partitions of unity (Mellenk and Babuška, 1996) and enables the
element to include a discontinuity, in the present case a cohesive crack. In general the
enriched displacement approximation takes the form:

u(x) =
∑

i∈I

Ni(x)ui +
∑

j∈E

Nj(x)ψ(x)ej (3.6)

where I is the set of nodes in the system, Ni(x) is the shape function at node i and ui

are the nodal displacements. E is the set of enriched nodes, Nj(x) is the nodal shape
functions for the enriched nodes, ej are additional degrees of freedom and ψ(x) is the
enrichment function.

The following one dimensional example from Jirásek and Belytschko (2002) illustrates
the difference between the discontinuous approximation applied in the ECM and in the
XFEM. A one dimensional body is separated into the two domains Ω− and Ω+ by the
discontinuity point Γd, c.f. Figure 3.4. Considering an element with an embedded dis-
continuity based on the enhanced assumed strain method (EED-EAS) the enhancement
function G(x) is given in terms of the Heaviside step function H(x) and the standard
nodal shape functions Ni associated with node I:

G(x) = H(x) −
∑

xi∈Ω+

Ni(x) (3.7)

where the Heaviside step function is equal to 1 in Ω+ and 0 in Ω−. The coordinate of
node I is termed xi.
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The enrichment in Eq. (3.7) is illustrated in Figure 3.4(a). From the Figure it may be
noticed that one additional degree of freedom e is added. e is the displacement jump while
the other degrees of freedom are the usual nodal displacements.

 

Figure 3.4 Discontinuous approximation in one dimension: (a)Elements with embedded
discontinuity, (b) Extended finite elements, (c) Extended finite elements with
transformed basis. (Jirásek and Belytschko, 2002).

Applying the same Heaviside step function for the enrichment in the XFEM formulation
the enriched displacement approximation in Eq. (3.6) takes the form:

u(x) =
∑

i∈I

Ni(x)ui +
∑

xi∈Ω+

HNi(x)ej (3.8)

The XFEM enrichment is depicted in Figure 3.4 (b). Whereas there was only one addi-
tional degree of freedom in the EED-EAS enrichment two additional degrees of freedom,
e21 and e31, appears in the XFEM enrichment. The physical meaning of e21 and e31 is
depicted in the bottom part of the figure. Figure 3.4(c) illustrates how a set of shape
functions can be constructed by linear transformation of the basis for which the corre-
sponding degrees of freedom d1, d

−

2 , d−3 , d+
2 , d+

3 and d4 directly have the meaning of nodal
displacements on the right respectively the left side of the discontinuity.
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In the one dimensional case discussed above and depicted in Figure 3.4 the EED-EAS
enrichment in Eq. (3.7) is continuous and vanishing outside the element crossed by the
discontinuity. However, in the general case the EED-EAS enrichment is discontinuous not
only at Γd but also at the element boundaries. Therefore the EED-EAS enrichment is
nonconforming and compatibility of the strain field is only enforced in a week sense. The
XFEM enrichment in Eq. (3.8) is only discontinuous at Γd and continuous everywhere
else, also in the multi-dimensional case ensuring conformity and compatibility.

The physical interpretation of the additional degree of freedom, e, in the EED-EAS for-
mulation is that the EED-EAS formulation can reproduce an arbitrary displacement jump
at a given discontinuity point but that the strains on each side of the discontinuity must
remain the same in the element split by the discontinuity. The presence of two additional
degrees of freedom, e21 and e31, in the XFEM formulation on the other hand can be in-
terpreted as an approximation of two completely independent meshes with no kinematic
constraints - the only interaction takes places through the applied traction-separation law.

Jirásek and Belytschko (2002) illustrated the difference between the kinematic capabilities
of the EED-EAS and the XFEM by considering the splitting of a rectangular piece of ma-
terial into two parts by a vertical stress-free crack as illustrated in the top row of Figure
3.5. First the separated parts are subjected to a relative motion of the two parts parallel
to the crack, c.f. the middle row, and then the right part is compressed in the direction,
parallel to the crack, c.f. the lower row. Figure 3.5 (a) depicts the actual physical process
while Figure 3.5(b) shows the approximation obtained with a standard finite element with
a bilinear interpolation for the displacement field and a smeared representation of fracture.
The outcome of the relative motion is normal and shear strains, and the force imposed
on the right part influences the entire element. Figure 3.5(c) depicts the approximation
achieved applying an element with an embedded discontinuity. The element reproduces
the rigid body separation nicely but forces are transmitted from the right to the left part
when compressing the right part. This is due to the strain in the bulk material being
interpolated in a continuous way. The XFEM approximation is illustrated in 3.5(d) by
interpretation of the method in terms of two independent overlayed elements. The two
independent elements are plotted by dotted and dashed lines respectively. Solid circles
mark physical nodes while empty circles mark virtual nodes corresponding to a continuous
extension of the displacement field beyond the discontinuity line. The ”dotted” element
represents the displacement interpolation to the left of the crack while the ”dashed” ele-
ment is valid to the right of the crack. In 3.5(e) the fully drawn lines illustrate the ”final”
XFEM approximation. As seen from Figure 3.5(e) the XFEM approximation reproduces
both the separation and the independent deformation of one part exactly. From the ex-
ample above the superior kinematic properties of the XFEM element is evident.

The introduction of extra global degrees of freedom at system level in the XFEM makes
the implementation efforts of XFEM greater than the effort required to implement the
EED-EAS element holding only additional degrees of freedom, that may be eliminated on
the element level. The numerical robustness is, however, better for the XFEM element
than for the EED-EAS element for which very strict requirements for the shape of the
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Figure 3.5 Separation test: (a)Real body split into two independent parts (b) standard
finite element with smeared representation of fracture (c) element with em-
bedded discontinuity, (d-e) Extended finite element. The XFEM can be inter-
preted in terms of two independent overlayed elements. The two independent
elements are plotted by dotted and dashed lines respectively. Solid circles
mark physical nodes while empty circles mark virtual nodes corresponding to
a continuous extension of the displacement field beyond the discontinuity line.
The ”dotted” element represents the displacement interpolation to the left of
the crack while the ”dashed” element is valid to the right of the crack. The
fully drawn lines in (e) illustrate the ”final” XFEM approximation (Jirásek
and Belytschko, 2002).
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elements have to be fulfilled to avoid numerical problems. The numerical problems for
the EED-EAS elements are related to the requirements for uniqueness of the rate problem
and are explained in more details in (Jirásek and Belytschko, 2002).

From the discussion above some of the important differences between embedded crack
models and the eXtended Finite Element Method have been highlighted. Table 3.1 sum-
marizes the comparison of the EED-EAS element and the XFEM element.

Table 3.1 Comparison of properties for embedded crack model and XFEM model. After
Jirásek and Belytschko (2002)

EED-EAS XFEM

Added degrees of freedom internal global
associated with elements nodes

Displacement approximation nonconforming conforming
Stiffness matrix always nonsymmetric can be symmetric
Strains in separated parts partially coupled independent
Implementation effort smaller greater
Numerical robustness limited good

From the review of computational techniques the XFEM appears to be a preferable choice
for modeling of fracture in concrete. XFEM has already been applied to different prob-
lems within the area of fracture mechanics. While it was first developed for linear elastic
fracture mechanics se e.g. Belytschko and Black (1999); Moës et al. (1999); Stolarska et al.
(2001) it has now been applied to different problems. Cohesive cracking has been consid-
ered by a number of authors, e.g. Wells and Sluys (2001); Moës and Belytschko (2002);
Zi and Belytschko (2003); Asferg et al. (2007b,a). Arbitrary branched and intersecting
cracks were considered by Daux et al. (2000), while three dimensional crack propagation
was treated by Sukumar et al. (2000) and Areias and Belytschko (2005a). The applicabil-
ity of the XFEM for cracks in shells was illustrated by Areias and Belytschko (2005b). For
an overview of the earlier works regarding the XFEM, reference is also made to Karihaloo
and Xiao (2002).

In the following chapters a number of the central aspects of the XFEM will be discussed
in more detail in connection with the development of XFEM elements for modeling of
cohesive crack growth in concrete.
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Chapter 4

Fully Cracked XFEM Elements

In Chapter 2 the theory of fracture mechanics was discussed in the context of modeling
of fracture in concrete and it appeared that the fictitious crack model by Hillerborg et al.
(1976) was an appropriate model for fracture of concrete. The outcome of the discussion
of computational methods for modeling of fracture in concrete in Chapter 3 was that the
XFEM is a preferable choice for modeling of localized, mesh independent fracture. This
chapter deals with the modeling of fracture in concrete applying fully cracked XFEM
elements - i.e. elements that are capable of being either uncracked or fully cracked. The
fictitious crack model is applied for the constitutive relation in the crack. Focus will be
on the chosen enrichment scheme, the variational formulation for the XFEM element and
aspects of implementation in relation to crack propagation. The suggested XFEM scheme
fits within the context of standard FE code and it is applied to the 3-node constant strain
triangle (CST) and the 6-node linear strain triangle element (LST). The performance of
the scheme is illustrated by modeling of fracture in concrete benchmark tests such as the
three point beam bending test (TPBT) and the four point shear beam test (FPSB). For
all details regarding the implementation and the performed tests, reference is made to the
appended Paper I.

4.1 Enrichment of The Displacement Field

4.1.1 Enrichment Strategies

Considering linear elastic fracture mechanics (Belytschko and Black, 1999; Moës et al.,
1999; Stolarska et al., 2001) nodes in elements, fully cut by the discontinuity, were en-
riched by the step function. The tip element (the element holding the crack tip is referred
to as the tip element) was enriched with an asymptotic field. In cohesive crack models,
cohesive stresses act near the crack tip and it is assumed that no singularity is present
at the crack tip. However, considering partly cracked elements for cohesive crack growth
Moës and Belytschko (2002) enriched the crack tip element with a set of nonsingular
branch functions to model the displacement field around the tip of the discontinuity.
Wells and Sluys (2001) considered fully cracked elements and applied the Heaviside step
function as the only enrichment of nodes with a supporting side cut by the discontinuity.
Applying the Heaviside step function as in Wells and Sluys (2001) the nodal enrichment
influences the displacement field, not only in the elements cut by the discontinuity, but
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also in the elements sharing the enriched nodes. In this case the enrichments typically
influences all elements in a band three elements wide along the line of the discontinuity.
Zi and Belytschko (2003) proposed an enrichment of the crack tip element for the case of
partly cracked elements in which the shifted sign function was applied. The application
of the shifted sign function to a 1D example is illustrated in Figure 4.1(b). As shown the
enrichment only influences elements cut by the discontinuity. In (Mergheim et al., 2005)
a dual node strategy was applied and the displacement field was not decomposed into a
continuous and discontinuous part in the same way as in the ”standard” XFEM. However,
even though the basis for the shape functions is different, the scheme in Mergheim et al.
(2005) is able to model the same variation in the displacement field as in the scheme by Zi
and Belytschko (2003). The enrichment as applied by Mergheim et al. (2005) is illustrated
in Figure 4.1(c). Although the authors in Mergheim et al. (2005) distinct their approach
from the XFEM it is essentially based on the same concept.

In Paper I a direct XFEM scheme for modeling of cohesive crack growth is developed
using the Heaviside step function and limiting the discontinuous displacement field to
elements cut by the crack. The XFEM formulation follows the concepts proposed in As-
ferg et al. (2004). The Heaviside step function, H , is applied as the only enrichment of
elements cut by the discontinuity, c.f. Figure 4.1(a).

Figure 4.1 illustrates how a displacement jump of a magnitude of one may be modeled
applying the three different approaches discussed above. For the present approach and
the approach by Zi and Belytschko (2003) the two upper sketches illustrate the contin-
uous displacement fields for node 1, respectively node 2, while sketch 3 and 4 illustrate
the discontinuous displacement fields. Regarding the approach by Mergheim et al. (2005)
the two upper figures illustrate the displacement field for the two ”original” nodes 1 and
2, while figure 3 and 4 depict the displacement fields for the dual nodes 1∗ and 2∗. Fi-
nally, the lower sketch in each row depicts an example of a displacement field containing
a jump of the magnitude of one. From Figure 4.1 it is evident that the difference between
the three approaches is a question about the applied basis for modeling the displacement
field. Compared to the enrichment by the shifted sign function in Zi and Belytschko
(2003) and the enrichment in Mergheim et al. (2005), the proposed enrichment is more
straight forward, but essentially the three formulations model the same discontinuous field.

4.1.2 The Applied Enrichment

As discussed in Section 3.4 and illustrated in Figure 4.1 the displacement field for a
cracked element can be formulated as the sum of the continuous and the discontinuous
displacement field, c.f. Eq. (3.6). The enriched displacement field applied in the present
work is given by:

u (x, y) = Nc(x, y)vc + Nd(x, y)vd (4.1)

where vc and vd are the degree of freedom (dof) vectors while Nc and Nd are the inter-
polation matrices. The superscript c refers to continuous and d to discontinuous.
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Figure 4.1 Comparison of different enrichments of the displacement field: (a) Present
formulation, (b) Zi and Belytschko (2003), (c) Mergheim et al. (2005). For
the present formulation and the formulation by Zi and Belytschko (2003) the
two upper figures illustrate the continuous displacement fields and the follow-
ing two figures illustrate the discontinuous displacement field. Regarding the
formulation by Mergheim et al. (2005) the two upper figures illustrate the dis-
placement field for the two ”original” nodes 1 and 2 while figure 3 and 4 depict
the displacement fields for the dual nodes 1∗ and 2∗. The lower figure in each
column illustrates how a displacement jump of magnitude one may be modeled
by the different formulations.
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Here the element discontinuity interpolation matrix, Nd, is chosen as

Nd (x, y) =
∑

I

HI(x, y)N
c
I(x, y) (4.2)

where HI(x, y) is the 2D Heaviside step function for node I. The step function HI(x, y) is
0 on the same side of the discontinuity as node I and 1 on the other side. It is noted that
in this work the expression for the location of the discontinuity is not included explicitly
in the expression for the Heaviside step function. In line width the standard applied in
the XFEM literature it is implied that the Heaviside step function is defined in relation
to the line of discontinuity.

Figure 4.2 illustrates a discontinuous displacement field for a CST element cut by a
crack while Figure 4.3 illustrates two of the discontinuous displacement fields for a LST
element. The left most subfigure in each figure shows the crack geometry, coordinates
to the start and the endpoints are given in area coordinates. The remaining subfigures
depicts individual nodal discontinuous displacement fields.H IJ KL M1 1

,0,
2 2

N OP QR S2 1
0, ,

3 3

(a)

1
2

(b)

2
3

(c)

1
2

1
3

(d)

Figure 4.2 Example of the enrichment of the displacement field for a cracked CST element.
(a) Crack geometry, (b), (c), (d) Displacement fields for discontinuity dof’s in
node 1, 2 and 3

   
5 1

, ,0
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   
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0, ,
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(a) (b) (c)

Figure 4.3 Example of the enrichment of the displacement field for a cracked LST el-
ement.(a) Crack geometry, (b) and (c) Discontinuous displacement field for
discontinuity dof’s in node 1 respectively node 6.

From Figure 4.2 and Figure 4.3 it is seen that the choice of interpolation for the disconti-
nuous displacement field ensures that the discontinuous contribution to the displacement
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field vanishes at all element edges not cut by the crack. The discontinuous displacement
field only has to be included in elements cut by the crack.

Figure 4.4 illustrates the enrichment at system level. Only nodes for which the support
is cut by the discontinuity are enriched. The discontinuity dof’s located at the element
edge where the crack tip is located have to be set to zero to ensure that the discontinuity
at that edge is zero.

T UV WX YZT[ TVTWTX TZ T\ TU\TT TX ]
Figure 4.4 Enrichment at system level for a mesh with LST elements. Nodes marked with

a circle or a square are enriched. Discontinuity dof’s in nodes marked with a
square are set to zero.

4.2 Variational Formulation

As the onset for deriving the variational formulation for the XFEM element consider a
cohesive crack in a structure in a state of plane stress or plane strain described in a Carte-
sian coordinate system x,y (cf. Figure 4.5), the arc length along the crack is termed s, and
n,s is a curve linear coordinate system, n being normal to the crack face. The positive
direction of s is seen in Figure 4.5. The orientation of n determines the positive side of
the crack. The stress state in the crack may be defined by the normal stress σn and the
shear stress τns, while work conjugated generalized strains are the opening of the crack,
∆un = u+

n − u−n and the slip in the crack, ∆us = u+
s − u−s . A small strain / small dis-

placement static theory is used and the material outside the crack is assumed linear elastic.

Let [[ ]] denote a jump, then the stress increments dσcr across the crack surfaces are
related to the increments in the displacement jump, d[[u]], - i.e. the separation of the
crack surfaces - through the tangential material stiffness matrix Dcr

T (se also Eq. (3.1)).

σcr ([[u]]) =

[

σn ([[u]])
τns ([[u]])

]

[[u]] =

[

∆un

∆us

]

dσcr ([[u]]) = Dcr
T ([[u]]) d[[u]] (4.3)
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σ n Ω

Γ

Figure 4.5 Cohesive crack in two dimensional domain with f representing both domain
load and boundary load

For the uncracked part of the structure, the stress vector σT = [σx σy τxy] and the
strain vector ǫT = [ǫx ǫy γxy], (γxy = 2ǫxy) are defined as usual and related through
the standard material stiffness matrix D, specified below for an isotropic material in plane
stress.

dσ = Ddǫ , D =
E

1 − ν2





1 ν 0
ν 1 0
0 0 1−ν

2



 (4.4)

The virtual internal work-per-unit length of the crack δW i
cr and the virtual internal work-

per-unit area of the uncracked part of the structure δW i
c may now be written, δ referring

to a virtual quantity

δW i
cr = δ[[u]]T σcr = σnδ∆un + τnsδ∆us

δW i
c = δǫT σ = σxδǫx + σyδǫy + τxyδγxy

(4.5)

For the entire structure the virtual internal and external work becomes

δW i =
∫

Ω
δǫT σdΩ +

∫

Γ
δ[[u]]T σcrdΓ

δW e =
∫

Ω
δuT fdΩ +

∫

Γ
δuT fdΓ

(4.6)

where f is the load on the structure.

By applying incremental quantities, the incremental stiffness relation, can obtained.

KT∆V =

∫

Ω

NT ∆fdΩ +

∫

Γ

NT ∆fdΓ (4.7)
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Where V is the system DOF vector and ∆ refers to an incremental quantity.

Special attention must be paid to the internal work, because the contribution from each
element to the tangential stiffness matrix KT depends on whether the element is cracked
or not. The element tangential stiffness matrix, kT , for a cracked element is found by the
following procedure. From (4.1) and (5.1) the strain vector in a cracked element, except
in the crack itself, is obtained

ǫ = Bcvc +
∑

HIB
c
Iv

d
I = Bcvc + Bdvd (4.8)

Where Bc and Bd are the generalized strain distribution matrixes corresponding to the
interpolation matrix Nc respectively Nd.

Due to the displacement field from the first terms in (4.1) being continuous, the strains
in the crack itself may be written as

[[u]] (s) = T
(

Nd
+ (s) − Nd

−
(s)

)

vd = Bcrvd (4.9)

Here, Bcr is the strain distribution matrix in the crack, T is the transformation matrix
between the (x, y) and (n, s) coordinate systems, while Nd

+ and Nd
−

are the discontinuous
interpolation matrices on the positive and negative sides of the crack respectively.

Applying the strain relations in Eq. (4.8) and Eq. (4.9) when formulating the virtual
incremental internal work, Eq. (4.6), the outcome is:

δW i =

∫

Ω

(

[

Bc Bd
]

[

δvc

δvd

])T

D
[

Bc Bd
]

[

vc

vd

]

dΩ

+

∫

Γ

(

Bcrδvd
)T

DcrBcrvddΓ (4.10)

=

[

δvc

δvd

] [
∫

BcTDBc
∫

BcTDBd

∫

BdT
DBc

∫

BdT
DBd +

∫

cr
BcrTDcrBcr

] [

vc

vd

]

Defining kT by δW i = δvTkT ∆v, where vT = [vcT vdT
], kT is:

kT =

[
∫

BcTDBc
∫

BcTDBd

∫

BdT
DBc

∫

BdT
DBd +

∫

cr
BcrTDcrBcr

]

=

[

kcc kcd

kdc kdd + kcr
T

]

(4.11)
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Due to a constant D-matrix outside the crack the stiffness contribution from the areas
outside the crack are constant and thus only the stiffness contribution from the crack itself
is non-linear. This is an important property of the element stiffness matrix in relation to
the following derivation of the expression for the element nodal forces.

