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Summary

The present report concerns calculation of the load carrying capacity of lateraly loaded
masonry walls with small or without axial loads.

The load carrying capacity will in both cases be calculated using the yield line theory,
developed by A. Ingersev and K. W. Johansen for concrete slabs.

In both load conditions, equations for the bending yield moments are established. The
moments are calculated from an upper bound solution, where it is assumed that failure
in most cases takes place in the interface between the mortar and the brick. The failure
is a diding failure, following Coulombs modified failure hypothesis. The tensile
strength of the interface is neglected through the entire report.

When using the yield line theory it is assumed that the rotation axes are placed at the
face, where the transverse load is applied as compression. This together with the as-
sumption of no tensile strength, lead to the result that the moment capacity in a horizon-
tal yield lineis zero.

In the case of laterally loaded masonry walls it has been observed in experiments that
initial cracking takes place in the bed joint before failure, indicating that the horizontal
yield line has no moment capacity at failure.

To justify the use of the yield line theory, the theory is compared with experiments.

The yield line theory in the case of axial loads has to be adjusted compared to the usual
theory by introducing the axial load in the external work. The externa work is due to
the expansion of masonry walls when they fail and is therefore negative, when the ex-
ternal load is compressive.

In the report examples are produced to illustrate the use of the theory both in the case of
no axial load and in cases with axial load.

The yield line theory is in both loading cases compared with experiments on full size
walls. The comparisons shows that the theory is in good agreement with reality. The
tests used are taken from the literature.
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Resumeé

Naavaaende rapport omhandler beregning af tvaabelastede murede vaagge med sma
eller ingen normalkredter.

Baaeevnen bestemmes i begge tilfadde ved at anvende brudlinieteorien for ortotrope
betonplader udviklet af A. Ingerslev og K. W. Johansen.

For begge belastningstilfadde er der opstillet udtryk til bestemmelse af momentkapaci-
teten. Momentkapaciteten er beregnet ud fra evrevaadilasninger, hvor det er antaget at
bruddet sker i skillefladen mellem sten og mertel. Bruddet antages at vaare et glidnings-
brud der falger Coulombs modificerede brudhypotese. Traekstyrken af skillefladen er sat
til nul igennem hele rapporten.

Ved anvendelse af brudlinieteorien antages at rotationsakserne er placeret ved den side
af vasggen, hvor tvaglasten paferes som tryk. Dette betyder, sammen med antagelsen
om at traskstyrken er nul, at horisontale brudlinier ikke har nogen momentkapacitet.

| det tilfadde hvor den murede vaeg aene er belastet med tvaglast, har det ved eksperi-
mentelle observationer vist sig, at begyndende revnedannelse finder sted i liggefladens
skilleflade far det egentlige brudliniemenster er udviklet. Dette indikerer, at momentka-
paciteten i den horisontale brudlinie er udtemt far brud, og at den derfor ikke skal med-
tages.

Brudlinieteorien er, i tilfaddet med sma normalkradter, udvidet sa normalkragfterne kan
medtages i det ydre arbejde. Murede vaggge udviser ved brud dilatation, hvorved en
tryknormalkraft giver et negativt ydre arbejde.

| rapporten er der udarbejdet eksempler, som viser brugen af teorien.

Der er ogsa foretaget en sammenligning med forsgg.

Forsggene er udfert pa veegge af fuld starrelse. Sammenligningerne viser, at begge be-
lastningstilfadde kan beregnes ved at anvende brudlinieteorien for ortotrope betonpla-
der. Forsggene er samlet fralitteraturen.
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Notations

The most commonly used symbols are listed below. Exceptions from the list may ap-
pear, and they will be explained in the text.

Geometry

XY,z Cartesian co-ordinate system

h Height

b Width

t Thickness

I Length

hyp Height of brick

lp Length of brick

o Width of brick

h Height of joint

X0 Length of aperiodic yield linein the x direction
Yo Length of a periodic yield linein they direction
o Initial displacement

u Displacement

a Angle of the displacement vector to the yield line
Oy, Oy Rotation angle about the x and y axis, respectively
) Rotation

Wy Oy Rotation about the x and y axis, respectively

0 Angle

Physics

o Stress

Ox, Oy Stresses in the x and y direction respectively

fc Compressive strength

feo Compressive strength of the brick

- Vii -
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fcm

fci

w/c

Compressive strength of the mortar

Formal compressive strength of the interface

Tensile strength

Tensile strength of the brick

Tenslle strength of the mortar

Shear stress

Shear stressin the x, y co-ordinate system

Cohesion

Friction coefficient

ratio between the bending yield moments

Friction angle

Factor

Factor dependent on the friction angle

Bending moment per unit length in a section perpendicular to the X
and y direction, respectively

Sectiona bending moment per unit length

Yield moment per unit length in the x and y direction, respectively
Moment per unit length at an angle of 6 to the bed joint

Axial loads per unit areain the x and y direction, respectively
Load carrying capacity by upper bound method

Tensile strength by an upper bound solution in the x and y direction.
respectively

Dissipation

Dissipation per unit length

Internal work

External work

Initial rate of absorption

Specific weight

Water/lime ratio

Water/cement ratio

- Viii -
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1 Introduction

The present report concerns calculations of the load carrying capacity of laterally loaded
masonry walls with small or without axia load.

The load carrying capacity of walls with small axia loads or without axial loads is cal-
culated using the yield line theory developed for reinforced concrete slabs by A. Inger-
dev and K. W. Johansen. For a general description the reader is referred to [2] and [7].
The walls considered are assumed to behave according to the theory of rigid plastic ma-
terials, which means that prior to failure the wall is without deformations.

Numerous investigations have been carried out in connection with lateraly loaded ma-
sonry walls. Only few have included the effect of small axia loads. In the literature dif-
ferent calculation methods have been used when estimating the load carrying capacity
of masonry walls. In the literature the yield line theory has achieved a general accep-
tance as the method to be used when calculating the load carrying capacity, see [14],
[27],[29], [31], [33], [37] and [39], which are only afew of the investigations where the
yield line theory is preferred as the cal culation method.

Using the yield line theory for orthotropic concrete slabs ([5]) and simple methods for
calculating the bending yield moments, a theory for unreinforced masonry walls will be
developed. The bending yield moments will be determined by considering failure in the
interface between the bricks and the mortar. The interface is often the weak part of ma-
sonry and its strength is influenced by alarge number of factors. The interface between
brick and mortar is believed to be a crystalline structure growing from the mortar into
the rough surface of the brick making an interlock. The strength of the interface is be-
lieved to be the strength of the interlock. A thorough description of the properties may
be found in [44] and [45].

Failure in the interface will be assumed to be governed by a dsliding failure condition
similar to the modified Coulomb failure hypothesis, see Figure 1.1.
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Figure 1.1 Modified Coulomb failure hypothesis
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In the calculations the tensile strength of the interface will be neglected. This is done
because the tensile strength will be encumbered by great uncertainties and many factors
influence its value. Only a few are mentioned here: Micro-cracking due to shrinkage,
crack growth due to small variationsin loading and workmanship.

In this report the theory of plasticity especialy the upper bound theorem is used in all
calculations. An upper bound solution is produced by considering a geometrical possi-
ble yield line pattern. Using the work equation to calculate the load carrying capacity a
value higher than or equal to the actual load carrying capacity is achieved.

The bending yield moments will be calculated by the work equation as an upper bound
solution. Fixed yield line patterns are assumed when calculating the tensile strength
obtained from dliding in the interface. The strain state in the interface is assumed to be
plane, because the thickness of the interface is small compared with the length and
width (equal to the length and width of the brick) and therefore the strains perpendicular
to the bed joint can be neglected.

Using the plastic theory for Coulomb materials, the dissipation per unit length may in
the case of plane stress as well of plane strain for f; = O be calculated according to (1.1).

w :% f bu(1-sina ) (11)

where « is the angle between the displacement vector, with length u, and the yield line.
In plane strain « is bound to the interval ¢ <a <z —¢ . Thus the angle B shown in

Figure 1.2 is bound to the interval ¢ <8 <% —¢ , because the yield lines considered are

stair formed, as shown in Figure 1.2.
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The dissipation formula is achieved by considering v. Mises assumption of maximum
work at failure and Coulomb failure hypothesis.

Regarding a genera description of Coulomb materials the reader is referred to [10] or
[7], where also a complete description of the theory of plasticity may be found.

Sectional forces will be referred to a coordinate system as shown in Figure 1.3. The x-
axiswill be paralld to the bed joints and the y-axis perpendicular to the x-axis.

The sign convention for bending moments per unit length m, and m, is also shown in the
figure. Bending moments are positive when they give tensile stresses in the bottom face,
which for a vertical wall must be defined beforehand. For awall ssmply supported on all
four sides the bottom face is opposite to the surface where the lateral load is applied as
pressure.

The normal forces per unit length ny and ny are positive as compression. In Figure 1.3
the rotations wy and wy are defined.

y n,
T R
A N\
w ¥ n,
% -—
rrl( X
- \?)\\ oy

Figure 1.3 Definition of co-ordinate system, bending moments and axial loads
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Furthermore, it isin most cases assumed that the bricks are laid in running bond, where
the bricks overlap with half of their total length. Thisisalso illustrated in Figure 1.3.

In appendix 3 a survey of some standard bonds is shown together with the maximum
inclination of ayield line only running in the interface. Regarding a general description
of bonds and workmanship the reader isreferred to [11].
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2 Laterally loaded walls

2.1 Moment capacities for laterally loaded walls

2.1.1 Introduction

Masonry walls are orthotropic because the bending yield moment about the bed joint is
different from the bending yield moment about the head joint.

The genera failure pattern of a masonry wall, ssmply supported on four sides, consists
of stair-formed diagonal yield lines, together with horizontal yield lines as illustrated in
Figure 2.1.

' (Diagonal yield lines >
—

o
I

Horizontal yield lines )|

[

] [ 4 | |
N[ 1 |

I \\ﬂalweldlmes

7

Figure2.1Yield linesin a simply supported transver sely loaded masonry wall

In the horizonta yield line the bending moment capacity is set to zero in agreement with
the assumption that the tensile strength of the interface is set equal to zero. That the
bending moment capacity must be set to zero is supported by the fact that numerous
investigators have reported initial cracking in the bed joint during loading, even long
before the failure load is reached. The reason is that the bed joint has a substantially
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lower ductility than the diagonal yield lines. This has clearly been demonstrated by Ca-
jdert in [27] and Feilberg in [37]. In section 6.2 the deformations of masonry walls are
analysed. It turns out that the rotation capacity about the bed joint is about two times
smaller than the rotation capacity about the head joint. The ductility of the bed joint
may be improved if there are compressive normal forces in the joints. In this chapter
compressive normal forces are not taken into account. Normal forces are introduced in
Chapter 3.

In the diagonal yield lines sliding will occur in the head and bed joints. Thisis far more
ductile than pure separation failure.

