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Abstract

This thesis describes a method for optimizing the performance of buildings. Design de-
cisions made in early stages of the building design process have a significant impact on
the performance of buildings, for instance, the performance with respect to the energy
consumption, economical aspects, and the indoor environment. The method is intended
for supporting design decisions for buildings, by combining methods for calculating the
performance of buildings with numerical optimization methods. The method is able to
find optimum values of decision variables representing different features of the building,
such as its shape, the amount and type of windows used, and the amount of insulation
used in the building envelope.

The parties who influence design decisions for buildings, such as building owners, building
users, architects, consulting engineers, contractors, etc., often have different and to some
extent conflicting requirements to buildings. For instance, the building owner may be
more concerned about the cost of constructing the building, rather than the quality of
the indoor climate, which is more likely to be a concern of the building user.

In order to support the different types of requirements made by decision-makers for build-
ings, an optimization problem is formulated, intended for representing a wide range of
design decision problems for buildings. The problem formulation involves so-called per-
formance measures, which can be calculated with simulation software for buildings. For
instance, the annual amount of energy required by the building, the cost of constructing
the building, and the annual number of hours where overheating occurs, can be used as
performance measures.

The optimization problem enables the decision-makers to specify many different require-
ments to the decision variables, as well as to the performance of the building. Performance
measures can for instance be required to assume their minimum or maximum value, they
can be subjected to upper or lower bounds, or they can be required to assume certain
values. The optimization problem makes it possible to optimize virtually any aspect of the
building performance; however, the primary focus of this study is on energy consumption,
economy, and indoor environment.

The performance measures regarding the energy and indoor environment are calculated
using existing simulation software, with minor modifications. The cost of constructing
the building is calculating using unit prices for construction jobs, which can be found in
price catalogues. Simple algebraic expressions are used as models for these prices. The
model parameters are found by using data-fitting.
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In order to solve the optimization problem formulated earlier, a gradient-free sequen-
tial quadratic programming (SQP) filter algorithm is proposed. The algorithm does not
require information about the first partial derivatives of the functions that define the
optimization problem. This means that techniques such as using finite difference ap-
proximations can be avoided, which reduces the time needed for solving the optimization
problem.

Furthermore, the algorithm uses so-called domain constraint functions in order to en-
sure that the input to the simulation software is feasible. Using this technique avoids
performing time-consuming simulations for unrealistic design decisions.

The algorithm is evaluated by applying it to a set of test problems with known solutions.
The results indicate that the algorithm converges fast and in a stable manner, as long as
there are no active domain constraints. In this case, convergence is either deteriorated or
prevented. This case is described in the thesis.

The proposed building optimization method uses the gradient-free SQP filter algorithm in
order to solve the formulated optimization problem, which involves performance measures
that are calculated using simulation software for buildings. The method is tested by
applying it to a building design problem involving an office building. The results indicate
that the method is able to find design decisions that satisfy all requirements to the decision
variables and performance measures. Furthermore, the time needed by the algorithm for
solving the optimization problem is acceptable.

There are still a number of unresolved issues regarding the building optimization method,
which are suggested as further research in the field of building optimization methods.

Two papers are included in Appendix concerning so-called space mapping algorithms.
These algorithms are relevant for developing fast and reliable building optimization meth-
ods.



Resumé

Denne afhandling beskriver en metode til optimering af bygningers ydelse. Design beslut-
ninger foretaget i de tidlige stadier af bygningsdesignprocessen har en betydelig indflydelse
p̊a bygningers ydelse, f.eks. ydelse med hensyn til energiforbrug, økonomiske aspekter samt
indeklima. Metoden har til hensigt at understøtte designbeslutninger for bygninger, ved at
kombinere metoder til beregning af bygningers ydelse med numeriske optimeringsmetoder.
Metoden er i stand til at finde optimale værdier for beslutningsvariabler, der repræsen-
terer forskellige egenskaber ved bygningen, f.eks. udformning, mængde og type af vinduer,
samt isoleringsmængde anvendt i klimaskærmen.

De parter, der har indflydelse p̊a designbeslutninger for bygninger, som f.eks. bygherrer,
brugere, arkitekter, r̊adgivende ingeniører, entreprenører m.fl., har ofte forskellige og til
en vis grad modstridende krav til bygningen. F.eks. kan bygherrer tænkes at være mere
interesseret i anlægsomkostninger end indeklimaet, der formentlig er af større interesse
for brugerne.

For at understøtte de forskellige typer af krav, der stilles af beslutningstagere for bygninger,
formuleres et optimeringsproblem med det form̊al at repræsentere et stort antal design-
relaterede beslutningsproblemer for bygninger. Problemformuleringen omfatter s̊akaldte
ydelsesm̊al, der kan beregnes ved hjælp af simuleringssoftware for bygninger. F.eks. kan
bygningens årlige energibehov, anlægsomkostninger, samt det årlige antal timer hvor
overopvarmning forekommer, anvendes som ydelsesmål.

Optimeringsproblemet gør det muligt for beslutningstagere at specificere mange forskellige
krav til beslutningsvariablerne, samt til bygningens ydelse. Ydelsesmål kan f.eks. kræves
at antage deres største eller mindste værdi, de kan p̊alægges øvre eller nedre grænser,
eller de kan kræves at antage angivne værdier. Optimeringsproblemet gør det muligt at
optimere stort set hvilket som helst aspekt af bygningers ydelse, dog er der i dette studie
primært fokus p̊a ydelse med hensyn til energiforbrug, økonomi, samt indeklima.

Ydelsesmålene med hensyn til energi og indeklima beregnes ved hjælp af eksisterende
simuleringssoftware, med mindre ændringer. Anlægsomkostningerne beregnes ved anven-
delse af enhedspriser for byggearbejder, der kan findes i priskataloger. Simple algebraiske
udtryk anvendes som modeller for disse priser. Modelparametrene findes ved hjælp af
datafitting.

For at løse det formulerede optimeringsproblem, foresl̊as en gradientfri sekventiel kvadratisk
programmerings (sequential quadratic programming, eller SQP) filter metode. Algoritmen
kræver ikke kendskab til de første partielt afledte af de funktioner, der definerer optimer-
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ingsproblemet. Dette betyder, at metoder s̊asom anvendelse af differenstilnærmelser kan
undg̊as, hvilket reducerer den tid, det tager at løse optimeringsproblemet.

Algoritmen anvender desuden s̊akaldte domain constraint functions til at sikre, at inputtet
til simuleringssoftwaren er realistisk. Ved anvendelse af denne teknik undg̊as tidskrævende
simuleringer for urealistiske designbeslutninger.

Algoritmen evalueres ved at anvende den p̊a testproblemer med kendte løsninger. Resul-
taterne indikerer, at algoritmen konvergerer hurtigt og stabilt, s̊a længe der ikke er aktive
domain constraints. I dette tilfælde er konvergens enten forringet eller forhindret. Dette
tilfælde er beskrevet i afhandlingen.

Den foresl̊aede bygningsoptimeringsmetode anvender som nævnt den gradientfrie SQP
filter metode til at løse det formulerede optimeringsproblem, hvori der indg̊ar ydelsesmål
beregnet ved hjælp af simuleringssoftware for bygninger. Metoden er testet ved at an-
vende den til løsning af et designbeslutningsproblem der omhandler en kontorbygning.
Resultaterne indikerer, at metoden er i stand til at finde designbeslutninger, der opfylder
alle krav til beslutningsvariable samt ydelsesmål. Desuden er algoritmens tidsforbrug til
løsning af problemet tilfredsstillende.

Der er stadig en del uafklarede spørgsmål vedrørende bygningsoptimeringsmetoden, der
er foresl̊aet som mulige forskningsemner vedrørende bygningsoptimeringsmetoder.

To artikler er vedlagt i appendiks, der omhandler s̊akaldte space mapping algoritmer.
Disse algoritmer er relevante i forbindelse med udvikling af hurtige og p̊alidelige bygning-
soptimeringsmetoder.
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Chapter 1

Introduction

The main purpose of this thesis is to describe a method for optimizing the performance of
buildings, and furthermore to improve the understanding of how numerical optimization
methods can be used for supporting decision-making, with special focus on design decisions
for buildings in the early stages of the design process.

1.1 Motivation

It is a well-established fact that it is easier and less costly to change design decisions for
buildings in an early stage rather than later. Furthermore, changes made in early stages
are believed to have a larger impact on the building performance than changes made later.
It is therefore important to develop methods for supporting significant design decisions
made in early stages. See for instance Poel [56] and Nielsen [49] for a more detailed
description and discussion of the design process for buildings.

Supporting design decisions in early stages of the design process is addressed by using
numerical optimization methods, which have been applied to virtually all fields of engi-
neering. These methods can be used for suggesting decisions that are based on relevant
decision criteria, such as energy performance, economy and the indoor environment, etc.

The parties who influence design decisions for buildings, such as building owners, build-
ing users, architects, consulting engineers, contractors, etc. (also referred to as decision
makers in the following), often have different and to some extent conflicting requirements
to buildings. For instance, the building owner may be more concerned about the budget
for the building, rather than the indoor climate, which is more likely to be a concern
of the building user. It is therefore important to develop methods that focus on design
decisions in the early stages of the design process, and that are flexible. The methods
must enable the decision maker to specify and modify requirements to buildings quickly
and effortlessly.



Introduction

1.2 Objective

The objective of this study is to develop and document a method for optimizing the
performance of buildings (referred to as a building optimization method in the following),
intended for supporting decisions in the early stages of the design process of buildings.
The method combines numerical methods for calculating the performance of buildings
with numerical optimization methods.

The method is intended for decision makers; however, the description of the method
provided in this thesis is more suitable for developers of building optimization methods.

The following approach is used for developing and documenting the method:

1. A literature survey is made on how numerical optimization methods are being used
for supporting design decisions for buildings.

2. A description is provided of how optimization methods can be used for supporting
decision-making. An optimization problem is formulated, intended to be a mathe-
matical model for a wide range of building design decision problems. The numerical
methods used for estimating solutions to the problem must take the following con-
cerns into account:

(a) The partial derivatives of the functions defining the problem are (usually) not
available.

(b) The function values are not defined for all parameters used as arguments to
the functions.

(c) The time consumption needed for calculating the function values may be ex-
cessive.

3. Numerical methods are developed or adapted addressing the concerns formulated
in the previous step. Sequential linear programming (SLP) methods and sequential
quadratic programming (SQP) methods are considered for addressing 2(a) and 2(b),
and space mapping (SM) methods are considered for addressing 2(c).

4. The numerical methods are tested on a set of test problems with known solutions
in order to evaluate the convergence properties. Convergence theorems are not
provided.

5. The resulting building optimization method is applied to mathematical models of
the energy performance, the building economy, and the indoor environment.

6. The results obtained with the proposed building optimization method are discussed,
in an attempt to evaluate the usability of the method from the point of view of a
decision maker.

2



1.3 Outline of the thesis

1.3 Outline of the thesis

The structure of the thesis follow the aforementioned approach, except that the details
regarding the space mapping method are provided in the appendix, since more work is
still required in order to fully integrate them with the building optimization method.

The outline of the thesis is:

Chapter 2 concerns the background for the study, including a literature survey, and an
introduction to the notation and mathematical concepts used in the thesis.

Chapter 3 concerns a description of how optimization methods can be used for sup-
porting decisions. An optimization problem is formulated, intended for representing
a wide range of decision problems.

Chapter 4 concerns a description of the building optimization method.

Chapter 5 describes a gradient-free SQP filter method intended for solving the types of
continuous optimization problems with continuous constraints described in Chap-
ter 3.

Chapter 6 concerns numerical experiments for evaluating the building optimization
method.

Chapter 7 summarizes the conclusions of the thesis.

Appendix A is the included paper [7], which concerns a space mapping interpolating
surrogate method, developed for the purpose of optimizing time-consuming mathe-
matical models of physical systems. The method is applied to a number of design
optimization problems from microwave electronics.

Appendix B is the included paper [54], which concerns a space mapping method for
enhancing the accuracy of simple mathematical models of building components,
applied to a model of a thermally active building component.

Appendix C concerns the test problems used for testing the filter SQP method de-
scribed in Chapter 5.

Appendix D provides default values for the constants parameters used by the building
optimization method.

Appendix E provides the mathematical nomenclature used when describing optimiza-
tion and numerical optimization methods.

Appendix F provides the nomenclature used when describing building physics and the
economy of buildings.

3
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1.4 Publications

As part of this study, contributions have been provided to the journal paper by Bandler
et.al. [7], and the following conference papers: Bandler et.al. [3], Bandler et.al. [5], Bandler
et.al. [6], Kragh et.al. [39] and Pedersen et.al. [54].

The papers by Bandler et.al. [7] and Pedersen et.al. [54] are included in Appendix A and
B, respectively.

4



Chapter 2

Background

This chapter provides a description of the concepts that are relevant for developing and
implementing methods for optimizing the performance of buildings. Aspects of optimiza-
tion are addressed, as well as methods for assessing the performance of buildings. A
literature survey of building optimization methods is furthermore provided. Finally, the
delimitation of the study is provided.

2.1 Optimization

2.1.1 Continuous optimization

The definition of a continuous optimization problem is based on an objective function
f : D → R and a set of constraint functions c : D → Rm. The aim is to find a set of
parameters x∗ ∈ Rn, where f obtains its smallest function value. The functions c are used
for constraining the solution to a subset of Rn. A distinction is made between inequality
and equality constraints, that is, requirements to the solution in the form ci(x) ≥ 0 and
cj(x) = 0, respectively, for some indices i and j.

It is practical to represent the inequality and equality constraint functions by the vector-
valued functions cI : D → RnI and cE : D → RnE , respectively, where I and E are index
sets. The number of inequality constraint functions is represented by nI , and the number
of equality constraint functions by nE . It is assumed that nI + nE = m.

In general, for an index set S referring to a subset of the functions c, let cS : D → RnS

be a subset of the functions in c corresponding to the index values given in S. Given the
matrix PS ∈ RnS×m:

(PS)i,j =

{
1 if Si = j
0 otherwise

i = 1, . . . , nS and j = 1, . . . ,m, (2.1)

the functions cS can be defined in the following way:

cS(x) = PS · c(x). (2.2)
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It is assumed that D ⊆ Rn, i.e. the possibility that f and c are not defined for all x ∈ Rn

is also considered. This may be necessary in order to ensure that the algorithms used for
solving optimization problems, provide feasible input to for instance simulation software,
if such software is used for calculating f and c.

It is assumed that the domain D for the objective and constraint functions can be defined
in the following way:

D = {x ∈ Rn : d(x) ≥ 0} , (2.3)

where the functions d : Rn → RnD are referred to as domain constraint functions. This
concept is intended for representing functions that define the domain of objective and
constraint functions for continuous, constrained optimization problems. Notice that with
the formulation (2.3), equality domain constraints are not handled separately.

The term domain constraint function also occurs in other areas, such as image analysis,
see for instance Ye et.al. [64]. In control theory, the terms frequency domain constraint
function and time domain constraint function occur, see for instance Güvenç and Güvenç
[30].

The optimization problems considered in this study have the following structure:

minimize f(x)
subject to cI(x) ≥ 0

cE(x) = 0
with respect to x ∈ D,

(2.4)

For a thorough description of the general theory of optimization and numerical meth-
ods for solving (continuous) optimization problems, the reader is referred to Nocedal and
Wright [51], and Conn et.al. [14]. Furthermore, Dennis and Schnabel [17] describe numer-
ical methods for solving unconstrained optimization problems and nonlinear equations.

Numerical methods for solving the linear algebra subproblems, which are needed when
implementing numerical optimization methods, are described by Golub and Van Loan
[28].

The statements cI(x) ≥ 0 and cE(x) = 0 in (2.4) are only true if they are true for all
functions referred to by I and E , respectively. The requirements to the functions that
define (2.4) is that they are continuous and twice differentiable, within their respective
domains.

The region F ⊆ D where all constraints are satisfied, i.e.

F = {x ∈ D : cI(x) ≥ 0 ∧ cE(x) = 0} , (2.5)

is referred to as the feasible region. If x /∈ F , then x is referred to as an infeasible point.
If F = ∅, then the problem (2.4) is referred to as infeasible.

In Figure 2.1 (left) is shown an example of an unconstrained optimization problem, i.e. a
problem with I = ∅, E = ∅ and D = Rn. In the same figure (right) is shown an example of
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a feasible optimization problem with equality, inequality and domain constraints, where
I = {1, 3}, E = {2}, and nD = 2.

The following conventions are used when plotting optimization problems of the form (2.4):

The objective function is represented by a contour plot colored with gray tones, where
light areas represent high function values, and dark areas represent low function
values.

Inequality constraint functions: Gray regions represent parameter values where one
or more inequality constraint function is negative.

Equality constraint functions are represented by dashed contour lines, where the
function value is zero.

Domain constraint functions: White regions represent parameters outside the do-
main D. Level curves for the objective and constraint functions are not shown in
these regions, since they are not defined here.

The solution to an optimization problem is represented by the symbol ∗.

x
1

x
2

c
1
(x)=0

c
2
(x)=0

d
1
(x)=0

c
3
(x)=0

d
2
(x)=0

x
1

x
2

Figure 2.1: Left: An unconstrained optimization problem. Right: An optimization prob-
lem with equality, inequality and domain constraints.

2.1.2 Aspects of numerical optimization methods

Numerical optimization algorithms improve a solution estimate xk ∈ Rn to (2.4) by cal-
culating an increment, or step, ∆xk ∈ Rn. If acceptable, ∆xk provides the iterate xk+1

for the next iteration:

xk+1 = xk + ∆xk (2.6)
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The first iterate, x0, (the starting point) is provided by the user.

Many numerical optimization algorithms calculate the step ∆xk by solving an approxi-
mated subproblem to (2.4), formed by using Taylor approximations to the functions that
define (2.4). This results in either a linear optimization problem (that is, linear objective
function and linear constraints):

minimize a>∆x
subject to AI ∆x + bI ≥ 0

AE ∆x + bE = 0
with respect to ∆x ∈ Rn,

(2.7)

or a quadratic optimization problem (that is, quadratic objective function and linear
constraints):

minimize 1
2
∆x>H∆x + a>∆x

subject to AI ∆x + bI ≥ 0
AE ∆x + bE = 0

with respect to ∆x ∈ Rn,

(2.8)

Linear optimization problems are also referred to as linear programs (LP), and quadratic
optimization problems are referred to as quadratic programs (QP). Hillier and Lieberman
[33] describe methods for solving linear programs.

Algorithms that solve an optimization problem by generating a sequence of linear pro-
grams are referred to as sequential linear programming (SLP) algorithms, and algorithms
that generate a sequence of quadratic programs are referred to as sequential quadratic
programming (SQP) algorithms.

Global convergence of SLP and SQP algorithms can be ensured by establishing an upper
limit ρk on ∆xk, such that ‖∆xk‖ ≤ ρk, where ‖ · ‖ is a suitable vector norm. Often ‖ · ‖∞
is used. The set of points

Rk = {∆x ∈ Rn : ‖∆x‖ ≤ ρk} (2.9)

is referred to as the trust region. The upper limit ρk is referred to as either a move limit
or the trust region radius.

In order to evaluate the convergence properties of a numerical optimization algorithm,
the rate of convergence is used. An algorithm is said to have linear convergence if the
errors

ek = xk − x∗, (2.10)

for two subsequent iterations are related in the following way:

‖ek+1‖ ≤ ε‖ek‖ with 0 < ε < 1 and xk close to x∗. (2.11)

An algorithm is said to have quadratic convergence if the errors are related in the following
way:

‖ek+1‖ ≤ ε‖ek‖2 with 0 < ε < 1 and xk close to x∗. (2.12)
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2.1.3 Multi-criteria optimization

Multi-criteria optimization concerns decision-making based on multiple criteria. This
discipline is based on the fact that in general, it is not possible to find a decision that
provides the optimum value for more than one decision criteria. For instance, it is unlikely
that the most inexpensive building to construct is also the most energy efficient building.

If it is not possible to find optimum values for all decision criteria (which is often the case),
then the decision-maker must accept a compromise between them. For instance, the most
inexpensive building may require a large amount of energy, and the most energy efficient
building may be quite expensive to construct. It may not be possible to find a design
decision that is inexpensive and at the same time is energy efficient. The decision-maker
must therefore accept a decision that is neither the most inexpensive nor the most energy
efficient.

In this situation, the aim is to improve all decision criteria as much as possible. If a
decision is found where it is not possible to improve one criterion without deteriorating
one or more of the others, then that decision is denoted Pareto efficient. In other words,
if it is possible to improve all decision criteria for a certain decision, then that decision is
not Pareto efficient. This concept was first introduced by Pareto [52].

For any given decision problem, there usually exist a set of Pareto efficient decisions. This
set is in the literature referred to as the Pareto set, the Pareto frontier, the Pareto surface,
or the efficient frontier, among others. The main purpose of multi-criteria optimization
is to provide methods for finding points belonging to the Pareto set, which can be used
for making decisions based on multiple criteria.

The general theory of multi-criteria optimization, numerical methods for calculating
the Pareto set, and examples of their applications to engineering, is described by Es-
chenauer [19]. Gembicki [26] describe a problem formulation called the goal attainment
problem, which is widely used for calculating points in the Pareto set. Das and Dennis [16]
provide an efficient method for calculating points in the Pareto set, which is called the
normal boundary intersection (NBI) method.

2.1.4 Reliability analysis

Deterministic mathematical models of buildings are based on the assumption that all
parameters that influence the performance of a building are known with full accuracy.
In reality, however, there are uncertainties related to all parameters involved in models
of buildings, such as climate parameters, prices for construction jobs, material properties
such as concrete strength, etc.

It is therefore important to consider how to make decisions under uncertainties, which is
addressed by reliability analysis. The main concern of reliability analysis is to find the
probability of failure for a given design decision, and furthermore to find a design decision
where this probability is below a certain level. The theory and methods of reliability
analysis is described by Haldar and Mahadevan [32].
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2.1.5 Sensitivity analysis

Sensitivity analysis for continuous optimization problems addresses the influence on the
solution to an optimization problem, caused by changes in constant model parameters.
This analysis can for instance be used for estimating the future development of optimum
decisions, when constant parameters, such as climate parameters or prices, change over
time. Requirements to the performance of buildings that are specified in building regu-
lations, such as upper limits on the energy required by the building, are also represented
by constant parameters. Sensitivity analysis may therefore be useful for estimating how
optimum decisions change, if the building regulations are changed. Sensitivity analysis is
described by Fiacco [21].

2.1.6 The space mapping technique

The space mapping technique was first introduced by Bandler et.al. [2]. A general in-
troduction to the technique is provided by Bakr et.al. [9], and the many space mapping
techniques developed over the years are reviewed by Bakr et.al. [8] and Bandler et.al. [4].

The space mapping technique is intended for optimization problems where either the
objective or constraint functions, or both, are time-consuming or costly, and where the
number of function evaluations required for solving the optimization problem therefore
must be as small as possible.

The space mapping technique may therefore be useful when attempting to estimate op-
timum design decisions for buildings, based on accurate (and possibly time-consuming)
mathematical models of the performance of buildings.

The space mapping technique requires the following two types of mathematical models to
be available in order to solve an optimization problem:

The fine model, which is a detailed (and usually time-consuming or costly) mathemat-
ical model of the system to be optimized, and

The coarse model, which as a less detailed, but also less time-consuming and inex-
pensive model of the same system as the fine model.

The space mapping technique solves an optimization problem by using the coarse model
to predict the location of the optimum for the fine model. In order to compensate for
modeling errors in the coarse model, and to improve its prediction capabilities, the coarse
model is modified by adjusting either the decision variables, constant model parameters,
the output from the model, or a combination of these three types of parameters.

The various techniques developed for modifying the coarse model makes space mapping
suitable not only for optimization, but also as a general tool for enhancing the accuracy
of coarse models, and thereby providing mathematical models of systems or components,
that are accurate and fast. A space mapping technique intended for enhancing the accu-
racy of a coarse model of a thermo-active building component is described in the paper
included in Appendix B.
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Initially, space mapping techniques modified the coarse model only by adjusting the deci-
sion variables. These techniques did not provide convergence to the fine model optimizer;
however, they did converge to points close enough to the optimizer for practical purposes.

The first space mapping technique with provable convergence properties is provided by
Madsen and Søndergaard [42]. This technique ensures convergence by performing a tran-
sition to a linear model of the fine model.

The interpolating surrogate technique, described by Bandler et.al. [7], aims at modifying
the coarse model in such a way that the function value and the first partial derivatives
match those of the fine model. The results obtained with this method indicate that it
provides convergence to the fine model optimizer using only a very limited number of fine
model function evaluations. However, a formal convergence theorem is not provided. The
paper by Bandler et.al. [7] is included in Appendix A.

The interpolating surrogate technique has so far only been applied to unconstrained min-
imax optimization problems, that is, optimization problems in the form

minimize max
i=1,...,m

{fi(x)}

with respect to x ∈ Rn.
(2.13)

In order to fully integrate the interpolating surrogate technique with the building opti-
mization method described in this thesis, it must be able to solve optimization problems
in the form (2.4). This means that the following concerns must be addressed:

1. The technique must be able to solve constrained optimization problems

2. It must be able to handle domain constraints

3. Finally, a gradient-free version of the technique is preferable.

These issues are not addressed in this study, but are recommended as further research.

2.2 The performance of buildings

There are many aspects of buildings that are relevant to take into account when assessing
their performance, for instance:

1. The energy performance

2. The indoor environment

3. Economical aspects

In order to optimize the performance of buildings using numerical optimization methods,
it is necessary to ensure that the performance can be expressed in terms of quantifiable
measures. These measures are referred to as performance measures in this study. The
background of the methods for calculating the performance measures for buildings is
addressed in the following.
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2.2.1 Energy and indoor environment

The energy performance of a building can be expressed in terms of, for instance, the
annual amount of energy required for heating, cooling and ventilating the building, as
well as energy for artificial lighting.

The performance with respect to the indoor environment can be expressed in terms of
thermal comfort values, such as the predicted mean vote (PMV) or the predicted percent-
age of dissatisfied (PPD). The PMV and PPD values are proposed by Fanger [20]. The
number of hours where overheating occurs can also be used as a measure for the quality
of the indoor environment.

In order to calculate these performance measures, it is necessary to calculate solutions to
the governing heat transfer equations for the building. The general theory of heat transfer,
and numerical methods for solving heat transfer equations, is described by Patankar [53].
Hagentoft [31] furthermore describes aspects of lumped system analysis, which is com-
monly used when calculating the energy performance of buildings.

The method by Nielsen [50] calculates the energy performance of buildings, as well as
the PMV and PPD values. This method is used for calculating the building performance
with respect to energy and indoor environment in this study.

2.2.2 Economical aspects

The building performance with respect to economy can, for instance, be expressed as the
cost of constructing, maintaining and operating the building.

These performance measures can be calculated using standard price catalogues for con-
struction jobs. The V&S price catalogue [60] provides unit prices for construction jobs
in Denmark. Furthermore, the V&S price catalogue [61] provides unit prices related to
renovating and operating buildings in Denmark.

Calculating the cost of operating buildings furthermore requires energy prices, which, for
instance, can be provided by national energy regulatory authorities.

2.3 Building optimization methods in the literature

Many different methods have been suggested over the years for optimizing the performance
of buildings. The survey provided in this section concerns the most recent developments
in this area.

Peippo et.al. [55] describe a method for finding the optimum technology mix for build-
ing projects. The method suggests parameters such as the shape of the building, the
orientation, the amount of insulation and window areas, among others.

In order to find the optimum parameter values, the method uses a multivariate problem
formulation, which includes the total annual cost for the building, as well as the total
amount of energy required annually. The optimization problem is solved using cyclic
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coordinate search, as well as the direct search method proposed by Hooke and Jeeves [34].

The method described by Bouchlaghem [11] not only simulates the thermal performance of
the building, but also applies numerical optimization techniques to determine the optimum
design variables, which achieve the best thermal comfort conditions. The method takes
into account design variables related to the buildings envelope and fabric, such as the
plan aspect ratio, the orientation and the glazing ratio, among others.

The method is intended for finding the design decisions that provide the best thermal
comfort level. Six different objective functions are investigated, which represent six dif-
ferent ways of quantifying the thermal comfort. Furthermore, the decision variables are
subjected to linear constraints. The resulting constrained optimization problem is solved
using a combination of the simplex method, described by Nelder and Mead [46], and the
complex method described by Mitchell and Kaplan [45].

Caldas and Norford [25] describe a method for finding the width and height of windows
that result in a building with the least amount of energy required for heating and artificial
lighting. The optimization is based on results from detailed simulation software. The
software automatically adjusts the amount of artificial lighting, such that the required
illumination level is achieved. This results in an unconstrained optimization problem that
is solved using a genetic algorithm. Genetic algorithms are described by Goldberg [27].

The method described by Jedrzejuk and Marks [35, 36, 37] decomposes the design problem
into the following sub-problems: optimization of internal partitions, the shape of the
building and finally coordination of the solutions. The shape of the building is represented
by parameters such as wall lengths, number of storeys, ratios of window to wall areas,
among others.