The element nodal forces, q, depend, like kT , on the crack opening and are determined
analogous to kT . The contributions to q from the crack, qcr, are found from the stresses in
the crack. The stresses in the crack are related to the displacement jump across the crack
according to Eq. (4.3) and in general depends on the applied softening law. Thereby qcr

also depends on the applied softening law. Adding this contribution to the contribution
from the part of the element outside the crack, q is obtained as

q =

[

kcc kcd

kdc kdd

] [

vc

vd

]

+ qcr where qcr =

∫

cr

BcrT

{

σn

τns

}

(4.12)

4.3 Aspects of Implementation

This section deals with some of the aspects of the implementation of the XFEM scheme.
Focus is on the condition for smooth crack closure and the criteria for crack propagation.
For details regarding the applied integration scheme and the choice of the algorithm to
solve the non-linear equations reference is made to Paper I

4.3.1 Conditions for Smooth Crack Closure

In a cohesive crack tractions act at the crack surfaces near the tip as illustrated in Figure
4.5 causing the crack to close smoothly. For an opening crack the tensile stresses at
the crack tip will be equal to the tensile material strength, corresponding to vanishing
stress intensity factors at the crack tip. Therefore, criterions for smooth closure may
be imposed in terms of either a stress criterion or an equivalent stress intensity factor
criterion. Investigations using interface cohesive crack elements by Stang et al. (2006a)
show that smooth crack closure is automatically achieved in a finite element formulation
with a stress criterion when a sufficient numbers of elements are applied. In the case
considered where the elements are either uncracked or fully cracked, it is ensured that the
stresses in the element next to the crack-tip element do not exceed the tensile strength.
This approximately ensures smooth crack closure as well.

4.3.2 Crack Growth

In the case of fully cracked elements a discontinuity is introduced in the element, when
the principal stress in the element exceeds the tensile strength of the material. The dis-
continuity is a straight line through the element originating from the point where the
discontinuity ended in the previous cracked element and hereby a continuous discontinu-
ity is assured.

42 Department of Civil Engineering - Technical University of Denmark



4.3 Aspects of Implementation Fully Cracked XFEM Elements

Concerning the crack growth direction, different approaches have been considered. The
first and simplest approach is local and rely only upon the stresses in the element that is
located next to the tip-element (the element to become the next tip-element, element 8
in Figure 4.6) for the determination of the crack growth direction. The discontinuity is
grown perpendicular to the principal stress direction.

Several authors state that the local stresses in the next tip element can not be relied
upon for computation of the crack growth direction and different nonlocal approaches are
suggested. In Wells and Sluys (2001) the principal stress direction in the next tip element
is computed from a non-local stress tensor calculated as a weighted average of stresses
using a Gaussian weight function. Stresses in integration points within a radius of three
times the typical element size are taken into account. In Moës and Belytschko (2002) the
maximum hoop stress criterion is applied. The requirement for considering stresses in
more than one element when computing the crack growth direction is clear when recalling
the discontinuous displacement field in a cracked CST tip element, c.f. Figure 4.6. Due to
the discontinuous degrees of freedom in the nodes located on the crack tip edge being set
equal to zero, the crack tip element is not able to model the case, where equal stresses are
present at both sides of the discontinuity. This lack of capability to model correct stresses
in the tip element influences the stresses in the next tip elements and may call for more
elements to be relied on for the computation of crack growth direction. The problem is
of course most pronounced when CST elements are considered.

Figure 4.6 Discontinuous displacement field in CST ”tip” element.

When a non-local stress tensor is applied in this work (only for CST elements), average
nodal stresses are computed from element stresses in the elements sharing a given node
- c.f. Eq. (4.13). All elements are assigned the same weight except previously cracked
elements that are disregarded in the computation of the average nodal stresses, due to
the above illustrated limited quality of the stress field in the crack tip element. From
the average nodal stresses a non-local stress tensor at the crack tip is interpolated c.f.,
Eq. (4.14), and used for the determination of the crack growth direction. In Eq. (4.14)
(ζ1, ζ2, ζ3) are the area coordinates to the crack tip.
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σave
node =




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∑

i=1
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 /nuncr
el (4.13)

σNL
tip =


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4.4 Numerical Examples

To illustrate the capability of the suggested XFEM scheme two fracture mechanical bench-
mark tests, the TPBT and the FPSB, are considered. Results will be given for the TPBT
applying CST as well as LST elements while only results applying LST elements will be
given for the FPSB. Applying CST elements for the the TPBT specimen, local as well as
nonlocal determination of crack growth direction will be considered and discussed.

4.4.1 Three Point Beam Bending Test

The geometry of the TPBT specimen considered is in accordance with the RILEM rec-
ommendations (Vandervalle, 2000). The geometry is depicted in Figure 4.7(a), the cross
section of the beam being a square. For the material parameters standard values for a
good quality concrete were chosen, c.f. Table 4.1.

Concerning the stress-crack-opening relationship it was chosen to apply the simplest op-
tion - i.e. a linear softening curve for the normal stress in the crack as illustrated in
Figure 4.7(b). A linear softening curve is a relative crude approximation to the true be-
havior of concrete, and a softening curve determined on the basis of experimental results
would be a better match to reality. However, in this case the results obtained by the
XFEM scheme are compared against computational results obtained by modeling of frac-
ture in the TPBT specimen applying standard 6-node cohesive interface elements in the
commercial code DIANA, and the choice of softening curve is therefore less important
for illustrating the performance of the XFEM scheme. Utilizing the DIANA results as
reference for XFEM computations is justified by the modeling of a symmetric problem
like the TPBT for which the DIANA interface elements have proven to produce reliable
results when comparison is made to experimental results - se e.g. Østergaard (2003). A
softening curve based on the experimental results by Østergaard and Olesen (2004) and
fitted by the method suggested by Hordijk (1991) was applied in modeling of the TPBT
specimen with the proposed XFEM scheme in Asferg et al. (2004).

Considering a pure Mode-I problem the shear stiffness and the mixed mode stiffness terms
for the crack were all set equal to zero - i.e. the tangential discontinuous material stiffness
matrix, Eq. (4.15), only holds one term different from zero.
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Figure 4.7 (a) Geometry of TPBT specimen. (b) Applied linear softening curve.

Table 4.1 Constitutive parameters TPBT

Parameter Value

Young’s modulus, Ec 37400MPa
Poisson’s ratio, νc 0.2
Tensile strength, ft 3.5MPa
Fracture energy, Gf 160 N/m

Applying CST Elements to Model TPBT

Modeling the TPBT specimen applying CST elements structured as well as unstructured
meshes are considered. Results are given for two structured meshes, a 21 by 12 element,
c.f. Figure 4.8(a), and a 25 by 24 element mesh. For both structured meshes results for
local as well as non-local computation of crack growth direction are given. The unstruc-
tured mesh, c.f. Figure 4.8(b), consisted of 709 elements and results are only given for
the non-local crack growth computation. Note that for the structured meshes the notch
is modeled as a predefined stress free discontinuity while in the unstructured mesh the
notch is defined by the geometry of the mesh.

Regarding the reference computations applying standard interface elements along a pre-
defined crack path in the commercial code DIANA, two meshes holding 24, respectively,
48 elements over the beam height were considered.

Figure 4.9 shows the load-deformation-response for the five XFEM computations and the
two reference DIANA computations. The deformation is computed as the difference be-
tween the vertical displacement of the center point of the beam and the average vertical
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(a)

(b)

Figure 4.8 (a) Structured mesh. (b) Unstructured mesh.

displacement of the mid points of the beam ends. Figure 4.10(a) shows the predicted
crack path for the 25 by 24 mesh applying local computation of the crack growth direc-
tion while 4.10(b) shows the prediction achieved applying a non-local approach for the 25
by 24 mesh. 4.10(c) depicts the predicted crack path for the unstructured mesh applying
the local approach.

From the load-deformation-responses it is seen that the coarse structured mesh over pre-
dicts the load carrying capacity of the TPBT specimen with about 20% while the finer
structured mesh overestimates the load carrying capacity with about 8%. The unstruc-
tured mesh predicts the maximum load carrying capacity well. Applying the local ap-
proach for the crack growth direction, only the first part of the post peak response corre-
sponding to the crack having propagated approximately through 2/3 of the beam hight
may be obtained. Applying the non-local approach, the full load-deformation response
may almost be obtained - in Figure 4.10(b) the crack has almost reached the top of the
beam. The main reason for the bad prediction of the crack growth direction applying
the local approach is the bad reproduction of the stresses in the tip element discussed in
Section 4.3.2. The difference in stability of the determination of crack growth direction
for the local versus the non-local approach is also evident from Figure 4.10 (a) and (b).
The non-local approach smoothes the crack path considerably compared to the local ap-
proach. The unstructured mesh captures the load carrying capacity well but is not able
to reproduce the full load deformation response for the TPBT specimen with the applied
non-local computation scheme. The use of a non-local criteria for determination of crack
growth direction is, however, seen as less appealing due to the required user interaction
for determination of interaction radius that e.g. depends on the chosen element size and
the actual structure considered. Furthermore, the use of a non local criterion somewhat
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Figure 4.9 Load-deformation-response for TPBT specimen modelled applying fully
cracked CST elements.

(a) (b) (c)

Figure 4.10 Predicted crack path for: (a) 25 by 24 Mesh, local computation of crack
growth direction. (b) 25 by 24 Mesh, non-local computation of crack growth
direction (c) Unstructured mesh, non-local computation of crack growth di-
rection.

violates the element local approach of the XFEM where everything is handled element
locally.
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Applying LST Elements to Model TPBT

Applying LST elements results are given for four structured meshes - a 11 by 6, a 15 by
9, the 21 by 12 and the 25 by 24 mesh. Only local computation of crack growth direc-
tion is considered. In Figure 4.11 the load-deformation responses from the XFEM LST
computations are compared with the DIANA computations while Figure 4.12 depicts the
predicted crack patterns for the 21 by 12 and the 25 by 24 mesh.

From the load-deformation response it is seen that applying LST elements the overall
behavior is predicted well by the 21 by 12 and the 25 by 24 mesh while the two coarsest
meshes have trouble capturing the post peak response. Looking at the predicted crack
paths it is seen that applying LST elements, and hereby having more active discontinuity
dof’s, a more smooth crack path is achieved than for CST elements. However when the
crack reaches the top of the beam and only a few elements remain uncracked the qual-
ity of the determined stress near the crack tip becomes low, and hence, influences the
crack growth direction causing increasing tortuosity of the crack path. The conclusion is,
however, that applying LST a sufficient accuracy concerning the crack growth direction
is obtained applying the local approach.
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Figure 4.11 Load-deformation-response for TPBT specimen modelled applying fully
cracked LST elements.
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TPBT 12x21 LST

(a)

TPBT 25x24 LST

(b)

Figure 4.12 Predicted crack path for LST computations of TPBT: (a) 21 by 12 Mesh. (b)
25 by 24 Mesh.

4.4.2 Four Point Shear Beam

The four point shear beam serves to illustrate the capability of the suggested XFEM
scheme to model curved cracks. The geometry of the four point shear beam (FPSB) -
or the ”double-edge notched specimen subjected to four point shear” is equivalent to the
one investigated experimentally by Carpinteri et al. (1992). Here it is concluded that the
FPSB may be modeled considering only mode I fracture - i.e. the shear stiffness in the
crack may be ignored. Therefore the FPSB in this study is also modeled considering only
mode-I fracture. However it has to be emphasized that the XFEM scheme is general and is
capable of handling Mode-I, Mode-II and mixed mode loading if the required constitutive
relations are supplied, c.f. the discussion in section 2.4. The FPSB specimen was analyzed
by XFEM in Moës and Belytschko (2002) and the results obtained are also compared to
their findings. The geometry of the test setup is shown in Figure 4.13, while constitutive
parameters are given in Table 4.2. As for the TPBT specimen a linear softening curve
(Figure 4.7(b)) was applied.

A fairly coarse structured LST mesh, depicted in Figure 4.14, consisting of 1222 elements
and 2549 nodes was used for the XFEM computation.

Table 4.2 Constitutive parameters FPSB

Parameter Value

Ec 28000MPa
νc 0.1
ft 2.4MPa
Gf 145N/m
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Figure 4.13 Geometry of four point shear beam, all measures in mm

Figure 4.14 depicts the computed crack path. The crack path is in good agrement with
the experimental findings in Carpinteri et al. (1992). In Figure 5.16 the computed load-
deflection response is compared to the experimental determined response obtained by
Carpinteri et al. (1992) and to the XFEM response computed by Moës and Belytschko
(2002). It is seen that the obtained results correlate well with the experimental results
whereas there are some deviations compared to the results obtained in Moës and Be-
lytschko (2002). Applying the XFEM scheme, the somewhat surprising conclusion drawn
by Carpinteri et al. (1992), regarding the influence of Mode-II fracture on the structural
response of the FPSB, is supported: Crack propagation in the FPSB specimen seams to
be governed by Mode-I fracture. The Mode-II energy dissipation does not seems to be
”missing” in the global response for the fracture of the FPSB.

Figure 4.14 Predicted crack path for FPSB specimen.
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Figure 4.15 Comparison of load-displacement response for FPSB obtained by present
XFEM model, XFEM results by Moës and Belytschko (2002) and by ex-
periments Carpinteri et al. (1992). Loading zone 2 refers to the loading zone
to the left in Figure 4.13, while loading zone 1 refers to the right.

4.5 Conclusions Regarding Fully Cracked Elements

Applying the direct enrichment of the displacement field an XFEM scheme that fits di-
rectly in the framework of standard finite element has been developed. The XFEM scheme
has been implemented for the CST element and the LST element. Considering the CST
element it was found necessary to implement a nonlocal computation of crack growth
direction to obtain good prediction of the crack path, while for the LST element the crack
path computation could be based on element local computations. Considering three point
bending and four point shear, the efficiency of the suggested scheme was illustrated and
it was found that even for relatively coarse meshes the scheme produces good results.
Regarding the FPSB the XFEM results confirm the conclusion drawn by Carpinteri et al.
(1992); the global response of the FPSB may be modeled considering only Mode-I fracture.

Department of Civil Engineering - Technical University of Denmark 51



Fully Cracked XFEM Elements 4.5 Conclusions Regarding Fully Cracked Elements

52 Department of Civil Engineering - Technical University of Denmark



Chapter 5

A Consistent Partly Cracked XFEM
Element

In the previous chapter fully cracked elements were considered and fairly good results
were obtained when modeling fracture in the two benchmark tests: three point bending
and four point shear. Referring to the load-displacements response for the tests some
tortuosity was, however, observed.

Applying elements that may only be fully cracked does not allow for all possible load-
displacement states to be computed, as, is normally required in a general solution of a
non-linear problem. Therefore the application of elements that are not allowed to be
partly cracked may not only lead to a erroneous load-deformation response for a crack
propagating through a given structure, but may also be the reason for numerical problems
when solving the non-linear equations. An element that can be partly cracked is there-
fore preferable. Previously proposed partly cracked elements include the ones by Moës
and Belytschko (2002) and Zi and Belytschko (2003). These elements were discussed in
Chapter 4 from the enrichment point of view.

Using the enrichment strategy implemented in Wells and Sluys (2001),Zi and Belytschko
(2003) and Asferg et al. (2007b) the crack tip element can not model equal stresses on
both sides of the crack as assumed in the cohesive model. Recalling the discussion re-
garding the need for nonlocal procedures for determination of crack growth direction in
Chapter 4, the problem was illustrated in Figure 4.6, and for convenience repeated in Fig-
ure 5.1(a). The figures show the displacement field that may be modeled in the element
holding the crack tip on its boundary applying the enrichment suggested in Paper I. Fig-
ure 5.1(b) depicts the enriched displacement field in the partly cracked element proposed
by Zi and Belytschko (2003). To ensure the continuity of the displacement field at the
crack tip, the discontinuity degrees of freedom in nodes located at the crack tip element
boundary must be set to zero and this means that only one set of discontinuity degrees
of freedom is available in the tip element. Various nonlocal approaches have been applied
to compensate for the inability of the tip element to model equal stresses on both sides
of the discontinuity, especially when 3-node constant strain triangle elements (CST) are
considered. In Wells and Sluys (2001) and Asferg et al. (2007b) a non-local computation
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of the stresses in the near tip area was used to determine the principal stress direction
at the tip, while the maximum hoop stress criterion utilizing stress intensity factors was
applied in Zi and Belytschko (2003). Recently Xiao and Karihaloo have extended their
element local statically admissible stress recovery scheme (Xiao and Karihaloo (2005)) to
cohesive cracks (Xiao and Karihaloo (2006)) and obtained good results for fairly dense
meshes of higher order elements.

(a)

_̂` â
(b)

Figure 5.1 Displacement fields in XFEM crack-tip elements. (a) Fully cracked element
(Asferg et al., 2007b) (b) Partly cracked element by Zi and Belytschko (2003).

A more direct way to obtain a better stress distribution on both sides of the crack in co-
hesive crack growth would be to formulate a tip element with the capability of modeling
variations in the discontinuous displacement field on both sides of the discontinuity. Paper
II presents such a consistent approach to obtain a more correct stress distribution in a
partly cracked tip element. The new enrichment scheme is based on additional enrichment
of the cracked elements. The extra enrichment is constructed as a superposition of the
standard nodal shape functions and standard nodal step functions created for a sub-area
of the cracked element. The suggested enrichment may be seen as a natural extension
of the enrichments applied in Wells and Sluys (2001); Zi and Belytschko (2003); Asferg
et al. (2004). The extra enrichment allows the element to model equal stresses on both
sides of the crack tip. Whereas only fully cracked elements are considered in Wells and
Sluys (2001); Asferg et al. (2006), the new enrichment scheme has been implemented so
that the discontinuity in the crack tip element may have any length.

In this chapter focus will be on the development of the new enrichment scheme and the
special features of implementation related to the extra discontinuity degrees of freedom.
The numerical examples that were used to show the performance of the fully cracked
elements will also serve to illustrate the performance of the consistent partly cracked ele-
ment. The variational formulation applied for the partially cracked element is essentially
the same as for the fully cracked element and reference is made to Section 4.2 or to Paper
II for details regarding the variational formulation. In general the reader is referred to
Paper II regarding the details of the partly cracked element.
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5.1 Development of the Enrichment

Compared to the enrichment of the fully cracked element and the approximation for the
displacement field given in Eq. (4.1) the new development is related to the element dis-
continuity interpolation matrix, Nd, that is chosen as

Nd (x, y) =
∑

I

HI(x, y)N
∗

I(x, y) (5.1)

where HI(x, y) is the 2D Heaviside step function for node I and the set I is the number of
enriched nodes. The step function HI(x, y) is 0 on the same side of the discontinuity as
node I and 1 on the other side. N∗

I is the part of N∗ from node I. In the standard case,
N∗ is chosen as Nc, but for the proposed element N∗ is more general but able to describe
the same variations as Nc. Figure 4.2 shows an example of the standard discontinuous
displacement field for a CST element completely cut by a crack. The special enrichment
applied in this work was developed from these standard enrichments.

The requirement for the new partly cracked tip element is that it must be able to model
equal stresses on both sides of the discontinuity, i.e. the element must be able to perform
as shown in Figure 5.2

Figure 5.2 New XFEM crack tip element.

From Figure 5.2, it can be seen that an internal pseudo-node P, located at the crack tip,
has been introduced. The pseudo-node does not hold any DOFs; it is just a point at
which the discontinuous displacement field vanishes. Activating the enrichment of both
nodes 1 and 3 allows for variations in the displacement fields on both sides of the crack
as shown in the figure. This means that the element becomes capable of modeling the
case where equal stresses are present on both sides of the crack. But the introduction of
the pseudo-node defining the sub-displacement field 1-P-3 requires extra attention to the
propagation of the crack from one element to another. Figure 5.3 illustrates the situation
just before and just after the crack has crossed an element boundary. When the crack
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propagates within one element (upper part of Figure 5.3), the contribution to the dis-
placement field from the discontinuity DOFs in node 3 can have a value. When the crack
just has passed an element edge and starts to propagate into a new element (lower part of
Figure 5.3), the contribution from the discontinuity DOFs in node 3 must increase from
a value of 0. To deal with this discrepancy in the value of the DOFs, the nodes connected
to the element edge cut just before the crack propagates into a new element are enriched
with extra discontinuity DOFs - c.f. Figure 5.4 (c) and (d). As long as an element is
acting as a crack-tip element, only the discontinuity DOF’s corresponding to (a) and (b)
will be active. When the crack propagates into the next element, the discontinuity DOF’s
corresponding to (c) and (d) become active in the element which is now the previous
crack-tip element. The extra set of discontinuity DOFs can model a displacement field
in the neighbor crack-tip element that is equal to the displacement field along the edge
2-3 in the lower figure in Figure 5.3, whereby the desired continuity across the element
boundary is achieved.