2.1.2 Diagonal yield line

Al

— Wall part 1 l | H | -
I . H — Relative displacement in bed joint
H X Y | p=-"l_¢g |
o4 | < N
| o | Wallpatz |
/Yo p-0] L
L~ | Rdativedisplacement in head joint |
VI e | T
W,

Figure 2.2 Relative displacementsin a diagonal yield line

The reason why it may be justified to take into account the moment capacity of diagonal
yield lines even when the tensile strength is neglected is demonstrated in Figure 2.2.
Here a part of adiagonal yield line separating two wall parts 1 and 2 and emerging from
acorner is shown. The rotations are w1 and w», respectively, and the rotation axes are 1
and 2, respectively. They intersect at the corner and are assumed to be placed in the top
face of the wall. The figure shows the displacements in the plane of the wall along the
yield line considered and in an arbitrary point along the wall depth.

The displacements from the rotations are marked u; and up, u; coming from the rotation
about the axis 1 and u, coming from the rotation about the axis 2. On the basis of these
displacements the relative displacements in the head joint and in the bed joint are con-
structed. Notice that the displacements perpendicular to the wall plane do not contribute
to the relative displacement.
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The figure illustrates clearly that in a stair-formed diagonal yield line the relative dis-
placements are not perpendicular to the joints. This means that a diding failure with
dilatation takes place and not a separation failure (with a relative displacement perpen-
dicular to the joint).

This fact has important consequences regarding ductility since a sliding failure in the
interface (or in the mortar) has an order of magnitude higher ductility than a pure sepa-
ration failure. This is the reason why diagona yield lines may be active until the final
failure.

A detailed analysis of the dissipation in a diagona yield line is extremely complicated.
It has been carried out by Hagsten in [43].

In this report a strongly simplified analysis is suggested based on estimated yield line
mechanisms. The justification of the assumptions will be carried out by comparing with
the results of Hagstens work and with experiments.

Theinternal work in ayield line emerging from aright angled corner, may be calcul ated
using the dissipation formula assuming plane strain, see Chapter 1. A stair-formed yield
line, as the one shown in Figure 1.2, is considered. The internal work for a stair with

lengths i(lb +h, ) and h, + h; , of Figure 1.2, becomes, t being the wall thickness,

t

J'% su(1-sinp) (I +h, dz+j fu(l sm(?— D(hoJrh,-)dZ (2.1

0
If the angle of the yield line to the bed joint is named 0, see Figure 2.2, the angle § is
equal to 7/2-6.
If the rotation axes are placed at the surface of the wall where the lateral load is applied
as pressure, the displacements u;, U, and u, may be calculated as:

U =0,z

U, =w,z (2.2
w0z 0,z
cosf sing

where z is the distance from the surface to the point considered and u is the relative dis-
placement in the yield line, which varies linearly over the thickness of the wall. Only
displacements parallél to the plane of the wall have to be considered as stated above.
If the relative displacement u isinserted into the expression for the internal work, equa-
tion (2.1) may be written as:

1, 1-snB 1 1, 1-cosp

W= =+ h o+ 6

4 ci COSﬁ 4 ci Snﬂ (r‘l()_'_lqj)a)zt (23)

Introducing
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1
lf 1-sing §(|b+hl) )
" 4% cosp h+h, 24
1, 1-cosp h+h '
mp2 chi snﬂ 1 t
§@+W)
(2.3) may be written as
1
W, :mpl(ho+hj)a)l+mp2§(lb+hj)a)2 (2.5)

The factors my: and my, can be interpreted as the bending yield moments per unit length
in the head and bed joint, respectively.
It should be noted that the bending yield moments given by equation (2.4) are depend-
ent of the geometry of the bricks and the bond of which the wall is built.
Assuming plane strain in the interface, the angle g is as mentioned before, restricted to
theinterval given as:
T

p<p<Z-9 (2.6)
Which means that the angle 6 isrestricted to the interval given as:

¢ses%—¢ 2.7)
A stair-formed yield line in amasonry wall built in running bond with half a brick over-
lap, corresponds to an inclination & equal to 29.5°, which is amost equal to the friction
angle usually assumed to be ¢ = 30°. This and other inclinations are described in Ap-
pendix 3.
In situations where the angle 0 is smaller than ¢ or larger than % —¢ , the axes of rota-

tions cannot be at the same level when ayield line in the interface has to be a geometri-
cally possible yield line.

When the rotation axes are not at the same level the displacements perpendicular to the
wall make a contribution to the relative displacements, and the analysis becomes much
more complicated. We shall not deal with it here.

2.1.2.1 Simplified calculation method

In this section, an aternative method to calculate the moment capacities in a diagonal
yield line will be outlined. It turns out that this method is equivalent to the method used
above when dliding failure in the interface governs the strength.

The procedure is to calculate the tensile strength in the two directions by means of an
upper bound solution. The tensile strength is calculated considering sliding failure in the

-8-
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bed and head joint, respectively, or tensile failure in the bricks. The bending yield mo-
ments are calculated assuming masonry to have infinite compressive strength. The
situation where the moment capacities are determined by dliding in the interface is re-
ferred to as failure mode 1. Tension failure in the bricks will be referred to as falure
mode 2. The latter value furnishes an upper limit for the bending yield moments.

Faillure mode lisillustrated in Figure 2.3.
Ay

€ W74 H -
M JZ 1 X

Wy

Figure 2.3 Failure mode 1

The tensile strengths in the horizontal and vertical direction are determined by the fail-
ure mechanisms shown in Figure 2.4. We only need to consider a part of the yield line,
since it reproduces itself.

Thetensile strength, p, , is determined considering only the contribution from dliding in

the bed joint. The tensile strength, p;, is determined considering only the contribution

from diding in the head joint.

< b5 H{hj

| )
DV N T
p S

Width: t .

Y

A

Figure 2.4 Failure mode 1 for the horizontal and vertical tensile strength
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The strengths in the two cases are calculated using the upper bound theorem. For the
horizontal tensile strength, the internal work, when only the yield line in the bed joint is
considered, becomes

1 . 1
W, =§fci (1—sm,8)§(lb+hj)t-u (2.8)

The external work becomes

W = p; cosB(h, +h)t-u (2.9)
From the work equation the tensile strength parallel to the bed joint is obtai ned:
o _1;1-snp %(lb"_hi)

“ 2% cosp  h+h
The procedure to find the vertical tensile strength is the same. The contribution to the

internal work is only the work dissipated in the head joint. The vertical tensile strength
becomes:

(2.10)

. T
v ho+hj lf 1_sn(2_ﬂj

p; = ‘ (2.11)
' %(Ib+hi)2 cos(”—ﬂ}
2
For 3 = 45° the ratio between the tensile strengthsis:
2
u :p_i: ﬂ (2.12)
Py %(Ib"'hj)

The bending yield moment m,y is determined from the stress distribution illustrated in
Figure 2.5, where the tensile strength py” is determined by (2.10).

C

Mpx

D

Pydvvivvig

Figure 2.5 Stressesin the case of pure bending, failure mode 1

The horizontal bending yield moment, m,,, becomes.

1, .
m,, =§t2px (2.13)

-10-
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A similar equation isvalid for my,.
The ratio between the moments is seen to be equa to the ratios between the tensile
strengths. Theratio is given by formula (2.12) for 3 = 45°.
It must be remembered that my, is only taken into account in a diagonal yield line. Thus
in the case of wall strips bent about the bed joint m,y is equal to zero.
It may be seen that my = my; and my,, = my, for any alowable g-value where my; and
My, are given by equations (2.4). Therefore the two methods are seen to be equivalent.
Now we investigate the effect of the angle § on the internal work per unit length in a
stair-formed yield line.
The internal work for a repeated section of adiagona yield line can for both methods be
determined as

W =m,y, o, +m, X o, (2.14)
where oy = w1, @y = @2, My = My and My, = My, X and Yo are a repeated section of the
interface given an actual valuein Table 2.1.
The internal work has been calculated for w1 = wy = 1. Since w1/, = tanb, we have wy
= w7 = w1C0to = wycoto
Figure 2.6 shows the internal work for two different values of 3, as well as for  deter-
mined to make the displacement vector u a norma to the overal yield line, i.e
B =%-0 . In this case wy = wtans. Only situations where the rotation axes are placed
in the faces of the wall is considered.
The data used in the calculations are shown in Table 2.1.

-11-
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Figure 2.6 Internal work of a section calculated by the two methods described

It appears that for practical calculations 8 = 45° may be used, whereby the equations for
u and my, become very simple.

t 108.0[ mm]
hy 55.0[ mm]
Iy 228.0[ mm]
h 12.0[mm]
Yo 67[mm]
X0 Yo/tan(@)[mm]
© 30.0

foi 5.3|[M Pa]

Table 2.1 Data used in the calculations

Now we must consider failure mode 2 where the bricks fail in tension. This mode will
be decisive when the shear resistance in the interface of failure mode 1 exceeds the ten-
sile strength of the bricks. Thus the bending yield moment cal culated considering failure
mode 2 provides an upper limit for the bending yield moment.
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Figure 2.7 Failure mode 2
The dissipation becomes, see Figure 2.7,
t
W = [u(2)-2-h, f,dz (2.15)
0
Therelative displacement field isillustrated in Figure 2.7 and is easily calculated as
u(z)=z0, (2.16)
The dissipation thus becomes.
W, =2t f, (2.17)

Hereonemay set f, = % f,, see Appendix 1.

The external work becomes.

W, =m0, -2(h, +h) (2.18)
The work equation gives the following moment capacity for failure mode 2
My, = St b (2.19)
4 h,+h,

Thus pc" attains a maximum value p; ., due to the tensile strength of the bricks,

Py mex IS iVEN &S

o h
px,max - ftb 2( ho T hj) (220)

2.1.3 Yidld linetheory for laterally loaded masonry walls

A simplified method for calculating laterally loaded masonry walls may now be formu-
lated using the results from section 2.1.2.1 combined with the traditional upper bound
method for orthotropic reinforced concrete slabs.

In the latter method the bending moments are usually calculated by considering a stair-
formed yield line with stairs perpendicular to the reinforcement bars. In these sections
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the bending moments at yielding are considered equal to the bending yield momentsin
the reinforcement directions.

A calculation method for laterally loaded masonry walls now suggests itself. In the
stair-formed diagona yield lines the bending yield moments are calculated using the
results from section 2.1.2.1 and then an upper bound solution may be obtained in the
same way as for reinforced concrete slabs.

In [2] and [7] it has been demonstrated that the procedure used for reinforced concrete
dlabsisin agreement with a proper set of yield conditions.

Since the yield conditions for masonry walls in bending and torsion are not yet devel-
oped, no attempt will be made here to justify the procedure suggested by means of yield
conditions.

2.2 Upper bound solutions

2.2.1 Introduction

When comparing the theoretical values of the load carrying capacity with the load car-
rying capacities obtained experimentally it is very important to have a detailed knowl-
edge about what happens during loading of awall.
In the literature only uniform transverse load has been considered.
Severa investigators have reported that in the case of simply supported rectangular
walls, initial cracking in the bed joint in the middle of the wall takes place long before
the yield line pattern is fully developed. The general belief is that cracking in the bed
joint before failure is observed because the rotation capacity of masonry bent about the
bed joint is much less than that of masonry bent about the head joint.
This phenomenon has been reported by A. Cajdert, [27], A. Halquist, [11] and S. J.
Lawrence, [29].
Lawrence [29] carefully investigates the load deflection curve for different support con-
ditions. The load of initia cracking is dependent on the support conditions, which influ-
ence the mode of failure. These problems have been described thoroughly in [29].
Lawrence reports that a masonry wall undergoes three stages before the load carrying
capacity is reached:

1. Initial cracking

2. Fully developed failure pattern

3. Ultimate load
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In [29] five different walls with different support conditions marked category 1 to 5 are
used in the investigation. These are shown in Figure 2.8, where also the course of the
bricksisillustrated. Al walls are loaded with atransverse uniform load.

