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Abstract 
The present Ph.D. dissertation provides a contribution to the development of rational 
and simplified design procedures in order to facilitate the task of seismic design of 
reinforced concrete structures.  
It is widely accepted that it is neither economic nor necessary to design most part of  
reinforced concrete structures so that they remain in the elastic domain during the 
course of an extreme earthquake event. Currently, seismic design for strong 
earthquakes comprises of selecting a suitable collapse mechanism and determining an 
adequate distribution of strength and stiffness so that the corresponding overall 
structural performance in a representative seismic action lies within desired limits, i.e. 
Performance based-seismic design. 
Non-linear time-history analysis (NLTHA) is generally accepted as the most suitable 
method to determine the seismic demand on structures designed to develop non-linear 
behaviour when subjected to earthquake motion. However, despite its superior 
accuracy and rationality, its use at a practical level is limited to structural assessment. 
Therefore, the need for simplified design procedures is still valid. Unfortunately, most 
of the existing simplified methods available for seismic design still make use of the 
Elastic Spectrum to determine seismic demand and therefore are beset with serious 
inconsistencies related to the inelastic nature of the dynamic response of ductile 
systems.  
In this thesis, a new seismic design procedure for systems expected to perform in the 
non-linear range during a lifetime earthquake event, the Rigid-Plastic Seismic Design 
method (RPSD), is proposed. The procedure is founded on the theory of Plasticity 
(Rigid-plastic structures), follows modern seismic design philosophy and combines: 
a) The rationality of NLTHA for the estimation of the seismic demand solely based 

on the properties of the structure, and  
b) The simplicity and practical value of spectral analysis for the estimation of the 

required dissipation capacity. 
Firstly, a collapse mechanism is chosen and the dissipation capacity of the structure is 
determined with respect to a pre-defined performance parameter using a rigid-plastic 
response spectrum. The latter is characteristic of the ground motion alone. Then, a 
safe admissible stress field is found in parts of the structure outside the yield zones in 
order to enforce the chosen collapse mechanism. The latter task is facilitated to a great 
extent by applying the extreme loading scenarios approach, which takes advantage of 
the fact that the strength demand at any point of rigid-plastic structures is solely 
dependent on the intensity of the ground motion.  
Any artificial coefficients intended to adjust results according to empirical 
observations are avoided, which from a conceptual point of view is considered to be 
an advantage over other simplified design procedures for seismic design. Moreover, 
there is an effective separation between the properties of the structure and those of the 
ground motion, which contributes to the straightforwardness of the RPSD method. 
Two examples of the application of the procedure to the design of reinforced concrete 
frames are given. Results are compared with refined NLTHA and found to be 
encouraging.  
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Resumé 
Denne afhandling er et bidrag til udviklingen af en forenklet men rationel design 
procedure for armerede betonkonstruktioner der skal modstå påvirkninger fra 
jordskælv. 
Det er generelt accepteret, at det hverken er nødvendigt eller økonomisk at 
dimensionere hele konstruktionen således at den forbliver i det elastiske område når 
den udsættes for en ekstrem jordskælvshændelse. I øjeblikket er det almindelig 
praksis ved dimensionering for et kraftigt jordskælv at udvælge en  
passende/sandsynlig deformations-mekanisme for brud og bestemme den tilhørende 
fordeling af styrke og stivhed således, at den overordnede strukturelle opførsel ved et 
repræsentativt jordskælv ligger inden for de ønskede grænser: ydelses baseret 
jordskælvdesign (eng. Performance based seismic design).   
Det er generelt accepteret, at en ikke-lineær tids-historie analyse (eng. Non-linear 
time-history analysis, NLTHA) er den bedst egnede metode til at bestemme 
påvirkningerne i en konstruktion, der er dimensioneret til at udvikle en ikke-lineær 
opførsel når den udsættes for jordskælvsbelastninger. Denne metode er rationel og 
kan give meget nøjagtige resultater, men den er i praksis alene begrænset til 
eftervisning af en given konstruktions opførsel. Der er derfor fortsat behov for en 
forenklet konstruktions- og metode dimensionerings. De forenklede metoder til 
dimensionering for jordskælv der i dag er til rådighed er baseret alene på elastisk 
opførsel og er derfor inkonsistente for systemer og konstruktioner der ved dynamiske 
påvirkninger opfører sig elastisk-plastisk. 
I denne afhandling foreslås en ny dimensioneringsmetode for systemer der forventes 
at blive deformeret i det ikke-lineære område ved et dimensionsgivende jordskælv: 
den Ideal-plastiske Jordskælvsdimensionerings Metode (eng. Rigid-Plastic Seismic 
Design Method, RPSD). Fremgangsmåden er baseret på plasticitetsteori og 
tidssvarende konstruktionsfilosofi og den kombinerer: 
a) Vurdering af konstruktionens opførsel baseret alene på dennes egenskaber, samme 

rationelle fremgangsmåde som kendetegner NLTHA. 
b) Vurderingen af konstruktionens evne til at optage/absorbere energi baseret på 

enkel og praktisk spektral-analyse. 
Det første skridt er at udvælge en brudmekanisme, for hvilken konstruktionens 
kapacitet til at absorbere energi bestemmes ud fra foruddefinerede ydelsesparametre 
og ved at benytte et ideal-plastisk response spektrum. Dette sidste er udelukkende  
bestemt af jordens bevægelsesmønster (ground motion). Derefter udvælges et sikkert 
tilladeligt spændings felt i de dele af konstruktionen som befinder sig udenfor 
flydeområderne. Denne opgave lettes i vid udstrækning ved at benytte ekstrem-last 
metoden (extreme loading scenarios approach) , som udnytter den kendsgerning, at 
styrkekravet i ethvert punkt i en ideal-plastisk konstruktion alene er afhængig af 
intensiteten af jordens bevægelser.  
Det er således ikke nødvendigt empiriske at korrigere metodens resultater ud fra 
erfaringsmæssige observationer. Ud fra et konceptuelt synspunkt betragtes dette som 
en fordel ved en sammenligning med andre forenklede seismiske 
dimensioneringsmetoder. Derudover udviser metoden en effektiv adskillelse mellem 
konstruktionens egenskaber og jordens bevægelse, hvilket bidrager til at gøre RPSD 
metoden let tilgængelig. 
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To rammekonstruktioner i armeret beton er dimensioneret vha. den nye metode og en 
sammenligning med resultaterne fra avanceret NLTHA er opløftende. 
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“There are two approaches to a natural problem. They are the approach of the pure 

scientist and that of the engineer. The pure scientist is interested only in truth. For 

him there is only one answer – the right one – no matter how long it takes to get it. 

For the engineer, on the other hand, there are many possible answers, all of which 

are compromises between truth and time, for the engineer must have an answer now; 

his answer must be sufficient for a given purpose, even if not true. For this reason an 

engineer must make assumptions – assumptions which in some cases he knows to be 

not strictly correct – but which will enable him to arrive at an answer which is 

sufficiently true for the immediate purpose.” 

 

H.Q. Golder 

cited by Brinch Hansen (1953) 
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1. Introduction 

1.1 Seismic design philosophy for reinforced concrete 
structures throughout the 20th century 

The need for structural design against strong ground motion was first appreciated in 
the early decades of the 20th century after a series of catastrophic earthquake events 
throughout the world: San Francisco, California, 1908; Messina, Italy, 1908; Kanto, 
Japan, 1925; Napier, New Zealand, 1932 and Long Beach, California, 1933, to 
mention but a few.  
Essentially, the first design codes prescribed specific detailing and construction rules 
as well as procedures on the application of lateral inertia forces, against which the 
structure should be checked. In the absence of reliable measurement of ground motion 
intensity and lack of knowledge on Structural Dynamics, typically the magnitude of 
these forces was taken as 10% of the weight of the building.  
By the 1960’s, ground motion measurements during an earthquake in the form of 
accelerograms were becoming more generally available. At the same time the 
development of strength design philosophies and of computer-based analytical 
procedures such as the spectral-modal analysis and the time-history analysis, 
facilitated the examination of the dynamical response of multi-degree-of-freedom 
structures. According to these procedures, the action effects were found in a 
deterministic fashion disregarding that the seismic loading is a statistical variable and 
the response of the structure was assumed to remain in the elastic range.   
As the records of strong ground motion and of the corresponding effects on structures 
increased, it became apparent that the code provisions were inadequate in providing 
the required structural strength of the building to withstand an intense earthquake. 
Two fundamental observations led to this conclusion: 

1. The lateral force levels specified in codes were consistently insufficient to assign 
enough strength capacity for the structure to endure strong ground motion 
shaking.  

2. Structures that had been experiencing vibration close to resonance were exposed 
to accelerations several times larger than the ones they were designed for, and yet 
some of them survived the earthquake event with limited damage. Conversely, 
structures that had been experiencing ground motion intensity lower than they 
were designed for, experienced severe damage or even collapse. Invariably, poor 
seismic performance was due to severe reduction in strength of members 
particularly those with shear dominated behaviour and joints.   

The first observation revealed the inconsistency of elastic design against a type of 
load with the degree of uncertainty such as seismic loading. The second called the 
attention of engineers to the property of the materials or of structures in offering 
resistance in the inelastic domain of response. This property is generally known as 
ductility and includes the ability to sustain deformations in the inelastic range without 
significant loss of strength and the capacity to absorb energy by hysteretic behaviour. 
Conveniently, ductility is quantified by the ratio of inelastic deformation to the elastic 
deformation, the so-called ductility factor, μ. 
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Figure 1.1 – Response S of a SDOF system to deformation Δ: a) Elastic response and 
b) Elastoplastic response (Park and Paulay, 1975)  

Consider the simple case of a single-degree-of-freedom (SDOF) system. Assuming a 
fully elastic behaviour, the case of Figure 1.1a), it is necessary for the oscillator to 
develop strength SE to reach a level of deformation equivalent to δ. However, 
provided that enough ductility is assigned, the case b) in the same figure, the system 
does not have to be that strong to reach the same level of deformation (SEP<SE).  
Consider now for both cases the energy stored at deformation level δ given by the 
area between the load-deflection curve and the deflection axis. For the elastic 
response, the energy is of the elastic type and may be converted into kinetic energy 
(area abc). For the elastoplastic case when the mass returns to the zero load position, 
the elastic energy is represented by the small area efg. A significant portion of the 
potential energy at deformation level δ, given by the area adeg is dissipated, i.e. 
converted into other forms of energy such as heat.  
The uncertainty of ground motion intensity, ductility and the unfeasibility of 
designing most structures to remain in the elastic domain during large earthquake 
events contributed decisively to a shift in seismic design philosophy from elastic 
design to plastic design in the 1970’s. In this respect, the work by Park, Paulay and 
their co-workers carried out at the University of Canterbury, New Zealand, (Park and 
Paulay, 1975) was of primary importance.  
Particularly in connection to the second observation discussed above, it was noted that 
there are modes of inelastic deformation that provide ductility and others that lead to 
failure. The authors mentioned above formulated that the task of seismic design 
should encourage the formation of modes of failure (collapse mechanisms) that 
possess ductility and prevent all the others that do not (brittle modes of failure). In this 
way, the structure could maintain its lateral strength and develop a mechanism that 
can dissipate the energy input by the ground motion. The design procedure developed 
accordingly was called Capacity Design Method and it may be resumed in the 
following main steps (Paulay and Priestley, 1992): 

1. Choice of a kinematically admissible plastic mechanism according to its potential 
ductility capacity.  

2. Identification of the regions of the structure where the energy input by the 
earthquake is going to be dissipated. These regions are often called yield zones or, 
in frames, plastic hinges. 

 2



Introduction 

Δ

θb

Δ

θc

b) c)a)

Figure 1.2 - Application of the so-called Capacity Design Method to a plane frame 
(Paulay and Priestley, 1992) 

3. Prevention of brittle modes of failure, such as shear or anchorages failures. This is 
carried out ensuring that the strength capacity at the regions where brittle failure 
can occur is higher than the demand originating from the overstrength of the 
plastic hinges. In other words, all the regions outside the hinges must be designed 
so that they remain in the elastic domain throughout the whole seismic action. 

Thus, the emphasis in design resulted in assigning ductility to structures so that large 
seismic forces can be evaded rather than assigning strength to resist those forces. 
The application of the procedure is highlighted in the design of the plane frame of 
Figure 1.2a).  
Typically, the most desirable mechanisms for energy dissipation for the case of 
building structures are the ones involving flexural behaviour at the yield zones, 
namely at the ends of the beams and columns. It is clear that the most suitable 
collapse mechanism is that shown in Figure 1.2b), which may be preferred to that 
shown in Figure 1.2c). In fact, the overall displacement Δ of the structure is achieved 
with the smallest inelastic deformation of the plastic hinges (Note in the same figure 
that θc>> θb). Secondly, a significant number of plastic hinges are formed before 
collapse, which allows an extensive distribution of plastic dissipation throughout the 
structure. 
To prevent brittle modes of failure, a factor larger than the unity, the overstrength 
factor, is used to affect the strength demand outside the hinges corresponding to the 
onset of plastic behaviour in those elements. This factor accounts for the variability of 
the yield stress on the reinforcement and the probability of strain-hardening effects 
that increase the strength of the plastic hinge after yielding. 
Finally, the nature and quality of detailing must be clearly distinct between the 
regions assigned to be plastic hinges and those that ought to remain in the elastic 
domain. 
To the reader familiar with plastic design, the procedure described is clearly not an 
innovation. In fact, the very same procedure mentioned above has consistently been 
applied to the case of structures under static loads since the ductile properties of 
reinforced concrete have been acknowledged. In countries like Denmark and 
Switzerland (with very small seismic activity), they are the basis for the 

 3
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Figure 1.3 - Relation between displacement and damage (fib, 2003) 

corresponding national codes for reinforced concrete design for ultimate limit states 
since the early 1900’s (Dansk Ingeniørforening, 1908). However, it was only after the 
work of Park, Paulay and their co-workers, that plastic design philosophy was fully 
introduced to the case of seismic loading. It has been a challenge for the author to 
understand this “late awakening” from the Earthquake Engineering community to the 
advantages of plastic design, and still this remains a riddle. 
Nowadays, ductility is the single most important property sought by a structural 
engineer when designing in regions of significant seismicity.  
The area of greatest uncertainty of response of structures designed according to the 
principles above is in the inelastic deformations at the plastic hinges both in terms of 
extension of these deformations and their maintenance throughout the seismic action. 
To apply the above design philosophy, it is of primary importance to understand the 
behaviour of reinforced concrete elements under cyclic loading in order to identify the 
means by which ductile behaviour may be achieved and the trends in which brittle 
behaviour develops and may be prevented. Only then may the engineer choose the 
most suitable energy dissipation mechanism and the allowable extent of plastic 
deformations at the yield zones.  
Thus, during the 1970’s and 1980’s, much of the research effort in the field of seismic 
design of reinforced concrete structures was directed at the determination of available 
ductility capacity of structural systems by means of extensive experimental studies. It 
was then evident that the seismic performance of a structure may be better assessed in 
terms of displacement quantities rather than force quantities. To illustrate this, 
consider Figure 1.3 sketching the base-shear vs. roof displacement of a slender wall 
structure, designed according to the principles of plastic design discussed above and 
subjected to a monotonic inversed triangle shaped lateral force field. 
It is clear that the extent of damage in the structure is related to the extent of plastic 
deformations in the yield zone, which in turn can be related with the overall 
displacements (in this case, the roof displacement). After the onset of plastic 
behaviour at the yield zone, the change of strength demand in the structure is minimal, 
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Figure 1.4 - Relation between performance levels and displacement (fib, 2003) 

which indicates the poor relation between this parameter and seismic performance of 

 acknowledged that basing seismic design on displacement capacity 

ral seismic design procedures have been 

1.2 Determination of seismic demand on structures performing 

e 

the structure. 
It was further
rather than strength capacity allows the definition of a range of performance levels 
easily related with displacement, see Figure 1.4. Thus performance levels may be 
adjusted according to the importance of the structure and the expected intensity of 
ground motion at the implementation site.  
In the 1990’s up to the present day, seve
proposed based on the observations above. They have been framed by the somewhat 
grandiose term of Displacement-Based Seismic Design, or more generally, 
Performance-Based Seismic Design philosophy (fib, 2003). Currently, seismic design 
for strong earthquakes comprises of selecting a suitable collapse mechanism and the 
determination of an adequate distribution of strength and stiffness so that the 
corresponding overall structural performance in a representative seismic action lies 
within desired limits. 

in the non-linear range – Overview of existing procedures. 
In the previous section it was seen that seismic design philosophy evolved through th
20th century from an elastic-based design to a more rational plastic-based design 
approach. Unfortunately, this shift brought about serious difficulties for engineers, i.e. 
the estimation of strength and deformations demands on structures performing in the 
non-linear range. This is indeed a rather complicated task, due mainly to the 
unpredictable and dynamic nature of seismic loading, and complexity of the response 
of reinforced concrete elements subjected to cyclic loading. 
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In this chapter we intend to give a brief critical overview of the existing procedures to 
estimate the dynamic response of a structure governed by non-linear behaviour. The 
perspective taken here will firstly be from the rationality of the procedures and 
secondly from the degree of fulfilment of the needs of the structural engineer 
regarding the task of design systems able to sustain the effects induced by ground 
motion.  

1.2.1 Fundamentals of structural dynamics for systems subjected to 
ground motion performing in the non-linear range 

1.2.1.1 Single-degree-of-freedom systems 

Figure 1.5a) depicts a SDOF system subjected to ground motion at a time, t, 
composed by a rolling mass, m, a spring with stiffness, k, and a damper with viscous 
damping constant, c. Imagine that the mass is moving with a positive relative 
acceleration to the ground, ar(t). The free-body diagram of the mass in the moving 
coordinate system at time t after d’Alembert’s principle is shown in Figure 1.5b)1. 
In Figure 1.5b), dr(t) and vr(t) are the displacement and velocity of the mass relative to 
the ground at time t, respectively. For the sake of simplicity, in the following, these 
quantities will be referred to as relative displacements and velocities, since in this 
work we deal only with the problem of dynamic response against ground motion. ag(t) 
is the ground acceleration at time, t.    
Dynamic equilibrium is given by the equation:  

r r r gm a (t) c v (t) k d (t) m a (t)⋅ + ⋅ + ⋅ = − ⋅                        (1.1) 

Equation (1.1) is the general formulation of the equation of motion for SDOF systems. 
Three assumptions are implicit in this formulation: 

1. The mass does not change; 
2. The dissipation of energy is given by a viscous damping mechanism; 
3. The restoring force is proportional to displacement. 

ar(t)
c

k

c vr(t)

k dr(t)
m ar(t) m ag(t)

ag(t)

a) b)

 m 

                                                 

Figure 1.5 – a) Rolling mass SDOF system subjected to ground motion and b) 
corresponding free-body-diagram 

1 In this work, the sign convention regarding forces and displacements is such that positive quantities 
are orientated to the right-hand side of the figures. Bending moments are positive if they correspond to 
tension on the bottom face of horizontal elements or on the right-hand face of vertical elements. 
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mdr(t)

mdr (ti)

dr (ti)

a)

ki

cvr(t)

cvr (ti)

vr (ti) vr(t)

ci

b)

Figure 1.6 - a) Non-linear stiffness and b) Non-linear damping (Paz, 1991) 

It is clear that the first assumption is applicable to the overwhelming majority of 
engineering problems. The second results from empirical observations. In fact, 
damping forces are always present in any physical system undergoing motion. These 
forces are part of a mechanism transforming the mechanical energy of the system to 
other forms of energy such as heat. The mechanism is quite complex and still not 
completely understood. Finally, the third assumption is only valid for systems with 
enough strength capacity to remain in the linear range during the whole ground 
motion.   
If the system complies with these three assumptions, then the equation of motion in 
(1.1) is classified as a linear, second-order, differential equation. The general solution 
may be always found in the Duhamel’s integral. 
Clearly, the assumptions mentioned above are not fulfilled in the case of most SDOF 
structures designed according to modern seismic design philosophy. For these, 
damping is not directly proportional to relative velocity, and the restoring forces are 
not directly proportional to the relative displacements, see Figure 1.6. 
Among the many methods available for the solution of the non-linear equation of 
motion, one of the most effective is the step-by-step integration method. In this 
method, the response is evaluated in successive time steps, Δt. At the beginning of 
each interval, i, dynamic equilibrium is established. The dynamic response for time 
ti+Δt is then approximately evaluated on the basis of constant stiffness and damping, 
the slopes in Figure 1.6a) and b), respectively. The relative displacement and 
velocities are calculated at the end of each interval and used in the next one, i+1, 
firstly to evaluate the corresponding slopes ki+1and ci+1, and secondly as initial 
conditions. Thus non-linear behaviour is approximated by successively changing 
linear systems. The most accurate procedure to evaluate the stiffness and damping 
coefficients in the time interval is to assume average values within that time interval. 
However, this creates much more complexity, as iteration is required. To avoid this 
iteration, initial tangent slopes are normally used.  
Consider the equation of motion for a non-linear SDOF system as in Figure 1.5 at 
time instant, ti. 

r i i r i i r i g im a (t ) c v (t ) k d (t ) m a (t )⋅ + ⋅ + ⋅ = − ⋅                     (1.2) 

The same equation after a short time Δt is  

r i i r i i r i g im a (t t) c v (t t) k d (t t) m a (t t)⋅ + Δ + ⋅ + Δ + ⋅ + Δ = − ⋅ + Δ      (1.3) 
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The subtraction of (1.2) from (1.3) is still a statement of equilibrium: 

r i r i rm a c v k d m a⋅Δ + ⋅Δ + ⋅Δ = − ⋅Δ g

)

                          (1.4) 

where  

r r i r ia a (t t) a (tΔ = + Δ −                                     (1.5) 

r r i r iv v (t t) v (t )Δ = + Δ −                                     (1.6) 

r r i r id d (t t) d (t )Δ = + Δ −                                     (1.7) 

g g i g ia a (t t) a (t )Δ = + Δ −                                     (1.8) 

We still have to make one further assumption to perform step-by-step integration of 
equation (1.4). One possible method is to make considerations on the development of 
the relative acceleration in the time interval, i. The assumption that the relative 
acceleration varies linearly in the time interval often produces good results. Thus, for 
t∈[ti,ti+Δt[ 

r
r r i

aa (t) a (t ) (t t )
t i

Δ
= + ⋅ −

Δ
                                 (1.9) 

2
r i

r r i r i i
a (t t )v (t) v (t ) a (t ) (t t )
t 2

Δ −
= + ⋅ − + ⋅

Δ
                 (1.10) 

2 3
i r

r r i r i i r i
(t t ) a (t t )d (t) d (t ) v (t ) (t t ) a (t )

2 t 6
− Δ −

= + ⋅ − + ⋅ + ⋅
Δ

i      (1.11) 

Using (1.10) and (1.11) to determine vr(ti+Δt) and dr(ti+Δt), and inserting the 
corresponding results in (1.6) and (1.7), respectively, we have: 

r
r r i

av a (t ) t
2

tΔ ⋅Δ
Δ = ⋅ Δ +                                  (1.12) 

2 2
r i r

r r i
a (t ) t a td v (t ) t

2 6
⋅Δ Δ ⋅Δ

Δ = ⋅ Δ + +                      (1.13) 

If Δdr is the basic variable in the analysis, then solving (1.13) to obtain Δar and 
inserting the result on (1.12) yields: 

r r i
r r2

r r
r r i2

d v (t )a 6 6 3 a (t )
t t
d a (v 3 3 v (t )
t 2

Δ⎧Δ = ⋅ − ⋅ − ⋅⎪⎪ Δ Δ
⎨

i

it ) tΔ ⋅Δ⎪Δ = ⋅ − ⋅ −
⎪ Δ⎩

                        (1.14) 

The incremental equation in (1.4) may then be re-written as in the following: 

 
r r i r r i

r i i r i2 2

i r

d v (t ) d a (t ) tm 6 6 3 a (t ) c 3 3 v (t )
t t t 2

                                                                                         k d m a

Δ Δ⎛ ⎞ ⎛⋅ ⋅ − ⋅ − ⋅ + ⋅ ⋅ − ⋅ −⎜ ⎟ ⎜Δ Δ Δ⎝ ⎠ ⎝

g

⋅Δ ⎞
⎟
⎠

+ ⋅Δ = − ⋅Δ
(1.15) 

Note that the only unknown quantity in (1.15) is the incremental displacement Δdr, 
which makes: 
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i rk d iF⋅ Δ = Δ                                            (1.16) 

where 

i
i i 2

cmk k 6 3
t t

= + ⋅ + ⋅
Δ Δ

                                   (1.17)  

and 

r i r i
i g r i i r i

v (t ) a (t ) tF m a m 6 3 a (t ) c 3 v (t )
t 2

⋅Δ⎛ ⎞ ⎛Δ = − ⋅Δ + ⋅ ⋅ + ⋅ + ⋅ ⋅ +⎜ ⎟ ⎜Δ⎝ ⎠ ⎝
⎞
⎟
⎠

 (1.18) 

Then from (1.16) we can determine the incremental displacement Δdr: 

i
r

i

Fd
k
Δ

Δ =                                              (1.19) 

Inserting (1.19) in (1.14) determines Δar and Δvr, which in turn allows the evaluation 
of dr(ti+Δt) and vr(ti+Δt) applying equations (1.7) and (1.6), respectively.  
The procedure described here is presented by (Paz, 1991). As the author points out, 
the assumptions on linear variation of relative acceleration and of constant damping 
and stiffness during the time step equal to the initial evaluation of ci and ki, introduce 
errors that tend to accumulate from step to step – numerical instability. Of course, the 
smaller the time step, the lower the magnitude of the errors introduced. As a rule of 
thumb, it is generally suggested that the length of the time steps should not exceed 
one tenth of the elastic period of the system, T=2π m / k . However, we can 
minimize this accumulation of errors further by imposing a total dynamic equilibrium 
condition at the end of each time step. This is done solving directly equation (1.3) to 
obtain ar(ti+Δt): 

i i
r i g i r i r i

c ka (t t) a (t t) v (t t) d (t t)
m m

+ Δ = − + Δ − ⋅ + Δ − ⋅ + Δ         (1.20) 

Step-by-step integration procedures are the only completely general approach for 
evaluation of the dynamic response of non-linear structures. Nevertheless, these 
methods are equally applicable to linear systems. In fact, as (Clough and Penzien, 
1993) point out, the effectiveness and simplicity of step-by-step integration 
procedures makes them preferable in almost every engineering application for the 
evaluation of the dynamic response in the time domain, irrespective of whether the 
behaviour of the system is linear or not. 

1.2.1.2 Multi-degree-of-freedom systems 

The reasoning leading to the establishment of dynamic equilibrium in multi-degree-
of-freedom (MDOF) systems is exactly the same as for the case of SDOF systems. 
The difference now is that we have a statement of equilibrium as in (1.1) per each 
degree of freedom for every time, t. The procedure becomes more complex since 
inertia, damping and restoring forces at each degree of freedom result from the 
contribution of the motion at all degrees of freedom in the structure. 
For instance, in a MDOF system with N degrees of freedom, the equation of motion at 
the i-th degree of freedom at time t is: 
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N N N

ij r, j ij r, j ij r, j i g
j 1 j 1 j 1

m a (t) c v (t) k d (t) m a (t)
= = =

⋅ + ⋅ + ⋅ = − ⋅∑ ∑ ∑           (1.21) 

where  
mij, cij and kij correspond to the forces at degree of freedom i due to unit acceleration, 
velocity and displacement at degree of freedom, j, respectively. These parameters are 
commonly called mass, damping or stiffness influence coefficients, accordingly. 
ar,j(t), vr,j(t) and dr,j(t) are the relative acceleration, velocity and displacement at the j-
th degree of freedom at time t. 
mi is the mass at degree of freedom i.  
The combination of all the equations of motion for each degree of freedom yields the 
systems of equations of motion of the MDOF system. This is conveniently 
represented by matrix notation2: 

{ } { } { } { }r r ra (t) v (t) d (t) a (t)⋅ + ⋅ + ⋅ = − ⋅M C K M g               (1.22) 

where M, C and K represent the mass, damping and stiffness matrixes, respectively, 
and, {ar(t)}, {vr(t)} and {dr(t)} the relative acceleration, velocity and displacement 
vectors, respectively. 
The simplest method to consider the inertia properties of a structural system is to 
assume that the entire mass is concentrated at points at which the translational 
displacements are defined – lumped mass method. The mass is distributed along the 
structure in specified nodes. Depending on the degree of refinement, this method 
produces accurate results in most engineering applications. The consequence for the 
formulation of the equation is that the mass matrix M will be of the diagonal type. 
In linear systems the dynamic response is expressed in terms of the normal modes of 
vibration by superposition of the independent modal equations (Paz, 1991). In this 
case, the damping matrix is conveniently expressed in terms of the modal damping 
ratios, ξn, each one addressing the damping associated with each vibration mode n3. 
The result is a diagonal matrix. However, in structures performing in the non-linear 
range, stiffness changes with time, and therefore so do the vibration modes. This 
makes it impossible to apply the principle of superposition of the uncoupled modal 
response. The solution is found on an explicit definition of the damping matrix. 
Normally this is carried out by expressing the damping matrix as proportional to the 
mass and stiffness matrixes.  

0 1a a= ⋅ + ⋅C M K                                        (1.23) 

It can be shown, (Clough and Penzien, 1993) that the damping ratio, ξ, associated 
with the circular frequency ω is given by: 

0 1a a
2 2

⋅ω
ξ = +

⋅ω
                                        (1.24) 

The relationship between damping ratio and frequency is illustrated in Figure 1.7. 

                                                 
2 In the following, matrixes will be represented with capital boldface lettering and vectors with {} 
3 Typically, damping is expressed by the ratio, ξ, of the constant c to the critical damping value 
2·m· k / m , which is the largest value of damping for oscillatory motion in free vibration. 
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Figure 1.7 - Relationship between damping ratio and modal circular frequency 
(Clough and Penzien, 1993) 

The convenience of this representation for damping is that we can choose a0 and a1 
according the importance of the vibration mode for the response. Normally, the user 
assigns a reasonable damping ratio for the first modes of vibration, which contribute 
to effectively eliminate the contribution of higher modes. 
Therefore, in most non-linear systems, the determination of the dynamic response is 
concerned with the evaluation of the stiffness influence coefficients according to the 
dynamical state of the system. Note that the mass at each degree of freedom is 
assumed to be constant for most engineering applications, and that the damping 
matrix is proportional to the mass and stiffness matrixes.   
As in the case of the SDOF system, step-by-step integration procedures are the most 
adequate tool to determine the dynamic response of MDOF structures performing in 
the non-linear range. The concept is exactly the same as illustrated in section 1.2.1.1: 
non-linear response is approximated by successively changing linear response.  
One of the most popular step-by-step integration procedures is that proposed by 
(Newmark, 1959). This is a generalisation of the linear acceleration method presented 
in the previous section. It uses two numerical parameters, γ and β, that replace the 
numerical coefficients 1/2 and 1/6 in equations (1.12) and (1.13). Thus, for the case of 
MDOF systems: 

{ } { } { }r r i rv a (t ) t aΔ = ⋅ Δ + γ ⋅ Δ ⋅ Δt                           (1.25) 

{ } { } { } { }2
r r i r i rd v (t ) t a (t ) t aΔ = ⋅ Δ + γ ⋅ ⋅ Δ + β⋅ Δ ⋅ Δ 2t

1.2.2 Non-linear time-history analysis 
Non-Linear Time-History Analysis (NLTHA) is generally accepted as the most 
suitable method to determine the seismic demand on structures designed to develop 

            (1.26) 

According to (Paz, 1991) it has been found that the method introduces superfluous 
damping in the system if values of γ other than 1/2 are used. If this value is used and if 
β is set to 1/4, then the method is equivalent to assume constant mean acceleration in 
the time step. In this case the method is unconditionally stable and provides accurate 
results if small integration time steps are used. 
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non-linear behaviour when subjected to earthquake motion. It allows the definition of 

lumn elements is obtained through the integration of the 
 response including stress reversals of the individual 

construction of the 

the structural model on a differentiated fashion, i.e. the properties of each structural 
element may be explicitly defined. Moreover, the solution is determined by means of 
a numerical step-by-step integration procedure in the time domain, such as the ones 
discussed above. This enables the user to assess the entire dynamic response of the 
system from local to global structural performance without resorting to any type of 
external coefficients unrelated to the physical nature of the problem.  
Two basic approaches can be pointed out regarding modelling of structural behaviour: 

 Spread plasticity models 
 Lumped plasticity models 

The so-called fibre modelling approach is found in the first category. The sectional 
stress-strain state of beam-co
nonlinear uniaxial stress-strain
fibres in which the section has been subdivided (Seismosoft, 2004). The discretisation 
of a typical reinforced concrete cross-section is depicted in Figure 1.8. 
The advantage of this modelling approach is that non-linear behaviour can effectively 
be taken into account along the structural element and effects due to confinement, 
pinching (cf. section 2), cross-section geometry and reinforcement distribution may be 
realistically quantified. As a result, the variation of axial load, bending in two 
directions and coupling between bending and axial force can be properly taken into 
account with relatively limited input data, since only the non-linear uniaxial stress-
strain curves of the materials are required to perform the analysis.  
However, in the currently available versions, fibre modelling disregards important 
effects such as those related to shear deformations and buckling of the reinforcement. 
Moreover, fibre modelling requires extensive calculations for the 
member tangent stiffness matrix in each step resulting from the integration along the 
section of stress and strains at each fibre. Thus, the computational effort is enormous. 
Furthermore, as referred to in (CEB, 1994), the large number of non-linear operations 
required by the computational scheme increases the possibility of numerical 
instability problems. 
The lumped plasticity models try to capture the complex overall behaviour of 
structural members by means of semi-empirical hysteresis laws at the yield zones. 
Parts of the structure outside the yield zones remain in the elastic domain throughout 
the seismic action and therefore are modelled as elastic elements. They are specially 
suited for simple, regular structures in which the failure modes are easily identified 
but with an appropriate level of discretisation, more complex structures may be 
analysed. Spread plasticity may roughly be taken into account with a refined mesh of 
elements with non-linear behaviour. Computational effort is reduced regarding the 
requirements of the spread plasticity models.  
However, significant knowledge and experience is essential to formulate and calibrate 
the equivalent force-deformations relationships in order to adequately represent 
structural behaviour. In connection with the discussion below on the cyclic behaviour 
of reinforced concrete elements, two of the most popular hysteresis models for cross-
sections in frame structures are presented in section 2. 
There is a wide range of commercial programmes available for performing NLTHA 
using lumped plasticity models. Typically, these are based on a finite-element (FEM) 
platform in which the solution is derived using the displacement method. The problem 
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Figure 1.8 - Cross-section subdivision in fibre modelling approach (Seismosoft, 2004) 

arises from the way modern structures are designed to withstand the effects of 
earthquakes, i.e. on the use of overstrength factors to design parts of the structure 
outside the yield zones. The resulting structural model in the FEM programme is 
characterised by discontinuities in terms of stiffness distribution at the joints between 
the plastic hinges and the remaining part of the linear elastic elements. This leads to 
discontinuities in terms of strength demand in the solution of the FEM programme 
and in turn violation of equilibrium. This is a drawback of the lumped plasticity 
models for the estimation of the strength demand in structures performing in the non-
linear range. 
The correct choice of the structural model depends of course on the complexity of the 
problem at hand as well the desired level of accuracy.  
Despite its superior accuracy and rationality, there are some serious setbacks 

t NLTHA is not 

 general affected by modelling 

From the discussion above, it follows that there is a need for simplified design 
ntly accurate results and maintain 
e number of proposals to estimate 

regarding the use of NLTHA as a routine design tool. 
Firstly, the computational effort and time cost required to carry ou
affordable to the majority of design offices. Also, as pointed out by (Chopra, 2004), 
the seismic demands estimated by this method are in
assumptions such as the hysteretic relationships of the plastic hinges, type of 
modelling approach and numerical procedure for the step-by-step integration of the 
equations of motion. Further, a statistical study of the dynamic response to several 
accelerograms is necessary, as the method cannot work directly with a spectrum. 
Finally and perhaps most importantly, NLTHA requires that the structure be 
completely defined beforehand in terms of strength and stiffness distribution as well 
as performance in cyclic behaviour to a level of detail hardly possible at initial stages 
of design. With this procedure, the design for seismic loading is a cumbersome, 
iterative process of data input, checking performance and changing design until 
satisfactory response is found. Therefore, it is unlikely that NLTHA will be 
implemented at a practical level. It seems that its use is destined for verification rather 
than design purposes. 

1.2.3 Elastic Response Spectrum analyses 

procedures able to provide engineers with sufficie
rationality. In recent years there have been a larg
seismic demand in non-linear structural systems. Notably, many of these are 
fundamentally based on the concept of elastic spectrum, which was fully developed 
more than 60 years ago (Biot, 1942). 
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In its original form, elastic spectra are derived by time-history analysis of a large 
number of linear oscillators to a specified ground motion scenario4. The dynamic 
properties of the system, mass and stiffness are condensed in a single variable, the 

f a particular region or implementation site. As long as they are available, 

rding to the corresponding 

s it was postulated that elastic spectra 

                                                

fundamental period of the structure, T. The latter is then related with the 
corresponding peak response parameter, which is the one most likely to be needed by 
the designer, per each value of viscous damping. The value 0.05 is normally used to 
define ξ in reinforced concrete structures. Figure 1.9 shows the response absolute 
acceleration, a, and the relative displacement, dr, spectra5 for the Loma Prieta, 
California, 1989, recorded at Corralitos station for 5% damping ratio to the critical 
value. 
Moreover, elastic spectra have the property of being unique for each ground motion 
scenario, thus being a useful tool to estimate the dynamic effects associated with the 
seismicity o
design against ground motion typical of the implementation site may be carried out in 
a relatively easy to use graphical environment. 
The extension to the MDOF case is based on the principle of superposition that relies 
on the assumption that the dynamic response of a structure results from the 
combination of each of the vibration modes acco
participation factor. The latter is a function of the mode shape, the mass distribution 
and the direction of the ground motion. In the obvious circumstance that peak 
response of each mode does not take place at the same time and in the same direction, 
further combination rules have to be included, the most popular in literature being the 
square root of the sum of the squares (SRSS) and the complete quadratic combination 
(CQC) (Paz, 1991; Clough and Penzien, 1993). 
However, it is obvious that the “pure” elastic formulation of response spectra cannot 
be applied to the case of ductile response of structures.  
Based on NLTHA of elastoplastic SDOF system
can estimate seismic demand on non-linear systems, provided that they are affected by 

 

s a

4 In this work, the term ground motion scenario is ed to a number of records that, typically, 
reproduce the seismicity of a region or of a given implementation site. 

 appli

5 Normally acceleration spectra are in absolute coordinates since in this way the inertia forces in the 
system come out directly. Conversely, displacement nd velocities are conveniently represented 
relative to the ground to assess the level of deformation in the system. 

Figure 1.9 - Example of elastic spectra in terms of a) Absolute acceleration and 
b) Relative displacement 
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appropriate factors, the so-called reduction factors, R, (Newmark and Hall, 1982).  

ith 

 In some period ranges it was observed that the peak response of elastoplastic 
oscillators is very close to the response of elastic oscillators with the same 
stiffness as the initial elastic stiffness of the elastoplastic oscillators, but w
unlimited strength. As seen in Figure 1.10, this implies the reduction coefficient to 
be equal to the ductility factor, μ. This observation is referred as the equal-
displacement rule. 

R = μ                                                 (1.27) 

 For shorter period structures, systems with typically natural period lower than the 
one corresponding to peak spectral acceleration value, the equal d
leads to unsafe estimations, i.e. the ductilit

isplacement rule 
y demand is larger than the force 

reduction factor. It seems that better agreement with NLTHA of elastoplastic 
SDOF systems is achieved by considering that energy consumed by an 
elastoplastic system with yield strength Fy to reach a certain level of deformation 
is the same as an equivalent elastic system developing strength R·Fy. Thus, the 
relation between μ and R is taken from equalising the area below the elastoplastic 
curve to the area below the elastic curve in Figure 1.10. For this reason this 
observation is called the equal-energy rule. 

R 2 1= ⋅μ −                                            (1.28) 

However, as pointed out by (Priestley et al., 1996), the basic idea of defining the 
seismic demand on ductile reinforced concrete stru
elastoplastic systems is weak, since this is hardly t

. Response in the 

ies can only be properly estimated when 

ctures based on observations of 
he typical force vs. deformation 

relationship defining the hysteretic behaviour of members with that material. As 
reported by (Miranda and Bertero, 1994), several modifications have been proposed to 
the formulations in (1.27) and (1.28) to account for the hysteretic behaviour of 
reinforced concrete. However, consensus has not yet been reached. 
The most serious drawback of the use of elastic based spectra for seismic design of 
ductile structures deals with the principle of superposition. Modal superposition is 
only valid for the case of linear systems and small displacements
non-linear range is characterised by constant change of stiffness properties affecting 
the vibration modes, and the magnitude of deformations is large enough to invalidate 
the use of small displacements theory. Moreover, as (Priestley, 2003) points out, 
modal combination rules together with force reduction factors are of dubious validity 
when applied to all the modes of vibration in the same manner. For instance in the 
case of high-rise buildings, higher modes will translate in different axial force 
demands for different columns affecting not only the dissipation capacity there but 
also the stiffness properties. In multi-modal analysis it is impossible to allocate 
different stiffness to the columns according to the vibration mode, which in turn might 
yield estimations of forces grossly in error. 
Another obvious disadvantage of using elastic based spectra for estimation of seismic 
demand on structures is the excessive emphasis put on the correct determination of the 
vibration periods. In fact, the latter quantit
stiffness distribution throughout the structure is defined. Strictly speaking, this is not 
the case of structures to be designed. To remedy this there are some rules yielding a 
crude approximation for the distribution of stiffness along the structure, but these are 
clearly incompatible with the sophisticated nature of the analysis techniques, such as 
multi-modal analysis. Even for simple structural systems where some simple rules 
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Figure 1.10 - Relationship between ductility and force reduction factors for 
construction of inelastic spectra(Paulay and Priestley, 1992) 

might provide accurate estimations for vibration periods beforehand, duration effects 
including stiffness degradation cannot be taken into account by elastic based spectra.   
Finally, design according to elastic based design spectra yields a system of forces that 
do not respect equilibrium and omit information about failure modes which, as seen in 
section 1.1, are crucial for structural performance evaluation. 

1.2.4 Capacity spectrum method – Non-linear static analysis  
A significant improvement in the development of simplified seismic design 

um Method, 

 terminology this is often called pushover analysis. From this, the lateral 

sign philosophy contemplates the choice and 

procedures for ductile structures was the so-called Capacity Spectr
initially proposed by (Freeman, 1998).  
In this procedure, the structure is “reduced” to an equivalent non-linear SDOF system, 
the seismic performance of which is derived on the basis of a highly damped elastic 
spectrum.  
Initially, a standard static plastic analysis is carried out by imposing an incremental 
lateral force field “pushing” the structure well in the non-linear range. In Earthquake 
Engineering
force vs. global deformation relationship is obtained and plotted in an acceleration vs. 
displacement format dividing the lateral force by the weight of the structure – the 
capacity curve. The demands of a given ground motion scenario are defined by highly 
damped elastic spectrum also represented in an acceleration vs. displacement format – 
demand spectrum. The interception of the capacity curve and of the demand spectrum 
yields the seismic demand on the structure both in terms of acceleration and 
displacement demand (Figure 1.11). 
The most innovative feature of the capacity spectrum method is the transformation of 
a MDOF structure to an equivalent SDOF structure. It has already been stated in 
section 1.1 that modern seismic de
subsequent enforcement of a suitable collapse mechanism. This means that the mode 
of vibration of the structure for significant levels of plastic response is determined, 
which enables the treatment of the dynamic response as a generalised SDOF system 
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Figure 1.11 - Capacity spectrum method 

(Clough and Penzien, 1993). This yields a great deal of simplicity to the process of 
seismic design. Moreover, from the capacity curve it is possible to verify the 
performance of the structure from global to local behaviour both in terms of 
deformations and internal forces. 
However, the method is beset with some important inconsistencies, the most notorious 
of all being the dependence on an elastic highly damped spectrum to estimate seismic 
demand. The aim is to account for the energy dissipated by hysteretic behaviour by 

orth noting that the capacity curve is 

portant 

means of an “equivalent” artificially high viscous damping coefficient. As (Chopra 
and Goel, 2001) and (Krawinkler, 1994) showed, there is no physical evidence to 
support a relation between the hysteretic energy dissipation and an equivalent viscous 
damping, particularly for highly inelastic systems. Many authors (Reinhorn, 1997), 
(Chopra and Goel, 1999) and (Fajfar, 1999), proposed the use of inelastic spectra 
based on coefficients such as (1.27) and (1.28). However, as stated above, consensus 
on these coefficients has not yet been reached.  
From a conceptual point of view, the capacity spectrum is not able to provide a 
solution for the limitation of the traditional elastic spectrum analyses regarding the 
consideration of duration effects. In fact, it is w
derived on the basis of a monotonic application of a lateral force field. Thus, some 
important aspects of dynamic response of reinforced concrete members in cyclic 
loading such as stiffness and strength degradation are not properly addressed.  
Moreover, difficulties regarding the contribution of higher modes by pushover 
analysis have been reported (Krawinkler and Seneviratna, 1998). In fact, the lateral 
force field is usually derived based on modal combination of the most im
modes of vibration.  It is very difficult for the user to detect which higher mode will 
affect a particular member in the structure in advance, and even if this is considered, 
its “real effect” will be underestimated given the small participation factor. In the 
original versions, the final shape was kept constant but now “adaptive” pushover 
analyses (Antoniou and Pinho, 2004, for instance) are in order. In the latter type of 
analysis, the lateral load distribution is not kept constant but is continuously updated 
during the analysis according to the modal shapes and participation factors derived by 
eigenvalue analysis carried out at each analysis step. However, the problem with 
higher mode effects still remains. 
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Finally, from a practical perspective, the capacity spectrum method requires the 
structures to be designed to a rather detailed extent in order for the capacity curve to 
be properly defined. Of course, there is no need to specify the trends in which the 

rational approach towards simplified seismic design of 

 of the growing complexity and degree 

e strength capacity, in terms 

hysteretic behaviour develops with cyclic loading as in NLTHA, but the distribution 
of strength and stiffness has to be well defined beforehand, which may equally 
compromise the straightforwardness of the design process. 