Figure 5.3 Propagation of a crack across an element boundary. The upper figures illustrate
the situation just before the crack reaches the element boundary, while the
lower figures illustrate the case where a crack continues into a new element.

The discontinuous displacement field in node 3 in relation to the tip edge (Figure 5.4(c))
is found by the superposition of the standard discontinuous displacement field in node 3
and a standard nodal displacement field for node 3 taking into account the sub-triangle
1-P-3 in Figure 5.2. The superposition is illustrated in Figure 5.5.

So far the two enrichments in node 3 have just been referred to as u3,1 and u3,2, however,
it is evident from the figures, especially Figure 5.5 that the discontinuous DOFs in node 3
are element side local - u3,1 refers to the ”entrance” side where the crack propagates into
the element while u3,2 refers to the ”exit” side where the crack leaves the element, and
the element becomes fully cracked.
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Figure 5.4 Nodal discontinuous displacement fields for the new crack tip element. (a)
field corresponding to node number 1, (b) field for node 3 referring to the
”entrance” side of the element, (c) field for node 3 referring to the ”exit” side
of the element, (d) field for node 2.

Figure 5.5 Construction of discontinuous displacement field u3,2 by superposition.

The enrichment of a node in an element where two element sides are cut by the discon-
tinuity may now be summarized by writing out the elements of the interpolation matrix,
N∗, for the element. With reference to Figures 5.4 and 5.5, the local element coordinates
in terms of area coordinates for the entire element (1-2-3) are termed (ζ1, ζ2, ζ3), while
the area coordinates for the sub-triangle (1-P-3) are termed (ζ̃1, ζ̃2, ζ̃3). In line with the
previously introduced notation, N∗

3,1 refers to the entrance side of the element and N∗

3,2

to the exit side of the element.

N∗

1 = ζ1
N∗

2 = ζ2
N∗

3,1 = ζ̃3
N∗

3,2 = ζ3 − ζ̃3

(5.2)

At the system level, the enrichment is limited to nodes whose support is cut by the dis-
continuity. In the above discussed case where focus was on the crack propagating from
one element to another, one extra set of discontinuity DOFs were added to the node that
is common for the element sides cut by the discontinuity. However, in the general case
where several element sides cut by the discontinuity all share a given node, there will be
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as many active sets of discontinuity DOFs in that node as the number of element sides
cut by the discontinuity sharing that node. The enrichment at system level is illustrated
in Figure 5.6 where some nodes have one set of active discontinuity DOFs, some nodes
have two active sets, and one node has three active sets.

Figure 5.6 Enrichment at system level. Nodes marked with a circle have one set of dis-
continuity DOFs, nodes marked with a square have two sets, while the node
marked with a triangle has three sets.

However, the storage of a variable number of degrees of freedoms in the nodes is seen
as less favorable due to the handling of the DOFs at system level. The enrichments are,
therefore stored side-locally, depending on whether they belong to the ”entrance” or the
”exit” side of the element. This will be discussed in detail in the next section.

5.2 Aspects of Implementation

Special features of the implementation of the partly cracked element will be discussed in
this section. Storage of the discontinuity degrees of freedom (d-DOFs), criteria for crack
growth and smooth closure as well as some comments regarding the procedure for solving
the non-linear equations will be discussed. For further details reference is made to Paper
II.

5.2.1 Storage of Discontinuity Degrees of Freedom

The additional discontinuous degrees of freedom requires extra bookkeeping hence the
affiliation of discontinuous DOFs to the element edges discussed in the previous section.
Therefore, for storage purposes only, the discontinuous degrees of freedom are related
to the element edges, as illustrated in Figure 5.7. Figure 5.7(a) illustrates how the two
active sets of discontinuous DOFs are stored when an element acts as a partly cracked
tip element, while Figure 5.7(b) illustrates the storage of the four sets of discontinuous
DOFs for a fully cracked non-tip element.
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Figure 5.7 Element side local storage of discontinuous DOFs in (a) a partly cracked el-
ement, and (b) a fully cracked non-tip element. D1

NO refers to discontinuity
DOFs related to the ”entry” side of the element in node NO while D2

NO refers
to discontinuity DOFs related to the ”exit” side of the element in node NO.

5.2.2 Criteria for Crack Growth and Smooth Closure

A CST element is by default only able to model constant stresses in the element. Therefore
there is a need to construct a stress interpolation through the element when the element
acts as a partly cracked tip element where stresses equal to the tensile strength are to
be found at the tip. Furthermore it is important to ensure a smooth transition when an
element changes status from being uncracked to partly cracked and later changes status to
being fully cracked. The smooth transition is of major importance for the capability of the
element to model all possible crack lengths and for the stability of the iterative procedure.

A stress interpolation is created from the average nodal stresses computed by weighting
the contribution from each element to a given node with the area of that element - c.f.
(5.3).

σave
no =





nno
el

∑

i=1

σiAi



 /

nno
el

∑

i=1

Ai (5.3)

Where σave
no is the average nodal stress, nno

el is the number of elements sharing a given
node, σi is the stress in element i and Ai is the area of element i.

The contribution from fully cracked or partly cracked elements is weighted by using the
relevant sub-areas when taking into account the contribution from the discontinuous dis-
placement field. By weighting the stress contribution from the discontinuous field with
the corresponding sub-areas in the partly cracked element, stress continuity across the ele-
ment boundary is ensured when the discontinuity propagates from one element to another.
From the nodal stresses, a linear interpolation is used for computation of the tip-stresses.
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Several strategies can be applied for the determination of crack growth direction and
computation of initial crack length increment in each load step. In this work, the crack
propagates when the tensile strength of the material is exceeded in the crack tip, and
the crack is propagated in the normal direction for the principal stress direction in the
crack tip. The crack may be incremented either in pre-specified increments or it may
be propagated to the point where the continuous field yields tensile stresses equal to the
tensile strength for a given load increment. The crack length is then kept constant in
the load step for the following iterations. To keep the crack length constant in each load
step, the iteration procedure has to ensure stresses equal to the tensile strength in the
crack tip. This issue will be returned to below, when the algorithm used for solving the
non-linear equations is discussed.

As discussed in Section 4.3 smooth crack closure is automatically achieved in a finite
element formulation with a stress criterion when a sufficient numbers of elements are
applied for the cohesive zone, thus no additional criterion for smooth closure is needed.

5.2.3 Algorithm

To remain within the framework of traditional FEM code, a general procedure, the or-
thogonal residual algorithm Krenk (1995), was adopted for the XFEM scheme to solve
the non-linear equations in Asferg et al. (2006). The algorithm proved to be efficient for
fully cracked elements and it was therefore also used here. In the present case, the algo-
rithm is supplemented with a stress criterion for smooth crack closure - i.e. the iterative
procedures ensures stresses equal to the tensile strength in the crack tip. The algorithm
is summarized in Table 5.1. The focus in this work was on the development and the
performance of the new crack-tip element and the procedure for ensuring stresses equal
to the material tensile strength at the crack-tip was chosen as the simplest and most
robust possible. In terms of speed the algorithm could be improved by applying a more
sophisticated strategy for the crack-tip stress iterations - e.g. an algorithm that iterates
simultaneously on the global equilibrium and the crack length.

As a convergence criterion, an energy criterion was applied, and the elastic energy in the
initial elastic load step was used as reference energy, Eref . Furthermore it will be noticed
that it was decided to implement the orthogonal residual algorithm in a Newton-Raphson
style, where the tangential stiffness matrix was updated in each iteration to take into
account changes in crack opening and thus also changes in the contributions from the
enriched nodes during the iterations.
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Table 5.1 Orthogonal residual algorithm for XFEM

initial state: u0, f0,∆u0 = 0, Eref ,∆f0

load increments n=1,2...,nmax

∆u1 = K−1
T,n−1∆fn

∆u = min (1, umax/‖∆u‖) ∆u

∆uT
0 ∆u < 0 then ∆u = −∆u,∆f = −∆f

j = 1

Iterations i=1,2,...imax

∆q = q (u + ∆u) − fn−1

ζ = qT u/fT
n ∆u ζ is the optimal load scaling factor

r = ζ∆fn − ∆q r is the unbalanced force vector

KT,n = KT (u + ∆u)

δu = K−1
T,nr δu is the displacement correction

δu = min (1, umax/‖δu‖) δu

Ei = rT δu Ei is the residual energy

εi = Ei/Eref

∆u = ∆u + δu

if εi ≤ stop value

∆σtip = ft − σtip

if ∆σtip > γft γ is the tolerance on σtip

if j = 1

if ∆σtip > 0

∆fn = ∆f + β∆f0 β is a load scaling factor

if ∆σtip < 0

∆fn = ∆f − β∆f0

end

else

δfn = (ft − σtip)
∆f(j)−∆f(j−1)

σtip(j)−σtip(j−1)

∆fn = ∆fn − φδf φ is a numerical damping factor

end

j = j+1, ∆u = K−1
T,n∆fn, εi = 1

end

end

stop iteration when εi ≤ stop value

un = un−1 + ∆un

fn = fn−1 + ζ∆fn

∆u0 = ∆u

stop load increments when ‖un‖ > ucheck
max
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5.3 Numerical Examples

The performance of the new crack tip element was tested by modeling of fracture in the
TPBT specimen and in the FPSB also considered for the fully cracked elements in Section
4.4. The results will be compared to those obtained applying fully cracked elements. For
the TPBT-specimen the results are also compared to the results of a model applying stan-
dard interface elements in the commercial code DIANA. With regard to the FPSB, the
XFEM results will also be compared to the experimental results obtained by Carpinteri
et al. (1992).

The geometry of the considered test specimens and constitutive parameters for the con-
crete was given in Section 4.4 and reference is made to this section or to Paper II.

5.3.1 Three Point Beam Bending Test

For the TBTP specimen, both the structured mesh of 25 by 24 elements (24 elements
over the beam height - 20 elements from the notch to the top of the beam) as well as
an unstructured mesh of 709 elements holding 25 elements of varying size over the beam
height were considered. The structured mesh is depicted in Figure 5.8, which shows the
fractured beam, while the unstructured mesh is depicted in Figure 5.9. In both cases,
the crack path was achieved by propagating the crack half the way through one element
in each step. For the structured mesh, the notch was modeled as a predefined stress-free
discontinuity. In the unstructured mesh, the notch was geometrically modeled, resulting
in fairly small elements present just next to the tip of the notch. In both cases, the
tolerance on the crack tip stress (γ in Table 5.1) was set to 1% of the material tensile
strength. In the last three steps for each mesh, slightly higher tolerance on the tip stress
was allowed - for the structured mesh up to 2.6% error and for the unstructured mesh up
to 4% error.

Figure 5.8 Crack path for TPBT specimen modeled applying partly cracked elements in
a structured mesh of 25 by 24 elements. The crack was propagated half an
element length in each step.
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Figure 5.9 Crack path for TPBT specimen modeled applying partly cracked elements in a
unstructured mesh of 709 elements. The crack was propagated half an element
length in each step.

The load-displacement responses for the two models are depicted in Figure 5.10 and Fig-
ure 5.11. In both figures the results obtained applying partly cracked CST elements are
compared to the results obtained applying fully cracked CST elements. The results are
also compared to the results obtained applying 48 standard 3-node cohesive interface el-
ements over the beam hight in the commercial code DIANA.
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Figure 5.10 Crack path for TPBT specimen modeled applying partly cracked elements in
a structured mesh of 25 by 24 elements. The crack was propagated half an
element length in each step.

In both cases, the application of the new partly cracked tip-element produces a signifi-
cantly smoother response than was obtained using fully cracked elements. The character-
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Figure 5.11 Crack path for TPBT specimen modeled applying partly cracked elements
in a unstructured mesh of 709 elements. The crack was propagated half an
element length in each step.

istics in terms of maximum load-carrying capacity and the overall shape of the response
are, as expected, seen to be almost the same for fully cracked and partly cracked elements.
With regard to the maximum load-carrying capacity, the structured mesh overestimates
the load-carrying capacity by about 8%, while the unstructured mesh captures the max-
imum load-carrying capacity well. With regard to the post-peak response, the major
part is captured well for both meshes. The difference in the determined load level for
the last part of the post-peak response between the computations applying fully cracked
and partly cracked elements is partly due to the fact that, when applying fully cracked
elements, stresses equal to the material tensile strength are not assured in the crack-tip.
Another reason is that for fully cracked elements, the criteria for crack growth is based
on element local stresses, while in the partly cracked case, crack growth is based on av-
erage nodal stresses. The difference compared with the DIANA computations is partly
due to the difference in the applied numbers of elements, the different order of applied
elements, and partly to the tortuosity of the last part of the XFEM crack path. When
there are about four elements left between the crack tip and the top of the beam, the
limited capability of CST elements does not allow for a reasonable stress variation across
the remaining elements, and solutions where the tip-stresses are equal to the material
tensile stress may not be obtained.

From the load deformation responses - in particular for the structured mesh - a sudden
drop in the load carrying capacity may be noted when the first element cracks. This non-
smooth start of the non-linear response is due to the inability of one cracked CST element
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to produce a smooth closing crack and thus reproduce the required cohesive crack profile.
About three elements are required to model the smooth closure and thus the nature of
a cohesive crack. The smooth closure of the cohesive crack can also be seen in Figure
5.12 which shows different stages of the crack propagation in the structured mesh. From
Figure 5.12 it may also be noticed that the tortuosity of the crack increases as the crack
approaches the top of the beam. This is due to the difficulties of modeling the true stress
distribution with only a few un-cracked elements available. With regard to the cohesive
stresses across the crack, it should also be mentioned that the crack in the element next
to the notch becomes stress-free when the load has decreased to the level of the crack
initiation (∼15kN) on the post-peak response.

(a) (b) (c) (d)

Figure 5.12 Propagation of crack in structured mesh. (a) P=15.3kN, scaling factor 1140,
(b) P=18.9kN, scaling factor 762, (c) P=20.8kN (max load), scaling factor
526, (d) P=8.6kN, scaling factor 208,

In the application of partly cracked elements, it is interesting to study the behavior of the
structural response when the crack propagates through a single element in more steps.
In Figure 5.13, the load-deformation response is plotted for three different crack-length
increments for a crack propagating through one element - in the present case when the
crack is propagating through the element next to the tip-element in Figure 5.12(b). The
plots are obtained prescribing a tolerance on the tip-stress of 0.01% of the tensile strength.
From the figure, it can be seen that the deformation response depends only slightly on
the size of the crack length increment. If an even lower tolerance on the tip-stresses is
specified, even better results can be obtained. The Figure also reveals that a very smooth
response is obtained when the crack propagates through an element in several increments.
The importance of a smooth response was discussed in the introduction and when dis-
cussing the criteria for crack growth. The ability of the proposed partly cracked element
in principle to model all possible load deformation states, and therefore to produce a
smooth response for varying crack increments, represents a major improvement compared
with elements only able to be fully cracked.
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Figure 5.13 Load deformation response as function of crack length increment when crack
propagates through one element (the element next to the tip-element in
5.12(b)). α is the relative crack length increment. α = 1 corresponds to
the element being fully cracked.

5.3.2 Four Point Shear Beam

As for the fully cracked elements a fairly coarse structured mesh of 1222 elements and
2549 nodes was considered for the XFEM computation. The mesh can be seen in Figure
5.14, which shows the crack path for the FPSB specimen. The results presented were
obtained by propagating the crack in two increments across each element. This made it
possible to test the modeling of a great variety of finite crack increments. In some cases,
only a ”corner” of an element was cut, while in other cases the crack followed close to the
longest possible path through the element.

Figure 5.14 Crack path for fracture in the FPSB specimen
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Figure 5.15 shows different stages of the developing crack. In Figure 5.16 the load de-
formation response obtained when applying the new partly cracked XFEM element is
compared with the experimental results of Carpinteri et. al Carpinteri et al. (1992) and
with the results obtained when applying fully cracked XFEM LST elements.

(a) (b) (c)

Figure 5.15 Propagation of crack in FPSB. (a) P=62.6kN, scaling factor 973, (b)
P=73.8kN, (Max load) scaling factor 581, (c) P=21.2kN, scaling factor 154.

From Figure 5.14 and Figure 5.15, it can be seen that when applying the proposed partly
cracked XFEM element, a nice smooth crack path is obtained that correlates well with
what is observed in experiments. From the load-deformation response, it can also be seen
that the results correlates well with the experimental results as well as with the previously
obtained XFEM results for higher order elements.

5.4 Conclusion: Partly Cracked XFEM Elements

A new XFEM cohesive crack-tip element for cohesive cracking has been developed by the
introduction of element-side local enrichment of elements cut by the discontinuity. The
new enrichment was developed by the superposition of the standard nodal shape func-
tions and standard nodal shape functions for a sub-triangle of the cracked element. When
the suggested enrichment is applied, the tip element becomes capable of modeling the
situation where equal stresses are present on both sides of the crack. The enrichment was
implemented for the three-node triangular constant-strain triangle (CST) element. Based
on average nodal stresses for the crack-tip element, a stress interpolation was computed
through the tip element and the ability of the tip element to hold the crack-tip at different
positions through the element was illustrated. The performance of the element in fracture
mechanical benchmark tests was illustrated by modeling fracture in the notched three-
point beam bending test and in the four-point shear beam test. The numerical examples
show the element performs well even for fairly coarse meshes.
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Figure 5.16 Comparison of load-displacement response for FPSB obtained by the new
XFEM model, XFEM results obtained by applying fully cracked LST ele-
ments, and experimental results from Carpinteri et al. (1992). Loading zone
1 refers to the loading zone to the left in Figure 4.13, while loading zone 2
refers to the loading zone to the right. Only every 5th data point in each
XFEM series has been marked on the graphs.

Further developments may include the extension of the scheme to higher order elements
and optimization of the algorithm, outlined in Table 5.1, for solving the non-linear equa-
tions.
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Chapter 6

Partly Cracked XFEM Interface
Element

In the previous chapters focus has been on the modeling of crack propagation in the bulk
concrete. However, the interaction between the bulk concrete and the reinforcement is the
governing factor for the load carrying capacity of RC structures. A complete model for
RC structures must be capable of modeling this interaction properly. Confining pressure
on the reinforcement, mainly due to dilation caused by the ribs on the reinforcement,
is of major importance for the stress transfer between concrete and reinforcement and a
proper model must be capable of including this. Furthermore the model must be able
to handle combined separation and sliding between reinforcement and concrete. To be
operational it would be beneficial if all the effects could be modeled in a ”super” element
modeling the overall physical behavior of the interaction between reinforcement and con-
crete. Hereby the cumbersome individual meshing of reinforcement, bond zone and bulk
concrete applied in earlier applications by e.g. Lundgren (1999) and Østergaard (2003)
could be avoided. The basis for a super element may be a cohesive XFEM interface
element for the bond zone. The XFEM interface element must be capable of handling
intersecting cracks - longitudinal cracking along the reinforcement is initiated by cracks
crossing the reinforcement as depicted in Figure 6.1. Furthermore the interface element
must be capable of being partly cracked. Bond between concrete and reinforcement is a
3D phenomenon, however, initially the XFEM interface is considered in a plane version.

In this chapter a cohesive interface element that allows longitudinal cracking is developed.
The interface element is formulated as a partly cracked element. At present the element
is not able to model intersecting cracks.

Following the approach in the previous chapters this chapter opens with the develop-
ment of the applied enrichment for the interface element. The basis for the element is
a 6 node element with a quadratic interpolation in its longitudinal direction and a lin-
ear interpolation across the thickness. The applied variational formulation is equivalent
to the one applied for the previously developed XFEM elements and reference is made
to Chapter 4.2 or to Paper III for further details regarding the variational formulation.
After discussing aspects of the implementation the performance of the interface element
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Partly Cracked XFEM Interface Element 6.1 Enrichment of the Displacement Field

Figure 6.1 Development of crack in interface between concrete and reinforcement

is illustrated by modeling of crack propagation in the TPBT specimen also considered in
Chapter 4 and 5. For details regarding the interface element reference is made to Paper III.

6.1 Enrichment of the Displacement Field

The enrichment of the displacement field is developed following the approach applied for
the other XFEM elements proposed in this thesis. It is based on a true local partition of
unity. The discontinuous interpolation matrix, Nd, is chosen in line with the choice for
the partly cracked element introduced in Chapter 5.