The method is based on a constrained multi-criteria formulation, which uses the con-
struction costs, the seasonal demand for heating energy, and the pollution emitted by
heat sources, as objective functions. The optimization problem is solved using a combi-
nation of analytical and numerical methods.

The method described by Nielsen and Svendsen [47] finds optimum decisions regarding
the amount of insulation, the type of glazing, the window fraction of the external walls,
among others. The method uses a constrained optimization formulation, where the life
cycle cost of the building is used as objective function. Furthermore, the energy required
by the building, and the number of hours where overheating occur, are subjected to upper
limits. Finally, the daylight factor is subjected to a lower limit. The resulting optimization
problem consists of discrete as well as continuous variables.

The optimization problem is solved using the simulated annealing method by Gonzalez-
Monroy and Cordoba [29] for optimizing the discrete parameters, and the method by
Hooke and Jeeves [34] for optimizing the continuous variables.

Wright et.al. [63] describe a method for optimizing the design and operation of a HVAC
system. The decision variables include design parameters such as the coil width and height
and the number of rows, as well as control parameters such as the supply air temperature,
the air flow rate, and the on/off status of the system.
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The method uses a multi-criteria formulation, using the operating cost of the system and
the maximum thermal discomfort as objective functions. The method uses the so-called
simple genetic algorithm described by Goldberg [27] for solving the optimization problem.
The method provides a set of Pareto optimal points, which can be used for investigating
the pay-off between the two objectives.

The method by Wang et.al. [62] is intended for green building design. It finds optimum de-
cisions regarding the orientation, the plan aspect ratio, the window to wall ratio, among
others. The method is based on a multi-criteria formulation, using the life cycle cost
(LCC), and the life cycle environmental impact (LCEI) as objective functions. Further-
more, the continuous decision variables are subjected to box constraints, and the discrete
variables to so-called selection constraints.

The optimization problem is solved using the multi-objective genetic algorithm by Fonseca
and Flemming [24]. The method provides the Pareto set for the two objectives, which
can be used for assessing the level of compromise between optimizing economical aspects
of the building, and optimizing the environmental impact of the building.

The above mentioned studies consider the following decision variables (among others) to
have a significant impact on the performance of buildings:

1. The shape of the building, expressed for instance in terms of the plan aspect ratio
and the number of floors

2. The orientation of the building

3. The amount of insulation used in the building envelope

4. The window areas relative to the area of the external walls

5. The window type

6. The window shape

7. The design and operation of HVAC systems.

These variables are therefore suitable for optimization. The following performance mea-
sures (among others) are considered:

1. The amount of energy required for heating, cooling and ventilating the building, as
well as energy for domestic hot water and energy for artificial lighting

2. The level of thermal comfort

3. The level of daylight utilization

4. The number of hours with overheating

5. The cost of constructing the building
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6. The cost of operating the building

7. The life cycle cost of the building

8. The environmental impact of the building.

The considered studies use many different problem formulations in order to optimize the
performance of buildings. There exist both single- and multi-criteria formulations, as
well as unconstrained and constrained formulations. Furthermore, different performance
measures are used differently in the studies. The solutions provided by the different studies
are optimized either with respect to energy, economy, thermal comfort or environmental
impact. This observation supports the idea that it is advantageous to develop flexible
building optimization methods that enable the decision maker to optimize any aspect of
the building performance.

2.4 Delimitation of the study

This study only concerns building optimization methods that support design decisions
using a single-criterion formulation, with constraints. The study focuses on methods
intended for the early stages of a design process. This means that methods based on
detailed building models are not considered.

The design decisions considered in this study are the shape of the building, the amount of
insulation used in the building envelope, and the type and relative area of the windows,
compared with the area of the external walls. Decisions regarding the design and operation
of HVAC systems are not considered.

The performance with respect to energy, indoor environment and economy are considered,
but not the performance with respect to the environmental impact. Only non-residential
buildings are considered.

Reliability and sensitivity analysis are not considered. Programming specific details,
such as choosing programming language, developing graphical user interfaces, including
computer-aided design modeling environments, are not considered. Furthermore, de-
veloping database management systems for managing the data needed for representing
buildings is also not considered.
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Chapter 3

A mathematical model of decisions

The purpose of this chapter is to provide a description of how optimization can be used
for estimating optimum design decisions for systems such as buildings, governed by, for
instance, partial or ordinary differential equation. A general description of design decision
problems is provided, which aims at simplifying the process of translating such problems
into optimization problems. Furthermore, an optimization problem is formulated, which
represent a wide range of building design decision problems.

The governing equations for the considered system should ideally be solved analytically,
but this is not possible in general. If analytical solutions are unavailable, the governing
equations can be solved using numerical methods, which are often implemented in spe-
cialized simulation software. It is therefore necessary to consider ways in how to combine
simulation software with optimization methods. An interface is described that addresses
this issue.

3.1 Building design decision problems

Decisions made during the design process have consequences for the performance of the
building. For instance, decisions regarding the shape of the building, the total window
area and the amount of insulation material used in the building have consequences for
the energy performance of the building, the economy of the building and the quality of
the indoor environment.

The design decisions, as well as the performance of the building, can be subjected to
requirements. For instance, the above mentioned decisions can be subjected to upper or
lower limits, and they can be required to assume certain values. They can furthermore
be required to be related to each other in certain ways. The window areas on the north-
and south-facing façades can for instance be required to be equal.

Similar requirements can be applied to the performance of the building. Any measure
representing the performance of the building, for instance the annual amount of energy
required by the building, or the cost of constructing or operating the building, can be
subjected to upper or lower bounds, they can be required to assume certain values, or
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they can be required to be related to each other in certain ways.

In addition, the performance can be required to be optimized, meaning that a measure
representing the performance of the building can be required to assume its minimum or
maximum value. For instance, the decision maker may wish to estimate the set of design
decisions that provide the building with the least amount of energy required for heating
and cooling, or the building with the smallest construction cost.

Decisions:

The shape of the building

The window areas

The type of windows

The amount of insulation

Consequences:

Energy performance:

U-values

Energy consumption

Energy frames

Indoor environment:

Daylight utilization

Number of hours with

overheating

Comfort values

Economy:

Cost of constructing the building

Cost of operating the building

Requirements:

Upper/lower limits

Assume certain values

Assume minimum/maximum
values

Required relations

Assume certain values

Requirements:

Upper/lower limits

Required relations

Figure 3.1: A conceptual illustration of a decision problem.

A conceptual illustration of a decision problem is shown in Figure 3.1. The figure further-
more provides examples of decisions, consequences and requirements that are relevant for
design decisions for buildings. These concepts are defined in the following.

Decisions refers to the set of variables that the decision maker wishes to determine op-
timum values for. It is assumed that the decision maker has full control over them.
Significant decision variables for buildings include (but is not limited to) the amount of
insulation used in various building components, the area and type of windows used, the
overall shape of the building, expressed in terms of, for instance, the width to length ratio,
and the number of floors.
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Consequences refers to quantifiable parameters that depend on the decision variables,
and that can be used as measures for the performance of the system. Consequences of
decisions are therefore also referred to as performance measures in the following. This
concept is similar to the concept utility function used in operations research.

There are many performance measures that are relevant for buildings, for instance, the
energy consumption of the building, the cost of constructing the building, the quality of
the indoor environment, structural properties, the environmental impact, etc.

Requirements to decision variables and performance measures can be expressed in many
different ways. For instance, they can be required to assume their maximum or minimum
value, they can be subjected to upper or lower bounds, they can be required to assume
specific values, or they can be required to be related to each other in certain ways. The
performance measures can furthermore be required to assume their maximum or minimum
value.

The following types of requirements are considered:

Optimality requirements: When an individual performance measure, or a linear com-
bination hereof, is required to assume its maximum or minimum value.

Inequality requirements: When an individual decision variable or performance mea-
sure, or a linear combination hereof, are subjected to upper or lower bounds.

Equality requirements: When an individual decision variable or performance measure,
or a linear combination hereof, is required to assume a specific value.

Feasibility: The decision variables are required to be feasible, meaning that it must
be possible to assess the consequences of them. This requirement is relevant when
combining simulation software with optimization methods, since it for instance can
be used for preventing the optimization algorithm from performing simulations using
input that has no physical meaning.

Optimality requirements can in theory also be applied to decision variables, but this
possibility does not seem to be of any practical use. Furthermore, the considered inequality
and equality requirements involve either decision variables or performance measures, but
not both.

Estimating the consequences of design decisions for buildings often involve a large number
of constant parameters, such as the location and orientation of the building, climate
parameters, prices for construction jobs, and physical properties of building components
and materials. The constant parameters are not included in this formulation of decision
problems.

3.1.1 An example

Assume that a decision maker is required to estimate the amount of insulation and the
window area for two façades of a building, such that the following requirements are sat-
isfied:
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1. The construction cost must be as small as possible.

2. The total amount of energy required for maintaining a satisfactory indoor environ-
ment must be below a certain level.

3. The utilization of natural light (expressed in terms of the daylight factor) must
assume a required level.

4. The window area must be the same for both façades.

In this case, the decision variables are:

1. The amount of insulation

2. The window area for the first façade

3. The window area for the second façade.

The performance measures that are relevant for this decision problem are:

1. The total expenses used for constructing the building

2. The total amount of energy required for maintaining a satisfactory indoor environ-
ment

3. The daylight factor.

The first requirement to the building can be interpreted as an optimality requirement, the
second one as an inequality requirement, and the third one as an equality requirement.
The last requirement specifies a required relation between two decision variables.

Furthermore, if an optimization algorithm is used for estimating a design decision that
solves the decision problem, then the following feasibility requirements ensure that the
algorithm never attempts to estimate consequences of decisions that can not be carried
out physically:

1. The amount of insulation must be positive

2. The window areas of the two façades must be positive and below the areas of the
corresponding façades.

The next section concerns the details of how decision problems can be expressed as opti-
mization problems.
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3.2 Mathematical interpretation

In order to provide a mathematical interpretation of decision problems, it is assumed that
decisions, consequences and requirements are quantifiable, and that the requirements can
be expressed as linear functions of either decision variables or performance measures.

The consequences of a decision are represented by the vector-valued function q : D → Rnq ,
where D ⊆ Rn. The consequences depend on the decision variables, denoted x ∈ D. The
consequences, or performance measures, are obtained by calculating the function values
q(x).

Furthermore, the domain D of the performance measures is expressed in terms of domain
constraint functions:

D = {x ∈ Rn : d(x) ≥ 0} . (3.1)

In the following it is described how requirements to decisions and consequences can be
specified in terms of decision variables x and performance measures q(x).

3.2.1 Requirements to decisions

In order to ensure that the decision variables are feasible, they are required to belong to
the domain of the performance measures:

d(x) ≥ 0. (3.2)

The following linear inequality and equality requirements are applied to the decision
variables:

AÎ · x ≥ bÎ , (3.3)

and

AÊ · x = bÊ , (3.4)

where AÎ ∈ RnÎ×nq , bÎ ∈ RnÎ , AÊ ∈ RnÊ×nq and bÊ ∈ RnÊ . The parameters nÎ and
nÊ are the numbers of inequality and equality requirements for the decision variables,
respectively.

The relation (3.3) can for instance be used for specifying upper or lower bounds on the
decision variables. The relation (3.4) can be used for specifying required linear relations
between the decision variables, for instance that some decision variables must be identical.
It can furthermore be used for specifying required values for decision variables.

3.2.2 Requirements to consequences

The optimality requirements can be specified using the following expression as objective
function for an optimization problem:

aO
>q(x), (3.5)
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where aO ∈ Rnq .

The inequality and equality requirements can be specified using the relations

AI · q(x) ≥ bI , (3.6)

and

AE · q(x) = bE , (3.7)

as inequality and equality constraints, respectively, for an optimization problem, where
AI ∈ RnI×nq , bI ∈ RnI , AE ∈ RnE×nq and bE ∈ RnE . The parameters nI and nE are the
numbers of inequality and equality requirements for the performance measures, respec-
tively.

3.2.3 An optimization problem for modeling decisions

The requirements to decision variables and performance measures can be expressed as the
following optimization problem:

minimize aO
>q(x)

subject to AI · q(x) ≥ bI
AE · q(x) = bE
AÎ · x ≥ bÎ
AÊ · x = bÊ
d(x) ≥ 0

with respect to x ∈ Rn

 requirements to consequences requirements to decisions
(3.8)

This formulation allows the decision maker to optimize any performance measure, or linear
combinations hereof, and to specify linear equality or inequality requirements to decision
variables, and to performance measures.

It is possible to specify requirements that render the optimization problem (3.8) infeasible.
In this case, the decision maker must manually remove or relax the requirements until the
feasible region of (3.8) becomes non-empty. Developing methods for addressing this issue
is suggested as a possible topic for further research.

3.2.4 The example revisited

The decision variables for the problem described in Section 3.1.1 can be arranged as the
following vector:

x =

 The amount of insulation
The window area for the first façade
The window area for the second façade

 (3.9)

and the performance measures can be arranged as:

q(x) =

 The total expenses used for constructing the building
The total amount of energy required
The daylight factor

 (3.10)
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Requiring that the construction cost must be minimal can be expressed as

aO =

 1
0
0

 , (3.11)

since the objective function (3.5) in this case becomes:

aO
>q(x) = q1(x), (3.12)

where q1(x) is the construction cost, according to the definition (3.10).

Subjecting the total amount of energy to an upper limit Emax can be done using

AI = [ 0, −1, 0 ] and bI = −Emax, (3.13)

since (3.6) in this case becomes:

AI · q(x) ≥ bI ⇔ −q2(x) ≥ −Emax ⇔ q2(x) ≤ Emax, (3.14)

where q2(x) is the total amount of energy required by the building.

Requiring that the daylight factor assumes a specified level DF ∗ can be expressed as

AE = [ 0, 0, 1 ] and bE = DF ∗, (3.15)

since (3.7) then becomes:

AE · q(x) = bE ⇔ q3(x) = DF ∗. (3.16)

where q3(x) is the daylight factor.

There are no inequality requirements to the decision variables, hence

AÎ = ∅ and bÎ = ∅. (3.17)

Requiring that the window areas for the two façades are equal can be expressed as

AÊ = [ 0, 1, −1 ] and bÊ = 0, (3.18)

since (3.4) then becomes:

AÊ · x = bÊ ⇔ x2 − x3 = 0 ⇔ x2 = x3. (3.19)

The feasibility requirements can be implemented as the following domain constraint func-
tion:

d(x) =


x1

x2

x3

A
(1)
f − x2

A
(2)
f − x3

 (3.20)
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where A
(1)
f and A

(2)
f are the two façade areas. The requirement (3.2) is equivalent with:

d(x) ≥ 0 ⇔

x1 ≥ 0
x2 ≥ 0
x3 ≥ 0

A
(1)
f − x2 ≥ 0

A
(2)
f − x3 ≥ 0

⇔

x1 ≥ 0
x2 ≥ 0
x3 ≥ 0

A
(1)
f ≥ x2

A
(2)
f ≥ x3

⇔
x1 ≥ 0

0 ≤ x2 ≤ A
(1)
f

0 ≤ x3 ≤ A
(2)
f

(3.21)

This means, as expected, that the amount of insulation x1 is required to be positive, and
that the window areas x2 and x3 are required to be positive and below the façade areas
A

(1)
f and A

(2)
f , respectively.

3.3 Interfacing with simulation software

The consequences of decisions are found by solving the governing equations for the con-
sidered system. When analytical solutions are not available, they can be estimated using
numerical methods implemented in simulation software.

This means that an interface is required between the optimization and simulation software.
In the following a structure for a simulation software interface is described. The structure
is described in general terms, and programming specific details are omitted.

The purpose of the interface is to implement the expression q(x), which can be achieved
using the following three steps:

1. Prepare the input for the simulation software, based on the decision variables x and
constant parameters.

2. Perform the simulation.

3. Calculate the performance measures q(x), based on the output from the simulation
software.

These steps can be interpreted as the following composed mapping:

q = q(o) ◦ q(s) ◦ q(i). (3.22)

The functions q(o), q(s) and q(i) are described in the following, and the structure of the
simulation software interface is illustrated in Figure 3.2.

The first step is necessary in situations where the decision variables are not identical with
the input required by the simulation software. If, for instance, parameters such as the
width to length ratio of the building are used as decision variables, but the simulation
software requires the actual width and length of the building as input, then a translation
is required from the decision variables to the required input. This translation can be
interpreted as a function q(i) : D → Rni .
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q    ( q   (x) )(s) (i)

Output

Decision variables

x
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input

Input

q   (x)(i)

Process
output

Perform
simulation

q   (x)
nq

Performance measure

q  (x)
1

Performance measure

q(i)(    )

q(s)(    )

q(o)(    )

Figure 3.2: The general structure of an interface to the simulation software. The boxes
represent variables and parameters, and the arrows represent software routines.

The next step consists of invoking the simulation software. This can be interpreted as a
function q(s) : Rni → Rno that maps the input to the simulation software, to the output.

Simulation software often generates a large amount of output, which in itself is not neces-
sarily suitable for comparing different decisions, and therefore is not suitable for decision
making. The purpose of the last step is therefore to process the output from the simula-
tion software, in order to reduce it to a manageable set of performance measures. This can
be interpreted as a function q(o) : Rno → Rnr , that maps the output to the performance
measures.

3.4 Final remarks

The mathematical model of decisions enables the decision maker to specify requirements to
decisions and consequences in a variety of ways. It enables the decision maker to optimize
any performance measure, and to specify linear relations between decision variables, and
between performance measures.

The terminology used for describing decision problems consists of three basic concepts:
Decisions, Consequences and Requirements. The intention is to make it easier to model
decision problems as optimization problems, and thereby to enable all parties involved in
developing and implementing building performance optimization methods, to communi-
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cate their concerns effectively.

If numerical methods are required for solving the governing equations for the considered
system, then the numerical optimization method needs to address the following concerns:

1. The partial derivatives of the performance measures are (usually) not available. This
makes it impractical to use gradient-based optimization methods, which require
this information to be available. In this case, the partial derivatives are usually
approximated using finite difference approximations, which increases the time used
for solving the optimization problem.

2. The input to the simulation software must be feasible. The optimization method
must be prevented from calculating the performance measures for infeasible decisions
variables, since the simulation software may become unstable in this situation.

3. The time used for evaluating the performance measures may be excessive and/or
costly. In this situation, the optimization method should attempt to calculate the
performance measures as few times as possible, in order to reduce the time used for
solving the optimization problem.

It has not been possible during this study to develop an optimization algorithm that
addresses all three concerns. However, the gradient-free SQP filter algorithm described in
Chapter 5 addresses the first two concerns, and the space mapping interpolating surrogate
algorithm described in the paper included in Appendix A addresses the last one.

Furthermore, the space mapping modeling technique described in the paper included in
Appendix B, may also be useful for reducing the amount of time required for calculating
the performance of a building.
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Chapter 4

A method for optimizing the
performance of buildings

This chapter concerns a method intended for suggesting optimum design decisions in the
early stages of the design process for buildings. The method is able to suggest decisions
regarding the geometry of the building, the amount of insulation used in various building
components, as well as the type of windows.

The suggestions made by the method are based on performance measures representing
the energy performance of the building, the economy of the building, and the indoor
environment of the building. The formulation (3.8) is used for estimating the design
decisions.

4.1 Introduction

The building optimization method estimates optimum design decisions by optimizing the
performance of a building with a simplified geometry. This section describes the simplified
building, the design decisions and performance measures supported by the method, and
the constant parameters. Furthermore, details regarding the requirements to the decision
variables and performance measures are addressed.

In order to combine performance calculations with optimization methods, an interface
with a structure as described in Section 3.3 is used. The interface is illustrated in Fig-
ure 4.1.

The methods used for calculating the performance of the simplified building are described
in Section 4.2, and the details of preparing the input to and processing the output from
these methods are described in Sections 4.3 and 4.4, respectively. The domain constraints
used for ensuring that the input to the performance calculation methods is feasible, are
described in Section 4.5. Concluding remarks are provided in Section 4.6.
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Figure 4.1: A conceptual illustration of the interface used for calculating the performance
measures.

4.1.1 A simplified building model

The consequences of design decisions are estimated using a building with a simplified
geometry, as shown in Figure 4.2.

The building has a rectangular layout, as shown in Figure 4.3. All floors are identical,
and each floor has window “bands” on two of the four external walls. The staircase tower
is omitted, and only a single internal wall is included, which divide the building into two
thermal zones, representing the front and back of the building. The performance of each
of the two thermal zones is calculated separately.

The building has an annular foundation, which is included when calculating the building
economy, but not when calculating the energy performance. The foundation is not shown
in Figure 4.2.

The orientation of the building is defined as the counter-clockwise angle from due south
to the main axis of the building.

The thicknesses of the insulated and uninsulated parts of the building are shown in the
layout in Figure 4.3 and the cross-section A-A shown in Figure 4.4.
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Figure 4.2: The building geometry used by the building optimization method for estimat-
ing the consequences of design decisions. This example only consists of two floors, but the
method supports any number of floors.

4.1.2 Decision variables

The aim of the building optimization method is to make suggestions for the following
design decisions:

1. The overall shape of the building.

2. The window fraction of the façade areas.

3. The window types.

4. The amount of insulation in ground slab, external walls and roof construction.

The shape of the building is expressed in terms of the width to length ratio %:

% =
wext

lext

. (4.1)
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wint

extw
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1
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dw,u
1
2

Thermal zone 2

Thermal zone 1

Figure 4.3: The layout of the building. Dark gray regions represent the insulated parts of
the building, and light gray regions represent the uninsulated parts. The horizontal dashed
line divides the building into two thermal zones.

The shape of the building is furthermore represented by the number of floors, N .

The window fraction of the façades for the two thermal zones are represented by the
parameters σ(1) and σ(2), which are defined as the ratios between the window areas and
the façade areas:

σ(1) =
A

(1)
win

hext lint

, and σ(2) =
A

(2)
win

hext lint

. (4.2)

The window areas A
(1)
win and A

(2)
win for the two thermal zones, and the façade area hext lint

apply to one floor.

In order to determine which window to use, the decision maker must provide a database
consisting of, say, nwin windows. The decision maker selects a window by assigning weights
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Figure 4.4: The cross-section A-A, defined in Figure 4.3.

0 ≤ αi ≤ 1 to the windows, where i = 1, . . . , nwin. The weights αj = 1 and αi = 0 for
i 6= j specifies that window j is selected.

Two sets of weights, α(1) ∈ Rnwin and α(2) ∈ Rnwin , represent the windows selected for the
two thermal zones. These weights are used for calculating the window properties used as
part of the input to the performance calculation methods, by forming a weighted sum of
the properties of the windows stored in the database.

The amount of insulation used in the ground slab, the external walls and the roof con-
struction, is represented by the parameters dg,i, dw,i and dr,i, respectively.
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The full set of decision variables x ∈ Rnd supported by the building optimization method
is:

x =



%
N
σ(1)

σ(2)

dg,i

dw,i

dr,i

α(1)

α(2)


(4.3)

The size of the vector is

nd = 2 nwin + 7. (4.4)

4.1.3 Constant parameters

Evaluating the consequences of design decisions for the simplified building involves a
number of constant parameters, such as:

1. Various geometrical parameters, such as the thickness of the uninsulated parts of the
ground slab, the external walls and the roof construction, as well as the thickness
of the internal wall. The total heated floor area of the building is also not altered.

2. The position and orientation of the building.

3. Settings for the HVAC systems.

4. Physical properties, such as the thermal conductivity of the materials used in the
building, as well as the physical properties of the windows.

5. Economical parameters, used for calculating the cost of constructing the building.

6. Climate parameters, such as external air temperature, air velocity, air pressure,
relative humidity, etc. These parameters can be found in test reference year (TRY)
or design reference year (DRY) data sets.

A detailed list of the default values of the constant parameters is provided in Appendix D.
These constants are used when evaluating the building optimization method in Chapter 6,
unless specified otherwise.

4.1.4 Performance measures

The energy performance of the building is represented by the following performance mea-
sures:
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1. The annual amount of energy required by the building for heating, cooling, ventila-
tion, domestic hot water and artificial lighting (Qtot)

2. Energy frame calculation required by the Danish building regulations (EF3)

3. Energy frame calculation for acquiring the low energy class 2 label (EF2)

4. Energy frame calculation for acquiring the low energy class 1 label (EF1)

5. Heat loss through the building envelope, excluding windows and doors (Qbe)

6. The thermal transmittance for the ground slab (Ug)

7. The thermal transmittance for the external walls (Uwall)

8. The thermal transmittance for the roof construction (Ur)

9. The thermal transmittance for the windows used in zone 1 (U
(1)
win)

10. The thermal transmittance for the windows used in zone 2 (U
(2)
win).

The indoor environment of the building is represented by the following performance mea-
sures:

11. Annual number of overheating hours for zone 1 (OH(1))

12. Annual number of overheating hours for zone 2 (OH(2))

13. The ratio between the depth of the room and the window height for zone 1 (DH(1))

14. The ratio between the depth of the room and the window height for zone 2 (DH(2)).

The economy of the building is represented by the following performance measures:

15. The cost of constructing the building (Ccon)

16. The annual cost of operating the building (Cop)

The performance measures are represented by the function q : D → Rnq , where the number
of performance measures is nq = 16. The full set of performance measures supported by
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the building optimization method is:

q(x) =



Qtot

EF3

EF2

EF1

BE
Ug

Uwall

Ur

U
(1)
win

U
(2)
win

OH(1)

OH(2)

DH(1)

DH(2)

Ccon

Cop



(4.5)

where the arguments to the performance measures are omitted. The methods used for
calculating the performance measures are described in Section 4.2.

4.1.5 Requirements

The building optimization method suggests design decisions by estimating numerical so-
lutions to (3.8). This formulation enables the decision maker to specify optimality re-
quirements to performance measures, and to specify inequality and equality requirements
to performance measures as well as decision variables.

However, there are requirements related to discrete decisions, such as selecting a window
from a window database, which always must be satisfied, regardless of the requirements
specified by the decision maker. These are described in the following. Furthermore, how
to incorporate the requirements to the energy performance of buildings into the decision-
making is also addressed.

Discrete decisions

As described in Section 4.1.2, window j is selected by using the weights αj = 1 and
αi = 0 for i 6= j. The weights are therefore always either 0 or 1, that is, αi ∈ {0, 1} for
i = 1, . . . , nwin.

However, the problem (2.4) requires that the variables are continuous, therefore the
weights are allowed to assume any value between 0 and 1, that is:

0 ≤ α(1) ≤ 1, (4.6)

0 ≤ α(2) ≤ 1. (4.7)
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There is no guarantee that the optimum weights found by solving (2.4) are integers;
however, practical experience with the method indicates that this is often the case.

The requirements (4.6) and (4.7) are used as permanent parts of AÎ and bÎ , which are
used for specifying inequality requirements to the decision variables.

Furthermore, in order to ensure that exactly one window is selected for each of the two
thermal zones, the sums of the weights must be one:

nwin∑
i=1

α
(1)
i = 1, (4.8)

nwin∑
i=1

α
(2)
i = 1. (4.9)

These requirements are used as permanent parts of AÊ and bÊ , which are used for speci-
fying equality requirements to the decision variables.

Building regulations

The Danish building regulations [13] specify upper limits on the annual amount of energy
required by the building, as well as upper limits on the (linear) thermal transmittance for
various parts of the building envelope.

These regulations implement the EU Directive [18] on the energy performance of buildings.
The approach described in the following, intended for incorporating energy requirements
to buildings into the decision-making, may therefore be useful for other countries with
similar regulations.

However, the reader should notice that the approach described in the following does
not guarantee that the design decision suggested by the building optimization method
comply with the Danish building regulations. This is because the method does not use
the energy performance calculation method required by the building regulations. The
required method is implemented in the program BE06 described by Aggerholm and Grau
[1]. Including this method into the building optimization method is a possible topic for
further research.

The Danish requirements to the energy performance of non-residential buildings are de-
scribed in terms of the total annual energy Qtot delivered to the building for heating,
cooling, ventilation, producing domestic hot water, and for artificial lighting. The follow-
ing energy frame requirement (referred to as EF3) must be satisfied for new non-residential
buildings:

Qtot

Atot

≤ 95
kWh

m2
+

2200 kWh

Atot

, (4.10)

where Atot is the total heated floor area, including internal and external walls.