1.3 The theory of rigid-plastic materials and limit analysis as a 

reinforced concrete structures 
From the previous discussion, one fundamental problem with the existing analysis 
techniques for the estimation of the seismic demand applied to structures to be 
designed may be identified: the incompatibility
of sophistication of the analysis technique and the crude definition beforehand of 
stiffness distribution throughout the structure. As (Priestley, 2003) points out, there is 
little point in having sophisticated analysis if it is based on very coarse and inaccurate 
data. Experimental and detailed analytical results on flexural behaviour reveal that 
yield curvature, φy, is effectively independent of strength, which means that stiffness 
is directly proportional to flexural strength, cf. Figure 1.12. This implies that an 
accurate estimation of the seismic demand cannot be carried out until the final 
member strengths have been defined. As Priestley suggests, at the very least, 
conventional seismic design based on stiffness definition is an iterative process, where 
this parameter is upgraded during each iteration. 
Rigid-plastic theory avoids the consideration of stiffness in the definition of the 
properties of materials and of structural elements. In this theory, the only parameter 
describing the relation between demand and response is th
of yield stress in the case of materials, or yield force/ moment in the case of structural 
elements. The corollary of this is that seismic demand may be estimated solely on the 
basis of the required strength capacity assigned to the structural system. Thus a great 
deal of simplification may be introduced. Moreover, the only source of structural 
displacements is due to plastic deformations, which means that there is a direct 
relation between global displacement demand and the extent of damage.  

M P,1

φ

M

M P,2

M P,3

φ y

Figure 1.12 - Realistic influence of flexural strength on moment (M) vs. curvature (φ) 
relationship. Constant yield curvature approach 
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Introduction 

Of course, the assumption leading to rigid-plastic behaviour must be verified, which 
means that contribution of elastic deformations for the overall dynamic response must 
be significantly less important than plastic deformations. This is the case of structures 

it analysis theorems 

the structure, then this load is lower than or equal to the collapse 

is carried out assuming that the yield zones have the required strength 

e problem of choosing the most suitable one. 

ed dissipation capacity, and  
 

nd on a structure chosen to develop a collapse 

erformance parameter able to relate dynamic 

able to develop highly ductile modes of failure under lifetime earthquake events such 
as reinforced concrete frames with flexure dominated behaviour. 
On the other hand, one must still ensure that the chosen collapse mechanism indeed 
takes place. The basic tool to solve this problem is found in the application of the 
extremum principles of Plasticity, i.e. in the application of the lim
(Nielsen, 1998).  
Consider a given structure subjected to a specific load. The lower bound theorem of 
the theory of Plasticity states that if a safe and statically admissible stress distribution 
may be found in 
load. Conversely, if the load necessary to subject the structure to a geometrically 
possible deformation field is calculated by the work equation, then the load is greater 
than, or equal to, the collapse load. This is the upper bound theorem of the theory 
plasticity. Therefore, the collapse load has been found if it is possible to assign for the 
same load a geometrically possible deformation field and a safe statically admissible 
stress field.  
Structural design for a specific collapse mechanism is therefore limited to finding a 
stress field outside the plastic zones that respects equilibrium with the external loads. 
Final design 
and ductility capacity and the remaining part of the structure has enough strength not 
to yield. 
For most structures there are of course many possible collapse mechanisms. However, 
only a few can assure ductile behaviour in earthquake loading, which significantly 
reduces th
These are the key-principles upon which the work that will be presented in this thesis 
is based, namely the development of the Rigid-Plastic Seismic Design (RPSD) 
method.  
This is a general, simplified, straightforward seismic design procedure that combines 
a) The simplicity and practical value of spectral analysis for the estimation of the 

requir
b) The rationality of NLTHA for the estimation of the seismic demand solely based

on the properties of the structure.  
It will be shown that the seismic dema
mechanism may be determined using an appropriate spectrum, the rigid-plastic 
spectrum, after the definition of a p
performance with allowable damage. The advantage of the rigid-plastic spectrum is 
on the explicit relation between maximum dynamic response of the structure in a 
selected ground motion scenario and its dissipation capacity. Once the latter 
parameter is found, the dynamic response of the structure is fully determined. Final 
design, i.e. distribution of strength and hence of stiffness throughout the structure, 
proceeds with the enforcement of the chosen collapse mechanism by choosing a 
suitable way for the structure to withstand the stresses imposed by seismic loading. 
This is facilitated to a great extent by the definition of a conservative set of external 
lateral forces, the shape and magnitude of which are independent of the ground 
motion scenario – The extreme loading scenarios. 
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1.4 Outline 
Although the RPSD method is quite general, in this work, special emphasis is devoted 
to the case of reinforced concrete frame structures with flexure dominated behaviour. 

 properly designed, this type of structures may develop significant 

arized 

This is because, if
levels of ductility. Moreover, they are most illustrative of the benefits of the 
simplification introduced by RPSD method, given the large number of degrees of 
freedom and extensive modelling requirements. 
The discussion in the following chapter begins with an overview of cyclic behaviour 
of reinforced concrete elements, i.e. linear members and beam-column joints. The 
primary objective of this chapter is to identify the means by which ductile modes of 
failure are reached and brittle mechanisms are avoided. Also, a new simplified 
procedure to estimate the available rotation capacity of plastic hinges with flexure 
dominated behaviour will be discussed.  
Chapter 3 deals with the formulation of the RPSD method. Firstly, we discuss the 
assumptions used in the design procedure and give the basis for rigid-plastic 
dynamics, i.e. the establishment of the equations of motion in rigid-plastic structures. 
Secondly, the basis for estimation of the seismic demand in the RPSD method is 
introduced, namely, the rigid-plastic spectrum and the extreme loading scenarios 
approach. Details regarding the consideration of P-Δ effects are also provided. 
Finally, in chapter 4 two applications of the RPSD method for the design of reinforced 
concrete frames are presented. 
Conclusions will be throughout the text, the most important of which are summ
in section 5.  
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2. Cyclic behaviour of reinforced concrete 
elements 

It has already been mentioned that modern seismic design philosophy implies design 
for ductility rather than for adequate lateral strength capacity. To understand the 
trends in which ductile behaviour is maintained during ground motion is of 
fundamental importance for the structural engineer faced with the task of seismic 
design.  
Therefore in this chapter we present a review of the cyclic behaviour of reinforced 
concrete elements integrated in frame systems. The discussion starts at the materials 
level. The bond between reinforcement steel and concrete is also discussed. It 
proceeds to the cyclic behaviour of linear structural members according to the type of 
loading rather than their structural function. Cyclic performance of joints will also be 
discussed.  
Relevant experimental work is the basis of this chapter except in the section devoted 
to cyclic behaviour of joints, where the discussion is presented in a qualitative 
manner. This is due mainly to the scarcity of experimental work available on the 
subject. 
The work presented was carried out during the first year of the Ph.D. study and has 
already been published (Domingues Costa, 2003) with the exception of sections 
2.2.1.4 and 2.3. 

2.1 Properties of concrete and reinforcement steel  

2.1.1 Concrete 
One of the most important features influencing seismic behaviour of reinforced 
concrete is confinement. This refers to the influence that lateral reinforcement (in the 
form of hoops or spirals) has on concrete, i.e. the favourable effect on ductility and 
strength. However, before discussing the properties of confined concrete it is 
important to bear in mind the main features of the behaviour of unconfined concrete. 

2.1.1.1 Unconfined Concrete 

Monotonic loading 

Diagrams of stress (σ) versus strain (ε) for monotonic compression and for various 
concrete grades are depicted in Figure 2.1. These diagrams result from tests on 
cylinders and were carried out with deformation control after the development of the 
maximum strength (CEB, 1994). In Figure 2.1, fc represents the compressive cylinder 
strength of the concrete.  
A study of these curves leads to an important conclusion: Low grade concrete is more 
ductile than high-grade concrete. In fact as the concrete strength increases, the 
descending branch gets steeper, indicating brittle behaviour. This apparent brittleness 
in high-strength concrete is of great concern and it must be considered when a 
concrete structure is subjected to high compression strains.  
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Figure 2.1 - Monotonic stress-strain relationship for compressive load (CEB, 1993) 

It should be noted that these tests are of the statical type. During an earthquake, 
strains may vary at a rate of 1-2% per second. It is known that the concrete 
compressive strength under dynamical loading, fc,dyn, exceeds up to 20% of  the 
monotonic compressive strength for strain rates, ε , of the order 1% per second in 
normal grade classes, this value being lower for higher classes. On the other hand, 
large strain rates lead to a steeper slope of the descending branch of the stress-strain 
diagram. This implies that high strain rates, such as those of seismic loading, have 
positive as well as negative effects on the response of concrete. 
Three different parts can be clearly identified in the monotonic curves shown in 
Figure 2.1: 

1. An initial part with a linear branch indicating elastic behaviour. 
2. A second part for strains corresponding to stresses of 70% to 100% of the 

maximum strength, where a gradual reduction in stiffness is evident. In this range 
of stresses, bond cracks in the interface of the mortar and aggregates develop into 
mortar cracks mainly due to stress concentrations at the tips. 

3. A third part for strains larger than the one corresponding to maximum strength. 
This is the above-mentioned descending branch indicating the so-called strain-
softening phenomenon. In this phase the internal cracks propagate in an unstable 
manner and tend to become a macroscopic phenomenon.  

An important parameter for strength and ductility calculations is the ultimate 
compressive strain, εcu. For design purposes this parameter is defined by the value at 
which the maximum bending capacity for a cross-section is achieved. Most of the 
codes range this parameter from 0.35% to 0.40%.  
Because of the low value of the tensile strength compared to the compressive strength, 
and because the seismic action induces significant inelastic response on structural 
elements and pronounced tensile softening due to cyclic loading, this parameter is not 
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Figure 2.2 - Cyclic uniaxial compression with full unloading (Karsan and Jirsa, 
1969). εc is the compressive strain of the specimen and εc1 the compressive strain of 

the specimen at maximum compressive stress  

usually taken into account in strength calculations for seismic design. If tensile 
stresses are considered, the stress-strain relation of concrete in tension may be defined 
as a straight line up to the tensile strength. The corresponding modulus of elasticity is 
considered the same as for compression. 

Response to cyclic loading 

With the intention to study the behaviour of unconfined concrete under alternate 
compression, (Karsan and Jirsa, 1969), carried out an experimental work that led to 
the results presented in Figure 2.2. This figure shows the stress-strain diagram of a 
concrete cylinder subjected to repeated uniaxial compression involving loading and 
unloading under deformation control.  
Until the maximum strength is achieved, the loading branch coincides with the 
monotonic loading curve. For the unloading branches, two distinct parts can be 
pointed out: the one immediately after the maximum stress, which is extremely steep 
due to the highly compressed state of the concrete at early stage of the unloading 
phase, and the following with a minor stiffness as a result of the plastic deformations 
formed in the previous cycle. Regarding the reloading branches, as the number of 
cycles increases, there is a reduction in slope and maximum strength. This is due to 
successive degradation of the internal structure of the specimen caused by the 
propagation of the mortar cracks after each cycle.    
An initial conclusion from the results obtained is that repeated high-intensity 
compressive loading produces a pronounced hysteretic effect in the compressive 
stress-strain relationship of concrete. This is evident when observing the slope and 
strength reduction of the successive unloading and reloading branches after each 
cycle. Thus, as the number of loading-unloading cycles increase, the compressive 
strength and stiffness of the concrete decreases, indicating the softening of the 
material with alternate loading.   
It can also be seen that the envelope curve (the limiting curve below which the stress-
strain curve lie) is almost identical to the monotonic loading curve. This conclusion is 
of particular importance when modelling the response of concrete to uniaxial 
compression. In fact, for this state of stress and for practical purposes, the most 
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important aspect in modelling is the accurate description of the envelope curve rather 
than the detailed shape of the reloading and unloading branches.  
Aoyama and Noguchi, 1979, concluded that alternate loading-unloading does not 
affect the behaviour of concrete as long as the imposed compressive stress, σc, does 
not exceed approximately 50% of the dynamic strength in compression, fc,dyn. On the 
other hand, if σc≥0.85·fc,dyn , significant reduction both in compressive strength and 
stiffness, as in Figure 2.2, must be expected due to the successive spreading of the 
mortar cracks.  
For the study of the response of concrete to cyclic loading, concrete in tension has no 
practical significance. As soon as the tensile strength is exceeded, cracking will take 
place and so energy dissipation through hysteretic loops will be negligible. When a 
structure is subjected to an earthquake, this phenomenon might well occur at the 
beginning of the loading. Therefore, the effect of tensile strength is usually 
disregarded for seismic design purposes.   

2.1.1.2 Confined Concrete 

It is known that both ductility and strength of concrete significantly increase in a 
triaxial compression state of stress. In practise, this stress field may be approached by 
providing adequate lateral reinforcement as long as it prevents the element from 
lateral expansion when subjected to axial compression.  
The effect of confinement depends on the level of the lateral expansion, which is 
directly related to the compressive stress by means of the Poisson effect. At low levels 
of compressive stress, the lateral reinforcement is hardly stressed and therefore the 
concrete is considered unconfined (first part of the monotonic curves of Figure 2.1). 
The concrete becomes confined for levels of compressive stress close to the uniaxial 
compressive strength. At this stage (second part of the monotonic compressive stress-
strain relationship), the lateral expansion resulting from the spreading of the internal 
cracking activates the lateral reinforcement, which then leads to a confining reaction 
to the concrete. In this way, lateral reinforcement provides passive confinement, 
preventing the unstable propagation of the internal cracking.  
Thus, the favourable effect of confinement is due to the fact that transverse pressure 
from lateral reinforcement keeps the inner structure of the concrete member 
preserved, delaying the failure due to sliding along the cracks. 
(Scott, Park and Priestley, 1982) conducted an experimental investigation into the 
behaviour of short reinforced concrete columns submitted to failure in compression at 
different strain rates, , ranging from 3.3x10-6/s (static loading) to 16.7x10-3/s 
(seismic loading). The specimens were 450 mm square by 1200 mm high and 
contained either 8 or 12 longitudinal reinforcement steel bars and different 
arrangements of square steel hoops (

ε

Table 2.1). A specimen with the same dimensions 
but with no reinforcement at all was also tested for comparison. 
Figure 2.3 shows the stress-strain diagrams for specimens 1, 17, 18, 19 and 20. 
As mentioned above, it should first be pointed out that the strain rate for the confined 
concrete specimens corresponded to seismic loading, ε 1.67%= /s, while the plain 
concrete specimen was tested under static loading. The strain rate affects the response 
of confined concrete in the same way as explained for the case of unconfined concrete 
(larger maximum strength, but steeper descending branch in the σ-ε relationships). 
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Table 2.1 - Details of test specimens and tests results  

(Scott, Park and Priestley, 1982) 

 
Specimen number 

 
1 12 13 14 15 17 18 19 20 

Concrete compressive 
strength (MPa) 25.3 24.8 24.8 

 
Reinforcement arrangement 

 
- 

  
Diameter 

(mm) - 20 24 

Longitudinal 
reinforcement Yield 

strength 
(MPa) 

- 434 394 

Diameter 
(mm) - 10 12 10 12 

Spacing 
(mm) - 98 72 88 64 98 72 88 64 

Yield 
stength 
(MPa) 

- 309 296 309 296 Transverse 
reinforcement 

Volume 
ratio of 

transverse 
steel, ρw 

(%) 

- 1.40 1.82 2.24 3.09 1.34 1.74 2.13 2.93 

Strain rate,  (o/oo/s) ε 3.3x10-3 16.7 16.7 

Maximum strength (MN) 4.38 8.50 8.65 8.80 9.40 7.90 8.50 8.40 8.80 

Average concrete strain at 
first hoop fracture (o/oo) 

- 3.0 4.0 4.5 5.50 4.0 2.5 3.5 4.0 

Therefore, to accomplish a direct comparison, the ordinates of the σ-ε relationships 
for the confined specimens should be reduced by approximately 24%.     
This experimental work clearly highlights the main advantages of confined concrete 
over unconfined concrete: 

 Confined concrete has a significantly larger compressive strength. The 
compressive strength of the plain concrete did not exceed 86% of the cylinder 

 25



Rigid-plastic seismic design of R/C structures 

Figure 2.3 - σc vs. εc diagrams of unconfined concrete specimen and specimens with 
different hoop configurations  (Scott, Park and Priestley, 1982) 

strength, fc. On the contrary, confined concrete compressive strengths reached 
values from 19% to 41% higher than fc after the above-mentioned adjustment. It 
should be noted that under seismic loading (high strain rate), the concrete strength 
may reach values up to 80% higher than the cylinder strength.  

 Confined concrete has a significantly larger reserve of ductility. In these tests the 
strains were measured until fracture of the first hoop. The values recorded for the 
ultimate strain ranged from about 25 to 40o/oo, which is an order magnitude higher 
than the values usually obtained in unconfined concrete (3.5-4.0o/oo). 

Types of Confinement 

Two main types of lateral reinforcement are used to confine concrete: circular steel 
spirals (Figure 2.4 to the left-hand side) and square or rectangular steel hoops (Figure 
2.4 to the right-hand side). Tests (Aoyama and Noguchi, 1979) show that spirals are 
more effective than rectangular hoops regarding the favourable effect on ductility and 
strength. 
The reason for the considerable difference in confinement by these two types of 
lateral reinforcement lies in their shape (see Figure 2.4). 
Circular spirals are in axial hoop tension and provide a continuous confining pressure 
(σl in  Figure 2.4). When closely spaced, they provide a state of stress near triaxial 
compression at large transverse strains. On the other hand, square or rectangular 
hoops can only provide confinement in the region near the longitudinal reinforcement 
bars and in the centre of the cross-section, because the lateral expansion of the 
concrete tends to bend the sides of the hoops outwards. Thus a significant proportion 
of the cross-section is unconfined.  
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Figure 2.4 - Circular spirals and square hoops (Penelis and Kappos) 

Table 2.2 - Properties of the columns (Ozcebe and Saatcioglu, 1987) 

Longitudinal 
Steel Transverse Steel 

Test 
Specimen 

Concrete 
Strength 
(MPa) fy,l 

(MPa) 
ρl 

(%) 
fy,t 

(MPa)
ρw 

(o/oo)
s 

mm Configuration w y,tA f
(N / mm)

s
⋅

U3 
U4 
U6 

34.8 
32.0 
37.3 

438 
438 
437 

3.27 
3.27 
3.27 

470 
470 
425 

16.9 
25.4 
19.5 

75 
50 
65 

Type A 
Type A 
Type B 

1253 
1880 
1262 

Parameters affecting confinement 

With the intention of showing the influence of confinement on the cyclic behaviour of 
concrete, (Ozcebe and Staacioglu, 1987) tested four full-scale columns under 
simulated seismic loading. However, in this work only the results corresponding to 
three specimens (U3, U4 and U6) are discussed. The experimental program is 
depicted in the Figure 2.5 and in Table 2.2. In the latter, the index l refers to the 
longitudinal direction and the index t to the transverse direction; ρl is the longitudinal 
reinforcement ratio and ρw is the transverse reinforcement volume ratio; s is the hoop 
spacing and Aw is the nominal area of transverse reinforcement per hoop 
configuration. 
As shown in Figure 2.5, the longitudinal reinforcement arrangement was the same for 
each specimen. All specimens were designed with excess shear capacities so that the 
failure would be governed by flexure. The differences between the specimens were in 
the transverse reinforcement level:  

 Type A was used in both U3 and U4 specimens, but in the latter the tie spacing 
was 67% smaller; 

 The lateral reinforcement used in specimen U6 was of the type B. This specimen 
was designed to have the same shear capacity as the specimen U3 (see last column 
of Table 2.2), while maintaining approximately the same spacing of transverse 
reinforcement. 

The specimens were subjected to the displacement history shown in Figure 2.6. The 
quantity Δy refers to the yield displacement of the specimen. This parameter was 
defined as the displacement level at which the critical column section yielded as a 
whole and was recorded during the test in the region where the rate of strain variation 
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Figure 2.5 - Geometric details of the columns (Ozcebe and Saatcioglu, 1987) 

Figure 2.6 - Imposed displacement history (Ozcebe and Saatcioglu, 1987) 

was very high at relatively constant load. All columns were
constant compressive axial load, which corresponded to 12% of the nom

eformation relationships of the three column
as the corresponding photographs of the specimens at the end of the 3

Figure 2.8, Figure 2.9). 
in conclusions of this experimental work are:  

 tested under a 600 kN 
inal column 

capacity. 
The hysteretic force-d s are shown as well 

Δy cycles (see 
Figure 2.7, 
The ma
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Figure 2.7 - a) Hysteretic behaviour for specimen U3 b) Specimen U3 at the end of 
3Δy cycles (Ozcebe and Saatcioglu, 1987) 

Figure 2.8 - a) Hysteretic behaviour for specimen U4 b) Specimen U4 at the end of 
3Δy cycles (Ozcebe and Saatcioglu, 1987) 

 Comparing the hysteretic force-deformation relationships for specimens U3 and 
U6, it is evident that despite having approximately the same amount and 
spacing of lateral reinforcement, specimen U6 had superior behaviour with 
stable hysteretic loops and with negligible strength and stiffness reduction 
throughout the loading. On the other hand, U3 exhibited poor behaviour with 
rapid strength and stiffness degradation. This is confirmed when comparing the 
damage after stage 26 for both specimens (Figure 2.7b) and Figure 2.9b)). In 
fact, specimen U3 could not survive the cycles at 3Δy. This difference in 
behaviour is due to the difference in the types of lateral reinforcement. The 
superiority of Type B configuration lies in the effectiveness of longitudinal 
column reinforcement in confining the core concrete when supported by the 
crossties.  

 Another parameter investigated experimentally was the influence of spacing and 
amount of transverse steel. Observing Figure 2.7b) and Figure 2.8b) we can 
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Figure 2.9 - a) Hysteretic behaviour for specimen U6 b) Specimen U6 at the end of 
3Δy cycles (Ozcebe and Saatcioglu, 1987) 

conclude that specimen U3 experienced significantly larger damage than specimen 
U4. Referring to the corresponding hysteretic force-deformation relationships, it is 
evident that specimen U4 behaved in a far more ductile manner then U3. In fact, 
after stage 34 in the loading history, this specimen could still sustain 70% of its 
peak load. Therefore the behaviour of U4 showed the favourable influence of both 
the amount and spacing of lateral reinforcement. However, comparing the force-

the ductile behaviour of confined concrete. This 

es were almost identical and the shape of the 

 the concrete between transverse bars (Figure 
2.10). If the spacing is large, it is evident that a large volume of concrete cannot be 
confined and may spall away.  

deformation relationship of specimen U4 with the one of specimen U6, we can see 
that the former, despite having a significantly larger lateral reinforcement ratio, 
ρw, had a behaviour close to, but not as favourable as the behaviour of specimen 
U6. This fact shows that the effect of ρw is outweighed by a rational hoop 
configuration concerning 
suggests that a proper choice of confinement is a more feasible solution than 
increasing ρw.  

Scott, Park and Priestley, 1982, also studied the effect of spacing of transverse 
reinforcement on the efficiency of confinement. Their experimental work is also 
useful for understanding the influence of some basic parameters of confinement. Two 
main comments can be made: 

 Firstly, as expected, both strength and ductility increase with the transverse 
reinforcement volume ratio, ρw. This is due to the fact that the transverse 
confining pressure increases with the content of transverse steel.   

 The comparison between the behaviour of specimens 18 and 19 in Figure 2.3 can 
be used to assess the influence of hoop spacing. Both specimens exhibited similar 
behaviour as the peak stress
descending branch was also (approximately) identical. However, specimen 18 had 
a lower transverse reinforcement ratio, but the hoops were placed closer than in 
specimen 19. Therefore one can conclude that similar confinements can be 
achieved with lower transverse ratios as long as closer spacing is used. The 
concrete is confined by arching in

 30



Cyclic behaviour of R/C elements 

Figure 2.10 - Effect of spacing of transverse reinforcement on the efficiency of 
confinement (Park and Paulay, 1975) 

 The maximum strength of each specimen in group 12-15 is larger than the 
corresponding specimen in group 17-20 (see Table 2.1). This indicates better 

viously in section 2.1.1.1, 

er strength concrete is larger, due to the 

nt as concluded from the experimental work carried 

steel to the distance of lateral 

onfined concrete 

verse reinforcement as shown in the experimental work 
carried out by (Scott, Park and Priestley, 1982); 

vi. The volume ratio of reinforcement steel, ρw as explained in the work of (Scott, 
Park and Priestley, 1982) and (Ozcebe and Staaciouglu, 1987);   

confinement of the specimens with 12 longitudinal steel bars. In fact, the closer 
the reinforcement bars, the less the area of unconfined concrete, due to the 
bending of the sides of the hoops. 

In the following the parameters affecting the efficiency of confinement are 
summarized: 

i. The yield strength of the transverse reinforcement, as this gives an upper limit to 
the confining pressure; 

ii. The compressive strength of concrete. As discussed pre
lower strength concrete is more ductile than higher strength concrete. 
Additionally, the lateral expansion in low
Poisson effect, for the same magnitude of axial loading. Therefore the confining 
pressure is activated sooner in lower strength concrete, implying that the hoops 
will be more stressed than for higher strength concrete; 

iii. The longitudinal reinforceme
out by (Scott, Park and Priestley, 1982); 

iv. The ratio of the diameter of the transverse 
reinforcement between longitudinal bars. Larger diameters of the transverse steel 
bars lead to less bending and thus to a smaller volume of unc
along the sides of the hoops; 

v. The spacing of the trans
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vii. The hoop configuration. See conclusions from the experimental work of (Ozcebe 
and Staaciouglu, 1987). 

generation of European steel type Grade B400 and B500 Tempcore. Results have 
nce of ductile properties even at large deformations, 

2.1.2 Reinforcement Steel 

2.1.2.1 Monotonic loading 

The typical behaviour of steel bars loaded monotonically in tension is presented in 
Figure 2.11. 
The main conclusion taken from the results presented in Figure 2.11 is that the 
behaviour of low-grade steel is more ductile than that of high-grade steel. In fact, low-
grade steel exhibits a wider and better-defined yield plateau. As the steel grade 
increases, the ratio of peak stress to yield stress increases, which clearly indicates that 
the influence of strain hardening is larger for high strength steel. Moreover, for high 
strength steel the ultimate deformation is much less than for low strength steel. 
This may lead to the conclusion that the designer interested in seismic protection of 
the structure would prefer the use of low strength class steel, as this is more ductile. 
However, designing with low strength steel leads to the use of larger diameters of the 
reinforcement. Larger diameters have unfavourable effects regarding cracking and 
therefore contribute to a larger strength and stiffness degradation of structural 
elements (as presented in section 2.2). 
Recent tests (Pipa and Vercesi, 1998) carried out at the National Laboratory of Civil 
Engineering (LNEC), Lisbon, Portugal, investigated the properties of the new 

shown excellent maintena
εs=10%, and a strain hardening factor of 1.2.  

2.1.2.2 Cyclic loading 

Experimentally, curves for steel bars subjected to repeated axial loading (compression 
or tension) with strain rates, ε , similar to earthquake loading with full unloading but 

Figure 2.11 - Typical stress-strain curves for steel reinforcement (Paulay and 
Priestley, 1992); fy is the yield strength of the steel reinforcement 
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Figure 2.12 - Typical stress-strain curve for steel bar subjected to cyclic loading 
(Penelis and Kappos, 1997) 

no stress reversal, have shown that, as in concrete, the envelope curve practically 

e structural element, the reinforcement 
h implies stress reversals. Figure 2.12 

l 
It is widely known that the composite action of concrete and steel is due to bond 
forces between these two materials. Anchorage may take place along the bars, as in 
the case of plain bars, at their ends by means of hooks, anchor plates, etc. Ensuring 
adequate anchorage of the reinforcement steel is the most important aim when 
detailing reinforced structural elements. Additionally, bond plays a dominant role 
with respect to seismic behaviour not only because of the reasons stated above, but 
also because it affects stiffness and energy dissipation capacity. 
Considering the equilibrium of the forces acting on an infinitesimal element of a plain 
steel bar, as shown in Figure 2.13, we find: 

coincides with the monotonic loading curve. The unloading and consequent reloading 
branches on the stress-strain diagrams present a narrow hysteretic loop, indicating 
small energy dissipation. In most of the practical idealisations of the steel behaviour 
under the conditions mentioned above, this hysteretic loop is disregarded and so both 
unloading and reloading branches are assumed to have the same slope as the initial 
loading branch, corresponding to the modulus of elasticity, often taken as 200 GPa 
(CEN, 1991).  
In the case of seismic loading, depending on th
steel may be submitted to cyclic loading, whic
shows the typical stress-strain curve for a steel bar under these conditions. 
This figure shows a reduction of stiffness at stresses much lower than the first yield 
limit after a stress reversal in the inelastic range. This feature is known as the 
Bauschinger effect and it should always be regarded when considering the cyclic 
behaviour of reinforced concrete. On the other hand, the first part of the unloading 
takes place in an almost elastic manner and therefore usually its branches are assumed 
to have the same slope as the first loading branch.  

2.1.3 Bond between concrete and stee
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Figure 2.13 - Steel stresses in an infinitesimal element of a plain reinforcement bar 
(Penelis and Kappos, 1997) 

Figure 2.14 - Displacements and relative slip between concrete and plain steel bar 
(Penelis and Kappos, 1997) 
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                                        (2.1) 

in which τ is the bond stress, u is the bar perimeter and db its diameter. 
Examining equation (2.1), it appears that bond stresses are zero whenever the steel 
stress gradient is zero (constant moment areas), whereas its peak value takes place at 
points of steep gradients (in regions where point loads are applied, for instance). 
Figure 2.14 shows the relative slip, s, between the plain bar and the surrounding 
concrete as a function of the corresponding displacements, uc for concrete and us for 
steel. 
According to Figure 2.14: 
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 34



Cyclic behaviour of R/C elements 

As one can see, the relative slip between the plain bars and the surrounding concrete 
depends both on the steel strain, εs, and the concrete strain, εc. However, εc is usually 
disregarded, since its value is negligible with respect to εs.  
Currently, the few analytical models for bond are based both on the final results of 
expressions (2.1) and (2.2) (constitutive equations for bond) and on experimental data. 
Commonly the bond stress, τ, is expressed as a function of the relative slip, s. 
However it should be noted that the results (2.1) and (2.2) apply only to plain bars.  

2.1.3.1 Bond under monotonic loading 

The behaviour of bond under monotonic loading is sketched in Figure 2.15. Figure 
2.15 shows a qualitative picture of the bond stress-slip relationship. Due to the 
scarcity of experimental data regarding this subject, consensus has not yet been 
achieved in the research community regarding quantifying the behaviour of bond 
under monotonic loading.  
Up to a certain level of bond stress, τ0, almost no slip takes place. In this initial range 
of stresses, bond is mainly due to chemical adhesion of the cement paste to the surface 
of the bar. The value of τ0 ranges from 0.5 to 1.0 MPa for plain bars. When adhesion 
breaks down, for τ>τ0, the bond is assured mainly by friction between the cement past 
and the microscopic anomalies (pitting) of the bars. For deformed bars, at a bond 
stress level τ1, bond cracks form, as illustrated in Figure 2.16. Bond cracking is a very 
complex phenomenon as it depends on several factors such as the strength of the 
cement paste, the rib spacing and the diameter of the reinforcement bar. 
At approximately the same time as bond cracks form, separation of concrete from the 
reinforcement bar takes place in the region of primary (flexural) cracking. This 
separation causes transverse displacements leading to an increase in the circumference 
of the concrete surface previously in contact with the bar, and as a result, 
circumferential tensile stresses develop (Park and Paulay, 1975). The propagation of 
bond cracking up to the external face leads to splitting and therefore to the destruction 
of bond. This happens for levels of bond stresses around τ2 cf. Figure 2.15. If the 
reinforced concrete element is not appropriately confined, this implies failure (dashed 
branch in Figure 2.15). Bond stresses along deformed bars are, except for low 
stresses, due to skew compressive stresses in the concrete. Thus, deformed bars 
induce transverse displacements in the concrete. This means that bond strength of 
deformed bars may be improved by confinement, contrary to plain bars. Confinement 
inhibits the propagation of the bond cracking, mainly due to the fact that transverse 
compression is beneficial to the anchorage of the reinforcement bar. Therefore, for 
confined elements, the bond resistance can reach significantly higher values (τmax). 
Additionally, confinement leads to more ductile behaviour as it inhibits the bond 
failure due to splitting. After the maximum bond stress, τmax, a progressive 
deterioration of the concrete between adjacent ribs takes place (descending branch, in 
Figure 2.15). The following moderate residual bond stress takes place for values of 
slip around s3, due to friction at the cylindrical surface defined at the tips of the ribs. 
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Figure 2.15 - Typical bond stress - slip relationships for unconfined and confined 
concrete. 

τ

τ0

τ1

τ2

s0 s1 s1 s2 s3

τmax

Unconfined Concrete - 
splitting failure

Confined Concrete

Figure 2.16 - Sketch of the bond cracking mechanism 

2.1.3.2  Bond under cyclic loading 

As for the monotonic loading, the bond resistance under cyclic loading is still only 
qualitatively understood. In the following, a brief description of the most important 
features governing the cyclic behaviour of bond will be discussed. 
Observing Figure 2.17, three main features can be pointed out to describe the 
behaviour of bond under cyclic loading: 

 The residual slip during unloading is quite large. This is mainly due to the fact that 
the elastic part of slip consists in the concrete deformation only, which is 
negligible regarding the contribution of the steel deformation. Also, microcracking 
in the concrete and the release of shrinkage strains result in some permanent slip. 
Therefore the cracks formed during the tensioning of a bar cannot close 
completely by removal of the load.  

 One can distinguish two different parts in the reloading branches: The first part 
with relatively small slope up to slip values as approximately achieved in the 
previous cycle; The second part with a higher slope for slip values larger than in 
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s

After 5 cycles

After 10 cycles

After 15 cycles

Figure 2.17 - Typical bond stress-slip relationship of a deformed bar under cyclic 
loading 

the previous cycle. It can be easily understood that the bond resistance in the first 
part is merely due to friction between the bars and the surrounding concrete 
surface. For the second part, the reinforcement bar comes into contact with intact 
concrete, leading to an increase in the stiffness.  

 Large softening effect and fast strength decay. Figure 2.17 shows clearly the slope 
reduction of the reloading branches after each cycle. This has to do with the 
gradual smoothening of crack interfaces, which causes a reduction of the 
mechanical interlock and friction forces (Penelis and Kappos, 1997). 

2.2 Inelastic Response of Reinforced Concrete Elements in 
Cyclic Loading 

2.2.1 Members with flexure-dominated behaviour 

2.2.1.1 Members in uniaxial flexure 

Most of the experimental work done to date regarding the cyclic behaviour of 
reinforced concrete members has dealt with the simplest case of uniaxial flexure 
under zero axial force. Although even for beams this case seldom occurs during a 
seismic action, its discussion is considered to be of high value to understand the cyclic 
behaviour of reinforced concrete members in which the flexural mode of behaviour 
dominates the shear mode. 
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Members with symmetric cross-section and reinforcement 

(Brown and Jirsa, 1971) carried out a series of experiments to determine the effect of 
load history on the strength, ductility and mode of failure of cantilever beams. For 
current purposes, only the results with respect to specimens subjected to reversed 
loading histories are going to be discussed.  
The test specimens were cantilever beams cast with an enlarged end block. The load 
was applied in the free end of the beam. The cross-section was rectangular (15.2x30.5 
cm2). The specimen designation (Figure 2.18) contains information about the 
reinforcement used, the load and the length of the shear span. Each of the values in 
the first pair of numbers stands for the number of longitudinal reinforcement bars 
used in the top and bottom face respectively. The second pair of numbers refers to the 
web reinforcement. The first number relates to the number of stirrups and the second 
one with their spacing in inches (1in=2.54cm). The designation RV5 or RV10 means 
that the load applied is reversed and the deflection limit is 5 or 10 times the yield 
deflection. The last number represents the length of the shear span, also in inches. 

Figure 2.18 - Representative force-deflection loops of specimens with symmetric 
cross-section and reinforcement in cyclic uniaxial flexure with zero axial load 

(Brown and Jirsa, 1971) (1kip=4.45kN; 1in=2.54 cm) 
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The test results are illustrated in Figure 2.18 in the form of diagrams of force-
displacement in terms of loads (F) versus deflections (δ). This type of diagram, 
together with those depicting moments (M) versus rotations (θ) are the best suited to 
illustrate the response of a reinforced concrete member under cyclic loading. 
The main features of the curves in Figure 2.18 are: 

 The stiffness gradually deteriorates in the first loading branch. This is particularly 

posite direction is rather flat, 

reason is that the cracks on the face previously in tension are still open, as 
explained prev ction takes place, 

e 

evident in specimen 88-32-RV10-60. In fact, as the load increases, flexural cracks 
develop in the tensile face and after a certain limit, bond slip between the 
reinforcement and the surrounding concrete takes place (Zone a) in Figure 2.19a)). 
The following abrupt softening of the response is mainly due to yielding of the 
tension steel at the cross-section of maximum moment (Point b) in Figure 2.19a)). 
After yielding, the resistance of the member keeps increasing although its stiffness 
is much more reduced. This relates to the reduction of the neutral axis depth due 
to the large post-yield extension of the tension steel, increasing the lever arm of 
the internal forces. Also, strain hardening of the tension steel (see section 2.1.2) 
contributes to a positive slope of the post yield branch for the first loading 
(Branch c) in Figure 2.19a)). 

 The initial stiffness of the unloading branches is high, of the order of the elastic 
stiffness (Zone d) in Figure 2.19b)) and then gradually softens as the applied load 
tends to zero (Branch e) in Figure 2.19b)). When the load is removed there will be 
significant permanent deflections due to inelastic strains locked in the tension steel 
previously in the plastic domain and to the residual slip between the reinforcement 
and the concrete. This is the reason why the cracks remain open even at zero load 
(point f) in Figure 2.19b)). 

 The initial part of the reloading branches on the op
and even more so than the terminal part of the preceding unloading branch. The 

iously, and when reloading on the opposite dire
cracks will open on the new face under tension of the member. This will tak

F

δ

Zone a)

Point b)
Branch c)

δ

Zone d)

Branch e)

Point f)

δ

F

a)                                                                     b) 

Figure 2.19 - a) First loading branch and b) First unloading branch for symmetric 
R/C members with flexure dominated behaviour 

 39



Rigid-plastic seismic design of R/C structures 

place before full recovery of the residual bond slip and of the inelastic extension 
of the bars on the opposite face and therefore before the closing of the cracks 
there. As a result, the whole cross-section is cracked and the concrete is 
ineffective, which leads to the entire moment being resisted by the steel couple 
alone (Branch g) in Figure 2.20). As the magnitude of reloading increases, the 
cracks in the new face under compression gradually start to close after the 
corresponding steel bars yield in compression. This means the reactivation of the 
concrete and consequent stiffening of the reloading branch. (Zone h) in Figure 
2.20). The succession of the softening-stiffening effect in the reloading branches 
moves the curve towards the origin, as this would be “pinched”. For this reason 
this effect is commonly designated as pinching. This is a very important 
consideration when analysing the energy dissipation capacity of a structural 
member. The more pronounced the pinching, the less effective the member in 
absorbing the energy induced from cyclic loading.  

 After the stiffening that concludes the pinching effect in the reloading branch, a 
second gradual softening can again be observed (Branch i) in Figure 2.20). This is 
the Bauschinger effect, mentioned in 2.1.2.2, affecting the steel bars. In fact, the 
steel bars now in tension have yielded in compression during the previous half 
cycle, and vice-versa for the bars now in compression. Therefore the steel bars 
start to yield earlier than for the first loading branch, meaning earlier softening in 
the reloading branch.  

e so-called stiffness and strength degradation process due 

 The following unloading-reloading cycles follow the same pattern as described 
above. However the reloading branches seem to approach the point of extreme 
deformation in smoother lines as the number of cycles increase (Branch j) in 
Figure 2.21). This is th
to cyclic loading.  

One of the main reasons for the degradation of the structural properties of the member 
is the gradual increase of the influence of shear deformations in cycling. Comparing 

δ

Zone h)

Branch i)

Branch g)
δ

F

Figure 2.20 - Sketch of the first reloading branch in the opposite direction for a 
R/C member with symmetric cross-section and reinforcement in uniaxial flexure. 
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δ

Branch j)

δ

F

Figure 2.21 - Typical unloading-reloading cycle branch for a symmetric R/C member 

Figure 2.22, which shows the end rotations of the beam for specimens 88-35-RV10-
60 and 88-34-RV10-30 with the corresponding force-deflection curves (Figure 2.18), 
it is evident that despite the peak deflections roughly remaining constant, the end-
rotations are reduced significantly, resulting in an increase in the magnitude of shear 
deformations. This, together with the alternate opening and closing of the cracks, 
causes a degradation of the concrete stiffness and strength in compression, as crack 
faces may not come into full contact. Another important factor contributing for the 
stiffness and strength degradation of the member is the bond deterioration mechanism 
with cycling as explained in section 2.1.3. The bond between concrete and steel 
gradually becomes less effective, which increases crack widths, contributing to larger 
pinching and reducing the tension-stiffening effect. Also, the combined effect of the 
whole cross-section when ineffective, i.e. the moment applied is resisted by the steel 
couple alone with shear deformations, increases the splitting of the concrete along the 
longitudinal bars. This leads to further bond deterioration and in certain cases may 
cause  spalling of the concrete cover by dowel action. 
The experimental work carried out by Brown and Jirsa is also useful for illustrating 
two important parameters influencing the cyclic response of structural members: 

 As the longitudinal steel ratio increases, the larger the stiffness and strength 
degradation and also the less the energy dissipation capacity. This is evident since 
specimens reinforced with 8 bars failed in fewer cycles than those reinforced with 
6 bars. In fact, as the load capacity increases, the greater the shear on the cross-
section and so the larger the shear deformations with the consequent deterioration 
of the structural properties of the member. Moreover, an increase of the flexural 
reinforcement ratio increases the compressive stresses of the concrete, and thus 
increases the rate of degradation. 

 Reducing the stirrup spacing significantly increased the number of cycles, as can 
be easily observed by comparing the force-deflection curves for specimens 88-32-
RV10-60 with 88-35-RV10-60 in Figure 2.18. It is also evident that the response 
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Figure 2.22 - Load-end rotation curves for specimens 88-35-RV10-60 and 88-34-RV10-
30 (Brown and Jirsa, 1971) (1 kip =4.45 kN) 

of the specimens with closer spacing is superior, leading to more stable hysteresis 
loops. This is due to the fact that better confinement of the concrete core is 
achieved with closer spacing of the transverse reinforcement, as explained in 
section 2.1.1.2. As mentioned there, adequate confinement has the favourable 
effect of keeping the inner structure of the concrete member preserved, 
diminishing the damage due to sliding along the cracks from shear deformations.  