Nd (x, y) =
∑

I

HI(x, y)N
∗

I(x, y) (6.1)

where HI(x, y) is the 2D Heaviside step function for node I. The step function HI(x, y) is
0 on the same side of the discontinuity as node I and 1 on the other side. N∗

I is the part
of N∗ from node I. In the standard case N∗ is chosen as Nc, however, for the proposed
element N∗ is more general but able to describe the same variations as Nc if N∗ and Nc

are applied to the same domain. It has to be emphasized that N∗ applied for the interface
element is not the same as the N∗ applied for the partly cracked element in Chapter 5.
N∗ for the interface element is developed below.

Referring to Figure 6.2, N∗ is formulated in terms of the standard shape functions in-
troducing the relative crack length α ∈ [0, 1] as additional variable. The element may
be interpreted as two superimposed elements, the first with a continuous field as shown
in Figure 6.2(B), the second with a discontinuous field defined on −1 < ζ < −1 + 2α,
−1 ≤ η ≤ 1, c.f. Figure 6.2(C). The element is not isoparametric, so ζ and η are scaled
coordinates of a rectangle. The enrichment of the displacement field refers only to the
cracked part of the element. It has to be emphasized that Figure 6.2(C) only serves to
illustrate the interpretation of the enrichment; no extra nodes are added to the element,
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6.2 Aspects of Implementation Partly Cracked XFEM Interface Element

the discontinuous degrees of freedom are stored in the standard nodes c.f. Figure 6.2(A).
For completeness the shape functions N∗ are written out in (6.2).

ζ

η

1ξ =1ξ = −

1η = −

1η =

α2

Figure 6.2 Topology of interface element. (A) Topology of partly cracked interface ele-
ment. (B) Standard element coordinates. (C) ”Discontinuity” nodes in partly
cracked interface element.

N∗

1 = −1
4α2 (ζ + 1 − α) (ζ + 1 − 2α) (η − 1)

N∗

2 = −1
4α2 (ζ + 1) (ζ + 1 − α) (η − 1)

N∗

3 = 1
4α2 (ζ + 1) (ζ + 1 − α) (η + 1)

N∗

4 = 1
4α2 (ζ + 1 − α) (ζ + 1 − 2α) (η + 1)

N∗

5 = 1
2α2 (ζ + 1) (ζ + 1 − 2α) (η − 1)

N∗

6 = −1
2α2 (ζ + 1) (ζ + 1 − 2α) (η + 1)

(6.2)

where α is shown in Figure 6.2(A)

The enrichment above is applied only to elements cut by the discontinuity; the enrich-
ment is purely local. Therefore, the discontinuous displacement field will always be zero
on edges where elements, not cut by the discontinuity, join the enriched element. To
ensure that the crack closes at the tip, the discontinuity dofs corresponding to the tip are
set to zero. Figure 6.3 illustrates a possible discontinuous displacement field modeled by
applying the discontinuous shape functions in Eq. (6.2). Notice the capability to model
smooth closure of the crack.

6.2 Aspects of Implementation

The implementation of the interface element follows to a large extend the approach ap-
plied for the XFEM elements previously developed in this thesis. However, the applied
integration scheme for the interface element is slightly different compared to the scheme
applied for the previous developed elements, and some comments will be given regarding
this. Crack growth and the condition for smooth crack closure is also discussed in this
section.
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Partly Cracked XFEM Interface Element 6.2 Aspects of Implementation

Figure 6.3 Discontinuous displacement field for partly cracked interface element

6.2.1 Integration of Enriched Elements

In elements cut by the discontinuity integration must be performed independently on each
side of the discontinuity to ensure sufficient accuracy of the strain field. For the elements
previously considered in this thesis the integration has been carried out applying the same
sub-domain for the continuous and the discontinuous field. Here the integration of the
continuous field is carried out by considering the entire area of the element. For the dis-
continuous field the area cut by the discontinuity is divided into two parts and individual
integration performed on those sub-domains. For the three sub-domains a standard seven
point Gauss integration scheme is applied. Concerning the line of discontinuity three
point point integration is applied for the traction forces across the discontinuity. Figure
6.4 illustrates the integration scheme.

Figure 6.4 Applied integration scheme. (A) Element partly cut by discontinuity. (B) Inte-
gration point for continuous field. (C) Integration point for discontinuous field,
crosses mark integration points i continuum, crossed squares mark integration
point in discontinuity.

6.2.2 Criteria for Crack Growth and Smooth Closure

Determination of the crack growth direction is not an issue for an interface element. The
interface element limits the crack growth to the longitudinal direction of the interface
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6.3 Numerical Example Partly Cracked XFEM Interface Element

element; the crack propagates along the centerline of the element. When the element is
applied to practical modeling problems, the thickness of the element is chosen to be small
compared to the element length.

As for the partly cracked element in Chapter 5 the crack is propagated when the material
tensile strength is exceeded in the crack tip. The crack may either be incremented in fixed
increments or to the location where the continuous displacement field yields stresses equal
to the material tensile strength. Independently of the chosen strategy for incrementing
the crack, the iteration scheme, equivalent to the one applied for the partly cracked ele-
ment, c.f. Table 5.1, ensures stresses equal to the tensile strength in the crack tip. Hereby
smooth crack closure is achieved when a sufficient number of elements are applied for the
cohesive zone.

For the partly cracked CST element a linear stress interpolation based on average nodal
stresses was applied for the crack-tip stress iterations. For the interface element it was
expected that the displacement field would yield acceptable stresses for this purpose.
However, when carrying out the initial test computations the stresses in the crack-tip
element were found to be of insufficient quality. Therefore it was chosen to base the
computation of the stresses applied for the crack-tip stress iterations on the nodal stresses
in the neighboring elements.

6.3 Numerical Example

To illustrate the performance of the interface element the TPBT specimen also considered
in Chapter 4 and 5 is modeled applying a narrow band of interface elements along the
midsection of the beam. For further reference regarding the geometry and the material
parameters for the TPBT specimen reference is made to Section 4.4 or to Paper III. In
the example in Paper III, 6-node rectangular elements were applied for the modeling of
the concrete outside the midsection of the beam. Here LST elements are applied for this
purpose. Two meshes are considered - one holding 12 elements over the beam hight (2 of
the 12 elements are pre-cracked, modeling the notch). The other mesh holds 24 elements
over the beam height (of which 4 are modeling the notch). The DIANA computation uti-
lizing 48 standard cohesive interface elements over the beam height serves as a reference.
Results will be given for computations where the crack is propagated element by element,
half the way or one fourth the way through an element in each load step. The tolerance
on the crack-tip stress is set to 1% of the tensile strength of the concrete.

The results are given in terms of the load-displacement response in Figure 6.5 (12 elements
over the beam hight) and in Figure 6.6 (24 elements over the beam hight).

From Figure 6.5 and 6.6 it is seen that the overall shape of the load deformation response
is captured well for both meshes when propagating the crack element by element (the
blue curves). As expected a more smooth response is obtained when more elements are
applied. When the crack is propagated through an element in more steps (the red and
green curves), the load steps representing the situation where the crack-tip is in the inte-
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Figure 6.5 Load deformation responses for TPBT specimen modeled applying 12 XFEM
interface elements over the beam height. The figure depict results for propagat-
ing the crack in different increments, α refers to the crack size of the increments
and for α = 1 the crack is propagated element by element.
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Figure 6.6 Load deformation responses for TPBT specimen modeled applying 24 XFEM
interface elements over the beam height. The figure depict results for propagat-
ing the crack in different increments; α refers to the crack size of the increments
and for α = 1 the crack is propagated element by element.
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Figure 6.7 Zoom on load deformation responses for TPBT specimen modeled applying 24
XFEM interface elements over the beam hight.

rior of an element do not reproduce the expected load-deformation response. Figure 6.7
depicts a zoom of the peak load area of the load-deformation response given in Figure
6.6. Propagating the crack through the element in two steps, each representing the same
increment in crack length, the expectation would be a smooth curve where the points rep-
resenting the partly cracked state would be place approximately equally spaced between
the points corresponding to the element being uncracked, respectively, fully cracked. The
behavior observed for the partly cracked CST element and depicted in Figure 5.13 would
be expected. It may be assumed that the deviation from the expected may be reduced
by specifying a smaller tolerance on the convergence criterion for the crack-tip stresses.
Specifying a tolerance that is a factor 10 lower than the one applied for the computations
illustrated in Figure 6.5-6.7 does, however, not change the position of the points corre-
sponding to the crack-tip element being partly cracked. It is assumed that the odd spacing
is related to the stress interpolation when the XFEM interface element is partly cracked.
It is therefore assumed that improvement of the basis for the stresses computation in the
partly cracked element may reduce the observed problems.

Figure 6.8 depicts different stages of the propagating crack. Notice the smooth closure of
the crack.
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(a) (b) (c) (d)

Figure 6.8 Propagation of crack in XFEM interface elements. (a) P=13.9kN, scaling factor
988, (b) P=18.0kN, scaling factor 641, (c) P=16.7kN, scaling factor 409, (d)
P=1.4kN, scaling factor 111.

6.4 Conclusion on XFEM Interface Element

A cohesive XFEM interface element for modeling of the bond zone between concrete
and reinforcement has been proposed. The interface element is capable of being partly
cracked. By modeling of crack growth in a notched three point bending beam the per-
formance of the element has been illustrated. Good results are obtained when the crack
is propagated element by element trough a fairly coarse meshes. A smooth closing crack
profile is achieved. When the crack-tip element is partly cracked some deviations from
the expected are observed. The deviations are assumed related to the capability of the
element to reproduce the correct stresses when the element is partly cracked. It is as-
sumed that by improving the basis for the stress calculations the observed deviations
may be minimized. To increase the computational speed the iteration scheme may be
optimized. More demanding improvements of the interface element include the capability
of the element to handle intersecting cracks as depicted in Figure 6.1.
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Chapter 7

Conclusion

Existing methods for modeling of concrete structures are often not capable of predicting
the development in crack patterns and crack widths and hence are not able to predict
developments in structural properties such as e.g. the stiffness of concrete structures in
the serviceability state.

This thesis contributes to the development of more proper numerical models for modeling
of concrete structures by proposing a number of elements for modeling of crack growth
in concrete within the framework of the eXtended Finite Element Method, XFEM. The
fictitious crack model is implemented. By modeling of fracture mechanical benchmark
tests the capabilities of the proposed XFEM elements for modeling of crack growth in
concrete have been demonstrated.

The significant contribution in Chapter 4/Paper I is a direct enrichment scheme proposed
for fully cracked elements. The enrichment scheme is able to model the same variation in
the displacement field as the enrichment schemes suggested by other authors. However,
the proposed enrichment scheme is more straightforward and easily implemented. The
enrichment scheme was implemented for the 3-node CST element and for the 6-node LST
element. The performance of the XFEM elements was illustrated by modeling of fracture
in concrete benchmark tests such as the notched three point bending beam (TPBT) and
the notched four point shear beam (FPSB). It was found necessary to apply a nonlo-
cal strategy for determining the crack growth direction when considering CST elements
whereas the crack growth direction could be based on element local stresses when LST
elements were applied. The results obtained for the TPBT specimen were compared with
results obtained by modeling of fracture in the TPBT applying standard cohesive interface
elements in a commercial FEM code. The results for the FPSB was compared with ex-
perimental results and previously obtained XFEM results. Keeping in mind that the long
time perspective is the capability to model real size civil structures investigations were
carried out applying fairly coarse meshes. For the TPBT specimen reasonable results were
obtained applying 24 CST elements over the beam hight. Applying LST elements good
results were obtained applying only 12 elements over the beam hight. Modeling of fracture
in the FPSB illustrated the capability to model a curved crack applying fully cracked LST
elements. Good results were obtained in terms of predicted crack path as well as predicted
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load-deformation response. Regarding the capability to model the entire load deformation
response, the crack may be propagated until three elements remains uncracked in TPBT
specimen when CST elements are applied - i.e. the major part of the post peak response
may be modeled. Applying LST elements the crack may be propagated slightly closer
to the top of the beam and hence a larger part of the post peak response may be captured.

The important contribution in Chapter 5/Paper II is a partly cracked tip element that
is capable of modeling equal stresses at each side of the crack in the crack-tip element.
Applying the enrichment proposed in Paper I or the enrichments found in the litera-
ture, the crack-tip element is not capable of modeling equal stresses at each side of the
crack. This lack of capability was identified as one of the reasons for the requirement
for a non-local procedure for determining the crack growth direction when applying fully
cracked elements. Furthermore applying elements that are not capable of holding the
crack tip within the interior of the element does not allow computation of all possible
load-displacement states as it is normally required in a general non-linear procedure.
Therefore a consistent XFEM element, capable of modeling equal stresses at each side of
the crack in the tip-element, and capable of holding the crack tip at any point inside the
element, was proposed in Chapter 5/Paper II. The capability to model equal stresses at
each side of the crack in the tip-element was achieved by addition of extra enrichments to
elements cut by the discontinuity. The extra enrichments are, like the enrichment applied
for the fully cracked elements, based on a local partition of unity and influence only ele-
ments cut by the crack. The new enrichment scheme was applied to the CST element. The
performance of the partly cracked element was illustrated by modeling of fracture in the
previously considered TPBT specimen as well as in the FPSB specimen. For the TPBT
specimen the partly cracked element yields a more smooth load-deformation response
than obtained applying fully cracked elements and the crack path becomes less tortious.
Considering different crack length increments for the crack propagating through one ele-
ment it was illustrated that the computed load-deformation response is independent of the
crack length increments. From the analysis of the TPBT specimen it was concluded that
about three elements are required to model smooth closure of the crack. The improved
capability of the partly cracked CST element was also illustrated by modeling of fracture
in the FPSB specimen that was previously modeled applying fully cracked LST elements.
It was found that in the case of the FPSB the partly cracked CST elements produce a
smoother crack path than the fully cracked LST elements. Only negligible differences was
found with regard to the load-deformation response.

The major finding in Chapter 6/Paper III is a new cohesive XFEM interface element. The
element may be seen as a first step towards a super element for modeling of the bond zone
between concrete and reinforcement. The proposed 6-node cohesive interface element is
capable of being partly cracked. The performance of the interface element is illustrated
by modeling of fracture in the previously considered TPBT specimen. The interface el-
ement yields a nice smooth crack closing profile. With respect to the load-deformation
response the interface elements yield the best results when the crack tip is located on an
element boundary. A better basis for computing stresses in the interface crack-tip element
is assumed to improve the performance of the element when the element is partly cracked.
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7.1 Further Work

The examples considered in this thesis illustrate the capabilities of the proposed XFEM
elements. However, these examples only consider one propagating crack whereas the frac-
ture of real RC structures involves the development of several localized cracks. In the
long time perspective the XFEM scheme therefore needs to be extended so it may handle
multiple cracking in the bulk concrete.

As expected and illustrated for fully cracked elements higher order elements yield better
results than lower order elements. Therefore the good results obtained applying the low
order partly cracked element may be further improved extending the enrichment scheme
suggested in Chapter 5/Paper II to higher order elements. The extension to higher order
elements - e.g. LST elements - may at first be seen as counterintuitive to the aim of being
able to model real size civil structures. However, higher order elements may be justified
by the fact that fewer elements will be required across the beam hight for modeling of e.g.
bending. In total the outcome of applying higher order elements may therefore maybe a
reduced number of degrees of freedom in the system considered. Also with regard to the
partly cracked element the computational efficiency may be improved by optimizing the
algorithm for solving the non-linear equations.

Focus in this thesis has been on problems where the crack is propagated in Mode I. How-
ever, the XFEM scheme is general, and it would be interesting to investigate e.g. problems
with pronounced mixed mode crack opening applying the XFEM scheme together with a
proper constitutive model for mixed-mode fracture of concrete.

With respect to the interface element a number of challenges still need to be met. First
and foremost the stress representation needs to be improved. Hereby it is assumed that
the performance of the interface elements, when being partly cracked, will improve. As
it was discussed in the introduction to the interface element one of the requirements to
the interface element is that it must be able to handle intersecting cracks. Therefore this
capability also needs to be implemented in the interface element. Also a proper physical
bond law capable of including the effects of the confining pressure needs to be identified
before a super element modeling the overall behavior of the interaction between concrete
and reinforcement may be formulated.
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Bažant, Z. P. and Cedolin, L. (1979a). Blunt crack band propagation in finite element
analysis. Journal of the Engineering Mechanics Division, ASCE, 105(EM2):297–315.
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Bažant, Z. P. and Oh, B. H. (1983). Crack band theory for fracture of concrete. Materials
and structures, RILEM, 16 (93):155–177.

Beeby, A. W. (1978). Cracking: what are crack width limits for? Concrete, pages 31–33.

Belytschko, T. and Black, T. (1999). Elastic crack growth in finite elements with minimal
remeshing. International Journal for Numerical Methods in Engineering, 45 (5):601–
620.

Belytschko, T., Fish, J., and Engelmann, B. E. (1988). A finite element with embeded
localization zones. Computer Methods in Applied Mechanics and Engineering, 70:247–
256.

Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., and Krysl, P. (1996). Mesh-
less methods: an overview and recent developments. Computer Methods in Applied
Mechanics and Engineering, 139:3–47.
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de Borst, Mang, and Bićanić, editors, Computational Modelling of Concrete Structures,
pages 319–328. Taylor & Francis Group, London.

DS 411 (1999). Code of Practice for the structural use of concrete. Dansk Standard. eds.
E. Skettrup, B. Feddersen, G. Heshe, H.S. Nielsen, J. Westh, M.E. Andersen and F.
Bach.

Dugdale, D. S. (1960). Yielding of steel sheets containing slits. Journal of the Mechanics
and Physics of Solids, 8:100–104.

Dvorkin, E. N., Cuitiño, A. M., and Gioia, G. (1990). Finite elements with displace-
ment interpolated embedded localization lines insensitive to mesh size and distortions.
Computer Methods in Applied Mechanics and Engineering, 90:829–844.

Ferro, G. (2002). Mulitlevel bridge crack model for high-performance concretes. Theoret-
ical and Applied Fracture Mechanics, 38(2):177–190.
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Abstract. Applying a direct formulation for the enrichment of the displacement field an extended finite
element (XFEM) scheme for modeling of cohesive crack growth is developed. Only elements cut by the
crack is enriched and the scheme fits within the framework of standard FEM code. The scheme is
implemented for the 3-node constant strain triangle (CST) and the 6-node linear strain triangle (LST).
Modeling of standard concrete test cases such as fracture in the notched three point beam bending test
(TPBT) and in the four point shear beam test (FPSB) illustrates the performance. The XFEM results show
good agreement with results obtained by applying standard interface elements in FEM and with
experimental results. In conjunction with criteria for crack growth local versus nonlocal computation of
the crack growth direction is discussed.

Keywords: extended finite elements-XFEM; fracture mechanics; cohesive crack growth.

1. Introduction

Throughout the last century research has been carried out regarding methods to determine the

ultimate strength of reinforced concrete structures. Today well-documented methods are available

for estimating the ultimate strength of most reinforced concrete (RC) structures and the theory of

rigid plasticity is highly developed (e.g. Nielsen 1999). However, most of these methods require the

use of empirical factors and do not consider phenomena such as size effects and reinforcement

arrangement in a fully consistent way. Regarding RC structures in the serviceability limit state the

predictive capability of existing methods of analysis is limited. Predictions regarding the

development in e.g., stiffness due to cracking, development in crack widths and the deformations at

ultimate loading for RC structures are often based on empiric rules.

A consistent model for modeling of RC structures may be obtained if the model is able to predict

the cracking that takes places long before the ultimate capacity of RC structures is reached.

Cracking influences structural properties and is one of the governing factors in relation to durability

and service life prediction. A consistent approach for modeling of concrete may be based on the

concept of fracture mechanics and the capability to model localized crack growth. Aiming at the

capability to model real size RC structures with complex shapes it would be beneficial if the model

fits within the concept of the finite element method (FEM) and that the method do not require to

†Corresponding Author, E-mail: jla@byg.dtu.dk
‡E-mail: pnp@byg.dtu.dk
‡†E-mail: lon@byg.dtu.dk
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dense FEM meshes.

Concrete belongs to the group of materials that are classified as being quasi-brittle (e.g. Karihaloo

1995) and a suitable model for crack propagation in concrete is the fictitious crack model by

Hillerborg, et al. (1976) that models the crack propagation within the framework of cohesive

cracking (Barenblatt 1962, Dugdale 1960).

Today several commercial FEM codes have interface elements suitable for modeling of discrete

cohesive cracks. The use of interface elements however requires the crack path to be known

beforehand and is therefore less relevant when the aim is to predict crack patterns. Several programs

also have elements for smeared cracking that are based on the concept of a crack band (Ba ant and

Oh 1983) however the smeared approach is not well-suited for modeling of localized crack growth.