S/ Simple support sk Fixed support

Category 1 Category 2 Category 3
Free Free
yA
Category 4 Category 5 1:| |:||:|
| [ ]

>
Figure 2.8 Different support conditions used in [29]

Lawrence found four different faillure modes each corresponding to a particular load
deflection curve, see Figure 2.9, where p is the uniform transverse load and u is the
maximum deflection measured at the middle if the wall in the case of category 1-3 walls
and at the middle of the free edge in the case of category 4-5 walls. The curvesin Figure
2.9 are sketches based on the curves reported in [29].

A Y A p
Walls of category 5 Squared walls of category 3

and walls of category 4

u
Mode A > Mode B >

p p
A Walls of category 1 A
Walls of category 2 and

walls of category 3

Mode C Mode D

Figure 2.9 L oad deflection curves, based on observations madein [29]
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The different stages of the curves may be reviewed by looking at Table 2.2. Here a
“yes’ means that this stage exists and the load carrying capacity is higher than the stage
before. A “=1" means that no increase in the load and no change in failure pattern are
observed prior to the stage before.

Failure
Stage 1 Stage 2 Stage 3
Mode « « «
A Yes =1 =1
B Yes =1 Yes
C Yes Yes =1
D Yes Yes Yes

Table 2.2 Failure modes and observed stages of cracking

The failure pattern observed in the case of a category 1 wall is mainly failure mode C.
Category 2 walls failed by failure mode D. Category 3 walls failed in the case of
squared slabs by failure mode B, otherwise by failure mode D. Category 4 walls all
failed in mode B. Category 5 walls all failed in mode A.

From the observations made by Lawrence it may be seen that category 2 and 3 walls
behaves similar. Thisis in agreement with the observations of the lower rotation capac-
ity of the bed joint, which means that horizontal restraints only have little influence on
the load deflection curve and no influence on the load carrying capacity.

In the case of mode B and D the yield line theory will predict the load at the first pla-
teau. The increase in load after the yield line pattern has been developed is due to mem-
brane action, which is not taken into consideration here, Figure 2.9 shows that mode B
and D walls have alarge deformation capacity and the behaviour is very ductile.

The observations made by Lawrence, Cadert and Hallquist justify that a horizontal
yield line has no moment capacity when the yield line pattern is fully devel oped.

2.2.2 Calculation of orthotropic walls

Calculations of orthotropic walls may be made in two different ways, both being upper
bound solutions. One method was used by Hagsten, L. G in [43]. The method assumes
that the yield line is fixed to run in the interface in a way, determined by the bond in
which the bricks are laid.

Another method is the yield line theory for orthotropic walls described in section 2.1.

2.2.2.1 Upper bound solution using plane strain solution

An upper bound solution for masonry walls may be derived under the assumption that
yield lines are formed in the interface between the brick and the mortar. In the interface,
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the state of strain is plane meaning that the dissipation per unit area may be calculated
as

WA:% f,u(l - msina) 2.21)

Here | = 1 and m =1 when the tensile strength is set to zero, which is assumed in the
calculations, see [2] for more details. The dissipation depends on the displacements in
an extremely complicated way.

I{ﬁll
1 [ 3

Figure2.10 A yield lineformed in the interface

Roughly, the displacement field may be described by means of Figure 2.10. In both a
horizontal section and a vertical section, the displacement will be a translation com-
bined with a rotation. The problem becomes three-dimensional. The calculations have
been carried through by L. G. Hagsten in [43]. They are difficult and lengthy. The
method has been compared with experiments and the correlation is very good. However,
the method is difficult to use for practical purposes.

2.2.2.2 Upper bound solution using yield moments

Upper bound solutions may be found in a similar way as for orthotropic concrete slabs
by means of simple yield line patterns, see section 2.1.3. The bending yield momentsin
two perpendicular directions are used to calculate the bending moment in the yield line
by means of the formula

m, =m,, sin’g + m cos’6 (2.22)

where 6 is the angle between the x-axis and the yield line. The dissipation becomes
W =mw (2.23)

Here o is the relative rotation in the yield line. Formula (2.22) determines m, as if myy
and my, were principal moments, which is of course not the case.

When the bending yield moments m,, and m,, may be calculated by the procedure de-
scribed in section 2.1.2.1 the method of orthotropic concrete slabs is completely equiva
lent to the method described in section 2.1.2.1. Notice that when using the method of
section 2.1.2.1 we have left the strict requirements in section 2.1.2 to the correspon-
dence between relative displacements in the interface and the running bond.
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Figure 2.11 Moments and rotationsin the case of orthotropic slabs

The dissipation in the case of an orthotropic wall becomes, when the point P, see
Figure 2.11, is displaced 6 downwards:
W =meLyi+m L 0
h,

Py XE

(2.24)

2.2.2.3 Comparison between calculation methods

In this section, the calculation method developed by Hagsten, L. G. in [43] and the
method for orthotropic walls described in section 2.2.2.2 will be compared. The main
difference between the methods is that Hagsten’s method is strictly related to the bond
of the masonry, while the method outlined in this report assumes a homogeneous wall.
The comparison may be made for a small repeated section as shown in Figure 2.12. The
angle @ is changed by changing Xo.
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Interf acewg

Figure 2.12 Repeated section

In the following the internal work W, in adiagonal yield line will be shown for different
angles 6. Comparisons are only made for right-angled corners. The comparison between
the two methods may be seen in Figure 2.13.

The internal work is calculated based on the compressive strength or the cohesion of the
interface. The cohesion is influenced by the properties of the brick and the mortar and
my be calculated by

c= (—0.11‘:—V+ o.osj IRA—O.5V€V+ 36 [MPa] (2.25)

where w/l is the water/lime ratio, w/c the water/cement ration and IRA is the one minute
suction of the brick also called theinitial rate of absorption.
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250 M INmmJ
Internal work
Hagsten

200 - Internal work
homogeneous wall

150 -

\ 0
100 - X0
50 -
0
30

Figure 2.13 Theinternal work per unit length W, as a function of 8

The calculations are performed by use of the datalisted in Table 2.3.

by 108.0[ mm]
hy 55.0[ mm]
lp 228.0[mm]
h 12.0[mm]
Yo 67[mm]
X0 Yo/tan(@)[mm]
feo 60.0[MP4]
IRA 2.5[kg/m?/min]
w/k 2.8

w/c 2.8

Cc 1.5[MPq]
P 30.0[°

fei S.q[M Pa]

Table 2.3 The data used in the calculations

The contributions from the head and bed joint are compared in Figure 2.14. The work in
the head joint is what provides the moment my, in the method proposed in section
2.2.2.2 of this report.
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120 ! -
--+-- Bedjoint Hagsten

100 ] —e— Bed joint,
homogeneous wall

80 - -4 Head joint Hagsten

—— Head joint,

60 - homogeneous wall

40 ~

20 ~

30

Figure 2.14 The different calculation methods as a function of 8

If the total internal work, calculated by Hagsten, is divided by the internal work calcu-
lated according to the theory of homogeneous walls, the variation with respect to 6 be-
comes as shown in Figure 2.15. It appears that the method of homogeneous masonry
walls is on the safe side compared with the method developed by Hagsten for the data
used in the comparison.

1 -
0,9 -
0,8 -
0,7
0,6
0,5
04 -
0,3
0,2 -
0,1 -

0

25 30 35 40 45 50

Figure 2.15 Comparison of the calculation method developed by Hagsten and the one presented in
section 2.2.2.2 of thisreport
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2.2.3 Simpleyidld line patterns
In this section, the theory of orthotropic walls developed is used to calculate different
yield line patterns, considering different walls all loaded with an uniform transverse

load.
The method assumes that the dissipation in a diagonal yield line may be calculated ac-

cording to section 2.1.2.1, i.e, my, =umy. The moment capacity of a horizontal yield
line in the bed joint is zero. Otherwise, the calculations are made as traditiona calcula-
tions for orthotropic walls.

Notation for support conditions:
S/ Simple support 3k Fixed support

Drawing Work equation

X h
X W =2m_ 6| 4u —+—
o < > ! "X(”h xj

1 1
“E W. =p'6| =bh—=hx
$ h == (2 3 j
h /; 0 2mpx(4u;(+:j
WE:VVI p+: 1 1
ﬁ;){ —bh-=hx
2 3

dp* L (—Zhi 2./ +9ub® )h
=0=> X=—
dx 12 ub
<D > b _h
BRSNS - W =2m o5 ﬂ§+26
yi
W, = p'o (lbh—lbyj
Mpx 2 3
h
$ ZmPX(‘uz-}-ZEJ
iy W g
g “bh— by
2 3

<
<
ﬁ%ﬁ
U|&3‘<|°’
g8
|
o
J
<
|
gy
>
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W :2me5(uE+Dj

S <*>
<> Free - X
? i W, = p+5(1bh—1hxj
é Mox h 2 3
é X h
/% . Zmpx(“mxj
y WE :VVI : p = 1 1
< b Sph—2h
L % y
i 1(—4hi2 4h2+9ub2)h
=0= x==
dx 6 ub
1 b _h
s W =2mg5| Zu—+2—
< Free _ | "XCS(Z” y bj
“% 1 1
W, = p's| =bh—=b
5 %mpx h e=P (2 6 yj
y &
/ b @ 2mpx(;ub+22j
y ; W, =W p'= y
< Lon-Lhy
X [ 2 6
do’ 1(—ybi«/y2bz+12yh2)b
dy 4 h
5 X W =2m§( 5+zhj
<> Free | o ! PO H h X
$ iny W, =po (lbh—lhxj
’5 Mpx h 2 3
YA
Ix 2m, (u ;‘+ zhj
. + X
y 4 We =W p=—"—3
< Sbh-2hx
x ¥
op’ 1 (—8h +2,/16h? +18ub? )h
=0=> x==
dx 6 ub
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1 b ,h
S W =2m 5| Zpu—+4—
<> Free = o (Z”y b)
Ty 1,, 1
W. = p'§| =bh—=b
S %rrbx h == P (2 6 yj
y &
2 v om, (22"
Y ﬁ%b We=W i pr=—p=]
\ ~bh—=by
i 1(—,ubi2«/,u2b2+24uh2)b
dy 8 h
b vy
o W=mygo|lu—+-=
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N 1, 1
W. = p'§| =bh-=Db
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5
y G ’ 5
mpx ‘U7+B
y b We =W, p’ Y
\ 1 1
~bh-=hy
x T |l 2 6
do* 1(—2,ubir2 u2b2+9uh2)b
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X h
5 W =m (u—+—j
> \éﬂ Free o ! pﬁ X
<% 1, 1
y W, =p'6 (—bh——hxj
5 %mx ;-Eh : 2 6
x (i)
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<— S bh—hx
x 3
op’ 1(—2h+2 h2+9ub2)h
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dx 6 ub
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= I¥s W :Zmpxé(%-i-,u%]
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X 1 1
W. = p*S| =bh-=b

%{ E=P (2 3yj

h $ |if)y Free 2mpx (y+ubJ
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A ~bh-hy
v iy 2 3
Y s 212 2
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~ph-=hx
27 6
2 2
1y i;! | do* _ij_i(—hi«/h +36ub )h
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<3

Table 2.4 Someyield line patternsfor masonry walls

In the case of category 2 and 3 walls, ayield line pattern as the one in Figure 2.16 pro-
vides alower load carrying capacity than the ones calculated in Table 2.4. However, an
analytical minimum solution by using the work equation is difficult.