The Danish building regulations also include energy labels, intended for motivating build-
ing owners to reduce the energy required by buildings even further. The following energy
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frame (referred to as EF2) requirement must be satisfied in order to achieve the low energy
class 2 label:

Qtot

Atot

≤ 50
kWh

m2
+

1600 kWh

Atot

, (4.11)

and the energy frame requirement (referred to as EF1) for achieving the low energy class
1 label is:

Qtot

Atot

≤ 35
kWh

m2
+

1100 kWh

Atot

. (4.12)

The energy frame requirements can be formulated in the following way:

95
kWh

m2
Atot + 2200 kWh−Qtot ≥ 0 (4.13)

50
kWh

m2
Atot + 1600 kWh−Qtot ≥ 0 (4.14)

35
kWh

m2
Atot + 1100 kWh−Qtot ≥ 0, (4.15)

where the right hand sides of these expressions are used as performance measures:

EF3 = 95
kWh

m2
Atot + 2200 kWh−Qtot (4.16)

EF2 = 50
kWh

m2
Atot + 1600 kWh−Qtot (4.17)

EF1 = 35
kWh

m2
Atot + 1100 kWh−Qtot (4.18)

(4.19)

The energy frame related to each of these performance measures is satisfied when a design
decision is found where the performance measure is positive. The energy frames can thus
be addressed by requiring that one or more of the performance measures EF3, EF2 and
EF1 must be positive.

The Danish building regulations specify (among others) the following upper limits on the
thermal transmittance for the components used in the building envelope:

1. The thermal transmittance of the ground slab must be less than 0.30 W/m2K.

2. The thermal transmittance of the external walls must be less than 0.40 W/m2K.

3. The thermal transmittance of the roof construction must be less than 0.25 W/m2K.

4. The thermal transmittance of windows and doors must be less than 2.30 W/m2K.
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4.2 The performance calculations

The U -value requirements can be addressed by specifying upper limits on the performance
measures Ug, Uwall, Ur, U

(1)
win and U

(2)
win.

The Danish building regulations furthermore establish an upper bound on the heat loss
through the building envelope, not including windows and doors. The heat loss Qe per
m2 of the building envelope is required to be less than 6 W, that is:

Qe

Ae

≤ 6
W

m2
⇔ 6

W

m2
· Ae −Qe ≥ 0, (4.20)

where Ae is the area of the building envelope, not including windows and doors. The left
hand side of (4.20) is used as a performance measure:

BE = 6
W

m2
· Ae −Qe. (4.21)

The Danish building regulations also specify upper limits on the linear thermal trans-
mittances for the interaction between various parts of the building envelope. However,
calculating the linear thermal transmittance for the interaction between two building com-
ponents requires numerical methods for solving partial differential equations. This could
make the performance calculations more time-consuming, and thereby increase the time
needed for solving the optimization problem (3.8).

All linear thermal transmittances are therefore assumed to be constant, and close to
or equal to the upper limits specified by the building regulations, in order to provide a
conservative estimate of the design decisions. Developing methods for performing fast and
reliable calculations for the linear thermal transmittance is a possible topic for further
research. Methods similar to the one described in the paper included in Appendix B
might be useful for this purpose; however, this has not been investigated as part of this
study.

4.2 The performance calculations

4.2.1 Energy and indoor environment

The energy performance and the performance regarding the indoor environment of the
simplified building are calculated using the method proposed by Nielsen [50]. The method
is implemented in the Matlab [44] program BuildingCalc, which is described by Nielsen [48].
This method is partially described in the following, as well as how it is used for calculating
the performance of the simplified building.

It is assumed that all rooms of the simplified building are heated to the same temperature,
and that the thermal interaction between them therefore can be disregarded. The internal
wall is assumed to be adiabatic; therefore the interactions between the thermal zones are
also omitted.

The energy performance of each of the two zones is estimated using the thermal networks
shown in Figure 4.5. Notice that the interactions between the floors are omitted. Each
floor of the building is represented by a network consisting of the following four nodes:
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1. A node representing the external environment, with temperature Text.

2. A node representing the internal air, with temperature Ta.

3. A node representing the internal surfaces, with temperature Ts.

4. A node representing the thermal mass, with temperature Tw.

Ta
TextTs

KiKw

Ci

Cw

Tw

Text

UA

Q'a
Q's Kr

TextTaTs
Tw

Cw Ci

Kw Ki UA

Q'aQ's

Text

Text

TaTs
Tw

Cw

Ci

Kw Ki UA

Q'a
Q's

Kg

TextTaTs
Tw

Cw Ci

Kw Ki UA

Q'aQ's

floorsN

Figure 4.5: The thermal networks used for estimating the energy performance for each
of the two zones.

The networks consists of the thermal conductance between the thermal mass and the
surface Kw, the conductance between the surface and the internal air Ki, and the con-
ductance between the internal air and the external environment UA, which is used for
calculating the heat loss through the external walls and windows. The heat loss through
the roof construction and the ground slab are calculated using the conductances Kr and
Kg, respectively. The effective heat capacity of the constructions is represented by Cw,
and the heat capacity of the internal air and property contents is represented by Ci.
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The heat sources Q′
s and Q′

a are given by:

Q′
s = S ws Q′

sun, (4.22)

and

Q′
a = S wa Q′

sun + Q′
l + Q′

h −Q′
c, (4.23)

where Q′
sun is the transmitted solar energy, and S is the shading factor for the shading

device, which is assumed to be variable. The factors ws and wa are the fractions of the
solar energy absorbed by the internal surfaces and the internal air, respectively. The
contribution from internal loads is represented by Q′

l, and the contributions from the
heating and cooling systems are represented by Q′

h and Q′
c, respectively.

The only difference between the networks used for representing the thermal zones is that
the first floor and the top floor have additional heat losses due to the heat losses through
the roof construction and the ground slab. The networks representing the intermediate
floors are all identical.

In order to simplify the calculations, the additional heat losses are distributed equally
among all floors. All networks thereby become identical with the network proposed by
Nielsen [50]. The thermal conductance between the internal and external air is denoted

ÛA, which is given by:

ÛA = UA +
Kr

N
+ bg ·

Kg

N
. (4.24)

This means that the energy performance of the building can be estimated using only one
simulation for each thermal zone. The network used for estimating the energy performance
of a single floor for each of the two thermal zones is shown in Figure 4.6.

The factor bg in (4.24) is a temperature factor that compensates for smaller temperature
differences for some building components, where

1. the external temperature of the component is not the same as the external air
temperature, or

2. the internal temperature of the component is not the same as the internal air tem-
perature.

Given the network parameters, information about the internal loads, settings for the
HVAC systems, active solar shading devices and variable insulation system, as well
as weather data and information about the location of the building, the method by
Nielsen [50] provides, among others, hourly values of the required energy for heating
and cooling the building, the internal air temperature, as well as ventilations rates for
natural and mechanical ventilation systems.

The method furthermore provides evaluations of the thermal indoor environment, ex-
pressed in terms of the number of hours with overheating, based on a user-defined maxi-
mum allowed indoor air temperature. Finally, the method provides hourly values of the
predicted mean vote (PMV), and the predicted percentage of dissatisfied (PPD).
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ÛUA

Ta TextTs
KiKw

CiCw

Tw

Q's Q'a

Figure 4.6: The thermal network resulting from distributing the additional heat losses
equally among the floors. The network is used for estimating the performance of a single
floor for each of the two thermal zones.

The current version of the building optimization method does not use the PMV and PPD
values as performance measures. The number of hours with overheating is calculated using
linear interpolation between hourly values of the indoor air temperature. This method is
described in Section 4.4.2.

Furthermore, active solar shading devices are not used, and the windows have no overhang.

Parameter Unit Description
Ta ∈ R8760 ◦C Vector with hourly values of the internal

air temperature.
Q′

h ∈ R8760 W Vector with hourly values of the required
power for heating the building.

Q′
c ∈ R8760 W Vector with hourly values of the required

power for cooling the building.
V ′ ∈ R8760 m3/s Vector with hourly values of the mechan-

ical ventilation rate.

Table 4.1: The output from the method by Nielsen [50], which is used for calculating the
performance measures.

The output from the method by Nielsen [50], which is used for calculating the performance
measures, is shown in Table 4.1.

Section 4.3.3 concerns calculations of the network parameters, and other parameters re-
quired by the performance calculation method, based on decision variables and constant
parameters.

4.2.2 Economy

The performance regarding the economy of the building is calculated using simple mathe-
matical models of data from standard price catalogues. The price calculations performed
by the building optimization method are based on data from the V&S price catalogue
[60], which concerns Danish gross unit prices for individual construction jobs1.

1The English translations of the construction jobs are provided by the author of the thesis.
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The unit prices are represented using three different mathematical models, which are
described in the following and illustrated on examples from the price catalogue.

The unit price for a construction job depends on the number of purchased units, for
instance, the unit price of forming depends on the total area of the required concrete
forms. The unit price for some construction jobs also depend on secondary parameters,
for instance, the unit price of pouring concrete not only depend on the amount of concrete,
but also on the required strength of the concrete.

Table 4.2 provides three examples of unit prices for different construction jobs from the
V&S price catalogue [60]. The first job does not involve a secondary parameter, and the
other two jobs do.

The following model is used for representing unit prices for construction jobs that do not
involve a secondary parameter:

p1(u, β) = β1 exp(β2 u) + β3, (4.25)

where u ∈ R is the number of units, and where β ∈ R3 is a vector consisting of model
parameters.

The following two models are used for representing unit prices for construction jobs in-
volving a secondary parameter:

p2(u, s, β) = β1 s + β2 exp(β3 u) + β4 (4.26)

p3(u, s, β) = β1 exp(β2 s) + β3 exp(β4 u) + β5, (4.27)

where s ∈ R is the secondary parameter.

The model parameters β ∈ Rnβ , with nβ = 3 for (4.25), nβ = 4 for (4.26), and nβ = 5
for (4.27), are calculated by estimating solutions to the following system of non-linear
equations:

pk(ui, sj, β) = p̂ji, i = 1, . . . , nu, j = 1, . . . , ns, (4.28)

with k ∈ {1, 2, 3}. For k = 1, the argument sj is omitted. The parameter p̂ji is the
catalogue price related to the number of purchased units ui and the secondary parameter
sj. Furthermore, nu and ns are the numbers of columns and rows, respectively, used for
organizing the unit prices for the considered construction job in the price catalogue.
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Description Gross unit price in DKR
Forming (job no. 04.10.01,01):
Units 1000m2 5000m2 10000 m2

185 163 155
Pouring concrete (job no. 04.10.31,01-04):
Units 10m3 50m3 100m3

16 MPa 1590 1420 1360
20 MPa 1610 1450 1390
25 MPa 1630 1470 1410
30 MPa 1660 1490 1430
Delivering and installing uncoated, air-filled,
double-glazed windows (job no. 04.35.05):
Units 5m2 20m2 50m2

0.4− 0.5 m2 1260 1150 1090
0.5− 1.0 m2 949 863 816
1.0− 1.5 m2 826 750 708
1.5− 2.0 m2 802 728 686
2.0− 2.5 m2 771 699 659
2.5− 3.0 m2 794 721 680

Table 4.2: Three examples of unit prices for construction jobs. The secondary parame-
ter for the unit price of pouring concrete is the strength of the concrete. The secondary
parameter for the unit price of delivering and installing double-glazed windows is the area
of the individual windows.

For k = 1, the system of equations (4.28) is determined, and for k ∈ {2, 3}, it is overdeter-
mined. In all three cases, the model parameters are calculated as least squares solutions
to (4.28). This requires the residual functions ∆pk : Rnβ → Rnuns , which are defined as:

∆pkl(β) = pk(ui, sj, β)− p̂j,i, i = 1, . . . , nu, j = 1, . . . , ns, (4.29)

where k ∈ {1, 2, 3}, and where l = ns (i− 1) + j. The residuals (4.29) are thus calculated
column-wise for the catalogue prices.

The model parameters β for the models (4.25), (4.26) and (4.27) are calculated by solving
the following least squares data-fitting problems:

minimize ‖∆pk(β)‖2
with respect to β ∈ Rnβ ,

(4.30)

for k ∈ {1, 2, 3}.

Table 4.3 shows model parameters for the construction jobs shown in Table 4.2. The
model parameters are calculated by solving the data-fitting problems (4.30).
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Job Forming Pouring concrete Installing windows
No 04.10.01,01 04.10.31,01-04 04.35.05
Model (4.25) (4.26) (4.27)
β1 4.317435e+1 4.868319e+0 2.120962e+3
β2 −2.807892e−4 3.238082e+2 −3.498643e+0
β3 1.523953e+2 −2.807876e−2 1.845962e+2
β4 − 1.267209e+3 −6.164742e−2
β5 − − 6.604592e+2

Table 4.3: Model parameters for the construction jobs shown in Table 4.2.

Figure 4.7 shows the catalogue prices for forming, together with the model (4.25). The
model interpolates the data, since the system of non-linear equations (4.28) in this case
is determined.
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Figure 4.7: A plot of the unit prices for forming (job no. 04.10.01,01). The circles
represent catalogue prices, and the solid line represent the mathematical model (4.25),
using the model parameters from Table 4.3.

Figure 4.8 shows the catalogue prices for pouring concrete, together with the model (4.26),
and Figure 4.9 shows the catalogue prices for delivering and installing double-glazed win-
dows, together with the model (4.27). In both cases, the equations (4.28) are overdeter-
mined, which means that the models do not interpolate the data, and the models (4.26)
and (4.27) therefore have modeling errors.

The relative modeling errors for the catalogue price p̂j,i is given by:

|pk(ui, sj, β)− p̂j,i|
p̂j,i

, (4.31)

for k ∈ {2, 3}. The average relative modeling error for the unit prices of pouring concrete,
and for delivering and installing windows, are in both cases below 2%.
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The output from the performance calculations regarding the economy of the simplified
building can be arranged in a vector

P ∈ Rnjobs , (4.32)

containing the unit prices for the njobs construction jobs needed for constructing the
building.
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Figure 4.8: A plot of the unit prices for pouring concrete (job no. 04.10.31,01-04). The
circles represent catalogue prices, and the grid represent the mathematical model (4.26),
using the model parameters from Table 4.3. The average relative modeling error is 0.21%,
and the maximum relative modeling error is 0.42%.

4.3 Preparing the input

This section concerns the details of calculating the input to the performance calculation
methods in terms of the decision variables (4.3) and the constant parameters.

The input relies on the geometry of the building, such as areas and volumes of various
building components. Based on this information, the network parameters required by the
performance calculation method described by Nielsen [50] can be calculated. This method
also requires the properties of the windows of the two thermal zones.

The geometry of the building is furthermore used for calculating the size of the jobs
required for constructing the building.
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Figure 4.9: A plot of the unit prices for delivering and installing double-glazed windows
(job no. 04.35.05). The circles represent catalogue prices, and the grid represent the
mathematical model (4.27), using the model parameters from Table 4.3. The mid-points of
the intervals shown in Table 4.2 are used as secondary parameters. The average relative
modeling error is 1.23%, and the maximum relative modeling error is 3.36%.

4.3.1 Geometry

First the length and width of the building are addressed. From Figure 4.3, the following
relations can be derived:

wext = 2 wint + 2 dwall + dint (4.33)

lext = lint + 2 dwall (4.34)

dwall = dw,i + dw,u (4.35)

The internal floor area Aint is related to the geometry of the building in the following
way:

Aint = 2 N lint wint. (4.36)

The parameters wext, wint, lext and lint are unknown. The parameters dw,i and N are
decision variables, and dw,u, dint and Aint are constants.

Combining (4.1) with (4.33) and (4.34) gives:

% =
2 wint + 2 dwall + dint

lint + 2 dwall

⇔ (4.37)

lint =
1

%
(2 wint + 2 dwall + dint)− 2 dwall. (4.38)
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The parameter % is a decision variable. Combining (4.38) with (4.36) gives:

Aint = 2 N wint

(
1

%
(2 wint + 2 dwall + dint)− 2 dwall

)
⇔ (4.39)

Aint% = 4 N w2
int + 4 N dwall wint + 2 N dint wint − 4 N % dwall wint ⇔ (4.40)

Aint%

4N
= w2

int +

(
(1− %) dwall +

1

2
dint

)
wint, (4.41)

which can be arranged as the following quadratic equation:

w2
int +

(
(1− %) dwall +

1

2
dint

)
wint −

Aint%

4N
= 0. (4.42)

The solution can be expressed in terms of

B = (1− %) dwall +
1

2
dint, (4.43)

and

C = −Aint%

4N
. (4.44)

The discriminant D for the equation (4.42) is:

D = B2 − 4C = B2 +
Aint%

N
> B2, (4.45)

which implies that

√
D > |B|. (4.46)

This means that (4.42) has a positive and a negative root. Only the positive root is
relevant, which is given by:

wint =
1

2

(
−B +

√
D

)
. (4.47)

The parameter wint is thus by (4.47) expressed in terms of known parameters. The
parameter lint can then be calculated using (4.38), and the parameters wext and lext can
be calculated using (4.33) and (4.34), respectively.

Next, the window areas for the two thermal zones are considered. The relation (4.2) gives
the following:

A
(1)
win = σ(1) hext lint (4.48)

A
(2)
win = σ(2) hext lint, (4.49)

where σ(1) and σ(2) are decision variables, and where hext is a constant.
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Since window bands are used for the simplified building, the window areas can be ex-
pressed as:

A
(1)
win = h

(1)
win lint (4.50)

A
(2)
win = h

(2)
win lint, (4.51)

where h
(1)
win and h

(2)
win are the window heights for the two thermal zones. Combining these

expressions with (4.48) and (4.49) gives the following expressions for the window heights:

h
(1)
win = σ(1) hext (4.52)

h
(2)
win = σ(2) hext (4.53)

The circumferences O
(1)
win and O

(2)
win of the windows are given by the following expressions:

O
(1)
win = 2(h

(1)
win + lint) (4.54)

O
(2)
win = 2(h

(2)
win + lint), (4.55)

The areas of the external walls for the two thermal zones are given by:

A
(1)
wall = hext (lext + wext)− A

(1)
win = hext

(
lext + wext − σ(1) lint

)
(4.56)

A
(2)
wall = hext (lext + wext)− A

(2)
win = hext

(
lext + wext − σ(2) lint

)
. (4.57)

These areas apply to a single floor.

The external area Aext of a single floor of the building is:

Aext = wext lext. (4.58)

The total heated floor area Atot includes internal and external walls, and is given by:

Atot = N · Aext. (4.59)

The internal surface areas A
(1)
s and A

(2)
s for the two thermal zones, which are required

for conducting the performance calculations, are the sums of areas that contribute to the
thermal capacity, such as internal walls, ceiling and floor areas, but not windows, and are
for the simplified building given by:

A(1)
s = 2 lint wint + 2 lint hint + 2 wint hint − A

(1)
win (4.60)

A(2)
s = 2 lint wint + 2 lint hint + 2 wint hint − A

(2)
win (4.61)

The internal floor height hint is given by:

hint = hext − hdeck, (4.62)
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where hdeck is the height of the concrete decks.

The air volume for each thermal zone on every floor is given by:

Vint = lint wint hint. (4.63)

The external circumference Oext of the building is given by:

Oext = 2(wext + lext). (4.64)

4.3.2 Window properties

The window properties used as input to the performance calculation method are calculated
as a weighted sum of the properties of the nwin windows stored in the user-supplied window
database. An example of a window database is provided in Table D.11 in Appendix D.
The glazing category is calculated using the method proposed by Karlsson and Roos [38].

The window database can be arranged as a matrix W ∈ R9×nwin , with the window prop-
erties stored column-wise. The weighted sums w(1) ∈ R9 and w(2) ∈ R9 of the window
properties for the two thermal zones can be calculated as the products

w(1) = Wα(1), (4.65)

and

w(2) = Wα(2). (4.66)

The weighted sums w(1) and w(2) are used as part of the input to the performance calcu-
lation method.

4.3.3 Network parameters

Calculating the energy and indoor environment performance of the building is done by
calculating the performance for each of the two thermal zones, which in turn requires the
network parameters for the two zones to be available.

The thermal conductances ÛA
(1)

and ÛA
(2)

for the two thermal zones are given by:

ÛA
(1)

= UA(1) +
Kr

N
+ bg ·

Kg

N
(4.67)

ÛA
(2)

= UA(2) +
Kr

N
+ bg ·

Kg

N
. (4.68)

The thermal conductances UA(1) and UA(2) are given by:

UA(1) = Uwall A
(1)
wall + U

(1)
win A

(1)
win + O

(1)
win Ψww +

1

2
Oext Ψfw (4.69)

UA(2) = Uwall A
(2)
wall + U

(2)
win A

(2)
win + O

(2)
win Ψww +

1

2
Oext Ψfw, (4.70)
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where the areas of the external walls for the two zones are given by (4.56) and (4.57), re-
spectively, and where the areas of the windows are given by (4.48) and (4.49), respectively.
Furthermore, the window circumferences are given by (4.54) and (4.55), respectively. The
constant parameter Ψww denotes the linear thermal transmittance caused by the thermal
interaction between the windows and the external walls.

Finally, the constant parameter Ψfw is the linear thermal transmittance representing the
thermal interaction between the external walls and the foundation. Only half the length
of the foundation is included in in each thermal zone.

The thermal transmittance of the external walls is assumed to be identical for the two
thermal zones, and is given by:

Uwall =
1

Rint + dw,u

λw,u
+

dw,i

λw,i
+ Rext

. (4.71)

The terms Rint and Rext are the internal and external surface resistances, respectively. The
terms λw,u and λw,i are the thermal conductivities of the uninsulated and insulated parts
of the external wall, and the terms dw,u and dw,i are the thicknesses of the uninsulated
and insulated parts. The term dw,i is a decision variable, and the rest are constants.

The total thermal transmittances, U
(1)
win and U

(2)
win, of the windows for the two zones are

parts of the weighted window properties w(1) and w(2):

U
(1)
win = w

(1)
3 (4.72)

U
(2)
win = w

(2)
3 (4.73)

The thermal conductance Kr used for calculating the heat loss through the roof construc-
tion is given by:

Kr =
1

2
Ur Aext, (4.74)

where the external floor area Aext is given by (4.58). Only half the area is included, since
(4.74) only applies to one thermal zone.

The thermal transmittance of the roof construction is given by:

Ur =
1

Rint + dr,u

λr,u
+

dr,i

λr,i
+ Rext

, (4.75)

where λr,u and λr,i are the thermal conductivities of the uninsulated and insulated parts
of the roof construction, and the terms dr,u and dr,i are the thicknesses of these parts.
The term dr,i is a decision variable, and the rest are constants.

The thermal conductance Kg used for calculating the heat loss through the ground slab
can in a similar way be expressed as:

Kg =
1

2
(Ug Aext + Oext Ψfw), (4.76)
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where Ψfw denotes the linear transmittance caused by the thermal interaction between
foundation and the external wall, which is a constant.

The thermal transmittance of the ground slab is given by:

Ug =
1

Rint + dg,u

λg,u
+

dg,i

λg,i
+ Rext

. (4.77)

The terms λg,u and λg,i are the thermal conductivities of the uninsulated and insulated
parts of the ground slab, and the terms dg,u and dg,i are the thicknesses of these parts.
The term dg,i is a decision variable, and the rest are constants.

The conductances ÛA
(1)

and ÛA
(2)

are thereby expressed in terms of decision variables
and constants.

The internal thermal capacity Ci accounts for the internal air, as well as the household
goods, which are assumed to be heated to the same temperature as the internal air. Ci

does not account for constructions. The thermal capacity Ci is calculated by assuming
that the total thermal capacity Ci,tot of the building contents is a constant. The thermal
capacity Ci is calculated by distributing Ci,tot equally among all floors of the building, and
among the two thermal zones. The thermal capacity Ci furthermore includes the thermal
capacity of the air in each zone, which thereby becomes:

Ci =
Ci,tot

2N
+ Vint · %air · cair, (4.78)

where the internal air volume Vint is given by (4.63), and where the constants %air and
cair are the density and specific thermal capacity of air, respectively.

The remaining network parameters are calculated by the performance calculation method
by Nielsen [50], based on input provided by the user. The methods for calculating them
are briefly described in the following.

The conductances K
(1)
i and K

(2)
i between the internal air and the internal surfaces, are

calculated using the internal surface resistance Rint, and the surface areas A
(1)
s and A

(2)
s .

The thermal capacities C
(1)
w and C

(2)
w of the constructions are calculated using the surface

areas A
(1)
s and A

(2)
s , which are the surfaces that contribute to the thermal capacity, and

the specific heat capacity cw for the constructions of the building.

The conductances K
(1)
w and K

(2)
w between the internal surface and the thermal mass are

calculated using the surface areas A
(1)
s and A

(2)
s , and an equivalent thermal resistance Req,

which is a constant.

Finally, the parameters needed for calculating the heat sources Q′
s and Q′

a are addressed,
which are also calculated by the performance calculation method, also based on input
from the user.

The solar transmittance Q′
sun is calculated for each window of the building, based on

information about the location of the building, the orientation and tilt of the windows,
and various information about the surroundings of the building, such as ground albedo,
various parameters used for defining the sky model, etc.
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4.3 Preparing the input

The shading factor S is calculated such that S ∈ [Smin; 1], where Smin is a user-provided
minimum allowed value for the shading factor. Smin = 1 means the solar shading is not
used. The value of S is controlled by the set point for the cooling system, and hence does
not depend on daylight or glare.

The contributions Q′
h and Q′

c to the heat source Q′
a from the heating and cooling systems

depend on the internal air temperature, and the set points for the systems.

The calculation of the internal load Q′
l is based on information regarding the total internal

load by users and equipment, as well as specifications for when the building is used.

The fractions ws and wa are constants, provided by the user.

4.3.4 The size of the construction jobs

This section concerns the size of the jobs required for constructing the building. These
parameters are used for calculating unit prices for the construction jobs, which in turn
are used for calculating the construction cost of the building.

Foundation

An annular foundation as shown in Figure 4.10 is used in order to calculate the construc-
tion costs for the foundation.

hf

df df

Circumference extO

Figure 4.10: An annular foundation.

The following jobs are considered when calculating the construction costs:

Job no. 03.05.10,03-06: excavation for foundation

Job no. 03.15.04,01: bending and placing reinforcement

Job no. 03.15.07,01-04: concrete casting.
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90 cm of soil is assumed to be removed when excavating for the foundation. The unit
price depends on the length of the foundation, which is assumed to be the same as the
external circumference Oext of the building. It furthermore depends on the width df of
the foundation, which is used as secondary parameter. The circumference Oext is given
by (4.64), and the width df is a constant.

The unit price of bending and placing reinforcement only depends on the total weight
mf,r of the reinforcement mesh.

It is assumed that a total of nf,m reinforcement meshes are used for reinforcing the foun-
dation, and that the total area of each reinforcement mesh is equal to the external surface
area Af of the foundation, which is given by:

Af = Oext · hf , (4.79)

where hf is the height of the foundation.

The reinforcement rods are assumed to be separated by a distance of df,m, as shown in
Figure 4.11. The total length of the reinforcement rods used in an area of size df,m× df,m

df,m

df,m

df,m

df,m

df,r

Figure 4.11: The reinforcement mesh used in the foundation.

is 2 · nf,m · df,m. The volume of this amount of reinforcement is:

Vr =
π

4
· 2 · nf,m · df,m · d2

f,r =
π

2
· nf,m · df,m · d2

f,r, (4.80)

where df,r is the diameter of the reinforcement rods. This amount of reinforcement applies
to an area of size df,m×df,m. The total volume for the reinforcement used in the foundation
thus becomes:

Vr,tot =
Af

d2
f,m

· Vr =
π

2df,m

· Af · nf,m · d2
f,r, (4.81)
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and the total weight is:

mf,r = Vr,tot · %r =
π

2df,m

· %r · Af · nf,m · d2
f,r, (4.82)

where %r is the density of the reinforcement rods, which is a constant.

These considerations do not include details regarding for instance corners.

The unit price of concrete casting depends on the volume of the concrete and the com-
pressive strength τf of the concrete used in the foundation, which is used as a secondary
parameter. It is assumed that the required amount of concrete is equal to the volume Vf

of the foundation, which is given by:

Vf = Oext · hf · df − 4 · hf · d2
f = hf · df · (Oext − 4 · df ) (4.83)

The parameters and the price models used when calculating the cost of constructing the
foundation are summarized in Table 4.4.

Job no. Units Sec. par. Model
03.05.10,03-06 Oext df (4.26)
03.15.04,01 mf,r – (4.25)
03.15.07,01-04 Vf τf (4.26)

Table 4.4: Parameters and price models used for calculating the cost of constructing the
foundation.

Ground slab

In order to calculate the cost of constructing the ground slab, it is assumed that it consists
of the following layers:

1. A capillary-breaking layer

2. A layer of concrete used as wearing surface

3. A layer of insulation material

4. A layer of reinforced concrete.

This involves the following construction jobs:

Job no. 03.15.26: laying capillary breaking layer

Job no. 03.15.05,05-09: casting the wearing surface

Job no. 03.15.44,01-04: insulating the ground slab (mineral wool)

Job no. 03.15.51,01-03: reinforcing and casting the ground slab.

53



A method for optimizing the performance of buildings

The unit prices for all jobs, except for casting the wearing surface, depend on the external
floor area of the building, Aext, as well as secondary parameters, which are described in
the following.

The unit price of laying the capillary breaking layer depends on the thickness dcb of the
layer. Installing the insulation material in the ground slab depends on the thickness dg,i.
Reinforcing and casting the ground slab depends on the compression strength τgs of the
concrete used in the ground slab.