Remeshing has been used as a tool when modeling crack growth, (Bouchard, et al. 2000, 2002,

Patzák and Jirásek 2004). Remeshing is however cumbersome hence it requires projection of

variables between different meshes. Three methods: the element free Galerkin method (Belytschko,

et al. 1996), the embedded crack methods (e.g. Jirásek 2000) and the extended finite element

method (XFEM) (Belytschko and Black 1999) allow modeling of crack growth without remeshing.

While the element free Galerkin method deviates in its principal structure from the structure of

commercial FEM codes, embedded cracks and the XFEM fits well in the structure of commercial

FEM codes. The XFEM is however preferable to the concept of embedded cracks hence in the

XFEM the strains are independent in the separated parts of the elements whereas they are partly

coupled in the embedded concept (Jirásek and Belytschko 2000).

In the extended finite element method the displacement field consists of two parts, a continuous

and a discontinuous part. The continuous part is the standard displacement field corresponding to

the situation without any cracks. The discontinuous displacement field is based on local partitions of

unity (Melenk and Babus̆ka 1996) and enables the element to include a discontinuity, in the present

case a cohesive crack.

XFEM has been applied to different problems within the area of fracture mechanics. While it was

first developed for linear elastic fracture mechanics (Belytschko and Black 1999, Moës, et al. 1999,

Stolarska, et al. 2001) it has now been applied to different problems such as cohesive cracking

(Wells and Sluys 2001, Moës and Belytschko 2002, Zi and Belytschko 2003, Mergheim, et al.

2005) arbitrary branched and intersecting cracks (Daux, et al. 2000) and three dimensional crack

propagation (Sukumar, et al. 2000). Reference is also made to Karihaloo and Xiao (2002) for an

overview of the earlier works regarding the XFEM.

Considering linear elastic fracture mechanics (Belytschko and Black 1999, Moës, et al., 1999,

Stolarska, et al. 2001) nodes in elements fully cut by the discontinuity was enriched by the step

function while the tip element was enriched with an asymptotic field. In cohesive crack models,

cohesive stresses act near the crack tip and it is assumed that no singularity is present at the crack

tip. However, considering partly cracked elements for cohesive crack growth Moës and Belytschko

(2002) enriched the crack tip element with a set of nonsingular branch functions to model the

displacement field around the tip of the discontinuity. Wells and Sluys (2001) considered fully

cracked elements and applied the Heaviside step function as the only enrichment of nodes with a

supporting side cut by the discontinuity. Applying the Heaviside step function as in Wells and Sluys

(2001) the nodal enrichment influences not only the displacement field in the elements cut by the

discontinuity but also in the elements sharing the enriched nodes, i.e., the enrichments typically

have to be dealt with in a band of three elements along the line of the discontinuity.

Zi and Belytschko (2003) proposed an enrichment of the crack tip element for the case of partly
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cracked elements in which the shifted sign function was applied. The application of the shifted sign

function to a 1D example is illustrated in Fig. 1(b). As shown the enrichment only influences

elements cut by the discontinuity. In Mergheim, et al. (2005) a dual node strategy was applied and

the displacement field was not decomposed into a continuous and discontinuous part in the same

way as in the approach by Wells and Sluys (2001) and Zi and Belytschko (2003). However even

though the basis for the shape functions is different the scheme in Mergheim, et al. (2005) is able to

model the same variation in the displacement field as in the scheme by Zi and Belytschko (2003).

The enrichment as applied by Mergheim, et al. (2005) is illustrated in Fig. 1(c). Although the

authors in Mergheim, et al. (2005) distinct their approach from the XFEM it is essentially based on

the same concept.

In the present paper a direct XFEM scheme for modeling of cohesive crack growth is developed

using the Heaviside step function and limiting the discontinuous displacement field to elements cut

by the crack. The XFEM formulation follows the concepts proposed in Asferg, et al. (2004). The

Heaviside step function, H, is applied as the only enrichment of elements cut by the discontinuity

c.f. Fig. 1(a).

Fig. 1 illustrates how a displacement jump of the magnitude of one may be modeled applying the

three different approaches discussed above. For the present approach and the approach by Zi and

Belytschko (2003) the two upper sketches illustrate the continuous displacement fields for node 1

respectively node 2 while sketch 3 and 4 illustrate the discontinuous displacement fields. Regarding

the approach by Mergheim, et al. (2005) the two upper figures illustrate the displacement field for

the two “original” nodes 1 and 2 while Figs. 3 and 4 depict the displacement fields for the dual

nodes 1* and 2*. Finally the lower sketch in each row depicts an example of a displacement field

containing a jump of the magnitude of one. From Fig. 1 it is evident that the difference between the

three approaches is a question about the applied basis for modeling the displacement field.

Compared to the enrichment by the shifted sign function in Zi and Belytschko (2003) and the

enrichment in Mergheim, et al. (2005) the proposed enrichment is more straight forward but

essential the three formulations models the same discontinuous field.

Common for the approaches in Wells and Sluys (2001), Moës and Belytschko (2002), Zi and

Belytschko (2003), Mergheim, et al. (2005) is that they all adopt a nonlocal approach for the

determination of the crack growth direction. A nonlocal approach is required because of the lack of

capability of the tip element to model equal stresses at both sides of the discontinuity which is most

pronounced when CST elements are considered.

The suggested XFEM scheme fits in the context of standard FEM code and it is applied to the 3-

node constant strain triangle elements (CST) and the 6-node linear strain triangle elements (LST).

The performance of the scheme is illustrated by modeling of fracture in concrete benchmark tests

such as the three point beam bending test (TPBT) and the four point shear beam test (FPSB). In the

present work only elements completely cut by a crack have been considered, i.e., the crack extends

element by element and the crack tip will always be located on an element edge.

In section two the enrichment of the displacement field will be introduced and the discontinuous

displacement fields developed and illustrated for CST and LST elements. Section three concerns the

variational formulation while matters of the implementation is discussed in section four. Section five

shows the numerical examples.
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2. Enrichment of displacement field

The displacement field for a cracked element can be formulated as the sum of the continuous and

the discontinuous displacement field as already illustrated in Fig. 1. The continuous displacement

field is defined equally to the displacement field for an uncracked element, i.e., the displacement

Fig. 1 Comparison of different enrichments of the displacement field: (a) Present formulation, (b) Zi and
Belytschko (2003), (c) Mergheim, et al. (2005). For the present formulation and the formulation by Zi
and Belytschko (2003) the two upper figures illustrate the continuous displacement fields and the
following two figures illustrate the discontinuou displacement field. Regarding the formulation by
Mergheim, et al. (2005) the two upper figures illustrate the displacement field for the two “original”
nodes 1 and 2 while figure 3 and 4 depict the displacement fields for the dual nodes 1* and 2*. The
lower figure in each column illustrates how a displacement jump of magnitude one may be modeled
by the different formulations
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field may be written

(1)

where v c and v d are the degree of freedom (dof) vectors while N c and N d are the interpolation

matrices. c refers to continuous and d to discontinuous.

The element discontinuity interpolation matrix, N d, is chosen as suggested in Asferg, et al. (2004).

(2)

where HI (x, y) is the 2D Heaviside step function for node I. The step function HI (x, y) is 0 on the

same side of the discontinuity as node I and 1 on the other side.

Fig. 2 illustrates a discontinuous displacement field for a CST element cut by a crack while Fig. 3

illustrates two of the discontinuous displacement fields for a LST element. The left most subfigure

in each figure shows the crack geometry, coordinates to the start and the endpoints are given in area

coordinates, while the remaining subfigures show individual nodal discontinuous displacement

fields.

From Fig. 2 and Fig. 3 it is seen that the choice of interpolation for the discontinuous

displacement field ensures that the discontinuous contribution to the displacement field vanish at all

element edges not cut by the discontinuity implying the discontinuous displacement field to be

included only in elements cut by the crack.

u x y,( ) N
c
x y,( )vc N

d
x y,( )vd+=

N
d
x  y,( ) HI x  y,( )NI

c
x  y,( )

I

∑=

Fig. 2 Example of the enrichment of the displacement field for cracked CST element. (a) Crack geometry, (b),
(c), (d) discontinuous displacement field for discontinuity dof’s in node 1, 2 and 3

Fig. 3 Example of the enrichment of the displacement field for cracked LST element. (a) Crack geometry, (b)
and (c) discontinuous displacement field for discontinuity dof’s in node 1 respectively node 6
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Fig. 4 illustrates the enrichment at system level. Only nodes who’s support is cut by the

discontinuity are enriched. The discontinuity dof’s located at the element edge where the crack tip is

located have to be set to zero to ensure that the discontinuity at that edge is zero.

3. Variational formulation

Given a cohesive crack in a structure in a state of plane stress or plane strain described in a

Cartesian coordinate system x,y (cf. Fig. 5), the arc length along the crack is termed s, and n,s is a

curve linear coordinate system, n being normal to the crack face. The positive direction of s is seen

on Fig. 5. The orientation of n determines the positive side of the crack. The stress state in the

crack may be defined by the normal stress σn and the shear stress τns while work-conjugated

generalized strains are the opening of the crack,  and the slip in the crack,

 A small strain / small displacement static theory is used and the material outside the

crack is assumed linear elastic.

Let  denote a jump, then the stress increments d cr across the crack surfaces are related to

the increments in the displacement jump, , i.e., the separation of the crack surfaces through the

tangential material stifiness matrix .

(3)

For the uncracked part of the structure, the stress vector  and the strain vector

 are defined as usual and related through the standard material stiffness

matrix D, specified below for an isotropic material in plane stress.
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Fig. 4 Enrichment at system level for a mesh with
LST elements. Nodes marked with a circle or
a square are enriched. Discontinuity dof's in
nodes marked with a square are set to zero

Fig. 5 Cohesive crack in a two dimensional domain
with f representing both domain load and
boundary load
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(4)

The virtual internal work-per-unit length of the crack  and the virtual internal work-per-unit

area of the uncracked part of the structure  may now be written, δ referring to a virtual quantity

 

(5)

For the entire structure the virtual internal and external work becomes

(6)

where f is the load on the structure.

By applying incremental quantities, the incremental stiffness relation, can obtained by:

(7)

where V is the system DOF vector and ∆ refers to an incremental quantity.
Special attention must be paid to the internal work, because the contribution from each element to

the tangential stiffness KT depends on whether the element is cracked or not. The element tangential

stiffness matrix, kT, for a cracked element is found by the following procedure. From Eqs. (l) and

(2) the strain vector in a cracked element, except in the crack itself, is obtained

(8)

where Bc and Bd are the strain distribution matrices corresponding to the interpolation matrix Nc

respectively Nd. 

Due to the displacement field from the first term in Eq. (1) being continuous, the strains in the

crack itself may be written as 

(9)

here, B cr is the strain distribution matrix in the crack, T is the transformation matrix between the

(x, y) and (n, s) coordinate systems, while  and  are the discontinuous interpolation matrices

on the positive and negative sides of the crack respectively.

Applying the strain relations in Eqs. (8) and (9) when formulating the virtual incremental internal

work, kT defined by δW
i=δ vTkT ∆v, where v

T= , is found to be

(10)
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crack is constant and thus only the stiffness contribution from the crack itself is non-linear.

The element nodal forces, q, depend like kT, on the crack opening, and they are determined

analogous to kT. The contribution to q from the crack, q
cr, is found from the stresses in the crack.

The stresses in the crack are related to the displacement jump across the crack according to Eq. (3).

By adding this contribution to the contribution from the part of the element outside the crack, q is

obtained as

(11)

4. Implementation

This section concerns the implementation of the XFEM scheme. First the condition for smooth

crack closure is discussed. Hereafter the integration scheme for the enriched elements is presented.

Then the criteria for the crack propagation are dealt with and finally the choice of the algorithm to

solve the non-linear equations is discussed and the algorithm is given in a schematic form.

4.1. Conditions for smooth crack closure

In order to secure that the cohesive crack closes smoothly it is required that the stress intensity factors

at the crack tip are vanishing (Vandewalle 2000). In Moës and Belytschko (2002) the mode I stress

intensity factor, KI, is evaluated applying a domain integral and when performing the iterations the load

factor is determined such that KI is zero at the crack tip. In the work by Zi and Belytschko (2003) it is

stated that the equilibrium equations have been supplemented by a smooth crack closure condition at

system level. Equivalent to the zero stress intensity factor condition, Zi and Belytschko require the stress

projection in the normal direction of the crack to be equal to the tensile strength at the crack tip.

However, adding an extra equation to be fulfilled at system level makes the structure of the algorithm

different from the structure of most algorithms applied in commercial FEM codes. Investigations using

cohesive interface crack elements by Stang, et al. (2006) show that smooth closure is automatically

achieved in a finite element formulation with a stress criterion when a sufficient mumber of elements

are applied. However, in the case considered in this paper, where the elements are either uncracked or

fully cracked, it is just ensured that the stresses in the element next to the crack-tip element do not

exceed the tensile strength. This approximately ensures smooth crack closure.

4.2. Integration of enriched elements

To ensure correct integration in elements cut by the discontinuity, integration must be performed

independently on each side of the discontinuity. For integration purposes elements cut by the

discontinuity are therefore subdivided into three triangular areas as illustrated in Fig. 6. In the case of

CST elements one point Gauss quadrature is applied to each sub triangle and two integration points

are used on the line of discontinuity. In the case of LST elements three point Gauss quadrature is

applied in each sub triangle and three integration points are used along the line of discontinuity.

In elements not cut by the discontinuity standard Gauss quadrature is applied - one point Gauss

quadrature is applied in the case of CST elements and three point Gauss quadrature is applied for

LST elements.
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4.3. Crack growth

In the present work a discontinuity is introduced in the element, when the principal stress in the

element exceeds the tensile strength of the material. The discontinuity is a straight line through the

element originating from the point where the discontinuity ended in the previous cracked element.

Hereby a continuous discontinuity is assured.

Concerning the crack growth direction different approaches have been considered. The first and

simplest approach is local and rely only upon the stresses in the element that is located next to the

tip-element (The element to become the next tip-element, element 8 in Fig. 7) for the determination

of the crack growth direction. The discontinuity is grown perpendicular to the principal stress

direction.

Several authors state that the local stresses in the next tip element can not be relied upon for

computation of the crack growth direction and different nonlocal approaches are suggested. In Wells

and Sluys (2001) the principal stress direction in the next tip element is computed from a non-local

stress tensor calculated as a weighted average of stresses using a Gaussian weight function. Stresses

in integration points within a radius of three times the typical element size are taken into account. In

Moës and Belytschko (2002) the maximum hoop stress criterion is applied. The requirement for

considering stresses in more than one element when computing the crack growth direction may

appear when recalling the discontinuous displacement field in a cracked CST tip element c.f. Fig. 7.

Fig. 6 Integration scheme for (a) CST and (b) LST element cut by discontinuity. Crosses marks integration
point in continuum part of elements while crosses in boxes marks integration point on line of
discontinuity for integration of traction forces

Fig. 7 Discontinuous displacement field in CST “tip” element
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Due to the discontinuous degrees of freedom in the nodes located on the crack tip edge being set

equal to zero the crack tip element is not able to model the case, where equal stress are present at

both sides of the discontinuity. This lack of capability to model correct stresses in the tip element

influences the stresses in the next tip element and may call for more elements to be relied on for the

computation of crack growth direction.

When a non-local stress tensor is applied in this work (only for CST elements), average nodal

stresses are computed from element stresses in the elements sharing a given node - c.f. Eq. (12). All

elements are assigned the same weight except previously cracked elements that are disregarded in

the computation of the average nodal stresses due to the above illustrated bad stress field in the

crack tip element. From the average nodal stresses a non-local stress tensor at the crack tip is

interpolated by Eq. (13) and used for the determination of the crack growth direction. In Eq.

(13)  are the area coordinates to the crack tip.

(12)

(13)

Applying LST elements a non local procedure for computation of the crack growth direction is

not necessary. The crack growth direction is computed from the principal stresses at the start point

of the crack in the element.

4.4. Algorithm

To remain within the framework of traditional FEM codes a general procedure, the orthogonal

residual algorithm (Krenk 1995), was adopted for the XFEM scheme to solve the non-linear

equations. The algorithm is summarized in Table 1.

As convergence criterion an energy criterion was applied and the elastic energy in the initial

elastic load step was used as reference energy, Eref. Further it may be noticed that it was chosen to

implement the orthogonal residual algorithm in a Newton-Raphson style where the tangential

stiffness matrix was updated in each iteration to take into account changes in crack opening and

thereby also changes in the contribution from the enriched nodes during the iterations.

5. Numerical examples

To illustrate the capability of the suggested XFEM scheme two fracture mechanical benchmark tests,

the three point beam bending test (TPBT) and the four point shear beam test (FPSB) has been

considered. Results will be given for the TPBT applying CST as well as LST elements while only results

applying LST elements will be given for the FPSB. Applying CST elements for the TPBT specimen

local as well as nonlocal determination of crack growth direction will be considered and discussed. 
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5.1. Three point beam bending test

The geometry of the TPBT specimen considered in this case is in accordance with the RILEM

recommendations (Vandewalle 2000). The geometry is depicted in Fig. 8(a), the cross section of the

beam being a square. For the material parameters standard values for a good quality concrete was

chosen c.f. Table 2. A linear softening law as illustrated in Fig. 8(b) was applied for the normal

stress in the crack. Considering a pure mode I problem the shear stiffness and the mixed mode

stiffness terms for the crack were all set equal to zero, i.e., the tangential material stiffness matrix

for the crack only holds one term different from zero:

(14)D cr
T  

ft–

∆u n ult,

cr
---------------- 0 

0 0 

=

Table 1 Orthogonal residual algorithm for XFEM
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Fig. 8 (a) Geometry of TPBT specimen. (b) Applied linear softening curve
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5.1.1. Applying CST elements to model TPBT

Modeling the TPBT specimen applying CST elements structured as well as unstructured meshes

were considered. Results will be given for two structured meshes, a 21 by 12 element c.f. Fig. 9(a),

and a 25 by 24 element mesh. For both structured meshes results for local as well as non-local

computation of crack growth direction will be given. The unstructured mesh, c.f. Fig. 9(b) consisted

of 709 elements and results will only be given for the non-local crack growth computation. Note

that for the structured meshes the notch is modeled as a predefined stress free discontinuity while in

the unstructured mesh the notch is defined by the geometry of the mesh.

As reference for the XFEM computations the TPBT specimen was also modeled applying

standard interface elements along a predefined crack path in the commercial code DIANA from

TNO. Two meshes holding 24 respectively 48 elements over the beam height were considered for

the DIANA computation.

Fig. 10 shows the load-deformation-response for the five considered XFEM computations and the

two reference DIANA computations. The deformation is computed as the difference between the

vertical displacement of the center point of the beam and the average vertical displacement of the

mid points of the beam ends. Fig. 11 shows the predicted crack path for the 25 by 24 mesh

applying local or nonlocal computation of the crack growth direction and the predicted crack path

for the unstructured mesh.

Fig. 9 (a) Structured mesh. (b) Unstructured mesh

Table 2 Constitutive parameters

Parameter Value

Young's modulus, Ec 37400MPa

Poisson's ratio, νc 0.2 

Tensile strength, ft 3.5MPa

Fracture energy, Gf 160 N/m 
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From the load-deformation-responses it is seen that the coarse structured mesh over predicts the

load carrying capacity of the TPBT specimen with about 20% while the finer structured mesh

overestimates the load carrying capacity with about 8%. The unstructured mesh predicts the

maximum load carrying capacity well. Concerning the overall reproduction of the load-deformation-

response it is seen that applying the local approach for the crack growth direction only the first part

of the post peak response corresponding to the crack having propagated approximately through 2/3

of the beam hight may be obtained. Applying the non-local approach for determining the crack

Fig. 10 Load-deformation-response for TPBT specimen modelled applying fully cracked CST elements

Fig. 11 Predicted crack path for: (a) 25 by 24 Mesh, local computation of crack growth direction. (b) 25 by
24 Mesh, non-local computation of crack growth direction (c) Unstructured mesh, non-local
computation of crack growth direction



96 J. L. Asferg, P. N. Poulsen and L. O. Nielsen

growth direction almost the full load-deformation response may be obtained - in Fig. 11(b) the

crack has almost reached the top of the beam. The main reason for the bad prediction of the crack

growth direction applying the local approach is the bad reproduction of the stresses in the tip

element discussed in Section 4.3. The difference in stability of the determination of crack growth

direction for the local versus the non-local approach is also evident from Fig. 11 (a) and (b). The

non-local approach smoothes the crack path considerably compared to the local approach. The

unstructured mesh captures the load carrying capacity well but is not able to reproduce the full load

deformation response for the TPBT specimen with the applied non-local computation scheme. The

use of non-local criteria for determination of crack growth direction is however seen as less

appealing due to the required user interaction for determination of interaction radius that e.g.,

depends on the chosen element size and the actual structure considered. Use of a non local criterion

to some extend violates the element local approach of the XFEM where everything is handled

element locally.