N <>
X A € ﬁy
h

0
y

4
A

X 0
Y < b >
X ¥

Figure 2.16 Optimal yield line pattern in the case of category 2 and 3 walls

The work equation provides the following load carrying capacity:

-25-



Unreinforced masonry walls

2mpx((1+i)h+ 2uxj
. X Ty

p:

8 (2.26)
bh—hx—by + 5 Xy

wherei isthe degree of fixing along the vertical fixed supports.
Similarly in the case of simply supported walls (i = 0), the yield line pattern in Table 2.4
provides a higher load carrying capacity than the yield line pattern in Figure 2.16. How-

ever, the error by using the simple yield line pattern given in Table 2.4, is small, see
Figure 2.17

31

\
.
.
\
25 N\ S
) ~
\

05 t----------

0

0,0

Figure 2.17 Comparison of two yield line patternsfor a simply supported wall

Figure 2.17 shows that the ratio between the two calculated load carrying capacities is
about 0.98. In these calculations 1 has been calculated by formula (2.12) using the data
inTable2.1.

2.2.4 lllustrative examples

In order to further illustrate the yield line theory of masonry walls a few examples are
outlined in this section. Among other issues, the calculations demonstrate the influence
of the horizontal yield line.
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2.24.1 Example 1. Calculation of awall

In this example a masonry wall simply supported on four sides loaded with a transverse
pressure p (kN/m?) will be considered. This example illustrates the correlation between
the ssmplified calculation procedure and the more general procedure. Furthermore the
results of the example may be compared with results from an example in chapter 3
whereby the influence of axial loads may be seen. The properties of the wall are listed
in Figure 3.9.

forx = 10 MPa
LS LSS LS LSS B fcb_:4o|v|pa
Running bond c= 0.50M Pa
—(— E =30
Mhx — ol 1pb=228mm
% 8 hy=56mm
Mpy = HMpx W bp=t=108 mm
< h=12mm

| b = 6000 mm

-
|

Y

L,
7 X

Figure 2.18 Data for wall
Equation (2.10) provides the tensile strength, py'. For g = 45° we find that
o = 3(h+h)1 ¢ l-sinds
“  h+h 2% cosd5
- 5(228+12) | _cos30 1-8n45 _ ) 62 MPa
56+12 cos45 1-sin30°
where f; =2c-cosp/(1-sing ) has been introduced. This relation is obtained by calcu-

lating the tangent point between Coulomb friction hypothesis and Mohr’s circle for o1 =

O and O3 = 'fci
The maximum tensile strength is calculated by equation (2.20)
: h,
=—2 —f =
px,max 2( ho N hj) tb
Py max = iim =0.82 MPa

2(56+12) 20

Thetensile strength of the bricks is assumed to be equal to 1/20 f,, see Appendix 1. The
yield moment my is determined from equation (2.13).
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1 2 At
m_ =—t =
o2 Px

m,, = -108? -0.63=3.60 *N"
2 m

The yield moment in the bed joint is determined in the same way.
., h+h  cosp 1-sin4s
p; =~ i (DO . N
3(l,+h;) cos45" 1-sing
1., . kNm
mpy :Etz py = mpy =1.19 7
The load carrying capacity is calculated for the yield line pattern shown in Figure 2.19.
The moment capacity in the horizontal yield line is zero because of the rotation axis
being at the top face of the wall and because the tensile strength of the bed joint is as-

sumed equal to zero.

p, =0.2 MPa

X
<>

0
<>

”b?ﬁ,\r\k;
0 0

Figure2.19 Yield line pattern

A
|
Y

The internal work becomes;

My X D

W, =2mp{4—h+ ]5
m X
X

The external work becomes:

W, =po (%bh—%hxj
The work equation provides the load carrying capacity by minimizing with respect to x.
The results of the calculations are shown in Figure 2.20. In Figure 2.20 the load carry-
ing capacity obtained using the general approach of section 2.1.2 (8 = z/2-0 ) is shown
aswell. It may be seen that the two methods are nearly identical around the minimum of
the load carrying capacity.
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Figure 2.20 Calculated load carrying capacity as a function of 8

2.2.4.2 Example 2. Cavity wall

This example is bound on an experiment carried out at NBI [12] (Building Institute of
Norway). The wall considered is shown in Figure 2.21. The vertical edges were fixed
since metal ties were anchored in the surrounding concrete by use of expansion bolts.
The wall consists of two halves held together by metal ties placed with a centre distance
of 500 mm. The metal ties transfer half of the load to the other halve. The load applied
is uniform distributed. The moment capacity in the head joint was measured to 4.54
kKNm/m. No attempts are made here to calculate the moment capacity, since lack of in-
formation makes it impossible to estimate the cohesion.
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Figure 2.21 The geometrical properties of the wall, taken from [12]

The bricks used had 19 holes. The length was 240 mm, the height 63 mm and the width
105 mm. This provides aratio between m,, and my, for 8 = 45° cf. formula (2.12).

_m, [ h+h 2_ 75 2_
i [;(|b+hj)} _(;(240+12)J =035 (2.27)

PX

when the joint thickness is assumed equal to 12 mm. The bricks are laid in running bond
with half abrick overlap.

The load carrying capacity of the wall is calculated for the two yield line patterns shown
in Figure 2.22. The load carrying capacity calculated is valid for one half of the wall,
which means that the load carrying capacity measured should be twice the calculated
value if the two halves work fully together. In the calculations i is the ratio of fixing
along the fixed support at the vertical edges relative to the bending yield moment myy. It
is set equal to onein the calculations.
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X8

Yield line pattern 1:
The internal work

Figure2.22 Yield line pattern 1 to the left and yield line pattern 2 to theright

W =2m 5 (4;1 E+ (1+ i)hj (2.28)
X
The external work

1 1
W, = p'6 | =bh—=hx 2.29
s 2on-n) o2

The work equation renders
2m, (4;[ ;](+ (1+i )2)

1bh—}hx
2 3

W, =W : p" = (2.30)

The optimal yield line pattern and thereby the load carrying capacity is obtained when

i L [F2n(@i)e2 ke (@+i) +9ub? (1+1) b
P o omx== ‘ (2.31)
dx 12 ub

Yield line pattern 2:

The second yield line pattern has two free geometrical parameters. The load carrying
capacity is obtained by minimizing with respect to these. This is done numerically. The
expression, which has to be minimized, is given in equation (2.32).

2mpx((1+i)h+2y X]
p+ — X y

5 (2.32)
bh—hx—by+ 5 Xy

The load carrying capacity for the two yield line patterns is shown in Figure 2.23. The
experimental result for the wall shown in Figure 2.21 is taken from Table 2.5. It must be
remembered that the calculated values have to be multiplied by a factor of two to take
the two halves into account.
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1 L e Yield line pattern 1
40 +------ i roooooooooe- rooommeoeoo —Yield line pattern 2

® Experimenta value

Figure 2.23 The variation of the load carrying capacity with b/h for the two yield line patterns and
the measured value

+

b | h | me [ # | X | Y| P | Pep | Py

+

[mm] |[mm] |[KNm/m] [mm] | [mm] | [kN/m?] [kN/m?]| P
Yield line pattern 1| 4500 | 2300 | 4.54 [0.35| 1741 |1150| 17.52 | 16.68 | 0.95
Yield line pattern 2| 4500 | 2300 | 4.54 [0.35| 1357 | 656 | 16.09 | 16.68 | 1.04

Table 2.5 Theresult from the calculations compar ed with experiments

The theoretical load carrying capacity is compared with the load, for which the yield
line pattern is fully developed, the flat plateau in Figure 2.9, curve D. From Table 2.5 it
appears that there is a very good agreement between theoretical and measured load car-
rying capacity. The maximum load measured is 24.9 kN/m?. The higher load is due to
membrane action, which is also illustrated in Figure 2.9 curve D where an additional
load carrying capacity is achieved for very large deflections..

In the tests the yield line pattern was monitored during loading as illustrated in Figure
2.24. The numbers refer to load steps, which are given in Table 2.6. It may be seen that
the horizontal yield line develops earlier than the remaining yield line pattern. The load
for which the horizontal yield line is developed is 33% lower than the load correspond-
ing to the fully developed yield line pattern, which confirms that the contribution to the
internal work is zero as assumed in the calculations. This supports the observations
made by Lawrence ([26]) regarding the load deflection curve of masonry walls.
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771 mm

L 1368 mm
"

Y

Figure 2.24 Observed yield line pattern taken from [11]

In Figure 2.24 the observed lengths of x and y are illustrated. Compared with the calcu-
lated values the agreement is seen to be very good (yield line pattern 2 (Xcaic, Yeaic) =
(1357 mm, 656 mm).

Load step | Load [kg/m?]

10 1000

11 1100 Horizontal yield
12 1200 lineis devel oped
13 1300

14 1400

15 1500

16 1600

17 1700 Yield line pattern
18 1800 fully developed

Table 2.6 Load step with numbersreferring to the observed yield line pattern asthey aregiven in
[12]

2.2.4.3 Example 3. Wallswith openings

In [14] different walls have been tested. Three of them are with openings as illustrated
in Figure 2.25. In this example the walls will be calculated by using the yield line theory
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of section 2.2.2.2 in this report. The bricks are laid in running bond with half a brick
overlap.

AN
4
@ ? h ® ? h
Py KR
< b é < k<
A
yA — ﬁl/m A
/7
I oy
E—— [y

<>

Figure 2.25 The walls with openings

The calculations are carried out by calculating the internal and external work using the
work equation and minimizing the load with respect to the free geometrical parameters.
The yield line patterns are illustrated in Figure 2.25. For the walls at the top in Figure
2.25 the parameters x and y are not free, they are bound by the openings. In the wall
below the parameter y is free and x is fixed to be the width of the door opening. The
moment My IS once again taken as the measured value.

+

No. Coments b h Mpx u X y p Pep | Peyp

+

[mm] | [mm] |[KNm/m] [mm] | [mm] [[KN/m?]|[kN/m?]| P
3 2 windows |3500.00[2000.00 3.73 |0.28{1030.00/510.00f 5.01 | 7.06 | 1.41
4 3 windows |3500.002000.00 4.32 |0.28| 766.00|510.00f 5.09 | 6.72 | 1.32
8 1 door 3500.00{2000.00f 3.73 |0.28]492.00 (464.16| 553 | 574 | 1.04

Table 2.7 Calculations compar ed with experiments

The results show that the load carrying capacity obtained in the experiments are higher
than the calculated values. This may be due to the fact, that the load for which the yield
line pattern was fully developed is not recorded and therefore the load carrying capacity
compared with may be influenced by membrane action, which is not considered.
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2.2.4.4 Example 4. Comparison with the calculation method in some codes

In the Danish code D$414 and in the European code EC6 the yield line theory is used to
calculate the load carrying capacity of masonry walls. However the modification of dis-
regarding the horizontal yield line is not taken into account. In the present example a
rectangular wall simply supported on four sides is considered. The wall is shown in
Figure 2.26.