The unit price of casting the wearing surface depends on the volume Vws of the concrete
and the compression strength τws of the concrete used as wearing surface. The volume
Vws is given by:

Vws = Aext · dws, (4.84)

where dws is the thickness of the wearing surface.

The parameters and the price models used when calculating the cost of constructing the
ground slab are summarized in Table 4.5.

Job no. Units Sec. par. Model
03.15.26 Aext dcb (4.26)
03.15.05,05-09 Vws τws (4.26)
03.15.44,01-04 Aext dg,i (4.26)
03.15.51,01-03 Aext τgs (4.26)

Table 4.5: Parameters and price models used for calculating the cost of constructing the
ground slab.

External walls

In order to calculate the prices for construction the external walls, it is assumed that the
external walls consists of the following layers:

1. An internal concrete wall

2. A layer of insulation material

3. An external brick wall.

This involves the following construction jobs:

Job no. 04.10.01,01: forming

Job no. 04.10.27,01: bending and placing reinforcement

Job no. 04.10.31,01-04: concrete casting

Job no. 04.15.30,01: constructing external brick wall
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Job no. 04.15.05,01-05: insulating cavity wall (mineral wool).

The total area Awall,tot of the external walls of the building is given by:

Awall,tot = N · (A(1)
wall + A

(2)
wall) (4.85)

The unit price of forming only depends on the total area of the concrete forms, which is
assumed to be twice the total area of the external walls. This consideration means that
the area of the internal and external parts of the concrete forms are included in the total
area of the concrete forms, but not details regarding for instance corners.

The unit price of bending and placing reinforcement only depends on the total weight
mwall,r of the reinforcement rods. The weight mwall,r can be calculated using an expression
similar to (4.82):

mwall,r =
π

2dwall,m

· %r · Awall,tot · nwall,m · d2
wall,r, (4.86)

where dwall,m is the width of the mesh cells used in the reinforcement meshes in the
external walls. Furthermore, nwall,m is the number of meshes, and dwall,r is the diameter
of the reinforcement rods.

The unit price of concrete casting depends on the total volume Vwall of the external walls,
and the compression strength τwall of the concrete used in the external walls, which is
used as a secondary parameter. The volume Vwall is given by the expression:

Vwall = Awall,tot − 4 ·N · hext · d2
wall. (4.87)

The unit price of bricking up the external brick wall only depends on Awall,tot.

The unit price of insulating the cavity of the external wall depends on Awall,tot, and the
thickness dw,i of the insulated part of the external wall, which is used as a secondary
parameter.

The parameters and the price models used when calculating the cost of constructing the
external walls are summarized in Table 4.6.

Job no. Units Sec. par. Model
04.10.01,01 2 Awall,tot – (4.25)
04.10.27,01 mwall,r – (4.25)
04.10.31,01-04 Vwall τwall (4.26)
04.15.30,01 Awall,tot – (4.25)
04.15.05,01-05 Awall,tot dw,i (4.26)

Table 4.6: Parameters and price models used for calculating the cost of constructing the
external walls.

Concrete decks

The following jobs are considered when calculating the cost of constructing the concrete
decks:
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Job no. 04.10.01,02: forming

Job no. 04.10.27,01: bending and placing reinforcement

Job no. 04.10.31,08-11: concrete casting.

The areas of the concrete decks are assumed to be the same as the area Aext of the layout
of the building.

The total area Adeck of the concrete decks is given by:

Adeck = (N − 1) · Aext, (4.88)

since the number of concrete decks to construct is one less than there are floors.

The unit price of forming only depends on the area Adeck.

The unit price of bending and placing reinforcement only depends on the total weight
mdeck,r of the reinforcement rods. The weight mdeck,r can be calculated using an expression
similar to (4.82):

mdeck,r =
π

2 · ddeck,m

· %r · Adeck · ndeck,m · d2
deck,r, (4.89)

where ddeck,m is the width of the mesh cells used in the reinforcement meshes in the
concrete decks. Furthermore, ndeck,m is the number of meshes, and ddeck,r is the diameter
of the reinforcement rods.

The unit price of concrete casting depends on the total volume Vdeck of the concrete decks,
and the compression strength τdeck of the concrete used in the decks, which is used as a
secondary parameter. The volume Vdeck is given by the expression:

Vdeck = Adeck · hdeck, (4.90)

where hdeck is the height of the concrete decks, which is assumed to be identical for all
decks.

The parameters and the price models used when calculating the cost of constructing the
concrete decks are summarized in Table 4.7.

Job no. Units Sec. par. Model
04.10.01,02 Adeck – (4.25)
04.10.27,01 mdeck,r – (4.25)
04.10.31,08-11 Vdeck τdeck (4.26)

Table 4.7: Parameters and price models used for calculating the cost of constructing the
concrete decks.

Roof construction

A flat roof is used in order to calculate the cost of constructing the roof, with the following
layers (from top to bottom):
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1. Roofing foil

2. Insulation material

3. Roofing paper

4. Vapor seal

5. Structural (a concrete deck).

This involves the following construction jobs:

Job no. 04.10.01,02: forming

Job no. 04.10.27,01: bending and placing reinforcement

Job no. 04.10.31,08-11: concrete casting

Job no. 04.25.17: laying roofing paper including vapor seal

Job no. 04.25.31: laying insulating material and roofing foil.

The unit price of forming and installing roofing paper only depends on the area of the
roof construction, which is assumed to be Aext.

The unit price of bending and placing reinforcement only depends on the weight of the
reinforcement rods. The weight mroof,r can be calculated using an expression similar to
(4.82):

mroof,r =
π

2 · droof,m

· %r · Aext · nroof,m · d2
roof,r, (4.91)

where droof,m is the width of the mesh cells used in the reinforcement meshes in the roof
construction. Furthermore, nroof,m is the number of meshes, and droof,r is the diameter of
the reinforcement rods.

The unit price of concrete casting depends on the total volume Vroof of the concrete deck
used in the roof construction, which is given by:

Vroof = Aext · hroof , (4.92)

where hroof is the height of the concrete deck. The unit price furthermore depends on the
compression strength τroof of the concrete used in the deck, which is used as a secondary
parameter.

The unit price of laying roofing paper and vapor seal depends on Aext.

The unit price of laying insulating material and roofing foil depends on Aext, and the
thickness dr,i of the insulation material, which is used as a secondary parameter.

The parameters and the price models used when calculating the cost of constructing the
roof are summarized in Table 4.8.
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Job no. Units Sec. par. Model
04.10.01,02 Aext – (4.25)
04.10.27,01 mroof,r – (4.25)
04.10.31,08-11 Vroof τroof (4.26)
04.25.17 Aext – (4.25)
04.25.31 Aext dr,i (4.26)

Table 4.8: Parameters and price models used for calculating the cost of constructing the
roof.

4.4 Processing the output

This section concerns the methods for calculating the performance measures, based on
the output from the performance calculation methods.

4.4.1 Energy related performance measures

The Danish building regulations [13] include the following contributions to the annual
amount of energy Qtot delivered to non-residential buildings: energy for heating and
cooling the building, ventilation, producing domestic hot water, and artificial lighting.

The effect of internal loads and solar gains must be included. Furthermore, since buildings
use many types of energy sources, they are weighted with primary energy factors. Elec-
tricity is weighted with 2.5, and energy sources such as oil, gas and distributed heating
are weighted with 1.

Only energy delivered by the district heating system, Qdh, and energy delivered by the
power grid, Qel, are considered, therefore Qtot is given by:

Qtot = Qdh + 2.5 ·Qel. (4.93)

The energy Qdh is used for heating the building and for producing domestic hot water:

Qdh = Qh + Qw, (4.94)

where Qh is the energy for heating, and Qw is the energy for producing domestic hot
water.

The electric energy is used for cooling the building, for ventilation, and for providing
artificial lighting:

Qel = Qc,el + Qv + Ql, (4.95)

where Qc,el is electric energy for cooling, Qv is the electric energy for ventilating, and Ql

is the electric for artificial lighting.

The annual amount of energy Qh, that must be delivered for heating the building, and
the annual amount of energy Qc that must be removed for cooling the building, are given
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by:

Qh =
1

1000

8760∑
i=1

(Q′
h)i ·∆t (4.96)

Qc =
1

1000

8760∑
i=1

(Q′
c)i ·∆t, (4.97)

where ∆t = 1 h is the sample rate. The effect of internal loads and solar gains are included
in Qh and Qc.

The energy efficiency of the district heating unit is not considered. The energy efficiency
of the cooling system must be considered in order to find the amount of electric energy
Qc,el it requires. Qc and Qc,el are related through the coefficient of performance (COP)
for the cooling system. The COP-value ηc for the cooling system is given by:

ηc =
Qc

Qc,el

⇔ Qc,el =
Qc

ηc

. (4.98)

The energy Qw required for producing domestic hot water is calculated by assuming that
the total volume of the hot water is proportional with the heated floor area Atot. For
non-residential buildings, the Danish building regulations [13] assume that 100 liters of
hot water is required annually for every m2 of heated floor area.

Therefore, the annual volume Vw of hot water required is

Vw = Atot · 100 l/m2, (4.99)

and the mass mw of the water is

mw = %w · Atot · 100 l/m2, (4.100)

where %w is the density of water. The annual amount of energy Qw required for heating
the domestic hot water is:

Qw = Cw ·∆Tw = mw · cw ·∆Tw = %w · Atot · cw ·∆Tw · 100 l/m2, (4.101)

where Cw and cw are the heat capacity and the specific heat capacity, respectively, for the
hot water, and where ∆Tw is the temperature difference required for heating the water.

The specific fan power (SFP-value) εv for the ventilation fan is defined as the ratio between
the electrical power Q′

v required by the fan and the volume air flow V ′:

εv =
Q′

v

V ′ ⇔ Q′
v = V ′ · εv. (4.102)

The annual amount of electric energy Qv for ventilating the building is thus given by:

Qv =
1

1000

8760∑
i=1

(Q′
v)i ·∆t. (4.103)
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The annual amount of energy Ql required for artificial lighting is calculated in a similar
way as by Nielsen [47], except that the average daylight factor DFavg is assumed to be
constant, and thereby independent of the window area. A small value is used in order to
provide a conservative estimate of Ql.

Nielsen propose that 2 W of power is used per m2 of internal floor area when the average
internal illumination level Iavg is between 100 and 500 lux, and that 5 W of power is used
per m2 when Iavg is below 100 lux, that is:

Q′
l =


0 W for Iavg ≥ 500 lux
2 W/m2 · Aint for 100 lux ≤ Iavg < 500 lux
5 W/m2 · Aint for Iavg < 100 lux

, (4.104)

where Q′
l is the power required for lighting. Iavg is related to DFavg in the following way:

Iavg = DFavg · Ih, (4.105)

where Ih is the global illuminance, which can be found in DRY climate data sets. It is
assumed that electric lighting is only used when the building is used. Given the DRY data,
the daylight factor, and the periods where the building is used, the following parameters
can be calculated:

ϕ1 : annual number of hours where 100 lux ≤ Iavg < 500 lux (4.106)

ϕ2 : annual number of hours where Iavg < 100 lux (4.107)

The parameters ϕ1 and ϕ2 only include periods where the building is used.

The following expression is used in order to calculate the annual amount of energy Ql

that is required for lighting:

Ql =
Aint

1000

(
2 W/m2 · ϕ1 + 5 W/m2 · ϕ2

)
(4.108)

The annual amount of energy Qtot required by the building is thus expressed in terms of
the output from the performance calculation methods, as well as constants.

Given Qtot, the performance measures EF3, EF2 and EF1 can be calculated using the
expressions (4.16), (4.17) and (4.18).

The performance measure Qbe is calculated using the expression (4.21), which requires
the heat loss Q′

e and the area Ae of the building envelope. The heat loss Q′
e through the

building envelope, not including windows and doors, is given by:

Q′
e =

(
Uwall · (A(1)

wall + A
(2)
wall) + Ur · Aext + Ug · Aext + Ψfw ·Oext

)
·∆Thl, (4.109)

where ∆Thl is the design temperature difference. The area of the building envelope Ae,
not including windows and doors, is given by:

Ae = A
(1)
wall + A

(2)
wall + 2 · Aext. (4.110)

The expressions required for calculating Ug, Uwall, Ur, U
(1)
win and U

(2)
win, are provided in

Section 4.3.3. The expressions required for calculating A
(1)
wall, A

(2)
wall and Aext are provided

in Section 4.3.1.
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4.4.2 Performance measures for the indoor environment

The annual number of hours with overheating is calculated by making linear interpolation
between the internal air temperatures Ta for the time steps ti, i = 1, . . . , 8760, as illus-
trated in Figure 4.12. Overheating occur when Ta exceeds the maximum allowed internal
air temperature Tmax.

Only time periods where the building is occupied contribute to the annual number of
hours with overheating.

Rounding errors occur when calculating Ta. This must be taken into consideration when
calculating time periods with overheating, since Tmax is often used as set point for the
cooling system. The effect of rounding errors is that when the cooling system is active,
Ta is not exactly equal to Tmax, as indicated in Figure 4.12.

Ta

Tmax

Tmax + ε

Time
step

ti ti+1ti-1

Time period
with overheating

Time period where
cooling system is active

Figure 4.12: An illustration of the method used for calculating the annual number of
hours with overheating.

The time periods where overheating occur is therefore not calculated by comparing Ta

with Tmax, but by comparing Ta with T̂max = Tmax + ε, where ε is a tolerance level. Using
ε ' 10−3K usually provides satisfactory results.

The contribution ∆ti to the annual number of hours with overheating, from the time
period ranging from ti to ti+1, is calculated using the following linear interpolation:

T̂a(∆t) = Ti (1−∆t) + Ti+1 ∆t. (4.111)

The time ∆t∗, where the interpolated internal air temperature becomes equal to T̂max, is
given by:

Ti (1−∆t∗) + Ti+1 ∆t∗ = T̂max ⇔ ∆t∗ =
T̂max − Ti

Ti+1 − Ti

. (4.112)

The following scheme is used for calculating ∆ti:

∆ti =



0 if the building is empty

0 if Ti < T̂max and Ti+1 < T̂max

1−∆t∗ if Ti < T̂max and Ti+1 ≥ T̂max

∆t∗ if Ti ≥ T̂max and Ti+1 < T̂max

1 if Ti ≥ T̂max and Ti+1 ≥ T̂max

, for i = 1, . . . , 8759. (4.113)
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This approach is applied to the simulation results from both thermal zones, which provides
the contributions ∆t

(1)
i and ∆t

(2)
i , i = 1, . . . , 8759. The annual number of hours with

overheating for the two thermal zones, denoted OH(1) and OH(2), respectively, can thus
be calculated using the following expressions:

OH(1) =
8759∑
i=1

∆t
(1)
i (4.114)

OH(2) =
8759∑
i=1

∆t
(2)
i (4.115)

The performance measures DH(1) and DH(2), which are used as very simple measures for
the utilization level of natural light, are given by:

DH(1) =
wint

h
(1)
win

(4.116)

DH(2) =
wint

h
(2)
win

, (4.117)

where wint is given by the expression (4.47), and where h
(1)
win and h

(2)
win are given by (4.52)

and (4.53), respectively.

4.4.3 Performance measures for the economy

Given the unit prices P ∈ Rnjobs for the construction jobs, the construction costs Ccon for
the building is given by the following expression:

Ccon =

njobs∑
i=1

ui · Pi, (4.118)

where ui is the number of units required for construction job i. The number of units for
the required construction jobs are provided in Tables 4.4, 4.5, 4.6, 4.7 and 4.8.

Only the cost of energy is considered when calculating the annual cost Cop of operating
the building. Cop is therefore given by:

Cop = pel ·Qel + pdh ·Qdh, (4.119)

where pel and pdh are energy prices for electrical energy and energy supplied by the district
heating system, respectively.

4.5 Domain constraints

The domain constraints are used for ensuring that the input to the performance calculation
methods is feasible. The input is assumed to be feasible, if the decisions suggested by the
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optimization algorithm can be carried out physically. All continuous decision variables
are therefore subjected to lower bounds, in order to prevent them to become negative
or below reasonable values. The window fractions and the width to length ratio are
furthermore subjected to upper bounds, in order to prevent these parameters to become
unrealistic. Finally, the physical window properties are required to be positive. The
economical window properties, that is, the price model parameters, are not subjected to
any requirements.

The following bounds are used for the continuous decision variables:

0.1 ≤ % ≤ 10
N ≥ 0.95

0.1 ≤ σ(1) ≤ 0.9
0.1 ≤ σ(2) ≤ 0.9

dw,i ≥ 0.01
dr,i ≥ 0.01
dg,i ≥ 0.01

(4.120)

The entries of w(1) and w(2) that represent physical window properties are required to be
positive:

w
(1)
i ≥ 0 for i = 1, . . . , 4 (4.121)

w
(2)
i ≥ 0 for i = 1, . . . , 4 (4.122)

There are no requirements to the remaining entries of w(1) and w(2), which represent price
model parameters.

These considerations provide the following domain constraint function:

d(x) =



% − 0.1
10 − %
N − 0.95
σ(1) − 0.1
0.9 − σ(1)

σ(2) − 0.1
0.9 − σ(2)

dw,i − 0.01
dr,i − 0.01
dg,i − 0.01

w
(1)
1

...

w
(1)
4

w
(2)
1

...

w
(2)
4



(4.123)
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4.6 Final remarks

Implementing the proposed building optimization method requires numerical optimization
methods for estimating solutions to (3.8). An optimization method intended for this
purpose is described in Chapter 5.

The building optimization method can also be combined with detailed, time consuming
methods for calculating the performance measures, which are likely to use an excessive
amount of time. In this case, the optimization method described in Appendix A may be
relevant for estimating solutions to (3.8).
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Chapter 5

A gradient-free SQP filter algorithm

This chapter concerns a sequential quadratic programming (SQP) algorithm for solving
optimization problems in the form (2.4), for instance the optimization problem (3.8). The
algorithm is based on the sequential linear programming (SLP) filter algorithm described
by Fletcher [23], but with a number of modifications for addressing the requirements
described in Chapter 3.

5.1 Introduction

The first modification is that instead of restricting the step length using upper and lower
bounds on the parameters, also known as box constraints, a quadratic damping term is
added to the objective function. This implies that the trust region subproblems become
quadratic programs rather than linear programs, hence the name. The algorithm uses an
approach that combines a trust region methodology with a damped Newton approach.
Damped Newton algorithms include the one proposed by Levenberg [40] and later by
Marquardt [43].

The second modification is to ensure that the algorithm is able to handle domain con-
straints. The algorithm is not allowed to calculate the objective function, or the inequality
or equality constraint functions outside their domain. The algorithm calculates the do-
main constraint functions in all iterations, and if it encounters a point outside the domain,
it makes a step towards the domain, using an approach that is similar to the restoration
step made by Fletchers algorithm. The steps towards the domain are therefore referred
to as domain restoration steps.

The third modification is to make the algorithm gradient-free by approximating the first
partial derivatives of the objective function, and the inequality, equality and domain
constraint functions, using the Broyden rank one updating formula [12].

The following three algorithms are described in this chapter:

SLPF: A variant of Fletchers SLP filter algorithm, where the trust region radius is
updated in the same way as the next algorithm, and that is able to handle domain
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constraints.

SQPF: The SQP filter algorithm, which uses a quadratic damping term for restricting
the step length.

GFSQPF: A gradient-free version of the SQP filter algorithm, which uses Broyden
updated approximations of the first partial derivatives.

The only difference between SLPF and SQPF is that SLPF uses box constraints, where
SQPF uses a quadratic damping term. These two algorithms are compared in order to
determine how much the performance is influenced by using the quadratic damping term.

The only difference between SQPF and GFSQPF is that SQPF requires that the first par-
tial derivatives, or Jacobian matrices, for the functions defining the optimization problem,
are available to the algorithm, where GFSQPF approximates the Jacobians using finite
difference approximations in the first iteration, which are updated in subsequent iterations
using Broydens rank one formula. These two algorithms are compared in order to deter-
mine how much the performance is influenced by using Broyden updated approximations
rather than exact gradient information.

The SQPF algorithm has more in common with Fletchers algorithm than with “genuine”
SQP algorithms, such as the ones described by Conn et.al. [14], Chapter 15. This is
because the only purpose of the quadratic damping term is to restrict the step length. No
attempts are made to estimate second order derivatives of the Lagrange function of the
problem.

The details regarding the gradient-based algorithms SLPF and SQPF are described in
subsequent sections, and the algorithms are summarized in Section 5.7. The details
regarding the gradient-free algorithm GFSQPF are described in Section 5.8, and the
algorithm is summarized in Section 5.9. The numerical experiments are described in
Chapter 6.

5.2 The trust region subproblems

This section concerns the trust region subproblems used by the SLPF and SQPF algo-
rithms for estimating a step towards the solution to (2.4). It is assumed that the first
partial derivatives to f , cI , cE and d exist and are known to the algorithm. The assump-
tion that the derivatives are known is abandoned in later sections, however, the existence
of the derivatives is assumed throughout the thesis.

If the iterate xk belongs to the domain D, i.e. if d(xk) ≥ 0, then the function values
f(xk), cI(xk) and cE(xk), and also the first partial derivatives ∇f(xk), JcI(xk) and JcE (xk)
are available to the algorithm. Furthermore, the function value d(xk) and first partial
derivatives Jd(xk) are available in all iterations.
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These quantities are used for making the following Taylor approximations:

f(xk + ∆x) ' fk +∇f>k ∆x (5.1)

cI(xk + ∆x) ' cI,k + JcI ,k ∆x (5.2)

cE(xk + ∆x) ' cE,k + JcE ,k ∆x (5.3)

d(xk + ∆x) ' dk + Jd,k ∆x, (5.4)

Where the notation fk = f(xk) is used, and similarly for the other parameters.

In order to improve the iterate, the SLPF algorithm solves an LP subproblem, which is
formed by substituting the approximations (5.1) to (5.3) into (2.4), and augmenting the
resulting problem with upper bounds on the allowed step length:

LP(xk, ρk)



minimize ∇f>k ∆x
subject to cI,k + JcI ,k ∆x ≥ 0

dk + Jd,k ∆x ≥ 0
cE,k + JcE ,k ∆x = 0
‖∆x‖∞ ≤ ρk

with respect to ∆x ∈ Rn,

(5.5)

where the constant term in the objective function is omitted, since it does not influence
the solution. The box constraints ‖∆x‖∞ ≤ ρk can be translated into the following linear
constraints:

∆x ≥ −ρk and ∆x ≤ ρk (5.6)

Instead of restricting the step length with box constraints, they can be restricted by
adding a quadratic damping term to the objective function. This implies the following
QP subproblem:

QP(xk, µk)


minimize ∇f>k ∆x + 1

2
µk ∆x>∆x

subject to cI,k + JcI ,k ∆x ≥ 0
dk + Jd,k ∆x ≥ 0
cE,k + JcE ,k ∆x = 0

with respect to ∆x ∈ Rn,

(5.7)

where the constant term in the objective function again is omitted. This approach is used
by the SQPF and GFSQPF algorithms.

The damping parameter µk is calculated in the following way:

µk =
‖∇fk‖2

ρk

(5.8)

This ensures that ‖∆xk‖2 = ρk, if (5.7) is unconstrained.
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5.3 Regular restoration steps

The purpose of the regular restoration steps is to make a step towards the feasible region
when the LP or QP subproblem becomes incompatible. The approach used in this thesis
is to estimate a step that minimizes the largest constraint violation, including the domain
constraints, i.e. a step intended for the following problem:

minimize max {v(x)}
with respect to x ∈ D,

(5.9)

where

v(x) =


−cI(x)

cE(x)
−cE(x)
−d(x)

 (5.10)

In order to formulate LP or QP subproblems to (5.9), the following Taylor approximation
is used:

v(xk + ∆x) ' vk + Jv,k ∆x, (5.11)

where vk = v(xk) and Jv,k = Jv(xk). First we consider the LP subproblem.

Substituting (5.11) into (5.9) and augmenting the problem with box constraints gives the
following approximated problem:

minimize max {vk + Jv,k ∆x}
‖∆x‖∞ ≤ ρk

with respect to ∆x ∈ Rn,
(5.12)

By introducing the auxiliary parameter

∆x̂ = max{vk + Jv,k ∆x}, (5.13)

and using the relations

∆x̂ ≥ vk + Jv,k ∆x, (5.14)

then (5.12) can be rearranged as the following LP problem:

RRLP(xk, ρk)


minimize ∆x̂
subject to ∆x̂ ≥ vk + Jv,k ∆x

‖∆x‖∞ ≤ ρk

with respect to ∆x ∈ Rn and ∆x̂ ∈ R

(5.15)

Next we consider the QP subproblem. Instead of using box constraints, a quadratic
damping term is added to the objective function of the approximated problem:

minimize max {vk + Jv,k ∆x}+ 1
2
µk ∆x>∆x

with respect to ∆x ∈ Rn,
(5.16)
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Substituting (5.13) into (5.16) and using the relations (5.14) gives the following QP prob-
lem:

RRQP(xk, µk)


minimize ∆x̂ + 1

2
µk ∆x>∆x

subject to ∆x̂ ≥ vk + Jv,k ∆x
with respect to ∆x ∈ Rn and ∆x̂ ∈ R

(5.17)

Before solving (5.17), the damping parameter µk must be calculated. In the following,
an approach is described that seems to provide a step that is at most of length ρk. The
aim is to estimate a relation between µk and ρk, which is achieved by solving a simplified
version of (5.17).

The set of active constraints for (5.17) can be expressed as:

A = {i ∈ N : vi(xk) = max {v(xk)}} . (5.18)

The number of active constraints is denoted nA. The simplified version of (5.17) is formed
by only including the active constraints:

RRQPA(xk, µ)


minimize ∆x̂ + 1

2
µ ∆x>∆x

subject to ∆x̂ ≥ vA + Jv,A ∆x
with respect to ∆x ∈ Rn and ∆x̂ ∈ R

(5.19)

where vA ∈ RnA denotes the subset of vk consisting of active constraints, and where Jv,A
are the corresponding first partial derivatives.

Since vA only consists of active constraints, it can be expressed as:

vA = vmax uA (5.20)

where

vmax = max {vk} , (5.21)

and where

uA = [1, . . . , 1]> ∈ RnA . (5.22)

The Lagrange function for (5.19) is:

L(∆x̂, ∆x, λ) = ∆x̂ +
1

2
µ ∆x>∆x− (∆x̂ uA − Jv,A∆x− vA)> λ, (5.23)

where λ ∈ RnA are the Lagrange multipliers. The first order optimality conditions for
(5.19) are:

∇∆x̂L(∆x̂, ∆x, λ) = 0 (5.24)

∇∆xL(∆x̂, ∆x, λ) = 0 (5.25)

∇λL(∆x̂, ∆x, λ) = 0 (5.26)

λ ≥ 0, (5.27)
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where the first partial derivatives of L with respect to ∆x̂, ∆x and λ are given by:

∇∆x̂L(∆x̂, ∆x, λ) = 1− u>Aλ (5.28)

∇∆xL(∆x̂, ∆x, λ) = µ∆x− J>v,Aλ (5.29)

∇λL(∆x̂, ∆x, λ) = ∆x̂ uA − Jv,A ∆x− vA

= ∆x̂ uA − Jv,A ∆x− vmax uA. (5.30)

Assuming that the first order optimality conditions (5.24) to (5.27) for RRQPA(xk, 1) are
satisfied by the triple (∆x̂∗, ∆x∗, λ∗), that is:

1− u>Aλ∗ = 0 (5.31)

∆x∗ − J>v,Aλ∗ = 0 (5.32)

∆x̂∗ uA − Jv,A ∆x∗ − vmax uA = 0 (5.33)

λ∗ ≥ 0, (5.34)

then the following triple satisfies the first order optimality conditions for RRQPA(xk, µ):(
1

µ
∆x̂∗ +

(
1− 1

µ

)
vmax,

1

µ
∆x∗, λ∗

)
. (5.35)

This can be verified by inserting the triple (5.35) into the optimality conditions (5.24) to
(5.27):

∇∆x̂L = 1− u>Aλ∗ = 0 (5.36)

∇∆xL = µ
1

µ
∆x∗ − J>v,Aλ∗ = ∆x∗ − J>v,Aλ∗ = 0 (5.37)

∇λL =

(
1

µ
∆x̂∗ +

(
1− 1

µ

)
vmax

)
uA − Jv,A

1

µ
∆x∗ − vmax uA

=
1

µ
∆x̂∗uA + vmaxuA −

1

µ
vmaxuA − Jv,A

1

µ
∆x∗ − vmax uA

=
1

µ
(∆x̂∗uA − Jv,A ∆x∗ − vmaxuA) = 0 (5.38)

λ∗ ≥ 0, (5.39)

This means that the solution to RRQPA(xk, µ) can be expressed in terms of the solution
to RRQPA(xk, 1), since if ∆x∗ is a solution RRQPA(xk, 1), then ∆x∗/µ is a solution to
RRQPA(xk, µ).