Finally, some remarks should be made regarding the failure mode in structural 
members with symmetric cross-section and reinforcement under uniaxial flexure. 
Generally in these cases, failure is caused by progressive deterioration of the 
compressive zones of the concrete combined with the growing influence of the shear 
deformations. If the member is submitted to strong imposed displacement history, i.e. 
with peak displacements several times larger than the yield displacement, damage is 
first observed in the uppermost or lowest fibres of cross-section with the highest 
flexural demand. This damage is due to successive states of high compression, leading 

Figure 2.23 shows the importance of transverse reinforcement spacing in preventing 
buckling of the steel bars: the closer the stirrups the better they can provide lateral 
support to the steel bars after spalling of the concrete cover due to reduction in the 
buckling length (Figure 2.23a)). Also, the yield strength of the steel used in transverse 

to crushing of the cover concrete. This effect, together with the increase of bond slip 
between the steel bars and the surrounding concrete, leads to the separation (spalling) 
of the concrete cover, exposing the steel bars. At this stage, the bar may buckle due to 
loss of lateral support (Figure 2.23 a) and c)), which is a brittle mode of failure. In 
Figure 2.23 three different modes of buckling of the longitudinal reinforcement are 
illustrated. 
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Figure 2.23 - Different modes of buckling in reinforcement bars (Penelis and Kappos, 
1997) 

reinforcement should not be too low in order to prevent buckling of the longitudinal 
bars as shown in Figure 2.23c). 
Another mode of failure is that dominated by shear deformations. As the shear 
deformations increase with cycling, the abraded surfaces of the open flexural vertical 
cracks lose their shear capacity due to cyclic sliding. The propagation of the diagonal 
shear cracks leads to the progressive degradation of the compressive strength of the 
concrete core, which is evidenced by a rapid stiffness and strength decay in the force-
deflection curves (see Figure 2.18, the curves referring to specimens 88-34-RV5-30 
and 88-34-RV10-30). Significant shear deformations may also cause lateral buckling 

d reversals and deflections larger 

e yield limit may be observed. The reversion of the load leads to 

of the longitudinal bars as shown in Figure 2.23b). This mode of failure will be 
discussed in more detail in section 2.2.2. 
(Wight and Sozen, 1973) undertook a test series to investigate the mode of failure for 
reinforced concrete columns subjected to several loa
than the yield deflection. Figure 2.24 illustrates the development of the crack pattern 
in a cantilever specimen to a high level of damage.  
It appears that the first cracks occur at the tensile face of the cross-section with 
maximum moment (in this case, the support cross-section). As the deflection and load 
continue to increase, inclined cracks emerge from the vertical cracks and splitting 
cracks form along the tensile reinforcement. In the figures, the development of 
spalling of the cover concrete in the compressed zone with the succession of cycles of 
deflections beyond th
greater damage of the concrete member as new cracks intercept the ones formed in the 
previous half cycle. 
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i)

ii)

iii)

iv)

v)

vi)

Figure 2.24 - Development of a crack pattern (Wight and Sozen, 1973) 

These tests led to the following observations regarding the influence of the transse tests led to the following observations regarding the influence of the transverse 

Therefore it may be concluded that transverse reinforcement can be used to control 
 to undergo 

 steel used in the bottom. Also, in 

e bars were used for the bottom reinforcement: 3 bars for 
specimen F2 and 2 bars for specimen F4. The specimens were submitted to deflection 
amplitudes of 5 times the yield deflection. The results of the test are depicted in 
Figure 2.25. 
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e bars were used for the bottom reinforcement: 3 bars for 
specimen F2 and 2 bars for specimen F4. The specimens were submitted to deflection 
amplitudes of 5 times the yield deflection. The results of the test are depicted in 
Figure 2.25. 
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reinforcement volume ratio, ρw, in the pattern of failure mode in concrete members. 
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 The region of inelastic behaviour (plastic hinge) extends over a smaller area 
 The extension of the spalling of the cover concrete and the splitting in the tensile 

face diminish. 

 The region of inelastic behaviour (plastic hinge) extends over a smaller area 
 The extension of the spalling of the cover concrete and the splitting in the tensile 

face diminish. 

the extent of damage along a reinforced concrete member designedthe extent of damage along a reinforced concrete member designed
inelastic deformations. 

2.2.1.2 Members with asymmetric cross-section and/or reinforcement 

Most of the structural members used to withstand flexure are beams. Usually these 
members are not designed with symmetric cross-section and/or reinforcement. 
Further, the shape of the cross-section is not rectangular, but T or L and the amount of 
top steel used differs from the amount of

inelastic deformations. 

2.2.1.2 Members with asymmetric cross-section and/or reinforcement 

Most of the structural members used to withstand flexure are beams. Usually these 
members are not designed with symmetric cross-section and/or reinforcement. 
Further, the shape of the cross-section is not rectangular, but T or L and the amount of 
top steel used differs from the amount of
“symmetric” beams monolithically cast with a slab, the increase of the effective upper 
flange width leads to different flexural capacity for both directions. Therefore 
asymmetric behaviour should be considered.  
(Nmai and Darwin, 1986) carried out an experimental work on lightly reinforced 
concrete beams under cyclic loading, in which asymmetric specimens were tested. 
The members had rectangular cross-section (190 x 457 mm2). In the specimens F2 
and F4, the top reinforcement consisted of 6 and 4 bars respectively, the bars being 13 
mm in diameter. The sam

“symmetric” beams monolithically cast with a slab, the increase of the effective upper 
flange width leads to different flexural capacity for both directions. Therefore 
asymmetric behaviour should be considered.  
(Nmai and Darwin, 1986) carried out an experimental work on lightly reinforced 
concrete beams under cyclic loading, in which asymmetric specimens were tested. 
The members had rectangular cross-section (190 x 457 mm2). In the specimens F2 
and F4, the top reinforcement consisted of 6 and 4 bars respectively, the bars being 13 
mm in diameter. The sam
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Figure 2.25 - Load-deflection curve for specimens F2 and F4 (1kip=4.45kN; 
1in=2.54cm)  

The main difference in the cyclic flexural behaviour between members with 
symmetric cross-section and reinforcement, and those with asymmetric cross-section 
and/or reinforcement is that the latter exhibit asymmetric hysteresis loops (CEB, 
1994) – Figure 2.25. This difference is due to the fact that the stiffness and strength of 
the member is not identical for both loading directions. For the present case the 
amount of bottom reinforcement is lower than for the top reinforcement. Therefore, 
the strength and stiffness of both sections in the positive direction is lower than in the 
negative one. 
It may be seen in Figure 2.25 that the specimens were first loaded in their “strong” 
direction. The abrupt decay in stiffness after the “elastic” branch indicates yielding of 
the top reinforcement due to tension. When reloading in the “weak” direction takes 
place, the cracks in the face previously in tension are open as for symmetric cross-
section (see previous section, explanation given regarding branch g) in Figure 2.20). 
The difference now is that those cracks remain open throughout the entire reloading in 
the “weak” direction. This is because tensile yielding of the bottom reinforcement is 
not sufficient to cause yielding of the top reinforcement due to compression. So as 
long as yielding in the strong direction has taken place, reloading in the “weak” 
direction is characterised by full-depth open cracks. Therefore, the moment is resisted 
by the steel couple alone and the gradual stiffening caused by closing of the cracks 
does not take place. Thus, the reloading branch in the “weak” direction is of very low 
stiffness and without pinching. Pinching does take place upon reloading on the 
“strong” direction and is rather pronounced. This is due to the fact that only on the 
reloading branch in the “strong” direction does the concrete start to become effective 
again and the top reinforcement is still elastic, as it did not yield in compression in the 
previous half-cycle. 
For this kind of member, failure usually develops in two ways: failure with the 
“strong” side in tension or failure with the “weak” side in tension. The former has a 
gradual development characterised by progressive disintegration and crushing of the 
concrete in the “weak” side. This failure mode is the most desirable one as it may 
reach high levels of ductility. The latter mode of failure is rather brittle as it involves 
the fracturing in tension of the steel bars in the “weak side” and therefore a sudden 
drop in strength. Often this happens after the steel bars have buckled due to 
compression in the previous cycles. 
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2.2.1.3 The effect of axial forces 

In the following, the influence of axial loading on the cyclic behaviour of flexure-
dominated reinforced concrete members is discussed. Most of the structural members 
in which the effect of axial loading in seismic performance has to be considered are 
columns. The way in which the degradation of the response of these members due to 
reversed cyclic loading develops is similar to that described in section 2.2.1. 
However, most of the time these elements are subjected to a biaxial state of flexure. 
Nevertheless, it is appropriate to discuss the uniaxial flexure case as this allows for a 
better understanding of the influence of the axial loading by comparison to that 
discussed in the previous section. Also, the way in which the axial forces influence 
the cyclic responses of members is similar both in uniaxial and biaxial flexure. 
 (Staaciouglu and Ozcebe, 1989) carried out test series with the intention of 
investigating the response of reinforced concrete columns to seismic loading. The 
experimental program is quite similar to that referred to in section 2.1.1.2. In fact, the 
specimens tested had the same geometry and were reinforced both longitudinally and 
transversely as in the 1987 tests (Figure 2.5).  
The differences were in the loading program: Three different groups of specimens 
were tested, each one labelled according to the deformation path imposed. Specimens 
U were loaded uniaxially in the direction parallel to the principal axis of the column 
with the same loading history as shown in Figure 2.6; Specimens D were loaded as 
specimens U, but the load was applied along the diagonal of the section; Specimen B1 
was subjected to a bi-directional deformation path as shown in Figure 2.26. This 
loading history was intended to simulate a major seismic action in one direction while 
a minor action was occurring in the orthogonal direction. The specimen was designed 
to have the same capacity in both directions. The properties of the different columns 
are shown in Table 2.1. 

Members with constant compressive axial force 

Depending on the intensity, compressive axial loading may have favourable as well as  

Figure 2.26 - Loading history for specimens B1 (Δy = yield displacement of the 
specimen) (Staaciouglu and Ozcebe, 1989) 
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Longitudinal 
Steel Transverse Steel 

Test 
Specimen 

Concrete 
Strength 
(MPa) fy,l 

(MPa) 
 

fy,t 
(MPa) 

ρw 
(o/oo)

s 
(mm) Configuration 

Axial 
Load 
(kN) 

U1 
U2 
U4 
U6 
D1 
D2 
D4 
B1 

43.6 
30.2 
32.0 
37.3 
40.3 
30.2 
43.6 
32.0 

430 
453 
438 
437 
453 
453 
430 
438 

470 
470 
470 
425 
470 
470 
470 
470 

0.85 
0.85 
2.54 
1.95 
0.85 
0.85 
2.54 
2.54 

150 
150 
50 
65 
150 
150 
50 
50 

Type A 
Type A 
Type A 
Type B 
Type A 
Type A 
Type A 
Type A 

0 
600 
600 
600 
0 

600 
600 
600 

Table 2.3 – Properties of the columns (Ozcebe and Staaciouglu, 1989) 

unfavourable effects on the strength and stiffness degradation and ductility throughout 
the seismic response of a structural member. 
The presence of compressive axial stresses contributes to the closing of the flexural 
cracks. This is reflected in the final phase of unloading from a post-yield peak 
displacement and the first stage of reloading in the opposite direction. The additional 
compression state of stress due to axial loading accelerates the yielding in 
compression of the steel bars that have previously yielded on tension and are now 
going to compression. As a result, nowhere during the loading cycle are the cracks 
open through the full depth of the cross-section, and therefore the steel couple never 
resists the moment independently. This means the “suppression” of Branch g) (see 
Figure 2.20) in the first part of the reloading branch in the opposite direction. Thus the 
pinching effect, typical of the cyclic response of the structural members dominated by 
flexure, is not observed in a pronounced way. This means an improvement with 
regard to the energy dissipation capacity.  
Also the stiffness of the virgin loading, unloading and reloading branches increases. 
This is mainly due to the increase in the depth of the compressed concrete and hence 
an increase in the contribution of the concrete for the overall stiffness. 
In the same way as for the flexural cracks, compressive stresses contribute to the 
closing of the cracks perpendicular to the axis of the member, diminishing the risk of 
premature failure due to sliding shear. 
In contrast with these favourable effects, it should be noted that after a certain level of 
compression, the consequences are severe regarding ductility reduction and 
acceleration of failure. 

 The presence of compressive stresses results in a larger compression zone in the 
cross-section and thus in higher demands regarding concrete strains. Thus, 
crushing and degradation of the concrete core combined with spalling of the 
concrete cover take place at lower levels of displacement with subsequent drops in 
strength. This can be easily observed when comparing the results from specimens 
U1 with U2 and D1 with D2 in Figure 2.27. Members with high concrete covers 
due to environmental conditions are particularly exposed to this effect. As a 
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consequence, the longitudinal reinforcem
risk of buckling due to comp
effect is actually the cause of the mo
subjected to high levels of axial loa
code provisions clearly emphasise the 
reinforcement as explained in connection
Moreover, proper transverse reinforcem
spacing of the stirrups) improves confinem
reduces the strength and stiffness de
improvement on the cyclic response due to confinem
comparing the hysteretic loops of specim
Type B, with the hysteretic loops of sp
of Type A. 

 Another negative effect of
second-order moments (P-Δ effects
the level of axial loading rises, the more
the larger the strength requirements. Th
ductility demand in members subjected to hi

ent is exposed faster and therefore the 
ression is higher and may develop sooner. This last 

st common type of failure in columns 
d. This is the reason why most of the modern 

importance of adequate transverse 
 with Figure 2.23 in section 2.2.1. 

ent (with adequate detailing and close 
ent of the core concrete and therefore 

gradation as explained in section 2.1. The 
ent can easily be observed by 

en U6, with transverse reinforcement of 
ecimen U2, with transverse reinforcement 

 axial loading is the development of the well known 
 as it is generally known). It is obvious that as 

 important are these effects and therefore 
e designer should avoid high levels of 

gh axial loading in order to minimise 
the risk of failure due to large second order moments. Underestimating the P-Δ 
effects is a frequent cause of failure as it leads to structural collapse due to lateral 

Figure 2.27 - Test results for specimens U1, U2, D1 and D2 (Staaciouglu and 
Ozcebe, 1989). The hysteretic relationships are in terms of lateral load – top 

deflection in the loading direction 

D2

U1 D1 

U2

 48



Cyclic behaviour of R/C elements 

Figure 2.28 - Test results for specimen U6 (Staaciouglu and Ozcebe, 1989) 

instability, particularly in buildings in which sideway mechanisms are supposed to 
form. 

Members with varying axial force 

It is well know that overturning moments are present when a structure such as a two-
dimensional frame is subjected to cyclic lateral loading. These give rise to axial forces 
in columns, compressive on one side of the frame and tensile on the opposite side. 

the seismic motion.  
(Abrams, 1987) conducted a test series on the influence of axial force variations on 
flexural behaviour of reinforced concrete columns. In the following, the results in 
terms of mome

The s in 
the ese 
forc s or 
even induce tensile forces he vertical component of 

nt-rotation relationship for two of the specimens tested are shown. 

 2.20) in the course of cyclic loading. Therefore the pinching of the loops is 
more pronounced, meaning loss of hysteretic energy dissipation capacity (See Figure 

crete in the cracked cross-section is less effective 

se forces increase from the interior to the exterior of the frame. For the column
interior of the frame, this might not be critical, but for the external columns th
es cannot be neglected as they may drastically reduce the compressive force

 when combined with the effect of t

Both specimens had the same geometry and reinforcement arrangements. Specimen 
C1 is a control specimen in which the compressive axial load was kept constant at 310 
kN (normalized axial load, ν=-0.1), whereas for specimen C4 the load varied linearly 
with the bending moment between 55 (ν = -0.02) to 588 kN (ν=-0.25). 
Low compressive forces and/or tensile forces have a rather unfavourable effect on the 
cyclic behaviour of structural members, regarding the energy dissipation capacity and 
in the stiffness development. This is due to the fact that these conditions impose 
restraints on the closure of cracks due to flexure and shear (extension of branch g); 
see Figure

2.29, specimen C4). Also, the con
for a longer period, which directly affects the stiffness of the member. It should also 
be noted that further in the course of cyclic loading, shear deformations become more 
important, as explained in section 2.2.1.1 – Figure 2.22. Low compression forces, or 
tensile forces, reduce the strength significantly along the shear cracks and therefore 
increase the risk of failure due to sliding shear.  
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Figure 2.29 - Moment-rotation relationships for specimens C1 and C4 (Abrams, 
1987) 

Moreover, from the axial load – bending moment interaction diagrams, it may be 
concluded that a significant loss of flexural strength takes place for low compression 
forces and/or tensile forces regarding that reached for moderate levels of compression 
forces. This explains the reduction in the ordinates of the envelope curve of the upper 

cussing the 

del was based 

sequences. Later, a simpler version, the Modified Takeda model, was proposed by 
(Otani, 1974), with “only” 11 rules, since the influence of uncracked stiffness was 
neglected. Thus, the skeleton curve became bilinear, cf. Figure 2.30. Currently, a wide 
range of hysteresis relationships based on the Takeda model are available. 
Takeda relationships are characterised by softened unloading stiffness branches, and 
therefore may effectively account for accumulation of damage in cyclic loading. 
Basically there are 3 factors affecting the shape of the hysteresis loops:  

 Post yield stiffness, r 
 Unloading stiffness, α 
 Reloading stiffness, β 

half–cycle of the moment-rotation relationship for specimen C4. 
The reverse of these tendencies was observed in the tests of (Abrams, 1987), when the 
axial compression was increasing. As apparent from Figure 2.27, the branches of the 
lower half-cycles are more inclined, and achieve greater strength values (Specimens 
U2 and D2). The reasons for this behaviour were given when dis

itially proposed in 1970 (Takeda et. al, 1970), the mo
on a trilinear skeleton curve and accounted for 16 rules covering all possible load 

favourable effects of moderate axial compression in the previous paragraph. This 
explains the asymmetric pattern of the moment-rotation curve for specimen C4. It was 
concluded that the shape of the hysteretic loop is influenced by the range of axial 
force variation and also by the rate of change of axial force with lateral deflection 
(Abrams, 1987). 

2.2.1.4 Hysteretic relationships for plastic hinges with flexural dominated behaviour 

To date, the most widely used hysteresis law for flexural behaviour is the so-called 
Takeda Model. In
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Figure 2.30 -Modified Takeda model (Priestley et. al, 1992) 

 
Evidently, significant experience is required to calibrate the curve according to the 
expected hysteretic behaviour of the structural element, which as already mentioned 
in section 1.2.2 limits the use of the Takeda model as a routine design tool. 
Furthermore, the model does not take into account the effect of varying axial load or 
of asymmetric cross-sections (in terms of flexural capacity). Many improvements 
have been proposed with regard to these limitations, but the degree of sophistication 
at the calculation level brings higher costs in terms of computational effort required. 
A much simpler hysteresis relationship has been recently proposed as an alternative to 
the Takeda model. Asymmetric strength capacities and varying axial load are 
effectively taken into account in this model. This is the so-called Pivot Hysteresis 
model proposed by (Dowel et al. 1998), and the quality of results provided makes it 

les are necessary to capture the hysteretic behaviour of the 
 dominated behaviour. The model is based on two main 
ental results, see Figure 2.31: 

1. Unloading stiffness decreases as deformation ductility increases 
2. Load reversal after a non-linear excursion in one direction crosses the initial 

loading branch before reaching the idealised strength. 

For each loading direction two factors have to be specified to calibrate the pivot 
hysteresis model: 

 α, by which the idealised yield strength in one direction is multiplied to define the 
position of the corresponding primary pivot point 

 β, by which the idealised yield strength in one direction is multiplied to define the 
position of the pinching pivot point 

increasingly accepted. 
In this model only three ru
plastic hinge with flexure
observations from experim
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Figure 2.31 - Pivot hysteresis model (Dowel et. al 1998) 

2.2.1.5 Members in Biaxial Flexure 

During a seismic action, the direction of the loading is permanently changing. Thus, 
 state of stress 

ic response of a member 

tra parameter corresponding to the manner in which the histories of 

 biaxial flexure is far behind the 

strength degradation in one direction after an 
inelastic action in the orthogonal direction. (Otani, S. Cheung, V.W.T. and Lai, S.S., 
1980) carried out a test series intending to investigate the effect of biaxial lateral load 
reversals on the cyclic response of reinforced concrete columns. They tested several 
specimens representing the part of the first-storey’s columns between the foundation 

very seldom, if ever, is a structural member submitted to a
corresponding to bending in one of the principal directions. This applies especially to 
columns. This indicates the importance of the inelast
submitted to biaxial flexure. However, the interest in this subject is recent and the 
available experimental results are rather limited. This is due to complications arising 
from adding an ex
bending moments in two directions are combined. Thus current knowledge of the 
inelastic behaviour of reinforced concrete members in
understanding of the behaviour under uniaxial cyclic flexure. 
The primary effect of biaxial flexure is 
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N-S E-W

Figure 2.32 - Tests results of specimens B1 (Saatcioglu and Ozcebe, 1989) 

and the inflection point in the m
two uniaxial cycles slightly pa
Afterwards the same specime
When cycling was repeated in the form
(μy = 2.0), a very noticeable degradation of 
was observed.  
(Staaciouglu and Ozceb
that deformations prior to yielding do 
orthogonal direction, inelastic cycles in 

oment diag
st yield (disp
n was loaded

er dir

e, 1989) also reach

strength in the other direction. In Figure 2.32, a significant drop in capacity in 
direction E-W may be observed compared with that for direction N-S, despite the 
member B1 being designed to have the same capacity in both directions. The authors 
estimated a drop of strength of approximately 20- 30% in column B1.  
The authors a n path in its 
diagonal direction significantly reduces the capacity in each of the directions of the 
principal axes, even if the deformation path is meant to produce the same bending and 

load – top deflection hysteretic relationships in 

e stiffness decay was 

ram. Specimen SP4 was first submitted to 
lacement ductility ratio, μy, of about 2.0). 
 with eight uniaxial cycles at μy = 4.5. 
ection at the same ductility ratio as before 
strength in comparison to the last cycle 

ed the same conclusion: Despite the fact 
not noticeably affect the response in the 

one direction drastically reduce column 

lso showed that a member submitted to a deformatio

shear in the two principal directions.  
However, when comparing the lateral 
the direction of loading, it is observed that the overall hysteretic characteristics are 
similar in terms of strength, stiffness and ductility (compare in Figure 2.27 the shape 
of the hysteretic curves for specimens U and specimens D). This feature was also 
observed by (Umehara and Jirsa, 1982). This led to the conclusion that the maximum 
capacities of the columns with diagonal unidirectional loading could be estimated by 
an interaction circle in case of a fully symmetric cross-section or by an ellipse, if the 
loading capacities are different in each principal direction. This inelastic diagram 
connects the maximum capacities of the columns under unidirectional loading along 
the principal axes. 
In all experimental investigations mentioned above, sever
observed after post-yield deformations in one of the two principal directions. This 
feature is well demonstrated in the hysteretic curve of specimen B1 tested by 
Saatcioglu and Ozcebe (Figure 2.32). A speedy decay in stiffness leads to the 
unfavourable effect of larger lateral displacements, hence to a more pronounced 
second order effect (P-Δ effect). 
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Figure 2.33 - Comparison of the responses of specimens U4 and D4 in the N-S 
direction (Staaciouglu and Ozcebe, 1989) 

The high rate of damage in biaxial flexure inducing significant dr
stiffness after each cycle may be explained referring to the crack
well known that, in the course of seismi
permanently changing. Consequently, for a significant pe
cross-section will be in tension and others will be in comp
degradation of stiffness and strength of the member due to the 
the steel and due to crushing of the concrete
cover in the compression face. Also, shear cracks will d

ops in strength and 
ing mechanism. It is 

c action, the direction of loading is 
riod of time, parts of the 

ression. This accelerates the 
Bauschinger effect in 

 and consequent spalling of the concrete 
evelop in both directions, 

inated behaviour 

quakes, which 

he reference value for slenderness that separates 

increasing the rate at which they intercept, causing a quicker degradation of the 
concrete core. Thus, the rules for proper reinforcement detailing for ductile behaviour 
described in the previous sections must be strictly observed in the case of members 
subjected to biaxial flexure. 

2.2.2 Members with shear-dom
 
The discussion so far has referred to flexure-dominated members, i.e. to slender 
members. If the slenderness of the element drops to a certain level, the ultimate load 
is governed by shear forces. It is known that this type of behaviour is characterised by 
very low ductility and, in general, by poor performance under cyclic loading. This has 
been confirmed in the field after the spectacular shear failures of short columns 
observed after the 1968 Tokachi-Oki and the 1972 Managua earth
showed rather brittle behaviour of these type of members.  
The slenderness parameter l/h, in which l is the length of the member and h its depth, 
is often used to trace the border between these two types of structural members 
regarding their structural behaviour. T
the two types of behaviour is approximately 4. In frame structures, low slenderness 
elements are either deep beams (high h) or short columns (low l). Modern seismic 
design philosophy requires a limitation of the strength of beams (weak beam / strong 
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Figure 2.34 - Monotonic force-deflection curves at different shear span ratios 
(Garstka, B, W.B. Krätzig and F. Stangeberg,1993) 

column criterion, see section 2.4.2). Therefore deep beams are very uncommon. On 
the other hand, short columns appear in frames frequently. This is done intentionally 
in the design of the frame, or unintentionally as is the case of slender columns, the 
effective lengths of which are reduced by infill masonry walls up to certain height in 
the frame. The latter case has dangerous consequences since the behaviour of shear–

the occurrence of yielding of the longitudinal bars and 
gradual reduction in the depth of the compression zone, still takes place at the end 
section, but not normal to it, as in slender members, but as a sliding failure along the 
compressed diagonal. As the shear span ratio drops well below the limiting value of 

dominated members is substantially different from those described in the previous 
section, as will be shown below. 
Authors often designate members with shear-dominated behaviour as members of low 
shear span ratio. The shear span ratio α, is defined as α=M/Vh.  
(Garstka et al., 1993) showed that as the shear span ratio decreases below the critical 
value of approximately 2.0, the monotonic load-deformation curve gradually shifts 
from the ductile mode of the flexure-dominated behaviour to the brittle mode of the 
shear-dominated behaviour. In fact it may be seen in Figure 2.34 that for members 
with low shear span ratio (in the figure, a stands for the length of the member) the 
load-deformation curve exhibits a long, almost linear initial branch that softens 
smoothly to a well-defined ultimate peak strength, which is followed by a rather 
steeply descending branch. However, the differences between those three specimens 
were only seen in the shape of the deformation response, as all three specimens failed 
at the same value of the end moment. It is therefore evident that the lower the shear 
span ratio of the member, the closer the shape of the monotonic load-deformation 
curve resembles that of concrete in compression. This relates to the effect of the 
compressed diagonal strut, which carries the shear force. The damage imposed on the 
member, i.e. crushing after 
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2.0, the behaviour is more and more controlled by the concrete along the compressed 

1984) undertook a test series with the 
ns subjected to different cyclic 

ens was not changed (see Figure 

In Figure 2.36, the test result for specimen O-U is shown in terms of force-deflection 
relationship of a column without axial load submitted to unidirectional loading. The 
load history consisted of three cycles in which the peak displacement was Δy followed 
by another three cycles in which the peak displacement was 2Δy and so on until the 
last three cycles had a peak displacement of 4Δy. 
It is evident that the hysteresis loops are narrower than in the flexure-dominated 
slender members and attain a pronounced inverted S-shape, i.e. pronounced pinching. 
This indicates a very poor hysteretic energy dissipation capacity. 
The shape of the force-deflection relationships for members where behaviour is shear-
dominated, relates to the role of the stirrups (CEB, 1994). Until the first inclined 
cracks form, the stirrups do not carry any shear. Therefore unloading and reloading 
prior to the opening of the cracks is almost elastic. After the yield deflection, the shear 
transferred across the crack consists of contributions of the compressed concrete 
above the crack, stirrups crossing the inclined crack and aggregate interlock forces on 
the surface of the crack (Wight and Sozen, 1973). Dowel forces may have a small 
effect.  Also the bond deterioration between stirrups and the surrounding concrete 
contributes to larger tensile forces on the stirrups. After yielding, tensile strains tend 
to accumulate with cycling, which means that the inclined cracks remain open for a 
longer period. This increase in strain means that the inclined cracks open wider in 

diagonal (CEB, 1994).   
(K. Maruyama, H. Ramirez and J.O. Jirsa 
purpose of investigating the behaviour of short-colum
lateral loading histories. The geometry of the specim
2.35). 

Figure 2.35 - Geometry of the specimens tested (K. Maruyama, H. Ramirez and J.O. 
Jirsa,1984) 

 56



Cyclic behaviour of R/C elements 

each successive cycle, and as the width of the inclined cracks
effect becomes more and more pronounced, 
shear strength and stiffness, and reduction in the energy diss
member. 

 increases, the pinching 
leading to a corresponding decrease in 

ipation capacity of the 

The fact that the loops are narrow relates to the fact that the behaviour is controlled by 
the concrete along the compressed diagonal, which leads to a rather limited capacity 
of deformation compared to flexure-dominated members in which the longitudinal 
reinforcement has a larger contribution to the overall deformation.  
The work carried out by Woodward and Jirsa, 1984, at the University of Texas, is 
useful for understanding the effect of both transverse and longitudinal reinforcement 
on the behaviour of shear-dominated members. These authors concluded that 
increasing the ratio of transverse reinforcement increases the energy dissipation 
capacity and the deformation capacity at ultimate strength as for slender members. 
However, the parameter ultimate strength is left unaffected, or improves slightly. This 
indicates that the transverse reinforcement has a rather indirect role on the cyclic 
behaviour of short elements. Most of the ultimate strength is developed before the 
formation of the inclined cracks. After cracking, the shear resistance of the member is 
strongly related to the effectiveness of the aggregate interlock along the inclined 
cracks (Figure 2.37). The primary function of the stirrups is to control the widths of 
the inclined cracks to maintain the effectiveness of the aggregate interlock 
(Woodward and Jirsa, 1984). Thus, the monotonic force-deformation curve is an 
upper-bound envelope of the cyclic response. 

Figure 2.36 - Force-deflection response in test O-U without axial load (K. 
Maruyama, H. Ramirez and J.O. Jirsa, 1984) 
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Figure 2.37 - The mechanism of shear resistance (Park and Paulay, 1975) 

It was also concluded in this experimental investigation that, for the sam
in slender members, an increase of the longitudinal reinforcem

e reasons as 
ent leads to larger 

stiffness and strength degradation and also reduces the energy dissipation capacity.  
An important observation from the experimental investigation carried out by (K. 
Maruyama, H. Ramirez and J.O. Jirsa, 1984) was the spreading of damage throughout 
the whole length of the member, rather than it being concentrated in the regions with 
h  
s  
the deflection magnitude, cracks ex ew cracks appeared. At failure, the 
entire column was covered with cracks and several large cracks dominated the pattern 

ch takes place in a rather brittle and 

 arrangements of 
reinforcement. The greater effectiveness of the inclined shear reinforcement compared 
with the vertical one is well known, since the former is in the principal direction of 
the diagonal stress field of the shear-dominated member. (Park and Paulay, 1975) 
have proposed the use of cross-inclined diagonal bars (Figure 2.38b)) and (Tegos & 
Penelis, 1988) suggested the use of multiple cross-inclined bars, forming a rhombic 
truss (Figure 2.38c)). In Figure 2.38, the arrangements of reinforcement and the 
corresponding crack pattern at failure are depicted. Test results have indicated an 
improvement on the shear capacity, as well as in stiffness and energy dissipation 
(Penelis and Kappos, 1997). It appears that even better behaviour would be achieved 
by means of closely spaced diagonal reinforcement. 

igh bending moments, as in slender members. With no axial load, severe diagonal
hear cracks formed at both ends of the column. With added cycles or an increase in

tended and n

(K. Maruyama, H. Ramirez and J.O. Jirsa, 1984). 
The above-mentioned observation leads to the conclusion that failure may happen in 
any region of a low shear span ratio member. The failure of this type of element takes 
place firstly due to splitting of the concrete along the compressed diagonals and 
crushing of the outermost concrete fibres. Interception of the cracks in the course of 
cycling contributes to the stiffness and strength deterioration. Typically, failure is 
associated with the collapse of the member due to the excess of the load-carrying 
capacity of one of the compressed diagonals, whi
explosive way. 
Research has been carried out in recent years with the intention of improving seismic 
performance of low span ratio members by finding new
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a) 

Figure 2.38 - a) Conventional reinforcement (closed spaced ties); b) Bidiagonal 
reinforcement and c) Rhombic reinforcement (Penelis and Kappos, 1997) 

The effect of axial forces 

The tests carried out by (K. Maruyama, H. Ramirez and J.O. Jirsa, 1984) also clarify 
the effect of axial force. The specimens (Figure 2.39) were submitted to the same 
loading history as the specimen in Figure 2.36, but with different levels of axial forces 
applied. 

ct of axial forces 

The tests carried out by (K. Maruyama, H. Ramirez and J.O. Jirsa, 1984) also clarify 
the effect of axial force. The specimens (Figure 2.39) were submitted to the same 
loading history as the specimen in Figure 2.36, but with different levels of axial forces 
applied. 
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a) 

b) 

Figure 2.39 - Effect of axial load on cyclic response a) ν = -0.19 (compression) and 
b) ν = 0.12 (tension) (K. Maruyama, H. Ramirez and J.O. Jirsa, 1984) 

 
It may be concluded by comparing Figure 2.36 with Figure 2.39a) that the presence of 
low-to-medium compressive forces increase the ultimate strength of a low shear span 

rther accelerates splitting along the diagonal cracks and spalling of 

cle. However less degradation of 

ratio member. This is due to the increase in the depth of the compression zone, and so 
in this zone, the shear may be transferred by inclined compression. However, this 
seems to be the only favourable effect since the rate of stiffness and shear strength 
decay is much larger in the post-yield deflections for the compressed member. 
Furthermore the capacity of energy dissipation is severely affected, as seen in Figure 
2.39, noting that the axial compressed specimen has a larger pinching effect. An 
explanation for this lies in the fact that added compression on the compressed 
diagonal strut fu
the concrete cover. Moreover the stirrups are already in tension due to lateral 
expansion from the compressive axial load. Thus, the stirrups are not as effective in 
providing confinement to the core at high levels of deformation and maintaining the 
shear capacity as in members without axial load. As a consequence, the rate of 
degradation of the inner structure of the member is higher for compressed members. 
Axial tension has the reverse effects of axial compression for low shear span ratio 
members under cyclic loading. In fact, it may be concluded by comparing Figure 2.36 
and Figure 2.39 b) that the shear force required to attain a given deformation 
decreases for members in tension. This may be explained by the fact that axial tension 
diminishes the contribution of the effect of the aggregate interlock in the shear 
resistance mechanism after the inclined cracks have formed. This also explains the 
reduced stiffness of the response, even for the first cy
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stiffness, strength and energy dissipation capacity are observed. In fact the shape of 
the hysteresis loops resemble those of the flexure-dominated me
because the forces in the stirrups are not mobilised until large lateral deformations 
close the horizontal cracks from tension, and diagonal cracks form. Therefore, the 
shape of the hysteresis loops is more stable, enabling the member to reach higher 
levels of ductility but at lower levels of strength and stiffness. 

Members in biaxial shear 

The tests performed at the University of Texas also included a series of biaxial tests to 
investigate the effect on biaxial shear in low span ratio reinforced concrete members. 
The tests, as reported below, were of two types according to the direction of the load: 

 Alternate cyclic loading in both directions (Test O-B4). This test was conducted to 
examine the influence of previous cyclic loading in an orthogonal direction 

 Cyclic loading in one direction with permanent deflection in the orthogonal 
direction (Tests O-U2 and O-U4) 

Figure 2.41 exhibits the response for the three specimens in terms of the hysteretic 
relationships. 
As previously mentioned, the geometry of the specimens tested was kept unchanged. 
However, according to the loading histories, the cyclic response was different. This 
fact is evident when comparing the responses referring to the N-S direction for the 
three specimens and the response curve of the control specimen O-U (Figure 2.18). 

 It appears that the N-S strength of specimen O-B4 was only a fraction of the 
strength under unidirectional loading as shown in Figure 2.36. The only difference 
between these two specimens was that Specimen O-B4 had already been 
submitted to cyclic loading in the orthogonal direction with a magnitude of 4Δy, 
since the loading in the N-S direction was developed in the same way as for the 
control specimen O-U. Moreover, the response of Specimen O-B4 in the N-S 
direction showed lower strength than that of specimen O-U4 and with a more 
pronounced pinching effect. This leads to the same conclusion as for the biaxial 
flexure case (section 2.2.1.5): cycling in one direction with a magnitude larger 
than the yield displacement, Δy severely affects the strength and energy dissipation 
capacity in the orthogonal direction. The cycling nature of the load is the 
governing factor for the strength degradation in the orthogonal direction. This may 
be concluded referring to the fact that specimen O-U4, with a superior response, 
had also been exposed to a deflection in the orthogonal direction of 4Δy, but of a 

mbers. This is 

a) 2Δy – O-U2 
b) 4Δy – O-U4       c)

Figure 2.40 - Loading histories a) O-U2 b) O-U4 and c) O-B4 (K. Maruyama, H. 
Ramirez and J.O. Jirsa, 1984) 
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a) b)

d)c) 

Figure 2.41 - Force-deflection response a) O-B4 (E-W direction) b) O-B4 (N-S 
direction) c) O-U2 and d) O-U4 (K. Maruyama, H. Ramirez and J.O. Jirsa, 1984) 

permanent nature instead of cycling. This has to do with the fact that cycling not 
only contributes to increasing the damage already induced in the members on the 
previous cycle by the successive opening of the cracks, but also spreads further 
damage as new cracks form.    

 The strength in the N-S direction for specimen O-U2 is larger than that of 
specimen O-U4. The only difference between these two tests lies in the magnitude 
of the permanent deflection in the E-W direction. The specimen with larger 
permanent deflection exhibited larger strength decay in the N-S direction. Thus, it 
can be concluded that the larger the inelastic action in one direction, the larger the 
strength decay in the orthogonal direction.  

(Umehara and Jirsa, 1984) also concluded that previous loading in perpendicular 
directions does not significantly affect the maximum shear strength of the short low 
shear span ratio members unless the maximum deflection in the previous loading 
exceeds the deflection at which the maximum shear strength of the members under 
unidirectional loading is reached. Moreover, they reached the same conclusion as in 
1982 (already referred to in the discussion regarding the biaxial state of flexure, 
section 2.2.1.5): as in slender members, the maximum capacity for low shear span 
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ratio members with diagonal unidirectional loading may be estimated using an 
interaction circle or ellipse (for asymmetric cross-sections) connecting the maximum 
capacities of the columns under unidirectional loading along the principal axes. 

2.2.3 Joints 
The term joint refers to the regions where structural elements (columns and beams) 

nised that joints might be critical regions in reinforced 

 

pse of 

ularly to poor detailing of columns rather 

ry 

Priestley, 1992) and adopted by the Standards Association of New Zealand is going to 
be presented. 
Considering the overall statics of a given two-dimensional frame as shown in Figure 
2.42, it can be understood that lateral loading imposes such a bending moment field in 
the beams and columns, that moments with the same magnitude but of opposite signs 
will take place on parallel faces of the joint. As a consequence, the joint region is 
subjected to horizontal and vertical shear forces whose magnitude is lc/db times the 
maximum shear force in the columns and l /d  times the maximum shear force in the 
beams, respectively  in Figure 2.42). 

intercept. It is now recog
concrete frames submitted to cyclic loading. However up until the late 1970’s, the 
seismic provisions in all countries were based on the erroneous assumption that 
conditions within the joint, which often have somewhat larger dimensions than the 
members it joins, were not critical (Park and Paulay, 1975). This assumption was
supported by observations in the field after strong earthquakes that showed little 
evidence of the contribution of joint failures for the major damage or colla
structures. (Paulay and Priestley, 1992) explained these observations referring to the 
inferior standard of beam design and partic
than attributing apriori a non-critical performance to the joints. 
While the behaviour of joints for static loading is in a rather advanced state (Nielsen, 
1998), only in recent years has the behaviour of joints submitted to seismic action 
been a subject of interest. There is still much debate regarding joint resistance 
mechanisms under cyclic loading, as present knowledge is far behind that of linear 
members. Moreover, experimental data relating to the cyclic behaviour of reinforced 
concrete joints is very scarce, since detailed experimental investigations are ve
recent. This is reflected in the significant differences both in the design approach and 
reinforcement detailing in modern codes. 
Thus in the following, a qualitative description of the cyclic behaviour of concrete 
will be given with the intention of providing information about its main features and 
the parameters influencing it. Bonacci, Filippou and Pantazopoulou, (CEB, 1994) 
provided a critical compilation of available experimental results and design 
recommendations from several countries with the purpose of establishing the current 
state of the art.  

2.2.3.1 Qualitative description of mechanics 

The behaviour of a joint is characterised by a complex interaction where shear, bond 
and confinement mechanisms take place in a quite limited area. Until now, significant 
differences still exist among seismic codes with regard to the shear transfer 
mechanisms assumed. In the following, the simple approach suggested by (Paulay and 

b c
 (see the meaning of the symbols
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Consider now the equilibrium of the interior of the joint, represented in Figure 2.43 
a). It may be seen that the joint core is submitted to two types of actions that when 
combined are generally known as the joint shear:  

 Concrete flexural compression from beams and columns at the opposite corner of 
the joint (Figure 2.43b)) 

 Shear flow along its perimeter from beam and column bars by means of bond 
forces (Figure 2.43c))  

The resistance mechanism is composed of a compressed diagonal of concrete roughly 
limited by the neutral axes of the end sections of the members (Figure 2.43d)) and of 
diagonal compression field– truss mechanism – consisting of horizontal hoops, 
intermediate column bars (Figure 2.43f)) and inclined compressed concrete between 
shear cracks (Figure 2.43e)).  
The main component of the resistance mechanism is the compressed diagonal strut, 
which carries a substantial portion of the joint shear. The rest of the joint shear, 
transmitted to joint core through the bond between the longitudinal reinforcement of 
beams and columns and the surrounding concrete, is absorbed by the truss 
mechanism. Depending on the magnitude of the bond forces, diagonal tension 
cracking takes place. The main crack is developed along the compresses strut but 
other cracks parallel to it also form. In Figure 2.44 a crack pattern typical of joint 
shear is clearly seen. 
To prevent shear failure both horizontal and vertical reinforcement are required. Such 
reinforcement enables a diagonal compression field to be mobilised as shown in 
Figure 2.43e). This leads to the conclusion that the amount of reinforcement may be 
significantly greater than would normally be provided by the extension of the 
reinforcement of beams and columns into the joint core. This is particularly true in the 
case of joints whose columns are low axially loaded. 
 