5.1.2. Applying LST elements to model TPBT

Considering LST elements results are given for four structured meshes - a 11 by 6, a 15 by 9, the

21 by 12 and the 25 by 24 mesh. Only local computation of crack growth direction is considered.

Fig. 12 compares the load-deformation response from the XFEM LST computations with the

DIANA computation while Fig. 13 depicts the predicted crack patterns for the 21 by 12 and the 25

by 24 mesh.

From the load-deformation response it is seen that applying LST elements the overall behavior is

predicted well by the 21 by 12 and the 25 by 24 mesh while the two coarsest meshes have troubles

capturing the post peak response. Looking at the predicted crack paths it is seen that applying LST

elements and hereby having more active discontinuity dof's, a more smooth crack path is achieved

than for CST elements. However when the crack reaches the top of the beam and only a few

Fig. 12 Load-deformation-response for TPBT specimen modelled applying fully cracked LST elements
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elements remain uncracked the quality of the determined stress near the crack tip becomes low and

hence influence the crack growth direction causing increasing tortuosity of the crack path. The

conclusion is however that applying LST a sufficient accuracy concerning the crack growth

direction is obtained by the local approach.

5.2. Four point shear beam

The four point shear beam serves to illustrate the capability of the suggested XFEM scheme to

model curved cracks. The geometry of the four point shear beam (FPSB) - or the “double-edge

notched specimen subjected to four point shear” is equivalent to the one investigated experimentally

by Carpinteri, et al. (1992). In Carpinteri, et al. (1992) it is concluded that the FPSB may be

modeled considering only mode I fracture, i.e. the shear stiffness in the crack may be ignored. The

FPSB specimen was also analyzed by XFEM in Moës and Belytschko (2002). To maintain the basis

for comparing the obtained results, fracture of the FPSB was also in the present case modeled

considering only mode I fracture. The geometry of the test setup is shown in Fig. 14, while

Fig. 13 Predicted crack path for LST computations of TPBT: (a) 21 by 12 Mesh. (b) 25 by 24 Mesh

Fig. 14 Geometry of four point shear beam, all measures in mm
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constitutive parameters are given in Table 3. As for the TPBT specimen a linear softening curve

(Fig. 8(b)) was applied.

A fairly coarse structured LST mesh, depicted in Fig. 15, consisting of 1222 elements and 2549

nodes was considered for the XFEM computation.

Fig. 15 depicts the computed crack path. The predicted crack path is in good agrement with the

experimental findings in Carpinteri, et al. (1992). In Fig. 16 the computed load-deflection response

is compared to the experimental load-deflection response obtained by Carpinteri, et al. (1992) and

to the XFEM load-deflection response computed by Moës and Belytschko (2002). It is seen that the

obtained results correlates well with the experimental results whereas some derivations are found

when comparing to the results by Moës and Belytschko (2002).

Table 3 Constitutive parameters FPSB

Parameter Value

Ec 28000 MPa

oc  0.1

ft 2.4 MPa

Gf 145 N/m 

Fig. 15 Predicted crack path for FPSB specimen

Fig. 16 Comparison of load-displacement response for FPSB obtained by present XFEM model, XFEM
results by Moës and Belytschko (2002) and by experiments Carpinteri, et al. (1992). Loading zone
1 refers to the loading zone to the right in Fig. 14, while loading zone 2 refers to the left.
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6. Conclusions

A direct enrichment of the displacement field has been implemented into an extended finite

element scheme for modeling cohesive crack growth in concrete without remeshing. The XFEM

scheme fits directly in the framework of standard finite element schemes. The XFEM scheme has

been implemented for the three node constant strain triangle element (CST) and the linear strain six

node triangle element (LST). Considering the CST element it was necessary to implement a

nonlocal computation of crack growth direction to obtain good prediction of the crack path while

for the LST element the crack path computation could be based on element local computations.

Considering three point bending and four point shear, the efficiency of the suggested scheme was

illustrated and it was found that even for relatively coarse meshes the scheme produces good

results.
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SUMMARY

Present extended finite element method (XFEM) elements for cohesive crack growth may often not be able
to model equal stresses on both sides of the discontinuity when acting as a crack-tip element. The authors
have developed a new partly cracked XFEM element for cohesive crack growth with extra enrichments to
the cracked elements. The extra enrichments are element side local and were developed by superposition
of the standard nodal shape functions for the element and standard nodal shape functions for a sub-triangle
of the cracked element. With the extra enrichments, the crack-tip element becomes capable of modelling
variations in the discontinuous displacement field on both sides of the crack and hence also capable
of modelling the case where equal stresses are present on each side of the crack. The enrichment was
implemented for the 3-node constant strain triangle (CST) and a standard algorithm was used to solve
the non-linear equations. The performance of the element is illustrated by modelling fracture mechanical
benchmark tests. Investigations were carried out on the performance of the element for different crack
lengths within one element. The results are compared with previously obtained XFEM results applying
fully cracked XFEM elements, with computational results achieved using standard cohesive interface
elements in a commercial code, and with experimental results. The suggested element performed well in
the tests. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The development of cracks is one of the governing factors for the structural behaviour of structures
made of important materials such as concrete, fibre-reinforced composites, wood, etc. Common
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for these materials is that they belong to the group of quasibrittle materials for which the process
of cracking may be described in terms of cohesive crack models [1–3].

In cohesive crack models, all non-linearities are assumed to be localized in the crack line,
bridging stresses act near the crack tip, and it is assumed that no stress singularity is present at
the crack tip.

Computational modelling of crack growth has been carried out applying various remeshing
techniques, e.g. [4–8]. But remeshing is computationally costly and it involves the transferring of
data between the different meshes and is therefore less attractive than approaches that allow the
discontinuity to propagate independently of the mesh configuration by permitting the discontinuity
to cross element boundaries.

The element-free Galerkin method [9] can model crack growth. However, due to major differ-
ences from standard finite element method (FEM), it cannot be directly implemented in existing
FEM code.

The embedded crack models enable modelling of localized crack growth without remeshing. In
models with a localization line [10–14], the displacement field may be discontinuous and hence
the element may model the discontinuity within one element. However, even though an arbitrary
displacement jump can be reproduced with this approach, the displacement fields on each side
of the crack are not independent and this limits the modelling capabilities. For a more thorough
discussion of elements with embedded discontinuities reference is made to [15, 16].

Among the latest developments in finite element modelling of crack propagation are the methods
based on the partition of unity [17], of which the extended finite element method (XFEM) [18, 19]
is probably the most widespread. In XFEM, the displacement field consists of two parts, one
continuous and the other discontinuous. The continuous part is the standard displacement field
corresponding to the situation without any cracks. The discontinuous displacement field is based
on local partitions of unity and allows the element to include a discontinuity, in the present case
a cohesive crack. XFEM uses a strong discontinuity approach for the modelling of the actual
kinematics and at the same time generally allows the strains to be independent on the two sides
of the discontinuity.

XFEM has been applied to various problems within the area of fracture mechanics. While it was
first developed for linear elastic fracture mechanics [18–20], it has now been applied to problems
like cohesive cracking [21–24], arbitrary branched and intersecting cracks [25], three-dimensional
crack propagation [26, 27], and cracks in shells [28]. Apart from fracture mechanics, XFEM has
also been applied to a number of other problems involving discontinuities, among which are the
modelling of inclusions [29–31].

Wells and Sluys [21] applied the Heaviside step function as the only enrichment to a fully
cracked element. Only nodes with a supporting side cut by the discontinuity were enriched.
However, applying the Heaviside step function as in [21], the nodal enrichment influences not only
the displacement field in the elements cut by the discontinuity, but also the displacement field in
the elements sharing the enriched nodes—i.e. the enrichments typically have to be dealt with in a
band of three elements along the line of discontinuity. Zi and Belytschko [23] formulated a partly
cracked element in which the shifted sign function was used for the enrichment. In this set-up,
the enrichment only involved the cracked elements. A formulation of a fully cracked element with
the direct use of the Heaviside step function was presented in [24], also with the discontinuous
displacement field limited to the cracked elements. In [32] a dual node strategy was applied and
the displacement field was not decomposed into a continuous and discontinuous part in the same
way as in the ‘standard’ XFEM approach. However, even though the basis for the shape functions

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 72:464–485
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is different, the scheme in [32] is capable of modelling the same variation in the displacement
field as in the scheme in [23, 24].

Applying elements that may only be fully cracked does not allow for all possible load–
displacement states to be computed, as, is normally required in a general solution of a non-linear
problem. Therefore, the application of elements that are not allowed to be partly cracked may
not only lead to an erroneous load–deformation response for a crack propagating through a given
structure, but may also be the reason for numerical problems when solving the non-linear equa-
tions. An element that can be partly cracked is therefore preferable. Moës and Belytschko [22]
proposed a partly cracked element in which the crack-tip element is enriched with a set of non-
singular branch functions to model the displacement field around the tip of the discontinuity. But
the application of branch functions is seen as less favourable in the case of cohesive cracks, where
there is no need for asymptotic fields. Furthermore, the ‘infinite’ nature of branch functions is
seen as contradictive, to the general finite element scheme, in which the displacement fields are
element local. As previously mentioned, Zi and Belytschko proposed an element local enrichment
of a partly cracked element in [23], applying the sign function for the enrichment.

With the enrichments as implemented in [21, 23, 33], the crack-tip element cannot model equal
stresses on both sides of the crack as assumed in the cohesive model. With reference to [33] the
problem is illustrated in Figure 1, which shows the displacement field that can be modelled in
the element with the crack tip on its boundary. To ensure the continuity of the displacement field at
the crack tip, the discontinuity degrees of freedom (DOFs) in nodes located at the crack-tip element
boundary must be set to zero and this means that only one set of discontinuity DOFs is available in
the tip element. Various non-local approaches have been applied to compensate for the inability of
the tip element to model equal stresses on both sides of the discontinuity, especially when 3-node
constant strain triangle (CST) elements are considered. In [21, 33] a non-local computation of the
stresses in the near tip area was used to determine the principal stress direction at the tip, while
the maximum hoop stress criterion utilizing stress intensity factors was applied in [23]. Recently
Xiao and Karihaloo have extended their element local statically admissible stress recovery scheme
[34] to cohesive cracks [35] and obtained good results for fairly dense meshes of higher-order
elements.

A more direct way to obtain a better stress distribution on both sides of the crack in cohesive
crack growth would be to formulate a tip element with the capability of modelling variations in
the discontinuous displacement field on both sides of the discontinuity. This paper presents such
a consistent approach to obtain a more correct stress distribution in a partly cracked tip element.
The new enrichment scheme is based on additional enrichment of the cracked elements. The extra
enrichment is constructed as a superposition of the standard nodal shape functions and standard
nodal shape functions created for a sub-area of the cracked element. The suggested enrichment may

Figure 1. Discontinuous displacement field in CST ‘tip’ element [33].

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 72:464–485
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be seen as a natural extension of the enrichments applied in [21, 23, 24]. The extra enrichment
allows the element to model equal stresses on both sides of the crack tip. Whereas only fully
cracked elements are considered in [21, 33], the new enrichment scheme has been implemented so
that the discontinuity in the crack-tip element may have any length. The concept behind the new
enrichment was presented in [36].

The suggested XFEM scheme fits within the concept of standard finite element code and is
applied to CST elements. The performance of the element is illustrated by modelling of fracture
mechanical benchmark tests, such as the three-point beam bending test (TPBT) and the four-point
shear beam (FPSB) test.

The paper is organized as follows: in Section 2, the enrichment of the displacement field will be
introduced and the discontinuous displacement field developed and illustrated. Section 3 deals with
the variational formulation, while matters of implementation are discussed in Section 4. Numerical
examples are given in Section 5.

2. ENRICHMENT OF THE DISPLACEMENT FIELD

The displacement field for a cracked element is the sum of the continuous and the discontinuous
displacement fields. The continuous displacement field is defined as equal to the displacement field
for an uncracked element, i.e. the displacement field may be written

u(x, y) = Nc(x, y)vc + Nd(x, y)vd (1)

where vc and vd are the DOF vectors while Nc and Nd are the interpolation matrices. c refers
to continuous and d to discontinuous. The element discontinuity interpolation matrix, Nd, is
chosen as [24]

Nd(x, y) =∑
I
HI (x, y)N∗

I (x, y) (2)

where HI (x, y) is the 2D Heaviside step function for node I and the set I is the number of
enriched nodes. The step function HI (x, y) is 0 on the same side of the discontinuity as node I
and 1 on the other side. N∗

I is the part of N
∗ from node I . In the standard case, N∗ is chosen as Nc,

but for the proposed element N∗ is more general but able to describe the same variations as Nc.
Figure 2 shows an example of the standard discontinuous displacement field for a CST element
completely cut by a crack. The special enrichment applied in this work was developed from these
standard enrichments.
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Figure 2. Example of the enrichment of the displacement field for cracked CST element. (a) Crack
geometry, (b)–(d) discontinuous displacement field for discontinuity DOFs in nodes 1–3.
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2

Figure 3. New XFEM crack-tip element.

The requirement for the new partly cracked tip element is that it must be able to model equal
stresses on both sides of the discontinuity, i.e. the element must be able to perform as shown in
Figure 3.

From Figure 3, it can be seen that an internal pseudo-node P , located at the crack tip, has been
introduced. The pseudo-node does not hold any DOFs; it is just a point at which the discontinuous
displacement field vanishes. Activating the enrichment of both nodes 1 and 3 allows for variations
in the displacement fields on both sides of the crack as shown in the figure. This means that the
element becomes capable of modelling the case where equal stresses are present on both sides of the
crack. But the introduction of the pseudo-node defining the sub-displacement field 1-P-3 requires
extra attention to the propagation of the crack from one element to another. Figure 4 illustrates
the situation just before and just after the crack has crossed an element boundary. When the crack
propagates within one element (upper part of Figure 4), the contribution to the displacement field
from the discontinuity DOFs in node 3 can have a value. When the crack just has passed an element
edge and starts to propagate into a new element (lower part of Figure 4), the contribution from the
discontinuity DOFs in node 3 must increase from a value of 0. To deal with this discrepancy in the
value of the DOFs, the nodes connected to the element edge cut just before the crack propagates
into a new element are enriched with extra discontinuity DOFs—cf. Figure 5(c) and (d). As long
as an element is acting as a crack-tip element, only the discontinuity DOFs corresponding to (a)
and (b) will be active. When the crack propagates into the next element, the discontinuity DOFs
corresponding to (c) and (d) becomes active in the element which is now the previous crack-tip
element. The extra set of discontinuity DOFs can model a displacement field in the neighbour
crack-tip element that is equal to the displacement field along the edge 2–3 in the lower figure in
Figure 4, whereby the desired continuity across the element boundary is achieved.

The discontinuous displacement field in node 3 in relation to the tip edge (Figure 5(c)) is found
by the superposition of the standard discontinuous displacement field in node 3 and a standard
nodal displacement field for node 3 taking into account the sub-triangle 1-P-3 in Figure 3. The
superposition is illustrated in Figure 6.

So far the two enrichments in node 3 have just been referred to as u3,1 and u3,2, however, it is
evident from the figures, especially Figure 6 that the discontinuous DOFs in node 3 are element
side local—u3,1 refers to the ‘entrance’ side where the crack propagates into the element while
u3,2 refers to the ‘exit’ side where the crack leaves the element, and the element becomes fully
cracked.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 72:464–485
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Figure 4. Propagation of a crack across an element boundary. The upper figures illustrate the situation
just before the crack reaches the element boundary, while the lower figures illustrate the case where a

crack continues into a new element.

(a) (b) (c) (d)

Figure 5. Nodal discontinuous displacement fields for the new crack-tip element: (a) field corresponding
to node number 1; (b) field for node 3 referring to the ‘entrance’ side of the element; (c) field for node

3 referring to the ‘exit’ side of the element; and (d) field for node 2.

(a) (b) (c)

Figure 6. Construction of discontinuous displacement field u3,2 by superposition.

The enrichment of a node in an element where two element sides are cut by the discontinuity
may now be summarized by writing out the elements of the interpolation matrix N∗ for the element.
With reference to Figures 5 and 6, the local element co-ordinates in terms of area co-ordinates for
the entire element (1–2–3) are termed (�1, �2, �3), while the area co-ordinates for the sub-triangle
(1-P-3) are termed (�̃1, �̃2, �̃3). In line with the previously introduced notation, N∗

3,1 refers to the
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Figure 7. Enrichment at system level. Nodes marked with a circle have one set of discontinuity DOFs,
nodes marked with a square have two sets, while the node marked with a triangle has three sets.

entrance side of the element and N∗
3,2 to the exit side of the element

N∗
1 = �1

N∗
2 = �2

N∗
3,1 = �̃3

N∗
3,2 = �3 − �̃3

(3)

At the system level, the enrichment is limited to nodes whose support is cut by the discontinuity.
In the above discussed case where focus was on the crack propagating from one element to another,
one extra set of discontinuity DOFs was added to the node that is common for the element sides
cut by the discontinuity. However, in the general case where several element sides cut by the
discontinuity all share a given node, there will be as many active sets of discontinuity DOFs in that
node as the number of element sides cut by the discontinuity sharing that node. The enrichment
at system level is illustrated in Figure 7 where some nodes have one set of active discontinuity
DOFs, some nodes have two active sets, and one node has three active sets.

However, the storage of a variable number of DOFs in the nodes is seen as less favourable due
to the handling of the DOFs at system level. The enrichments are, therefore stored side-locally,
depending on whether they belong to the ‘entrance’ or the ‘exit’ side of the element. This will be
discussed in detail in Section 4, ‘Aspects of implementation’.

3. VARIATIONAL FORMULATION

Given a cohesive crack in a structure in a state of plane stress or plane strain described in a
Cartesian co-ordinate system x, y (cf. Figure 8), the arc length along the crack is termed s, and
n, s is a curve linear co-ordinate system, n being normal to the crack face. The positive direction
of s is seen in Figure 8. The orientation of n determines the positive side of the crack. The stress
state in the crack may be defined by the normal stress �n and the shear stress �ns while work-
conjugated generalized strains are the opening of the crack, �un = u+

n − u−
n and the slip in the

crack, �us = u+
s − u−

s . A small strain/small displacement static theory is used and the material
outside the crack is assumed linear elastic.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 72:464–485
DOI: 10.1002/nme



A CONSISTENT PARTLY CRACKED XFEM ELEMENT FOR COHESIVE CRACK GROWTH 471

σn Ω

Γ

Figure 8. Cohesive crack in a two-dimensional domain with f representing both
domain load and boundary load.

Let � � denote a jump, then the stress increments drcr across the crack surfaces are related to
the increments in the displacement jump, d�u�,—i.e. the separation of the crack surfaces—through
the tangential material stiffness matrix Dcr

T

rcr(�u�) =
[

�n(�u�)

�ns(�u�)

]
, �u� =

[
�un

�us

]
, drcr(�u�) =Dcr

T (�u�)d�u� (4)

For the uncracked part of the structure, the stress vector rT = [�x �y �xy] and the strain vector
eT =[�x �y �xy], (�xy = 2�xy) are defined as usual and related through the standard material
stiffness matrix D, specified below for an isotropic material in plane stress

dr=Dde, D= E

1 − �2

⎡
⎢⎢⎢⎢⎣
1 � 0

� 1 0

0 0
1 − �

2

⎤
⎥⎥⎥⎥⎦ (5)

The virtual internal work-per-unit length of the crack �Wi
cr and the virtual internal work-per-unit

area of the uncracked part of the structure �Wi
c may now be written, � referring to a virtual quantity

�Wi
cr = ��u�Trcr = �n��un + �ns��us

�Wi
c = �eTr= �x��x + �y��y + �xy��xy

(6)

For the entire structure the virtual internal and external work becomes

�Wi =
∫

�
�eTr d� +

∫
�

��u�Trcr d�

�We =
∫

�
�uTf d� +

∫
�

�uTf d�

(7)

where f is the load on the structure.
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By applying incremental quantities, the incremental stiffness relation, can be obtained

KT�V=
∫

�
NT�f d� +

∫
�
NT�f d� (8)

where V is the system DOF vector and � refers to an incremental quantity.
Special attention must be paid to the internal work, because the contribution from each element

to the tangential stiffness matrix KT depends on whether the element is cracked or not. The element
tangential stiffness matrix, kT, for a cracked element is found by the following procedure. From
(1) and (2) the strain vector in a cracked element, except in the crack itself, is obtained

e=Bcvc +
∑

HIBc
Iv

d
I =Bcvc + Bdvd (9)

where Bc and Bd are the strain distribution matrixes corresponding to the interpolation matrix Nc,
respectively, Nd.