The idea is to use this relation to calculate a value for the damping parameter that
provides a step length of ρk. The length of the step obtained by solving RRQPA(xk, µ) is
thus required to be equal to the trust region radius:∣∣∣∣∣∣∣∣ 1

µk

∆x∗
∣∣∣∣∣∣∣∣

2

= ρk, (5.40)
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which gives:

µk =
‖∆x∗‖2

ρk

. (5.41)

The damping parameter can thus be calculated using the following two steps:

1. Calculate ∆x∗ by solving RRQPA(xk, 1)

2. Calculate µk using (5.41).

5.3.1 An example

The example described in the following concerns an optimization problem with 4 inequal-
ity constraints and no equality or domain constraints.

Assume an iterate xk is found with

vk =


1
1
1
−1

 and Jv,k =


−2 5
−2 0

2 2
1 −2

 , (5.42)

i.e. the first three constraints are violated, and the last constraint is satisfied. The
maximum constraint violation is vmax = 1, and the set of active constraints isA = {1, 2, 3},
which gives:

vA =

 1
1
1

 and Jv,A =

 −2 5
−2 0

2 2

 . (5.43)

The solution to RRQPA(xk, 1) is

∆x∗ =

[
0.4
−0.8

]
, (5.44)

The damping parameter related to the trust region radius ρk = 1 is given by

µk =
‖∆x∗‖2

ρk

=
√

0.8 ' 0.8944 (5.45)

In Figure 5.1 are shown the simplified problem RRQPA(xk, µk), where inactive constraints
are ignored, and the original problem RRQP(xk, µk), where all constraints are included.
The trust region is represented by a dashed circle, and the regions where the constraints
ṽk(∆x) = vk + Jv,k∆x are active, are also shown.

When applying the damping parameter to RRQPA(xk, µk), it provides a step length of
ρk, as expected. However, solving RRQP(xk, µk) using this damping parameter does not
always provide a step length that is equal to ρk, since the solution to this problem in some
situations is influenced by the constraints that are ignored by RRQPA(xk, µk).
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This situation is illustrated in Figure 5.1 (right), where the solution to RRQP(xk, µk) is
influenced by ṽ4, which is ignored by RRQPA(xk, µk). In this case, the resulting step
length is less than ρk.

The described approach for calculating the damping parameter therefore seems to provide
a step length that is less than or equal to ρk, however, a formal proof for this statement
is not given. Instead, the step length is compared with ρk, and truncated if necessary.
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Figure 5.1: Left: The simplified problem RRQPA(xk, µk). The dashed circle represents
the trust region. Right: The original problem RRQP(xk, µk). The active constraints, and
the regions where they are active, are also shown.

5.4 Domain restoration steps

The purpose of the domain restoration steps is to make a step towards the domain when
an iterate xk /∈ D is found. The domain restoration problem is virtually identical to
the regular restoration problem (5.9), except that only domain constraints are used for
defining the problem:

minimize max {−d(x)}
with respect to x ∈ Rn,

(5.46)

The domain restoration subproblems can be derived using the same approach as when
deriving the regular restoration problems. This gives the following subproblems:

DRLP(xk, ρk)


minimize ∆x̂
subject to ∆x̂ ≥ −dk − Jd,k ∆x

‖∆x‖∞ ≤ ρk

with respect to ∆x ∈ Rn and ∆x̂ ∈ R

(5.47)
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and

DRQP(xk, µk)


minimize ∆x̂ + 1

2
µk∆x>∆x

subject to ∆x̂ ≥ −dk − Jd,k ∆x
with respect to ∆x ∈ Rn and ∆x̂ ∈ R

(5.48)

where ∆x̂ is an auxiliary parameter. The damping parameter µk can be calculated in
a similar way as with the regular restoration steps. First, the active functions must be
determined:

A = {i ∈ N : −di(xk) = max {−d(xk)}} (5.49)

The approximated QP becomes:

DRQPA(xk, µ)


minimize ∆x̂ + 1

2
µ ∆x>∆x

subject to ∆x̂ ≥ −dA − Jd,A ∆x
with respect to ∆x ∈ Rn and ∆x̂ ∈ R,

(5.50)

where, as before, dA denotes the subset of dk only consisting of active domain constraints,
and where Jd,A are the corresponding first partial derivatives.

Calculating the damping parameter for the domain restoration subproblem thus consists
of the following two steps:

1. Calculate ∆x∗ by solving DRQPA(xk, 1)

2. Calculate µk using (5.41).

5.5 The filter concept for nonlinear programming

The filter concept for nonlinear programming is introduced by Fletcher and Leyffer [22],
and a slightly different formulation is provided by Fletcher [23].

The aim for all constrained optimization algorithms is to satisfy the following, often
conflicting goals:

1. minimize the function value f(x), and

2. minimize the maximum constraint violation h(x) = max{0, max{−cI(x)}}.

The traditional approach is to form a penalty function based on both objectives, and only
to accept those iterates that reduce its function value. This approach involves a penalty
parameter, which must be updated for all iterations. Details regarding penalty functions
for constrained optimization are described by Conn et.al. [14], Chapters 14 and 15.

The filter concept provides a simpler acceptance criteria for the iterates generated by the
algorithm, which avoids using penalty functions. Instead, the aforementioned goals are
treated as a multi-criteria decision problem based on the pair (hk, fk), where hk = h(xk)
and fk = f(xk).
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The basic idea is to only accept those iterates xk that provide a pair (hk, fk) that is not
dominated, in the Pareto [52] sense of the word, by previous iterates. A pair (hi, fi) is
said to dominate another pair (hj, fj) if both hi ≤ hj and fi ≤ fj.

The filter is defined as a set of pairs {(hi, fi)}, i ∈ F , where no pair dominate any other.
An iterate xk is said to be acceptable for inclusion in the filter if its (hk, fk) pair is not
dominated by any other pair in the filter, i.e. if

hk ≤ hi ∨ fk ≤ fi for all i ∈ F (5.51)

In order to ensure convergence for filter algorithms, it is necessary to further increase the
requirements (5.51) by introducing a small envelope around the filter, where no iterates
are accepted. The criterion for accepting an iterate for inclusion thus become

hk ≤ βhi ∨ fk ≤ fi − γhk for all i ∈ F (5.52)

where 1 > β > γ > 0, with β ' 1 and γ ' 0 being user-provided parameters. An example
of a filter and its envelope is given in Figure 5.2. When an iterate xk is included in the
filter, entries that are dominated by xk are removed, in order to ensure that no filter
entries are dominated by any other.

h
i

f
i

Figure 5.2: A filter and its envelope. The squares represent the filter entries, and the
solid lines represent the envelope given by (5.52). The dashed lines represent the criterion
(5.51).

The SLP filter algorithm proposed by Fletcher [23] uses a slightly different approach for
determining if an iterate is to be included in the filter and used as the next iterate.

The algorithm distinguishes between two types of iterates. A so-called f-type iterate
satisfies the following requirements:

∆fk ≥ σ∆lk and ∆lk ≥ δ(hk)
2 (5.53)

where

∆fk = fk − fk+1 (5.54)

∆lk = −∇f>k ∆x, (5.55)
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and where σ ∈ [γ; 1] and δ > 0 are used-provided parameters. If the iterate is not an
f-type, then it is deemed to be an h-type iterate. In order for an iterate xk to be included
in the filter, it must be acceptable to the filter, and it must be an h-type iterate.

The following measure for the constraint violations is used:

h(x) = max{0, max{v(c)}} (5.56)

where v(x) is given by (5.10).

5.6 Various details

5.6.1 Updating the trust region radius

Usually ρk is updated from one iteration to the next in such a way that if there is a good
agreement between the functions that define the optimization problem (2.4), and the
linear approximations (5.1) to (5.4), then ρk is increased in order to enable the algorithm
to take larger steps. If there is a poor agreement, ρk is reduced in order to prevent steps
that do not improve the iterate xk.

As a measure for the agreement between the functions and the linear approximations, a
prediction factor, or gain factor rk ∈ R is used, which is defined as the ratio between
the actual and predicted increment, i.e. ρ ' 1 if there is a good agreement between the
functions and the approximations. The following definition for rk is used:

rk =
∆fk

∆lk
(5.57)

The definition of ∆f and ∆l depends on the objective function that the step is based on.
When the algorithms are improving the iterates by solving the trust region subproblems,
then the definitions (5.54) and (5.55) are used.

When performing regular restoration steps, the following definitions are used:

∆fk = h(xk)− h(xk + ∆xk) (5.58)

∆lk = h(xk)− vmax, (5.59)

where h is given by (5.56), and where vmax is given as part of the solution to (5.15).

When performing domain restoration steps, the following definitions are used:

∆fk = max{−d(xk)} −max{−d(xk + ∆xk)} (5.60)

∆lk = max{−d(xk)} − dmax, (5.61)

where dmax is given as part of the solution to (5.48).

In order to update ρk, the following strategy can be used:

ρk+1 =


5
3
ρk if rk > 0.75

1
3
ρk if rk < 0.25

ρk otherwise
(5.62)
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which is consistent with the approach suggested by Conn et.al. [14], Algorithm 6.1.1.
The practical experience gained by applying the SLPF and SQPF algorithms to the test
problems described in appendix C, indicate that the following strategy gives good results:

ρk+1 = ρkθ(rk) (5.63)

where

θ(rk) =
2

3
tanh

(
10

(
rk −

1

2

))
+ 1 (5.64)

The strategies (5.62) and (5.63) are shown in Figure 5.3. The strategy (5.63) for updating
ρk is similar in concept to the strategy described by Madsen et.al. [41], expression (2.21),
except that this expression is used for updating µk rather than ρk.

A detailed investigation of updating strategies for ρk is not conducted, but is a possible
topic for further research, since this choice seems to have a significant influence on the
performance of the algorithm.
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Figure 5.3: The strategies (5.62) (solid lines) and (5.63) (dashed line) for updating ρk.

There are other reasons for reducing ρk, for instance if a step is made that provides an
iterate that is not acceptable to the filter. In these situations, ρk is reduced in the following
way:

ρk+1 =
1

3
ρk, (5.65)

otherwise (5.63) is used.

5.6.2 Stopping criteria

The types of criteria considered for deciding when to terminate the algorithms are based
on the parameters and the objective function value. The user can specify upper limits
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on the relative errors for these parameters, so under ideal circumstances, the algorithms
should terminate when it suggests an iterate xk+1 with

‖xk+1 − x∗‖2 < ε1‖x∗‖2, (5.66)

or

fk+1 − f(x∗) < ε2f(x∗), (5.67)

where ε1 and ε2 are the tolerance levels provided by the user. Since x∗ is obviously not
known, it is replaced by the estimated solution xk. The situations x∗ = 0 and f(x∗) = 0
can be handled by correcting the terms ‖x∗‖2 and f(x∗) with a small number, say ε1 and
ε2, respectively. The stopping criteria thus become:

‖∆xk‖2 < ε1(‖xk‖2 + ε1) (5.68)

and

fk+1 − f(x∗) < ε2(f(x∗) + ε2), (5.69)

where the relation (2.6) is used. Furthermore, as a safeguard feature, it is recommended
to specify an upper limit on the number of iterations:

k ≥ kmax (5.70)

5.7 Summary of the gradient-based algorithms

The SLPF and SQPF algorithms require more or less the same steps, except that they
use different subproblems for improving the iterate and for performing restoration. Fur-
thermore, the SQPF algorithm requires some additional steps for calculating the damping
parameter.

The required steps are summarized in Algorithms 1 and 2, respectively. The algorithms
combine the subproblem steps with the restoration steps. Notice that the filter is only
used as acceptance criteria when the algorithms are not performing restoration, since the
restoration problems are unconstrained problems, where a downhill acceptance criteria is
used.

Steps 8 and 11 of Algorithm 1 are used for resetting the trust region radius to its initial
value whenever the algorithm enters or leaves the restoration phase.

Evaluating the functions f , cI , cE and d at x0 and xnew in steps 2, 3, 17 and 19, provides
function values as well as the first partial derivatives, which are used for defining the
subproblems, and for calculating h using the expression (5.56).

The iterate xnew calculated at step 16 is a suggested iterate, which is accepted or rejected
as the current iterate, depending on the tests performed in the following steps.

The damping parameter used by Algorithm 2, is calculated in steps 10 and 16. If the step
∆xk calculated by solving a compatible subproblem becomes larger than the trust region
radius, then it is truncated in step 18 of Algorithm 2.
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Details regarding the initialization and updating of the iteration counter k are omitted
for both algorithms.

Algorithm 1 Gradient-based SLP filter algorithm (SLPF)

1: given x0, ρ0, β, γ, σ, δ, ε1, ε2 and kmax

2: evaluate d at x0

3: if x0 ∈ D, then evaluate f , cI and cE at x0, end if
4: while not converged do
5: if xk ∈ D then
6: try to calculate ∆xk by solving LP(xk, ρk)
7: if subproblem is incompatible then
8: if last subproblem was compatible, then ρk ← ρ0, end if
9: calculate ∆xk by solving RRLP(xk, ρk)

10: else
11: if last iteration was incompatible, then ρk ← ρ0, end if
12: end if
13: else
14: calculate ∆xk by solving DRLP(xk, ρk)
15: end if
16: xnew ← xk + ∆xk

17: evaluate d at xnew

18: if xnew ∈ D then
19: evaluate f , cI and cE at xnew

20: if performing a restoration step then
21: calculate rk using (5.57), (5.58) and (5.59), and update ρk using (5.63)
22: if ∆fk > 0, then accept xnew as the current iterate, end if
23: else if xnew is acceptable to the filter then
24: calculate rk using (5.57), (5.54) and (5.55), and update ρk using (5.63)
25: if xnew is h-type iterate then
26: add (hnew, fnew) to the filter
27: accept xnew as the current iterate
28: end if
29: else
30: update ρk using (5.65)
31: end if
32: else
33: calculate rk using (5.57), (5.60) and (5.61), and update ρk using (5.63)
34: if ∆fk > 0, then accept xnew as the current iterate, end if
35: end if
36: end while
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Algorithm 2 Gradient-based SQP filter algorithm (SQPF)

1: given x0, ρ0, β, γ, σ, δ, ε1, ε2 and kmax

2: evaluate d at x0

3: if x0 ∈ D, then evaluate f , cI and cE at x0, end if
4: while not converged do
5: if xk ∈ D then
6: µk ← ‖∇fk‖2/ρk

7: try to calculate ∆xk by solving QP(xk, µk)
8: if subproblem is incompatible then
9: if last subproblem was compatible, then ρk ← ρ0, end if

10: calculate µk by solving RRQPA(xk, 1) and using (5.41)
11: calculate ∆xk by solving RRQP(xk, µk)
12: else
13: if last subproblem was incompatible, then ρk ← ρ0, end if
14: end if
15: else
16: calculate µk by solving DRQPA(xk, 1) and using (5.41)
17: calculate ∆xk by solving DRQP(xk, µk)
18: if ‖∆xk‖2 > ρk, then ∆xk ← ρk

‖∆xk‖2
∆xk, end if

19: end if
20: xnew ← xk + ∆xk

21: evaluate d at xnew

22: if xnew ∈ D then
23: evaluate f , cI and cE at xnew

24: if performing a restoration step then
25: calculate rk using (5.57), (5.58) and (5.59), and update ρk using (5.63)
26: if ∆fk > 0, then accept xnew as the current iterate, end if
27: else if xnew is acceptable to the filter then
28: calculate rk using (5.57), (5.54) and (5.55) and update ρk using (5.63)
29: if xnew is h-type iterate then
30: add (hnew, fnew) to the filter
31: accept xnew as the current iterate
32: end if
33: else
34: update ρk using (5.65)
35: end if
36: else
37: calculate rk using (5.57), (5.60) and (5.61), and update ρk using (5.63)
38: if ∆fk > 0, then accept xnew as the current iterate, end if
39: end if
40: end while
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5.8 Using approximated gradients

When gradients are not available to the described algorithms, finite difference approxi-
mates are used in the first iteration, which are updated in subsequent iterations using the
Broyden rank one formula [12].

The accuracy of Broyden approximations deteriorate as iterations progress, which under
certain circumstances prevents further progress, even if the current iterate is far from the
solution. The accuracy of the Broyden approximations can be restored to using finite
difference approximations. However, this approach is not investigated.

Let g : Rn → Rm denote a continuous and smooth vector-valued function. The first order
Taylor approximation to g at xk is:

g(xk + ∆xk) ' g(xk) + Jg(xk)∆xk (5.71)

It seems natural to expect that the approximation Bk+1 ' Jg(xk + ∆xk) must satisfy the
so-called secant condition:

Bk+1∆xk = gk+1 − gk, (5.72)

where gk = g(xk) and gk+1 = g(xk +∆xk). This expression contains m equations and m n
unknown parameters in Bk+1. In order to uniquely determine Bk+1, Broyden [12] propose
that, in addition to (5.72), to require that the properties of Bk+1 may not change in
directions that are orthogonal to ∆xk, when compared to the approximation Bk ' Jg(xk),
which is assumed to be known. These requirements are stated as

Bk+1∆x̂ = Bk∆x̂ for all ∆x̂ ⊥ ∆xk (5.73)

Broyden [12] shows that these requirements are satisfied by the following updating for-
mula:

Bk+1 = Bk +
1

∆x>k ∆xk

(gk+1 − gk −Bk∆xk) ∆x>k (5.74)

Dennis and Schnabel [17] show that the formula (5.74) updates Bk from iteration k to
k + 1, in such a way that the change to Bk is minimal in the Frobenius sense, that is:

Bk+1 = argmin ‖B −Bk‖F
subject to B ∆xk = gk+1 − gk

with respect to B ∈ Rm×n

(5.75)

where ‖ · ‖F is the Frobenius norm:

‖B‖F =

√√√√ m∑
i=1

n∑
j=1

B2
i,j (5.76)

Powell [57] shows that the sequence of Broyden updated approximations Bk, k = 0, 1, . . .
converges to Jf (x

∗), independent of the choice of B0, under the following conditions:
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1. The sequence of iterates x0, x1, . . . converge to x∗.

2. The last n steps, ∆xk−n+1, ∆xk−n+2, . . . , ∆xk, are linearly independent, for all k ≥ n,
where the steps are given by (2.6).

This result implies that the accuracy of the Broyden updated approximations may dete-
riorate if the steps calculated by the optimization algorithm are not linearly independent.
Methods for enabling the algorithms to calculate steps that are linearly independent are
not investigated, but this topic is suggested for further research in the field of building
optimization.

5.9 Summary of the gradient-free algorithm

The steps required by the gradient-free SQP filter algorithm are summarized in Algorithm
3. It is similar to Algorithm 2, except that it is extended with steps for initializing and
updating the Broyden updated approximations to the first partial derivatives.

The algorithm maintains the following Broyden approximations:

Bf,k ' ∇fk (5.77)

BcI ,k ' JcI ,k (5.78)

BcE ,k ' JcE ,k (5.79)

Bd,k ' Jd,k (5.80)

These approximations are initialized by calculating forward difference approximations to
the first partial derivatives of the functions f , cI , cE and d. The forward difference ap-
proximations for a vector-valued continuous and smooth function g : Rn → Rm calculated
at the point x are given by:

∂gi

∂xj

(x) ' 1

α
(gi(x + ejα)− gi(x)) for i = 1, . . . ,m and j = 1, . . . , n, (5.81)

where α is the size of the step length. The following value is used

α =
√

η max{xj, 1}sgn(xj), (5.82)

where η is a user-provided value, and where sgn is the (slightly modified) signum operator:

sgn(x) =

{
−1 for x < 0

1 for x ≥ 0
(5.83)

The expression (5.82) is similar to the value proposed by Dennis and Schnabel [17], Al-
gorithm A5.4.1.

The approximation Bd,k is initialized in step 2, and updated in step 22. The approxima-
tions Bf,k, BcI ,k and BcE ,k are initialized in step 3, if x0 ∈ D, otherwise they are initialized
in step 25 the first time an iterate xk ∈ D is found, and updated in the same step of the
algorithm in subsequent iterations.
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Algorithm 3 Gradient-free SQP filter algorithm (GFSQPF)

1: given x0, ρ0, β, γ, σ, δ, ε1, ε2, kmax and η
2: evaluate d at x0 and initialize Bd,k

3: if x0 ∈ D, then evaluate f , cI and cE at x0, initialize Bf,k, BcI ,k and BcE ,k, end if
4: while not converged do
5: if xk ∈ D then
6: µk ← ‖∇fk‖2/ρk

7: try to calculate ∆xk by solving QP(xk, µk)
8: if subproblem is incompatible then
9: if last subproblem was compatible, then ρk ← ρ0, end if

10: calculate µk by solving RRQPA(xk, 1) and using (5.41)
11: calculate ∆xk by solving RRQP(xk, µk)
12: else
13: if last subproblem was incompatible, then ρk ← ρ0, end if
14: end if
15: else
16: calculate µk by solving DRQPA(xk, 1) and using (5.41)
17: calculate ∆xk by solving DRQP(xk, µk)
18: if ‖∆xk‖2 > ρk, then ∆xk ← ρk

‖∆xk‖2
∆xk, end if

19: end if
20: xnew ← xk + ∆xk

21: evaluate d at xnew

22: update Bd,k

23: if xnew ∈ D then
24: evaluate f , cI and cE at xnew

25: initialize or update Bf,k, BcI ,k and BcE ,k

26: if performing a restoration step then
27: calculate rk using (5.57), (5.58) and (5.59), and update ρk using (5.63)
28: if ∆fk > 0, then accept xnew as the current iterate, end if
29: else if xnew is acceptable to the filter then
30: calculate rk using (5.57), (5.54) and (5.55), and update ρk using (5.63)
31: if xnew is h-type iterate then
32: add (hnew, fnew) to the filter
33: accept xnew as the current iterate
34: end if
35: else
36: update ρk using (5.65)
37: end if
38: else
39: calculate rk using (5.57), (5.60) and (5.61), and update ρk using (5.63)
40: if ∆fk > 0, then accept xnew as the current iterate, end if
41: end if
42: end while
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5.10 Final remarks

The aim of this chapter is to describe an algorithm that is able to solve optimization prob-
lems of the form (2.4), without requiring information about the first partial derivatives of
the functions that define the problem.

The result of this effort is the GFSQPF algorithm, which is based on the filter SLP algo-
rithm proposed by Fletcher [23]. The GFSQPF algorithm uses a quadratic damping term
instead of box constraints, it uses Broyden updated approximations to the first partial
derivatives, and it uses domain restoration steps in order to address domain constraints.

In order to investigate how much the performance is influenced by the quadratic damping
term, and the Broyden approximations, two additional algorithms are described: The
SLPF algorithm, which is a slightly modified version of Fletchers algorithm, and the SQPF
algorithm, which uses a quadratic damping term, but requires gradient information.

There are still a number of unresolved issues regarding the algorithms:

1. Intuitively, it seems reasonable that calculating the damping parameter µk using the
approach described in Section 5.3, provides a step that is at most ρk, but a formal
proof of this statement is not provided.

2. Convergence theorems for the algorithms are not provided.

3. It is possible that the numerical accuracy of the Broyden updated gradient approx-
imations deteriorate if the steps calculated by the algorithm are linearly dependent.
Methods for improving the Broyden approximations are not investigated.
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Chapter 6

Evaluating the building optimization
method

This chapter provides an evaluation of the building optimization method, conducted
through numerical experiments. First, the convergence properties of the gradient-free SQP
filter (GFSQPF) algorithm are investigated. Then, the building optimization method,
which involves the GFSQPF algorithm, is evaluated through case studies.

The building optimization method and the GFSQPF algorithm are implemented in Mat-
lab [44], and the numerical experiments are conducted on a WindowsTM PC with an AMD
AthlonTM 64 (2 GHz) processor.

6.1 The gradient-free SQP filter algorithm

The following aspects of the GFSQPF are investigated:

1. How much the performance is influenced by using a quadratic damping term instead
of box constraints.

2. How much the performance is influenced by using Broyden updated gradient ap-
proximations instead of exact gradient information.

3. To determine if the performance of the GFSQPF algorithm is comparable with the
gradient-based algorithm SLPF, which uses box constraints.

4. To determine if the domain restoration steps are useful for addressing domain con-
straints.

The example described in Section 6.1.1 is intended for investigating the performance of
the algorithms on a constrained optimization problem without domain constraints, and
is also intended for illustrating various aspects of the algorithms, such as the regular
restoration subproblems.



Evaluating the building optimization method

The example described in Section 6.1.2 is intended for investigating the performance of
the SQPF and GFSQPF algorithms on optimization problems with domain constraints.

Section 6.1.3 provides statistical results obtained by applying the algorithms to the test
problems described in Appendix C.

6.1.1 Example 1: A constrained optimization problem

The test problem TP2 described in Appendix C is used for illustrating the difference
between the SLPF and SQPF algorithms. The following starting points are considered:

x
(1)
S = [ 3.25,−1 ]>

x
(2)
S = [ 1.75,−1 ]>

x
(3)
S = [ 0.25,−1 ]> ,

(6.1)

which are shown together with TP2 in Figure 6.1.
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Figure 6.1: The test problem TP2.

The trust region subproblems

In Figure 6.2 are shown the subproblems LP(x
(1)
S , 1) and QP(x

(1)
S , 1). In this case, the

steps are solely determined by the trust region radius. The figure indicates that there is a
possibility that box constraint restrict the number of possible directions for the solution
to (5.5), since it is located in a corner of the trust region. This may cause the algorithm
to favor some directions more than others.

Furthermore, small changes in the gradient ∇f(x) may in some situations cause the
solution to (5.5) to change abruptly from one corner to another, which can result in an
oscillating behavior.
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In Figure 6.3 are shown the subproblems LP(x
(2)
S , 1) and QP(x

(2)
S , 1). In this case, the

steps are influenced by the approximations to the inequality constraints.

In Figure 6.4 are shown the subproblems LP(x
(3)
S , 1) and QP(x

(3)
S , 1). In this case, the LP

subproblem has no solution due to conflicts between the approximations to the inequality
constraints and the box constraints. The problem is therefore referred to as incompatible.
The purpose of the regular restoration steps described in Section 5.3 is to take a step
towards the feasible region in order to avoid compatibility problems.
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Figure 6.2: Left: The subproblem LP(x(1)
S , 1). Right: The subproblem QP(x(1)

S , 1). The
dashed lines indicate the trust regions. The “diamonds” indicate the solutions to the
subproblems.
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Figure 6.3: Left: The subproblem LP(x(2)
S , 1). Right: The subproblem QP(x(2)

S , 1).

The QP problem is still compatible; however, the calculated step is larger than the trust
region radius. In this situation, the step is simply truncated to the trust region radius.
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Figure 6.4: Left: The subproblem LP(x(3)
S , 1). Right: The subproblem QP(x(3)

S , 1). The
LP problem has no solution, whereas the QP problem has a solution outside the trust
region, which is truncated to the boundary of the trust region by the algorithm.

There still exist the possibility that there are conflicts between the approximations to the
constraint functions that render the QP subproblem incompatible. It is therefore still
necessary to include restoration steps in the algorithm.

Regular restoration subproblems

In Figure 6.5 is shown the regular restoration problem (5.9) for TP2, which is used for
estimating a direction towards the feasible region. Estimating one or more steps for this
problem forces the iterates towards the feasible region.
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Figure 6.5: The regular restoration problem (5.9) for TP2. The dashed line indicate the
boundary of the feasible region.
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Figure 6.6: Left: The regular restoration subproblem RRLP(x(3)
S , 1). Right: The regular

restoration subproblem RRQP(x(3)
S , 1).

In Figure 6.6 is shown the two types of regular restoration subproblems for the point x
(3)
S .

The RRQP problem is not necessary in this case, since there are no compatibility problems
for the QP subproblem, but is shown for comparison with the RRLP subproblem.

The figure again indicates that the box constraints cause the number of possible directions
that the algorithm can suggest to be limited, since the solution again is found in a corner
of the trust region.

Convergence properties for the gradient-based algorithms

In order to assess the convergence properties, the algorithms are initialized with the
values shown in Table 6.1. The algorithms are allowed to continue until rounding errors
are dominating the results. This is achieved by using ε1 = 0 and ε2 = 0, which disables
the stopping criteria for the relative changes in the iterate and the objective function
value.

Parameter Value
ρ0 0.01·(‖x̂‖∞ + 1)
β 0.98
γ 0.02
σ 0.04
δ 0.02
ε1 0
ε2 0
kmax 1000

Table 6.1: Parameters used for initializing the algorithms.
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The parameter x̂ is the mid-point of the region of interest, i.e. the mid-point of the
topmost plots shown in Figures 6.7, 6.8 and 6.9. The following values are used:

x̂ = [2.25,−0.50]> for x
(1)
S

x̂ = [1.125,−0.125]> for x
(2)
S and x

(3)
S

(6.2)

The Figures 6.7, 6.8 and 6.9 show the iterates generated by the SLPF and SQPF algo-
rithms, and the relative errors ‖ek‖2/‖x∗‖2 plotted against the iteration counter k.

The figures indicate that the SQPF algorithm has linear convergence. This is further
substantiated by the results presented in Table 6.2, where ‖ek+1‖/‖ek‖ is shown for the
three starting points.