S X
<> <>

”bx$$\k;
o

2
h

Figure 2.26 Wall considered

The data used in the calculation are listed in Table 2.8. These are the same as the data
reported by Lawrencein [29].
h 2500 |mm
u 0.46
My | 3.98 KNm/m

Table 2.8 Data used in the calculation

Taking into account the horizontal yield line when calculating the internal work we get:

W = 2mpyb%+ 2mpxh5— (2.33)
X

Inserting m, = m_, theinterna work becomes

W =2m,, (Zu 9+Dj5 (2.34)
h x
The external work becomes
1 1

W, = p'6 | =bh—=hx 2.35
s 2on-In e

From the work equation the optimal solution for x is obtained:

1 (-2hE2yh* +3ub® |
x=2 - (2.36)

Inserting x into the work equation provides the load carrying capacity of the wall.
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In Figure 2.27a results from the calculations using equation (2.34) to (2.36) (p.") and
from the equations given in Table 2.4 (p,") are shown. Furthermore, results from tests
carried out by Lawrence are plotted. In Figure 2.27b the ratio between the two calcu-
lated load carrying capacities is plotted. The calculations show that by including the
horizontal yield line follows an overestimation of the load carrying capacity and the
error increases with increasing b/h ratio. Thus an essential reduction in safety is suf-
fered when taking the yield line along the bed joint into account.

b 44—

Figure 2.27 Results from calculations comparing the effect of taking the horizontal yield lineinto
account

2.3 Comparison with experiments

In this section comparison between a number of further experiments and the calculation
method presented in section 2.2.2.2 will be carried out.

Each investigation used will be described, and then plots comparing experiments with
the theory will be shown. The previous calculations seem to indicate that the simplified
method provides similar results as the more general method around the optimal solution.
In the comparisons the simplified method is used to calculate the ratio between the mo-
ments (equation (2.12)). For the bending yield moment in the head joint the measured
value of my is used. We are only able to cal culate myy by estimating the cohesion which
is not reported. Estimating the cohesion on the basis of m,, will be the same as using
My All investigations provide measurements of the bending yield moment in the head
joint.
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The lateral load was in al cases applied by an air bag. All experiments are on rectangu-
lar walls with bricks in running bond with half a brick overlap.

2.3.1 Investigations

Kheir, A. M. A. 1975 [18]

The investigation made by Kheir consists of 19 test panels, 11 ssimply supported on
three sides and 8 panels simply supported on all 4 sides. The bricks used were 1/6"
scale bricks with a compressive strength of 26.5 MPa. The mortar used was a 1:¥43
(lime:cement:sand) mortar with a compressive strength after 21 days at 31 MPa. The
compressive strength of the brickwork were measured to be 20.3 MPa. The bending
moments in the head and bed joint were measured in connection with the tests of the
wall panels. Therelevant data are listed in section 7.1.1.

West, H. W. H et. al. 1977 [21]

The investigation made by West, H. W. H. consists of 71 experiments on full size wall
panels simply supported on three sides. In the investigation three different mortars were
used, X= 1:%43, Y=1:1:6 and Z=1:2:9. These mortars were used with various types of
bricks with different IRA’s. Further, a large investigation on the bending capacity in the
head and bed joint was reported. The relevant data are listed in section 7.1.2

Cajdert, A 1983 [27]

The investigation made by Cajdert, A. consists of 6 experiments on full size walls, 3
simply supported on 3 sides and 3 ssimply supported on 4 sides. In the investigation, six
different perforated bricks were used with an IRA varying from 0.59-1.89 kg/m?/min.
These were combined with two different mortars, a 1:6 mortar (A) and a 1:3.5 mortar
(B). The strengths of the mortars were 15 and 30 MPa, respectively. Furthermore, tests
on the bending moment capacity at an angle to the bed joint were carried out. The rele-
vant data are listed in section 7.1.3.

Lawrence, S. J. 1983 [29]

The investigation made by Lawrence, S. J. consists of 32 experiments. These were di-
vided into five categories dependent on the support conditions. The five support condi-
tions are illustrated in Figure 2.28. The ratio between the width and the height varied
from 1to 2.4.
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S Simplesupport XX Fixed support

Category 1 Category 2 Category 3
Free Free
yA
Category 4 Category 5 1:| |:||:|
| [ ]

X

Figure 2.28 Wallstested by Lawrence, S. J.

In the investigation seven different 10-holed bricks were used together with one 1:1:6
mortar. The IRA varied from 0.2 — 0.51 kg/m?min. For the different walls, the crack
development was monitored together with the load deflection curve, which enabled the
investigator to report four different types of load deflection curves. The relevant data are
listed in section 7.1.4.

Buhelt, M. 1984 [31]

The investigation made by Buhelt, M. consists of 6 walls simply supported on two per-
pendicular edges. The bricks are laid in running bond with % brick overlap In the inves-
tigation one type of brick and mortar was used. The brick had an IRA of 3.1 kg/m’/min
and a compressive strength of 35 MPa. The mortar was a KC 50/50/750 mortar. Further,
an investigation of the bending moment capacities about the head and bed joint has car-
ried out. The relevant data are listed in section 7.1.5.

2.3.2 Comparison with experimentsfor laterally loaded dabs

In this section, the load carrying capacity found by the yield line theory is compared
with the experimental load at fully developed yield line pattern. Six different support
conditions are used in the comparison. All experiments are on full size walls except the
walls tested by Kheir, A. M. A. where the walls (bricks), as mentioned above, were
scaled to 1/6™.
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Figure 2.29 Comparison with experiments on walls simply supported on two perpendicular sides

In Figure 2.29 two different yield line patterns are used in the calculations of the load
carrying capacity of the wall, which is supported on two perpendicular edges intersect-
ing in the lower left corner of the wall. The yield line patterns used in the calculations
consist of ayield line emerging from the corner where the supports intersects and end-
ing on either side of the diagona corner. A yield line pattern where the free corner
breaks off has been considered. However, calculation showed that the load carrying
capacity was larger that the load carrying capacities calculated by Figure 2.29.

Figure 2.29 compares theoretical and measured load carrying capacity.
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Figure 2.30 Comparison with experiments on walls simply supported on three sides

In Figure 2.30 and Figure 2.31 measured load carrying capacities of walls supported on
three edges are compared with the theoretically calculated load carrying capacities. The
yield line patterns used are those shown in Figure 2.30. The walls in Figure 2.31 have
fixed supports along the vertical edges. Thus a vertical yield line along the support has
to be taken into account.

Vertical yield lines are assumed to have the moment capacity myy. In the tests failure in
the bricks is often observed. However, this is taken into account by using the measured
value of my,.
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Figure 2.31 Comparison with experiments on walls simply supported on one side and fixed along
two sides

Figure 2.32 and Figure 2.33 show the comparison between experiments and theory for
walls supported along all four edges. In genera two different yield line patterns are
used, as shown in Figure 2.32. In Figure 2.33 walls with fixed edges are considered.
Horizontal yield lines along the supports are disregarded as are the horizontal yield lines
in the middle of the walls.
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Figure 2.32 Comparison with experiments on walls simply supported on four sides
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Figure 2.33 Comparison with experiments on wallsfixed along four sides, or fixed along two sides

and simply supported along the other two sides
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From Figure 2.29 to Figure 2.33 it is seen that the agreement with experiments is good
in all cases except in the case where two or four sides are fixed, where the load carrying

capacity is overestimated.
Figure 2.34. The restraints along the vertical fixed edges were also disregarded in the

supports. It is very difficult to establish a fixed support; a rotation usually is present.
Lawrence did not report whether yield lines along the boundaries were observed or not.
If the moment at the vertical boundaries is set to zero the results become as shown in
comparison made by Hagsten in [43].

The overestimation of the load carrying capacity may be explained by the action of the
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Figure 2.34 Wallswith fixed edges, moment at the vertical fixed edges are set equal to zero
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The above results provide the mean values and standard deviations listed in Table 2.9.
The values are given for the ratio: failure load / calculated upper bound.
Yield lines along vertical edges have been disregarded.

Investigation U |S
‘Kheir, A.M.A.,1975  [11 [0.27
West, H. M. H. et. Al., 1977 1.1 |0.31
Cadert, A. 1983 1.2 |0.09
Lawrence, S. J. 1983 10 |0.18
Buhelt, M. 1984 1.1 (0.16

Table 2.9 M ean value and standard deviation

It is seen that the method used gives very good results.

In the comparison above, the self weight of the walls is not considered. However, since
all walls are tested in a vertical position, the walls may only have been able to expand
vertically in one direction because of the laboratory floor. This means that the self
weight of the wall may influence the load carrying capacity, since the wall has to be
lifted from the laboratory floor, when the yield line pattern is devel oped.

The effect of the self weight is studied by calculating a category 1 and a category 5 wall
in some selected experiments. The calculations are carried out for a wall with h = 3000
and b = 6000 mm. These walls are similar to the ones tested by Lawrence.

It may be remembered that a category 1 wall is a rectangular wall simply supported
along all four edges and a category 5 wall is a rectangular wall ssmply supported along
three of the edges as shown in Figure 2.35.

In the case of category 5 walls two different yield line patterns have to be considered as
shown in Figure 2.35.

The data used in the calculations are shown in Figure 2.35. The walls considered are
loaded with a uniformly distributed transverse load.
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Figure 2.35 Yield line patternsin wallswith self weight

The load carrying capacity is now considered only to be determined by the self weight
of thewall. Thusthe internal work in the yield linesis zero and the load carrying capac-
ity is determined from the external work only. The in-plane deformation for a category
1 wall may be seen in Figure 2.36.
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¥h

Figure 2.36 I n-plane defor mations

The external work in the case of a category 1 wall, see Figure 2.35, becomes:

W, =p's (lbh—lhxj— 2 Gllu +G,u (1+§j +G,u (EJFEJ (2.37)
2 3 2 4 4 4 4
where u isthe vertical displacement. The displacement u becomes:
u :4%5 (238)

It is assumed that the vertical displacement may take place without any resistance from
the supports. The supports are assumed frictionless for vertical digplacements.
The weights of the wall parts are, p being the specific weight (kN/m®),
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1
=—hxpt
G =5 hxp

G, :%tht (2.39)

G, = %(b— 2x)hpt
The load carrying capacity of the wall will be:
2
2bhp L
p* = ﬁ (2.40)
—bh—-=hx
2 3

In a similar way the load carrying capacity for category 5 walls is obtained. The load
carrying capacity, in case of ayield line pattern shown right next to the category 1 wall

in Figure 2.35, becomes:
1 t?
bh—=by |p —
+ ( 4 yjp y

p:

(2.41)
Loh- Loy
2" 6

In the case of the yield line pattern shown below in Figure 2.35, the load carrying capac-

ity becomes:
2

1(bh+hx)pt—
o =2 h

(2.42)
TN
2273

In Figure 2.37 the results of the calculation are plotted together with the experimental
results obtained by Lawrence (p is assumed equal to 18 kN/m?®).
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Figure 2.37 Results of calculations for wallswith self weight

In the case of category 1 walls the minimum solution becomes the solution for a one
way wall, see [46], when only the self weight is considered.
Figure 2.37 shows that the influence of the self weight is small and therefore it is rea
sonable to disregard it in the comparison with experiments.