Due to the displacement field from the first terms in (1) being continuous, the strains in the
crack itself may be written as

�u�(s)=T(Nd+(s) − Nd−(s))vd =Bcrvd (10)

Here, Bcr is the strain distribution matrix in the crack, T is the transformation matrix between
the (x, y) and (n, s) co-ordinate systems, while Nd+ and Nd− are the discontinuous interpolation
matrices on the positive and negative sides of the crack, respectively.

Applying the strain relations in (9) and (10), the virtual incremental internal work, kT, defined
by �Wi = �vTkT�v where vT =[vcT vd

T], is found to be

kT =

⎡
⎢⎢⎣
∫

BcTDBc
∫

BcTDBd

∫
BdTDBc

∫
BdTDBd +

∫
cr
BcrTDcrBcr

⎤
⎥⎥⎦ =

⎡
⎣kcc kcd

kdc kdd + kcrT

⎤
⎦ (11)

Due to a constant D-matrix outside the crack, the stiffness contribution from the areas outside the
crack is constant and thus only the stiffness contribution from the crack itself is non-linear.

The element nodal forces, q, depend like kT on the crack opening, and they are determined
analogous to kT. The contribution to q from the crack, qcr, is found from the stresses in the crack.
The stresses in the crack are related to the displacement jump across the crack according to (4).
By adding this contribution to the contribution from the part of the element outside the crack, q
is obtained as

q=
⎡
⎣kcc kcd

kdc kdd

⎤
⎦[vc

vd

]
+ qcr where qcr =

∫
cr
BcrT

{
�n

�ns

}
(12)

4. ASPECTS OF IMPLEMENTATION

This section concerns the implementation of the proposed element. The introduction of two sets of
discontinuity DOFs in some of the nodes requires some extra bookkeeping and some comments will
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Figure 9. Element side local storage of discontinuous DOFs: (a) a partly cracked element and (b) a fully
cracked non-tip element. D1

NO refers to discontinuity DOFs related to the ‘entry’ side of the element in
node NO while D2

NO refers to discontinuity DOFs related to the ‘exit’ side of the element in node NO.

be given on the storage of these extra discontinuity DOFs. Hereafter the applied integration scheme
will be presented. Then follows a discussion about the criterion for crack growth and smooth crack
closure. The section concludes by illustrating the algorithm used to solve the non-linear equations
in a schematic form.

4.1. Storage of discontinuity degrees of freedom

The additional discontinuous DOFs requires extra bookkeeping hence the affiliation of discontinu-
ous DOFs to the element edges discussed in the previous section. Therefore, for storage purposes
only, the discontinuous DOFs are related to the element edges, as illustrated in Figure 9. Figure
9(a) illustrates how the two active sets of discontinuous DOFs are stored when an element acts as a
partly cracked tip element, while Figure 9(b) illustrates the storage of the four sets of discontinuous
DOFs for a fully cracked non-tip element.

4.2. Integration scheme

Integration must be performed independently on each side of the discontinuity in elements cut by
the discontinuity. For integration purposes, elements cut by the discontinuity are therefore divided
into four sub-triangles in the case of partly cracked elements or into three sub-triangles in the case
of fully cracked elements, as illustrated in Figure 10. One point Gauss quadrature is applied to
each sub-triangle. Along the line of discontinuity, two point integration is applied. For elements
not cut by the discontinuity standard, one point Gauss integration is performed.

4.3. Criteria for crack growth and smooth closure

A CST element is by default only able to model constant stresses in the element. Therefore,
there is a need to construct a stress interpolation through the element when the element acts as a
partly cracked tip element where stresses equal to the tensile strength are to be found at the tip.
Furthermore, it is important to ensure a smooth transition when an element changes status from
being uncracked to partly cracked and later changes status to being fully cracked. The smooth
transition is of major importance for the capability of the element to model all possible crack
lengths and for the stability of the iterative procedure.
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(a) (b)

Figure 10. Integration scheme for: (a) a partly cracked element and (b) a fully cracked element. Crosses
mark integration points in the continuum part of elements while boxes mark integration points on the line

of discontinuity for integration of traction forces.

A stress interpolation is created from the average nodal stresses computed by weighting the
contribution from each element to a given node with the area of that element—cf. (13)

raveno =
(

nnoel∑
i=1
ri Ai

)/
nnoel∑
i=1

Ai (13)

where raveno is the average nodal stress, nnoel is the number of elements sharing a given node, ri is
the stress in element i and Ai is the area of element i .

The contribution from fully cracked or partly cracked elements is weighted by using the relevant
sub-areas when taking into account the contribution from the discontinuous displacement field. By
weighting the stress contribution from the discontinuous field with the corresponding sub-areas
in the partly cracked element, stress continuity across the element boundary is ensured when the
discontinuity propagates from one element to another. From the nodal stresses, a linear interpolation
is used for computation of the tip stresses.

Several strategies can be applied for the crack growth. In this work, the crack propagates when
the tensile strength of the material is exceeded in the crack tip, and the crack is propagated in the
normal direction for the principal stress direction in the crack tip. The crack may be incremented
either in pre-specified increments or it may be propagated to the point where the continuous field
yields tensile stresses equal to the tensile strength for a given load increment. The crack length is
then kept constant in the load step for the following iterations. To keep the crack length constant
in each load step, the iteration procedure has to ensure stresses equal to the tensile strength in the
crack tip. This issue will be returned to below, when the algorithm used for solving the non-linear
equations is discussed.

In a cohesive crack, tractions act at the crack surfaces near the tip, as illustrated in Figure 8,
causing the crack to close smoothly. For an opening crack the tensile stresses at the crack tip
will be equal to the tensile material strength, corresponding to vanishing stress intensity factors
at the crack tip. Therefore, criteria for smooth closure can be imposed in terms of either a stress
criterion or an equivalent stress intensity factor criterion. Investigations using interface cohesive
crack elements [37] show that smooth crack closure is automatically achieved in a finite element
formulation with a stress criterion when applying a sufficient number of elements for the cohesive
zone, so no additional criterion for smooth closure is necessary.
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4.4. Algorithm

To remain within the framework of traditional FEM code, a general procedure, the orthogonal
residual algorithm [38], was adopted for the XFEM scheme to solve the non-linear equations in
[33]. The algorithm proved to be efficient for fully cracked elements and it was therefore also used
here. In the present case, the algorithm is supplemented with a stress criterion for smooth crack
closure—i.e. the iterative procedures ensures stresses equal to the tensile strength in the crack tip.
The algorithm is summarized in Table I. The focus in this work was on the development and the
performance of the new crack-tip element and the procedure for ensuring stresses equal to the
material tensile strength at the crack tip was chosen as the simplest and most robust possible. In
terms of speed, the algorithm could be improved by applying a more sophisticated strategy for the
crack-tip stress iterations.

As a convergence criterion, an energy criterion was applied, and the elastic energy in the initial
elastic load step was used as reference energy, Eref. Furthermore, it will be noticed that it was
decided to implement the orthogonal residual algorithm in a Newton–Raphson style, where the
tangential stiffness matrix was updated in each iteration to take into account changes in crack
opening and thus also changes in the contributions from the enriched nodes during the iterations.

5. NUMERICAL EXAMPLES

The performance of the new crack-tip element was tested by modelling of fracture in two fracture
mechanical benchmark tests: the TPBT and the FPSB. The results will be compared to those
obtained applying fully cracked elements in [33]. Furthermore, the XFEM results will be compared
against results obtained by modelling fracture in the TPBT specimen applying standard cohesive
interface elements in the commercial code DIANA. With regard to the FPSB, the XFEM results
will be compared to experimental results obtained by Carpinteri and co-workers [39].

5.1. Three point beam bending test

The geometry of the TPBT specimen considered in this case is in accordance with RILEM
recommendations [40]. The geometry is shown in Figure 11(a), the cross-section of the beam
being a square. For the material parameters, standard values for a good-quality concrete were
chosen, cf. Figure 12. A linear softening law, as illustrated in Figure 11(b), was applied for the
normal stress in the crack. Only Mode I opening of the crack was considered and both the shear
term and the coupling terms in the tangential material stiffness matrix for the crack were set to
zero cf. (14).

DT
cr =

⎡
⎢⎣

− ft
�ucrn,ult

0

0 0

⎤
⎥⎦ (14)

Keeping in mind that the overall research perspective was to be able to model fracture in real size
civil structures, investigations were carried out examining fairly coarse meshes compared to what
may be found in the literature. For the TBTP specimen, a structured mesh of 25 by 24 elements
(24 elements over the beam height—20 elements from the notch to the top of the beam) as well as
an unstructured mesh of 709 elements holding 25 elements of varying size over the beam height
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Table I. Orthogonal residual algorithm for XFEM.

initial state: u0, f0,�u0 = 0, Eref,�f0
load increments n=1,2...,nmax

�u1 = K−1
T,n−1�fn

�u = min(1, umax/‖�u‖)�u
�uT0�u < 0 then �u = −�u,�f = −�f

j = 1
Iterations i = 1, 2, . . . imax
�q = q(u + �u) − fn−1

� = qTu/fTn�u � is the optimal load scaling factor

r = ��fn − �q r is the unbalanced force vector

KT,n = KT(u + �u)

�u = K−1
T,nr �u is the displacement correction

�u = min(1, umax/‖�u‖)�u
Ei = rT�u Ei is the residual energy

εi = Ei/Eref

�u = �u + �u

if εi� stop value

��tip = ft − �tip
if ��tip > � ft � is the tolerance on �tip

if j = 1

if ��tip > 0

�fn = �f + ��f0 � is a load scaling factor

if ��tip < 0

�fn = �f − ��f0
end

else

�fn = ( ft − �tip)
�f ( j) − �f ( j − 1)

�tip( j) − �tip( j − 1)

�fn = �fn − 	�f 	 is a numerical damping factor

end

j = j+1, �u = K−1
T,n�fn , εi = 1

end

end

stop iteration when εi� stop value

un = un−1 + �un
fn = fn−1 + ��fn
�u0 = �u

stop load increments when ‖un‖ > ucheckmax

were considered. The structured mesh is depicted in Figure 13, which shows the fractured beam,
while the unstructured mesh is depicted in Figure 14. In both cases, the crack path was achieved
by propagating the crack half the way through one element in each step. For the structured mesh,
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(a) (b)

Figure 11. (a) Geometry of TPBT specimen and (b) applied linear softening curve.

Figure 12. Concrete parameters.

Figure 13. Crack path for a TPBT specimen, modelled applying partly cracked elements in a structured
mesh of 25 by 24 elements. The crack was propagated half an element length in each step.

Figure 14. Crack path for a TPBT specimen, modelled applying partly cracked elements in an unstructured
mesh of 709 elements. The crack was propagated half an element length in each step.
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Figure 15. Crack path for TPBT specimen modelled applying partly cracked elements in a structured
mesh of 25 by 24 elements. The crack was propagated half an element length in each step.

the notch was modelled as a pre-defined stress-free discontinuity. In the unstructured mesh, the
notch was geometrically modelled, resulting in fairly small elements present just next to the tip
of the notch. In both cases, the tolerance on crack-tip stress (� in Table I) was set to 1% of the
material tensile strength. In the last three steps for each mesh, slightly higher tolerance on the tip
stress was allowed—for the structured mesh up to 2.6% error and for the unstructured mesh up to
4% error.

The load–displacement responses for the two models of fracture in the TPBT specimen are
depicted in Figures 15 and 16. The deformation was computed as the difference between the
vertical displacement of the centre point of the beam and the average vertical displacement of the
mid-points of the beam ends. In both figures, the results obtained when using partly cracked CST
elements are compared with results obtained using fully cracked CST elements, cf. [33], and with
results obtained using 48 standard 3-node cohesive interface elements over the beam height in the
commercial code DIANA.

In both cases, the application of the new partly cracked tip element produces a significantly
smoother response than was obtained using fully cracked elements. The characteristics in terms of
maximum load-carrying capacity and the overall shape of the response are, as expected, seen to be
almost the same for fully cracked and partly cracked elements. With regard to the maximum load-
carrying capacity, the structured mesh overestimates the load-carrying capacity by about 8%, while
the unstructured mesh captures the maximum load-carrying capacity well. With regard to the post-
peak response, the major part is captured well for both meshes. The difference in the determined load
level for the last part of the post-peak response between the computations applying fully cracked
and partly cracked elements is partly due to the fact that, when applying fully cracked elements,
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Figure 16. Crack path for TPBT specimen modelled applying partly cracked elements in a unstructured
mesh of 709 elements. The crack was propagated half an element length in each step.

stresses equal to the material tensile strength are not assured in the crack tip. Another reason is that
for fully cracked elements, the criterion for crack growth is based on element local stresses, while in
the partly cracked case, crack growth is based on average nodal stresses. The difference compared
with the DIANA computations is partly due to the difference in the applied number of elements, the
different order of applied elements, and partly to the tortuosity of the last part of the XFEM crack
path. When there are about four elements left between the crack tip and the top of the beam, the lim-
ited capability of CST elements does not allow for a reasonable stress variation across the remaining
elements, and solutions where the tip stresses are equal to the material tensile stress may not be
obtained.

From the load–deformation responses—in particular for the structured mesh—a sudden drop in
the load-carrying capacity may be noted when the first element cracks. This non-smooth start of
the non-linear response is due to the inability of one cracked CST element to produce a smooth
closing crack and thus reproduce the required cohesive crack profile. About three elements are
required to model the smooth closure and thus the nature of a cohesive crack. The smooth closure
of the cohesive crack can also be seen in Figure 17 which shows different stages of the crack
propagation in the structured mesh. From Figure 17 it may also be noticed that the tortuosity of
the crack increases as the crack approaches the top of the beam. This is due to the difficulties of
modelling the true stress distribution with only a few un-cracked elements available. With regard
to the cohesive stresses across the crack, it should also be mentioned that the crack in the element
next to the notch becomes stress free when the load has decreased to the level of the crack initiation
(∼ 15 kN) on the post-peak response.

In the application of partly cracked elements, it is interesting to study the behaviour of the
structural response when the crack propagates through a single element in more steps. In Figure 18,
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(a) (b) (c) (d)

Figure 17. Propagation of crack in structured mesh: (a) P = 15.3 kN, scaling factor 1140;
(b) P = 18.9 kN, scaling factor 762; (c) P = 20.8 kN (max load), scaling factor 526; and

(d) P = 8.6 kN, scaling factor 208.
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Figure 18. Load–deformation response as a function of crack-length increment when a crack propagates
through one element (the element next to the tip element in 17(b)). 
 is the relative crack-length increment.


 = 1 corresponds to the element being fully cracked.

the load–deformation response is plotted for three different crack-length increments for a crack
propagating through one element—in the present case when the crack is propagating through the
element next to the tip element in Figure 17(b). The plots are obtained prescribing a tolerance on
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the tip stress of 0.01% of the tensile strength. From the figure, it can be seen that the deformation
response depends only slightly on the size of the crack-length increment. If an even lower tolerance
on the tip stresses is specified, even better results can be obtained. The figure also reveals that a very
smooth response is obtained when the crack propagates through an element in several increments.
The importance of a smooth response was discussed in the introduction and when discussing
the criterion for crack growth. The ability of the proposed partly cracked element in principle to
model all possible load–deformation states, and therefore to produce a smooth response for varying
crack increments, represents a major improvement compared with elements only able to be fully
cracked.

5.2. Four point shear beam

To test the ability of the suggested partly cracked tip element to model curved cracks, fracture of a
FPSB was modelled. The geometry of the FPSB or the ‘double-edge notched specimen subjected
to four-point shear’ is equivalent to that of the one investigated experimentally by Carpinteri and
co-workers [39]. In [39], it is concluded that the FPSB may be modelled taking into account only
mode I fracture. The FPSB specimen was also analysed by XFEM in [22, 33]. The geometry of
the test set-up is shown in Figure 19, while constitutive parameters are given in Table II. As for
the TPBT specimen, a linear softening curve (Figure 11(b)) was applied.

A fairly coarse structured mesh of 1222 elements and 2549 nodes was used for the XFEM
computation. The mesh can be seen in Figure 20, which shows the crack path for the FPSB
specimen. The results presented were obtained by propagating the crack in two increments across
each element. This made it possible to test the modelling of a great variety of finite crack increments.
In some cases, only a ‘corner’ of an element was cut, while in other cases the crack followed close
to the longest possible path through the element.

Figure 19. Geometry of four point shear beam, all measures in mm.
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Table II. Constitutive parameters FPSB.

Parameter Value

Ec 28 000MPa
�c 0.1
ft 2.4MPa
Gf 145N/m

Figure 20. Crack path for fracture in the FPSB specimen.

(a) (b) (c)

Figure 21. Propagation of crack in FPSB: (a) P = 62.6 kN, scaling factor 973; (b) P = 73.8 kN
(Max load) scaling factor 581; and (c) P = 21.2 kN, scaling factor 154.

Figure 21 shows different stages of the developing crack. In Figure 22 the load–deformation
response obtained when applying the new partly cracked XFEM element is compared with the
experimental results of Carpinteri et al. [39] and with the results obtained when applying fully
cracked XFEM LST elements [33].

From Figures 20 and 21, it can be seen that when applying the proposed partly cracked XFEM
element, a nice smooth crack path is obtained that correlates well with what is observed in
experiments. From the load–deformation response, it can also be seen that the results correlates

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 72:464–485
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Figure 22. Comparison of load–displacement response for FPSB obtained by the new XFEM
model, XFEM results obtained by applying fully cracked LST elements, and experimental
results from [39]. Loading zone 2 refers to the loading zone to the left in Figure 19, while
loading zone 1 refers to the loading zone to the right. Only every 5th data point in each

XFEM LST series has been marked on the graphs.

well with the experimental results as well as with the previously obtained XFEM results for
higher-order elements.

6. CONCLUSION

A new XFEM cohesive crack-tip element for cohesive cracking has been developed by the intro-
duction of element side local enrichment of elements cut by the discontinuity. The new enrichment
was developed by the superposition of the standard nodal shape functions and standard nodal shape
functions for a sub-triangle of the cracked element. When the suggested enrichment is applied, the
tip element becomes capable of modelling the situation where equal stresses are present on both
sides of the crack. The enrichment was implemented for the three-node triangular constant-strain
triangle (CST) element. Based on average nodal stresses for the crack-tip element, a stress inter-
polation was computed through the tip element and the ability of the tip element to hold the crack
tip at different positions through the element was illustrated. The performance of the element in
fracture mechanical benchmark tests was illustrated by modelling fracture in the notched TPBT
and in the FPSB test. The numerical examples show the element performs well even for fairly
coarse meshes.
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Further developments may include the extension of the scheme to higher-order elements and
optimization of the algorithm, outlined in Table I, for solving the non-linear equations.
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17. Mellenk JM, Babuška I. The partition of unity finite element method: basic theory and application. Computer
Methods in Applied Mechanics and Engineering 1996; 139:289–314.

18. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal
for Numerical Methods in Engineering 1999; 45(5):601–620.
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SummaryModeling of 
ra
k propagation in reinfor
ed 
on
rete stru
tures may be 
arried out applying theXFEM 
on
ept. Several authors have proposed methods for 
ohesive 
ra
k modeling within theframework of XFEM Wells and Sluys (2001), Moës and Belyts
hko (2002), Zi and Belyts
hko(2003), Asferg et al. (2006), that are appli
able for modeling of 
ra
k propagation in the bulk
on
rete of reinfor
ed 
on
rete stru
tures. Cra
king in the bond zone between 
on
rete andreinfor
ement, however, plays an important role in the load 
arrying behavior of reinfor
ed 
on-
rete stru
tures and requires spe
ial attention. As a step towards a more 
onsistent method formodeling of reinfor
ed 
on
rete stru
tures, a new 6 node XFEM interfa
e element for 
ohesive
ra
king is developed. The interfa
e element is able to hold the 
ra
k tip within the interior ofthe element and it is based on a partition of unity. The performan
e of the element is illustratedby modeling of 
ra
k growth in a not
hed three point bending beam.Keywords Extended �nite elements - XFEM, Fra
ture me
hani
s, 
ohesive 
ra
k growth.1 Introdu
tionThroughout the last 
entury intense resear
h has been 
arried out regarding methods to deter-mine the ultimate strength of reinfor
ed 
on
rete stru
tures. Today well do
umented methodsare available for estimating the ultimate strength of most reinfor
ed 
on
rete stru
tures. How-ever, most of these methods require the use of empiri
al fa
tors and do not 
onsider phenomenasu
h as size e�e
ts and reinfor
ement arrangement in detail.Regarding reinfor
ed 
on
rete stru
tures in the servi
eability limit state the predi
tive 
apa-bility of existing methods of analysis is limited. Complex models dealing with the servi
eabilitylimit state requires predi
tion of the 
omplex 
ra
king whi
h takes pla
es in the 
on
rete duringloading. Modeling of 
ra
ks in plain 
on
rete has been a fo
us area in the resear
h 
ommunitysin
e the mid seventies where Hillerborg et al. (1976) presented their �
titious 
ra
k model andBaºant and Oh (1983) proposed the 
on
ept of a 
ra
k band. Today several FEM 
odes haveinterfa
e elements suitable for dis
rete 
ra
king and elements for smeared 
ra
king. The use of1



interfa
e elements however requires the 
ra
k path to be known beforehand, while 
ra
k modelingapplying the smeared approa
h is not well-suited for modeling of lo
alized 
ra
k growth.Among the methods that allow modeling of dis
rete 
ra
k growth without knowing the
ra
k path beforehand is the extended �nite element method - XFEM, Belyts
hko and Bla
k(1999), Moës et al. (1999). XFEM has been applied to a number of di�erent problems withinthe area of fra
ture me
hani
s among whi
h are 
ohesive 
ra
king, Wells and Sluys (2001),Moësand Belyts
hko (2002) and Zi and Belyts
hko (2003). XFEM modeling of 
ra
k growth in plain
on
rete for ben
hmark tests su
h as three point bending and four point shear bending was also
onsidered in Asferg et al. (2006) applying a simpli�ed 
on
ept for the enri
hment of the dis-pla
ement �eld.Modeling of reinfor
ed 
on
rete beams applying the FEM was �rst 
arried out by Ngo andS
ordelis (1967). Sin
e then several approa
hes for modeling of the intera
tion between rein-for
ement and 
on
rete have emerged. Today the most widely used 
on
ept for modeling theintera
tion between steel and 
on
rete is the appli
ation of interfa
e elements for the bond zonee.g. Lundgren (1999).The use of standard interfa
e elements, however, poses some di�
ulties. Generation ofmore 
omplex models with multidire
tional reinfor
ement is 
umbersome and spe
ial attentionis required whenever two reinfor
ement bars 
ross ea
h other. When the aim is to model 
ra
kgrowth without knowing the 
ra
k path beforehand applying, e.g. the XFEM 
on
ept for thebulk 
on
rete, traditional interfa
e elements are not appli
able for the bond zone between rein-for
ement and 
on
rete.The goal of the present resear
h proje
t is to develop a more 
onsistent method for modelingof reinfor
ed 
on
rete stru
tures and a superelement may be the �nal goal of the proje
t. How-ever before su
h an element 
an be formulated, an XFEM interfa
e element for the bond zonehas to be formulated. One of the requirements to the XFEM interfa
e element is that it shouldbe able to handle interse
ting 
ra
ks - longitudinal 
ra
king along the reinfor
ement initiated by
ra
ks 
rossing the reinfor
ement. Furthermore the interfa
e element should be formulated as anelement that is able to partly 
ra
k. Bond between 
on
rete and reinfor
ement is a 3D problemand the 
on�ning pressure is one of the key e�e
ts for the stress transfer between 
on
rete andreinfor
ement. However, initially the XFEM interfa
e is 
onsidered in a plane version. 
.f. Figure1

Figure 1: Development of 
ra
k in interfa
e between 
on
rete and reinfor
ement2



This papers presents the interfa
e formulation that allows the longitudinal 
ra
k to developin the interfa
e, the tip of the 
ra
k being within the interior of the element. At present theelement is not able to model interse
ting 
ra
ks. The paper is organized as follows. First theenri
hment 
on
ept is presented, then the variational formulation is developed and then the im-plementation aspe
ts as integration s
heme and 
ra
k growth are dis
ussed. The last part of thepaper 
on
erns the numeri
al example.2 Enri
hment of Displa
ement �eldIn the extended �nite element method the displa
ement �eld is de
omposed into two parts, a
ontinuous and a dis
ontinuous part. The 
ontinuous part is the standard displa
ement �eld
orresponding to the situation without any 
ra
k while the enri
hment with the dis
ontinuousdispla
ement �eld enables the element to in
lude a 
ohesive 
ra
k. The displa
ement �eld isenri
hed only in elements 
ut by the dis
ontinuity. The enri
hed �eld may be written as
u (x, y) = Nc(x, y)vc + Nd(x, y)vd (1)where vc and vd are the dof ve
tors while Nc and Nd are the interpolation matri
es. c refers to
ontinuous and d to dis
ontinuous.In Moës and Belyts
hko (2002) an XFEM s
heme was proposed for 
ohesive 
ra
king 
on-sidering elements 
apable of treating the 
ra
k tip within the interior of the element. In thiss
heme fully 
ra
ked elements are enri
hed with the signed distan
e fun
tion by applying thejump fun
tion while the 
ra
k tip element is enri
hed with a set of bran
h fun
tions to model thenear tip �eld. Cohesive 
ra
king was also 
onsidered in Zi and Belyts
hko (2003). Here a XFEMs
heme based on a true partition of unity enri
hment for all elements 
ut by the dis
ontinuitywas proposed. In Zi and Belyts
hko (2003) all elements, in
luding the tip element are enri
hedby the sign fun
tion as the only enri
hment.The enri
hment of the displa
ement �eld for the new interfa
e element is also based on truelo
al partition of unity and follows the enri
hment s
heme suggested in Asferg et al. (2006). InAsferg et al. (2006) the dis
ontinuous interpolation matrix, Nd, is 
hosen as
Nd (x, y) =

∑

I

HI(x, y)Nc
I(x, y) (2)where HI(x, y) is the Heaviside step fun
tion for node I. The step fun
tion HI(x, y) is 0 on thesame side of the dis
ontinuity as node I and 1 on the other side.For the element to be able to hold the 
ra
k tip within the interior of the element a moregeneral formulation is however required: in (2) Nc is repla
ed by N∗ that is more general butable to des
ribe the same variations as Nc. Referring to Figure 2, N∗ is formulated in termsof the standard shape fun
tions by introdu
ing the relative 
ra
k length α ∈ [0, 1] as additionalvariable. The element 
onsists of two superimposed elements, the �rst with a 
ontinuous �eldas shown in Figure 2(B), the se
ond with a dis
ontinuous �eld de�ned on −1 < ζ < −1 + 2α,

−1 ≤ η ≤ 1, 
.f. Figure 2(C) The element is not isoparametri
, so ζ and η are s
aled 
oordinatesof a re
tangle. The enri
hment of the displa
ement �eld refers only to the 
ra
ked part of theelement. It has to be emphasized that �gure 2(C) only serves to illustrate the interpretation of3



the enri
hment; no extra nodes are added to the element, the dis
ontinuous degrees of freedomare stored in the standard nodes 
.f. Figure 2(A). For 
ompleteness the shape fun
tions N∗ arewritten out in (3).
ζ

η

1ξ =1ξ = −

1η = −

1η =

α2Figure 2: Topology of interfa
e element. (A) Topology of partly 
ra
ked interfa
e element . (B)Standard element 
oordinates. (C) "Dis
ontinuity" nodes in partly 
ra
ked interfa
e element.
N∗

1 = −1
4α2 (ζ + 1 − α) (ζ + 1 − 2α) (η − 1)

N∗

2 = −1
4α2 (ζ + 1) (ζ + 1 − α) (η − 1)

N∗

3 = 1
4α2 (ζ + 1) (ζ + 1 − α) (η + 1)

N∗

4 = 1
4α2 (ζ + 1 − α) (ζ + 1 − 2α) (η + 1)

N∗

5 = 1
2α2 (ζ + 1) (ζ + 1 − 2α) (η − 1)

N∗

6 = −1
2α2 (ζ + 1) (ζ + 1 − 2α) (η + 1)

(3)
where α is shown in Figure 2(A)We apply the enri
hment above only to elements 
ut by the dis
ontinuity; the enri
hmentis purely lo
al hen
e the dis
ontinuous displa
ement �eld will always be zero on edges whereelements not 
ut by the dis
ontinuity joins the enri
hed element. To ensure that the 
ra
k 
losesat the tip the dis
ontinuity dofs 
orresponding to the tip are set to zero. Figure 3 illustrates apossible dis
ontinuous displa
ement �eld modeled by applying the dis
ontinuous shape fun
tionsin (3). Noti
e the 
apability to model smooth 
losure of the 
ra
k.

Figure 3: Dis
ontinuous displa
ement �eld for partly 
ra
ked interfa
e element
4



3 Variational formulationConsidering a 
ohesive 
ra
k in a plane stress or strain stru
ture des
ribed in a Cartesian 
oordi-nate system x,y (
f. Figure 4), the ar
 length along the 
ra
k is termed s, and n,s is a Cartesian
oordinate system, n being normal to the 
ra
k fa
e. The orientation of n determines the positiveside of the 
ra
k. The stress state in the 
ra
k may be de�ned by the normal stress σn and theshear stress τns while work 
onjugated strains are the opening of the 
ra
k, ∆un = u+
n − u−

n andthe slip in the 
ra
k, ∆us = u+
s − u−

s . A small strain / small displa
ement stati
 theory is usedand the bulk material is assumed linear elasti
.
σ n Ω

Γ

Figure 4: Cohesive 
ra
k in two dimensional domain with f representing both domain load andboundary loadThe stress in
rements dσcr a
ross the 
ra
k surfa
es are related to the in
rements in thedispla
ement jump - i.e. the separation of the 
ra
k surfa
es - d[[u]] of the 
ra
k through thetangential material sti�ness matrix Dcr
T

σcr (u) =

[

σn (un)
τns (us)

]

d[[u]] =

[

∆un

∆us

]

dσcr (u) = Dcr
T (u) d[[u]] (4)For the bulk material the stress ve
tor σT = [σx σy τxy] and strain ve
tor ǫT = [ǫx ǫy γxy],

(γxy = 2ǫxy) are related through the standard material sti�ness matrix D, spe
i�ed below for anisotropi
 material.
dσ = Ddǫ , D =

E

1 − ν2





1 ν 0
ν 1 0
0 0 1−ν

2



 (5)The virtual internal work per unit length of the 
ra
k δW i
cr and the internal work per unitarea of the un
ra
ked part of the stru
ture δW i

c may now be written, δ referring to a virtualquantity
5



δW i
cr = δǫcrT σcr = σnδ∆un + τnsδ∆us

δW i
c = δǫT σ = σxδǫx + σyδǫy + τxyδγxy

(6)For the entire stru
ture the internal and external work be
omes
δW i =

∫

Ω δǫT σdΩ +
∫

Γ δ[[u]]T σcrdΓ

δW e =
∫

Ω δuT fdΩ +
∫

Γ δuT fdΓ
(7)Leading to the usual dis
rete equilibrium equation in its ordinary form

KT∆V =

∫

Ω
NT ∆fdΩ +

∫

Γ
NT ∆fdΓ (8)where V is the system dof ve
tor and ∆ refers to in
remental.Spe
ial attention must be paid to the internal work, hen
e the 
ontribution from ea
helement to the tangential sti�ness KT depends on whether the element is 
ra
ked or not. Theelement tangential sti�ness matrix, kT , for a 
ra
ked element is developed by the followingpro
edure. From (1, 2) the strain ve
tor in a 
ra
ked element, ex
ept in the 
ra
k, is obtained

ǫ (x, y) = Bc (x, y)vc +
∑

HI (x, y)Bc
I(x, y)vd

I = Bcvc + Bdvd (9)Where Bc is the strain distribution matrix 
orresponding to the interpolation matrix N c.Sin
e the displa
ement �eld from the �rst terms in (1) is 
ontinuous, the displa
ement jumpin the 
ra
k may be written as
[[u]] (s) = T

(

Nd
+ (s) − Nd

−
(s)

)

vd = Bcrvd (10)Here Bcr is the strain distribution matrix in the 
ra
k, T is the transformation matrix betweenthe (x, y)- and (n, s)-
oordinate systems while Nd
+ and Nd

−
are the dis
ontinuous interpolationmatri
es at the positive, respe
tively, negative side of the 
ra
k.Applying the strain relations in (9) and (10) when formulating the virtual internal work,

kT de�ned by δW i = δvT kT dv, where vT = [vcT vdT
], is found to be

kT =

[

∫

BcTDBc
∫

BcTDBd

∫

BdT
DBc

∫

BdT
DBd +

∫

cr BcrTDcrBcr

]

=

[

kcc
T kcd

T

kdc
T kdd

T + kcr
T

] (11)Performing the equilibrium iteration solving the non-linear �nite element equations theelement nodal for
es, q, are required. q depends like kT on the 
ra
k opening and is determinedanalogous to kT . The 
ontribution to q from the 
ra
k, qcr, is found from the stresses in the
ra
k. The stresses in the 
ra
k are related to the displa
ement jump a

ording to (4). Addingthis 
ontribution to the 
ontribution from the part of the element outside the 
ra
k, q is obtainedas
q =

[

kcc
T kcd

T

kdc
T kdd

T

] [

vc

vd

]

+ qcr where qcr =

∫

cr
BcrT

{

σn

τns

} (12)
6



4 ImplementationIn this se
tion some of the key aspe
ts of the implementation of the interfa
e element will bedis
ussed. First the applied integration s
heme will be outline, then 
ra
k growth and 
riterionsfor smooth 
ra
k 
losure will be dis
ussed brie�y.4.1 Integration of enri
hed elementsTo ensure su�
ient a

ura
y of the strain �eld at both side of the dis
ontinuity in elements
ut by the dis
ontinuity, integration must be performed independently on both sides of thedis
ontinuity. For fully 
ra
ked elements, (Wells and Sluys (2001) and Asferg et al. (2006)) theintegration has been 
arried out 
onsidering the same subdomain for the 
ontinuous �eld and thedis
ontinuous �eld. In this 
ase, where partly 
ra
ked elements are 
onsidered, the integrationof the 
ontinuous �eld is 
arried out by 
onsidering the entire area of the element. For thedis
ontinuous �eld the area 
ut by the dis
ontinuity is divided into two parts and individualintegration performed on those subdomains. For the three subdomains a standard seven pointGauss integration s
heme is applied. Con
erning the line of dis
ontinuity three integration pointsare applied for the integration of tra
tion for
es a
ross the dis
ontinuity. Figure 5 illustrates theintegration s
heme.
Figure 5: Applied integration s
heme. (A) Element partly 
ut by dis
ontinuity. (B) Integrationpoint for 
ontinuous �eld. (C) Integration point for dis
ontinuous �eld, 
rosses mark integrationpoints i 
ontinuum, 
rossed square marks integration point in dis
ontinuity.4.2 Cra
k Growth and Condition for smooth 
ra
k 
losureFor an interfa
e element, one of the often dis
ussed issues, determination of the 
ra
k growthdire
tion, is not an issue. The interfa
e element limits the 
ra
k growth to the longitudinaldire
tion of the interfa
e element; the 
ra
k propagates along the 
enterline of the element.When the element is applied to pra
ti
al modeling problems, the thi
kness of the element issmall 
ompared to the element length.In the 
ase of 
ohesive 
ra
king, 
ohesive tra
tions a
t at the 
ra
k surfa
e near the tip andno singularity is present at the 
ra
k tip. The 
riterion for a stable 
ra
k is that the tensilestresses at the 
ra
k tip are equal to the tensile strength of the material, ft. When the tensilestresses at the 
ra
k tip are equal to ft smooth 
losure of the 
ra
k is a
hieved. When a 
ra
kis propagated element by element as in Wells and Sluys (2001), Asferg et al. (2006) often no
riterion is applied for smooth 
ra
k 
losure. In Zi and Belyts
hko (2003) a smooth 
ra
k 
losure
riterion is imposed at the system level by requiring the stress proje
tion in the normal dire
tion7



to the 
ra
k to be equal to ft at the 
ra
k tip. For the interfa
e element we are investigatingpossibilities for imposing a smooth 
losure 
riterion on element level. However for the resultsgiven in this paper no 
riterion has been applied to ensure smooth 
ra
k 
losure. As a �rst testthe 
ra
k was propagated element by element and an element be
ame 
ra
ked when the tensilestresses in the element ex
eeded ft. Allowing the elements to be partly 
ra
ked the 
ra
k lengthin a given load step was determined from the stress �eld in the un
ra
ked part of the elementand the 
ra
k then propagated to the point where the tensile stresses were equal to ft.4.3 AlgorithmTo remain within the framework of traditional FEM 
odes a general pro
edure, the orthogonalresidual algorithm Krenk (1995), was adopted for the XFEM s
heme to solve the non-linearequations. As a 
onvergen
e 
riterion a energy 
riterion was applied and the elasti
 energy inthe initial elasti
 load step was used as referen
e energy.5 Numeri
al exampleAs initial test 
ase three point bending of a not
hed beam is 
onsidered. The geometry of thetest spe
imen is 
hosen in a

ordan
e with the RILEM spe
i�
ations for the not
hed three pointbending test (TPBT) of 
on
rete beams Vandervalle (2000). The geometry and applied 
onsti-tutive parameters are seen in Figure 6. Only mode I 
ra
king is 
onsidered, though the s
hemeallows for mixed mode 
oupling. A simple linear softening law is applied as the 
onstitutiverelation for the 
ra
k.
25mm

150mm

250mm 250mm

Parameter Value
Ec 37400MPa
νc 0.2
ft 3.5MPa
Gf 160 N/mFigure 6: Geometry and 
onstitutive parameters for TPBT spe
imenA narrow band of interfa
e elements has been used at the 
enter se
tion of the beam, andresults will be given for two fairly 
oarse meshes. One mesh is with 12 elements, the other with24 through the beam height. The mesh with 24 elements over the beam height is depi
ted inFigure 7. The not
h is modeled by an initial stress free 
ra
k through the number of elementsthat 
orresponds to 25mm - i.e. in the 
ase of 12 elements through the beam height the 2 lowerelements are 
ut by an initial stress free 
ra
k while the number is 4 in the 
ase of 24 elementsthrough the beam hight.Results in terms of load displa
ement 
urves for the two 
onsidered meshes are given inFigure 8. The XFEM results are 
ompared to results obtained by modeling the TPBT spe
imenapplying standard interfa
e element in the 
ommer
ial 
ode DIANA from TNO. Figure 8(a)8



Figure 7: Mesh of TPBT spe
imen, 24 elements through the beam hight.
ompares the load de�e
tion response obtained using fully 
ra
ked elements to partly 
ra
kedelements for the 21 by 12 mesh while Figure 8(b) illustrates the results for the 31 by 24 mesh.Figure 9 shows the propagation of the 
ra
k through the beam at di�erent load levels.
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(b)Figure 8: Load de�e
tion response for TPBT spe
imen. (a) Mesh of 21x12 elements (b) Mesh of31x24 elements.
(a) (b) (
) (d)Figure 9: Propagation of 
ra
k through TPBT spe
imen. (a) Cra
k has propagated through 3elements, P=11.2kN. (b) Cra
k has rea
hed midpoint of beam, P=18.4kN. (
) Cra
k has propagated3/4 of the way through the beam, P=14.6kN. (d) Cra
k has rea
hed top of beam., P=2.5kNFrom Figure 8 it is seen that even with as few as 12 elements through the beam height,9



the overall load deformation response is 
aptured pretty well. However in
reasing the number ofelements through the beam height smoothes out the response signi�
antly. As expe
ted the useof partly 
ra
ked interfa
e elements results in a more smooth response than the use of elementsthat are allowed only to be fully 
ra
ked. By implementing a iteration 
ontrol pro
edure thatensures that the stresses at the 
ra
k tip equals ft it may be expe
ted that an even smootherresponse is obtained.6 Con
lusionAs a step towards a more 
onsistent method for modeling of reinfor
ed 
on
rete, a new six nodeinterfa
e element has been proposed. In this paper a �rst version of the proposed interfa
e ele-ment being able to hold the 
ra
k tip within the interior of the element has been presented. Bymodeling of fra
ture in a three point bending beam, the performan
e of the element has beenillustrated. Is is seen that for even fairly 
oarse meshes the XFEM s
heme produ
es good results,as expe
ted the use of partly 
ra
ked element results in a more smooth response than when fully
ra
ked elements are applied.Further work on the interfa
e elements involves �rst and foremost an 
ontrol method for theiteration pro
edure that ensures that the tensile stress at the 
ra
k tip in all steps are equal to thetensile strength of the material. Then the 
apability to handel interse
ting 
ra
ks as sket
hed onFigure 1 shall be 
onsidered and �nally an appropriate bond model for the intera
tion between
on
rete and reinfor
ement shall be applied.7 A
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