The restricted step directions caused by the box constraints can be seen quite clearly from
Figures 6.7 and 6.9. The SLPF algorithm shows an oscillating behavior for the starting
points x

(2)
S and x

(3)
S , which is not observed for the SQPF algorithm. Notice that the SQPF

algorithm in this case does not require restoration steps.

k x
(1)
S x

(2)
S x

(3)
S

1 9.82454798e-1 9.89920942e-1 9.89564080e-1
2 9.70457221e-1 9.82828819e-1 9.82428323e-1
3 9.49959849e-1 9.69599756e-1 9.70202761e-1
4 9.14612422e-1 9.38387735e-1 9.48841317e-1
5 8.54224034e-1 9.19131069e-1 9.10211445e-1
6 7.69889831e-1 9.26042569e-1 8.35909090e-1
7 7.38133418e-1 9.24799782e-1 6.74971365e-1
8 4.54654175e-1 9.23548561e-1 2.20011405e-1
9 3.80158769e-1 9.22400834e-1 2.38074213e-1

10 3.77198994e-1 9.21357459e-1 3.83284389e-1
11 3.83497447e-1 9.20415837e-1 3.95211447e-1
12 3.85489519e-1 9.19571596e-1 3.95942728e-1
13 3.86099595e-1 9.18819042e-1 3.96162287e-1
14 3.86315788e-1 9.18151593e-1 3.96246128e-1
15 3.86396776e-1 9.17562173e-1 3.96278914e-1
16 3.86427709e-1 9.17043533e-1 3.96291839e-1
17 3.86439609e-1 9.16588516e-1 3.96296950e-1
18 3.86444200e-1 9.16190248e-1 3.96298975e-1
19 3.86445973e-1 9.15842268e-1 3.96299776e-1
20 3.86446658e-1 9.15538611e-1 3.96300094e-1

Table 6.2: The ratio ‖ek+1‖/‖ek‖ for k = 1, . . . , 20, for the three starting points, obtained
with the SQPF algorithm.

Convergence properties for the gradient-free algorithm

The GFSQPF is initialized using the values shown in Table 6.3, where the values for x̂ are
given by (6.2). The results obtained with the SQPF algorithm described in Section 6.1.1
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Figure 6.7: Top: The iterates xk, k = 1, . . . , 30 generated by the SLPF algorithm (left)
and the SQPF algorithm (right) when started from x

(1)
S . Bottom: The relative errors

‖ek‖/‖x∗‖ for the SLPF and SQPF algorithms.

are used for comparison.

In Figures 6.10, 6.11 and 6.12 are shown the iterates generated by the GFSQPF algorithm
for the three starting points, as well as the relative errors for both algorithms.

In Figures 6.10 are the results obtained for the starting point x(1) shown. The GFSQPF
algorithm seems to produce some steps of poor quality with regular intervals. The exact
reason for this phenomenon is not yet known, but a possible explanation is that the
accuracy of the Broyden approximations deteriorates due to linearly dependent steps.
This phenomenon is not observed for the SQPF algorithm.

When started from x
(2)
S , the performance of the GFSQPF algorithm is almost identical

to that of the SQPF algorithm, which can be seen from Figure 6.11. When started from
x

(3)
S , the GFSQPF algorithm performs better than the gradient-based algorithm, which

can be seen from Figure 6.12. This is, however, uncommon.
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Figure 6.8: Top: The iterates xk, k = 1, . . . , 100 generated by the SLPF algorithm (left)
and the SQPF algorithm (right) when started from x

(2)
S . Bottom: The relative errors

‖ek‖/‖x∗‖ for the SLPF and SQPF algorithms.

Parameter Value
ρ0 0.01·(‖x̂‖∞ + 1)
β 0.98
γ 0.02
σ 0.04
δ 0.02
ε1 0
ε2 0
kmax 1000
η 0.02

Table 6.3: Parameters used for initializing the GFSQPF algorithm.

The results shown so far indicate that the algorithms has a tendency to first seek towards
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Figure 6.9: Top: The iterates xk, k = 1, . . . , 30 generated by the SLPF algorithm (left)
and the SQPF algorithm (right) when started from x

(3)
S . Bottom: The relative errors

‖ek‖/‖x∗‖ for the SLPF and SQPF algorithms.

the nearest point on the boundary of the feasible region, and then converge to the solution
by making steps on, or close to, the boundary of the feasible region. This has implications
for the performance of the algorithms when applied to optimization problems with domain
constraints, which is investigated in the next section.

6.1.2 Example 2: Optimization problems with domain constraints

The test problems TP9 and TP11 are used for investigating the performance of the SQPF
and GFSQPF algorithms when applied to optimization problems with domain constraints.
In the following, results from test runs performed with x

(2)
S as starting point are described.

In Figure 6.13 is shown the iterates generates by the algorithms when started from x
(2)
S for

the test problem TP9. Neither the SQPF nor the GFSQPF algorithm seem to converge
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Figure 6.10: Left: The iterates xk, k = 1, . . . , 30 generated by the GFSQPF algorithm
when started from x

(1)
S . Right: The relative errors ‖ek‖/‖x∗‖ for the SQPF and GFSQPF

algorithms.
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Figure 6.11: Left: The iterates xk, k = 1, . . . , 100 generated by the GFSQPF algorithm
when started from x

(2)
S . Right: The relative errors ‖ek‖/‖x∗‖ for the SQPF and GFSQPF

algorithms.

to the solution.

As discussed in the previous section, the algorithm will often converge to the solution
by making steps on, or close to the boundary of the feasible region for the problem.
In this case, the boundary of the feasible region is in some regions established by a
domain constraint function. This means that the algorithm is very likely to end in a
situation where it alternates between domain restoration steps calculated by solving the
DRQP(xk, µk) problem (5.48), and steps calculated by solving the subproblem QP(xk, µk)
(5.7).
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Figure 6.12: Left: The iterates xk, k = 1, . . . , 30 generated by the GFSQPF algorithm
when started from x

(3)
S . Right: The relative errors ‖ek‖/‖x∗‖ for the SQPF and GFSQPF

algorithms.

This unfortunate tendency seems to slow down or prevent convergence in situations where
the boundary of the feasible region is established by one or more domain constraints. In
Figure 6.14 is shown the iterates generates by the algorithms when started from x

(2)
S for

the test problem TP11. The feasible region for this problem is almost entirely established
by the inequality constraints, but the problem has one active domain constraint.

The initial iterates seem to convergence faster, probably because the algorithm in this case
does not alternate between the two types of steps. After approximately 20 iterations, the
active domain constraint seems to cause the algorithms to alternate between the two types
of steps, which has a profound influence on the final convergence rate.

Exactly how to ensure convergence when the considered optimization problem has active
domain constraints, or when (parts of) the boundary of the feasible region is established
by the domain constraints, is yet unknown.

Developing a gradient-free barrier method for constrained optimization problems is a
possible topic for further research. Barrier methods are described by Conn et.al. [14],
Chapter 13.

6.1.3 Numerical experiments

This section concerns the numerical experiments performed on the test problems described
in Appendix C. The purpose of the experiments is:

1. to determine the benefit, if any, of using the quadratic damping term, and

2. to determine how much the performance of the algorithm is influenced by using
Broyden updated gradient approximations instead of exact gradients.
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Figure 6.13: Top: The iterates xk, k = 1, . . . , 100 generated by the SQPF algorithm
(left) and the GFSQPF algorithms (right) when started from x

(2)
S for the test problem

TP9. Bottom: The relative errors ‖ek‖/‖x∗‖ for the SQPF and GFSQPF algorithms.

The benefit of using the quadratic damping term is assessed by comparing the SLPF and
SQPF algorithms. The influence of using approximated gradients is assessed by comparing
the SQPF and GFSQPF algorithms. Finally, the SLPF and GFSQPF algorithms are
compared in order to assess the total influence on the performance caused by introducing
quadratic damping terms as well as Broyden updated gradient approximations.

The numerical experiments consist of starting the two algorithms that are compared from
30 different starting points for the 15 test problems, a total of 450 test runs for each pair
of algorithms. The algorithms are compared by observing the number of iterations needed
to provide a solution estimate with a relative error below a given tolerance level. It is
not possible to provide a solution estimate satisfying the tolerance level for all test runs;
therefore the number of successful test runs is also observed.
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The starting points are arranged on three concentric circles with x∗ as the centre, and
with diameters 1.75, 3.5 and 5.25, respectively. 5, 10 and 15 starting points are arranged
on the three circles. In Figure 6.15 is shown the test problem TP1, together with the 30
starting points.

The requirement for a successful test run is that it provides a solution estimate xk with
a relative error

‖ek‖2
‖x∗‖2

< ε, (6.3)

where

ε = 10−6 and k ≤ kmax. (6.4)
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Figure 6.15: Test problem TP1 and the 30 starting points used for conducting the nu-
merical experiments.

The algorithms are initialized using the values in Table 6.4, where

x̂ = [1.5, 0.5]> . (6.5)

Parameter Value
ρ0 0.01·(‖x̂‖∞ + 1)
β 0.98
γ 0.02
σ 0.04
δ 0.02
ε1 0
ε2 0
kmax 1000
η 0.02

Table 6.4: Parameters used for initializing the three algorithms.

The results of the experiments are provided in Tables 6.5, 6.6 and 6.7. Each row contains
results for one test problem. Columns 2 and 3 show the number of successful experiments
for the two algorithms that are compared. Column 4 shows the number of starting points
where both algorithms succeeded.

Columns 5 and 6 show the average number of iterations needed to provide a solution
estimate satisfying the tolerance (6.3). Only the starting points where both algorithms
succeeded contribute to the average.

Column 7 shows the improvement, i.e. the ratio between the required number of iterations
for the two algorithms.
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No. of successful tests No. of average iterations
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TP1 1 30 1 537.00 34.00 15.79
TP2 28 29 27 46.19 23.56 1.96
TP3 30 30 30 13.97 14.83 0.94
TP4 26 30 26 555.88 30.15 18.43
TP5 28 25 23 29.09 11.52 2.52
TP6 27 22 20 22.15 11.45 1.93
TP7 27 21 19 23.21 11.37 2.04
TP8 0 0 0 - - -
TP9 30 0 0 - - -
TP10 0 0 0 - - -
TP11 0 30 0 - - -
TP12 1 30 1 20.00 238.00 0.08
TP13 1 30 1 20.00 238.00 0.08
TP14 30 30 30 21.53 13.83 1.56
TP15 30 30 30 21.40 13.83 1.55

Total 259 337 208 93.93 18.82 4.99

Table 6.5: Results obtained by comparing the SLPF and SQPF algorithms.

The results presented in Table 6.5 indicate that using a quadratic damping term signifi-
cantly reduces the number of iterations needed for providing an acceptable solution. In
this case, the number of required iterations is almost five times less than when using box
constraints. Another advantage is that using a quadratic damping term seems to provide
a more stable algorithm, since it succeeded for 337 test runs (74%), whereas using box
constraints was successful for 259 test runs (57%).

The results presented in Table 6.6 indicate that when using Broyden updated gradient
approximations, the number of required iterations is increased with approximately 30%,
on average.

Finally, the results presented in Table 6.7 indicate that the GFSQPF algorithm does not
perform worse than the SLPF algorithm. In fact, in this case it requires less than half
the number of iterations required by the SLPF algorithm.

The GFSQPF algorithm also seems to be more numerically stable, since it succeeded for
376 test runs (83%), compared to 259 test runs (57%) for the SLPF algorithm.

6.2 Case studies

The performance of the building optimization method is evaluated by applying it to a
design decision problem regarding a 3 storey, 2000 m2 office building, with a main axis
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No. of successful tests No. of average iterations
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TP1 30 28 28 31.75 60.89 0.52
TP2 29 29 29 22.76 23.55 0.97
TP3 30 29 29 12.03 16.24 0.74
TP4 30 28 28 32.36 62.68 0.52
TP5 25 24 24 11.54 15.71 0.73
TP6 22 22 22 11.32 15.55 0.73
TP7 21 20 20 11.20 15.65 0.72
TP8 0 0 0 - - -
TP9 0 26 0 - - -
TP10 0 20 0 - - -
TP11 30 30 30 59.37 191.10 0.31
TP12 30 30 30 305.73 404.20 0.76
TP13 30 30 30 305.73 240.97 1.27
TP14 30 30 30 15.07 21.67 0.70
TP15 30 30 30 15.00 21.00 0.71

Total 337 376 330 74.49 97.01 0.77

Table 6.6: Results obtained by comparing the SQPF and GFSQPF algorithms.

oriented in the east-west direction. This means that the building has a north-facing and
a south-facing façade. The constant parameters needed for calculating the performance
of the building are provided in Appendix D.

Two test runs are described in the following, one run intended for finding a design with
minimum construction cost, and one run intended for finding a design with minimum
energy consumption.

The problem (3.8) is solved using the GFSQPF algorithm described in Chapter 5. The
algorithm is initialized using the parameters in Table 6.8 for all test runs, where x0 is the
initial design decisions.

The algorithm is allowed to make 300 performance calculations. Each performance cal-
culation takes on average 11.345 seconds, which means that the total time consumption
is limited to approximately 57 minutes.

6.2.1 Design decisions with minimum construction cost

The first case study concerns finding design decisions that provide the lowest construction
cost, but at the same time satisfy the Danish building regulations. This means that the
least restrictive energy frame EF3 must be satisfied (EF3 ≥ 0), the heat loss through the
building envelope must be below 6 W/m2 of the façade (BE ≥ 0), and the requirements
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No. of successful tests No. of average iterations
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TP1 1 28 1 537.00 34.00 15.79
TP2 28 29 27 46.19 23.81 1.94
TP3 30 29 29 14.03 16.24 0.86
TP4 26 28 24 572.67 65.08 8.80
TP5 28 24 22 25.36 15.64 1.62
TP6 27 22 20 22.15 15.65 1.42
TP7 27 20 18 23.56 15.78 1.49
TP8 0 0 0 - - -
TP9 30 26 26 209.23 130.31 1.61
TP10 0 20 0 - - -
TP11 0 30 0 - - -
TP12 1 30 1 20.00 522.00 0.04
TP13 1 30 1 20.00 22.00 0.91
TP14 30 30 30 21.53 21.67 0.99
TP15 30 30 30 21.40 21.00 1.02

Total 259 376 229 105.36 38.70 2.72

Table 6.7: Results obtained by comparing the SLPF and SQPF algorithms.

Parameter Value Description
ρ0 0.01 · (‖x0‖∞ + 1) Initial trust region radius
β 0.98 Parameter used for establishing the fil-

ter envelope
γ 0.02 Do.
σ 0.04 Parameter used for distinguishing be-

tween f- and h-type iterations
δ 0.02 Do.
ε1 0 Tolerance level for the decision vari-

ables
ε2 0 Tolerance level for the objective func-

tion value
kmax 300 Maximum allowed number of function

evaluations
η 10−6 Perturbation size used when calculat-

ing finite difference approximations

Table 6.8: Parameters used for initializing the GFSQPF algorithm.
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to the U-values of the components used in the building envelope must be satisfied. These
requirements are described in Section 4.1.5.

Furthermore, in order to ensure a satisfactory indoor thermal environment, the annual
number of hours where overheating occurs must be below 100 for both thermal zones
(OH(1) ≤ 100 and OH(2) ≤ 100). A satisfactory level of natural light is ensured by
requiring that the ratio between the depth of the room and the window height is below
4 for both zones (DH(1) ≤ 4 and DH(2) ≤ 4). The only requirement to the decision
variables is that the number of floors must be 3.

In Table 6.9 is shown the requirements to decision variables and performance measures.
The initial values used for initializing the GFSQPF algorithm, and the values returned
by the algorithm are also shown.

In order to reduce the cost of constructing the building, the algorithm suggests a more
compact design, with a width to length ratio of approximately 0.7. This has a number
of consequences. First of all, the area of the building envelope is reduced, which reduces
the construction cost. Secondly, it has a negative impact on the room depth to window
height ratio. Using a quadratic building is therefore not possible, since this will prevent
the requirements to the use of natural light to be fulfilled. This means that there is a
limit for how compact the building can be.

The algorithm furthermore suggests increasing the window areas as much as possible. It
uses the fact that the windows provided with the window database cost less per m2 than
the external wall construction. The parameters σ(1) and σ(2) are restricted by the domain
constraints. If the domain constraints were less strict, the algorithm may have suggested
even larger window areas.

Using the weight factors α
(i)
1 = 1 and α

(i)
2 = 0 means that the first window in the database

(the double-glazed window) is selected for façade i, where the weight factors α
(i)
1 = 0 and

α
(i)
2 = 1 means that the second window (the triple-glazed window) is selected.

Using the weight factors α
(i)
1 = 0.5 and α

(i)
2 = 0.5 means that average window properties

are used as input to the energy performance calculation method.

The weights returned by the optimization means that it suggests using the double-glazed
windows, which are the cheapest ones.

Notice that the initial design decisions do not satisfy the requirements, whereas the ones
returned by the algorithm do. The design decision found by the algorithm reduces the
construction cost of the building with 24%, but increases the energy consumption with
33%. Furthermore, the cost of operating the building is increased with 49%. In general,
optimizing one performance measure often has unwanted consequences on other perfor-
mance measures, which is also the case here.
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Decision Initial Optimum
variable Requirement value value
% 0.200 0.708
N = 3 3.000 3.000
σ(1) 0.400 0.900
σ(2) 0.400 0.900
dg,i (m) 0.200 0.206
dw,i (m) 0.200 0.064
dr,i (m) 0.200 0.201

α
(1)
1 0.500 1.000

α
(1)
2 0.500 0.000

α
(2)
1 0.500 1.000

α
(2)
2 0.500 0.000

Performance Initial Optimum
measure Requirement value value
Qtot (kWh) 136392.96 181874.94
EF3 (kWh) ≥ 0 74275.48 19513.54
EF2 (kWh) −25072.73 −75438.90
EF1 (kWh) −58488.80 −107389.71
BE (W) ≥ 0 −51.02 0.00
Ug (W/m2K) ≤ 0.30 0.18 0.18
Uwall (W/m2K) ≤ 0.40 0.17 0.40
Ur (W/m2K) ≤ 0.25 0.13 0.13

U
(1)
win (W/m2K) ≤ 2.30 1.59 1.82

U
(2)
win (W/m2K) ≤ 2.30 1.59 1.82

OH(1) (h) ≤ 100 40.78 52.47
OH(2) (h) ≤ 100 8.82 27.77
DH(1) ≤ 4 4.66 4.00
DH(2) ≤ 4 4.66 4.00
Ccon (DKR) minimize 9318393.71 7108482.47
Cop (DKR) 67243.00 100492.73

Table 6.9: The first column shows the decision variables and performance measures, and
the second column shows the requirements to these parameters. This particular decision
problem involves equality, inequality, as well as optimality requirements. The third column
shows the values used for initializing the GFSQPF algorithm, and the final column shows
the values returned by the algorithm.

6.2.2 Design decisions with minimum energy consumption

The second case study concerns finding design decisions that provide the lowest amount
of energy required annually. The building must satisfy the Danish building regulations,
as well as the same requirements regarding the indoor environment as in the first case
study.
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Decision Initial Optimum
variable Requirement value value
% 0.200 0.146
N = 3 3.000 3.000
σ(1) 0.400 0.396
σ(2) 0.400 0.396
dg,i (m) ≤ 0.5 0.200 0.500
dw,i (m) ≤ 0.5 0.200 0.143
dr,i (m) ≤ 0.5 0.200 0.500

α
(1)
1 0.500 0.000

α
(1)
2 0.500 1.000

α
(2)
1 0.500 0.000

α
(2)
2 0.500 1.000

Performance Initial Optimum
measure Requirement value value
Qtot (kWh) minimize 136392.96 138981.18
EF3 (kWh) ≥ 0 74275.48 71406.90
EF2 (kWh) −25072.73 −27808.51
EF1 (kWh) −58488.80 −61180.31
BE (W) ≥ 0 −51.02 3105.42
Ug (W/m2K) ≤ 0.30 0.18 0.07
Uwall (W/m2K) ≤ 0.40 0.17 0.22
Ur (W/m2K) ≤ 0.25 0.13 0.06

U
(1)
win (W/m2K) ≤ 2.30 1.59 1.36

U
(2)
win (W/m2K) ≤ 2.30 1.59 1.36

OH(1) (h) ≤ 100 40.78 44.98
OH(2) (h) ≤ 100 8.82 8.84
DH(1) ≤ 4 4.66 4.00
DH(2) ≤ 4 4.66 4.00
Ccon (DKR) ≤ 10000000.00 9318393.71 10000000.00
Cop (DKR) 67243.00 69577.85

Table 6.10: The table shows requirements to design variables and performance measures,
related to the problem of finding a design with minimum energy consumption. The third
and fourth columns show the initial and optimum values of design variables and perfor-
mance measures, respectively.

In order to ensure that the design decision problem has a finite solution, an upper limit
of 10 million DKR is imposed on the cost of constructing the building. Without such
a requirement, the algorithm will increase the amount of insulation indefinitely. The
amount of insulation is furthermore subjected to an upper limit of 0.5 m, which reduces
the chances that the algorithm suggests unwanted decisions even more.

In Table 6.10 are shown the requirements to decision variables and performance measures
related to this decision problem, as well as the initial values and the values returned by
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6.3 Final remarks

the GFSQPF algorithm.

In order to minimize the energy consumption, the algorithm suggests a design that is
less compact than the initial value, which may seem counter-intuitive. However, a more
compact design requires larger windows in order to satisfy the requirements to the use of
natural light, which leads to a higher energy consumption. Therefore, a balance is needed
between the compactness of the building and the window areas, and in this case, this
balance is provided by a building with a width to length ratio of approximately 0.15, and
a window fraction of approximately 0.4.

The algorithm suggests using the maximum allowed amount of insulation in the roof
construction and the ground slab, but not in the external walls, which also seems counter-
intuitive. This solution probably provides the maximum level of insulation within the
given budget.

Not surprisingly, the algorithm suggests using triple-glazed windows on both façades.

The design decision found by the algorithm satisfies all requirements, but the annual
amount of energy required by the building is increased with approximately 2%, when
compared with the initial design. However, the initial design is not feasible, and the
algorithm only searches for the solution within the set of feasible designs.

When compared with the design found in the first case study, the annual energy con-
sumption is reduced with approximately 23%, however, the construction cost is increased
with approximately 41%.

6.3 Final remarks

The results regarding the gradient-free SQP algorithm indicate that using a quadratic
damping term instead of box constraints improves the performance of the algorithm, when
compared with an algorithm using box constraints. The average number of iterations
needed for obtaining a solution estimate with a relative error less than 10−6 is more than
4 times less when using a damping term, for the considered test problems.

When using Broyden approximations, the number of iterations increases with approxi-
mately 30%, which means that the performance of the GFSQPF algorithm seems to be
at least as good as the SLPF algorithm. In fact, for the considered test problems, the
GFSQPF algorithm needed less than half the number of iterations than the SLPF algo-
rithm, in order to provide a satisfactory solution estimate. This observation is based on
the considered test problems, and is not necessarily true in general.

The algorithms do not seem to converge for test problems with active domain constraints,
especially if (parts of) the boundary of the feasible region is established by domain con-
straints. A possible solution is to handle domain constraints by using a barrier method-
ology.

The algorithms have so far only been tested on 2-dimensional optimization problems.
Testing them on more general problems, for instance the CUTE testing environment
proposed by Bongartz et.al. [10], is a possible topic for further research.

105



Evaluating the building optimization method

Two case studies are conducted, one aiming at finding the design with the smallest con-
struction cost, and the other aiming at finding the design with the smallest energy con-
sumption. The case studies illustrate how the requirements to the energy consumption of
buildings, described in the Danish building regulations, can be included in the formulation
of the building design decision problem.

The building is furthermore subjected to requirements to the indoor environment and the
economy. The algorithm is able to find designs that satisfy these requirements within an
acceptable time period (at most an hour in both cases).

It is found that a building with low construction costs is not very energy efficient, and vice
versa, as one might expect. Multi-criteria optimization methods can be used for conduct-
ing a more thorough investigation of the compromise that exists between performance
measures.
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Chapter 7

Conclusions

The purpose of this study has been to describe a method for optimizing the performance
of buildings, and to further improve the understanding of how numerical optimization
methods can be used for supporting decision-making, with special focus on design decisions
for buildings in the early stages of the design process.

The study is motivated by the fact that it is easier and less costly to change design
decisions in the early stages rather than later, and that changes made in early stages
have a larger impact on the building performance than changes made later. Furthermore,
the parties involved in decision-making for buildings often have different and to some
extent conflicting requirements to buildings. It is therefore important to develop methods
that focus on design decisions in the early stages, and that are flexible. This study
addresses these concerns by combining performance calculation methods for buildings
with numerical optimization methods.

Chapter 2 provides a literature survey of optimization-related topics that are relevant
for optimizing the performance of buildings, as well as a short survey of methods for
calculating the performance of buildings with respect to energy, economy and the indoor
environment. Furthermore, a survey of building optimization methods found in the litera-
ture is provided. This survey supports the idea that it is advantageous to develop flexible
building optimization methods that enable decision makers to optimize any aspect of the
building performance.

This issue is addressed in Chapter 3, where an optimization problem is formulated, in-
tended for representing a wide range of design decision problems for buildings. The
formulation allows the decision-maker to specify requirements to decision variables and
performance measures in a highly flexible way. The decision variables and performance
measures can be subjected to equality and inequality requirements, and the performance
measures can furthermore be subjected to optimality requirements.

Chapter 4 concerns the details of the proposed building optimization method. The method
suggests design decisions by optimizing the performance of a building with a simplified
geometry. The method supports design decisions regarding the shape of the building,
the window fraction of the façade areas, the window types and the amount of insulation
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used in the building envelope. The performance calculation methods are described, which
involve the energy performance, the economy, and quality of the indoor environment of
the building. It is furthermore described how requirements to the energy performance of
buildings made by the Danish building regulations can be included in the design decision
problem.

Chapter 5 describes a gradient-free SQP filter algorithm (GFSQPF), intended for solving
the formulated optimization problem. The algorithm is based on the SLP filter algorithm
by Fletcher, but it restricts the step length from one iteration to the next by using a
quadratic damping term. Furthermore, the first order partial derivatives of the functions
defining the optimization problem are approximated using the Broyden rank one updat-
ing formula. The approximations are initialized using finite differences. The algorithm
includes so-called domain constraints, which are used for ensuring that the optimization
algorithm only calculates the performance measures for design decisions that belong to
the domain of the performance measures.

Three algorithms are described, which are used for comparative studies. The first algo-
rithm (SLPF) is a variant of Fletchers algorithm that uses domain constraints, and that
updates the trust region radius in the same way as the other algorithms. The step length
is restricted by so-called box constraints. The second algorithm (SQPF) uses domain
constraints, as well as a quadratic damping term, and requires information regarding the
first partial derivatives of the functions that define the optimization problem. The third
algorithm is GFSQPF.

The building optimization method is evaluated in Chapter 6. First, numerical experiments
are conducted in order to investigate the potential benefits of using a quadratic damping
term instead of box constraints, and to investigate the convergence properties of the
GFSQPF algorithm. Secondly, the building optimization method, which involves the
GFSQPF algorithm, is applied to case studies concerning the design of an office building.

The results for the GFSQPF algorithm can be summarized as follows:

1. Restricting the step length using a quadratic damping term seems to provide faster
convergence and a more stable algorithm, when compared to an algorithm using
box constraints.

2. Using Broyden updated approximations to the first order partial derivatives seems
to provide slightly slower convergence, but more or less the same stability as an
algorithm using exact information regarding the partial derivatives.

3. When the optimization problem has active domain constraints, convergence seems
to be either deteriorated or prevented. Further research is needed for resolving this
issue.

The building optimization method is evaluated by applying it to case studies regarding
the design of an office building. The first case study concerns finding design decisions with
minimum construction costs. The building is required to satisfy the energy frame EF3,
the requirement regarding the heat loss through the building envelope and the U-value
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requirements for the components of the building envelope. Furthermore, the building
must satisfy requirements to the indoor environment, and to the use of natural light.

The second case study concerns finding design decisions with minimum energy consump-
tion. The building is required to satisfy the same requirements as in the first case study.
Furthermore, the cost of constructing the building is subjected to an upper limit of 10
million DKR, in order to ensure that the optimization problem has a finite solution. The
amount of insulation used in the building envelope is furthermore subjected to an upper
limit of 0.5 m.

Both case studies indicate that the method is able to find design decisions that satisfy
all requirements within an hour. The cost of constructing the building is 41% higher
for the energy-efficient design found in the second case study, compared with the cost
effective design found in the first case study. However, the annual energy consumption is
reduced with 23%. Multi-criteria optimization methods can be used for investigating the
compromise that exists between performance measures.

Some of the design decisions found by the building optimization method seem to be
counter-intuitive. This indicates that optimization in general is a useful approach for
finding optimum design decisions for complex systems, such as buildings, where it might
be difficult to find such decisions by relying only on engineering intuition.