2.3.3 Biaxial bending tests

In [36], biaxial bending of masonry isinvestigated. The aim of the investigation was to
establish a yield condition for masonry in biaxial bending. The results of the investiga-
tion will be shown here because they may indicate whether a yield condition as the one
developed for reinforced concrete slabs may be adopted for unreinforced masonry walls
aswell.

A number of 36 wallettes were tested. 18 in bending about the bed joint and 18 about
the head joint. From these tests the bending yield moments m,, and my, are obtained, see
Table 2.10.
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Bending about the head joint Bending about the bed joint

My Mpy
[Nmm/mm| [Nmm/mm]

9.74 2.82

Table 2.10 Bending yield moment

Figure 2.38 Layout of a crossheam

Furthermore 33 crossbeams were tested. The test set-up used is shown in Figure 2.38.
One type of bricks was used together with one mortar. The mortar was a 1:3 cement:
sand mortar, the amounts measured by volume. Since masonry is orthotropic, the weak
direction will fail before the strong direction. In [36] the load at cracking and the load at
failureisreported. Theresultsarelisted in Table 2.11.
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Cracking Failure
Lx Ly Py Py Py Py
[mm] | [mm] [N] [N] [N] [N]

300 | 585 | 3124 | 260 | 4805 | 169
445 | 585 | 1811 | 473 | 2792 | 304
585 | 585 | 936 | 754 | 2022 | 129
690 | 585 | 613 | 671 | 1684 | 241
860 | 585 | 318 | 669 | 1379 | 156
1140 | 585 | 165 | 676 | 1109 | 184
585 | 300 | 489 | 1327 | 1839 | 280
585 | 445 | 392 | 999 | 1818 | 220
585 | 690 | 1467 | 557 | 1814 | 236
585 | 860 | 1595 | 471 | 2058 | 25
585 | 1140 | 1812 | 328 | 1968 | 298

Table 2.11 Results from tests, P, and P, denote the load at the supports

If the moment in each direction is calculated as for a beam, the plot shown in Figure
2.39 is obtained.

14 ’ﬂ : ;
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06 ot
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e

0 02040608 1 12 14

Figure 2.39 Failur e condition for masonry in biaxial bending

The tests agree reasonably with a simple square yield condition as that used for rein-
forced concrete. Although the scatter is considerable, generally the square yield condi-
tion is conservative.
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2.3.4 Comparisonsregarding purebending

In this section the calculation procedure outlined in section 2.1.2.1 will be compared
with experiments. The reason for making this comparison is that a wallette test, as
shown in Figure 2.40, is the standard test for obtaining the bending yield moment, my.
Section 2.3.2 showed that using the value of the bending yield moment obtained from
the wallette test in the yield line theory gave good results compared with actual wall
tests.

Figure 2.40 Principal sketch of thewallettetest

The calculation of the bending yield moment my is carried out using the model de-
scribed in section 2.1.2. The forma compressive strength of the interface is calculated
using the cohesion, which is obtained according to the following empirical equation
taken from [45].

c= (—0.11‘:—V+ o.osj IRA-05Y 136 [MP4] (2.43)
C

Here w/l is the water/lime ratio and w/c is the water/cement ratio and IRA is the initial
rate of absorption. Based on these assumptions, the moment capacity in the head joint
may be calculated. Since masonry is not arigid plastic material as assumed when using
the formulas for the dissipation, see (1.1) an effectiveness factor has to be introduced,

see Figure 2.41.
AC Actual behaviour
foi Lo NAssumed behaviour

Vfci k

Figure 2.41 Definition of v
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In Figure 2.42 the effectiveness factor for the tensile strength is determined for solid and
perforated bricks in running bond with half a brick overlap. The solid bricks are used
with three different types of mortars (KC50/50/700, KC60/40/850 and KC35/65/650)
and the perforated bricks with one mortar (KC60/40/850).

0.6 7 o Solid bricks

x Perforated bricks
0,5 -

04 -
0,3 -+
0,2 -

0,1 -

IRA [kg/m?%min]

Figure 2.42 The effectivenessfactor asafunction of IRA

The effectiveness factors are found as:
v, =0.038IRA*® (solid bricks)

v, =0.024IRA"*  (perforated bricks)

The effectiveness factor is bound to vary with IRA since a stronger interface provides a
more brittle failure because of the possibility of brick failure.

Using the effectiveness factors from equation (2.44), the bending yield moment in the
head joint may be calculated and compared with experiments. The results are shown in
Figure 2.43.

Figure 2.43 shows that the effectiveness factors obtained from (2.44) provide good re-
sults when the calculation procedure from section 2.1.2.1 is compared with experiments.

(2.44)
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Figure 2.43 The bending yield moment m,, compared with experiments taken from [31] and [37]

In the investigation made by Cajdert, [27], the moment capacity at an angle to the bed
joint is examined. In Figure 2.44 the results from [27] are plotted together with results
taken from [44] (referred to as LGH, but they were originally taken from [14]). The
results indicate that the moment capacity in the bed joint (m,,) has to be set to zero if a
relation (2.45) is adopted, cf. formula (2.22).

m =m,sin“d +m_ cos’0 (2.45)
However this conclusion should not be taken too seriously, because a test of the type
used by Cagjdert can not properly reproduce the contribution from the bed joint in a di-
agonal yield line, cf. section 2.1.2.
The results in Figure 2.44 also confirms that a yield condition as the one used for rein-
forced concrete slabs may be adopted.
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Figure 2.44 Justification of equation (2.45), ¢ = 30°
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3 Laterally loaded walls with small in plane (ax-
lal) loads

3.1 Moment capacities for walls with small axial loads

In this chapter the load carrying capacity of transversely loaded masonry walls with
small axia loads parallel and/or perpendicular to the bed joint will be analysed. Asin
the former chapter dealing with the load carrying capacity of transversely loaded ma-
sonry walls, the yield line theory for orthotropic concrete slabs will be used to develop a
yield line theory including axial loads.

As in the case of transversely loaded masonry walls the internal work is determined on
the basis of a dliding failure in the interface (unless of courseif the bricksfail).

It is assumed that the displacement u is perpendicular to the average yield line as in
Chapter 2. This assumption is not quite correct because the axial load will influence the
orientation of the displacement. However for small axial loads it may be justified.
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Figure 3.1 Strip parallel tothe bed joint

The internal work in the diagonal yield lines is, as in Chapter 2, calculated considering
an equivalent tensile strength paralel to the bed joint and an equivalent tensile strength
perpendicular to the bed joint. This means that the internal work may be cal culated con-
sidering a strip parallel and perpendicular to the bed joint, respectively. The moment
capacities of each strip may be determined from a cross-section analysis. A strip paralel
to the bed joint determines the bending yield moment m,, and a strip perpendicular to
the bed joint determines the bending yield moment m,.

A strip perpendicular to the bed joint is shown in Figure 3.1. The rotation axis is placed
at the face of the wall where the transverse load, p, is applied as pressure. The axial 1oad
is assumed to be acting in the middle-plane of the wall.

If the relative rotation in the hinge is placed at the edge of the section (infinite compres-
sive strength) it is seen that the dissipation in the hinge may be calculated as before.
This further means that the normal force only has to be taken into account in the exter-
nal work.

Thus, in the following the internal work is calculated considering only the tensile
strength from gliding in the interface (unless the bricks fail). The external work is calcu-
lated considering the transverse load and the axial load.
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3.2 Upper bound solutions

Since masonry expands when the yield line pattern is devel oped the axial load enters the
external work. In this section, the work of the axial load is examined and thereby the
use of the yield line theory.

3.2.1 Orthotropicwalls

The displacements of the boundaries of the wall may be calculated from the rotation of
the boundary in question, see Figure 3.2, where the axes of rotation are placed at a face
where the transverse load is applied as pressure.
In the case of a uniformly distributed normal stress along a boundary we have a situa
tion as shown in Figure 3.2. Notice that in what follows n, and ny are stresses, not forces
per unit length. They are positive as compression.

y

\J
x,1
AN
I [ I
[ [ [ I
[ I [ [

I || Yield line]| |

]
|
! | ! | ! | ! | ‘

Yvy

w

\ S

Figure 3.2 Displacements at the boundary
The contribution to the external work from the axial load is then easily calculated as:

AW, = —%nytzlx(exyl 10,,) = —%nytzlx (i+5—] 3.1)

h, h,

Thuswhen n, is acompressive normal stress AW , is negative.
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Other distributions of the axial load than the one in Figure 3.2 may be treated in the
same way.

Two different cases are shown in Figusre 3.3, where only the contribution for one edge
isgiven.

AW, =-191 Tni- —%nytzlxax

E.n, 3 xx2y

AW. =-=t%.1n

E,ny 2v XXy

Figusre 3.3

Similar formulas are valid for axial loads in the x-direction.
Including the normal force in the external work makes it possible to calculate the load
carrying capacity of amasonry wall by the work equation.

A rectangular wall ssimply supported on all four edges is considered. The axial load isin
the y-direction.. Three different load positions of the axial load are treated. From Figure
3.4, it is seen that the load carrying capacity of the lateral load is increased as the axial
load is applied further away from the surface where the lateral load is applied as pres-
sure. In the calculations the parameter 1 has been calculated using formula (2.12) with
the datalisted in Table 2.1.
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Figure 3.4 Effect of the position of the axial load

3.2.2 lllustrative examples
In this section the method described will beillustrated through a couple of examples.

3.22.1 Example 1. Calculation of awall

In this example the masonry wall considered in section 2.2.4.1 will be considered once
again. This time the wall is loaded with axia loads in two perpendicular directions as
well as a transverse pressure, p, as shown in Figure 3.5. The axia loads are uniform
pressures. The general method described in section 2.1.2 is used, i.e. the angle 3 is re-
lated to 6 according to Figure 2.2.
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Y yn,=0.1MPa y f.=10MPa
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Figure 3.5 Data for wall

The yield line pattern is shown in Figure 3.6. The angle 0 is chosen as the free parame-
ter.

Figure 3.6 Yield line pattern

Theinternal work becomes
h
V\/l = 2mpﬁyh + 4mpﬂx m (32)
The rotations 6y and 8y are given in Figure 3.6. The bending yield moments becomes,

formula (2.4),

1, 1-sin(90° -6 ) (I, +h;)

"8 " cos(90-0) h+h 53
1, 1-sin(@) h+h '

m, =—t°f;

o2 cos(6 ) (I+h)

The external work becomes
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2
w, - p'a[ Lon- L
2 6 tand

From the work equation the minimum value of p* may be calculated. In Figure 3.7 p* as
afunction of 8 may be seen.