Figure 2.42 - Statics of laterally loaded frame; Detail: Moments and shear gradient 
through an interior joint  

lb
V

M

dc

db

lc
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2.2.3.2 Influence of cyclic loading 

As per the previous section, the joint resistance mechanism depends on bond forces 
along its perimeter so that a truss mechanism can be mobilised, and on a compressed 
diagonal strut between corners. These are rather brittle modes of behaviour, which 
explains the very limited capacity that joints have in dissipating energy and 
maintaining their strength.   
The contribution of the diagonal compressed strut is significant during the first cycle 
in the inelastic range. However it deteriorates with increases in the inelastic loading 
cycles. This is due to the fact that cycling at high levels of inelastic deformation 

Figure 2.43 - Actions on a interior joint and the corresponding resistance mechanism 
according to (Paulay and Priestley, 1992) 

Figure 2.44 - Crack pattern of a joint (Paulay and Priestley, 1992) 

f )

b)

a)

c)

e)d)
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causes permanent elongation on the beam bars and leads to full depth open cracks at 
the beam-joint interface. This was previously discussed in section 2.2.1. Under these 
conditions flexural compression from the beams become negligible. The compressive 

rces are then transmitted to the longitudinal bars of the beams, which significantly 
creases the bond stresses along the hori tal perimeters of the joint core. The 

foregoing leads to a drastic reduction in the contribution of the concrete strut to the 
transfer of horizontal joint shear and a consequent increase in the contribution of the 
truss mechanism. The mobilisation of the truss mechanism depends intimately on the 
effectiveness of bond between the steel bars and the surrounding concrete. As 
discussed in section 2.1.3, bond has a very poor response in terms of energy 
dissipation, stiffness and strength degradation under inelastic cycling. Thus, it can be 
concluded that the development of plastic hinges in the end sections of the beams 
seriously affects the ability of the joint to resist the induced shear forces in a stable 
manner. Again, joints whose columns are low axially loaded are the most sensitive to 

pression helps to intain the bond mechanism.  
phasise the need to take special precautions to prevent premature 

bond deterioration in joints under seismic loads. Adequate confinement of the joint 
core significantly improves the bond performance under seismic conditions (Paulay 
and Priestley, 1992). Confinement may be provided by axial compression of the 
column and/or by means of reinforcement using the intermediate column bars, as 
these members are supposed to remain in the elastic domain. Moreover, confinement 
improves the performance of the compressed diagonal strut.   
Yielding of the longitudinal bars of the beam leads to another form of degradation of 
the shear resistance of the joint: As the horizontal bars yield on tension, the shear 
cracks due to diagonal tension tend to remain open, locked on the extended steel bars. 
This contributes to a rapid degradation of the shear resistance in the truss mechanism 
with cycling due to the successive drop on the friction forces along the shear cracks. 
Once again this effect may be diminished by taking advantage of the intermediate 
column bars which are intended to remain in the elastic range and therefore can 
contribute to the closing of the shear cracks throughout the whole seismic action. 
The reversals in the loading also contribute to the spreading of the cracks in 
orthogonal directions. As seen in the case of members, this leads to successive 
degradation of the strength of the compressive diagonal struts, since the closing of the 
cracks is not completely effective given that the surfaces may not come into full 
contact. The damage induced by cross-inclined cracking also adversely affects the 
bond conditions of the longitudinal bars intercepting the concrete core. To control this 
effect, confinement plays an important role as well as keeping the inner structure of 
the concrete member preserved, controlling sliding along the cracks. 
Failure of the joint is due to the inability of any of the “sub-mechanisms” depicted in 
Figure 2.43 d), e) and f) to successfully carry the load they are meant to sustain. It 
follows then that three different sources for joint failure can be pointed out: 

 Failure of the compressed diagonal strut 
 Failure due to loss of bond resistance along the joint boundary  

impact of increasing the joint dimensions. As previously explained, the current design 

fo
in zon

bond deterioration since com
This serves to em

 ma

 Failure due to an inability to develop a truss mechanism that can carry the 
diagonal tension by the premature yielding of the longitudinal bars intercepting 
the core (Figure 2.45). 

A method by which to control the first and the second mode of failure is the obvious 
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Figure 2.45 - Shear failure due to premature yielding of the joint reinforcement 
(Penelis and Kappos, 1997)  

philosophy leads to the weak beam/strong column concept. Therefore it is reasonable 
to increase the joint dimensions by means of greater depth of columns. This has the 
dual effect of leading to less shear stresses in the joint core and also lowering bond 
demand along the beam bars passing through the joint. 
Additionally to adequate confinement, good anchorage of the longitudinal beam bars 
is a decisive factor in the maintenance of the bond strength throughout the seismic 
loading. This is achieved by an appropriate anchorage length and configuration, and 
by limiting the diameter of the bar. 

2.3 Available rotation capacity 
Rotation capacity refers to the maximum value of the relative plastic rotation in a 
hinge. From the discussion in section 1.1 on modern displacement-based seismic 
design philosophy, it is understood that this is a crucial parameter in evaluating 
structural seismic performance. Unfortunately, it is difficult to calculate the rotation 
capacity accurately. Therefore, one must rely on tests and simple estimates.  
Here we present a simple conservative method to evaluate the available rotation 
capacity of plastic hinges dominated by flexural behaviour, which, as may be 
understood from previous discussion, should be preferred over the failure modes 
relying on shear and bond deformations. Basically, the ultimate rotation capacity, θu, 
is derived from the integration of the curvature along the plastic hinge length, Δl. 
Consider the bilinear idealisation of the stress-strain curve for reinforcement steel 
shown in Figure 2.46a). In this case, flexural yielding starts when the stress at the 
tensile reinforcement, σ, reaches fy,min and flexural failure takes place for σ=fy,max at 

ent M and positive shear force V 
an ultimate strain εsu.  
Consider the length of a beam with positive mom
(the sign conventions are shown in Figure 2.46b). According to the lower bound 
solution, the diagonal compression stress field in the concrete implies that the tensile 
reinforcement has to carry the force (Nielsen, 1998): 

                                               M 1T V cot
d 2

= + α                                          (2.3) 
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Here, d is the intern
a

    

al moment arm and α is the angle between the beam axis (the x-

                 

xis) and the diagonal compression stresses in the concrete. Hence: 

dT V 1 pcot
dx d 2

= − α                                              (2.4) 

p being the load per unit length of the beam. 
Consider a beam loaded by a concentrated force at a plastic hinge, i.e. that p=0 and 
V=Constant=V1. The tensile reinforcement has a constant area As along the plastic 
hinge length. If the plastic zone on the left-hand side of the hinge has the length Δl1, 
we have the following change of force in the tensile reinforcement along Δl1: 

s y,max y,minT A (f f )Δ = ⋅ −                                            (2.5) 

Applying (2.4) we find that Δl1 should be: 

s y,max yd A (f f
l ,min )
1

1V
⋅ ⋅ −

Δ =                                          (2.6) 

in the hinge we have A =M /(d·f ). Note that A  must If M  is the plastic moment P s P y,min s
be determined for the tensile force T at the hinge according to (2.3). Then (2.6) 
renders: 

y,max y,min P
1

y,min 1

P

f f M     l
f V

Ml1 V1

−
Δ = ⋅ ⇔

⇔ Δ = η⋅
                                     (2.7) 

The parameter η is solely dependent on the type of steel used. For instance, for the 
ductile steel class Grade B400 or B500 Tempcore, mentioned in section 2.1.2, we 
have η=0.20.  
MP/V1is the left-hand shear span. We also receive a contribution from the right-hand 
shear span, which means that the total plastic zone length Δl is: 

       l l l1 2Δ = Δ + Δ                                                    (2.8) 

Obviously, to account for Δl2 one should use the same value of MP, but the 
corresponding value of V2 for the part of the hinge on the right-hand side. 

                              a)                                                                         b)  

Figure 2.46 - a) Stress-strain curve for reinforcement with strain hardening and b) 
Beam with shear zone. Bending moment M and shear force V 

σ
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V
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Since even a concentrated force will spread out from the point of application, a small 
term proportional to the height of the cross-section may be added to (2.7) and (2.8). If, 
in the middle of a beam depth, the concentrated force is assumed to be uniformly 
distributed along h/2 (spreading ratio 2:1), we get in each side of the hinge a length 
h/4 along which we may have yielding even without a constitutive relationship for the 
steel with strain hardening. Thus, the final version of (2.7) may be taken as the sum of 
two contributions, i.e.: 

   P
1

1

Ml 0.25h
V

Δ = + η⋅                                            (2.9) 

and then (2.8) reads  

           P
1 2

1 1l 0.5 h M
V V

⎛ ⎞
Δ = ⋅ + η⋅ ⋅ +⎜ ⎟

⎝ ⎠
                                    (2.10) 

These formulae are in close agreement with an empirical formula suggested by 
(Sawyer, 1964) if η in our formula is set to 0.075, cf. equation (2.11) 

P
1

1

Ml 0.25 d 0.075
V

Δ = ⋅ + ⋅                                        (2.11) 

For a uniformly loaded beam with transverse shear reinforcement, plastic theory has 

case the plastic zone i

shown that the length 2·h·cotα around the maximum moment point does not require 
any shear reinforcement, which means that T=constant along this length. Thus in this 

s at least  

      l 2 h cotΔ = ⋅ ⋅ α                                                 (2.12) 

The inclination α of the diagonal compression may be chosen freely as long as the 
diagonal compression stress does not exceed the effective compression strength of the 
oncrete. To Δl, according to (2.12), could be added a length depending on h and η, 

but often this is not needed. The parameter cotα is normally chosen between 1 and 2, 
void excessive cracking in the serviceability 

P

c

or 2.5 for conventional reinforcement to a
limit state.  
For a hinge in a fixed end, formula (2.9) may be used for any loading taking MP as the 
plastic moment in the hinge and V1 as the absolute value of the shear force in the 
hinge.  
When the plastic zone length Δl has been estimated, the rotation capacity θ  may be 
calculated as  

 su
P l

2 d
ε

θ = ⋅Δ
⋅

                                                 (2.13) 

On the safe side, we have made the following assumptions to determine θP: 

 The ultimate curvature, φu is computed considering that the compression strain in 
the upper stringer is zero, i.e. φu=εsu/d. 

 The yield curvature at the ends of the plastic hinge away from the cross-section 
corresponding to MP is negligible when compared to φu. 

Considering that d=0.9·h, which is a common assumption for the length of the internal 
moment arm at flexural capacity, (2.13) is re-written in terms of the height of the 
cross-section: 
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su
P l

1.8 h
ε

θ = ⋅Δ
⋅

                                                (2.14) 

For sections with compression normal force, (2.14) should not be used for normal 
forces larger than half the compression capacity of the concrete section (disregarding 
cover). 
In order to estimate the ductility capacity in terms of rotation at the plastic hinge, 
μθ,max , we must first calculate the corresponding yield rotation, θy. This will be 
carried out assuming that the neutral axis remains in the same position from the onset 
of the yield curvature, φy, to the onset of the ultimate curvature. Thus: 

sy
y 0.8 h

ε
φ =

⋅
                                                   (2.15) 

The curvatures at the ends of the plastic hinge, φ’ and φ2’, may be estimated 
considering linear variation of curvature along the plastic hinge length with the 
bending moment. Therefore, φ’ and φ2’ are the ratio of the yield curvature according 
to the bending moment on the left-hand side and right-hand side, respectively: 

Cross-section at the left-hand side sy' P 1 1
1

P

M V l
M 0.8 h

ε− ⋅ Δ
φ = ⋅

⋅
             (2.16) 

Cross-section at the right-hand side: sy' P 2 2
2

P

M V l
M 0.8 h

ε− ⋅ Δ
φ = ⋅

⋅
          (2.17) 

The yield rotation is obtained by integrating the curvature along the plastic hinge 
length: 

sy P 1 1 P 2 2
y 1 2

P P

2 M V l 2 M V ll l
1.6 h M M

ε ⎡ ⎤⋅ − ⋅ Δ ⋅ − ⋅ Δ
θ = ⋅ Δ ⋅ + Δ ⋅⎢ ⎥⋅ ⎣ ⎦

               (2.18) 

Finally, the estimate of the rotation ductility, μθ, is given: 

( )
( ) ( )

P 1 2su
,max

sy 1 P 1 1 2 P 2 2

M l l
0.89

l 2 M V l l 2 M V lθ

⋅ Δ + Δε
μ = ⋅ ⋅

ε Δ ⋅ ⋅ − ⋅ Δ + Δ ⋅ ⋅ − ⋅ Δ
         (2.19) 

If the plastic hinge is located at the end of beam, e.g. the left-hand end, which is the 
most common location in ductile frames, (2.19) has a simpler expression: 

  su P
,max

sy P 1 1

M0.89
2 M V lθ

ε
μ = ⋅ ⋅

ε ⋅ − ⋅ Δ
                                (2.20) 

Example 

Consider the case of a beam with rectangular cross-section in a ductile frame 
subjected to strong ground motion. The beam is 5m long and at the time of the 
earthquake, the sum of the dead and live loads is 10tonf/m. The plastic hinges are 

pacities are the same for both directions 
hinges, Vmax, is: 

located at the ends, the bending moment ca
and equivalent to 400kNm. The maximum shear force at the plastic 

max
10 9.81 5 2 400V 405.25kN

2 5
× × ×

= + =                            (2.21)     
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Consider further that the tensile reinforcement ratio, ρT, is 1% of the gross cross-
section and that the steel class is Grade B500 Tempcore, cf. Table 2.4. 

i. To solve this problem, we first have to find the value of the cross-section height, 
h. If we assume that the width of the cross-section b is given as a ratio β of the 
height, we have: 

s T
P

3P
s T y,min

y,min

b h
A b h

MM hA 0.9 fd f

d 0.9 h

= β⋅⎧
⎪ = ρ ⋅ ⋅⎪⎪ ⇒ =⎨ = ⋅α ⋅ρ ⋅⎪ ⋅
⎪
⎪ = ⋅⎩

e find that h=0.53m. Round

                             (2.22) 

Assuming that β=0.60 w ing up the latter value we 
have  

cement ratio is found to be 

  h=0.55m                                                     (2.23) 

 
The resulting tensile reinfor

T 3 3

400 0.89%
0.9 0.6 0.55 500 10

ρ = =
× × × ×

                            (2.24) 

which is considered to be an appropriate vale of ρT to assure ductile behaviour. 

ii. The plastic hinge is located at the end of the beam. This implies expression in 
(2.9) to evaluate the length of the plastic hinge Δl: 

400l 0.25 0.55 0.20 0.33m
405.25

Δ = × + × =                            (2.25) 

iii. The rotation capacity is then given by (2.14): 

2
P 0.0.1 33 3.33 10 rad−= ×                               (2.26) 

1.8 0.55
θ = ×

×

iv. To calculate the maximum ductility capacity in terms of rotation at the plastic 
hinge, μθ,max , we use expression (2.20): 

,max
0.1 4000.89 21

0.0025 2 400 405.25 0.33θμ = × × ≈
× − ×

                   (2.27) 

Grade B500 Tempcore 
fy,min (MPa) 500 
fy,max (MPa) 600 

Es (GPa) 200 
εsy (%) 0.25 
εsu(%) 10 

η 0.2 

Table 2.4 - Properties of  Grade B500 Tempcore steel  
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2.4 Implications on seismic design 

2.4.1 Principles of member design  
As seen throughout section 2.2.1, as long as adequate reinforcement detailing is 
assigned, flexural yielding mechanisms have greater potential for developing and 
maintaining ductile response against cyclic loading. Conversely, mechanisms 
characterised by exhaustion of shear capacity or anchorage failure tend to present 

f seismic design 
is  
inelastic she
Some good rules of practise towards design for ductile response at the plastic hinges 
may be briefly summarized: 

 ansverse reinforc lly
e the beneficial ef

To use low ile ent ratios to prevent high rates of strength and 
stiffness degradation 

malized compressive 

is 
chapter serves also to justify the so-called weak-bea

c design philosophy and is of fundamental 
or which seismic resistance systems are 

composed of ductile frames. Attending to the struct
behaviour of beams and columns, this concept establis
mechanism of the structure is composed of flexural plastic hinges is occurring in 

are intended to remain in the elastic domain. Column design moments are, 
according to this concept, derived at beam-column joints with respect to the actual 
resisting moments of the plastic hinges in the beams. 
Columns are traditionally designed to withstand axial lo
structure and from “live loads”, whereas beams have the f
mainly by flexure. During an earthquake, columns are additionally submitted to 
lateral loading to which they respond with flexural strength. Beams, however, roughly 

ing of the reinforcement is used. Thus, it is expected that most of the 
dissipation capacity of the structure is allocated in the beams.  

rather brittle modes of failure. The obvious implication for the case o
 that modes of failure in flexural behaviour should be pursued and those exploring

ar and bond-slip deformations should be avoided. 

 To limit the compressive strength of concrete, as lower strength concrete classes 
are more ductile 
To adopt close spacing of tr ement and most specia  proper 
hoop configurations to increas fect of confinement 

 To avoid asymmetry of cross-section lay-out as this leads to higher pinching 
effects in the weak “direction” and consequently, lower energy dissipation 
capacity 

  tens  reinforcem

 For the case of columns, to design for moderate levels of nor
axial force. 

2.4.2 Weak beam / strong column concept for ductile frames 
The review on cyclic behaviour of reinforced concrete elements presented in th

m strong column concept. This 
concept is the corollary of modern seismi
importance in the design of structures f

ural functions and modes of 
hes that the energy dissipation 

beams (typically at the ends), and avoided as far as possible in columns. Therefore it 
follows that the strength of the beams is limited to the plastic hinge capacity and 
columns 

ads from the weight of the 
unction of carrying those 

conserve their flexural mode of behaviour and this, as seen in section 2.2.1, enables 
them to maintain their strength even at significant levels of ductility, provided that 
adequate detail
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As seen in section 2.2.3, the behaviour of beam-column joints is dominated both by 
shear forces and bond mechanism, which have rather brittle modes of failure. 
Therefore these structural elem
they should be provided with strength gre

2.4.3 Overstrength factors 
The task of ensuring that only the desired collapse mechanism takes place, and all the 

f failure are prevented, is carried out by assessing the highest 
c hinges and assigning enough corresponding 

strength in the rema ure so that it re
during the whole ground motion, for all kinds of strength 
There are three main sources for overstrength at the plastic hinges: 

2. Deviations due to actual nominal material strength, 
at the design phase 

e plastic hinges also affect 
the other parts of the structure outside the hinges. 

 the reinforcement steel. For normal steel classes (400 to 600 MPa), the 

ints must be strictly avoided, and therefore it may be that the designer 
requires higher overstrength facto s to define
elements.  

n are not 
ther costs 

associated with appropriate detailing of the plastic hinges, and with over-design of the 

ents should always remain in the elastic domain, i.e. 
ater than the maximum demand 

corresponding to development of the adjacent plastic hinges. The larger the flexural 
capacity at the beams, the larger the shear force at the joint, cf. Figure 2.42, and thus, 
the more difficult it is to assure elastic behaviour during the whole period of ground 
excitation.   
Avoiding joint failure also eliminates the need for repair in a relatively inaccessible 
region of the structure and prevents potential degradation of the capacity of the 
column due to degradation within the joint. Moreover, inelastic deformation of joints 
increases the overall story drifts of the frame leading to larger P-Δ effects.  

other brittle modes o
probable strength capacity at the plasti

ining part of the struct mains in the elastic domain 
demand. 

1. Deviations due to calculation assumptions in specifying the reinforcement steel, 
dimensions and detailing and necessity to round off these quantities in practice 

other than those accounted for 

3. Strength enhancement in plastic behaviour due to strain hardening effects of the 
reinforcing steel and additional compressive strength of concrete due to 
confinement 

It is obvious that the first two sources for overstrength at th
Therefore, according to (Paulay and 

Priestley, 1992) the corresponding overstrength factor should be 10% of order of 
magnitude. 
Strength enhancement in beams may differ from columns. In fact, the flexural 
strength of beams is relatively insensitive to concrete compressive strength. 
Therefore, strength enhancement in plastic behaviour is mainly due to strain 
hardening of
overstrength factor is typically 25% of order of magnitude (Paulay and Priestley, 
1992). For columns however, confinement and the favourable effect of axial loading 
may increase flexural strength up to 50% (Bachman, 1994). 
It should be noted that significant engineering judgement and experience is required 
in the evaluation of the overstrength factors. For instance, shear modes of failure in 
columns and jo

r  shear strength in those structural 

Finally, it is noteworthy that the economic advantages of plastic desig
compromised by the use of overstrength factors. There are of course fur
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 large ductility capacity.  

 
 

 
 

 
 
 
 
 

 
 

 
 
 

remaining part of the structure. However, this is outweighed by the significant 
reduction in earthquake design forces due to
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

 
 

 



3. The rigid-plastic seismic design method 

3.1 General assumptions of the RPSD method 

3.1.1 Rigid-plastic structures 
The main idea of the RPSD method is to assume that the dynamic response is in no 
way influenced by the elastic properties of the structure. Therefore, we deal with 
rigid-plastic structures.  
In this type of structure, one has rigid-plastic behaviour in the plastic hinges and rigid 
behaviour in the remaining part of the structure. Consequently, if rigid-plastic 
structures are designed to develop a chosen collapse mechanism, they are treated as 
assemblages of rigid bodies where the only source of internal displacements is due to 
deformations at the plastic hinges.  

3.1.1.1 Plastic hinges  

The assumption regarding rigid-plastic behaviour at the plastic hinges is worthy of 
closer examination. 
The discussion in Section 2 showed that the cyclic behaviour of reinforced concrete 
members in flexure is dominated by the so-called pinching effect, which is mainly due 
to crack closing and the Baushinger effect. Pinching mainly affects the capacity of 
yield zones to dissipate energy. As this effect increases, energy dissipation capacity 
decreases, and thus seismic performance becomes poorer. However, provided that 
some rules are observed, high levels of ductility can be achieved throughout the 
period of seismic loading, as is the case of Figure 3.1. 
Based on these types of observations, and for engineering purposes, when considering 
rigid-plastic relationships, it follows that a great deal of simplicity may be introduced 
in the treatment of the hysteretic behaviour of flexural plastic hinges subjected to 
large ductility demand. 
Figure 3.2 depicts the rigid-plastic hysteretic relationships in terms of strength 
demand vs. deformation, F vs. δ, assumed herein for the plastic hinges. 
In Figure 3.2a), the classic rigid-plastic relationship (Nielsen, 1998) is shown. As may 
be seen, no change of deformation occurs at all for strength demand within the yield 
strength limits -fP or fP. The hinge is therefore said to display rigid behaviour. When 
the strength demand in one direction is the yield strength, deformations take place. 
This corresponds to plastic behaviour.  
In Figure 3.2b), a modified rigid-plastic hysteretic relationship is introduced. It is 
clear that the same conditions as in the classic case apply. However, we can further 
assume that when the sign of the strength demand changes, the residual deformation 
at the end of the previous period of plastic behaviour is “lost” without any resistance 
from the plastic hinge. In the following, this type of behaviour will be referred to as 
slip behaviour.  
The additional assumption of slip behaviour primarily affects the ability of the system 
to dissipate energy. Comparing both models in Figure 3.2, it is evident that the model 
contemplating slip behaviour has less capacity to dissipate energy induced by the 
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a)                                                                       b) 

Figure 3.1 -Members with symmetric cross-section and reinforcement under cyclic 
loading:  a) Beam (Brown and Jirsa 1971) (1 kip=4.45kN;1 in.=2.54 cm), cf. section 

2.2.1.1; b) Column with moderate axial force (Abrams, 1987), cf. section 2.2.1.3  
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δ δ

b)a)

Figure 3.2 - a) Classic rigid-plastic relationship and b) Modified rigid-plastic 
relationship with consideration of pinching 

ground motion. As we are dealing with reinforced concrete structures, this seems to 
be the most adequate rigid-plastic model to take into account the behaviour of most of 
the yield zones in a structural system.  
In this work we conservatively assume that all the hinges in reinforced concrete 
structures will have this type of behaviour, even those with larger energy dissipation 
capacity, such as hinges in beams, the hysteretic behaviour of which could also be 
approximated by the classic rigid-plastic model in Figure 3.2a).  
It should be noted that despite the differences in terms of hysteretic behaviour 
between the idealisations shown in Figure 3.2, to define both curves we need only to 
determine the strength limits. This makes the rigid-plastic models for hysteretic 
behaviour the simplest choice.  
The magnitude of plastic deformations in the rigid-plastic models is alone related to 
the strength capacity. This seems to be an adequate assumption on the treatment of 
structural systems expected to develop significant levels of ductility under strong 
ground motion. 
Figure 3.3 represents part of the lateral strength vs. deformation relationship of an 
elastoplastic oscillator under ground motion. Here, F is in force units and d in 
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Figure 3.3 -Part of a hysteretic loop for an elastoplastic oscillator under ground 
motion 

displacements units. It is assumed that significant levels of ductility, μ, may develop. 
In Figure 3.3, k is the stiffness of the system and dy and du are the yield displacement 
and the displacement demand respectively. Viscous damping is disregarded here. 
The energy inputted in this system due to ground motion is mostly dissipated by the 
onset of plastic behaviour and therefore close to the area E in Figure 3.3. Clearly, the 
greater the energy input, the greater the ultimate deformation, du, as FP and dy are 
exclusive properties of the system. The energy dissipated in the system is given by: 

P u y
2

P P
y

u y

E F (d d )

F Fd E
k k

d d

= ⋅ −⎧
⎪
⎪ = ⇔ = ⋅⎨
⎪

= μ ⋅⎪⎩

( 1)μ −                                  (3.1) 

From the discussion above and attending to the result in (3.1), it seems that the 
magnitude of plastic deformations imposed by the ground motion in elastoplastic 
systems able to develop significant levels of ductility is highly dependent on the 
lateral strength capacity of the system. In rigid-plastic systems, this dependency is 
exclusive to the lateral strength capacity. Therefore, the accuracy of the rigid-plastic 
models increases with the expected ductility. 

3.1.1.2 Global behaviour as a function of local behaviour 

Finally, it is important to mention that in rigid-plastic structures, as long as the mode 
of failure and of external loading are known, the displacement and force fields are 
solely related to the behaviour at the plastic hinges. This is a very important 
characteristic of rigid-plastic structures in the formulation of the RPSD method, and 
therefore deserves special attention. 
Consider the case of the rigid-plastic SDOF systems in Figure 3.4. In the following, 
we refer to rigid-plastic SDOF systems as rigid-plastic oscillators. Figure 3.4a) 
represents a rolling mass connected to a wall on the side by a rigid-plastic spring that 
can only resist axial deformations. Its hysteretic behaviour is expressed in terms of 
axial force vs. displacements, i.e. N vs. d, and it is assumed to be of the classic type. 
NP is the ultimate axial force. Figure 3.4b) depicts a rigid column supporting a mass 
and having a flexural hinge at the base. The latter is assumed to be concentrated in a 
single cross-section and to have a bending moment vs. rotation relationship, M vs. θ, 
of the rigid-plastic type including pinching. MP is the flexural capacity of the plastic 
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Figure 3.4 -Rigid-plastic oscillators  

hinge in both directions. Both masses are subjected to a force F and may only move 
horizontally. 
In both oscillators it is clear that the relative displacement of the mass, dmass is given 
by the deformation at the yield zones since it is only there that internal deformations 
take place: In Figure 3.4a), the displacement of the rolling mass is the same as the 
spring connecting it to the wall, and in Figure 3.4b) one has dmass=-θ·L, with θ being 
the rotation of the plastic hinge. 
In addition, it is clear that equilibrium implies the external force F be written as a 
function of the strength demand at the plastic hinges: for the case of the rolling mass 
oscillator, we have F=N and for the column oscillator, F=-M/L. The maximum 
admissible values of F are F=NP and F=MP/L. Therefore it is evident that in any rigid-
plastic oscillator, the relationship of external force vs. displacement is of the same 
type as the corresponding plastic hinge.  
Similar features are observed in rigid-plastic MDOF systems. Henceforth, rigid-
plastic MDOF systems are simply referred as rigid-plastic structures.  
Consider the 4-story plane rigid-plastic frame, as in Figure 3.5. Assume further that 
the structure is designed such that the mechanism shown on the right-hand side of the 
figure takes place when subjected to the set of external forces, F·λi. Here the plastic 
hinges are of the flexural type and concentrated in the cross-sections at the ends of the 
beams and at the base of the columns. Their constitutive relationships are of the same 
type as in Figure 3.2b). The magnitude and orientation of the external forces are 
exclusively dependent on the load parameter F.  
The displacement field in the structure has only one degree of freedom since only one 
mode of vibration is allowed, i.e. that associated with the collapse mechanism. 
Therefore, the relative displacement di, in any arbitrary floor i of this structure may be 
written as a function of the plastic rotations in the hinges, θ. 

id ih= θ⋅                                                        (3.2) 

Furthermore, as for the cases of rigid-plastic oscillators, the relationship of external 
forces vs. displacements is of the same type as for the plastic hinges. This may be 
proven by considering equilibrium in any rigid-plastic structure. 
For the frame in Figure 3.5, equilibrium may be expressed by writing the virtual work 
equation for virtual displacement δθ: 

10 4
j i ij 1 i 1

M F h
= =

− ⋅δθ + ⋅ λ ⋅ ⋅δθ∑ ∑ 0=                                 (3.3) 

 78



The RPSD method 

9

7

5

3 4

6

8

10

21
hi

H

m4

m3

m2

m1

4F ⋅ λ

3F ⋅ λ

2F ⋅ λ

1F ⋅ λ

Figure 3.5 – 4 story rigid-plastic frame and corresponding collapse mechanism 

where Mj is the bending moment at the j-th plastic hinge. Cancelling δθ yields:  
10

jj 1
4

i ii 1

M
F

h
=

=

=
λ ⋅

∑
∑

                                                  (3.4) 

from which it may be concluded that the value of the load parameter F is specified by 
the bending moment field at the plastic hinges.  
Figure 3.6 depicts the relationship between external forces and displacements for the 
rigid-plastic frame in Figure 3.5. The curve is given in terms of the load parameter F 
and the displacement of the top floor.  
Consider that the loads F·λi are applied slowly on the structure. As soon as F reaches a 
certain magnitude, all the plastic hinges undergo plastic behaviour – zone A. It is said 
then that the frame exhibits plastic behaviour. From (3.4) it follows that F at the onset 
of plastic behaviour is  

10
P, jj 1

4
i ii 1

M
F

h
=

=

=
λ ⋅

∑
∑

                                                  (3.5) 

where MP,j is the flexural capacity at hinge j. Here, for the sake of simplicity, we 
assume that the sum MP,j is the same regardless of orientation of the collapse 
mechanism. 
As soon as F decreases, the strength demand on the plastic hinges is relieved, which 
means that they begin to exhibit rigid behaviour – zone B. Obviously at this stage, no 
internal deformations occur, and therefore there are no relative displacements. 
Therefore the frame has rigid behaviour.  
When F changes sign, all the plastic hinges display slip behaviour, as the entire 
residual deformations are recovered without any resistance. The structure is not able 
to resist any lateral forces until it returns to its original position – zone C. At this point 
it is said that the structure has slip behaviour.  
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Figure 3.6 –External forces vs. displacements of the rigid-plastic 4-story frame in 
Figure 3.5 

If F reaches the symmetric value as expressed in (3.5), all the plastic hinges undergo  
plastic behaviour again, albeit in the opposite direction. The structure starts to move 
to the left-hand side of the figure – zone D.  
The properties of the rigid-plastic structures discussed here will be of extreme 
usefulness for the treatment of the dynamic response, as will be seen in the following 
chapters. As the reader may already understand, the main advantage of the rigid-
plastic approach is the fact that structures with more than one degree of freedom may 
easily be treated as SDOF systems.  

3.1.2 Disregard for viscous damping 
Another important assumption of the RPSD method is that of neglecting the 
contribution of viscous damping for the dynamic response of structures. The primary 
reason for this is that the method applies to systems developing significant levels of 
ductility under strong ground motion. For this type of system, it is clear that the 
majority of the energy from the ground motion is dissipated at the plastic hinge 
regions by the onset of plastic behaviour.  
Secondly, it is seen that viscous damping does not represent actual behaviour of 
reinforced concrete structures submitted to dynamic loading (Paulay and Priestley, 
1992). The use of viscous damping in the treatment of the dynamic response of 
reinforced concrete systems is a matter of mathematical convenience rather than 
structural accuracy. Unfortunately, our knowledge regarding the physical nature of 
damping phenomena is still at a very primitive level. 
Consider the case of an elastic system subjected to a sinusoidal displacement history, 
d(t), as in the following: 

maxd(t) d sin( t)= ⋅ ω⋅                                              (3.6)  

Here, dmax is the displacement amplitude and ω is the circular frequency of vibration. 
The damping force, fD, has the following expression. See section 1.2.1.1: 

 80



The RPSD method 

                                       a)                                          b) 

Figure 3.7 - a) Viscous damping of a linear elastic system and b) Elastic behaviour of 
a concrete element (Paulay and Priestley, 1992) 

D

D max

      f c v(t)                     
 f c d cos( t)

= ⋅ ⇔
⇔ = ω⋅ ⋅ ⋅ ω⋅

                                    (3.7) 

where it follows that the maximum damping force, fD,max is: 

D,max maxf c d= ω⋅ ⋅                                                 (3.8) 

When examining expression (3.8), it is clear that the maximum damping force in an 
elastic system increases with the frequency of vibration: If the displacements are 
applied very slowly, (ω→0), the damping forces are effectively zero and so the 
resisting force vs. displacement relationship is given by a straight line (the 
pseudostatic line in Figure 3.7a), as it is solely due to elastic restitution forces. On the 
other hand, for high frequency motion, damping forces increase, as does the width of 
the hysteretic loop. Nevertheless, the maximum resisting force, Fm in Figure 3.7a) 
remains the same regardless of the frequency of vibration, as for maximum 
displacement the velocity is always zero.  
Figure 3.7b) is a sketch of the typical behaviour of reinforced concrete systems. It is 
found that the width of the hysteretic loop is higher for the pseudostatic application of 
displacements than for the dynamic case, which is in direct contradiction to the 
predictions yielded by the elastic approach. Also, the peak resistance changes with the 
frequency of the applied displacement history. 

Further assumptions for ductile frames 

As previously mentioned, despite the RPSD method being quite general, special 
emphasis is devoted to the case of regular reinforced concrete ductile frames in this 
work. Therefore, we can make standard assumptions (Paulay and Priestley, 1992): 

1. The in-plane stiffness of the floor system is infinitely large, which is a 
reasonable assumption for frame systems with normal length to width ratios. 

2. The analysis of the frame system is subdivided into a series of plane frames, 
which are analysed separately 
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3. The mass at each floor is lumped at its centre of mass 
4. The lateral resistance is the same for both horizontal directions. This is the case 

for the overwhelming majority of design problems in Earthquake Engineering, 
since the direction of maximum demand due to ground motion is unknown. 

It should be noted that assumptions 1 and 2 must be observed in order for the RPSD 
method to be applied, as it only deals with dynamic response in one direction. 
Consideration of simultaneous earthquake loading even for the two horizontal 
directions would compromise the simplicity of the RPSD method, as this requires an 
extra dynamic parameter in the analysis, i.e. the angle of the horizontal plane of the 
structural displacement shape vector. Therefore the validity of assumptions 1 and 2 
must be checked in advance, thus for irregular structures, or structures whose plane 
dimensions are such that assumption 1 is invalid, other methods such as refined 
NLTHA should be employed. 
On the other hand, as explained below, the RPSD method does not require 
assumptions 3 and 4 to be satisfied. They are only considered in this work to avoid 
superfluous complexity of the explanations, and because they do not compromise the 
accuracy of the results provided.   

3.2 Rigid-plastic dynamics 

3.2.1 Rigid-plastic oscillators 

3.2.1.1 Formulation of the equation of motion 

In Chapter 1, the formulation of the equation of motion of the SDOF systems under 
ground motion at any time t was presented: 

rm a (t) R(t) m a (t)⋅ − = − ⋅ g                                         (3.9) 

or in a more convenient form: 

r
R(t)a (t) a (t)
m

= − g                                             (3.10) 

In classic Structural Dynamics, R(t) accounts for viscous damping forces and internal 
forces opposing lateral motion of the mass, thus according to the notation in section 
1.2.1.1 R(t)=-c·vr(t)-k·dr(t). However, in this work we only deal with rigid-plastic 
structural systems in which the only source of energy dissipation occurs due to plastic 
deformations at the yield zones. Therefore for the case of rigid-plastic oscillators, R(t) 
is simply formulated on the basis of the internal force mechanism that opposes lateral 
motion of the mass. The latter, as seen in chapter 3.1.1.2, is specified by the behaviour 
at the yield zone. Therefore, the task of writing the equations of motion of rigid-
plastic oscillators simply comprises of identifying the resisting force mechanism and 
its association with the dynamic state of the system.  
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Figure 3.8 -Rigid-plastic oscillators subjected to positive ground motion and the 
corresponding free-body diagrams at the masses when their motion is with positive 

relative acceleration 

For illustrative purposes, consider again the case of the rigid-plastic oscillators of 
section 3.1.1.2 reproduced again in Figure 3.8a) and b). Assume that these are 
subjected to a positive ground acceleration and that their masses are moving with 
positive relative acceleration. Assume further that the rigid-plastic spring on the 
rolling mass oscillator is in tension, and that the bending moment in the plastic hinge 
of the column oscillator is positive.  
To express dynamic equilibrium, d’Alembert’s principle is used. This is easily carried 
out attending to the free-body-diagram of the mass in each system, Figure 3.8c) and 
d). 
Thus one reaches the following expressions for each of the rigid-plastic oscillators in 
Figure 3.8. 

Rolling mass oscillator Column oscillator 

r g
N(t)a (t) a (t)
m

= − −       (3.11) r g
M(t)a (t) a (t)
m L

= −
⋅

    (3.12)

Here, N(t) is the axial force on the rigid-plastic spring at the time t, and M(t) is the 
bending moment at the plastic hinge at time t.  
Observing the expressions in (3.11) and (3.12), it appears that the dynamic response 
of rigid-plastic oscillators submitted to base motion is only determined by the internal 
force mechanism able to resist lateral deformations, which in turn is exclusively 
dependent on the plastic hinges. 
To complete the formulation of the equations of motion, one only has to associate the 
dynamic state of the system with the behaviour at the plastic hinges. This is carried 
out attending to the relative velocity of the mass and the strength demand at the yield 
zone for each time instant t, referred to in general terms as f(t). For the oscillators 
considered here, f(t)=N(t) in the rolling mass oscillator and f(t)=M(t) for the column 
oscillator. 
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It is clear that when f(t) lies between the yield strength limits, no relative 
deformations will occur. It is said that the system has rigid behaviour. Therefore, the 
following conditions apply: 

Rolling mass oscillator Column oscillator 

] [
r

P P r

r

a (t) 0
if N(t) -N ,N v (t) 0

d (t) constant

=⎧
⎪∈ ⇒ =⎨
⎪ =⎩

(3.13) ] [
r

P P P r

r

a (t) 0
if  M -M ,M v (t) 0

d (t) constant

=⎧
⎪∈ ⇒ =⎨
⎪ =⎩

(3.14)

When the strength capacity at the plastic hinges is exhausted in one direction, it is said 
that the system has plastic behaviour. The energy from the earthquake is dissipated by 
plastic deformations at the yield zone of the system. When this energy is fully 
dissipated, the system again reverts to rigid behaviour. Therefore the condition 
determining whether the energy has been fully dissipated or not has to be included. 
This is simply carried out by attending to the velocity of the mass. In basic terms, the 
strength demand at the plastic hinge determines the onset of plastic behaviour, but it is 
the dynamic state of the system, specified by the relative velocity of the mass, that 
controls the end of it. 

Rolling mass oscillator Column oscillator 

P P
r g

r

P P
r g

r

N(t)=N Nif a (t) a (t)
v (t)>0 m

                          or
N(t)=-N Nif a (t) a (t)
v (t)<0 m

⎧
⇒ = − −⎨

⎩

⎧
⇒ = −⎨

⎩

(3.15)

P P
r g

r

P P
r g

r

M(t)= M Mif a (t) a (t)
v (t)>0 m L

                             or
M(t)=M Mif    a (t) a (t)
v (t)<0 m L

−⎧
⇒ = − −⎨ ⋅⎩

⎧
⇒ = −⎨ ⋅⎩

(3.16)

It should be noted that according to the sign convention adopted in this work, when 
the column oscillator has plastic behaviour, the sign of the relative velocity of the 
mass is always opposite to the sign of the rotations at the plastic hinge. 
Finally, with regard only for the column oscillator, there is the case of slip behaviour, 
since this is contemplated in the hysteretic relationship of the plastic hinge. Here, one 
must also take into account the velocity of the mass as, if this is annulated, it would 
mean that the residual deformation in the system was not fully recovered. Under these 
circumstances, the system once again experiences rigid behaviour. The additional 
condition corresponding to slip behaviour is: 

Column oscillator 

r g
r r

M(t)=0
if a (t) a (t)

v (t) d (t)<0
⎧

⇒ = −⎨ ⋅⎩
(3.17) 

As previously pointed out in section 3.1.1.1, when the plastic hinge has slip 
behaviour, no resistance can be developed there. For the dynamic response of the 
system, this is translated in a period of zero lateral resistance against ground motion. 
Therefore, the dynamic response of the system is symmetrical to the ground motion.  
It should be noted that when the residual deformation is recovered, it is highly 
unlikely that the relative velocity of the mass is zero. In other words, at the end of a 
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period of slip behaviour in which the residual deformations have been fully recovered, 
the system has most likely accumulated kinetic energy that has to be dissipated. The 
only source of energy dissipation in rigid-plastic oscillators is due to plastic 
deformations in the yield zone. Therefore after a period of slip behaviour, there is an 
immediate transition to plastic behaviour. The relative velocity of the mass at the 
beginning of the new period of plastic behaviour is the velocity at the end of the 
previous period of slip behaviour. 
From the discussion above, it appears that, in order to determine the dynamic 
response of a rigid-plastic oscillator, one must simply know the lateral capacity of the 
system against horizontal forces, here with the symbol Fy. If Fy is known, writing the 
equations of motion is an automatic process. In fact, the only time this parameter 
appears in the equations of motion is during periods of plastic behaviour. Here, the 
sign of Fy is opposite to the relative velocity of the mass, which physically means that 
the force mechanism against horizontal forces always resists rate of changes in the 
position of the mass. 
For the rolling mass oscillator, it is clear the Fy=NP ,while for the column oscillator, 
Fy=MP/L.  
However, to fully assess the dynamic response of a rigid-plastic oscillator, one has to 
establish the conditions concerning the strength demand at the plastic hinges.  
Consider that the previous rigid-plastic oscillators have rigid behaviour for the time t, 
i.e. ar(t)=0. Observing equations (3.11) and (3.12), one finds that for periods of rigid 
behaviour, N(t)=m·ag(t) for the rolling mass oscillator and M(t)= m·ag(t)·L for the 
column oscillator. Thus, the strength capacity at the plastic hinge is exhausted for 
values ag(t)=±NP/m or ag(t)=±MP/m·L, respectively.  
Introducing Fy, one may generalise with regard to the previous statements and define 
the ground acceleration at the onset of plastic behaviour, ay: 

y
y

F
a

m
=                                                       (3.18) 

Thus:  

 If the rigid-plastic oscillator starts from rest, which in general is the case for most 
of the problems in Earthquake Engineering, then plastic behaviour will take place 
as soon as the ground acceleration exceeds ay in one of the directions.  

 If the system has rigid behaviour and |ag(t)|<ay, then it remains with rigid 
behaviour. 

 For the case of oscillators with hysteretic relationship accounting for the effect of 
pinching, it is clear that the change of sign on the strength demand at the plastic 
hinges takes place when ag(t)=0.  

In consequence, the equations of motion according to the type of behaviour at the 
plastic hinge in any rigid-plastic oscillator may be given in the general form as in 
(3.19). 
Note that one could use ay directly in the equations of motion. However, as will be 
seen, it is convenient to retain the format in (3.19), as it explicitly considers the 
strength capacity of the system against horizontal forces. 
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3.2.1.2 Computational procedure to perform rigid-plastic non-linear time-history 
analysis. 

In the following, a step-by-step integration procedure for the computation of the 
dynamic response of a rigid-plastic oscillator subjected to any type of base motion is 
presented. The response is evaluated at each successive time interval i with length Δt 
being sufficiently small to justify that ag(t) is assumed constant and equal to the 
average, ag,i, between the value at the beginning and end of that time interval, ag(ti) 
and ag(ti+Δt), respectively. Thus: 

( ) ]g i g i
g g,i i i

a t +a (t t)
a (t) a          for          t  t ; t t

2
+ Δ

]= = ∈ + Δ            (3.20) 

Classic rigid-plastic oscillators 

Table 3.1 summarises the conditions to be considered when computing the dynamic 
response of oscillators with plastic hinges of the type sketched in Figure 3.2a). The 
equations presented allow the assessment of the dynamic state of the system for any 
time t in any time step i. 
 

Condition End of time 
step i-1 Time step i Time step i+1 

1 Rigid 
behaviour 

If ⏐ag,i⏐<ay, then
r

r

r r

a (t) 0
v (t) 0
d (t) d ,i 1−

⎧ =
⎪ =⎨
⎪ =⎩

 Rigid behaviour
(apply 1,2 or 3) 

2 Rigid 
behaviour 

If ag,i≥ay then ( )

( )

y
r g,i

y
r g,i i

2
y i

r g,i

F
a (t) a

m
F

v (t) a t t
m

F t t
d (t) a d

m 2 −

⎧
⎪ = + −
⎪
⎪ ⎛ ⎞⎪ = + − ⋅ −⎨ ⎜ ⎟

⎝ ⎠⎪
⎪ −⎛ ⎞⎪ = + − ⋅ +⎜ ⎟⎪ ⎝ ⎠⎩

r,i 1

 
Plastic 

Behaviour 
(apply 4 or 5) 

Table 3.1 - Procedure to derive the dynamic response of rigid-plastic oscillators against any 
ground motion 
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Table 3.1 - Procedure to derive the dynamic response of rigid-plastic oscillators against any 
ground motion (cont.) 