7.1 Contributions provided by the study

The following contributions have been provided by the present study:

1. A literature survey of optimization-related topics that are relevant for developing
building optimization methods.

2. A formulation of an optimization problem that is useful for representing a wide
range of design decision problems for buildings.

3. A building optimization method, intended for suggesting design decisions in the
early stages of the design process for buildings.

4. A gradient-free SQP filter algorithm intended for solving the formulated optimiza-
tion problem.

5. An evaluation of the building optimization method through numerical experiments
for the filter SQP algorithm, and case studies for the building optimization method.

6. A space mapping interpolating surrogate algorithm, intended for solving optimiza-
tion problems with time-consuming or costly objective function evaluations.

7. A space mapping modeling technique, intended for improving the accuracy of sim-
plified models of physical systems.
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7.2 Unresolved issues and suggestions for further research

The following issues, among others, have not been resolved by the present study, but are
suggested as further research in the field of building optimization:

1. Only a single-criteria formulation of the building design decision problem has been
provided so far. A multi-criteria formulation will enable the decision-maker to in-
vestigate the trade-off between the different performance measures.

2. The present problem formulation does not include reliability analysis, which will
enable the building optimization method to include the probability of failure in the
problem formulation.

3. The present problem formulation furthermore does not include sensitivity analysis,
which is useful for investigating how decisions can be influenced by changes in con-
stant parameters such as prices, physical properties of the building components or
climate parameters.

4. The present problem formulation is intended for suggesting optimum design deci-
sions; however, there are other aspects of decision-making that are relevant. For
instance, the problem of finding relaxations to a set of requirements, if they render
the design decision problem infeasible.

5. The only discrete decision variables included so far concern the windows, however,
there are a number of other discrete decisions that are relevant. For instance, se-
lecting active solar shading devices, or selecting combinations of (renewable) energy
systems that provide the most desirable performance.

6. Using performance measures such as PMV and PPD, or the environmental impact,
has not yet been addressed. Including these performance measures will further
increase the usability of the building optimization method.

7. It is relevant to consider calculating the energy performance of buildings using the
BE06 software, since it implements the calculation methods required by the Danish
building regulations.

8. Further research is needed regarding the convergence properties of the GFSQPF
algorithm. Finding efficient updating strategies for the trust region radius ρk will
improve convergence, and finding methods for ensuring that the steps ∆xk made by
the algorithm are linearly independent will make the algorithm more stable. Fur-
thermore, the possibility for developing a gradient-free logarithmic barrier method
should be investigated.

9. The optimality conditions for the design decisions found in the case studies were
not investigated, which needs to be addressed. This will also be useful for providing
a more accurate estimate of the time needed by the building optimization method
for finding a satisfactory solution estimate.
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10. Programming specific details have not been addressed. For instance, developing a
computer-aided design (CAD) modeling environment will provide a simple and easy
to use graphical user interface to the building optimization method. A database
management system will be useful for managing the large amount of data required
for representing the design and performance of buildings.

11. The space mapping interpolating surrogate algorithm has so far only been applied
to minimax optimization problems. In order to include it in the building optimiza-
tion method, it is suggested to develop a space mapping interpolating surrogate
method for continuous, constrained optimization problems. This can for instance
be accomplished by applying the interpolating surrogate approach to the functions
that define continuous, constrained optimization problems, combined with a filter
approach as acceptance criteria for the iterates.
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Abstract—We justify and elaborate in detail on a powerful
new optimization algorithm that combines space mapping (SM)
with a novel output SM. In a handful of fine-model evaluations,
it delivers for the first time the accuracy expected from classical
direct optimization using sequential linear programming. Our new
method employs a space-mapping-based interpolating surrogate
(SMIS) framework that aims at locally matching the surrogate
with the fine model. Accuracy and convergence properties are
demonstrated using a seven-section capacitively loaded impedance
transformer. In comparing our algorithm with major minimax
optimization algorithms, the SMIS algorithm yields the same
minimax solution within an error of 10 �� as the Hald–Madsen
algorithm. A highly optimized six-section -plane waveguide
filter design emerges after only four HFSS electromagnetic sim-
ulations, excluding necessary Jacobian estimations, using our
algorithm with sparse frequency sweeps.

Index Terms—Computer-aided design (CAD) algorithms,
electromagnetics, filter design, interpolating surrogate, microwave
modeling, optimization, output space mapping (OSM), space
mapping (SM), surrogate modeling.

I. INTRODUCTION

E LECTROMAGNETIC (EM) simulators, long used by
engineers for design verification, need to be exploited in the

optimization process. However, the higher the fidelity (accuracy)
of the EM simulations, the more expensive direct optimization
becomes. For complex problems, EM direct optimization may
be prohibitive. Space mapping (SM) [1] aims to combine the
speed and maturity of circuit simulators with the accuracy
of EM solvers. The SM concept exploits “coarse” models
(usually computationally fast circuit-based models) to construct
a surrogate that is faster than the “fine” models (typically CPU-
intensive full-wave EM simulations) and at least as accurate
as the underlying “coarse” model [1]–[4]. The surrogate is
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iteratively updated by the SM approach to better approximate
the corresponding fine model.

From the mathematical motivation of SM [4], it was found
that SM-based surrogate models provide a good approximation
over a large region, whereas the first-order Taylor model is better
close to the optimal fine-model solution. Based on this finding
and an explanation of residual misalignment, Bandler et al..
[5] proposed the novel output space mapping (OSM) to further
correct residual misalignment close to the optimal fine-model
solution. OSM reduces the number of computationally expen-
sive fine-model evaluations, while improving accuracy of the
SM-based surrogate.

This paper elaborates on a new SM algorithm. Highly accu-
rate space-mapping interpolating surrogate (SMIS) models are
built for use in gradient-based optimization [6]. The SMIS is re-
quired to match both the responses and derivatives of the fine
model within a local region of interest. It employs an output
mapping to achieve this.

The SMIS framework is formulated in Section IV. An
algorithm based on it is outlined in Section V. Convergence
is compared with two classical minimax algorithms, and a
hybrid aggressive space-mapping (HASM) surrogate-based
optimization algorithm using a seven-section capacitively
loaded impedance transformer. Finally, the SMIS algorithm is
implemented on a six-section -plane waveguide filter [7].

II. DESIGN PROBLEM

A. Design Problem

The original design problem is

(1)

Here, is the fine-model response vector, e.g.,
at selected frequency points is the

number of response sample points, and the fine-model point is
denoted , where is the number of design parameters.

is a suitable objective function, and is
the optimal design.

III. OSM

OSM addresses residual misalignment between the optimal
coarse-model response and the true fine-model optimum re-
sponse . In the original SM [1], an exact match between

0018-9480/04$20.00 © 2004 IEEE
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Fig. 1. Error plots for a two-section capacitively loaded impedance
transformer [4] exhibiting the quasi-global effectiveness of SM (light grid)
versus a classical Taylor approximation (dark grid). See text.

the fine model and mapped coarse model is unlikely. For ex-
ample, a coarse model such as will never match the
fine model around its minimum with any mapping

. An “output” or response mapping can
overcome this deficiency by introducing a transformation of the
coarse-model response based on a Taylor approximation [8].

The results of Bakr et al. [4] indicate that “input” SM-based
surrogates are good approximations to the fine model over a
large region, which makes them useful in the early stages of an
optimization process. The residual misalignment between the
corresponding mapped coarse model(s) and the fine model ren-
ders an exact match between them unlikely. Consequently, con-
vergence to should not be expected.

Fig. 1 depicts model effectiveness plots [4] for a two-sec-
tion capacitively loaded impedance transformer at the final it-
erate , approximately . Centered at ,

the light grid shows . This
represents the deviation of the mapped coarse model (using the
Taylor approximation to the mapping, i.e., a
linearized mapping) from the fine model. The dark grid shows

. This is the deviation of the fine
model from its classical Taylor approximation .
The gradient of the two-section capacitively loaded impedance
transformer, used in the Taylor approximation, was obtained an-
alytically using the adjoint network method [9]. The light grid
surface passing over the dark grid surface near the center of
Fig. 1 verifies that the Taylor approximation is most accurate
close to , whereas the mapped coarse model is best over a
larger region. The reason that the Taylor approximation is best
in the vicinity of is that the Taylor approximation inter-
polates at the development point, whereas the mapped coarse
model does not.

Based on the above finding, Bakr et al. [10] use a surrogate
that is a convex combination of a mapped coarse model and a
first-order Taylor approximation of the fine model. Madsen and
Søndergaard [11] prove convergence of such HASM algorithms.

Fig. 2. Error plots for a two-section capacitively loaded impedance
transformer [4] exhibiting the quasi-global effectiveness of SM-based
interpolating surrogate, which exploits OSM (light grid) versus a classical
Taylor approximation (dark grid). See text.

In this paper, we introduce a novel method to ensure con-
vergence of the SM technique. OSM is incorporated into SMIS
to ensure that we obtain the same solution as classical direct
gradient-based optimization. Fig. 2 depicts model effectiveness
plots for the two-section capacitively loaded impedance trans-
former corresponding to Fig. 1. Centered at , the light grid
shows . This represents the de-
viation of the SMIS surrogate from the fine model. The dark
grid shows the deviation of the fine model from its classical
Taylor approximation as in Fig. 1. Thus, Fig. 2 demonstrates
that the SMIS surrogate, because of its interpolating properties,
performs better than the first-order Taylor approximation even
close to .

IV. SMIS FRAMEWORK

A. Surrogate

The SM-based interpolating surrogate is
defined as a transformation of a coarse model
through input and output mappings at each sampled re-
sponse. Fig. 3 illustrates the SMIS framework. Here,

, where ,
[1], [2] is an input mapping for the th coarse response ,
and [8] is an output mapping applied to the
coarse response. Using the function
with individually adjusted coarse responses, defined as

, where
, the surrogate can be expressed as

a composed mapping .
We wish to consider individual mappings of each coarse re-

sponse . These (nonlinear) mappings will be
approximated by a sequence of local linear mappings. The th
linearized input mapping at the th iteration is assumed to be of
the form

(2)
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Fig. 3. Illustration of the SMIS concept. The aim is to calibrate the mapped
coarse model (the surrogate) to match the fine model using different input and
output mappings for each sampled response.

where the matrix and vector . The th output
mapping is defined as

(3)

where are the th components of . is defined
as , where is a constant vector. Defining

similarly, the th component of the surrogate becomes

(4)

We now discuss how to determine the constants
defining the linear mappings

and . Assume we have reached the th iterate in the

iterative search for a solution. At , the surrogate must
agree with the fine response [12]

(5)

We also aim to align the surrogate with the fine-model re-
sponse at the previous points in the iteration, as well as aim to
have agreement between the Jacobians at the current point, i.e.,

(6)

where and are the Jacobians of the surrogate

and fine model at , respectively.
The constants are determined

in such a way that the alignment (5) holds and the requirements
in (6) are satisfied as well as possible (in some sense to be spec-
ified). The alignment (5) is satisfied by choosing and ap-
propriately. If we let , then (5) only depends on the
choice of .

Thus, the th surrogate of response number is

and (7)

where

(8)

In the first iteration, the mapping parameters
and are used, which

ensure that . For , the parameter
is utilized, which ensures (5).

In summary, the surrogate used in the th iteration is given by

(9)

In each iteration, the surrogate is optimized to find the next it-
erate by solving

(10)

B. Surface Fitting Approach for Parameter Extraction (PE)

PE is a crucial step in any SM algorithm. In this paper,
we employ a surface fitting approach for PE, which involves
the minimization of residuals between the surrogate and fine
models, and extracting the parameters , and

.
Assume has been found. We now wish to find the

th set of mapping parameters . Since
(5) is automatically satisfied by using (7), the aim is to ensure
the matching (6). Thus, for finding , we
aim to minimize the following set of residuals in some sense [6]:

... (11)

where and are the th columns of and , respec-
tively. The residual (11) is used during the PE optimization
process

(12)

which extracts the mapping parameters for the th response, and
for iteration . Hence, we have the complete set of mapping
parameters after PE optimizations.

V. PROPOSED SMIS ALGORITHM

Our proposed algorithm begins with the coarse model as the
initial surrogate. The algorithm incorporates explicit SM [1] and
OSM [5] to speed up the convergence to the optimal solution.

Step 1) Select a coarse and fine model.
Step 2) Set , and initialize .
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Fig. 4. Seven-section capacitively loaded impedance transformer: “Fine”
model.

Fig. 5. Seven-section capacitively loaded impedance transformer: “Coarse”
model.

TABLE I
FINE MODEL CAPACITANCES, AND THE CHARACTERISTIC IMPEDANCES FOR THE

SEVEN-SECTION CAPACITIVELY LOADED IMPEDANCE TRANSFORMER

Step 3) Optimize the surrogate (9) to find the next iterate
by solving (10).

Step 4) Evaluate .
Step 5) Terminate if the stopping criteria are satisfied.
Step 6) Update the input and output mapping parameters

through PE
by solving (12).

Step 7) Set , and go to Step 3.
As stopping criteria for the algorithm in Step 5, the relative
change in the solution vector, or the relative change in the ob-
jective function, could be employed.

VI. EXAMPLES

A. Seven-Section Capacitively Loaded
Impedance Transformer

We consider the benchmark synthetic example of a seven-sec-
tion capacitively loaded impedance transformer [4]. We apply
the proposed SMIS algorithm to that example. The objective
function is given by . We consider a
“coarse” model as an ideal seven-section transmission line (TL),
where the “fine” model is a capacitively loaded TL with capac-
itors pF. The fine and coarse models are shown
in Figs. 4 and 5, respectively. Design parameters are normalized
lengths with respect to the
quarter-wave length at the center frequency of 4.35 GHz.
Design specifications are

for 1 GHz GHz (13)

with 68 points per frequency sweep. The characteristic imped-
ances for the transformer are fixed as shown in Table I. The

Fig. 6. Seven-section capacitively loaded impedance transformer: optimal
coarse-model response �- -�, the optimal minimax fine-model response (—),
and the fine-model response at the initial solution or at the optimal coarse-model
solution ���.

TABLE II
OPTIMIZABLE PARAMETER VALUES OF THE SEVEN-SECTION

CAPACITIVELY LOADED IMPEDANCE TRANSFORMER

Fig. 7. Seven-section capacitively loaded impedance transformer: optimal
coarse-model response �- -�, the optimal minimax fine-model response (—),
and the fine-model response at the SMIS algorithm solution obtained after five
iterations (six fine-model evaluations) ���.

Jacobians of both the coarse and fine models were obtained
analytically using the adjoint network method [9]. We solve
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Fig. 8. (a) First 25 iterations of the difference between the fine-model
objective function � obtained using the SMIS algorithm ��� and the
fine-model objective function at the fine-model minimax solution � obtained
by the Hald–Madsen algorithm � �, the HASM surrogate optimization
algorithm using exact gradients ���, and the HASM surrogate optimization
algorithm using the Broyden update ���. (b) The corresponding difference
between the designs.

the PE problem using the Levenberg–Marquardt algorithm for
nonlinear least squares optimization available in the MATLAB

Optimization Toolbox.1

Optimizing the fine model directly using the gradient-based
minimax method of Madsen [13], and Hald and Madsen [14]
confirms that the problem has numerous local solutions. Starting
from the optimal coarse-model solution (the initial solution for
the SMIS method), the Hald–Madsen minimax algorithm needs
13 iterations, or 13 fine-model evaluations, to converge to the
fine-model minimax solution. Note that both the direct opti-
mization method of Hald and Madsen and the SMIS approach
employ exact gradients.

The fine-model response at the optimal coarse-model solu-
tion is shown in Fig. 6. Table II shows the lengths for solutions
obtained using the SMIS algorithm and the fine-model direct
minimax optimization solution [13], [14]. Our SMIS algorithm

1MATLAB, ver. 6.1, MathWorks Inc., Natick, MA, 2001.

Fig. 9. (a) Difference between the fine-model objective function � obtained
using the SMIS algorithm ��� and the fine-model objective function at the
fine-model minimax solution � obtained by the Hald–Madsen algorithm � �,
the HASM surrogate optimization algorithm using exact gradients ���, and
the HASM surrogate optimization algorithm using the Broyden update ���.
(b) The corresponding difference between the designs.

took six fine-model evaluations or five iterations to reach the
same accurate solution as the Hald–Madsen direct minimax op-
timization algorithm.

Fig. 7 shows the fine-model response at the SMIS algorithm
solution. The difference between the minimax objective func-
tion at the optimal minimax fine-model response and the re-
sponse obtained using the SMIS algorithm is shown in Figs. 8
and 9.

Corresponding results reached by the Hald–Madsen method
are shown in Figs. 8 and 9. In these figures, we show the
HASM surrogate exploiting exact gradients. The minimax
objective function and solution reached by the HASM surro-
gate optimization approach using the Broyden update [10] are
also shown. The four methods converged to the same highly
accurate solution.

The optimization methods used for solving (1) and a compar-
ison is shown in Table III. Using the adjoint technique, the SMIS
algorithm was able to obtain the same optimum solution as the
Hald–Madsen algorithm within an error of 10 after only five
iterations.
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TABLE III
OPTIMIZATION METHODS USED ON THE SEVEN-SECTION

CAPACITIVELY LOADED IMPEDANCE TRANSFORMER

Fig. 10. Six-section �-plane waveguide filter [7]. (a) Physical structure.
(b) Coarse model as implemented in MATLAB .

In contrast to SMIS, the standard minimax optimizer avail-
able in MATLAB was able to reach the same optimum direct op-
timization result in 14 iterations (153 fine-model evaluations),
while the Hald–Madsen algorithm reached the optimum fine-
model solution in 13 iterations (13 fine-model evaluations). The
HASM algorithm exploiting exact gradients took 25 iterations
(26 fine-model evaluations) to reach the optimum fine-model
solution to the same error of 10 .

The Hald–Madsen algorithm exploits sequential linear pro-
gramming (SLP) using trust regions, combined with a Newton
iteration. The MATLAB minimizer (fminimax) exploits a sequen-
tial quadratic programming (SQP) method with line searches.

B. Six-Section -Plane Waveguide Filter

The physical structure of the six-section -plane waveguide
filter is shown in Fig. 10(a) [7]. We simulate the fine model using
Agilent High Frequency Structure Simulator (HFSS).2 The de-
sign parameters are the lengths and widths, namely,

2Agilent HFSS, ver. 5.6, HP EESof, Agilent Technol., Santa Rosa, CA, 2000.

Fig. 11. �-plane filter optimal coarse-model response (—), and the HFSS
(fine-model) response: (a) at the initial solution ��� and (b) at the SMIS
algorithm solution reached after three iterations ���.

TABLE IV
OPTIMIZABLE PARAMETER VALUES OF THE SIX-SECTION

�-PLANE WAVEGUIDE FILTER

Design specifications are

for 5.4 GHz GHz

for GHz

for GHz

with 23 points per frequency sweep.
A waveguide with a cross section of 1.372 in 0.622 in

(3.485 cm 1.58 cm) is used. The six sections are separated by
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seven -plane septa, which have a finite thickness of 0.02 in
(0.508 mm). The coarse model consists of lumped inductances
and dispersive TL sections [see Fig. 10(b)]. There are various
approaches to calculate the equivalent inductive susceptance
of an -plane septum. We use a simplified version of a for-
mula due to Marcuvitz [15]. The coarse model is simulated
using MATLAB . The fine model exploits the Agilent HFSS sim-
ulator. One frequency sweep takes 2.5 min on an Intel Pentium 4
(3 GHz) machine with 1-GB RAM and running in Windows XP
Pro. Seven fine-model simulations, due to the seven 0.01-in per-
turbations, are required to find the fine-model Jacobian offline
using the finite-difference method. Thus, the time taken for fine
model and Jacobian calculation is 21 min/iteration on an Intel
P4 machine. Fig. 11(a) shows the fine-model response at the
initial solution. Fig. 11(b) shows the fine-model response after
running our SMIS algorithm using HFSS. The total time taken
was 126 min on an Intel P4 3-GHz machine. Table IV shows
the initial and optimal design parameter values of the six-sec-
tion -plane waveguide filter.

VII. CONCLUSION

We have presented a powerful algorithm based on a novel
SMIS framework that delivers the solution accuracy expected
from direct gradient-based optimization using SLP, yet con-
verges in a handful of iterations. It aims at matching a surrogate
(mapped coarse model) with the fine model within a local
region of interest by introducing more degrees of freedom into
the SM. Convergence is demonstrated through a seven-section
capacitively loaded impedance transformer. We compare the
SMIS algorithm with major direct minimax optimization al-
gorithms. It yields the same solution within an error of 10
as the Hald–Madsen algorithm. A highly optimized -plane
filter design emerges after only four EM simulations (three
iterations), excluding necessary Jacobian estimations, using the
new algorithm with sparse frequency sweeps.
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SUMMARY:
In order to efficiently implement thermally active building components in new buildings, it is necessary to 
evaluate the thermal interaction between them and other building components. Applying parameter 
investigation or numerical optimization methods to a differential-algebraic (DAE) model of a building 
provides a systematic way of estimating efficient building designs. However, using detailed numerical 
calculations of the components in the building is a time consuming process, which may become prohibitive 
if the DAE model is to be used for parameter variation or optimization. Unfortunately simplified models of 
the components do not always provide useful solutions, since they are not always able to reproduce the 
correct thermal behavior. The space mapping technique transforms a simplified, but computationally 
inexpensive model, in order to align it with a detailed model or measurements. This paper describes the 
principle of the space mapping technique, and introduces a simple space mapping technique. The technique 
is applied to a lumped parameter model of a thermo active component, which provides a model of the 
thermal performance of the component as a function of two design parameters. The technique significantly 
reduces the modeling error. 

1. Introduction 
Thermally active building components – or simply thermo active components – represent an attractive way 
of maintaining thermal comfort in office buildings as an alternative to fully air-conditioned buildings. In 
order to implement them efficiently in new buildings, it is necessary to evaluate the thermal interaction 
between them and other building components. 

This is often done by calculating the energy flows in the building with lumped parameter models, or RC 
models. Nielsen (2005) provides a method for this purpose based on RC models. Hagentoft (2001) provides 
a general introduction to lumped system analysis. RC models are differential-algebraic systems of 
equations (DAE), which can be solved numerically, in order to simulate the energy flows in the building 
over a period of time. Test reference year weather data can be applied to the external nodes in order to 
evaluate the interaction with the environment. 

Applying parameter investigation or optimization to a DAE model provides a systematic way of estimating 
efficient building designs. However, using detailed DAE models with a high number of nodes significantly 
increases the simulation time, which may become prohibitive if the calculations are to be used for 
parameter variation or optimization, since these processes require a potentially large number of re-
calculations of the DAE model. This means that it is necessary to reduce the number of nodes used for 
representing the building components to lower the calculation time. Such models can, however, easily 
become too simplified and therefore unable to reproduce the correct thermal behavior. In the literature a 
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large number of articles provide comparisons of detailed and simplified models, see for instance Weber and
Jóhannesson (2005), Davies et. al. (2001) and Schmidt (2004).

The field of microwave electronics has encountered similar modeling problems. Making reliable
calculations of microwave devices require solutions to the governing equations obtained with detailed finite
element methods. Parameter investigation or optimization thus becomes a very time consuming task. Using
lumped parameter models does not always give useful solutions, since they are not always able to
reproduce the correct response of the microwave devices.

These observations motivate the development of the space mapping technique, which aims at transforming 
a simplified, but computationally inexpensive model, in order to align it with a detailed model or
measurements. The purpose is to generate a surrogate model that can be used as replacement for the 
detailed model. The technique was first described by Bandler et. al. (1994), and since then many variations
have been developed, for the purpose of optimization as well as for modeling. An introduction to the
technique is given by Bakr et. al. (2001), and the contributions to the development of the technique are
reviewed by Bandler et. al. (2004a).

This paper describes the modeling aspects of the space mapping technique. A space mapping modeling
technique useful for enhancing the accuracy of simplified models is described. The technique is 
demonstrated on a thermo active component, where the aim is to model the thermal performance of the
component as a function of a set of design parameters.

2. Thermo active building components 
In recent years the so-called thermo active components, which are based on embedded pipes in the building
structure have been introduced (Meierhans (1993), Meierhans (1996), De Carli and Olesen (2002), Olesen
(2000)) as an alternative to mechanical cooling systems in office buildings. In this paper thermo active
components are defined as deck floors with embedded pipes in multi-storey buildings. An example of a
thermo active deck based on a pre-fabricated hollow deck is shown in Fig. 1. 

270mm

50mm

160mm

1200mm

FIG. 1:   Example of thermo active deck with integrated pipes and air cavities. The pipes in this figure are
placed 50mm above the lower (ceiling) surface of the deck and the deck has a total height of 270mm. 

The functionality and operational capabilities of the thermo active components is influenced by a long list 
of factors including

Geometry of the component.
Material properties.
Environmental parameters (boundary conditions in room and outdoor).
Operational parameters (control strategy and operation of fluid system).

The performance of the thermo active deck depends on the combination of these parameters.

3. Modeling the performance of thermo-active components 
When performing parameter investigation or optimization, it is often convenient to make mathematical
models of some quantifiable measure for the performance of the component, which ideally should be as
large or small as possible, e.g. the net heat flux or the difference between the desired and actual
temperatures. The performance of the component depends on design parameters, as well as control
parameters. The set of parameters investigated using parameter variation or optimization is referred to as 
model parameters.
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Some space mapping techniques also exploit a second set of parameters, e.g. physical constants or material
properties that the designer has little or no control over. These parameters are referred to as the preassigned
parameters.

The performance of the component also depends on how it is measured. For instance, measuring the
transient heat flux through a component gives time-dependent values. A vector-valued performance
measure can therefore be formed by sampling the heat flux a finite number of times within a given time 
interval. The vector-valued performance measure for the component depends on how it is sampled. The
parameter that is varied when sampling the performance is referred to as the sample parameter, e.g. time,
frequency or position.

The vector-valued performance measure can be reduced to a scalar value by applying a suitable merit; e.g.
a quadrature rule, which gives an estimate of the total heat flux in a specified time interval, when applied to
time sampled values of the heat flux.

The vector-valued performance measure of a component can thus be modeled as a function
, with the following arguments:ˆ: n n mf m

Model parameters .nx

Preassigned parameters .ˆˆ nx

Sample parameters , e.g. points in time, frequency points or positions.mt

The function value ˆ, ,f x x t  is referred to as the response vector.

The merit can be modeled as a function . The scalar performance measure of the component
can thus be modeled as a function , defined as the composed mapping

: mH
ˆ: n n mF F H f .

The main purpose of  is to model the performance of the component as a function of the model
parameters. When using the model for parameter investigation or optimization, it is necessary to calculate
them for a sequence

f

(1)x , (2)x ,  of model parameters. These calculations are performed with the same
values of x̂  and t . Whenever possible, the notation is therefore simplified by omitting the dependency on
constant parameters, so e.g. the notation f x  will be used for ˆ, ,f x x t . These concerns also apply to F .

4. The space mapping technique 
Providing reliable but computationally inexpensive mathematical models of a given system is a classical 
engineering challenge. Simplifying the physics of the system (e.g. disregarding some of the physical
properties of the system), or simplifying the numerical methods used for solving the governing equations
(e.g. coarsening the computational grid), provides computationally inexpensive models, but often at the
expense of the accuracy. However, by transforming such a model, it is often possible to align it, to some
degree of accuracy, with a more accurate model through a data fitting process. The space mapping
technique provides a systematic way of addressing this issue.

4.1 The principle of space mapping 
The space mapping technique requires the following two models of the same system to be supplied by the 
user:

A computationally expensive model, referred to as the fine model, which accurately models
the physical properties of the system. The fine model is represented by the mapping

 with the argument  (fine model parameters).: nf m

m

nx

A computationally inexpensive, and less accurate model, referred to as the coarse model. The
coarse model is represented by the mapping , with the arguments

 (coarse model parameters),

ˆ: n n mc
nz ˆˆ nz  (coarse model preassigned parameters) and

 (coarse model sample points).mq
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Also a merit must be specified, which is used for reducing the vector-valued models  and 
 to scalar values.

: mH

m

f
c

The space mapping technique generates a surrogate model , by shifting, scaling, and otherwise
transforming the coarse model, in order to align it with the fine model. The aim of the space mapping
surrogate is to accurately predict the response of the fine model within some region of interest .
The surrogate model is generated using one or more of the following approaches:

: ns

n

Transforming the model parameters.
Transforming the sample points.
Transforming the response of the coarse model.
Modifying a set of coarse model preassigned parameters.

The transformations are accomplished using mappings between the respective parameter spaces, hence the 
name space mapping. The space mapping surrogate is in the literature also referred to as the mapped coarse
model.

The purpose of Fig. 2 is to illustrate the general principle behind the space mapping techniques developed
over the years. All space mapping techniques use one or more of the approaches shown, but usually not all
of them.

x
t

z
q

ẑ

s(x)

f(x)

surrogate

c(z, ,q)ẑcoarse
model

output
mapping

input
mapping

fine
model

FIG. 2:   The approaches used by space mapping techniques to align the coarse model with the fine model.