It appears that the minimum solution for p is obtained for @ = 40.5°, which isin thein-
terval of angles giving valid solutions (¢ < 0 < 90%¢, where ¢ = 30°).

j—tz( nbo, +n,ho, ) (3.4)

1 1
! | — General calculation method

Figure 3.7 Load carrying capacity asa function of 6

The ratio between the bending yield moments, 1, changes with 6 as shown in Figure
3.8. Itisseenthat for 6 = 37,7° u = 0.41.
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Figure 3.8 u asafunction of 8

3.2.2.2 Example 2. Simplified calculation of a masonry wall

In this example a masonry wall simply supported on four edges and loaded with atrans-
verse pressure p (kN/m?) and axial loads in two perpendicular directions will be consid-
ered. The axial loads are uniform pressures. The properties of the wall are listed in
Figure 3.9. They are identical to the data of Example 1. The purpose of this exampleis
to evauate the simplified calculation procedure proposed in the case of transversely
loaded walls and to illustrate the influence of the axial load. It isremembered that in this
case the calculation of the bending yield moments is based on 8 = 45°.
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Figure 3.9 Data for wall

The moment capacity in the head joint is determined as in Example 1, section 2.2.4.1

for B = 45°. The tensile strength p," becomes

31, +hy) o Cosp 1-sin45
h,+h, cos45  1-sing

The tensile strength is calculated by equation (2.10), when f; =2c-cosp/(1-sing ).
The maximum tensile strength is calculated by (2.20), with fy, = 1/20f,, see Appendix 1.

h

Pemex = m fo =
56 1

O o =——————40=0.82 MPa
™ 2(56+12) 20

The yield moment my is determined from equation (2.13).

1 2 At
m. =—t =
2 Px

P, j =0.63 MPa

m,, = -108°-0.63=3.69 *"
2 m

The yield moment in the bed joint is determined in the same way.

+h, —sin4%’
p;:lhf’ , (c cosp 1 S'_n45j:> p; =0.2 MPa
E('b + hj) cos45  1-sing
1, . kKNm
mpy :Etzpy = mpy =1.19 T

Using the simplified method, the bending yield moments become independent of the
yield line pattern and optimization may be carried out more easily.

The load carrying capacity is calculated from the yield line pattern shown in Figure
3.10.
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The moment capacity in the horizontal yield line is zero because of the rotation axis
being at the top face of the wall and because the tensile strength of the bed joint is as-
sumed equal to zero.

<>
R —
mpx? ﬁﬁg
Mpy =0 "
? v

o —>

nx nX
ﬁ) A Ay
. < >

{0

%

N

Figure 3.10 Yield line pattern
The internal work becomes:

my x h

R P
m, h X

The external work becomes, when ny and ny are uniform pressures.

W, = p's (Ebh—lhxj—z1 o2 2inind
27" 3 MW P MY

The work equation provides the load carrying capacity

m
2m_ 4T X N el 9+1nxb
I 'm_ h x Yh 2 *x

+ px
p =
Ebh—ghx
2 3

The optimal solution of x is found from dp*/dx = O:

X —2mpxh—t2nth_r\/h2 (M, +t°n, ) (2,07 +3t°n 0% + 2h°m, +18m, b*)

h 2b(6m,, +t°n, )
The load carrying capacity of the wall becomes:
p"=2.80 k—l\zl
m

The solution isillustrated in Figure 3.11.
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Figure 3.11 Result of calculations

It is seen that the yield line pattern is geometrically possible since p <0 < 90° - ¢ (¢ =
30°).

The simplified calculation method is compared with the method used in section 3.2.2.1
in Figure 3.12. The calculations show that the two methods provide amost identical
results arround the optimised solution. However, the general approach provides a
dlightly smaller load carrying capacity.

The results also show that the load carrying capacity is increased by the in-plane loads
from 2.36 kN/m? to 2.88 kN/m? when comparing with the result obtained in section
2.2.4.1. Thisis an increase in load carrying capacity of amost 22%. Considering the
small axial loads thisis a considerable increase.
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Figure 3.12 Comparison with the method of section 3.2.2.1

3.2.2.3 Example 3. Theinfluence of axial load

This example illustrates further the influence of the axial load, see Figure 3.13. In the
caculationsc = 0.5 MPais assumed.

The axia load is a compressive stress 0.05 MPa, which is equivaent to the weight of a
wall with height h = 2500 mm, thickness t = 108 mm and a density of 2000 kg/m® ap-
plied to the top of the wall in they direction. In the x direction the load is equivalent to a
uniform load causing yielding at the support of a steel beam rigidly supported at one
end and free in the other one and having a cross section of a HEB140-profile. The yield
stress is assumed to be 235 M Pa.
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Figure 3.13 Influence of axial loads

It is seen that the load carrying capacity is increased a great deal for only a small axia
loads.

3.3 Comparison with experiments

In this section, the experimental investigations made on masonry walls with small axial
loads will be presented. Only a few experiments cover the problem. The only full scale
walls were tested by Hendry, A. W. et. al.

3.3.1 Investigations

Hendry, A. W., Sinha, B. P. and Maurenbrecher, A. H. P. 1973 [17]

The experimental investigation made by Hendry, A. W. et. a. consisted of tests on 18
walls. Six walls were without returns (returns are explained in Figure 3.14), eight walls
had one return and four walls were built with two returns.
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Wall
Return
Floor dab

Figure 3.14 Returns

So-called Deep Frog Fletton bricks were used in all walls with returns. The average
compressive strength of the bricks was 26.13 MPa. A 1:%43 rapid hardening Portland
cement: lime: sand mix was used (amounts measured by volume). In all cavity walls the
halves were held together by metal ties.

The rig used to test the walls was made in an existing structure rendering boundary con-
ditions closely related to practice. The test set-up is explained in [17], see also Figure
3.15.
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Figure 3.15 Building where the testswere carried out

The transverse load was applied by an air bag. The precompression was applied by
jacks and the load was measured by load cells on the top of the wall. In the paper the
moment capacity in the head joint is not reported. The bending yield moment is calcu-
lated using the theory in section 2.1.2.1. The relevant data are listed in section 7.2.1

3.3.2 Comparison with experiments

The method used to calculate the walls is the one explained in section 3.2.1 where 8 =
45°. The yield line pattern used to calculate the load carrying capacity is in the case of
one return given in Figure 3.16a and in the case of two returnsin Figure 3.16b.
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Figure 3.16 Yield patternsused in the comparison with the test.

The calculation of the bending moments is made as in Example 2, section 3.2.2.2, with
p = 45°.

In [33] the compressive strength of the mortar is measured together with the age of ted-
ing. Based on the compressive strength of the mortar it is possible to calculate the wa-
ter/cement ratio (v/c) using Bolomey’s formula:

f =K (9— o.5j (3.5)
\

where K is a factor dependent, among other things, on the degree of hydration of the
mortar. K is calculated by linear interpolation from the basic values K = 27 MPa at 28
days, as shown in Figure 3.17.

KA

Linear interpolation

time [days]
>

Ageof 28days
test

Figure3.17

The water/lime ratio (V/k) may then be determined as one fourth of the water/cement
ratio since the mortar is a 1: % :3 mortar (cement:lime:sand), it is assumed that the
amounts are measured by weights.
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mined from equation (2.44) assuming that the bricks are solid with an IRA of 2.45

Using equation (2.43) to calculate the cohesion and using an effectiveness factor deter-
kg/m?/min, the bending yield moment, Mux, May be calcul ated.

The results of the calculation may be seen in Figure 3.18 and Figure 3.19.

04 0,6 0,8 1,2 14 16 18
Figure 3.19 Resultsas a function of b/h
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The mean value and standard deviation of all the tests are found to be:
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u=101ands=0.19 (3.6)
It is seen that the correlation between the theory and the experimentsis good.
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4 Conclusion

The present report covers calculations of the load carrying capacity of laterally loaded
masonry walls without axial loads and with small axial loads.

The load carrying capacity has in both cases been calculated using the yield line theory
developed by A. Ingerslev and K. W. Johansen to calculate the load carrying capacity
of orthotropic concrete slabs.

For both load conditions, equations for the bending yield moments have been estab-
lished. The bending yield moments have been calculated by an upper bound solution,
assuming that failure takes place in the interface between the mortar and the brick. The
failure is assumed to be a dliding failure following Coulombs modified failure hypothe-
sis unless the tensile strength of the bricks is decisive. The tensile strength of the inter-
face has been neglected.

When using the yield line theory it has been assumed that the rotation axes are placed at
the face where the lateral load is applied as a pressure. This together with the assump-
tion of no tensile strength mean that the moment capacity in a horizontal yield line be-
comes equal to zero.

In the case of laterally loaded masonry walls it has been observed in experiments that
initial cracking takes place in the bed joint before failure, which indicates that the hori-
zontal yield line has no moment capacity at failure.

The yield line theory in the case of small axial loads has been adjusted to the usual the-
ory by introducing the axial load in the external work.

The yield line theory has in both cases been compared with experiments on full size
walls. The comparisons showed that the theory is normally in good agreement with ex-
periments. The tests used have been taken from the literature.
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6 Appendix

6.1 Appendix 1. Tensle strength and flexura modulus of clay
bricks

The bending yield moment in adiagonal yield line has an upper limit determined by the
tensile strength of the brick. In this appendix some empirical equations for the tensile
strength and the flexural modulus will be established. The main experimental investiga-
tions used are the one made at Kalk- og Teglvaakslaboratoriet [25] and the one made by
R. van der Pluijm [38].

The investigation made at Kalk- og Teglvaakdaboratoriet consists of 60 tensile and
flexural tests with 6 different types of bricks. Each series consists of 10 tests. The ten-
sile tests were carried out using a specimen with metal plates glued to the ends of the
bricks. The specimenisillustrated in Figure 6.1.

> A
P Brick P
>A
Section: A-A
|
< b5

Figure 6.1 Tensile strength
The tensile strength is calculated as

fo = (6.1)

P, being the failure load.
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Equation (6.1) is used in the case of solid aswell of perforated bricksin [25].
In the same investigation the flexural modulus of similar brick types was measured. The
test set-up is shown in Figure 6.2 where | = 210 mm

‘ /3 S 113 1/3
P/2 P/2

A A

Figure 6.2 Flexural modulus

The cross-section was rectangular and no account was taken of the holes when evaluat-
ing the results. The flexural modulus is calculated as:

1p,

M
ftfb = W = ]E_S (6.2)
5 bh?