Condition End of time 
step i-1 Time step i Time step i+1 

3 Rigid 
behaviour 

If ag,i≤–ay then ( )

( )

y
r g,i

y
r g,i i

2
y i

r g,i

F
a (t) a

m
F

v (t) a t t
m

F t t
d (t) a d

m 2 −

⎧
⎪ = − −
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⎝ ⎠⎪
⎪ −⎛ ⎞⎪ = − − ⋅ +⎜ ⎟⎪ ⎝ ⎠⎩
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Plastic 

behaviour 
(apply 4 or 5) 

4 
Plastic 

behaviour 
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Plastic 
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(apply 4 or 5) 

5 Plastic 
behaviour 

If there is a time τ in the time step for which vr(τ)=0, 
then keep dr(τ): 
 If vr(ti)>0 then  

( ) ( )
2

y i
r g,i r,i 1 i r,i 1

F τ t
d (τ) a v τ t d

m 2 − −

−⎛ ⎞
= − − ⋅ + ⋅ − +⎜ ⎟

⎝ ⎠
 

 If vr(ti)<0 then  

( ) ( )
2

y i
r g,i r,i 1 i r,i 1

F τ t
d (τ) a v τ t d

m 2 − −

−⎛ ⎞
= + − ⋅ + ⋅ − +⎜ ⎟

⎝ ⎠
 

Rigid 
Behaviour 

(apply 1,2 or 3) 
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The quantities vr,i-1 and dr,i-1 refer to the relative velocity and displacement of the mass 
at the end of time step i-1, respectively. 

Rigid-plastic oscillators with consideration of pinching 

The equations and conditions presented in Table 3.1 also apply to rigid-plastic 
oscillators where the yield zones have hysteretic behaviour, as in Figure 3.2b). Thus 
the computational procedure is the same as in the case of “classic” rigid-plastic 
oscillators but with additional conditions concerning slip behaviour. These are 
presented in Table 3.2. 

Table 3.2 –Procedure to derive the dynamic response of rigid-plastic oscillators with 
pinching against any ground motion (extension to table 3.1) 

Condition Time step 
i-1 Time step i Time step 

i+1 

6 Rigid 
behaviour 

If ag,i-1·ag,i<0 then 

( )
( )

r g,i

r g,i i

2
i

r g,i

a (t) a

v (t) a t t

t t
d (t) a d

2 r,i 1−

⎧
⎪ = −⎪⎪ = − ⋅ −⎨
⎪

−⎪ = − ⋅ +⎪⎩

 

Slip 
behaviour 
(apply 7,8 

or 9) 

7 Slip 
behaviour 

If dr(ti+Δ)·vr(ti+Δ)<0 then 

( )
( ) ( )

r g,i

r g,i i r,i 1

2
i

r g,i r,i 1 i

a (t) a

v (t) a t t v

t t
d (t) a v t t d

2

−

r,i 1− −

⎧
⎪ = −⎪⎪ = − ⋅ − +⎨
⎪

−⎪ = − ⋅ + ⋅ − +⎪⎩

 

Slip 
behaviour 
(apply 7,8 

or 9) 

8 Slip 
behaviour 

If there is a time τ in the time step for which 
vr(τ)=0, then keep dr(τ): 

( ) ( )
2

i
r g,i r,i 1 i r,i 1

τ t
d (τ) a v τ t d

2 − −

−
= − ⋅ + ⋅ − +  

Rigid 
Behaviour 
(Apply 1,2 

or 3) 

9 Slip 
behaviour 

If there is a time τ in the time step for which 
dr(τ)=0, then keep vr(τ): 

( )r g,i iv (τ) a τ t vr,i 1−= − ⋅ − +  

Plastic 
behaviour 

(Apply 4 or 
5) 

Conclusions 

In this section it was shown that the rigid-plastic approach yields significant 
advantages over the standard methods to evaluate the dynamic response of oscillators 
under ground motion. 

 88



The RPSD method 

 The dynamic response is solely controlled by the behaviour at the plastic hinge, 
which not only simplifies the computational procedure but also enables the direct 
correlation between the displacements in the system and the deformation demand 
at the yield zone. The latter is crucial for the evaluation of the damage induced by 
the ground motion. 

 It was seen that to perform NLTHA, the user must simply identify the force 
mechanism able to resist horizontal forces, which in rigid-plastic oscillators is 
solely dependent on the strength demand at the yield zones. Writing the equations 
of motion is thus a straightforward process using the equations in (3.19) 

 The computational procedure shown here is far simpler than the traditional one. It 
is also always stable, as it is not dependent on the frequency of vibration of the 
oscillator. 

3.2.2 Basic study on the dynamic response of rigid-plastic oscillators  
The dynamic response of rigid-plastic oscillators under ground motion will be 
investigated below. The purposes of this study is to explain the trends in which their 
dynamic response develops and at the same time provide comparisons with oscillators 
having more sophisticated types of behaviour. Therefore, we use three simplified 
ground motions where the explanations are at simpler levels and where it is easier to 
identify the different phenomena controlling the dynamic response. The work 
presented here was carried out at the Nagoya Institute of Technology, Japan, in 
cooperation with the research group of Professor Toshikatsu Ichinose. Two papers 
were published about this study. The first, (Marubashi et. al, 2005) in Japanese, was 
published in the Transactions of the Architectural Institute of Japan and the second in 
the Proceedings of the 2006 U.S. National Earthquake Conference (Marubashi et. al, 
2006). 

3.2.2.1 Definition of the oscillators 

The oscillator considered in this study is of the same type as presented in Figure 3.4b) 
It is a rigid column with length 3m that supports a mass of 1.0 ton. The latter may 
only move in the horizontal direction. At the base of the column there is a rigid-plastic 
hinge with MP=6.0kNm. From the discussion held in the last section it is concluded 
that Fy=MP/L=2.0kN, implying ay=2.0m/s2, i.e. the ground acceleration at the onset of 
plastic behaviour is 2.0m/s2 assuming that the system will start from rest; Both cases 
of rigid-plastic behaviour at the plastic hinge, i.e. with and without consideration of 
pinching are considered. See Figure 3.2a) and b). For simplicity, in this section the 
later model is also referred as rigid-slip model. 
For comparison purposes, we also consider the cases in which the hysteretic 
behaviour of the plastic hinge is described by the elastic-perfectly-plastic model, as 
shown in Figure 3.3, and by the Takeda stiffness degradation model in Figure 2.30. 
The same magnitude, MP, is assigned for the bending capacity in both directions. In 
previous models, damping is disregarded. Additionally, with the purpose of 
illustrating the influence of elastic stiffness on the dynamical response, two levels of 
fundamental period are regarded: 

 Short Period (SP), T = 0.2 s and  

 Long Period (LP), T = 0.6 s. 
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3.2.2.2 Ground motions 

Two simplified periodic ground motions are considered. Their representation is 
depicted in Figure 3.9 in terms of time-histories for the ground accelerations, ag, 
velocities, vg, and displacements, dg. Both are derived so that the peak ground velocity 
is 0.6m/s, the period, Tg, is 0.8s and the ground velocities and displacements at the 
end of the ground motion are 0. The shape of this ground motion is determined by the 
ratio between the time lengths a and b, as shown in the curves of Figure 3.9 
concerning ground velocities. For the first one, denominated Symmetric, this ratio is 1, 
yielding symmetric values for the ground acceleration. For the second, Asymmetric, it 
is assumed that a/b=3, leading to different values for the ground acceleration in each 
direction. 
Also, the response of the oscillators subjected to part of a real accelerogram is 
included in this study. One considers the JMA NS record of the Kobe Earthquake, 
1995 between t=7.2s and t=8.8s. This ground motion is also represented in the same 
format as for the simplified ground motions and is superimposed in the figures 
concerning the Asymmetric ground motion. 
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Figure 3.9 –Time-history curves for the input ground motion 
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3.2.2.3 Dynamical response of the rigid-plastic and elastoplastic models  

Figure 3.11 shows the time-history curves that describe the dynamical response of the 
stic models to the Symmetric accelerogram for the time 

observed that the three models present an “oscillatory” type of 

ation of the ground motion. The relative 

n zero. As 

 

Symmetric Accelerogram 

rigid-plastic and elastopla
interval t∈[0;1.6]. 
From the time-history curves concerning the displacements of the mass, Figure 
3.11d), it may be 
response around the time axis, i.e. a dynamical response with reversal of motion. 
However, for both levels of fundamental period, the elastoplastic model provides 
time-history curves of wider amplitudes than that corresponding to the rigid-plastic 
model. The detail of the time-history curves shown in Figure 3.10, comparing the 
response of the rigid-plastic model and elastoplastic model with short fundamental 
period, may help explain these observations: 

 For the rigid-plastic model, the capacity at the plastic hinge is exceeded 
instantaneously from the onset of the actu
acceleration of the mass at t=0.0s is ar(0)=−2.0/1.0−(−2.56)=0.56 m/s2 (see the 
first equation in (3.19)), and remains constant during the initial period at which the 
ground acceleration is −2.56 m/s2 (the solid line in Figure 3.10b)).On the other 
hand, when the elastoplastic model starts from rest, the bending moment at the 
plastic hinge is 0 as there are no relative displacements of the mass dr, thus there 
are no rotations in the plastic hinge. Therefore, dynamical equilibrium implies that 
ar(0)=−ag(0)=2.56 m/s2. As the mass begins to move, the bending moment at the 
plastic hinge increases until its capacity is exhausted (the broken line in Figure 
3.10a)). This leads to a smooth decrease in the relative acceleration in the 
elastoplastic model shown in Figure 3.10b) between the points (0) and (1). Until 
this point, the latter is always larger in the case of the elastoplastic model. This is 
reflected in the time-history curve of relative velocity of the mass, vr, (Figure 
3.10c)), which has a higher slope for the same period compared with the constant 
slope of the rigid-plastic model. When the capacity at the plastic hinge is 
exhausted, the relative acceleration remains constant and equal to that of the rigid-
plastic model, until there is a reversal in the direction of the ground motion, point 
(2) in Figure 3.10b), leading to parallel slopes between the two models for the 
time-history curves concerning the relative velocity, see Figure 3.10c). 

 When there is a reversal in the ground motion (shortly before t=0.2s), both models 
still have plastic behaviour, and the relative velocity is still greater tha
they have the same capacity, the relative acceleration is the same: ar=−2.0/1.0 
−2.56=−4.56 m/s2 (we still apply the first equation in (3.19)). However, it should 
be noted that the peak relative velocity at this instant is, according to the 
explanation above, higher for the case of the elastoplastic model. This explains the 
“delay” of the latter regarding the time instant at which the kinetic energy is fully 
dissipated, i.e. vr=0, the time interval between points (3) and (4) in Figure 3.10c). 

 The dynamical response of both models has the same pattern as explained above, 
after the relative velocity is zero, point (3) for the rigid-plastic model and point (4)
for the elastoplastic model in Figure 3.10c). In fact, for the case of the former, the 
ground acceleration at that time is sufficiently high to cause immediate exhaustion 
of the capacity of the plastic hinge in the opposite direction. In the latter model, 
for the sake of dynamic equilibrium when considering the elastic forces at the 
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spring, the unloading proceeds continuously along the elastic branch between 
points (4) and (5) in Figure 3.10e). This has the same implication as previously: a 
higher initial slope for the relative velocity in the elastoplastic model 
corresponding to the period of elastic behaviour. Obviously, when the capacity of 
the plastic hinge is reached, the elastoplastic model exhibits the same relative 
acceleration of the rigid-plastic model, yielding parallel slopes in the time-history 
curves for the relative velocity, see time instant t≈0.24s in Figure 3.10c). 

The dynamical response of the three models develops in the same way for the rest of 
the period. 
Therefore, it seems that the “oscillatory” pattern of the dynamical response of both 

s in both directions.  

c deformations only takes place for ground motions 

tic and rigid-plastic models under the 
n for the period t∈[0;1.6] is depicted in terms of time-
.13 and a detail corresponding to the first 0.3s of the 

Asymmetric accelerogram the response takes place 

                                                

models is connected with the ability of the Symmetric ground motion to induce 
deformation
The wider amplitude of motion observed for the elastoplastic models is due to the fact 
that lateral capacity of the system against horizontal forces is quite high. Note that 
ay=2.0m/s2, i.e. the onset of plasti
higher than 80% of the PGA. Thus the elastic behaviour in the elastoplastic systems 
will dominate the overall response. In fact, it was seen that the “smooth” transitions 
due to elastic behaviour between phases of plastic behaviour play an important role 
for the elastoplastic oscillators opposing the case of the rigid-plastic model, where 
these transitions take place instantaneously.1 

Asymmetric accelerogram 

The dynamical response of the elastoplas
Asymmetric ground motio
history curves in Figure 3
response is given in Figure 3.12. 
The difference between the dynamic response for the Asymmetric ground motion 
compared with the Symmetric one is evident: for the latter the response is of the 
oscillatory type, whereas for the 
mainly in one direction, i.e. clearly asymmetric. The primary reason for this is that the 
ground acceleration is of the pulse type with a magnitude higher than ay in one 
direction only. On the other hand the PGA of this record is much higher than the 
Symmetric accelerogram: ay/PGA=40%. This indicates that for this wave, plastic 

 
1 The influence of the fundamental period of the system for elastoplastic analyses 
From  and  it seems that the larger the fundamental period of the elastoplastic 
model, the larger the amplitudes on the dynamical response. In fact, observing b), one may 
see that the “smooth” transition from point (4) to point (5) for the elastoplastic model with short period 
happens in 0.045s, which approximately corresponds to ¼ of its fundamental period. In the case of the 
elastoplastic model with long period, the same transition takes 0.136 s, which again is very close to ¼ 
of the corresponding fundamental period. Therefore, the longer the fundamental period of the system, 
the slower the transitions corresponding to elastic behaviour, leading to larger areas on the time-history 
curves of relative accelerations (see, for instance, the highlighted area in Figure 3.10b)) and 
successively larger areas on the curves regarding the relative velocities and displacements. It was seen 
in this example that the displacement demand in the elastoplastic model with larger period is 100% 
higher than for the case of the elastoplastic model with shorter period. Thus, in elastic-based seismic 
design procedures, it seems of fundamental importance to accurately estimate the fundamental period 
of the structure for the initial assessment of the seismic demand on the structure. This is arguably 
achieved using the simplified formulas available, which represent the first step in those design 
procedures.  

Figure 3.10
Figure 3.10

Figure 3.11
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deformations will control the dynamic response, which explains the superior 
agreement between the elastoplastic models and the rigid-plastic model. 
As may be seen in ground acceleration curve in Figure 3.9 for the Asymmetric ground 
motion, the initial value of the ground acceleration is 1.71 m/s2. Thus for this period, 
the rigid-plastic model will not experience plastic deformation, as this value is lower 

then given by 

until the capacity 

the right-hand-side of Figure 3.9, it may be concluded that the 
obe Earthquake used in this study has a clear asymmetric pattern. This 

the results concerning the dynamical response to the ground motion of 

than ay. Initially therefore, there is no relative motion for this model which may be 
confirmed observing the detail given in Figure 3.12b), c) and d). For the case of the 
elastoplastic models, there is limited motion due to the onset of elastic behaviour: As 
a consequence of dynamical equilibrium, the initial value of the relative acceleration 
is –1.71m/s2, decreasing as the restitution forces increase with the relative 
displacement; The kinetic energy accumulated during this period is dissipated when 
the capacity of the plastic hinge is reached, point (1) in Figure 3.12a). 
The first time there is a reversal of the ground motion, the rigid-plastic model 
experiences relative deformations due to the onset of plastic behaviour in the opposite 
direction of the ground acceleration. The relative acceleration is 
ar=+2.0−5.12=−3.12m/s2. Conversely, the elastoplastic models had been in the plastic 
domain in the positive direction, which means that at the time of the reversal of the 
ground motion, point (2) on Figure 3.12b), ar=−2−5.12=−7.12 m/s2.  
The development of the relative accelerations from the first to the second reversal of 
ground motion is similar to that of the Symmetric accelerogram: Initially, point (2) on 
Figure 3.12a), the elastoplastic model presents a “smooth” transition 
of the plastic hinge is exhausted in the opposite direction, point (3) in Figure 3.12b). 
From this point until there is a new reversal in the motion of the ground, the relative 
acceleration remains constant, point (4) in Figure 3.13c) and d). On the other hand, 
the rigid-plastic model exhibits a constant value for the relative acceleration during 
the whole period. After the second reversal of ground motion, the relative acceleration 
is given by ar=2.0+1.71=3.71 m/s2 for the three models, as they were in plastic 
behaviour in the same direction. The relative acceleration remains constant for the 
three models until relative velocity is zero. At this instant, the ground acceleration is 
again 1.71 m/s2, and is therefore insufficient to induce plastic behaviour on the rigid-
plastic model, i.e. insufficient to induce relative motion of the mass, point (5) in 
Figure 3.13b). The elastoplastic models perform a transition similar to the initial 
period from (0) to (1), but in this case starting from a plastic state instead of from rest 
conditions. This induces a reversal in the motion of these models, as seen in the time-
history curve referring to relative displacements, Figure 3.13d), the magnitude of 
which is directly related to the period of the structure as explained in the previous 
paragraph.  

Kobe Record 

Observing the plots on 
record of the K
explains why 
the rigid-plastic and elastoplastic models have striking similarities with the results 
corresponding to the Asymmetric accelerogram, compare Figure 3.14 and Figure 
3.16.   
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Figure 3.10 -Dynamical response from t=0s to t=0.3s of the rigid-plastic model and of the elastoplastic model with 
fundamental period of 0.2s subjected to the Symmetric ground motion 

Figure 3.11 -Dynamical response of the rigid-plastic and elastoplastic models until t=1.6s subjected to the Symmetric ground 
motion 

Figure 3.12 -Dynamical response from t=0s to t=0.3s of the rigid-plastic model and of the elastoplastic model with 
fundamental period of 0.2s subjected to the Asymmetric ground motion 

Figure 3.13 - Dynamical response of the rigid-plastic and elastoplastic models until t=1.6s subjected to the Asymmetric ground 
motion 

Figure 3.14 - Dynamical response of the rigid-plastic and elastoplastic models until t=1.6s subjected to the Kobe ground 
motion 
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3.2.2.4 Dynamical response of the rigid-slip model and Takeda model 

 is well known that the hysteretic models discussed previously allow only crude 
stimations of the dynamical response of structures built with materials with limited 

energy dissipation capacity, such as reinforced concrete. Here, the dynamic response 
of the rigid-plastic model with pinching is presented and its results compared with the 
more sophisticated Takeda model. 

Symmetric accelerogram 

The dynamical response to the Symmetric ground motion of the rigid-plastic model 
with pinching and of the Takeda model with short and long period are depicted in 
terms of time-history curves in Figure 3.16. It may be observed that these models 
yield much closer results to one another for this ground motion than those discussed 
in the previous section. This is mainly due to the hysteretic behaviour of the present 
models, which have similar performances in terms of energy dissipation capacity. In 
fact, observing their hysteretic curves in Figure 3.2b) and Figure 2.30, it may be 
concluded that the consideration of pinching effect implies periods of significantly 
smaller resistance (non-existent for the case of the rigid-slip model) to imposed 
deformations from the ground motion. Therefore, these models are more prone to 
accumulate kinetic energy that has to be dissipated mainly by plastic behaviour at the 
hinges. Therefore, they more easily tend to experience a reversal in relative motion of 
the mass. This leads to larger amplitudes of motion, as observed when comparing 
Figure 3.11and Figure 3.16. 
In Figure 3.15 one may see a detail of the response for the first 0.3s of the rigid-
plastic model with pinching and of the Takeda model with short period, conveniently 
explaining the deviations between these two models:  

 From the beginning of the actuation of the ground motion, until shortly after its 
first reversal, points (2) and (3) in Figure 3.15, the rigid-plastic model with 
pinching and the Takeda model develop the same response as the rigid-plastic 
model and the elastoplastic model respectively (compare with Figure 3.10): The 
rigid-plastic model immediately undergoes plastic behaviour because the 
magnitude of the ground motion, 2.56 m/s2, is larger than ay, 2.0m/s2. When there 
is a reversal in the ground motion, the models remain in the plastic domain until 
the kinetic energy is dissipated, point (2) in Figure 3.15c). The Takeda model 
initially displays elastic behaviour, which explains the “smooth” transition from 
point (0) to (1) in Figure 3.15a) and e). When the capacity of the plastic hinge is 
exhausted, the model experiences plastic behaviour and proceeds until point (3), 
with the same value for the relative accelerations as in the rigid-slip model. 

 When the rigid-plastic model with pinching again undergoes rigid-behaviour, the 
ground acceleration is large enough to immediately impose a change of sign in the 
bending moment at the plastic hinge. This means that there will be a period during 
which the model is not able to resist the external forces associated with ground 
motion. The length of this period is directly related with the residual deformation 
previously imposed, as resistance resumes only when the model is back to its 
original position. In this particular case, the period corresponds to the time interval 
between points (2) and (5) in Figure 3.15a), during which dynamical equilibrium 
imposes ar(t)=-ag(t)=–2.56m/s2

 (see the equation (3.19) corresponding to slip 
behaviour). On the other hand, the Takeda model performs a smooth transition, as 

It
e
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for the case of the elastoplastic model, but with two different slopes, as may be 

is are very similar for the three models, despite 
their differing shapes. This explains the consequent agreement between both models 

 in terms of relative velocities and displacements. 

rical to the value of the ground acceleration at that time, 

nce. This explains the onset of 

g and 

seen in Figure 3.15e) between points (3) and (5). 

The models proceed with the same value for relative acceleration until there is a 
reversal of ground motion, point (6) in Figure 3.16b). Until point (7) in the same 
figure, their behaviour is of the same type as explained above. It should be noted in 
the time-history curve for the relative accelerations, Figure 3.16b), that during this 
period the areas above the time-ax

on the dynamical response

Asymmetric ground motion 

The time-history curves depicting the response of the rigid-plastic model with 
pinching and of the Takeda models with short and long period subjected to the 
Asymmetric ground motion are shown in Figure 3.17.  
As for the case of the Symmetric ground motion, the first part of the dynamical 
response to the Asymmetric ground motion of the rigid-plastic model with pinching, 
from point (0) to point (2) (in Figure 3.17a), b) and c)), is identical to the rigid-plastic 
model. The same similarity is found between the Takeda and the elastoplastic models. 
As explained above, the response develops in different patterns at the start of the first 
unloading branch, point (2). At this instant, the ground acceleration is sufficiently 
large to induce a change of sign on the bending moment at the plastic hinge for the 
rigid-plastic model with pinching. Therefore, the relative acceleration has an 
intermediate plateau symmet
1.71 m/s2. When the model is back to its original position, point (3), it immediately 
experiences plastic deformations in the opposite direction, due to the kinetic energy 
developed during the previous period of zero resista
plastic behaviour in both directions despite the magnitude of the ground acceleration 
being smaller than ay in one direction, converse to what happens in the “classic” rigid-
plastic model, see section 3.2.2.3. When there is a new reversal in ground motion, 
shortly before t=1.2s, the rigid-plastic model with pinching and the Takeda models 
had been experiencing plastic behaviour in the same direction. Therefore, they will 
proceed with the same value of relative acceleration of the mass, ar =−2−5.12=−7.12 
m/s2. In fact, as one may see comparing Figure 3.17 and Figure 3.16, from this point 
on, the dynamical response of the three models to the Asymmetric ground motion is 
quite similar to that corresponding to the Symmetric ground motion. 

Kobe record 

The results describing the response of the rigid-plastic model with pinchin
Takeda models to the Kobe record may be appreciated in Figure 3.18. The dynamical 
response to this record is similar to the Asymmetric ground motion. As referred to 
previously, this relates to the similarity between both accelerograms. However, here 
the results associated with the rigid-plastic approach are much closer to the reference 
model, which is the Takeda model. Also, it may be observed that this similarity is 
found for both levels of fundamental period considered. This relates to the intensity of 
the ground motion, which is able to induce significant levels of plastic deformations, 
reducing the role of elastic behaviour on the overall response of the models.  
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Figure 3.1 to t=0.3s of the rigid-slip model and of the Takeda model with fundamental period of 5 -Dynamical response from t=0s 
0.2s subjected to the Symmetric ground motion 
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3.2.2.5 Conclusions 

The simple study presented here regarding the dynamic response of rigid-plastic 
scillators provides the following conclusions: 

The rigid-plastic model provides accurate results as long as the dynamic response 
is controlled by plastic behaviour. This was observed through poor agreement 
between this model and the elastoplastic model for the Symmetric ground motion. 

his is unsu iven the large capacity of the oscilla ist horiz
forces relative to the ground motion demand. When the gro  intens

significantly, reaching quite satisfactory levels.  
 Such results could be anticipated using the ratio ay/PGA. Thi s to provide an 

effective estimate of the accuracy of rigid-plastic models predicting dynamic 
response of oscillators. In fact, ay/PGA expresses the lateral strength capacity of 
the oscillator in terms of the maximum demand from ground motion. The larger 
this parameter, the poorer the predictions from the rigid-plastic model. In the case 
of the Symmetric ground motion ay/PGA is 80%, for the Symmetric ground 
motion it is 40%, and for the part of the Kobe accelerogram it is 25%. 
The rigid-plastic m  pinching appears to be a very accurate tool in

dissipation capacity, such as reinforced concrete oscillators. The correlation with 
the Takeda model was remarkably close, both in terms of predicting maximum 
demand and trend in which the dynamic response develops. These results are even 
more satisfactory attending to the simplicity ulation and reduced 
computational effort required to perform NLTHA using the rigid-plastic model 
with pinching. As for the rigid-plastic model, the accuracy of the rigid-plastic 
model with pinching worsens as the ratio ay/PGA increases. However, the fact that 
as lower energy n capacity increases the influence of plastic behav

on the overall dynam e even at higher levels of ay/PGA. 

displacement demand induced in the inelastic s  fact, all 4 hysteretic 
models used in this study reported higher displacement demand for the 
Asymmetric and Kobe ground motions, especially those with higher dissipation 
capacity. It was seen that asymmetric waves are less prone to induce reversal of 
motion in the system and therefore have a higher potential for “magnifying” the 
deformations in one direction after each cycle.  

3 Rigid-plastic structures 
 the following, the tr mic response of rigid-plastic structures 

 section 3.1.1, two important properties of these systems were discussed: 

 The displacement field in the structure may be given as a function of a single 
displacement amplitude, as there is only one mode of vibration considered, i.e. 
that associated with the shape of the collapse mechanism. 

o

 

T rprising g tors to res
und motion

ontal 
ity 

(in terms of acceleration) increased (Asymmetric and Kobe accelerograms), 
agreement between the elastoplastic and rigid-plastic models improved 

s seem

odel with   
predicting the dynamic response of rigid-plastic oscillators with limited energy 

 of form

h dissipatio
ic respons

iour 

 The higher the degree of asymmetry of the ground motion, the higher the 
ystem. In

3.2.
In eatment of the dyna
designed to develop a chosen collapse mechanism is presented.  
In
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 The relationship between lateral strength demand vs. displacements is of the same 
type as the hysteretic relationships at the plastic hinges, i.e. rigid-plastic with or 
without the consideration of pinching according to the assumptions at the plastic 
hinges. 

Bearing this in mind, rigid-plastic structures designed to develop a collapse 
mechanism may be conceived as assemblages of rigid bodies where the only source of 
internal displacements is due to plastic deformations at the yield zones. Thus, they can 
be treated as rigid-plastic oscillators and benefit from the corresponding advantages in 
the treatment of the dynamic response. 
For illustration purposes, consider again the case of the reinforced concrete plane 
frame of section 3.1.1.2. We assume that the only lateral demand is due to base 
motion, Figure 3.19a). Since we are dealing with a reinforced concrete structure, we 
further assume that the behaviour at the plastic hinges is of the rigid-plastic type with 
the consideration of pinching, Figure 3.2b). This decision is justified by the ability of 
this hysteretic relationship to successfully predict the behaviour of reinforced concrete 
plastic hinges in cyclic loading, as seen in the previous section.  
The structure is designed to develop the collapse mechanism in Figure 3.19b), i.e. that 
associated with the formation of flexural plastic hinges at the ends of the beams and at 
the base of the columns on the first floor.  

ion of the equation of motion of a rigid-plastic 

or, dr. 

The first step towards the formulat
structure is to choose a displacement amplitude so that the displacement field may be 
fully defined. Here, we choose to represent any relative displacement in the deformed 
shape of the structure proportional to the relative displacement at the top flo
Therefore, the displacement shape vector is given by 

i
i

h
H

φ =
                                                      (3.21) 

and the displacement at each floor i by:  

Figure 3.19 - a) Example of a 4-story-plane frame and b) Suitable collapse 
mechanism 
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r,i i rd d= φ ⋅                                                   (3.22) 

Of course, the relative velocity and accelerations at each floor i are expressed as in 
(3.22): 

r,i i rv v= φ ⋅                                                   (3.23) 

r,i i ra a= φ ⋅                                                   (3.24) 

In (3.23) and (3.24) vr and ar represent the relative velocity and acceleration of the top 
floor, respectively. 
It is obvious that the frame has rigid behaviour when all the plastic hinges are in the 
rigid domain. From this it follows: 

j P, j rIf M M   Rigid behaviour  a (t) 0< ⇒ ⇒ =
                    (3.25) 

When the collapse mechanism is activated, two situations may take place: 

 has plastic behaviour, i.e. all plastic hinges are in the plastic branch, or  The system
 The systems has slip behaviour, i.e. all plastic hinges are in the branch of zero 

resistance 

For each time t of plastic or slip behaviour, dynamic equilibrium may be expressed 
considering the virtual work equation accounting for the external work from the 
inertia forces, mi·ar,i(t), the external work from the base motion loading, mi·ag(t), and 
the internal work at the plastic hinges for virtual displacement δ. 
Figure 3.20 depicts the external forces field in this frame, in the coordinate system 
moving with the ground, when the collapse mechanism is activated in the positive 
direction assuming that the system is subjected to positive ground motion and moving 
with positive relative acceleration. The virtual displacement field, δi, is also shown for 
positive increments. 
From Figure 3.20 one can write the virtual work equation in this system according to 

Virtual 
displacement 
at floor i

External force 
at floor i

Inertia force 
at floor i

m4 x agm4 x φ4 x arφ4 x δ

ar

Figure 3.20 -External force field in the 4-storey frame when the collapse mechanism 
in the positive direction is activated 

1 2
ag

87

6

43

5

m3 x ag

m1 x agm1 x φ1 x ar

m3 x φ3 x arφ3 x δ

m2 x agm2 x φ2 x ar

φ1 x δ

φ2 x δ

δ
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the sign of the displacement increments: 
10 4 4

2
j i i r

j 1 i 1H= =
i i g

i 1

10 4 4
2

j i i r

M m a (t)

M m a (t) m
H

=

δ
− ⋅ − ⋅φ ⋅ ⋅δ − ⋅

δ
− ⋅ + ⋅φ ⋅ ⋅δ +

∑ ∑ ∑

∑ ∑ ∑

 be noted in equations (3.26) that the value of Mj depends on which direction 
the collapse mechanism is activated, and of the type of behaviour at the plastic hinges. 
For instance, in the situation depicted in F
mechanism is activated in the positive direction and there is plastic behaviour, the 
bending moment at plastic hinges 3, 5, 7 and 9 i

ending capacities. Either way, according to our 
assumptions concerning same lateral capacity of the structure regardless of the 
direction of the loading, the sum of bending capacities

m a (t) 0   if   0φ ⋅ ⋅δ = δ >

i i ga (t) 0   if   0⋅φ ⋅ ⋅δ = δ <
j 1 i 1 i 1= = =        (3.26) 

It should

igure 3.19, i.e. when the collapse 

s the corresponding positive bending 
capacity, whereas on the opposite side of the beams it is the negative one. If the 
collapse mechanism were to be activated in the negative direction, i.e. to the left-hand 
side of the figure, then the bending moments in the left-hand end of the beams would 
be the negative flexural capacities and the bending moments on the right-hand side of 
the beams would be the positive b

∑10
jj 1=

M  i

of rigid-plastic oscillators, the condition in 

the kinetic energy is 

Here 

s the same in both 

directions of the collapse mechanism.  
Of course, if the system is in slip behaviour, then all the bending moments at the 
plastic hinges are zero regardless of the direction of the collapse mechanism. 
It should be noted that as for the case 
which plastic or slip behaviour takes place is based on the relative velocity and the 
strength demand at the plastic hinges: 

 The system undergoes plastic behaviour when all the plastic hinges reach their 
strength capacities, and it remains in plastic behaviour until 
dissipated. 

 The system undergoes slip behaviour when the strength demand at the plastic 
hinges changes sign and remains in slip behaviour until the residual internal 
deformations are not recovered. 

Bearing this in mind, the equations in (3.26) may be re-written according to the type 
of behaviour at the structure, see (3.27).  

10
P , jj 1

M +=∑  and 10
P , jj 1

M −=∑ are the sum of the bending capacities when the 

collapse mechanism in the positive and in the negative direction are activated, 
respectively. As referred to above, we assume that these quantities are the same 
regardless of the direction of the collapse mechanism, since this yields the same 
“overall” strength capacity of the structure against horizontal forces. 
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10

P , j4 4
j 12

i i r i i g r
i 1 i 1

10

P , j4 4
j 12

i i r i r
i 1 i 1

4
2

M
m a (t) m a (t)   if   v (t) 0

H
Plastic behaviour

M
m a (t) m a (t)   if   v (t) 0 

H

Slip behaviour :     m a (t)

+
=

= =

−
=

= =

⎧
⎪
⎪ ⋅φ ⋅ = − − ⋅φ ⋅ >
⎪
⎨
⎪
⎪

⋅φ ⋅ = + − <⎪
⎩

⋅φ ⋅ = −

∑
∑ ∑

∑
∑ ∑

∑
4

∑

i g⋅φ ⋅

ation in (3.27) can be simplified: 

i i r i i g
i 1

m a (
=

⋅φ ⋅

[ ]
i 1

t)  

                                             if   M (t) 0 with j 1,10    and    v (t) d (t) 0
=

= ∈ ⋅ <

     

j r r

(3.27) 

Introducing the terms in (3.28), the equ
4

2
i im m  ∗ = ⋅φ∑

i 1

4
2

10 10

m

= ,  with M
H

=

⋅φ∑

4

i i
i 1

m
=  =

⋅φ
κ

∑
                         (3.28) 

i i
i 1

*
* *PM

=

y P P , j P , j
j 1 j 1

F M M+ −
= =

= =∑ ∑

Thus for this system, 

]

]

, j

*
y

r g r j P , j*

r g j

F
a (t) a (t)   if   v (t) 0 and M M  with j 1,10  

m
Slip behaviour :     a (t) a (t)   if     M 0 wit

+

−

⎣

⎪ ⎡= + − κ ⋅ ≤ = ∈ ⎣⎪⎩
= −κ ⋅ = ] r rh j 1,10  and v (t) d (t) 0⎡∈ ⋅ <⎣

(3.29) 

The analogy between equations in (3.19) and (3.29) is obvious, in accordance to the 
fact that rigid-plastic structures may be treated as rigid-plastic oscillators. However, 
two important points should be made before proceeding: 

 The parameters m* and κ are solely dependent on the shape of the collapse 
mechanism and the mass distribution. The corresponding expression given in 
(3.28) is valid for any lumped mass structure designed to develop a chosen 
collapse mechanism. For continuous systems, it is easy to understand from the 
discussion above that the expressions would be as a function of integrals
than sums (cf. the discussion in section 4.2 about equations 4.13 and 4.14). 

 frame alone, 
where the dissipation takes place at flexural plastic hinges, all of them submitted 
to the same rotation demand, dr/H at the same time. Other types of structural 
systems have different mechanisms of energy dissipation. However, the equations 
of motion in any rigid-plastic structure may be derived in the same way, as in 

*
y

r g r j P*

F
a (t) a (t)   if   v (t) 0 and M M  with j 1,10

mPlastic behaviour

⎧
⎡= − − κ ⋅ ≥ = ∈⎪⎪

⎨

 rather 

 The parameter Fy*=MP*/H in equation (3.28) is characteristic of this
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(3.26), where one could conclude that the parcel corresponding to the dissipation 
is always in the form Fy*·δ. 

Therefore, only two steps are necessary in determining the dynamic response of a 
rigid-plastic structure designed to develop a collapse mechanism. 

 From the shape of the collapse mechanism, determine m* and 
 Identify the energy dissipation mechanism to determine Fy*.  

Writing the equations of motion of the structure under ground motion is thus an 
automatic process. 

ll determine the condition describing the transition from rigid to 
 from rigid to slip behaviour. Consider that the system starts 

from rest and that the ground motion increases with time. It is obvious that at the 
onset of plastic behaviour we have ar(t)=0. Attending to the equations regarding 
plastic behaviour in (3.29), one finds that the ground acceleration at the onset of 
plastic behaviour, ay, in rigid-plastic structures is given by: 

κ and  

However, we must sti
plastic behaviour and

*
y

y *

F
a

m
=

κ ⋅
                                                  (3.30) 

In rigid-plastic structures, a  has exactly the same characteristics as in rigid-

, 

y
oscillators: 

 If the structure starts from rest, then plastic behaviour takes place as soon as the 
ground acceleration exceeds a  in one of the directions

plastic 

y

 If the system has rigid behaviour and |ag(t)|<ay, then the lateral strength demand is 
insufficient for all plastic hinges to undergo plastic behaviour and activate the 
collapse mechanism. 

 If pinching is considered, then the change of sign on the strength demand at the 
plastic hinges takes place when ag(t)=0 

Thus, the general formulation of the equations of motion for rigid-plastic structures is:  

]

*
y

r g j P , j r*

*
y

r g j P , j r*

F
a (t) a (t)  if  f (t) f    and    v (t) 0

mPlastic behaviour:    
F

a (t) a (t)  if  f (t) f    and    v (t) 0
m

Slip behaviour :          a (t)

+

−

⎧
= − − κ ⋅ = ≥⎪⎪

⎨
⎪ = + − κ ⋅ = ≤⎪⎩

= −κr g j ⎣a (t)  if  f (t) 0 with j 1, n   ⎡⋅ = ∈ r r

*
y

r g *

F
Rigid behaviour :       a (t) 0  if  a (t)= <

and    v (t) d (t) 0⋅ <

mκ ⋅
(3.31) 

between the dynamic response of rigid-plastic oscillators and rigid-plastic structures is 

where  

n is the number of yield zones  
fj(t) is the strength demand at the j-th plastic hinge.  
fP+,j, fP–,j are the capacities at the j-th plastic hinge when the system is moving in the 
positive or in the negative direction, respectively. 

Comparing the system of equations in (3.19) and (3.31), it is seen that the analogy 
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complete. This result is the very basis of the RPSD method. In fact, we can conclude 
that the dynamic response of a rigid-plastic structure to a ground motion ag(t) is the 
same as for a rigid plastic oscillator having Fy=Fy*, m=m* and submitted to the same 
ground motion magnified by a factor κ.  
Figure 3.21 resumes the procedure for the determination of the dynamic response of a 

der consideration. In the following, m* will be called generalised mass 

t be treated as rigid-plastic oscillators. Therefore, one may 

rigid-plastic structure from an equivalent rigid-plastic oscillator, applied to the 
structure un
and Fy* the generalised yield strength. 

Conclusions 

It was seen in this section that rigid-plastic structures designed to develop a chosen 
collapse mechanism migh
benefit from the simplicity of rigid-plastic NLTHA discussed in section 3.2.1.2 to 

Figure 3.21 -From a rigid-plastic structure to a rigid-plastic oscillator. 

9

7

5

3 4

6

8

10

21

m4

m3

m2

m1

1. Rigid-plastic
    Structure

2. Choice of a suitable 
    collapse mechanism

Equivalent rigid-

H

hi

ag

3. Determination of 4. 
    m*, k and Fy*     plastic oscillator

4
2

i i
i 1
4

m m   ∗

=

= ⋅φ∑ m*

H

κag

M*
P

i i
i 1
4

2
i i

m
=  

m

=

⋅φ

κ

⋅φ

∑

∑
i 1

10*
* *P
y P P, j

j 1

M
F = ,  with M M

H

=

=

= ∑

 104



The RPSD method 

assess the dynamic behaviour of rigid-plastic structures.  

tic deformations at the yield 

mic demand on reinforced concrete 
structures designed according to the RPSD method will be discussed. The concept of 

introduced as well as a conservative procedure to define 
ctures subjected to strong ground motion.  

yield zones. 

section 1.1. This decision is constrained by a large number of parameters, such as the 
nsive distribution of dissipation capacity 

, F . The generalised mass, m* and the factor κ are 

d a nding t
rigid-plastic dynamics, one 

ance criterion able to describe the level of damage accepted in 

r a sufficient number of records rep
n . 

The dynamic response of the structure may be assessed as soon as the collapse 
mechanism is chosen and the dissipation capacity at each yield zone is known. 
Moreover, as in the case of rigid-plastic oscillators, the magnitude of displacements in 
the structure is directly related with the extension of plas
zones. Therefore, one may easily relate the magnitude of dynamic response to the 
extension of damage, which as detailed below, yields significant advantages in 
relation to performance-based design philosophy. 

3.3 Seismic demand 
In this section, the basis for the estimation of seis

rigid-plastic spectrum will be 
the strength distribution in stru
Since the discussion will refer to reinforced concrete structures, we shall only 
consider the rigid-plastic model with consideration to pinching, see Figure 3.2b) in 
section 3.1.1.1. In section 3.2.2 it was shown that this is the rigid-plastic model that 
most adequately describes the hysteretic behaviour of reinforced concrete 

3.3.1 Rigid-plastic response spectra 
The initial task in modern seismic design philosophy deals with the selection of a 
suitable collapse mechanism ensuring ductile behaviour during ground motion, cf. 

avoidance of brittle modes of failure, exte
throughout the structure and possible limitations of ductility in the yield zones, which 
in turn are directly related to the level of damage accepted after the earthquake event. 
However, at the start of the design process, a significant proportion of the data leading 
to the choice of a suitable collapse mechanism is available, since it is highly 
dependent on the geometry of the structure and its mass distribution. The latter 
parameters are often out of the scope of the structural engineer since they relate more 
to architectural considerations. 
In rigid-plastic dynamics, the major implication for the above deals with the fact that 
after the engineer chooses a suitable collapse mechanism, the remaining unknown 
quantity to define the equations of motion of the structure is the generalised yield 
strength of the structure y*
automatically given after the choice of the suitable collapse mechanism, see 
expressions (3.28). 
Bearing this in mind an tte o the reduced computational effort required to 
perform NLTHA in possible way to determine Fy* is to 
follow the procedure: 

1. Define a perform
the structure during strong ground motion. 

2. Conside resentative of the seismicity at the 
implementatio  site

 105



Rigid-plastic seismic design of R/C structures 

3. Carry out a number of rigid-plastic NLTHA adjusting the parameter Fy* until the 
performance criterion is reached within acceptable tolerance.  

otion of a rigid-plastic oscillator. 
However, in the RPSD method this is not necessary. 
Consider again the equations of m

yF
r gmPlastic behaviour:    

P r

r

r g r

nd    v (t) 0

    v (t) 0
m

Slip behaviour :          a (t) a (t)      if    f (t) 0   and    v (t)

a (t) a (t)      if    f (t) f    a
⎧

= − − =⎪ ≥
⎪
⎨

y
r g P

F
a (t) a (t)      if    f (t) f    and⎪ = + − =⎪ ≤

⎩
= − = ⋅ r

y
r g

d (t) 0

F
Rigid behaviour :       a (t) 0   if    a (t)

m

<

= <

(3.19) 

It is clear that the dynamic response of rigid-plastic oscillators is solely depend
the parameter ay=Fy/m. Rigid-plastic oscillators with the same value for ay
develop same dynamic response.  
This property of rigid-plastic oscillators yields the possibility for constructing a 

following, this spectrum will be called the igid-

mponent of the Sylmar 

ent on 
 will 

spectrum that can express any maximum dynamic response parameter, Rmax, as a 
function of ay for any ground motion. Rmax may be maximum relative acceleration, 
velocity or displacement. In the r
plastic spectrum and will have the designation RPS in figures. 
The dashed lines in Figure 3.22a) and b) show two rigid-plastic spectra in terms of 
peak relative displacement, dmax. The hysteretic model considered here is the rigid-
plastic with slip behaviour. The first refers to the N-S component of the JMA record 
of the Kobe Earthquake, 1995. The second refers to the 360-co
record of the Northridge, California Earthquake, 1994. The corresponding 
accelerograms are given in the Appendix.  
As may be observed, the rigid-plastic spectrum intercepts the ay-axis at the value of 

JMA Record 
PGA=0.82g
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Sylmar Record 
PGA=0.84g
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                              a)                                                                       b) 

Figure 3.22 -Rigid-plastic spectra in terms of peak relative displacemen ax, for the t, dm
a) JMA N-S record of the Kobe Earthquake, 1995 and b) Sylmar 360 record of the 

Northridge Earthquake, 1994  

ay (m/s2)

dmax (m)

RPS

Scaled RPS
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PGA, since any oscillator having ay≥PGA remains in the rigid domain, which implies 
no relative deformations whatsoever during the whole ground motion. 
On the other hand, if ay=0, then the dynamic response of the oscillator is solely given 

and Northridge 

it 
is 

responding to the scaled records 

of motion for rigid-plastic structures: 

by the equation corresponding to slip behaviour in (3.19). Therefore the motion of the 
mass is symmetric to the ground motion. This implies that in Figure 3.22a) and b) the 
values of dmax for ay=0 are the peak ground displacement of the Kobe 
records, respectively. Of course, if the spectra in Figure 3.22a) and b) were given in 
terms of maximum relative velocities, vmax, or accelerations, amax, then one would read 
either the peak ground velocity or PGA for each ground motion for ay=0. 
The rigid-plastic spectra are of great practical value due to the following properties: 

1. The rigid-plastic spectrum of a ground motion scaled by a factor α is given by the 
original curve scaled by the same factor α in both Rmax and ay directions. This is 

αeasily recognised by affecting the expressions in (3.19) by a factor , whereby 
appears that the dynamic response of an oscillator with α·ay subjected to α·ag(t) 
α times the dynamic response of an oscillator with ay and subjected to ag(t). Thus, 
the rigid-plastic spectra of the records mentioned above, scaled up so that the PGA 
equals 1g (the solid lines in Figure 3.22a) and b)), are obtained by magnifying the 
scale of both axes of the corresponding broken lines by the factors 1/PGASylmar 
and 1/PGAJMA respectively, with PGA in g units. 