Fig. 2 does not capture all details of all techniques. Some techniques use a space mapping surrogate only as 
part of a larger setup. For instance the hybrid space mapping optimization technique, described by Bakr et.
al. (2001), Bakr et. al. (2000), and by Madsen and  Søndergaard (2004), uses a linear combination of a 
space mapping surrogate and a linear model of the fine model as the actual surrogate. 

Most space mapping methods use the same input and output mappings for all sample points. It is also
possible to use different mappings for each sample point, which is utilized by the general space mapping
tableau approach by Bandler et. al. (2001), and by the space mapping interpolating surrogate method by
Bandler et. al.(2004b). 

In the field of microwave electronics, the response vector is usually obtained by sampling the performance
of a device for varying frequencies, i.e. frequency is used as sample parameter. For this reason, space
mapping techniques that employ mapping of the sample points are referred to as frequency space mapping
techniques.

4.2 A simple space mapping technique 
The proposed space mapping modeling technique uses linear input and output mappings, and only maps
model parameters and the response vector. The aim is to align the surrogate model with a set of user
provided fine model calculations , with ( ) ( )(1) (1){( , ), , ( , )}d dn nD x f x f ( ) ( )(i )if f x . The dataset
consists of dM n m  performance calculations of the fine model. The surrogate model used by the 

technique is the composed mapping s o c p , where the input mapping  is defined as : np n

, (1)p x B x d
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with  and . The output mapping  is defined asn nB nd : mo m

, (2)diago y a y b

where  is a diagonal matrix with the vector  on the diagonal, and where .
Substituting the definition of the surrogate with (1) and (2) gives

diag m ma ma mb

diags x a c B x d b

M

. (3)

The mapping parameters that needs to be estimated in order to align the surrogate model with the fine
model calculations are , ,  and b , a total of unknown parameters. These
parameters are estimated using the function , which is defined as the residuals between the
surrogate model and the fine model calculations in the set , as a function of the mapping parameters:

B d a 2 2N n n m
: Nr

D

 (4)

(1) (1)

( ) ( )

( )
, , ,

( )d dn n

s x f
r B d a b

s x f

The residual vector (4) can be reduced to a scalar value using one of the vector norms 11
m
i iy y  or

2
12

m
i iy y , which gives the scalar measure  for the size of the residual vector:: NR

, , , , , ,R B d a b r B d a b . (5)

The mapping parameters that give the smallest residual can thereby be estimated by solving the following
data fitting problem:

 (6)
minimize , , ,
with respect to , ,  and .

R B d a b

B d a b

The data fitting problem (6) can be solved using numerical optimization methods, such as the function
“lsqnonlin” that comes with Matlab® Optimization Toolbox (2004). The mapping parameters that solve (6)
are denoted , ,  and b , respectively.B d a

5. Numerical results
The proposed space mapping method is applied to a thermo-active component as shown in Fig. 1. The
purpose is to generate a space mapping surrogate that can be used for modeling the transient heat flux
through the component as a function of the height of the pipe above the ceiling surface, referred to as 1x ,
and the resistance of the floor covering, referred to as 2x .

5.1 The fine and coarse models 
The fine model uses the Finite Control Volume (FCV) method, which estimates a numerical solution to a
PDE. The domain is a two-dimensional model of the deck shown in Fig. 1, with a numerical mesh of 1200
nodal points. The cavities of the hollow deck are modeled as air with an equivalent thermal resistance. The
sides of the deck are adiabatic, and the pipes are included as hydronic pipes. The simulation is based on
typical physical material properties of concrete used in thermo active components. A detailed description of
the model can be found in Weitzmann (2004), based on e.g. Patankar (1980).

The coarse model is a lumped thermal network shown in Fig. 3. Two nodal points are used for the internal
conditions in the floor construction and one for each of the upper and lower surfaces. The internal nodal
points have a thermal capacity while it is set to zero for the surface nodal points. This means that
effectively there are only two nodal points, as the surface points are just algebraic relations, which can be
calculated by the known surrounding temperatures. Therefore only two ODEs need to be solved.
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FIG. 3: Lumped thermal network used as the coarse model.

Both models use the following boundary conditions:
The fluid in the pipe is given as a sinusoidal temperature variation with 24 hour period. The
average is 15°C and an amplitude of 3K. No temperature drop between supply and return is 
included.
A constant ambient temperature of 20°C is applied to the floor and ceiling surface of the 
thermo active component along with a combined constant radiant and convective boundary 
condition.

Both models sample the transient heat flux through the floor above the component and the ceiling below
the component. The heat flux is sampled a total of 48 times in the time interval from  to ,
and the sampled values are organized in a vector with 96 elements.

49ht 96ht

5.2 The data fitting problem 
In order to generate the space mapping surrogate, a set of fine model calculations is required. The fine
model is calculated in the 25 design points obtained by combining the following parameter values:

1

2
2

0.05, 0.075, 0.1, 0.125, 0.15 m

0, 0.1, 0.2, 0.3, 0.4 m K W

x

x
 (7)

For all these designs, the heat flux through the floor above the thermo-active component and through the
ceiling below is sampled in the specified time interval.
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FIG. 4: The output mapping parameters.

Since ,  and , the data fitting problem (6) consists of 2n 96m 25dn 2400M  equations and
 unknown mapping parameters, i.e. (6) is overdetermined, and overfitting of the surrogate does not

seem likely to occur. Solving (6) using the vector norm
198N

2
12

m
i iy y  gives the following input mapping

parameters (rounded to 6 decimals):
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 (8)

0 -

-1 -1

-1

-1

1.253477 10 -8.155003 10

-4.474478 10 8.027254 10

-3.647651 10

-1.949180 10

B

d

4

The output mapping parameters found by solving (6) are shown in Fig. 4.

5.3 Evaluation of the space mapping surrogate 
In Fig. 5 (left) are shown calculations of the heat flux performed with the fine, coarse and surrogate models
for design A, given by 2[0.1m 0.2m K W]x . The coarse model is significantly misaligned compared to 
the fine model, whereas the space mapping surrogate quite accurately predicts the fine model response. The
modeling error  for the surrogate model, calculated for all 25 designs is shown in Fig. 5
(right). The absolute value of all errors is below 1 W/m

e x f x s x
2 for all 25 designs.
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FIG. 5: Solid lines: calculations for the ceiling below the thermo-active component. Dashed lines:
calculations for the floor above the thermo-active component. : calculations with the fine model. :
calculations with the coarse model. : calculations with the space mapping surrogate model. Left: Heat
flux calculated for design A. Right: The error when calculating the heat flux with the surrogate model.

6. Conclusion 
The basic thermal and physical properties of thermo active components are described, and it is described
how the performance of thermo active components can be expressed as a function of model parameters,
preassigned parameters, and sample parameters.

The principle of the space mapping modeling technique is described, and a simple space mapping
technique using linear input and output mappings is described. The technique is applied to a lumped
parameter model of a thermo active component, where the aim is to model the thermal performance of the
component as a function of the height of the pipe above the ceiling surface and the resistance of the floor 
covering. The technique provides a space mapping surrogate model with a modeling error less than 1 W/m2

for all designs used in the data fitting problem.
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Appendix C

Test problems

This appendix concerns 15 problems used for testing the algorithms described in Chapter
5. The aim is to evaluate the performance of the algorithms on problems with a varying
number of active inequality, equality and domain constraints. The number of parameters
is n = 2 for all test problems.

All problems are defined such that they have the following solution:

x∗ = [2, 0]> (C.1)

The Rosenbrock function [59] is used as objective function for all test problems:

f1(x) = 100(x2 − x2
1)

2 + (1− x1)
2 (C.2)

The following functions are used as inequality, equality or domain constraint functions:

c1(x) = −1
2
x2

2 + x1 − 2x2 − 2
c2(x) = −1

2
x2

2 + x1 − 2
c3(x) = −x2

1 − x2
2 + 10x1 + 8x2 − 16

c4(x) = −x1x2 + 2x1 + x2 − 4
c5(x) = 1

α3

(
− 1

4
α2

1x
2
1 − 1

4
α2

2x
2
2 − 1

2
α1α2x1x2 . . .

+
(
α2

1 +
√

α3α2

)
x1 + α1

(
α2 −

√
α3

)
x2 − α2

1 − 2
√

α3α2

)
(C.3)

The parameters used for defining c5 are

α1 = 800
α2 = 3202
α3 = α2

1 + α2
2

(C.4)

The function c5 is defined in such a way that ∇c5(x
∗) = ∇f1(x

∗), which ensures that the
first order optimality conditions for the test problems TP1, TP4 and TP8 are satisfied by
x∗.

The test problems, denoted TP1 . . . TP15, are defined in Table C.1, and are illustrated in
Figures C.1 to C.8.



Test problems

Problem Domain
constraints

Equality
constraints

Inequality
constraints

TP1 - - c5

TP2 - - c1, c5

TP3 - - c1, c2, c5

TP4 - c5 -
TP5 - c3 c4

TP6 - c3 c1, c4

TP7 - c3 c1, c2, c4

TP8 c5 - -
TP9 c5 - c1

TP10 c5 - c1, c4

TP11 c5 - c1, c2, c4

TP12 c5 c3 -
TP13 c5 c3 c1

TP14 c5 c3 c1, c4

TP15 c5 c3 c1, c2, c4

Table C.1: The 15 test problems.
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Figure C.1: Left: TP1. Right: TP2.
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Figure C.2: Left: TP3. Right: TP4.
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Figure C.3: Left: TP5. Right: TP6.
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Figure C.4: Left: TP7. Right: TP8.

x
1

x 2

c
1
(x)=0

c
5
(x)=0

−2 0 2 4
−3

−2

−1

0

1

2

3

4

x
1

x 2

c
1
(x)=0

c
4
(x)=0

c
5
(x)=0

−2 0 2 4
−3

−2

−1

0

1

2

3

4

Figure C.5: Left: TP9. Right: TP10.
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Figure C.6: Left: TP11. Right: TP12.
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Figure C.7: Left: TP13. Right: TP14.
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Figure C.8: TP15.
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Appendix D

Constant parameters

Parameter Value Description
Ai 2000 m2 Internal floor area of the building
dint 0.10 m Thickness of internal wall
hext 3.00 m External height of floors
Ctot 4·107 J/K Total heat capacity of building contents1

Ψww 0.06 W/mK Linear thermal transmittance for the thermal in-
teraction between the windows and the external
walls

Ψfw 0.40 W/mK Linear thermal transmittance for the thermal in-
teraction between the foundation and the external
walls

%r 7870 kg/m3 Density of reinforcement rods
cw 4.32 · 105 J/m2K Specific effective heat capacity of constructions
∆Thl 32◦C Design temperature difference used for calculating

the heat loss through the building envelope

Table D.1: Constant parameters representing general properties of the simplified building.

1 Corresponds to 20 kg of furniture per m2 of internal floor area, with a specific heat capacity of
1 kJ/kgK.



Constant parameters

Parameter Value Description
Latitude 55.4◦N

}
Corresponds to Copenhagen, Denmark

Longitude 12.19◦E
Time meridian 15◦ Longitude for the local time zone
Albedo 0.2 Percentage of the solar energy that is reflected

from the surroundings
Weather data Danish design reference year2

Orientation 90◦ Orientation of the main axis of the building rela-
tive to due south

Table D.2: Constant parameters regarding the position, time zone and the surroundings
of the building.

Parameter Value Description
hf 0.90 m Height of the foundation
df 0.60 m Width of the foundation
nf,m 2 Number of reinforcement meshes
df,m 0.25 m Distance between rods in reinforcement mesh
df,r 0.025 m Diameter of reinforcement rods
τf 30 MPa Compressive strength of concrete

Table D.3: Constant parameters for the annular foundation.

Parameter Value Description
hroof 0.50 m Height of structural layer
dr,u 0.50 m Thickness of the uninsulated layer
λr,u 0.200 W/mK Thermal conductivity of the uninsulated layer
λr,i 0.039 W/mK Thermal conductivity of the insulated layer
nroof,m 2 Number of reinforcement meshes
droof,m 0.25 m Distance between rods in reinforcement mesh
droof,r 0.025 m Diameter of reinforcement rods
τroof 30 MPa Compressive strength of concrete

Table D.4: Constant parameters for the roof construction.

2Provided with the BuildingCalc program described by Nielsen [48].
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Parameter Value Description
dw,u 0.21 m Thickness of the uninsulated layer
λw,u 0.310 W/mK Thermal conductivity of the uninsulated layer
λw,i 0.039 W/mK Thermal conductivity of the insulated layer
nwall,m 2 Number of reinforcement meshes
dwall,m 0.25 m Distance between rods in reinforcement mesh
dwall,r 0.025 m Diameter of reinforcement rods
τwall 30 MPa Compressive strength of concrete

Table D.5: Constant parameters for the external walls.

Parameter Value Description
dg,u 0.189 m Thickness of the uninsulated layer
λg,u 0.454 W/mK Thermal conductivity of the uninsulated layer
λg,i 0.039 W/mK Thermal conductivity of the insulated layer
dcb 0.30 m Thickness of the capillary-breaking layer
dws 0.05 m Thickness of the wearing surface
τgs 30 MPa Compressive strength of concrete used for ground

slab
τws 30 MPa Compressive strength of concrete used for wearing

surface

Table D.6: Constant parameters for the ground slab.

Parameter Value Description
hdeck 0.50 m Height of concrete decks
ndeck,m 2 Number of reinforcement meshes
ddeck,m 0.25 m Distance between rods in reinforcement mesh
ddeck,r 0.025 m Diameter of reinforcement rods
τdeck 30 MPa Compressive strength of concrete

Table D.7: Constant parameters for the concrete decks.

Parameter Value Description
ηc 2.50 COP-value for the cooling system
εv 1000 J/m3 Specific fan power for the ventilation system
∆Tw 55◦C Temperature difference required for heating the

domestic hot water
DFavg 1% Average daylight factor
ϕ1 917 h Annual number of hours3 where 100 lux ≤ Iavg <

500 lux
ϕ2 1143 h Annual number of hours3 where Iavg < 100 lux

Table D.8: Constant parameters used for calculating the energy related performance
measures.
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Constant parameters

Parameter Value
Set point for the heating system 20◦C
Set point for the air conditioning system 26◦C
Minimum shading factor 0.2
Minimum amount of mechanical ventilation 0.5 h−1

Maximum amount of mechanical ventilation 0.5 h−1

Maximum amount of natural ventilation 0 h−1

Heat exchanger efficiency 90%
Check for bypass Yes
Internal load4 5 kW
Variable insulation Not used
Infiltration 0.1 h−1

Period where the settings are used Every weekday of the
year from 8am to 6pm

Table D.9: Settings for the HVAC systems when the building is occupied.

Parameter Value
Set point for the heating system 12◦C
Set point for the air conditioning system Not used
Minimum shading factor 0.2
Minimum amount of mechanical ventilation 0 h−1

Maximum amount of mechanical ventilation 0 h−1

Maximum amount of natural ventilation 0 h−1

Heat exchanger efficiency 90%
Check for bypass Yes
Internal load 0 W
Variable insulation Not used
Infiltration 0.1 h−1

Period where the settings are used When the settings in
Table D.9 are not used

Table D.10: Settings for the HVAC systems when the building is empty.

3 Only includes the hours where the building is used.
4 Corresponds to 50 people, each generating 100 W.
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Parameter Window 1 Window 2
No. of panes 2 3
Glazing category 1.803861 1.473416
Total U -value (W/m2K) 1.82 1.36
Total g-value 0.653 0.592
β1 2.830662e+3 5.009999e+3
β2 −3.389326e+0 −3.351915e+0
β3 2.514105e+2 4.217602e+2
β4 −6.173207e−2 −5.957476e−2
β5 9.670630e+2 1.780656e+3

Table D.11: Window database. The thermal transmittance, or U -value, includes the
interaction between the frame and the glazing unit. The solar transmittance, or g-value,
includes the effect of the window frame. The last five rows consist of price model parame-
ters for the construction jobs related to the windows. The construction jobs are given in
Table D.12. The parameters apply to the model (4.27).

Window Description Job no.
Window 1 Double-glazed window of type 4-15-4, with

air-filled gap
04.35.11,01-06

Window 2 Triple-glazed window of type 4-12-4-12-4,
with gas-filled gaps

04.35.13

Table D.12: Description of the windows in the database.

Parameter Value Description
Rint 0.13 W/mK Internal surface resistance
Rext 0.04 W/mK External surface resistance
%air 1.205 kg/m3 Density of air at 20◦C
cair 1005 J/kgK Specific heat capacity of air at 20◦C
%w 980.7 kg/m3 Density of water at 65◦C
cw 4183.28 J/kgK Specific heat capacity of water at 65◦C

Table D.13: Physical constants.

Parameter Value Description
Req 0.1 m2K/W Equivalent thermal resistance
wa 20% Fraction of solar energy absorbed by the air
ww 80% Fraction of solar energy absorbed by the in-

ternal surfaces

Table D.14: Various constants used when calculating the energy performance of the
building, using the thermal network shown in Figure 4.6.

149



Constant parameters

Parameter Value Description
Tmax 26◦C Maximum allowed internal air temperature
ε 10−3 Tolerance level used when calculating the number

of hours with overheating
pel 1.92 DKR/kWh Energy price for electricity5

pdh 0.57 DKR/kWh Energy price for district heating6

Table D.15: Various constants.

5 Danish electricity price (including VAT) for the 2nd quarter 2006, provided by the Danish Energy
Regulatory Authority [15].

6 The calculation of this price is based on the district heating energy price for 2006, for the Ishøj
district heating plant [58]. The energy price includes constant and variable prices, as well as VAT.
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Appendix E

Optimization related nomenclature

Symbol Description
f Objective function
c Constraint function
m Number of constraints
x Decision variables
n Number of decision variables
D Domain of f and c
x∗ Solution to an optimization problem
i, j Indices
I Index set referring to inequality constraints
cI Inequality constraints
nI Number of inequality constraints
E Index set referring to equality constraints
cE Equality constraints
nE Number of equality constraints
S Index set
cS Constraint functions referred to by S
nS Number of indices in S
PS Matrix used for calculating cS
d Domain constraint functions
nD Number of domain constraint functions
F Feasible region
∅ The empty set
k Iteration counter
xk Solution estimate (iterate) for the kth iteration
∆xk Increment to xk, also referred to as a step
x0 First iterate, or starting point
‖ · ‖ Unspecified vector norm
Rk Trust region for the kth iteration
ρk Trust region radius for the kth iteration



Optimization related nomenclature

Symbol Description
ek Error in xk

q Performance measures
nq Number of performance measures
AÎ , bÎ Matrix and vector used for specifying inequality requirements to decision

parameters
nÎ Number of inequality requirements to decision parameters
AÊ , bÊ Matrix and vector used for specifying equality requirements to decision

parameters
nÊ Number of equality requirements to decision parameters
aO Vector used for specifying optimality requirements to performance mea-

sures
AI , bI Matrix and vector used for specifying inequality requirements to per-

formance measures
nI Number of inequality requirements to performance measures
AE , bE Matrix and vector used for specifying equality requirements to perfor-

mance measures
nE Number of equality requirements to performance measures
∇f Gradient of f
JcI Jacobian matrix for the function cI
JcE Jacobian matrix for the function cE
Jd Jacobian matrix for the function d
µk Damping term for the kth iteration
v Vector used for minimizing the largest constraint violation
Jv Jacobian matrix for v
∆x̂ Auxiliary parameter
A Index set referring to the active constraints
vA Vector containing the active subset of v
L Lagrange function
λ Lagrange multipliers
h Measure for constraint violation
β, γ, σ, δ Constants
∆fk Decrease in objective function value in kth iteration
∆lk Decrease in linear model of objective function value in kth iteration
rk Gain factor for kth iteration
theta Function used for updating trust region radius
ε1, ε2 Tolerance levels used as stopping criteria
kmax Maximum allowed number of objective function evaluations
xnew Suggested iterate for next iteration
Bk Approximation to Jacobian matrix

x
(1)
S , x

(2)
S , x

(3)
S Starting points

x̂ Mid-point of the region of interest
ε Tolerance level
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Appendix F

Building related nomenclature

Symbol Description
% Width to length ratio of building
wext External width of building (m)
wint Internal width of building (m)
lext External length of building (m)
lint Internal length of building (m)
N Number of floors
σ(1), σ(2) Window fraction of the two façades

A
(1)
win, A

(2)
win Window areas for the two façades (m2)

nwin Number of windows in window database
α(1), α(2) Weight factors for the windows of the two façades
i, j, k Indices
dg,i Thickness of insulated layer of ground slab (m)
dw,i Thickness of insulated layer of external walls (m)
dr,i Thickness of insulated layer of roof construction (m)
nd Number of decision variables
Qtot Total amount of energy required by the building (kWh)
EF3 Energy frame calculation required by the Danish building regulations

(kWh)
EF2 Energy frame calculation for acquiring the low energy class 2 label

(kWh)
EF1 Energy frame calculation for acquiring the low energy class 1 label

(kWh)
BE Heat loss through building envelope, excluding windows and doors (W)
Ug Thermal transmittance for the ground slab (W/m2K)
Uwall Thermal transmittance for the external walls (W/m2K)
Ur Thermal transmittance for the roof construction (W/m2K)

U
(1)
win, U

(2)
win Thermal transmittance for the windows of the two façades (W/m2K)

OH(1), OH(2) Annual number of hours with overheating for the two thermal zones (h)



Building related nomenclature

Symbol Description

DH(1), DH(2) Ratio between the depth of the room and the window height for the two
thermal zones

Ccon Cost of construction the building (DKR)
Cop Annual cost of operating the building (DKR)
Atot Total heated floor area (m2)
Ae Area of the building envelope, excluding windows and doors (m2)
Q′

e Heat loss through building envelope, excluding windows and doors (W)
Text External air temperature (◦C)
Ta Internal air temperature (◦C)
Ts Internal surface temperature (◦C)
Tw Temperature of the thermal mass (◦C)
Kw Conductance between the thermal mass and the surface (W/K)
Ki Conductance between the surface and internal air (W/K)
UA Conductance between the internal and external environment through

façade (W/K)
Kr Conductance between the internal and external environment through

roof construction (W/K)
Kg Conductance between the internal and external environment through

ground slab (W/K)
Cw Effective heat capacity of thermal mass (J/kg K)
Ci Heat capacity of internal air and property contents (J/kg K)
Q′

s Energy absorbed by internal surfaces (W)
Q′

sun Transmitted solar energy (W)
Q′

l Internal loads (W)
Q′

h Energy provided by heating system (W)
Q′

c Energy removed by cooling system (W)
Q′

a Energy delivered to internal air (W)
ws Fraction of transmitted solar energy absorbed by internal surfaces
wa Fraction of transmitted solar energy absorbed by internal air
S Shading factor

ÛA Conductance between the internal and external environments (W/K)
bg Temperature factor
V ′ Mechanical ventilation rate (m3/s)
p Unit price for construction job (DKR)
β Price model parameters
u Number of purchased units
s Secondary parameter
nβ Number of price model parameters
p̂ji Unit price at jth row and ith column for a construction job (DKR)
nu Number of columns used for organizing unit prices in price catalogue
ns Number of rows used for organizing unit prices in price catalogue
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Symbol Description
∆pkl Difference between price model and catalogue price (DKR)
P Vector with unit prices for all required construction jobs (DKR)
njobs Number of construction jobs
dwall Thickness of external walls (m)
dint Thickness of internal wall (m)
dw,i Thickness of insulated layer of external walls (m)
dw,u Thickness of uninsulated layer of external walls (m)
Aint Internal heated floor area (m2)
B, C, D Auxiliary parameters
hext External floor height (m)

h
(1)
win, h

(2)
win Window heights for the two façades (m)

O
(1)
win, O

(2)
win Circumference of windows for the two façades (m)

A
(1)
wall, A

(2)
wall Areas of external walls for the two thermal zones (m2)

Aext External area of a single floor (m2)
Atot Total heated floor area (m2)

A
(1)
s , A

(2)
s Internal surface area for the two thermal zones (m2)

hint Internal floor height (m)
hdeck Height of concrete decks (m)
Vint Internal air volume (m3)
Oext External circumference of building (m)
w(1), w(2) Vectors with window properties for the two thermal zones
Ψww Linear thermal transmittance for thermal interaction between external

wall and windows (W/m K)
Ψfw Linear thermal transmittance for thermal interaction between external

wall and foundation (W/m K)
Rint Internal surface resistance (m2 K/W)
Rext External surface resistance (m2 K/W)
λw,u Thermal conductivity of uninsulated layer of external walls (W/m K)
λw,i Thermal conductivity of insulated layer of external walls (W/m K)

U
(1)
win, U

(2)
win Thermal transmittance of windows for the two thermal zones (W/m2 K)

dr,i Thickness of insulated layer of roof construction (m)
dr,u Thickness of uninsulated layer of roof construction (m)
λr,u Thermal conductivity of uninsulated layer of roof construction (W/m K)
λr,i Thermal conductivity of insulated layer of roof construction (W/m K)
dg,i Thickness of insulated layer of ground slab (m)
dg,u Thickness of uninsulated layer of ground slab (m)
λg,u Thermal conductivity of uninsulated layer of ground slab (W/m K)
λg,i Thermal conductivity of insulated layer of ground slab (W/m K)
Ci,tot Total thermal capacity of property contents (J/K)
%air Density of air (kg/m3)
cair Specific heat capacity of air (J/kg K)
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Building related nomenclature

Symbol Description
Ci Thermal capacity of property contents per floor (J/K)
df Width of foundation (m)
mf,r Weight of reinforcement rods used in foundation (kg)
nf,m Number of reinforcement meshes used in foundation
Af External area of foundation (m2)
hf Height (m)
df,r Diameter of reinforcement rods used in foundation (m)
df,m Separation of reinforcement rods in mesh used in foundation (m)
Vr,tot Volume of reinforcement rods used in foundation (m3)
Vf Volume of foundation (m3)
dcb Thickness of capillary-breaking layer (m)
τgs Compression strength of concrete used in ground slab (MPa)
Vws Volume of wearing surface (m3)
τws Compression strength of concrete used in wearing surface (MPa)
dws Thickness of wearing surface (m)
Awall,tot Total area of external walls (m2)
mwall,r Weight of reinforcement rods used in external walls (kg)
dwall,m Separation of reinforcement rods in mesh used in external walls (m)
nwall,m Number of reinforcement meshes used in external walls
dwall,r Diameter of reinforcement rods used in external walls (m)
τwall Compression strength of concrete used in external walls (MPa)
Vwall Volume of concrete wall (m3)
Adeck Total area of concrete decks (m2)
mdeck,r Weight of reinforcement rods used in concrete decks (kg)
ddeck,m Separation of reinforcement rods in mesh used in concrete decks (m)
ndeck,m Number of reinforcement meshes used in concrete decks
ddeck,r Diameter of reinforcement rods used in concrete decks (m)
τdeck Compression strength of concrete used in decks (MPa)
Vdeck Volume of concrete decks (m3)
mroof,r Weight of reinforcement rods used in roof construction (kg)
droof,m Separation of reinforcement rods in mesh used in roof construction (m)
nroof,m Number of reinforcement meshes used in roof construction
droof,r Diameter of reinforcement rods used in roof construction (m)
τroof Compression strength of concrete used in roof construction (MPa)
Vroof Volume of roof construction (m3)
hroof Height of concrete deck used in roof construction (m)
Qdh Annual amount of energy delivered from district heating system (kWh)
Qel Annual amount of electric energy delivered to the building (kWh)
Qh Annual amount of energy for heating the building (kWh)
Qw Annual amount of energy for producing domestic hot water (kWh)
Qc Annual amount of energy removed by the cooling system (kWh)
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Symbol Description
Qc,el Annual amount of electric energy for cooling the building (kWh)
Qv Annual amount of energy for ventilating the building (kWh)
Ql Annual amount of energy for artificial lighting (kWh)
∆t Sample interval (h)
ηc Coefficient of performance for the cooling system
Vw Volume of domestic hot water required annually (m3)
mw Mass of domestic hot water required annually (m3)
mw Mass of domestic hot water required annually (m3)
%w Density of water (kg/m3)
cw Specific heat capacity of water (J/kg K)
εv Specific fan power for the ventilation fan (J/m3)
Q′

v Power needed for ventilating the building (W)
Iavg Average internal illuminance (lux)
Ih Global illuminance (lux)
DFavg Average daylight factor
ϕ1 Annual number of hours where 100 lux ≤ Iavg < 500 lux
ϕ2 Annual number of hours where Iavg < 100 lux
Q′

e Heat loss through the building envelope, excluding windows and doors
(W)

Ae Area of the building envelope, excluding windows and doors (m2)
∆Thl Design temperature difference for building envelope (K)
Tmax Maximum allowed internal air temperature (◦C)
ε Tolerance level (K)
∆ti Contribution from time step i to the annual number of hours with over-

heating (h)

T̂a Interpolated internal air temperature (◦C)
∆t∗ Time where interpolated temperature is equal to Tmax (h)
pel Unit price for electric energy (DKR/kWh)
pdh Unit price for energy supplied by the district heating system

(DKR/kWh)
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