2. If one were to reproduce the seismicity of a region by a sufficient number of 
accelerograms, then the envelope of all the corresponding rigid-plastic spectra 
would give the rigid-plastic spectrum characteristic for that region. Figure 3.23 
shows the envelope of the rigid-plastic spectra cor
in Figure 3.22a) and b).  

The problem now regards the use of the rigid-plastic spectra in the case of rigid-
plastic structures. Clearly, the solution is to be found in the complete analogy between 
rigid-plastic oscillators and rigid-plastic structures. 
Consider again the system of equations 

Scaled Sylmar & JMA 
Records 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10ay (m/s2)

dmax (m)

Figure 3.23 -The GRPS of the scaled Sylmar and JMA records so that PGA=1g in 
terms of peak relative displacement, dr,max 
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]
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F
Rigid behaviour :       a (t) 0  if  a (t)

m

⋅ <
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κ ⋅

(3.31) 

Dividing the expressions in (3.31) by a factor κ, we conclude that the dynamic 
response against a ground motion ag(t) of a rigid plastic structure with ay=Fy*/m* 
divided by κ is the same of an equivalent rigid-plastic oscillator with ay=Fy*/(m*· κ). 
In other words, the dynamic response of a rigid-plastic structure with ay=Fy

d: In fact, having the 
f the maximum 

*/ m* 
subjected to ground motion ag(t) is κ times larger than the dynamic response of a 
rigid-plastic oscillator with ay=Fy*/(m*· κ) subjected to the same ground motion. 
In practical terms, this means that the rigid-plastic spectrum of a structure designed to 
develop a chosen collapse mechanism during a given ground motion is reached by 
scaling, by a factor κ, the rigid-plastic spectrum corresponding to the case of the 
oscillators in the Rmax-direction.  
In the following, for the sake of simplicity, we attribute the designation of GRPS to 
the rigid-plastic spectra corresponding to the oscillators case. The letter G refers to 
general, since these spectra are solely dependent on the ground motion; The rigid-
plastic spectra which refers to the dynamic response of a specific structure designed to 
develop a specific collapse mechanism is designated as SRPS. 
Figure 3.24a) depicts the procedure to convert a GRPS into a SRPS.   
From the discussion above, it seems clear that the determination of the generalised 
yield strength in the structure, Fy*, may easily be carried out after the SRPS for a 
given structure and collapse mechanism has been determine
SRPS, one needs only to define the performance criterion in terms o
dynamic response parameter, R  and read off the corresponding vamax lue of Fy*. The 
procedure is shown in Figure 3.24b). 

Figure 3.24 -a) Transition from GRPS to SRPS and b) Determination of Fy* from 
Rmax 

00 * *
yF m ⋅ κya

maxR

ya

maxRSRPS GRPS= κ ⋅ SRPSa) b)

SRPS

GRPS

maxR

 108



The RPSD method 

At this stage it is possible to give the procedure in the RPSD method leading to the 

mentation site is available. 

on in terms of a maximum response parameter 
Rmax. 

2. Determination of the factor κ from the collapse m

y

determination of the generalised yield strength, Fy*, if the GRPS characteristic of the 
seismicity at the imple

1. Definition of a performance criteri

echanism. 
3. Definition of the SRPS from the GRPS, see Figure 3.24a). 
4. Read off the value of ay in the SRPS associated with Rmax, the graphical procedure 

in Figure 3.24b). 
5. Use equation (3.30) to derive F *: 

* *
y yF m a= κ ⋅ ⋅                                                 (3.32) 

Clearly, a large proportion of the simplicity and practical value of the RPSD method 
lies on the use of rigid-plastic spectra. In fact, if the GRPS characteristic of the 
seismicity is known, there is no need to perform NLTHA in order to derive the value 
of the generalised yield strength, Fy*, that makes the dynamic response completely 
defined. 
Most importantly however, is the fact that the rigid-plastic spectra avoid the use of 
any sort of artificial coefficients intended to adjust the dynamic response of the 
structure according to empirical observations, while lacking physical meaning. This is 

 
A. From the author’s point of view, this is 

gn procedures currently available, i.e. those 

liability of the spectrum for design purposes 

ypical of the regional seismicity is not an easy task at 

se 

because the values read from the SRPS are the actual values of the dynamic response 
of the structure. There is no need for any modal combination rules, since there is only 
one possible mode of vibration – that associated with the collapse mechanism. Also, 
reduction coefficients are unnecessary, as the results computed in the rigid-plastic
spectra are derived after rigid-plastic NLTH
a major advantage over the simplified desi
that, in one way or the other, still make use of elastic spectra. 
In the following, the discussion proceeds with the use of the rigid-plastic spectra for 
design purposes. A study evaluating the range of application of the rigid-plastic 
spectra in the ay domain will be given, and some recommendations will be proposed. 

Rigid-plastic spectra for design purposes  

The single most important feature of any spectrum used for design purposes is that a 
sufficient number of records are accounted for, so that the seismicity at the 
implementation site can be effectively reproduced. Generally, this number has to be 
rather high, as our knowledge of ground motion prediction is still rather limited. 
Therefore, the best way to increase the re
is to increase the number of records accounted for in it.  
However, identifying records t
all. (Priestley et al., 1996) suggested the following basic procedure to define a reliable 
ground motion scenario that can be used for design purposes: 

1. Identification of earthquakes sources in the region, i.e. active faults and their 
potential energy relea

2. Use of attenuation laws to predict expected ground acceleration intensity at the 
implementation site 
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3. Definition of the ground motion according to the source mechanism and travel 
path along different layers of soil filtering different types of waves 

4. Identification of maxima components such as duration, PGA, peak ground 

 

conomic and 

 
 is because the GRPS of Figure 3.25 accounts for the response of 
fore the tendency of lower response for higher lateral capacity is 

velocity (PGV), etc. 
5. Consideration of local soil conditions, expected directional effects and

geographical amplification. 

Furthermore, according to the importance of the structure and the risk accepted, one 
has to define the design intensity of the ground motion scenario. E
structural safety considerations have to be addressed simultaneously in this decision. 
It is out of the scope of this work to discuss in detail the aspects mentioned above, 
since these have more to do with seismic hazard analysis than with structural design.  
In the following, we discuss the characteristics of rigid-plastic spectra, assuming that 
they are composed of a sufficient number of records that represent the seismicity at 
the implementation site, and therefore can be used for design purposes.  
Consider for instance, the GRPS in Figure 3.25 in terms of peak relative 
displacement. This was computed from 15 artificially generated records based on the 
Friuli Earthquake, Italy, 1976. The records were generated at ICIST-IST, The 
Technical University of Lisbon, Portugal (Falcão, 2002) and they comply with the 
elastic response spectrum in EC8 (CEN, 2003) for intermediate soil (profile B), a 
viscous damping ratio equal to 5% and 0.3g<PGA<0.4g. The accelerograms are 
depicted in the Appendix. 
Clearly, the GRPS presents a different development than that shown in Figure 3.23. 
Generally, the GRPS in Figure 3.25 is given by a smooth, continuous descending line, 
opposing the spectrum in Figure 3.23 where lower levels of response for lower levels
of ay are found. This
15 records, and there
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GRPS - Friuli Earthquake, Italy, 1976dmax (m)
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Figure 3.25 -GRPS based on the Friuli Earthquake, Italy, 1976 
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effectively captured. 
However, some values of ay are still seen in the GRPS of Figure 3.25, for which the 
maximum relative displacement is lower than the maximum relative displacement 
corresponding to higher values of ay, i.e. in the following intervals: 

 0.12g≤ay≤0.18g 
 0.34g≤ay≤0.38g 
 0.44g≤ay≤0.46g 

This implies that potentially, there is more than one solution of ay for the same value 

of uncertainty regarding 

rresponding domain of ay is attained by drawing a line 
between the successive peaks. Figure 3.26 shows the corrected GRPS of the ground 

of Rmax associated with the chosen performance criterion for the structure in the 
resulting SRPS. Obviously, in a design situation one would normally choose the 
lowest possible value of ay, since in this way the performance criterion would be met 
at the lowest cost. However, there are two reasons to consider the highest value of ay: 

1. As discussed in the beginning of this section, the degree 
an earthquake that might hit the structure is still considerable. In other words, 
there is still a significant probability that the “actual” ground motion would 
impose a higher response demand in the region of ay than the structure was 
designed for. 

2. Potential enhancement of dissipation capacity in the structure due to strength 
enhancement at the plastic hinges will translate in a higher ay value for the 
structure and therefore higher response demand, which in turn compromises the 
fulfilment of the performance criterion.  

From this it follows that whenever the designer is faced with a SRPS having 
successive descending and ascending branches, a safe estimation of the maximum 
deformation demand in the co
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Figure 3.26 -Corrected GRPS based on the Friuli Earthquake, Italy, 1976 
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motion scenario based on the Friuli Earthquake, Italy, 1976.  
Finally, there is the problem of establishing th
spectra are expected to provide accurate results. In section 3.2.2 it was seen that the 

e value of ay, the more accurate the predictions based on rigid-plastic 
os
lo
with elastic defor e more accurate the rigid-plastic approach. 
In uctility demand at the yield zones, the better 

rotation in each plastic 

e limits within which rigid-plastic 

lower th
cillators. This is explained by the fact that, for the same displacement demand, the 
wer the lateral strength, the higher the magnitude of plastic deformations compared 

mations, and therefore, th
 other words, the higher the expected d

the results we can expect from the rigid-plastic spectra.  
For the case of structural systems designed to develop collapse mechanisms with 
flexural hinging, the expected ductility demand in terms of 
hinge, μθ,exp, may be defined: 

u,RPS
,exp

y
θ

θ
μ =

θ
                                                (3.33) 

where,  

θu,RPS is the maximum rotation demand at the plastic hinge predicted from the rigid-
plastic spectra and  
θy is the corresponding yield rotation. 

curve d  vs. a  and 
com
osc
Friu
assu
dis
The study was carried out as follows: 

 Two column oscillators were considered. The product m·L was identical for both, 
and equal to 50ton·m. Thus, for the same value of ay the
MP had to be assigned at the plastic hinge, cf. section 3.2.1.1. In the following, 

3.3 refers to the mass and 

If the ductility demand at all plastic hinges is sufficiently high, then the rigid-plastic 
spectra are able to provide accurate results. The problem now arises in determining 
the minimum requirement for the expected ductility demand. 
With this purpose in mind, a series of refined NLTHA were conducted to investigate 
the dynamic response of elastoplastic column oscillators, as in the sketch of Figure 
3.8b). For each elastoplastic oscillator, one would plot the max y

pare it with the GRPS shown in Figure 3.26. Therefore, each elastoplastic 
illator with the corresponding level of ay was subjected to the 15 records of the 
li Earthquake, Italy, 1976, scaled up so that PGA=1g. In this study we tacitly 
med that all the plastic hinges had enough rotation capacity to sustain the 

placement demand introduced by the ground motion scenario. 

 same bending capacity 

each of the column oscillators is designated by Col.#, # being the number 
corresponding to the length of the column in m. Table 
length of each of the column oscillators used in this study. 
It should be noted that the relation between vibration periods of both oscillators is 
expected to be the same regardless of the corresponding value of ay. In fact, the 
relation between the base shear, V, and top displacement, d, for elastic cantilever 

 Col. 2 Col. 5 
Mass (ton) 25 10 

Length of the column (m) 2 5 

  

Table 3.3 -Mass and length of the column oscillators 
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column oscillators is V=EI/L3·d. Noting that for the same ay we have the same 
bending moment distribution in the cantilever and in turn, EI, we find that 
TCol.5/TCol.2=2.5: 

3 3
Col.5 Col.5 Col.5

3 3
Col.2 Col.2 Col.2

T m L 10 5 2.5
T m L 25 2

×
= ⋅ = =

×
                             (3.34) 

20 different bending capacities for each column oscillator were considered. These 
cover the range corresponding to ay=0.05g to ay=1.00g. 
The design of each column oscillator follows 

 

 the procedure as seen in the example 
 section 2.3. The tensile reinforcement ratio at the plastic hinges is set to 0.8% 

and the width to height ratio of the cross-section, β, to 0.6. As discussed in section 
2.4.3, the overstrength factor to design the co
assume equal geometry for the cross-sections along the whole column, therefore 

sile reinforcement ratio outside the hinges is 1.4x0.8=1.12%. The 
reinforcem
a
T rties of the plastic hinge at the base of 
th stic hinge length, Δl, yield rotation, θy 

in

lumn outside the hinge is 1.4. We 

the ten
ent steel used is the same as investigated by (Pipa and Vercesi, 1998), 

nd has similar ductile properties to Grade B500 Tempcore steel.  
able 3.5 summarises the structural prope
e elastoplastic oscillators as well as pla

and expected rotation ductility, μθ,exp, according to the type of oscillator and the ay 
parameter. Δl and θy were calculated according to the procedure discussed in 
section 2.3. μθ,exp is given by the expression: 
 

max,GRPS
,exp

y

d
Hθμ =

⋅θ
                                              (3.35) 

where  

dmax,GRPS is maximum displacement read from
according to ay and  

θy 
ol.2 for the whole range of 

: 

 the GRPS in Figure 3.26 

H is the height of the column oscillator. 

As we can see in Table 3.5, it is expected that the shortest column oscillator will 
sbe ubjected to a much higher ductility demand (approximately 5 times higher in 

the whole range of ay). This is explained by the fact that Col.2 is 2.5 times shorter 
n Col.5, cf. etha quation (3.35). Moreover, the plastic hinge length, to which the 

is directly proportional, is approximately halved in C
ay. The latter is due to the fact that in these oscillators, Δl is essentially dependent 
on the shear span length, which is the column’s own length. Thus, attending to the 
equation in (2.10), we have the following ratio between plastic hinges lengths

Col.5

Col.2

l 0.25 h 5 2
l 0.25 h 2

Δ ⋅ + η⋅
= ≈

Δ ⋅ + η⋅
                                      (3.36) 

Table 3.4 -Properties of reinforcement steel 

fy,min (MPa) 519 
εsy (%) 0.26 

η 0.15 
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00 

The dynamic response of the column oscillators was calculated by direct 
integration of the equation of motion using the commercial program SAP20

 following features: with the
a) The Newmark method with γ=0.5 and β=0.25 as the numerical integration 

procedure. 
b) 0.05 for the damping ratio of the vibration mode. 
c) The flexural behaviour of the plastic hinge described the pivot hysteresis 

model with α and β set to 4 and 0.55, respectively. This is in agreement with 
the experimental work carried out by (Abrams, 1987) cf. section 2.2.1.3. 

 
ay  
(g) 

MP 
(kNm) 

h  
(m) 

V  
(kN) Δl (m) 

θy  
(x10-2 rad) 

T  
(s) μθ,exp 

Col.2 12.3 0.355 0.47 1.416 74.3 
Col.5 

0.05 24.5 0.222
4.9 0.805 1.08 3.480 13.0 

Col.2 24.5 0.370 0.39 0.899 66.6 
Col.5 

0.10 49.1 0.280
9.8 0.820 0.87 2.199 11.9 

Col.2 36.8 0.380 0.35 0.690 71.8 
Col.5 

0.15 73.6 0.320
14.7 0.830 0.77 1.682 13.0 

Col.2 49.1 0.388 0.32 0.572 73.2 
Col.5 

0.20 98.1 0.352
19.6 0.838 0.71 1.391 13.4 

Col.2 61.3 0.395 0.30 0.494 66.0 
Col.5 

0.25 122.6 0.380
24.5 0.845 0.66 1.200 12.1 

Col.2 73.6 0.401 0.29 0.439 58.2 
Col.5 

0.30 147.2 0.403
29.4 0.851 0.63 1.064 10.8 

Col.2 85.8 0.406 0.28 0.397 55.0 
Col.5 

0.35 171.7 0.425
34.3 0.856 0.60 0.962 10.3 

Col.2 98.1 0.411 0.27 0.364 44.9 
Col.5 39.2 0.861 0.57 0.881 

0.40 196.2 0.444
8.4 

Col.2 110.4 0.415 0.26 0.338 38.2 
Col.5 

0.45 220.7 0.462
44.1 0.865 0.56 0.815 7.2 

Col.2 122.6 0.420 0.25 0.315 25.3 
Col.5 

0.50 245.3 0.478
49.1 0.870 0.54 0.760 4.8 

Col.2 134.9 0.423 0.25 0.296 25.2 
Col.5 54.0 0.873 0.52 0.714 

0.55 269.8 0.494
4.8 

Col.2 147.2 0.427 0.24 0.280 20.0 
Col.5 

0.60 294.3 0.508
58.9 0.877 0.51 0.674 3.8 

Col.2 159.4 0.430 0.24 0.266 13.6 
Col.5 

0.65 318.8 0.522
63.8 0.880 0.50 0.640 2.6 

 
Table 3.5 -Expected rotation ductility at the plastic hinge for the different 

elastoplastic oscillators according to the value of ay 
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Table 3.5 -Expected rotation ductility at the plastic hinge for the different 
elastoplastic oscillators according to the value of ay (Cont.) 

 
ay  
(g) 

MP 
(kNm) 

h  
(m) 

V  
(kN) Δl (m) 

θy  
(x10-2 rad) 

T  
(s) μθ,exp 

Col.2 171.7 0.434 0.23 0.253 10.4 
Col.5 

0.70 343.4 0.535
68.7 0.884 0.49 0.609 2.0 

Col.2 183.9 0.437 0.23 0.243 10.2 
Col.5 

0.75 367.9 0.547
73.6 0.887 0.48 0.582 2.0 

Col.2 196.2 0.440 0.23 0.233 3.3 
Col.5 

0.80 392.4 0.559
78.5 0.890 0.47 0.558 0.6 

Col.2 208.5 0.443 0.22 0.224 1.5 
Col.5 

0.85 416.9 0.571
83.4 0.893 0.46 0.536 0.3 

Col.2 220.7 0.445 0.22 0.216 1.3 
Col.5 

0.90 441.5 0.582
88.3 0.895 0.45 0.517 0.2 

Col.2 233.0 0.448 0.22 0.208 0.1 
Col.5 

0.95 466.0 0.592
93.2 0.898 0.45 0.499 0.0 

Col.2 245.3 0.451 0.22 0.202 0.0 
Col.5 

1.00 490.5 0.603
98.1 0.901 0.44 0.482 0.0 

The results of the study can be seen in Figure 3.27. This represents the corrected 
GRPS of Figure 3.26 together with the curves dmax vs. ay for both Col.2 and Col.5 

Comparison GRPS vs. elastoplastic oscillators dmax (m)
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0.30

0.40

0.50

0.60

a  (g)0.00 y

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Figure 3.27 - Comparison between the GRPS and corresponding curves for each of 
the column oscillators 

 115



Rigid-plastic seismic design of R/C structures 

oscillators. 
Let us concentrate first on the development of the two elastoplastic curves alone. For 

 demand in both systems, and 

Regarding the agreement between the elastoplastic cur
point out two different regions for each oscillator in the range of a : Region 1, where 

n is of interest when defining the limits regarding the 
application of rigid-plastic spectra for design purposes. 
For the Col.5 oscillator, good agreement with the GRPS is reached for ay≤0.4g 
whereas for the Col.2 oscillator this range is extended to ay≤0.75g. For the first 
oscillator we have for ay=0.4g, dmax=0.28m, which is 15% higher than the prediction 
of the GRPS. For the Col.2 oscillator we have dmax=0.06m for ay=0.75g, which i
higher than the value estimated by the GRPS.  

ssured if the expected rotation 

tructure is designed so that only the chosen 
collapse mechanism is formed for periods of plastic or slip behaviour. The 

 is the subject treated below. 

low levels of ay (ay≤0.45g), the agreement between both curves is quite satisfactory 
considering the difference in stiffness between both oscillators. In fact, for ay≤0.15g 
there is virtually no difference between the displacement
for 0.15≤ay≤0.45g, the ration dmax,Col.2 /dmax,Col.5 does not exceed 2/3. From Table 3.5, 
it is seen that the expected ductility demand, μθ,exp, is at least 7 for both oscillators 
when ay≤0.45g, thus confirming the hypothesis of the RPSD method, i.e. the disregard 
of the elastic properties of the structural system for the dynamic response dominated 
by plastic deformations at the yield zones. For a >y 0.70g, the above-mentioned ratio is 
below 1/2, while for ay>0.85g it is below 1/3.  

ves and the GPRS, we can 
y

the estimates provided by the GRPS are either conservative or not exceeded by 25%; 
Region 2, where the estimates by the GRPS are considerably lower, thus unsafe, than 
the maximum displacement demand observed in the elastoplastic oscillators. 
Obviously, the first regio

s 25% 

Notably, from Table 3.5 we find that μθ,exp at those values of ay is remarkably close 
for both oscillators: 8.4 for Col.5 oscillator and 10.2 for Col.2 (the bold-faced values). 
Thus, it seems that the ability of the GPRS to accurately predict maximum dynamic 
response on oscillators with flexural yielding is a
ductility demand is at least in the range of the values mentioned above. This is indeed 
an important conclusion as it provides the user of the RPSD method with a 
quantitative parameter to assess beforehand the validity of the assumption concerning 
disregard for elastic behaviour on the overall dynamic response, and therefore, on the 
reliability of the estimations of the GRPS. 

3.3.2 Strength distribution in the RPSD method 
Until now we have been dealing with the dynamic response of rigid-plastic structures, 
accepting without reservations that the s

enforcement of the chosen collapse mechanism
From the discussion held in section 1.3, it is concluded that in plastic design, to ensure 
that a specific collapse mechanism takes place when the structure is subjected to a 
given load, the strength demand outside the hinges must not exceed the local strength 
capacity.  
In rigid-plastic structures subjected to ground motion, this is carried out by 
determining only one safe stress field from all the possible safe stress fields outside 
the hinges after the lower bound theorem of Plasticity. There are only two 
requirements for these stress fields: 
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a) Dynamic equilibrium must be satisfied at all times, taking into account both lateral 
loading due to ground motion and other loads at the time of the earthquake (e.g. 
dead or live loads) 

b) Yielding does not take place at any point in the structure outside the hinges. 

Clearly, there will be a number of possible safe stress fields in the structure. 
Therefore, once again, the engineer must make one more decision, related to the way 
the structure is going to carry the stresses imposed by the ground motion. The 
decision must be carried out according to engineering judgement after weighing up 
considerations with respect to structural performance and economy of design. 
Depending on the complexity of the structure, this task might be repeated until a 
satisfactory solution is found. There is no silver bullet for this problem, only 

d on the basis of the choice of an appropriate overstrength factor applied 

engineering judgement and experience. 
The determination of a safe stress field consists of three main steps: 

1. To choose a number of point values that make the structure statically determined. 
In structures under dynamic loading, the simplest way is probably to choose the 
yield capacities at the plastic hinges.  

2. Imposing dynamic equilibrium leading to the strength demand in the remaining 
part of the structure.  

3. Finally, the strength capacity in the part of the structure outside the hinges is 
determine
to the strength demand derived in the previous step. 

However, one problem remains for the determination of the safe stress field. This is 
the determination of the lateral external force field in the structure so that point 2 
above may be carried out. Obviously, here we assume that other loads present at the 
time of the earthquake remain constant with time. 
The lateral external force field in the structure is given by the general expression: 

i i i r gF (t) m a (t) a (t)⎡ ⎤= − ⋅ φ ⋅ +⎣ ⎦                                            (3.37) 

Once the generalised strength, Fy*, has been derived, the dynamic response of the 
g (3.31) 

and (3.32), the expression in (3.37) may be expanded according to the type of 
behaviour at the structure: 

structure against any ground motion is fully determined. Therefore, considerin

( )
( )

( )

i i i y g i r

i i i y g i r

i i g i

i i

F (t) m a a (t) 1  if v (t)>0 
Plastic behaviour:    

F (t) m a a (t) 1  if v (t)>0

Slip behaviour :          F (t) m a (t) 1   

Rigid behaviour :       F (t) m

⎧ ⎡ ⎤= − ⋅ −φ ⋅ κ ⋅ + ⋅ − φ ⋅ κ⎪ ⎣ ⎦
⎨

⎡ ⎤= − ⋅ +φ ⋅ κ ⋅ + ⋅ − φ ⋅ κ⎪ ⎣ ⎦⎩
= − ⋅ ⋅ − φ ⋅ κ

= − ⋅ ga (t) 

(3.38) 

From (3.38) it is concluded that if ay is known, then the lateral external force field in 
the structure is dependent on the ground motion, ag(t), and in the case of 

on records included in the rigid-

plastic 
behaviour, the direction of the collapse mechanism.  
Thus, it seems clear that in a design situation, one may find the lateral external force 
field in the structure if one knows the ground moti
plastic spectra used to determine ay. However, despite the simplicity in carrying out 
rigid-plastic NLTHA, it is clear that this option is not practical from a user 
perspective. Firstly, these records might not be available, and secondly, if they are, 
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determining the dynamic response of the structure to each ground motion record (part 
of the GRPS), seems to be a highly cumbersome task to undertake, given the number 
of records necessary to adequately define the rigid-plastic spectra. 
Therefore, one needs to find a simplified approach to determine the lateral external 

The extreme loa

 for design purposes, 

st expression in (3.38), it follows that the maximum 

direction of the collapse mechanism. When the structure 

 

lues of strength demand at a point in the structure outside 
e hinges are definitely reached when the ground acceleration reaches its peak value, 
e. the PGA value, and the collapse mechanism is activated. However, we do not 

know the direction of the ground motion that will hit the structure, nor the type of 
behaviour that the structure experiences at the time of ag(t)=PGA. Moreover, 
m  streng nd at different points of the structure outside the hinges does 

e same value of ground acceleration. 
and w m of covering all possible scenarios, one must consider a set 

of lateral extern ields corresponding to ag(t)=+PGA and ag(t)=–PGA in each 
of the expressions in (3.38) for plastic or slip behaviour.  
The diagram in (3.39) shows each of the so-called extreme loading scenarios. 

force field required for design purposes. 

Before discussing the application of the extreme loading scenarios approach in the 
determination of the required loading cases for design purposes, an important remark 
must be added. 

ding scenarios approach 

When a rigid-plastic structure has rigid behaviour, all the yield zones are below the 
yield point and therefore the stress field is undetermined. This means that the last 
expression in (3.38) is irrelevant for the purpose of determining the local strength 
demand on the structure for periods of rigid behaviour. However,
this is not a serious setback of the rigid-plastic formulation simply because periods of 
rigid behaviour do not correspond to periods of maximum demand on the structure.  
From previous discussions, cf. section 3.1.1, it is obvious that when the structure has 
rigid behaviour, the strength demand at the yield zones does not exceed the local 
capacity. Bearing in mind that rigid behaviour is only possible for |ag(t)| ≤ay (see again 
(3.31)), and observing the la
strength demand outside the yield zones for periods of rigid behaviour takes place 
precisely when the structure is about to undergo plastic behaviour in the positive or in 
the negative direction. 
From the above discussion it is concluded that only for periods of plastic or slip 
behaviour will one find the maximum strength demand at any point in the structure. 
This is highly convenient since for these periods the collapse mechanism is activated 
and thus, the stress field is fully determined. 
The first assumption must be that at this point we have already determined ay 
following the procedure described in the previous section. Examining expression 
(3.38), it is concluded that when the collapse mechanism is activated, the lateral 
external force field in the structure depends on the ground motion ag(t), and in the 
case of plastic behaviour, the 
has plastic or slip behaviour, the strength demand at the yield zones does not change 

 with time, as it equals the local yield capacity or zero, respectively. Consequently, the
maximum strength demand at any point of the structure is linearly dependent on the
ground motion, and in the case of plastic behaviour only, the direction of the collapse 
mechanism.  
Therefore, the extreme va
th
i.

aximum
not necessarily take place for th
From this, 

th dema

ith the ai
al force f
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 mechanism in the positive direction
a (t)= PGA

Plastic behaviour
a (t)=+PGA

Collapse mechanism in the negative direction
a (t)= PGA

a (t)=+PGA
Slip behaviour

a (t)= PGA

⎧⎪
⎪ ⎨ −⎪⎪ ⎩• ⎨

⎧⎪ ⎪
⎨⎪ −⎪⎩⎩

⎧
• ⎨ −

⎪

⎪⎩

     

(3.39)

In Table 3.6 we summarise the application of the extreme loading scenarios approach 
to the case of th ure considered in section 3.2.3. The inclination of the frame 
there refers to t r(t). 
Examining the exp Table 3.6, we conclude that the extreme loading 
scenarios appro  a set of three symmetrical loading cases, which may induce 
the idea that only consideration of three loading cases is enough to find the maximum 
strength demand at any point of the structure. However, this is not generally valid, as
the strength demand at any point of the structure depends also on the choices on the 
safe stress field. 
The extreme loading scenarios approach yields a conservative set of external forces in 
the structure as the PGA only takes place in one direction and at a single time instant 
t. However, thi sidered a setback in the formulation since we are aiming at 
determining design values, which of course have to be safe.  
It should be expressions in Table 3.6 are derived on the basis of the 
equation of motion. As seen in section 3.2.3, the latter were derived using the virtual 
work principle, which is a statement of equilibrium. Thus, any external force field 

om ns in Table 3.6 respects equilibrium. 
For the RPSD  extreme loading scenarios approach is a very convenient 
tool, due to th on introduced in the task of determining a safe stress field 
in the structur dvantage clearly deals with the fact that the user does not 
have to perform NLTHA. The second advantage is that the stress field found is 
always safe regardless of the shape of the ground motion. The latter advantage 
deserves further explanation: 

 reality, the assumption of considering PGA values for the ground acceleration 

end only on the choice of the collapse 

g

g

g

g

g

g

a (t)=+PGA
Collaps

⎧
e

 

e struct
he sign of the relative velocity, v

ression of 
ach yields

 

s is not con

noted that the 

 the expressio
 method, the
e simplificati
e. The first a

resulting fr

In
makes the above-mentioned task independent of the ground motion, as the quantity 
PGA is normally given at the beginning of the design process as a specification on the 
performance criterion (for instance, one might say that a given structure has to 
perform within a specified limit when subjected to ground accelerations up to a PGA 
value). Bearing this in mind and examining the expression in Table 3.6, it is seen that 
the lateral forces used for design purposes dep
mechanism, which is reflected in the parameters κ and φi, and on the choice of the 
performance criterion in the local seismicity, given by parameter ay. They are 
independent of the specific shape of the ground motion. Therefore, we conclude that: 

a) if one finds a stress field which is safe for all the extreme loading scenarios in 
Table 3.6 

b) if the ground motion that will actually hit the structure is such that ay≤|ag(t) |≤PGA  
c) if the ductility capacity of the structure is not exceeded under that ground motion 
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then the chosen collapse mechanism is formed and the structure is able to carry out 
the lateral strength demand independently of the shape of the ground motion that will 
actually hit the structure. 
 

 

 

 

( )i i i y iF (t) m a PGA 1  ⎡ ⎤= − ⋅ −φ ⋅ κ ⋅ + ⋅ − φ ⋅ κ⎣ ⎦
 

Table 3.6 - The extreme loading scenarios approach 

Mechanism 

in the 

positive  

direction  

( )i i i y iF (t) m a PGA 1  ⎡ ⎤= − ⋅ −φ ⋅ κ ⋅ − ⋅ − φ ⋅ κ⎣ ⎦
 

 

 

( )F (t) m a PGA 1  i i i y i⎡ ⎤= − ⋅ φ ⋅ κ ⋅ + ⋅ − φ ⋅ κ⎣ ⎦  

Plastic 

Behaviour 

Mechanism 

 

 

in the 

negative 

direction 

( )i i i y iF (t) m a PGA 1  ⎡ ⎤= − ⋅ φ ⋅ κ ⋅ − ⋅ − φ ⋅ κ⎣ ⎦  

 

 

 ( )i i iF (t) m PGA 1= − ⋅ ⋅ − φ ⋅ κ  
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 i i i( )F (t) m PGA 1= ⋅ ⋅ − φ ⋅ κ  
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It is further observed that the lateral external force field yielded by the extreme 
loading scenarios approach is independent of the choices regarding the safe stress 
field that initiate the procedure determining the force demand at any point of the 
structure (see point 1 in page 117) . In fact, the lateral external forces in the structure 

 The GRPS can easily be scaled up or down according to ground motion intensity 

 of ground motion records is simply 

ures are expected for the 
case of MDOF systems. 

e basis of the lower bound theorem 
 field. The lateral force demand is 

conservatively estimated using the extreme loading scenarios approach.  

are completely defined immediately after one has determined φi, κ and ay. This yields 
two important features for the RPSD method: 

 There is an effective separation between strength distribution in the structure and 
dynamic response. It was seen that the dynamic response of the structure is solely 
dependent on the generalised strength, Fy*, which is related to the dissipation 
capacity. Therefore, regardless of the choices made on the safe stress field, as long 
as Fy* is kept constant, the structure develops the same dynamic response. 

 The task of calibrating the final design of the structure is simplified to a great 
extent since the equilibrium conditions defining the force demand outside the 
yield zones may be expressed in terms of a number of parameters that reflect the 
choices of the designer regarding the safe stress field. From a practical point of 
view, this is seen as a highly valuable feature of the RPSD method. 

3.3.3 Conclusions 
In this section the procedures to determine the seismic demand on the RPSD method 
were discussed. 
The first was the determination of the generalised yield strength, Fy*, using the rigid-
plastic spectra. Fy* is decided on the basis of desired performance against ground 
motion following a simple graphical procedure. It was seen that this is a rational 
procedure according to the main assumption of the RPSD method, which is to 
consider the dynamic response of the structure controlled by plastic behaviour at the 
yield zones.  
The rigid-plastic spectra are a valuable tool for design purposes for the following 
reasons: 

expected at the implementation site. 
 The seismic demand associated with a number

given by the envelope of each of the corresponding GRPS. 

It was seen that the GRPS tends to be a continuous descendent line in the ay-range as 
the number of records accounted for increases. Conservatively, if more than one value 
of ay is found for the same value of Rmax, the highest ay value should be considered in 
the design process.  
The study presented in section 3.3.1 showed that the GRPS may effectively predict 
the maximum dynamic demand on reinforced concrete oscillators with flexural 
hinging when the expected rotation ductility demand is at least of the order of 8-10 if 
calculations are carried out according to section 2.3. Given the full analogy between 
rigid-plastic oscillators and rigid-plastic structures, similar fig

In the RPSD method, strength is distributed on th
of plasticity, i.e. on the choice of a safe stress
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The latter approach releases the designer from performing NLTHA and is explicitly 
expressed in terms of his/ her decisions for a suitable collapse mechanism and the 
desired performance of the structure in the local seismicity of the region. This makes 
the dynamic response of the structure independent of the choices regarding strength 
distribution and to a great extent facilitates calibration of the final design. 
The combination of both rigid-plastic spectra and of the extreme loading scenarios 
approach yields a straightforward procedure towards final design and allows an 
effective separation between the properties of the structure and those of the ground 
motion. This has been one of the most difficult challenges in Earthquake Engineering, 

inning of this section, in the overwhelmingly majority of the 
design cases, the information initially available refers to the mass distribution, 
geometry of the structure and the desired target per
ground motion scenario. Additionally, the designer has information about the 

 where the elastic properties of the structure play a role, in order for 
the seismic demand on the system to be determined, one has to know the strength 
capacity and stiffness distribution beforehand in the des
are obviously unknown.  Strength capacity and stiffness distribution are of course the 

 assessing the 
seismic demand and changing the design in terms of strength capacity and stiffness 
distribution until the performance criteria are met within desired limits. Every time 
the design changes, a new structure has to be checked against the ground motion 
scenario at the implementation site, in turn changing the performance of the new 
structure. 
In the RPSD method, the information initially available is necessary to determine with 
significant levels of certainty the suitable collapse mechanism. From this, it follows 
that κ is known. The designer then uses the GRPS which is characteristic of the 
ground motion alone and magnifies it by κ, which is characteristic of the structure and 
the chosen collapse mechanism. At this point, the designer is able to assess the 
maximum dynamic demand on the structure for any value Fy*. Therefore, using the 
SRPS, the designer considers the performance criterion and determines the energy 
dissipation capacity of the system, expressed by Fy*. At this point, the dynamic 
response of the structure is fully determined. The designer can proceed to the final 
design of the structure by determining first the lateral force demand, which is made 
independent of the ground motion by means of the extreme loading scenarios 
approach. The final distribution of strength and hence of stiffness throughout the 
structure is carried out making choices regarding the most appropriated stress field, 
until a satisfactory solution is reached.  

to which elasticity based seismic design procedures have not been able to provide 
satisfactory solutions: 
As referred in the beg

formance against the expected 

seismicity at the implementation site. This may be the elastic spectrum if he/ she 
prefers to use the Elastic Spectrum Method, the GRPS if the RPSD method is to be 
used, or local accelerograms if the design is based on NLTHA. 
In design methods

ign process. However, these 

properties up to the structural engineer to define. So, initially the engineer is forced to 
“guess” those parameters normally using simplified empirical relations that may only 
provide crude estimations and then undergo an iterative process between
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3.4 P-Δ effects in the RPSD method 
Until now, we have tacitly assumed that the equations of motion are written 
disregarding the effect of change of geometry. Of course, this may lead to 
unconservative estimations of the dynamic response of the structure if this is loaded to 
levels close to instability. This is the case of structures with large normal compression 
forces or with reduced lateral resistance.  
Here, we treat geometric non-linearity only for the case of P-Δ effects. The change of 
geometry due to large displacements is not considered in this work. We assume that 
for design situations, the magnitude of maximum displacement demand is “small” 
enough to consider the estimations to be accurate on the dynamic response without 
the effect of change of geometry due to large displacements. 

3.4.1 The case of rigid-plastic oscillators 
From classical beam-column theory, it is well known that the effect of change of 
geometry may be taken into account by adding a fictitious external moment per unit 
length ±N∂u/∂x, the sign depending on the sign conventions used, (Timoshenko et al., 
1961), (Nielsen et al., 1973) and (Nielsen, 2000). Here, N is the normal force, u the 
deflection and x a coordinate along the beam axis. For a column with constant normal 
force N, the external moment for any selected length is statically equivalent to two 

⋅ψ ψtransverse opposite forces at the ends: ±N ,  being the inclination relative to the 
beam axis of a straight line connecting the end points of the length considered. The 
result is independent of the actual deflection shape along the length. 
In the case of the column oscillator in section 3.2.1, see Figure 3.4b), the axial force 
in the column is the weight of the mass, m·g. Therefore, the transverse forces at the 
columns ends will be: 

rd (t)N (t) m g± ⋅ψ = ± ⋅ ⋅                                          (3.40) 
L

ψ

L

N

Νψ

N

Νψ

Undeformed 
shape

Deformed 
shape

Figure 3.28 - The consideration of P-Δ effects on a single column 
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It is clear that the force applied at the mass has the same sign as the relative 
displacements, dr(t), according to the adopted sign convention. Thus, to take into 
account P-Δ effects, the general formulation of the equation of motion in (3.12) is 
transformed into: 

r
r g

d (t)M(t)a (t) a (t) g
m L L

= − + ⋅
⋅

                                    (3.41) 

Following the explanations regarding the formulation of the equations of motion 
according to the type of behaviour at the plastic hinges given in section 3.2.1.1, it is 
concluded that for any column oscillator with length L, one has: 

y r
r g P r

F d (t)a (t) a (t) g       if    f (t) f    and    v (t) 0
m LPlastic be

⎧
= − − + ⋅ = ≥⎪⎪

y r
r g P r

r

F d (t)a (t) a (t) g       if    f (t) f    and    v (t) 0
m L

d (t)Slip behaviour :          a (t) a (t) g       

⎪ = + − + ⋅ = ≤⎪⎩

= − + ⋅r g L

haviour:    ⎨

r r

y
r g

F
Rigid behaviour :       a (t) 0   if    a (t)

m
= <

(3.42) 

Physically, the “P-Δ forces” will resist any tendency of the system to return to its 
original undeformed position. This is captured in the equations in

if    f (t) 0   and    v (t) d (t) 0= ⋅ <  

 (3.42). Therefore, 

owards the undeformed position. If the yield 

r 4  quadrant then the P-Δ forces have opposite signs to the velocity of the mass.   
Examining the system of equations in (3.42), it is concluded that the dynamic 
response is now dependent on the relative displac
must now deal with non-linear equations of motion, which are of much higher 
complexity. Therefore, the computational procedure given in section 3.2.1.2 is no 
longer valid. One possible solution to this problem is to proceed with direct 
integration of the equation of motion using the linear acceleration step-by-step 
method, see section 1.2.1.1. The only change we have to make is on the parameter 

when the oscillator experiences plastic behaviour, the P-Δ forces increase the 
magnitude of plastic deformations. On the other hand, if the hysteretic relationship at 
the plastic hinge accounts for the effect of pinching and the system has slip behaviour, 
then these forces will oppose the motion t
zone in the oscillator has the classic rigid-plastic hysteretic relationship, it is seen that 
P-Δ forces resist the motion of the mass while the system is recovering residual 
deformations in plastic behaviour, i.e. cf. Figure 3.2a), if the hysteretic curve is in the 
2nd o th

ement quantity. This implies that we  

ik , 
cf. equation (1.17) 

i 2

g mk 6
L t

= − + ⋅
Δ

                                             (3.43) 

It is further observed in equations in (3.42) that the dynamic response of oscillators is 
no longer solely due to the parameter ay=Fy/m. This is because a new geometric term 
characteristic of the oscillator is introduced, the length of the column L. Therefore, it 
is no longer valid that rigid-plastic oscillators with the same value for ay develop the 
same dynamic response. This makes it impossible to construct a rigid-plastic spectrum 
solel  the y dependent on the ground motion. For this reason, in the RPSD method,
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evaluation of P-Δ effects is done after the determination of Fy* using the procedure 
illustrated in Figure 3.24b). Hereafter, a rigid-plastic NLTHA including P-Δ effects 
should be carried out using the procedure described above. If the latter reveals that P-
Δ effects introduce further severe  displacements, additional lateral resistance has to 
be assigned to the system, which may be reflected by increasing the parameter Fy*.  

3.4.2 The case of rigid-plastic structures 
In this section it is seen that the analogy between rigid-plastic structures and rigid-

izontal forces that 

hanism shown in the right hand side of the 
figure. 
Figure 3.30 depicts the axial forces and the corresponding equivalent transverse forces 
in two consecutive columns in the deformed shape. Note th
the same at each floor, which implies that the inclination ψ is the same for each floor. 
It is initially observed that the magnitude of the axial forces at each column of each 

be first treated based on the assumption of the collapse 
mechanism and then one proceeds to the distribution of strength. However, 
considering equilibrium, we know that the sum of the axial forces at each floor has to 

plastic oscillators is still valid when determining the dynamic response against ground 
motion. 
The idea remains the same, i.e. to consider a set of equivalent hor
adequately reproduce the influence of P-Δ effects in the dynamic response.  
An explanation will be provided for the case of frame structures with lumped mass at 
each floor. However, formulation of the equations of motion follows the same 
reasoning as described here for other types of structural systems. 
For illustration purposes, consider that the 12-storey plane frame of Figure 3.29 is 
designed to develop the collapse mec

at the inter-storey drift is 

floor, Ni and Ni+1 in Figure 3.30, is no longer statically determined, as this depends on 
the choices on the safe stress field. Note that in the RPSD method, the dynamic 
response of the system is to 

H

hi

F 2-storey plane fr rresponding c  igure 3.29 -1 ame and co ollapse mechanism
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be the weight of the floor plus the weight of the structure above it. 
This means that the equivalent horizontal force at each floor i is given by the product 
of the inclination ψ and the subtraction between th
the total vertical load at the floor above. The latter is the product of the weight of floor 
i and the inclination ψ. See Figure 3.30.  
If we again choose to represent any relative displacement in the d

ψ

e total vertical load at floor i and 

eformed shape of the 
structure proportional to the relative displacement at the top floor, dr, then =dr/H. 
Thus, the horizontal external force field in the structure due to P-Δ effects, Fi, is given 
by: 

r
i i

dF m g
H

= ⋅ ⋅                                                  (3.44) 

Consider the choice of a collapse mechanism with upper rigid floors. Then, since ψ=0 
n each rigid floor there will be no horizontal force applied. 
ost non-rigid floor, the j-th floor, the horizontal force is given 

for these floors, betwee
However, in the upperm
by Nj·g·ψ (imagine that in Figure 3.30, the upper column would remain in the 
undeformed shape. For this case, Ni+1=0). Therefore, the horizontal force in the 
uppermost non-rigid floor is given by: 

n
r

j i
i j

dF m g
H=

= ⋅ ⋅∑                                                (3.45) 

Please note that in equation (3.45), n is the total number of floors in the frame, d  is r

Undeformed shape Deformed shape

Figure 3.30 -Determination of the horizontal forces at each floor i for the 
consideration of P-Δ effects 
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N i
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Νi ψ
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the relative displacement of the j-th floor, and H the corresponding height. The 
horizontal forces in the floors below are given by expression (3.44) 
Having determined the external force field due to P-Δ effects, the corresponding 
virtual work for the displacement increment δ is derived and added to the virtual work 
equation of the structure using the same format as in (3.26) of section 3.2.3. 
Examining expressions (3.44) and (3.45), it is concluded that regardless of the 

of the equivalent horizontal consideration of upper rigid floors or not, the contribution 
forces for the virtual work equation is: 

12
r

i i
i 1
12

r
i i

i 1

d (t)m g 0   if   0
H

d (t)m g 0   if   0
H

=

=

+ ⋅ ⋅ ⋅φ ⋅δ = δ >

− ⋅ ⋅ ⋅φ ⋅δ = δ <

∑

∑
                               (3.46) 

Applying the same reasoning from (3.26) to (3.31) in section 3.2.3 leads to the 

tic structures. Therefore, the dynamic response of rigid-

following system of equations of motion for rigid-plastic structures with the 
consideration of P-Δ effects. 

*
y r

F d (t)⎧
r g j P , j r*

*
y

a (t) a (t) g   if  f (t) f    and    v (t) 0
m HPlastic behaviour:    
F d

+= − − κ ⋅ + κ ⋅ ⋅ = ≥⎪⎪
⎨
⎪ r

r g j P , j r*a (t) a (t) g   if  f (t) f    and    v (t) 0
m H −= + − κ ⋅ + κ ⋅ ⋅ = ≤⎪⎩

(3.47) 

As expected, the P-Δ effects do not play a role in the analogy between rigid-plastic 
oscillators and rigid-plas
plastic structures with P-Δ effects is determined applying the same procedure as for 
rigid-plastic oscillators. The computational procedure after Paz, cf. section 1.2.1.1, 
may be used again to derive the dynamic response of rigid-plastic structures against a 
specific ground motion. The parameters ik  and ΔFi are as follows:  

*

i 2

g mk 6
H t

= −κ ⋅ + ⋅
Δ

                                            (3.48) 

* r i
i g r itΔ⎝ ⎠

Note that, as in the case of rigid-plastic oscill

v (t )6 3 a (t )⎛ ⎞⋅ ⋅ + ⋅⎜ ⎟                         (3.49) 

ators, the dynamic response also depends 

tic structures. In the design process, P-Δ effects are 

F m a mΔ = −κ⋅ ⋅Δ +

on the geometry parameter H. Therefore, the closing remarks of the previous section 
also apply to the case of rigid-plas
to be checked after the determination of Fy* using the procedure described in section 
3.3.1.  

r g

(t)

Slip behaviour :          a (t) a (t) g= −κ ⋅ + κ ⋅ ⋅ ]r
j

d (t)  if  f (t) 0 with j 1
H

⎡ r r, n   and    v (t) d (t) 0

Rigid

= ∈ ⎣ ⋅ <

*
y

r g *

F
 behaviour :       a (t) 0  if  a (t)

m
= <

κ⋅
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3.4.3 Conclusions 
In this section, an explanation was given for how P-Δ effects may be taken into 
account in the dynamic response of rigid-plastic structures designed to develop a 
chosen collapse mechanism. It was seen that the analogy between rigid-plastic 
oscillators and rigid-plastic structures is still conserved. 
The equations of motion considering P-Δ effects are of the non-linear type and 
therefore the complexity of the computational procedure increases. However, rigid-
plastic NLTHA still display greater simplicity than the standard ones. 
Moreover, it was seen that the seismic demand on the structure cannot be determined 
based on the rigid-plastic spectra, which implies that P-Δ effects must be checked 
after the determination of Fy* (without P-Δ effects). If the displacement criteria are 
substantially violated by the P-Δ effects, the lateral resistance must be increased and a 

ew calculation must be done.  

.5 The Rigid-Plastic Seismic Design method step-by-step 
n of the RPSD method in a step-by-step format is 

nergy during strong ground motion. In practical terms, the 

d. Therefore, a significant part of the energy 
dissipation must be allocated in structural elements where ductile behaviour may 

y (beams and columns in low shear and axial stresses). 

n

3
In the following, the formulatio
given. 

Step 1 – Choice of a suitable collapse mechanism 

Clearly this is the most important step in the RPSD method, as this choice is reflected 
in all subsequent steps. Essentially, the designer chooses the most adequate way for 
the structure to dissipate e
output of this initial step is the determination of φi, m* and κ. 
Previously it was concluded that the data available at the beginning of the design 
process (mass distribution, geometry and desired performance) is necessary to decide 
the shape of a suitable collapse mechanism. 
The guidelines leading to the choice of an appropriate collapse mechanism have 
already been discussed in detail throughout sections 1.1 and 2.4: 

 Extensive distribution of plastic dissipation throughout the structure.  
 The target displacement demand must be reached with the smallest non-linear 

deformation demand at the plastic hinges.  
 Local flexural modes of failure should be enforced and allocated in parts of the 

structure with accessibility for repairing work after the earthquake event.  
 Local brittle failure must be prevente

be provided more easil

Step 2 – Choice of a dynamic performance criterion, Rmax 

The extent of damage in the structure is related to the extent of plastic deformation at 
the yield zones, which in turn is related to the magnitude of the relative displacements 
in the structure. Therefore the criterion P, representing the desired performance of the 
structure, should be expressed in terms of displacement based quantities (e.g. top floor 
displacement or inter-storey drift in building structures). In this way, global dynamic 
behaviour may be conveniently related to local damage. 
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Step 3 – Definition of the required dissipation capacity using the rigid-plastic spectra 

After steps 1 and 2, κ and Rmax are known. Therefore, the required dissipation 
capacity related to Fy* is determined following the procedure. 

1. Definition of the SRPS curve scaling the GRPS curve in the Rmax – direction by a 
factor κ, cf. Figure 3.24a) in section 3.3.1. 

2. Determination of ay based on performance criterion, the graphical procedure in 
Figure 3.24b) of section 3.3.1. 

3. Determination of Fy* using expression (3.32) in section 3.3.1. 

At this point, the structure may be checked for P-Δ effects by carrying out a number 
of rigid-plastic NLTHA using the procedure described in section 3.4. If it is found that 
the magnitude of extra displacements is enough to violate the performance criterion, 
then the lateral strength must be increased. This is reflected by increasing the 
p
st

arameter ay until the influence of the P-Δ effects in the dynamic response of the 
ructure are negligible.  
 should be noted that after the conclusion of this step, the parameters m*, κ and Fy* 
re known. Thus, the designer has all the information necessary to write the equations 

of motion of the structure, cf. expression (3.31) in section 3.2.3, and consequently to 
assess the dynamic response of the structure against any ground motion. 

Step 4 - Choice of an appropriate safe stress field using the extreme loading scenarios 
approach 

This step is subdivided into 3 sub-steps: 

1. Application of the extreme loading scenarios approach for the definition of the 
lateral external force fields of Table 3.6. 

2. Choice of a number of requirements for the internal stress field to make the 
system statically determined 

3. Equilibrium of each of the lateral force fields derived in sub-step 1 and other loads 
at the time of the earthquake and determination of the maximum strength demand 
at any point of the structure. 

Depending on the complexity of the structure, sub-steps 2 and 3 might be repeated 
until a satisfactory strength distribution is reached. However, it is emphasised that the 
lateral loading cases of sub-step 1 are not affected by the decisions on the shape of the 
safe stress field made in sub-step 2.  
It is further observed that the lateral external force fields from the extreme loading 
scenarios approach do not take into account P-Δ effects. This is due to the fact that in 
step 3 we have assured that P-Δ effects have a negligible influence on the dynamic 
response. This reduces the change in the lateral external force fields regarding the 
formulation in Table 3.6, which in fact is already a conservative estimation of the 
lateral force demand. Moreover, in the final design of the structure, cf. step 5, we use 
overstrength factors which are intended to deal with any unexpected increase in the 
strength demand outside the hinges.  

 

 

It
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44BStep 5 – Final structural design 

At the end of the previous step, the seismic demand at any point of the structure is 
determined both in terms of displacement and strength demand. Hence, cross-
sectional detailing may be carried out. 
This may be done on the basis of expected ductility at the yield zones and by ensuring 
rigidity in the remaining part of the structure. The latter makes use of overstrength 
factors, cf. section 2.4.3.  
Finally, the design may be checked by considering the serviceability limit states for 
more moderate and frequent ground motions and higher mode effects. Evidently, the 
rigid-plastic approach cannot provide an accurate solution for these problems, since it 
neglects the contribution of elasticity in the dynamic response. Therefore, a number of 
standard NLTHA may be carried out using accelerograms characteristic of moderate 
ground motion at the implementation site. This may result in an increase in structural 
stiffness. However, in structures designed according to the RPSD method, the 
dynamic response against lifetime earthquake events is controlled by the strength 
demand at the yield zones, which implies that enhancement of stiffness has a rather 
limited role in the case of ultimate limit states. This has been confirmed by the study 
in section X3.3.1X, where it was shown that oscillators with flexural yielding and with 
significantly different levels of stiffnesses develop similar dynamic response for 
rotation ductility demand higher than 7. 

3.6 6BFinal remarks  
It was seen in this chapter that the RPSD method is a simple and straightforward 
design procedure: Simple because almost no computational effort is required and 
there is no need for pre-design of the structure; Straightforward due to the fact that in 
the RPSD method, there is an effective separation between the dynamic response of 
the structure and the strength distribution. In fact, according to the complexity of the 
structure, there might be some iteration in steps 3 and 4. However, as discussed in 
section X3.3.2X, the shape of the safe stress field found in step 4 in no way affects the 
dynamic performance of the structure, which is defined after the conclusion of step 3. 
The same is applied to step 5 where change of stiffness may be required so that the 
structure satisfies serviceability limit states or the demand arising from higher mode 
effects. Nevertheless, this does not affect the dynamic performance of the structure 
against an extreme earthquake event. So, in the RPSD method, whenever the designer 
proceeds to the following step, there is no need to return to the previous one. 
Another important feature of the RPSD method highlighted here is that the user has 
full control over the design process, especially when selecting the collapse mechanism 
and the means by which the structure is to carry the stresses during strong ground 
motion. Therefore, significant engineering judgement is required to weigh up 
structural performance and economic considerations leading to appropriate choices. 
The consequence of this lies in the exclusion of any artificial/ empirical 
considerations unrelated to the physical nature of the response of structures subjected 
to strong ground motion. 
 
 
 



4. Applications of the RPSD method to 
frame structures 

In this section two reinforced concrete frames are designed according to the RPSD 
method.  
The first structure is rather simple. The main purpose of this example is to give a 
straightforward application of the RPSD method. Concurrently, it will be shown that 
the dynamic response of a structure designed according to the RPSD method lies 
within the desired limits and performs as expected, i.e. on the formation of the chosen 
collapse mechanism and having the response controlled by the behaviour at the yield 
zones.  
In the second example we design a more realistic structure, i.e. a 12-storey three-
dimensional frame. Special attention is given to the choice of the ground motion 
scenario and collapse mechanism using the concept of rigid-plastic spectra. Also the 
complexity of the structure allows a better illustration of the economic and structural 
performance considerations leading to the choice of an appropriate safe stress field. 
The response of both structures in terms of displacement and strength demand is 
compared by means of refined NLTHA.  
The first example has been included in a paper published by the Journal of Earthquake 
Engineering and Structural Dynamics, while the second is included in a paper written 
in cooperation with the Ichinose Lab, Nagoya Institute of Technology, Japan, and 
published in the Proceedings of the 1st European Conference on Earthquake 
Engineering and Seismology. 

4.1 Design of a 4-storey plane frame. 
Consider the 4-storey plane frame as in Figure 3.19a). The frame is again reproduced 
in Figure 4.1 and its specific geometry and mass distribution properties are 
synthesised in Table 4.1. 
The performance criterion upon which the design is based is such that the maximum 

hi

m4

m3

m2

m1

Figure 4.1 - 4-storey reinforced concrete plane frame 
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Table 4.1 -Mass and height for each floor  

Floor i Mass, mi (ton) Height, hi (m)
1 50 4 
2 50 7 
3 50 10 
4 50 13 

Scaled Sylmar & JMA 
records 0.8

dmax (m)

0.3

0.4

0.5

0.6

0.7

0.2

0.1

0.0
0 1 2 3 4 5 6 7 8 9 10ay (m/s2)

Figure 4.2 - Corrected GRPS of the scaled Sylmar and JMA records so that PGA=1g 
in terms of maximum displacement, dr,max.  

inter-storey drift is 2.5% for ground motion up to 1g. 
For the sake of simplicity, it is further assumed that the ground seismicity at the 

entation site of this structure is conveniently represented by the N-S
ponent of the JMA record of the Kobe Earthquake, 1995, and by the 360 
ponent of the Sylmar record of the Northridge Earthquake, California, 1994. In 

ture, these records will be referred to as JMA and Sylmar records, respec
Since the performance criterion specifies maximum ground acceleration of 1g, we us
the GRPS of Figure 3.23 to account for both the Sylmar and JMA records, scaled up 
so that the PGA value of each record equals 1g. However, we must still app

entioned in section 3.3.1, Rigid-plastic spectra for design purposes
ore than one value of ay for the same value of performa

The corrected GRPS is shown in Figure 4.2 

Step 1 – Choice of a suitable collapse mechanism 

implem  
com
com
the fu tively. 

e 

ly the 
correction m , as 
there can be m nce criterion. 

For this simple structure, it is evident that the most suitable collapse mechanism is 
that depicted in Figure 3.19b). In fact with this choice, a significant part of the 
dissipation capacity is allocated in beam elements with limited axial force, and global 
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displacement demand is reached with minimum deformation demand at the plastic 
hinges. 
Hence, we have: 

{ } { }ih 0.31 ,  0.54 ,  0.77 ,  1.00 
H

⎧ ⎫φ = =⎨ ⎬
⎩ ⎭

                            (4.1) 

( )
4

2 2 2 2 2
i i

i 1
m m 50 0.31 0.54 0.77 1.00 98.82 ton∗

=

= ⋅φ = × + + + =∑            (4.2) 

( )
4

i i
i 1
4

2
i i

i 1

m 50 0.31 0.54 0.77 1.00
= 1

98.82m

=

=

⋅φ × + + +
κ = =

⋅φ

∑

∑
.32                    (4.3) 

Step 2 – Choice of a dynamic performance criterion, Rmax 

Due to the shape of the collapse mechanism, the dynamic performance criterion, Rmax, 
may be written in terms of the maximum displacement at the top, dmax.  

maxMaximum drift =2.5%      R =0.33m⇒                             (4.4) 

Step 3 – Definition of the required dissipation capacity using the rigid-
plastic spectra 

Firstly, in order to determine maximum dynamic response in the ay domain of this 
structure against the Sylmar and JMA record, we magnify the curve in Figure 4.2 in 
the dmax – direction by κ=1.32. The SRPS for this structure is reproduced in the solid 
line in Figure 4.3. 
Reading off from the SRPS, in order for the performance criterion to be met, i.e. 

Scaled Sylmar & JMA 
records 

0.0
0.1

0.8
0.9
1.0

0 1 2 3 4 5 6 7 8 9 10

dmax (m)

0.6
0.7

GRPS
SRPS

0.3
0.4
0.5

0.2

ay (m/s2)

Figure 4.3 PS -Transition from GRPS to SR
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Rmax=0.33m, we find that: 

                                                  (4.5) 

Finally, the parameter Fy*, related with the energy dissipation capacity of this 
structure is thus defined: 

                         (4.6) 

S  
scenarios approa

The lateral external force fields to be used for design purposes are defined by 

 

P

This yields a symmetric design for the beams and
Since the lateral force demand on the structure is already determined, a particular 

2
ya 4.51 m/s=

* *
y yF m a 1.32 98.82 4.51 588.3kN= κ ⋅ ⋅ = × × =

tep 4 - Choice of an appropriate safe stress field using the extreme loading
ch 

introducing the quantities found in (4.1), (4.3) and (4.5) into the expressions in Table 
3.6. The result for the six extreme loading scenarios is shown in Table 4.2. 
In the present case, we shall make the following considerations regarding the safe
stress field: 

 All yield moments in the plastic hinges at the ends of the beams, M B, have the 
same magnitude, M.  

 The yield moment at the base of the columns, MP
C, is related to M by a factor X.  

 The base shear force at each floor is equally distributed by both columns. 

 columns.  

choice of X is sufficient to determine the stress field in the structure at collapse. Thus,  
B
P
C
P

M M

M X M

=

= ⋅
                                                    (4.7) 

As discussed in section 3.2.3, cf. equations (3.28), for this particular structure and 
collapse mechanism, we have: 

* 10 10
* *P
y P P , j P

j 1 j 1

MF = ,  with M M M
H +

= =

= =∑ ∑

with H being the total height of the structure. Then, MP* is found to be: 

= ⋅ = × =

, j−                             (4.8) 

* *
P yM F H 588.3 13 7648kNm                                  (4.9) 

Plastic Behaviour 
Mechanism in the 
positive direction 

Mechanism in the 
negative direction 

Slip Behaviour 
Floor 

+PGA -PGA +PGA -PGA +PGA -PGA 
4 455 141 -140 -455 157 -157 
3 237 221 -221 -237 8 -8 
2 18 302 -302 -18 -142 142 
1 -200 383 -383 200 -291 291 

Table 4.2 -Lateral force fields for design purposes (kN) 
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50 g/L (kN/m)

-M-

+
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Hence,  

PM *M
8 2 X

=
+ ⋅

                                                 (4.10) 

Evidently the assumption on lumped masses at each floor is only valid for estimation 
of the dynamic response of the structure. For the purpose of estimating the strength 
demand at the beams, we consider that the gravitational forces are uniformly 
distributed along the length of these elements. Then, when the choice of X has been 
made, it is a simple matter to determine the entire moment field.  
One means of selecting the magnitude of X is to make some requirements on the 
bending moment field in the beams: static analysis of these b
equals 4, then the maximum positive bending moment in
4.4, is only 9% higher than M. This allows for an economic design as there is no need 

X 4      = ⇒ ⎨                                   (4.11) 

one finds the maximum strength demand at 
the critical cross-sections in the columns, i.e. the top and bottom cross-sections at 
each floor, for X=4. Thus M, V and N are the bending moment, shear force and 
compressive axial force, respectively. The minimum compressive axial force in the 
columns is also provided, as this is an important parameter in evaluating the variation 
of the axial force in the column and in turn the dissipation capacity in the plastic 
hinges at the base of these structural elements. It should be noted that the values for 
flexural and shear strength demand in Table 4.3 are written irrespective of the sign, as 
we have chosen the safe stress field so that the design of the frame will be symmetric. 
To enforce the weak beam – strong column concept, cf. section 2.4.2, one might wish 
to increase the value of X to 6, which yields: 

                                  (4.12) 

eams shows that if X 
 the beams, Mmax in Figure 

to use significantly different longitudinal reinforcement throughout the length of the 
beam. Therefore: 

BM 478 kNm⎧ =⎪ P
C
PM 1912 kNm=⎪⎩

The system is now statically determined. This implies that the strength demand at any 
point of the structure may be determined by means of equilibrium of each of the 
lateral external force fields in Table 4.2 and the distributed vertical load in the beams. 
In the third to fifth columns of Table 4.3, 

B
P
C
P

M 382 kNm
X 6      

M 2294 kNm

⎧ =⎪= ⇒ ⎨
=⎪⎩

Figure 4.4 -Bending moment field in the beams when the collapse mechanism in the 
positive direction is activated 

+M
Mmax 
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Table 4.3 - Required strength in the columns for two values of X (kN-m) 

X=4 X=6 
Column Cross-

section M V N  Nmax min max min M V N  N  

Top 478 382 4th Floor 
Bottom 267 

228 405 86 
300 

228 373 118 

Top 745 554 
3rd Floor 

Bottom 763 
346 809 172 

954 
346 745 236 

Top 680 571 
2nd Floor 

Bottom 1349 
355 1214 258 

1636 
355 1118 354 

Top 871 1253 
1st Floor 

Bottom 1912 
524 1618 344 

2294 
524 1490 472 

The maximum positive bending moment in the beams is now 22% higher than the 
yield moment at the plastic hinges, which is still considered an economic design. The 
corresponding strength demand is summarised in the first four columns from the left 

the extreme loading scenarios approach do not depend on the choice of the safe stress 
field. In fact, the values in Table 4.3 are easily derived by summing up the forces in 

in Table 4.3. 
It should be noted in Table 4.3 th per floor is the same 
irrespective of the choic ternal force fields from 

ay be seriously reduced. Therefore, if the design of the structure is made 

f confinement should 
also be attributed in order to maintain the ductile behaviour of the hinges in cyclic 

e-mentioned economy achieved in the design of 

 that the required shear streng
e of X. This is because the lateral ex

Table 4.2 above each floor, divided by 2. 
It should also be noted that the shear strength demand increases dramatically in the 
columns of the first floor. This is the source of many structural failures of building 
during strong ground motion, leading to so-called “soft-storey mechanisms”. The 
conservative nature of the estimation of the required strength at any point of the 
structure in the RPSD method, explained in section 3.3.2, provides greater safety in 
the prevention of this type of failure. 
Another interesting aspect reflected in Table 4.3 is that concerned with the range of 
variation of the axial forces in the columns. It is seen that the stronger the beams 
(X=4), the larger this range of variation, resulting in larger compression forces at 
some periods and rather low axial force for other periods of earthquake loading. It 
was discussed above in section 2.2.1.3, Members with varying axial force, that hinges 
placed in columns with wide range of variation of the axial forces have poor 
performance in terms of dissipation capacity during cyclic loading due to restraint in 
crack closure and increased risk of failure due to sliding shear. Moreover, the flexural 
strength m
according to the choice X=4, then the dimensions of the column would have to 
increase in order to prevent large variations in the axial load ratio, ν, and to avoid 
excessive compressive strains in the concrete. A higher level o

loading. For these reasons, the abov
beams may be compromised by the greater safety that should be attributed in the 
columns.  
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Bearing this in mind, it seems that the design of the structure according to the choice 
of X=6 provides a better compromise between structural safety and economy. For 
illustration purposes however, we consider both lay-outs below. 

Step 5 – Final structural design 
The design of the structure is carried out assuming that the onse  of plastic behaviour t

n the beams and of the columns is 

in the hinges is due to yielding of the reinforcement. Following the discussion in 
section 2.4.3, the overstrength factor is set to 1.4. For the sake of simplicity, the 
geometry of the cross-sections outside the hinges i
identical to the corresponding plastic hinges. Furthermore, to assure ductile 
behaviour, we assume that the maximum tensile reinforcement ratio at the plastic 
hinges is rT=0.85%. We further assume the width/ height ratio, β, to be 0.6 for beams 
and 1 for columns, see the example in section 2.3. 
The compressive cylinder strength of the concrete is 25MPa and the reinforcement 
steel used is Grade B500 Tempcore, cf. Table 2.4. 
Table 4.4 refers to the detailing of the different cross-sections in the structure 
according to the two values of X, as well as expected ductility demand following the 
procedure discussed in section 2.3. It also provides information regarding the 
resulting fundamental period of the structure, T, after a modal analysis performed 

 

Table 4.4 -Cross-section detailing 

Design X =4 ; T=0.53s X =6 ; T=0.55s 
Cross-section PHC PHB C B PHC PHB C B 

Flexural demand 
(kNm) 1912 478 2677 669 2294 382 3212 535 

Height (m) 0.8 0.6 0.8 0.6 0.85 0.55 0.85 0.55 
Width (m) 0.8 0.35 0.8 0.35 0.85 0.35 0.85 0.35 

Tensile Reinforcement 
steel area (mm2) 5311 1770 7436 2478 5997 1543 8397 2162 

Tensile reinforcement 
ration (%) 0.83 0.82 1.16 1.15 0.83 0.85 1.16 1.19 

Shear force  
demand (kN) 

524 405 734 567 524 373 734 522 

Plastic hinge  
length (m) 

0.93 0.39 - - 1.09 0.34 - - 

Rotation capacity  
(x10-2rad) 

6.46 3.57 - - 7.11 3.46 - - 

Yield Rotation  
(x10-2rad) 

0.32 0.17 - - 0.35 0.16 - - 

Expected rotation 
ductility demand 8 15 - - 7 15 - - 

PHC – Plastic hinges in columns; PHC – Plastic hinges in beams; C – Rest of the columns; B – Rest of the beams
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with the commercial FEM programme SAP2000 (Computers and Structures, Inc., 

lements is at least 7, 

nd motion scenario accounted for in 

tional to the stiffness and mass matrixes in 

nd β=0.65 based on the tests by (Brown and Jirsa, 1971), cf. 

ws the relation between the flexural demand and the top displacement 

LTHA and refer to the period between 
t=6.72s and t=9.42s of the JMA record, this imposing maximum displacement 
demand in the structure.  
Although not shown, the behaviour of the hinge in the right-hand side column and the 
hinges on the left end of the beams is identical to their counterparts in Figure 4.5. The 
curve representing the hysteretic behaviour of the hinges located in the right end of 
the beams is symmetric with respect to the top displacement axis to the dashed curve 
in Figure 4.5. 

                                                

2004).  
Referencing Table 4.4, it is seen that all the plastic hinges have enough rotation 
capacity to cope with maximum displacement demand corresponding to 2.5% drift. 
Consequently, the expected rotation ductility demand in those e
which indicates that the dynamic response shall be controlled by plastic behaviour. It 
is therefore expected that the RPSD method will provide accurate estimations for the 
seismic response of this building against the grou
the GRPS of Figure 4.2. 

Comparison with refined NLTHA analysis 
his section, the performance of the structure previously designedIn t  according to the 

RPSD method is assessed by means of NLTHA. For comparison purposes, we use 
rigid-plastic and refined NLTHA using the first 15 seconds of the scaled 
accelerograms of the Sylmar and JMA records so that PGA=1g. 
The latter is carried out using the commercial FEM program SAP2000, (Computers 
and Structures, Inc., 2004) in the following way: 

 The response is calculated by direct integration of the equations of motion using 
the Newmark method, with γ=0.5 and β=0.25.  

 The damping matrix is directly propor
such a way that the damping ratio of the first mode equals 0.05.  

 The pivot hysteresis model, cf. section 2.2.1.4, has been used to reproduce the 
flexural behaviour at the plastic hinges: in the columns, the parameters α and β of 
this model were set to 4 and 0.55, respectively. This is in agreement with the 
experimental work carried out by (Abrams, 1997), cf. section 2.2.1.3. In the 
beams, we used α=8 a
section 2.2.1.1. 

 The remaining part of the structure is modelled using elastic linear elements, the 
stiffness of which is derived on the basis of the internal forces in Table 4.3 
magnified by the overstrength factor1. 

Figure 4.5 sho
for the plastic hinges at the base of the column on the left-hand side (PHC), and at the 
left end of the beam of the 4th floor (PHB) for the structure designed according with 
X=4. The curves correspond to the refined N

 
1 In connection to the discussion held in section 1.2.2 in this example we will not regard the solution of 
the FEM programme in terms of distribution of strength demand for the sake of comparison between 
the internal forces derived in the RPSD method based on the extreme loading scenarios approach and 
refined NLTHA. 
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Figure 4.5 - Bending moment at the plastic hinges vs. top displacement from t=6.72s 
to t=9.42s for the frame with X=4 and subjected to the JMA record. 
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Figure 4.6 - Relation between rotations in the plastic hinges of Figure 4.6 and top 
displacement of the frame designed according to X=4 during the whole JMA record 

In Figure 4.6, we represent the relation between the rotations in the same plastic 
hinges as in Figure 4.5 and the top displacement in the structure designed according to 
X=4 for the whole period of the JMA record. 
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It is initially observed in Figure 4.5 that the curve corresponding to the plastic hinges 
in the columns is virtually a scaled version of that corresponding to the plastic hinge 
in the beams. Clearly, the scale factor is the ratio of the flexural capacity at the hinges 
in the columns to that in the beams. This indicates that the hinges are in the same 

seen that there is a linear variation between deformations at the 

s confirm the basic hypothesis upon which the RPSD method is 

 in the 

is 2.35x10 rad, 

ctility demand found in the same table. 

and strength demand between rigid-

d for the JMA and Sylmar 

n between dynamic response, solely dependent on the dissipation capacity 

phase of behaviour for the same periods of time. Another observation is that the 
curves in Figure 4.5 have the same shape as the hysteretic relationships at the plastic 
hinges, i.e. bending moment vs. rotation.  
From Figure 4.6, it is 
plastic hinges and global displacements in the structure. This is as expected since the 
displacement field has only one degree of freedom – the one associated with the 
collapse mechanism.  
These observation
based, i.e. on the direct relation between local behaviour and global behaviour in 
structures designed to develop a specific collapse mechanism and subjected to large 
ductility demand. 
Furthermore, examining Figure 4.5, we find that the yield displacement
structure, defined as the displacement at the time of onset of plastic behaviour at all 
plastic hinges for the first time, is 0.042m. Therefore, observing that the maximum 
displacement is 0.291m, we reach a global displacement ductility factor of 7.  
The rotation demand found for the plastic hinges in the columns -2

while for those in the beams, 2.63x10-2rad, which yields, with reference to Table 4.4, 
an actual ductility demand of 7.3 and 15.3, respectively. This is consistent with the 
values of expected rotation du
Given that the structure fulfils the assumption of the RPSD method, good agreement 
is expected in terms of maximum displacement 
plastic and refined NLTHA.  
Figure 4.7a) and b) shows the displacement-history for both records at periods of 
maximum demand in terms of top displacement. 
A quick examination of the curves in Figure 4.7 shows that there is good agreement 
regarding the estimation of maximum displacement demand for both records between 
the rigid-plastic and the refined analysis. In fact, for both designs, according to the 
choice of X, the refined NLTHA yields a maximum top displacement only 10% lower 
and 15% higher than that estimated by the RPSD metho
records, respectively. For engineering purposes, this is considered to be a small 
deviation and a remarkable achievement of rigid-plastic NLTHA, given their 
simplicity regarding the NLTHA from the FEM program. 
Another important observation is that the dynamic response of both structures in the 
refined NLTHA is practically identical regardless of the choice of the internal stress 
field. This is consistent with the feature of the RPSD method regarding the effective 
separatio
(thus proportional to Fy*) and the choices on the safe stress field. In fact, both designs 
correspond to the same value of Fy*, cf. step expression (4.6) in step 3 of previous 
section. 
It should also be noted from Figure 4.7 that there is agreement between the time-
history curves computed by the refined NLTHA and those corresponding to the RPSD 
method, particularly after the initial onset of plastic behaviour. The reasons for this 
are analogous to those discussed in section 3.2.2 for the case of oscillators: In reality, 
when the system initially undergoes plastic deformations, additional to the input 
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Figure 4.7 -Displacement-history curves for the top displacement for a) the JMA 
record and b) the Northridge record 

 
energy from the ground motion, there is also an elastic energy input in the form of 
kinetic energy. Both forms of energy are later dissipated by the plastic hinges, which 
is taken into account in the refined NLTHA. The rigid-plastic behaviour assumed in 
the RPSD method implies that the system starts from rest when the first plastic 
deformations take place, thus initially there is no kinetic energy to be dissipated. This 
explains the discrepancy in the time-history curves shown in Figure 4.7a) and b) at the 
onset of plastic behaviour between the refined and the rigid-plastic NLTHA. In 
reality, the larger the parameter ay, the larger the influence of the elastic behaviour on 
the dynamic response, and therefore the larger the discrepancy. The difference in 

e-shear between the rigid-plastic and 
refined NLTHA for periods of maximum demand, cf. Figure 4.8. The curves referring 

behaviour is also characterised by some small oscillations found in the refined 
NLTHA curves. These oscillations are also related to the elastic behaviour and 
therefore irrelevant for the evaluation of damage to the structure. 
Finally, we show the comparison in terms of bas
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a) JMA record
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Figure 4.8 -Base-shear-history curves for a) the JMA record and b) the Northridge 
record 

to the refined NLTHA are formulated from the output solution of the FEM 
program in terms of absolute accelerations at each floor. 

Again, the same features are observed for the case of the displacement-history:  
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 The maximum base shear demand predicted by the RPSD method is only 10% 
lower than the one corresponding to the refined NLTHA.  

 Generally, there is good agreement between the base-shear-history curves in the 
time domain. The deviations, the most obvious of which is that taking place for 
t≈6.5s of the Sylmar record, are attributed to the abrupt transitions between types 

discussed in detail in section 3.2.2.  
 There are virtually no differences between the different designs according to the 

directions. The distributed dead and live load at each floor at the time of 

me earthquake event. Therefore the 

of behaviour for the rigid-plastic model as opposed to smooth transition in the 
case of elastoplastic models. This has been 

choice of X in the refined NLTHA.  

4.2 Design of a 12-storey frame 
In this example, the RPSD method is used to design the 12-storey frame depicted in 
Figure 4.9. The total height of the building is 42.5m. The height of the first floor is 
4m, while for subsequent floors it is 3.5m. Each bay is 8m in length, in both 
horizontal 
the earthquake is 11.772kN/m2. Therefore, the total “seismic” mass at each floor is 
307.2ton. 
The building is designed to withstand a lifeti
performance criterion upon which the design is based is such that the maximum inter-
storey drift is 4.5% for ground motion up to 1g. 
Given the symmetry in-plane and vertical regularity of the building, it is clear that this 
structure satisfies the assumption on the analysis of the frame system subdivided into 

 

Figure 4.9 -12-storey frame. 

 143



Rigid-plastic seismic design of R/C structures 

a series of plane frames, which are treated separately, cf. section 3.1 – Further 
assumptions for ductile frames. Observing Figure 4.9 it is clear this implies the design 
for ground motion to be the same for both directions, meaning that we just have to 

 

 magnitude of which is closely related 

r κ in section 3.2.3 approaches the 
solution for continuous systems. If the system is designed to develop a full-sway 
collapse mechanism as in Figure 3.29, we have:

analyse the structure in one of the principal horizontal directions.

Choice of a ground motion scenario for design purposes 
It is well known that high-rise buildings are not as sensitive to earthquake motion as 
for instance, wind loading. This is mainly due to the fact that earthquakes induce 
limited deformation demand on structures, the
with the level of ground motion displacement. This is effectively captured by the 
rigid-plastic spectra concept, cf. section 3.3.1. 
From the examples of GRPS’s given previously in this work, it is seen that the 
displacement demand characteristic of a certain ground motion is of the same order of 
magnitude as the peak ground displacement, the ordinate corresponding to ay=0m/s2. 
The SRPS is a magnification of the GRPS using the factor κ. High-rise buildings are 
typically characterised by uniform distribution of geometry and mass throughout the 
structure. Therefore, the expression in (3.28) fo

 
m(h) m

h(h)
H

≈

φ ≈
                                                    (4.13) 

where m is the distributed mass along the building in kg/m units. H and h have the 
same meaning as in Figure 3.29. Then κ in (3.28) reads: 

H

0
2

H

0
m dh

H
⋅⎜ ⎟
⎝ ⎠∫

hm dh 3H
2h

⋅
κ ≈ ≈

⎛ ⎞

∫
                                         (4.14) 

5, occurred in parts of the city dominated by lower housing 

r rigid-plastic systems, the 

If the desired collapse mechanism is such that upper rigid floors will form, it may 
easily be shown that κ, as in (4.14) is lower than 1.5.  
Figure 4.10 shows the SRPS in terms of maximum relative displacements of structural 
system with κ=1.5 for the scaled JMA record so that PGA=1g. 
It is seen that for buildings higher than 55m and designed to develop full-sway 
collapse mechanism, the maximum drift demand is lower than 1% for any range of ay. 
This indicates that the JMA record is unable to induce significant damage in high-rise 
ductile buildings. In fact, the majority of structural failures that occurred during the 
Kobe Earthquake, 199
structures. Generally, high-rise buildings in downtown Kobe city survived this event 
with limited damage.  
The study carried out at the Nagoya Institute of Technology, cf section 3.2.2, showed 
that the higher the degree of asymmetry of the ground motion, the higher the 
displacement demand induced in the system. Although not investigated, it seems clear 
that the period of the ground motion waves also plays a role. In fact, the longer the 
period of the wave, the longer the time interval Δt, during which the system has 
plastic deformation in one of the directions. Fo
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Figure 4.10 -SRPS in terms of maximum displacement demand for the N-S component 
of the JMA record of the Kobe Earthquake, 1995, for structural system with κ=1.5 

 
displacement demand is proportional to (ay – ag(t))·Δt2/2, the strong  dependence on 
the period of the ground motion waves is thus evident.  
Thus, it seems reasonable that the seismic performance of the structure in Figure 4.9 
should be checked against ground motion of the asymmetric type and dominated by 

ccelerograms of the Kobe earthquake 

aximum displacement demand is shown. The envelope curve is simply 

ection 3.3.1 – 
igid-plastic spectra for design purposes, in order to have a representation of the 
round motion scenario adequate for design purposes, cf. Figure 4.12.  

 

seismic waves with long period as these have a higher potential for inducing severe 
displacement demand on the structure.  
In consequence, we choose both horizontal components of the Erzikan Earthquake, 
Turkey, 1992, and of the Kobe Earthquake, 1995, recorded at the Takatori station. In 
the following, the records corresponding to the Erzikan Earthquake, 1992, will be 
simply designated by Erzikan plus the corresponding horizontal component, whereas 
the records from the Kobe Earthquake, 1995, will be referred to by the name of the 
station where they were recorded: Takatori plus the corresponding horizontal 
component. The records are shown in Appendix. Those corresponding to the Erzikan 
earthquake are single-shock ground motion with a high degree of asymmetry, 
particularly the N-S component, whereas the a
recorded at the Takatori station are long and dominated by long periods of vibration 
due to the filtering effect of soft layers of soil.  
Here of course, given the performance criterion, we deal with the scaled versions of 
these records so that PGA=1g. In Figure 4.11 the GRPS of each of the scaled records 
in terms of m
designated GRPS, as it represents the ground motion scenario considered in this 
design case.  
Finally, we simply apply the correction of the GRPS mentioned in s
R
g
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Figure 4.12 -Corrected GRPS in terms of maximum displacement demand for design 
purposes 

control 
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Step 1 – Choice of a suitable collapse mechanism 
In this case, the choice of the most suitable collapse mechanism is not as 
straightforward as for the previous design example. Of course the full-sway collapse 
mechanism shown in Figure 4.13a) is still considered to be a valid choice. On the 
other hand, it seems that a collapse mechanism with some upper rigid floors, as 
depicted in Figure 4.13b), would still assure adequate dissipation capacity throughout 
the structure despite an increase in the rotation demand at each plastic hinge. 
However, the advantage of such a choice is found in terms of the economy of the 
design in the rigid floors due to the avoidance of refined differentiated reinforcing 

 and P refer to the (F)ull-sway 

otation demand at each of the plastic hinges, θmax, in both collapse 
mechanisms is: 

detail at the plastic hinges. 
For illustration purposes, in this design case we initially consider the full-sway 
collapse mechanism and the “partial” collapse mechanism involving the formation of 
plastic hinges in the ends of the beams up to the 8th floor, in the base of the columns 
on the ground floor, and in the top of the 8th floor, cf. Figure 4.13a) and b), 
respectively. It should be noted that in the latter mechanism, only 2/3 of the plastic 
hinges of the full-sway mechanism are required. The corresponding quantities m* and 
κ are also shown in the figure. In the future, the index F
and to the (P)artial collapse mechanisms, respectively. 
The maximum r

maxd ⋅
max H

κ

42.5m for the full-sway 

θ =                                                 (4.15) 

where H is the height of the upper “inclined” floor. Thus, H=
mechanism and H=32.0m for the partial collapse mechanism. 
From (4.15) it follows that if both collapse mechanisms are subjected to the same 

a)  b)  
m*=1401 ton m*=2017 ton 

κ=1.44 κ=1.23 

Figure 4.13 -Two possible collapse mechanisms for the 12-storey frame and 
corresponding m* and κ quantities 
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displacement demand dmax, then the relation between the rotation demand in the 
plastic hinges of the partial collapse mechanism, θmax,P, and of the full-sway 
mechanism, θmax,F, is only 13%: 

max,P P P

max,F F F/ H 1.44 32.0

Given this small difference, it is expected that the value of ay, read in the 
corresponding SRPS from the performance criterion, does not differ significantly for 
both collapse mechanisms. As previously discussed, in these frame structures the 
required dissipation capacity is as

/ H 1.23 42.5 1.13
θ κ

= = × =
θ κ

                              (4.16) 

sociated with the sum MP* of all the plastic 

echanism implies 
a value of MP* that is 7% lower than for the full-sway mechanism: 

moments given by MP*=κ·ay·m*·H. 
For the same chosen value of ay, it is seen that the partial collapse m

*
P,P
*
P,FM 1.44 1401 42.5× ×

This difference in terms of required dissipation capacity may result in signi

M 1.23 2017 32.0 0.93× ×
= =                                   (4.17) 

ficant 
savings in terms of reinforcement quantities for the partial collapse mechanism. 

s of maximum 
displacement demand to SRPS in terms of maximum rotation demand. 

Step 3 – Definition of the required dissipation capacity using the rigid-

anism may be plotted. We use the 
following factors to perform the transformation: 

Step 2 – Choice of a dynamic performance criterion, Rmax 
As we are considering two different collapse mechanisms, it is convenient to 
represent both SRPS’s curves in terms of maximum rotation demand, as this allows 
both curves to be drawn in the same space. Therefore, the values in the GRPS of 
Figure 4.12 should be affected by the parameter κ/H, cf. (4.15), for each of the 
collapse mechanisms to perform the transformation from GRPS in term

plastic spectra 
Following the discussion in the previous step, the SRPS’s in terms of maximum 
rotation demand, θmax, for each collapse mech

1.23Full-sway collapse mechanism:   /H= =0.038
32.0
1.44Partial collapse mechanism:        /H= =0.034 
42.5

The intervals of ay given for w

κ

κ
                  (4.18) 

hich the performance criterion is satisfied are according 
to the SRPS’s of Figure 4.14. 

Full-sway collapse mechanism: 0.045 for a 0.12g

cha

θmax y

max yPartial collapse me nism:      0.045 for a 0.29g

≤ ≥

θ ≤ ≥
            (4.19) 

m where the 
value of ay, and therefore of the required lateral strength is rather small.  

However, the determination of ay is not concluded yet. In these types of structures, P-
Δ effects have to be taken into account. This is especially pertinent if we decide to 
design the structure according to the choice of the full-sway mechanis
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Figure 4.14 -SRPS’s for the full-sway and partial collapse mechanisms in terms of 
maximum rotation demand at the plastic hinges. 

Table 4.5 -Rigid-plastic NLTHA with the consideration of P-Δ effects in the 
structure chosen to develop the full-sway mechanism 

 Maximum rotation demand, θmax (rad) 
ay (m/s2) Erzikan N-S Takatori N-S 

0.15 0.049 0.030 
0.20 0.048 0.024 
0.23 0.044 0.019 

In fact, it is concluded that the performance criterion for a structure designed to 
develop the full-sway collapse mechanism is only satisfied for ay≥0.23g. Table 4.5 
summarises the results in terms of maximum rotation demand at the plastic hinges in 
the structure with the full-sway collapse mechanism for rigid-plastic NLTHA with the 
consideration of P-Δ effects for all the records in the GRPS carried-out until the 
performance criterion was met.1 
In the case of the structure designed to develop the partial collapse mechanism, it was 
found that the maximum rotation demand corresponding to ay=0.29g when P-Δ effects 

                                                 
1 In a real design situation, the GRPS would have accounted for far more records. Despite the 
simplicity of rigid-plastic NLTHA, this would make it impractical to evaluate the response of the 
structure against every record accounted for in the GRPS, as is done in this illustrative example. 
However, the purpose of this analysis is simply to check if the chosen value of ay is high enough so that 
the structure is not greatly affected by P-Δ effects. According to engineering judgement, this can be 
carried out with a reduced amount of rigid-plastic NLTHA. 
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are taken into account is slightly reduced to 0.043rad. For this reason it is considered 
that a structure designed to develop a partial collapse mechanism, and with ay=0.29g, 
is stable enough against P-Δ effects.   
It is concluded that if one chooses the full-sway collapse mechanism, the dissipation 
capacity on the structure requires that ay=0.23g, whereas if the structure is designed 
according to the partial collapse mechanism, ay=0.29g.  
Thus, the required lateral strength assigned to the structure according to each choice 
of the collapse mechanism is of the same order of magnitude and, consequently the 
advantages of the economy of design associated with the partial collapse mechanism 
are retained. For this reason we consider that the most suitable collapse mechanism, 
i.e. yielding a better compromise between structural performance and economy, is the 
partial collapse mechanism. Therefore, we proceed with the design of the structure 
according to this choice.  

Step 4 - Choice of an appropriate safe stress field using the extreme loading 
scenarios approach 

We first define the external lateral force fields by applying the equations in Table 3.6. 
Previously it was seen that if the structure is designed to develop the partial collapse 
mechanism and to meet the performance criterion of θmax≤0.045rad, the quantities in 
(4.20) are reached, which yield the lateral loading cases in Table 4.6: 

2
y

2

1.23
a 2.85m / s

PGA 9.81m / s

κ =

=

=

                                              (4.20) 

Table 4.6 - Lateral force fields for design purposes (kN) 

Plastic Behaviour 

Mechanism in the  
positive direction 

Mechanism in the  
negative direction 

Slip Behaviour 
Floor 

+PGA -PGA +PGA -PGA +PGA -PGA 
12 1762 388 -388 -1762 687 -687 
11 1762 388 -388 -1762 687 -687 
10 1762 388 -388 -1762 687 -687 
9 1762 388 -388 -1762 687 -687 
8 1240 675 -675 -1240 282 -282 
7 718 962 -962 -718 -122 122 
6 195 1250 -1250 -195 -527 527 
5 -327 1537 -1537 327 -932 932 
4 -850 1824 -1824 850 -1337 1337 
3 -1372 2111 -2111 1372 -1741 1741 
2 -1894 2398 -2398 1894 -2146 2146 
1 -2417 2685 -2685 2417 -2551 2551 
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Central column

The choices on the safe stress field are more complex as in the case of the simp
lane frame of the previous design example. In fact, for high-rise buildings it 

s obvious that the strength capacity at each structural element should decrease 
with the height of the corresponding floor. Moreover, the strength capacity of each 

n should be assigned according to its location in the plan. 
Firstly we assume that the base shear per floor is equally distributed by the 3 sub-

es in the direction of the ground motion, cf. Figure 4.15. 
Bearing this in mind, we make the following considerations to determine the required 
bending capacity in the beams: 

The plastic hinges in the ends of the beams on the same floor have the sam
flexural capacity in both directions. Let the bending capacity of the hinges in floor 
1 be M. 
The flexural capacity of the plastic hinges in the beams of floors 4 to 8, MB

P,4~8
75% of the flexural capacity of the plastic hinges in the beams of floors 1 to 3, 

le 4-
storey p
seem

colum

fram

 e 

 , is 

MB
P,1~3. 

 To enforce the weak beam – strong column concept, 1/3 of the dissipation 
capacity is due to flexural behaviour at the plastic hinges in the columns, i.e. the 

C

etermine the 

sum of the flexural capacities of the hinges in the columns, ΣM P, is 50% of the 
sum of the flexural capacities of the hinges in the beams, ΣMB

P. 

At this point we have enough information to determine the flexural capacity of the 
hinges in the first three floors, M, which is the variable required to d
flexural capacities at all plastic hinges in the beams. This is carried out by expressing 
each of the conditions above and solving the system of equations: 

Figure 4.15 -Identification of the columns according to its location in plan 

Outer frame

Outer frame

Inner frame

Middle column

Middle column Corner column

Direction of 
ground motion
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B
1~3
B B
4~8 1~3

C B
P P

* C B
P P P

* *
P y

M M

M 0.75 M
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M M M

M a m H cf. (4.6) and (4.9)

⎧ =
⎪

= ×⎪
⎪

= ×⎨
⎪

= +⎪
⎪ = κ ⋅ ⋅ ⋅⎩

∑ ∑
∑ ∑

                             (4.21) 

where it follows that  
( )     1.5 12 M 3 12 0.75 M 5 1.23 2.85 2017 32

M 1862 kNm
× × × + × × × = × × × ⇔

⇔ =
       (4.22) 

Note that in the direction of the ground motion, there are 12 plastic hinges in each 
floor. 
The following considerations lead to the determination of the flexural capacities of 
each plastic hinge in the columns: 

 The sum of the flexural capacities of the plastic hinges at the top of floor 8, 
ΣMC

P,8, is 50% of the sum of the flexural capacities at the base of the column in 
the ground floor, ΣMC

P,GF. 
 Cf. Figure 4.15. The flexural capacities in plastic hinges located in the corner 

columns, MP
Corner, and in the middle columns, MP

Middle, is 70% and 80%, 
respectively, of the flexural capacity of the plastic hinges located in the central 
column, MP

Central. 

Now we have: 
C C
P,8 P,G P

C C
P,8 P,GF

Corner Central
P P
Middle Central
P P

M M 0.50 M

M 0.5 M

M 0.7 M

M 0.8 M

⎧ + = ×
⎪

= ×⎪
⎨

= ×⎪
⎪ = ×⎩

∑ ∑ ∑
∑ ∑

B

                                (4.23) 

leading to the determination of the required bending capacity of the plastic hinge in 
the bottom of the central column: 

    
( ) ( )Central

P

Central
P

     1.5 M 1 4 0.7 4 0.8 0.5 12 1862 3 12 0.75 1862 5

M 7182kNm

× + × + × = × × × + × × ×

⇔ =

⇔
    

  (4.24) 

The required flexural capacities at each plastic hinge are summarised in Table 4.7. 
The stress field is fully determined in the beams, but not yet in the columns. In fact, 

 

Table 4.7 - Bending capacities of the different plastic hinges (kNm) 

Beams Columns MC,Corner MC,Middle MC,Central 
Floor 1-3 1862 Ground floor 5027 5746 7182 
Floor 4-8 1397 Top of 8th floor 2514 2873 3591 
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for the latter case, we must still find a base shear distribution compatible with the 
flexural capacities shown in Table 4.7. 
Consider the case of the corner column. When the structure has plastic behaviour we 
know the magnitude of the bending moments at the top of the 8th floor and at the 
ground floor. In addition, we know that these bending moments have opposite signs. 
Therefore, the variation of the bending moment from the top of the 8th floor to the 
ground floor in the corner column, ΔMGF~8

Corner, has to be the sum of the 
corresponding bending capacities plus the contribution from the bending moments at 
the ends of the beams. The latter is also determined. Thus,  

Corner
GF~8M 5027 2514 3 1862 5 0.75 1862 20110 kNmΔ = + + × + × × =          (4.25) 

from which it follows that the average shear force in the corner column 
Corner
GF~8V  must 

be  
Corner

Corner GF~8
GF~8

M 20110V 628 kN
H 32

Δ
= = =                               (4.26) 

Applying identical reasoning to the middle column in the same sub-frame we have: 

( )Middle
GF~8M 5746 2873 2 3 1862 5 0.75 1862 33756 kNmΔ = + + × × + × × =      (4.27)  

Note that the column in the middle receives twice as much contribution from the 
beams. 

Middle
Middle GF~8
GF~8

M 33756V 1055 kN
H 32

Δ
= = =                              (4.28) 

From (4.26) and (4.28) it is found that in the outer sub-frames, the shear force in the 
middle column must be 70% greater than the shear force in the corner columns. 

Middle
GF~8
Corner
GF~8

V 1055 1.7
628V

= =                                             (4.29) 

The same relationship regarding the base shear distribution is found for the inner 
frame: 

( )Central Central
GF~8 GF~8
Middle Middle

GF~8GF~8

7182+3591+2 3 1862 5 0.75 1862MV 1.7
M 5746 2873 3 1862 5 0.75 1862V

× × + × ×Δ
= = =

Δ + + × + × ×
    (4.30) 

We are now in a position to derive the strength demand at any point of the structure 
below the rigid floors by considering equilibrium of each of the lateral force fields in 
Table 4.6 and the gravitational forces. Table 4.8 shows the required flexural and shear 
strength for each of the columns and for each of the sub-frames identified in Figure 
4.15. 
To conclude this step, it is necessary to ensure that the upper rigid floors remain in the 
rigid domain throughout the entire ground motion event. 
Bearing in mind that the lateral force field is also known in this part of the structure, 
rigidity is guaranteed by determining the required strength so that all the possible 
collapse mechanisms are prevented. This is carried out by applying the work equation 
for each of the possible collapse mechanisms by determining the required bending 
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Table 4.8 - Required flexural and shear strength in the columns identified in 
Figure 4.15 up to the 8th floor (kN-m) 

Outer frames Inner frame 

Corner 
column 

Middle 
column 

Middle 
column 

Central 
column 

Floor Cross-
section 

M V M V M V M V 

Top 2514 2873 2873 3591 
8 

Bottom 2029 
635 

2050
1080 

2363
635 

2726 
1080

Top 3423 4839 3757 5515 
7 

Bottom 2732 
747 

3665
1270 

3032
747 

4282 
1270

Top 4126 6453 4426 7071 
6 

Bottom 3137 
811 

4772
1379 

3388
811 

5305 
1379

Top 4532 7560 4782 8094 
5 

Bottom 3712 
829 

6454
1409 

3874
829 

6621 
1409

Top 4549 8009 4731 8425 
4 

Bottom 5070 
800 

8344
1359 

5369
800 

8745 
1359

Top 4090 7647 4179 7905 
3 

Bottom 6165 
723 

9787
1229 

6589
723 

10400 
1229

Top 4306 7253 4729 7306 
2 

Bottom 6369 
893 

9577
1518 

6896
893 

10365 
1518

Top 4510 5858 5037 6647 
1 

Bottom 5986 
1109

8368
1885 

6587
1109 

9281 
1885

Top 4127 4650 4728 5563 
GF 

Bottom 5027 
1351

5746
2296 

5746
1351 

7182 
2296

capacities at the critical cross-sections so that the load parameter λ, affecting the 
external force field, is greater than 1. 
To simplify the procedure, we assume that the flexural strength of the beams in the 
upper rigid floors, MB

P,9~12, is 60% of the strength of the beams in the first 3 floors, 
MB

P,1~3. Thus, 
B B
9~12 1~3
B
9~12

B
9~12

     M 0.60 M

M 0.60 1862

M 1117 kNm

= × ⇔

⇔ = ×

⇔ =

⇔                                        (4.31) 
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a) 
 

Central
P,11

Middle
P,11

Corner
P,11

M 529 kNm

2.77 M 423 kNm

M 370 kNm

⎧ =
⎪⎪λ = ⇒ =⎨
⎪

=⎪⎩

 

  

b) 
 

Central
P,10

Middle
P,10

Corner
P,10

M 1145 kNm

1.88 M 916 kNm

M 802 kNm

⎧ =
⎪⎪λ = ⇒ =⎨
⎪

=⎪⎩

 

 

 
c) 
 

Central
P,9

Middle
P,9

Corner
P,9

M 2184 kNm

1.50 M 1748 kNm

M 1529 kNm

⎧ =
⎪⎪λ = ⇒ =⎨
⎪

=⎪⎩

 

 

We further assume that the previous relationships between the flexural strengths at the 
different columns as in (4.23) as well as the ones concerning base shear distribution 
per each sub-frame in the direction of the ground motion still apply. The flexural 
capacity in a given column is constant throughout its length. 

Figure 4.16 -Determination of the required bending capacity in the columns so that 
the 3 upper floors remain in the rigid domain throughout the entire ground motion 

From Table 4.6 we find that the most severe loading cases for the 3 upper rigid floors 
are those when the structure has plastic behaviour in the same direction as the 
maximum expected ground acceleration, PGA. Therefore, the loading case considered 
corresponds to a rectangular force distribution with magnitude 1762 kNm per floor 
multiplied by a load parameter λ. 
Given the distributed vertical load in the beams, we find that the maximum positive 
bending moment in the beams takes place in the end cross-section with positive 
bending moment equal to 1117kNm, consequently the cross-sections where potential 
plastic hinges may be located are those at the ends of the beams and of the columns. 
This leads to 8 collapse mechanisms, see Figure 4.16 and Figure 4.17. 
In each of the collapse mechanisms, the external virtual work WE is given by: 

E iW F ih= λ ⋅ ⋅θ ⋅∑                                             (4.32) 

where Fi is lateral force applied at the displaced floor i, and hi is the corresponding 
height to the highest rigid floor or, in the case of soft-storey mechanisms, the height 
of the own floor. 
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a) 
 
 

Central
P,11M 529 kNm 1.20= ⇒ λ =  

 
b) 
 
 

Central
P,10M 1145 kNm 1.30= ⇒ λ =  

 
c) 
 
 

Central
P,9M 2184 kNm 1.65= ⇒ λ =  

 
d) 
 

Central
P,11

Central
P,10

M 529 kNm
1.36

M 1145 kNm

⎧ =⎪ ⇒ λ =⎨
=⎪⎩

 

 

e) 
 

Central
P,11

Central
P,10

M 529 kNm
1.24

M 2184 kNm

⎧ =⎪ ⇒ λ =⎨
=⎪⎩

 

 

The internal virtual work, WI, is given by the sum of the internal virtual work at 
the plastic hinges in the beams and in the columns. 

Figure 4.17 -Verification of the required bending capacity in the columns so that the 
3 upper floors remain in the rigid domain throughout the entire ground motion 

 
B

I IW W W= + C
I                                                (4.33) 

where  
B
IW 1117 N= ⋅ ⋅θ                                               (4.34) 

with N as the number of plastic hinges at the beams (which is a multiple of 12), and 
C
IW (1 4 0.7 4 0.8) M= + ⋅ + ⋅ ⋅ ⋅∑ Central

P, j θ                              (4.35) 
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in which MP,j
Central is the required bending capacity at the plastic hinges in the central 

column at level j. 
The virtual work principle is successively applied to collapse mechanisms in sketches 
a), b) and c) of Figure 4.16 to determine the required bending capacity MP,j

Central at the 
base of floors 11, 10 and 9, respectively, ensuring that in each of the collapse 
mechanism λ>1: 

i iCentral
P, j

F h 1117 N
M   j=9, 10 or 11

(1 4 0.7 4 0.8)
λ ⋅ ⋅ − ⋅

=
+ ⋅ + ⋅
∑                        (4.36) 

By determining λ, the same principle is applied to verify the safety of the design 
against the formation of the collapse mechanisms, as in sketches a) to e) of Figure 
4.17. Rigidity of the sub-frame is guaranteed when λ>1 for all the collapse 
mechanisms. 
Finally, the remaining bending capacities at the corner and middle columns may be 
defined, see Table 4.9. At this point, the strength required at any point of the structure, 
ensuring that the collapse mechanism shown in Figure 4.13b) takes place, is fully 
determined. Thus, we can proceed to step 5. 

Step 5 – Final structural design 
The structure was designed by (Aono et al, 2006) at Ichinose Lab, Nagoya Institute of 
Technology assuming that only flexural collapse mechanisms may take place. 
The compressive cylinder strength of the concrete is assumed to vary between 36MPa 
and 54MPa depending on the storey, cf. Table 4.10. The reinforcing steel used in 

 

Table 4.9 -Required bending capacities in the columns of the 3 upper floors 
(kNm)

Columns MC,Corner MC,Middle MC,Central 
11th Floor 370 423 529 
10th Floor 802 916 1145 
9th Floor 1529 1748 2184 

Table 4.10 - Properties of concrete and reinforcing steel 

Concrete Reinforcing steel 

Floor Compressive 
strength, fc, 

(MPa) 

Tensile 
strength, 
ft, (MPa)

Yield 
strength, 
fy, (MPa) 

Ultimate 
strenght, 
fu, (MPa) 

Yield 
strain, 

εy 

Ultimate 
strain, 

εu 
η1

                                                 

 

9~12 36 1.8 
6~8 42 2.1 
3~5 48 2.4 

GF~2 54 2.4 

490 613 0.025 0.12 0.20

1 To estimate of the available rotation capacity at the plastic hinges following the procedure described 
in section 2.4. 
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Floor Columns Beams 
 

12 
 

– 

 
11 

 
 

10 
 

0.90m

4 + 2 D29  

 
9 
 

0.85m

16 D32  

 
8 
 
 
7 
 
 
6 
 

0.90m

16 D35  

 
5 
 
 
4 
 

0.90m

4 + 2 D32  

 
3 
 

0.90m

16 + 8 D35  

 

2 
 

 

1 
 

1.00m

4 + 2 D35  

GF 

0.95m

16 + 8 D38
 – 

Table 4.11 - Cross-section detailing for columns and beams according to the 
floor number 

every structural element of this frame is comparable to European B500, see Table 2.4.  
control

The yield strength is 490MPa. 
As in the previous example, the onset of plastic behaviour in the plastic hinges is 
associated with yielding of the tensile reinforcement. The cross-section detailing 
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columns and beams is identical, irrespective of its location in the plan. In other words, 
cross-section detailing only changes with the floor number. To assure ductile 
behaviour, low tensile reinforcement ratios were chosen: between 0.8% and 1.1% for 
the beams and 0.6% and 1.2% for the columns. Table 4.11 shows the cross-section 
detailing in terms of longitudinal reinforcement according to the floor number for 
both columns and beams. The information regarding the longitudinal reinforcement is 
below the sketches: For instance, for the case of the columns in the first 3 floors, the 
outer layer of longitudinal reinforcement is composed of 16 bars, each with a diameter 
of 38mm, whereas the inner layer is composed of 8 bars with the same diameter, thus 
the designation, 16 + 8 D38. In the beams, the designation below the sketch refers 
only to the longitudinal reinforcement in one of the faces (top or bottom). 
The problem now is to ascertain whether the structure designed by (Aono et al., 2006) 
meets the particular specifications of this design case, as discussed in the previous 
steps and the general requirements of the RPSD method.  
The flexural strength capacity of each of the cross-sections in the columns of Table 
4.11 was determined using the commercial programme Canny (Canny Structural 
Analysis, 2004), using the so-called fibre model. The gravitational forces at the time 
of the earthquake were considered. Regarding the plastic hinges in the beams, a 
simple cross-section analysis was carried out. Table 4.12 shows the results of this 
analysis for the cross-sections at the ends of the beams and at the columns. The 
flexural capacities of the plastic hinges corresponding to the partial collapse 
mechanism are highlighted with a grey background. 
Firstly, it is seen from Table 4.12 that the flexural strength of the plastic hinges in the 
structure designed by (Aono et al., 2006) is practically the same as the requirements 
derived in step 4.  
A further analysis of Table 4.12 shows that the strength demand in the columns above 

 

Table 4.12 - Flexural capacities of the plastic hinges considering the gravitational forces 
at the time of the earthquake for the structure designed by (Aono et al., 2006) 

Columns 
Floor 

Corner Middle Central 
Beams 

12 – – – 
11 1979 2057 2210 
10 2057 2210 2502 

1126 

9 2134 2359 2776 1390 
8 2772 3088 3676 
7 2853 3241 3947 
6 2932 3390 4203 
5 4234 4767 5711 
4 4313 4911 5951 

1390 

3 4390 5053 6179 
2 4911 5702 7075 
1 4993 5851 7317 

1873 

GF 5075 5998 7547 – 
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Table 4.13 - Available rotation capacity and expected ductility demand at the 
plastic hinges of the structure designed by (Aono et al., 2006) 

Plastic hinges M 
(kNm) 

V 
(kN) 

h 
(m) 

lp 
(m) 

θu 
(rad) 

θy 
(rad) μexp 

Corner 2514 635 0.90 1.02 0.068 0.003 14 
Middle 2873 1080 0.90 0.76 0.050 0.002 19 Top of the 

8th floor 
Central 3591 1080 0.90 0.89 0.059 0.003 16 
Corner 5027 1351 0.95 0.98 0.062 0.003 15 
Middle 5746 2296 0.95 0.74 0.047 0.002 20 

Columns 
Base of the 

ground floor 
Central 7182 2296 0.95 0.86 0.055 0.003 17 

4~8 1397 600 0.90 0.69 0.046 0.002 21 
Beams 

1~3 1862 717 1.00 0.77 0.046 0.002 21 

the 9th floor of the structure designed by (Aono et al., 2006) is always larger than the 
requirements found in Figure 4.16 and Figure 4.17, thus yielding will not take place at 
the 3 upper floors. 

 

Additionally, we must verify whether the structure designed above complies with the 
general assumptions of the RPSD method, i.e. if there is enough rotation capacity at 
the plastic hinges and if the expected ductility demand in these elements is sufficient 
to consider that plastic behaviour will govern the dynamic response. Therefore we 
apply the procedure in section 2.3 to obtain a conservative estimation of the rotation 
capacity of each of the plastic hinges. Table 4.13 summarises the results of such an 
analysis. Note that the bending moment and shear force quantities were already 
determined in the previous design step, and that the expected ductility demand refers 
to the ratio of the maximum expected rotation, θu=0.045rad, to the yield rotation, θy. 
From Table 4.13, it is seen that there is enough rotation capacity at all plastic hinges, 
i.e. θu>0.045 rad, and that the expected ductility demand is always greater than 10, 
leading to the conclusion that the dynamic response will be controlled by plastic 
behaviour. 
Finally, comparing the existing flexural capacities in the columns, cf. Table 4.12 and 
the corresponding strength demand derived in step 4, cf. Table 4.8, it is expected that 
yielding will take place in some parts of the columns of the structure designed by 
(Aono et al., 2006). However, it should be noted that this situation would be 
prevented using appropriate overstrength factors if the author had carried out the 
design. In practise this would translate into stronger and therefore stiffer cross-
sections in the columns, implying different elastic properties assigned to the structure 
as a whole. Nevertheless, as mentioned above, it is expected that the structure 
designed by (Aono et al., 2006) will have its dynamic response against the ground 
motion of the GRPS in Figure 4.12 controlled by plastic behaviour, which therefore 
minimises this discrepancy.  

Comparison with refined NLTHA analysis 
With reference to the previous section, we can expect that the dynamic response of 
the structure designed by (Aono et al., 2006) against the ground motions in the GRPS 
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                                    a)                                                                b) 

Figure 4.18 -Stress-strain curves for a) confined concrete and b) reinforcing steel 

of Figure 4.12 will develop within the limits discussed in steps 1 to 4, i.e. on the 
formation of the partial collapse mechanism of Figure 4.13b) and having maximum 
drift of 4.5%. To confirm this we have performed refined NLTHA’s using the full 
records of both horizontal components of the Erzikan and Takatori ground motions, 
scaled up so that PGA=1g. 
We used the commercial programme, Canny, based on the fibre-modelling approach 
to model the columns, cf. section 1.2.2. The properties of the materials are explicitly 
defined by the corresponding stress-strain curves, see Figure 4.18.  
Figure 4.18 shows the stress-strain curves for the confined concrete and reinforcing 
steel in the columns adopted in this analysis. The first is the constant confinement 
trilinear model, and the second the bilinear steel model. 
The beams are modelled as linear elastic elements with plastic hinges in the ends, the 
length of which are 0.80m (slightly larger than the values estimated in Table 4.13, and 
therefore with even larger rotation capacity). The hysteretic properties of the plastic 
hinges are simulated using the Takeda model. 
The fact that the structural model makes use of the fibre modelling approach for the 
case of the columns allows an accurate estimation of damage along these structural 
elements. We must simply assign the properties of the materials. Furthermore, this 
allows for a comparison of the solution in terms of strength demand at the columns 
provided by the RPSD method and the refined NLTHA. 
The damping was considered to be proportional to the stiffness matrix so that the 
damping ratio of the first mode equals 0.03. 
As in the previous example, the response is calculated by direct integration of the 
equations of motion using the Newmark method, with γ=0.5 and β=0.25.  
Figure 4.19 and Figure 4.20 show the first 15s of the displacement-history curves in 
terms of top displacement for the rigid-plastic and the refined NLTHA. 
From the curves in Figure 4.19 and Figure 4.20 it is first noted that generally there is 
good agreement between the displacement-history curves computed by the rigid-
plastic NLTHA and by the refined NLTHA. Again, we have virtually parallel curves 
for periods of large displacement demand after the onset of the first period of plastic 
behaviour. In the previous example, the explanation for the initial discrepancy 
between elastoplastic and rigid-plastic analysis was given. 
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a) Erzican N-S
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b) Erzican E-W
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Figure 4.19 - Top displacement-history curves by the rigid-plastic and the refined NLTHA 
for both horizontal components of the Erzikan ground motion 

Table 4.14 -Maximum displacement at the top for the rigid-plastic and fibre models (m)

 Erzikan N-S Erzikan E-W Takatori N-S Takatori E-W 
RPSD method 0.75 0.61 1.36 0.74 

Refined NLTHA 1.34 0.65 1.15 1.06 
control 

 
On average, it is seen that the prediction of maximum displacement demand by the 
rigid plastic model is 15% lower than that provided by the fibre model, see Table 
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a) Takatori N-S
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b) Takatori E-W
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Figure 4.20 - Top displacement-history curves by the rigid-plastic and the refined 
NLTHA for both horizontal components of the Takatori ground motion 

 
4.14. It is again stressed that from an engineering perspective, this is considered a 
small deviation. 
However, it is more important to evaluate if the structure develops the partial collapse 
mechanism and whether the maximum drift is 4.5%, than it is to have good agreement 
between the displacement time-history curves. Figure 4.21 shows the inter-story drift 
development with the height for both horizontal records of the Erzikan ground motion 
obtained by the fibre model at the time of maximum displacement demand. 
Examining the last row of Table 4.14, it can be seen that these records define the 
range of maximum displacement demand predicted by the refined NLTHA. 
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a) N-S component b) E-W component 

From the records analysed by the fibre model, the N-S component of the Erzikan 
ground motion yields maximum inter-story drift, i.e. 4.7% between floors 5 and 6. 
This is remarkably close to the prediction of the rigid-plastic approach. 

Figure 4.21 -Inter-storey drift at time of maximum displacement demand for both 
components of the Erzikan ground motion 

Moreover, as one can see in Figure 4.21a) and b), the drift among the 3 upper floors is 
comparably lower than in the first 8 floors, for both records and for different levels of 
maximum displacement demand. This indicates that the structure designed by (Aono 
et al., 2006) did indeed perform as expected, i.e. the structure developed the partial 
collapse mechanism of Figure 4.13b). 
Finally, the results in terms of maximum strength demand from the refined NLTHA 
are compared with the predictions of the RPSD method after the application of the 
extreme loading scenarios approach, cf. Table 4.8. Figure 4.22 and Figure 4.23 show 
the maximum strength demand in terms of bending moments and shear forces in each 
of the columns of Table 4.8 up to the 8th floor from the refined NLTHA for all 4 
records of ground motion. The curves representing the strength demand derived in 
step 4 are also shown.  
Analysing Figure 4.22 and Figure 4.23 it is shown that the predictions of maximum 
strength demand by the RPSD method are close to the results from the refined 
NLTHA, particularly for the case of shear strength demand. In fact, the strength 
demand estimated by the RPSD method is on average 95% lower than the refined 
NLTHA for the shear case and 42% higher for the flexural case. The latter is as 
expected, judging by the conservative nature of the horizontal forces estimated on the 
basis of the extreme loading scenarios approach.  
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a) Corner Column / Outer frame
Shear strength demand

-2000 -1000 0 1000 2000

b) Corner column / Outer frame
Flexural strength demand
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RPSD

 

c) Middle column / Outer frame
Shear strength demand

-2500 -1250 0 1250 2500

d) Middle column / Outer frame
Flexural strength demand

-12000 -6000 0 6000 12000

Fibre
model

RPSD

 

control 

Figure 4.22 -Maximum strength demand at the columns in the outer frame by the RPSD 
method and by the refined NLTHA in terms of shear force and bending moments 
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a) Middle column / Inner frame
Shear strength demand

-2000 -1000 0 1000 2000

b) Middle column / Inner frame
Flexural strength demand

-8000 -4000 0 4000 8000

Fibre
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c) Central column / Inner frame
Shear strength demand

-3000 -1500 0 1500 3000

d) Central column / Inner frame
Flexural strength demand

-12000 -6000 0 6000 12000

Fibre
model

RPSD

 

control 

Figure 4.23 - Maximum strength demand at the columns in the inner frame by the RPSD method 
and by the refined NLTHA in terms of shear force and bending moments 
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Applications of the RPSD method to frame structures 

Table 4.15 -Flexural strength demand determined by the refined NLTHA and the 
corresponding ration to the flexural capacity in the columns of the 3 upper floors 

There are some cross-sections, particularly the one close to the plastic hinges in the 
columns, where the strength demand predicted by the RPSD method is lower than that 
predicted by the refined NLTHA. This relates to the overstrength phenomena at the 
plastic hinges due to the effect of axial compressive forces effectively captured by the 
fibre modelling approach. In reality this would not be a problem, as overstrength 
factors described in section 2.4.3 would be considered to magnify the strength 
demand at any point of the structure outside the hinges. In fact, it is noted that an 
overstrength factor of 1.3, which is perfectly within the limits discussed in section 
2.4.3, is enough to assure safety at any point of the structure outside the hinges. 

Corner Column Corner Column Corner Column 
Floor Cross-

section 
Demand, D Ratio 

D/C Demand, D Ratio 
D/C Demand, D Ratio 

D/C 

Top 1345 0.68 2239 1.09 2258 1.02 11 
Bottom 1536 0.78 1665 0.81 817 0.37 

Top 2562 1.25 2619 1.18 2621 1.05 
10 

Bottom 1949 0.95 2153 0.97 1339 0.54 
Top 2698 1.26 2808 1.19 2821 1.02 

9 
Bottom 2151 1.01 2304 0.98 1654 0.60 

Finally, the flexural strength demand determined by the refined NLTHA at the 
columns in the 3 upper floors is shown in Table 4.15. The ratios D/C refer to the 
relation between the flexural strength demand, D, and the respective flexural capacity, 
C, cf. the 3 upper rows in Table 4.15. 
Again it is found that flexural demand at some cross-sections is slightly exceeded. 
However, in Figure 4.21 it is shown that the drift in these floors is very limited, which 
in turn indicates small amounts of plastic deformations. Therefore, the fact that the 
flexural demand is exceeded in some cross-sections does not indicate the onset of 
plastic behaviour there, but the enhancement of flexural capacity due to additional 
compressive forces.  
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5. Final remarks 
The main objective of this work is to present a new, rational and simplified design 
procedure that can help engineers faced with the task of designing reinforced concrete 
structures to withstand the effects of strong ground motion. 

• Despite its rationality and superior accuracy, the use of conventional NLTHA for 
design purposes is beset with some important setbacks, the most notorious of all 
being the one related with the complete definition a priori of strength and stiffness 
distribution throughout the structure. On the other hand, current simplified design 
procedures, as the Elastic Spectrum and the Capacity Spectrum methods, may 
work directly with a spectrum, which allows a swift estimation of the seismic 
demand expected at the implementation site. However, as it was seen in section 1, 
these procedures rely on the use modal superposition and combination rules 
together with force reduction factors to assess the seismic demand in ductile 
structures. Not only this is inconsistent from the theoretical point of view, but also 
may lead to erroneous estimations of internal forces and displacements most 
especially when higher mode effects are important.  

• The RPSD method, presented in this thesis, combines the 
a) The rationality of NLTHA for the estimation of the seismic demand solely 

based on the properties of the structure, and 
b) The simplicity and practical value of spectral analysis for the estimation of the 

required dissipation capacity. 
While significant engineering judgement is required, the designer has full control 
over the design process as a suitable collapse mechanism, required structural 
dissipation capacity and appropriate strength distribution throughout the structure 
are explicitly defined according to the desired performance criterion. Therefore, 
the procedure follows the modern seismic design philosophy, Performance Based-
Seismic Design.  

• The corresponding theoretical background is found on the extremum principles of 
the theory of Plasticity as the formation of the desired collapse mechanism is 
enforced by finding a statically admissible safe stress field outside the plastic 
hinges. 

• In section 3.1 it was seen that the main assumptions of the RPSD method are: 
a) Disregard for the contribution of structural elastic properties in the dynamic 

response and 
b) Disregard for viscous damping given that the only source of energy dissipation 

is attributed to plastic behaviour. 
As a result, undamped rigid-plastic structures are considered i.e. structures with 
rigid-plastic behaviour at the plastic hinges and rigid behaviour in the remaining 
part. Therefore, the only source of deformation is due to plastic deformations at 
the plastic hinges, which in turn enables a direct relation between the global 
dynamic response with the local damage at the yield zones. 

• The review on cyclic behaviour of reinforced concrete elements presented in 
chapter 2 showed that significant levels of ductility may be reached provided that 
the plastic hinges are properly detailed and explore flexural modes of failure. This 
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is on the basis of the rigid-plastic hysteretic relationships assumed at the plastic 
hinges. 

• In section 2.3, a new simplified procedure to evaluate rotation capacity of flexural 
hinges was presented. 

• Another important feature of rigid-plastic structures designed to develop a 
collapse mechanism is that there is only one mode of vibration, which means that 
they can be treated as rigid-plastic oscillators. As seen in section 3.2, this yields a 
great deal of simplification in the treatment of the dynamic response of the 
structure to any ground motion. In fact, for each time step of a direct integration 
procedure, there is only one equation of motion to be solved. The latter simply 
depends on the shape of the collapse mechanism and the dissipation capacity of 
the structure. In section 3.2.1 a computational procedure to perform NLTHA is 
presented. 

• It was further seen in section 3.2.2 that the rigid-plastic hysteretic relationship 
with consideration of pinching provides accurate estimations of the dynamic 
response of ductile reinforced concrete systems given the close agreement with 
those provided by the Takeda model. 

• In the RPSD method the required dissipation capacity on the structure, associated 
with the parameter Fy* (defined in section 3.2.3), is estimated considering a 
predefined performance parameter by means of the rigid-plastic spectra. These 
spectra were found to be very useful for design purposes for the following 
reasons: 
a) GRPS can easily be scaled up or down according to ground motion intensity 

expected at the implementation site. 
b) The seismic demand associated with a number of ground motion records is 

simply given by the envelope of each of the corresponding GRPS’s. 
c) The GRPS is exclusively dependent on the ground motion scenario.  
d) The seismic demand at a specific structure imposed by a specific ground 

motion scenario is given by the SRPS, which is simply obtained multiplying 
the ordinates in the corresponding GRPS by the parameter κ (defined in 
section 3.2.3). The latter parameter is characteristic of the structure and of the 
collapse mechanism assumed. 

• It was further concluded in the study on the dynamic response of reinforced 
concrete oscillators with flexure dominated behaviour of section 3.3.1, that the 
GRPS is an effective tool to estimate maximum dynamic seismic demand when 
the expected rotation ductility demand is at least of the order of 8-10 and if 
calculations are carried out according to section 2.3. 

• The task of selecting the most appropriate way for the structure to withstand the 
stresses imposed by the ground motion is facilitated to a great extent by the 
extreme loading scenarios approach, cf. section 3.3.2. It was seen that this 
approach yields a conservative set of external forces 

• The combination of both rigid-plastic spectra and of the extreme loading scenarios 
approach yields a straightforward procedure towards final design and allows an 
effective separation between the properties of the structure and those of the 
ground motion. In fact, the lateral loading cases upon which the design of the 
structure is based are solely dependent on the shape of the chosen collapse 
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mechanism and the desired structural performance in the local seismicity. They do 
not depend on the choices regarding the way the structure should carry the stresses 
imposed by the ground motion neither on the shape of the ground motion. On the 
other hand, as it was confirmed in the example shown in section 4.1, the dynamic 
response of the structure is independent of the choices regarding strength 
distribution, which to a great extent facilitates calibration of the final design. 

• Another important feature of the RPSD method is the avoidance of any sort of 
artificial coefficients intended to adjust the dynamic response of the structure 
according to empirical observations, while lacking physical meaning. This is 
because the values read from the SRPS are the actual values of the dynamic 
response of the structure. There is no need for any modal combination rules, since 
there is only one possible mode of vibration – that associated with the collapse 
mechanism. Also, reduction coefficients are unnecessary, as the results computed 
in the rigid-plastic spectra are derived after rigid-plastic NLTHA. 

• The simplified design procedure proposed in this paper follows the principles of 
rigid-plastic theory, which means that any phenomena regarding elastic behaviour 
of structures cannot be taken into account. Therefore, depending on the structural 
system and its performance requirements, final design may be adjusted 
considering higher mode effects and serviceability limit states against more 
frequent and moderate ground motion. This may be done checking the 
performance of the structure by means of other methods for dynamic analyses 
based on simplified linear elastic theory. 

• The design examples of chapter 4 highlighted the simplicity of the RPSD method, 
and the comparison with a refined NLTHA showed that the structure indeed 
performed as expected, both in terms of seismic demand on the structure and 
formation of the chosen collapse mechanism. 

• Future developments of the RPSD method should include the extension to the case 
of three-dimensional structures. Also, further investigations should focus on the 
application of the procedure to more complicated systems than the simple frames 
considered in the paper, such as shear wall systems and the systems with 
combined frame and shear wall action (dual systems). 

• The shape of the GRPS in Figure 3.27, which corresponds to the Friuli earthquake 
records, is notably different than that in Figure 4.12, which corresponds to the 
Erzikan and Takatori records. The former has a concave contour and the latter a 
convex one. Observing the corresponding accelerograms in the Appendix, it is 
seen that the Friuli records are dominated by high frequency and symmetric 
vibration opposing the Takatori and Erzican records which are clearly asymmetric 
pulses. It seems that the GRPS may be used as an effective tool to characterize a 
specific ground motion and its potential damage induced in structures. Future 
research on this topic is also required. 
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List of symbols 
A = Absolute acceleration 
A0 = Mass matrix coefficient for proportional damping 
A1 = Stiffness matrix coefficient for proportional damping 
ag(t) = Ground acceleration 
ar(t) = Relative acceleration 
As = Longitudinal reinforcement area 
ay = Fy/m for the case of rigid-plastic oscillators or Fy*/κm* for the case of 

rigid-plastic structures; physically ay, means the ground acceleration at 
the onset of plastic behaviour of a rigid-plastic system starting from rest  

b = Cross-section width 
C = Damping matrix 
c = Viscous damping coefficient 
d = 

 
Lateral displacement;  
Effective cross-section depth 

dmax = Peak relative displacement read from a rigid-plastic spectrum 
dr(t) = Relative displacement 
F = Force in general 
fc,dyn = Concrete compressive strength under dynamic loading 
fc = Concrete compressive cylinder strength 
f(t) = Strength demand at the plastic hinge 
fP = Yield strength of a plastic hinge 
Fy = Lateral strength of a rigid-plastic oscillator 
Fy* = Generalised yield strength of a rigid-plastic structure designed to 

develop a collapse mechanism 
fy = Reinforcement steel yield stress 
GRPS = General rigid-plastic spectrum 
h = Cross-section height 
H = Height of a structure 
hi = Height of the floor i relative to the ground level 
k = Stiffness coefficient 
K = Stiffness matrix 

ik  = Effective stiffness for time interval i 

L = Length of a column rigid-plastic oscillator 
l = Length of the structural member 
m = Mass 
m* = Generalised mass of a rigid-plastic structure designed to develop a 

collapse mechanism 
M = Bending moment 
M = Mass matrix 



mi = Mass of floor i 
MP = Flexural capacity 
N = Axial force 
PGA = Peak ground acceleration 
R = Force reduction factor 
r = Post yield stiffness parameter for Modified Takeda model 
Rmax = Maximum dynamic response parameter read from a rigid-plastic 

spectrum 
SRPS = Specific rigid-plastic spectrum 
t = Time  
T = Fundamental period of vibration 
V = Shear force 
vr(t) = Relative velocity 
W = Virtual work 

 
α = 

 
Unloading stiffness parameter for Modified Takeda model; 
Primary pivot point parameter for the Pivot hysteresis model, span ratio 

β = 
 

Numerical parameter for Newmark step-by-step integration procedure 
(equations 1.25 and 1.26); 
Reloading stiffness parameter for Modified Takeda model; 
Pinching pivot point parameter for the Pivot hysteresis model;  
Width to height ratio of the cross-section according to example in 
section 2.3 

Δ = 
 

Overall displacement; 
Specimen deflection (Chapter 2) 

Δag = Incremental ground acceleration 
Δar = Incremental relative acceleration 
Δdr = Incremental relative displacement 
ΔFi = Effective incremental force 
Δl = Plastic hinge length according to section 2.3 
Δt = Time step 
Δvr = Incremental relative velocity 
δ = Displacement, virtual displacement 
ε = Strain 
εc = Concrete compressive strain 
εcu = Ultimate concrete compressive strain 
εs = Reinforcement steel strain 
ε  = Strain rate 
φ = Curvature 
φi = Displacement coordinate of floor i 
φu = Ultimate curvature 
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φy = Yield curvature 
γ = Numerical parameter for Newmark step-by-step integration procedure 

(equations 1.25 and 1.26) 
η = Material coefficient for calculation of available rotation capacity 

according to section 2.3 
κ = Ground motion magnification factor of a rigid-plastic structure designed 

to develop a collapse mechanism 
λ = Load parameter 
μ = Ductility factor 
μθ = Rotation ductility capacity according to section 2.3 
μθ,exp = Expected rotation ductility demand as defined in equation 3.33 
ν = Normalized axial force 
ρt = Tensile reinforcement ratio 
ρw = Volume ratio of transverse steel 
θ = Plastic hinge rotation 
θP = Plastic hinge rotation capacity according to section 2.3 
θy = Plastic hinge yield rotation according to section 2.3 
σ = Stress 
σc = Concrete compressive stess 
σs = Reinforcement steel stress 
τ = Bond stress 
ω = Angular frequency 
ξ = Damping ratio 
ψ = Relative deflection increment 
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N-S component of the JMA record of the Kobe Earthquake, 1995 
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360-component of the Sylmar record of the 
Northridge, California Earthquake, 1994
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N-S component of the Kobe Earthquake, 1995 
recorded at Takatori station 
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E-W component of the Kobe Earthquake, 1995 
recorded at Takatori station 
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N-S component of the Erzikan Earthquake, 1992
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Records artificially generated from the Friuli Earthquake, 1976 (Falcão, 2002) 
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Records artificially generated from the Friuli Earthquake, 1976 (Falcão, 2002), cont. 
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Records artificially generated from the Friuli Earthquake, 1976 (Falcão, 2002), cont. 
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Records artificially generated from the Friuli Earthquake, 1976 (Falcão, 2002), cont. 
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