Theresults of thetestsare listed in Table 6.1
Type fo | fn | fin [Comments
[MPa] [MPa]|[MPe]
10 | 0.74 | 1.46 Massive brick
146 | 0.2 | 0.22
23.3 | 0.45 | 0.91 Perforated brick|
294 1019 | 0.17
558 | 1.98 | 3 |Perforated brick|
9.08 | 0.49 | 0.36
27.2 | 0.68 | 1.31 |Perforated brick|
4.67 | 0.18 | 0.34
42.3 | 0.56 | 2.17 |Perforated brick|
7.56 | 0.47 | 0.76
53.5 | 2.75 | 3.14 Perforated brick|
s | 289 |0.29 | 0.46

*) Normal size brick b =108 mm
**) Brick with awidth b = 168 mm

w
NI TTo[EunlE ]

(2}
<

Table 6.1 Testsresultstaken from [25]
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The results of the tensile tests are plotted in Figure 6.3 versus the compressive strength

of the brick. The results framed in acircle are the results for solid bricks.

o Kalk og
Teglveerkslaboratoriet

Figure 6.3 Tensile strength ver susthe compressive strength of the bricks
The solid lineis given by:
f, =0.0075f2 (fy, and fe, in MPa)

The broken lineis given by:
1

(6.3)

(6.4)

(6.5)

f,=—H1f
th 20 cb
The flexural modulus is plotted versus the compressive strength in Figure 6.4. The solid
lineisgiven by:
1
fo=—H*f
tfb 20 cb
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o Kalk- og
Teglvaarkdaboratoriet

Figure 6.4 Flexural modulus ver susthe compressive strength of the bricks

In Figure 6.5 the tensile strength is plotted as a function of the flexural modulus. A rela
tion given by equation (6.6) fit the measured values resonably well.
f, =1.8f.° (fi, and fy, in MPa) (6.6)

o Kalk- og
Teglveerkslaboratoriet,
perforated bricks

O Kalk- og
Teglveerkslaboratoriet,
solid bricks

Figure 6.5 Tensle strength asa function of the flexural modulus

From the investigation carried out by Rob van der Pluijm 6 tests made on cylinders of
clay bricks are selected. The test set-up and specimens are shown in Figure 6.6. Two
different bricks are used. The bricks were solid wire cut bricks. Notice that the tensile
specimens were notched. The results are shown in Table 6.2.
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L
= =9 3
A
<
} < 204 }}

Figure 6.6 Specimen used by Rob van der Pluijm to measurethe tensile strength of bricks

Type fob fib
[MPa] | [MPa)
WC-jO 66 | 3.51
sm-ve 33 15

Table 6.2 Test resultstaken from [38]

The results for the solid bricks tested at Kalk- og Teglvaarkslaboratoriet are now used
together with the results of Rob van der Pluijm and they are plotted versus the com-
pressive strength of the bricksin Figure 6.7. It may be seen that the tensile strength may
be calculated from the compressive strength of the brick as

1

fi :% fo (6.7)
in the case of solid bricks.

5 I - - - - - - T- -~ - - - T T T T T T T T T T~ I

fb [MPa]l | | i 0O Solid bricks
L | | | |
TR NSRS SSSNS S— 1
Kalk- og Teglveakda- + B
34 boratoriet— - SRR |
2| R S R— |
- | |
T L — S — 3
O | | |
S | e [MPa],
0 | | | |
0 20 40 60 80

Figure 6.7 Tensile strength of solid bricks, [25] and [38]
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6.2 Appendix 2. Deflection of laterally loaded masonry walls

In this appendix the deflection of masonry walls loaded with only lateral load will be
investigated. The procedure is to determine the bending stiffnesses and postulate a sim-
ple relation between the bending stiffnesses and the torsional stiffness. The stiffnesses
will be used to determine the deflection of walls. The bending stiffnesses parallel and
perpendicular to the bed joint are very different and the initial stiffness of masonry in
compression is believed to have little to do with the bending stiffnesses. The bending
stiffness is believed to be far more influenced by the bricks than by the mortar.

The investigation begins with a preliminary experimenta justification of the bending
stiffnesses and the torsional stiffness. It has not been possible to find similar bending
and torsion tests, so a simple relation connecting the torsiona stiffness to the bending
stiffnesses has been adopted and justified by an example where calculations on a wall
are compared with measured deflections.

The stiffnesses of masonry bent about the head or bed joint are investigated experimen-
tally in [26].

In [26] two different types of mortar are used together with four types of bricks. The
author has limited this investigation to deal only with two types of bricks, although in
[26] four types of bricks are treated. The bricks used are solid clay bricks (soft stroked).
The dataare listed in Table 6.3.

Dimension Strength | Suction
Brick type | H b L feb IRA
[mm] | [mm] |[mm]| [Mpa] |[kg/m7min]
10 55 | 109 | 229 9.8 3.2
20A 55 | 107 | 229 23.0 3.0

Table 6.3 Properties of the bricks

The most important properties of the mortars used in the investigation are listed in
Table 6.4.
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K C 60/40/850

fcm

[MPd]
35

K C 35/65/650

115

Table 6.4 Mortar properties

The test set-up used in the investigation is the standard wallette test. This test set-up is
used for both bending about the head and the bed joint as shown in Figure 6.8. In the
same figure the method used to monitor the rotations may be seen.

710

Bed Joint
sl
— A
| ‘ |
1 1
. |
2 | |
i |
1
| |
|
|
| ‘ |
S SN ey SSpRgupe S
1
) 255
Head Joint |« >
ol
A T TT
. (I
ﬂ I I

540
.  y2=270 2=270
Section 1-1 - ¥ =i= y »
| - L 1
/// Longitudinal
© § Ej'ﬁtransducer
vy
L A
Q L Stiff rods used to
Py measure the
O .
angular deflections
o]
i
N
= | T
+ © | -
= N
Il A
540
yl2=270 | yl2=270
Section 2-2 L
Rl W
o Longitudinal
© 5 E}ﬁtransducer
y v
A A
o) P Stiff rods used to
% measure the
angular deflections
o]
A
_<l’
% B~
<«l'

Figure 6.8 Test set-up

The angular deflection at the supports is determined by

o AL+ AL+ Al + Al

4.2y
2

(6.8)
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In both cases the stiffness is determined by using linear elastic theory for beams in four-
point bending. Thisis astandard case for which we have:

2 2
Q2 1_(9) L Qb 1{9) (69)
12El I 12El I
E isthe Young's modulus and | is the sectional second order moment. The length | =
a+b. Other parameters may be seen in Figure 6.8. E has to be substituted by either Eqy or

Eoy, Where X refer to bending about the head joint and y to bending about the bed joint.
Thus when « is known from the test, the stiffnesses may be cal cul ated.

Each combination of brick and mortar were used in three similar tests. The moment-
curvature relations obtained in each test are plotted in Figure 6.9.

——— g — == Mortar, Brick, No.

1’2777M7‘T777T777—“ A i i 1,2”’M’T”’T”’T”’T”’T’**‘\ Mortar, Brick, No.
i i i I OKC 60/40/850, 10, 1 | | | | | | OKC 60/40/850, 10, 1
M-_! ! ! g | OKC60/40/850,10, 2 | | | 2
1+ *mng***T***T’Enq | T 1,,M_nﬁa‘¢,,,:,,,,%,,,i¢ 'S x,,,} © KC 60/40/850, 10, 2
! ! D\Pn & 7en | #KCG040850,10, 3 | | | Ao % 4 | &KC60/40/850, 10, 3
| | o ¥ | | ! ! ! %! !
081 -—-T---71 52 _‘#57717777‘ +KC35065650,10, 1 08””’L”’L”’L‘ﬁa‘q%{‘t”"’**" +KC 35/65/650, 10, 1
b v I I +1 x'\ I I
! énnib% ! ! | AKC35ES650, 10, 2 ! ! Q:\@ < ! ! AKC 35/65/650, 10, 2
Lol gx$O M= 1 I | AKC35/65650,10, 3 A% %
0,6 T 4339‘?‘ 1 | I Ols,,,,,J“,,,J“t‘ﬁ}%,,,*,,,ﬁ,,,ﬁ AKC 35/65/650, 10, 3
: s L : : : : XKC60/40/850, 204, 1 | A4ﬁ * | | | XKC 60/40/850, 20A, 1
Lo 1 Kol 1 __ _ 1 ____I____l  -KC60/A40850,20A,2 . X . ‘ -
04 \10\_:“\ | i i i 0_4,,,,,‘P,, F777T7774\7774\7774\ KC 60/40/850, 20A, 2
Yl I I I I XKC60/40/850, 20A, 3 x-’“ | | | | XKC60/40/850, 20A, 3
- I I I I I
= I I I I I
1 _xel 1 g O KC 35/65/650, 20A, 1 1 X 44 O KC 35/65/650, 20A, 1
0,2 & ; | | | K I 0,2 + + + e S
| | | | | | =KC35/65/650, 20A, 2 ! ! ! ! | —KC35/65/650, 20A, 2
L R L e
0 | | | | | | @KC35/65/650, 20A, 3 o ! ! ! , , . @KC35/65/650,20A, 3
0 0,2 04 0,6 08 1 12 0 0,2 04 0,6 08 1 12

Figure 6.9 M easurements of the moment-curvature relation, bending about the head joint (a) and
bending about the bed joint (b)

Figure 6.9a shows the measured moment-curvature relation for bending about the head
joint and Figure 6.9b for the bed joint.

From Figure 6.9 it may be seen that the shape of the curves are different for bending
about the head joint and bending about the bed joint. Bending about the bed joint leads
to a more linear behaviour than bending about the head joint, for which the moment-
curvature relation has more the shape of a parabola.

The non-linear behaviour for bending about the head joint is more pronounced for weak
mortars than for stronger mortars.
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07 M [kNm]
’ | | | o KCB0/40/850,
0,6 l l &%& l brick 10
05 f--—-- [ I‘%;gggx x> } —— Cadlculated
| SO j curve
0’4 I L 2 Xy~ d_ . __Q |
X "g?ff | | x  KC35/65/650,
03 1 BB 1 3 brick 10
02 | ge L H e Calculated
~ ‘ ! ! ! curve
A T I |
0/ | | | & [mm?]

0,0E+00 2,5E-06 5,0E-06 7,5E-06 1,0E-05

Figure 6.10 Bending about the head joint in the case of a weak and a strong mortar, respectively

In Figure 6.10 the measured moment-curvature relation is plotted for a weak and a
strong mortar, respectively. In the same plot two curves are shown, which are cal culated
using equation (6.10).

M- MWL(Z_LJ 610)

Kmax Kmax

It is seen that the behaviour of the weak mortar may be predicted by equation (6.10),
whereas the curves for the stronger mortar are more linear if xmna in (6.10) is identified
with the curvature at failure. This may be explained by the properties of the bricks. The
suction is at a level, which provides a good bond in the case of the strong mortar. Thus
failure of the brick instead of failure in the interface occurs and thus a more brittle and
linear moment-curvature relation may be expected.

Anyway the initial stiffness may be determined from the test results in Figure 6.9 by
fitting a parabolic function to the points. The functions have the property of going
through origo. The initial stiffness is determined as the vaue of dM/dx for (x.M) =
(0.0). The curvature at failure is defined as the point for which dM/dx = 0.

The results may be seen in Table 6.5 where aso the ratios between the stiffnesses and
the maximum curvatures are listed.
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Brick Mortar Bending about the bed joint| Bending about the head joint| « ..., Eoy
Ky.max Eoy Kx.max Eox Ky, max EOx
[mm™] [MPe] [mm™] [MPe] [ |
10 |KC60/40850 | 4.59E-06 1774.5 6.21E-06 3476.5 1.35 051
10 |KC35/65/650| 6.79E-06 1794.2 8.05E-06 3721.0 1.19 0.48
20A |KC60/40850 | 2.74E-06 2512.6 5.02E-06 5002.2 1.83 0.50
20A |KC35/65/650| 8.27E-06 2945.8 5.94E-06 5185.7 0.72 0.57

Table 6.5 Bending stiffnesses and maximum cur vatur es obtained from the tests

Table 6.5 shows that the initial stiffness about the head joint (Eoy) is about two times
larger than the stiffness about the bed joint (Eqy). The table also shows that the deforma-
tion capacity is larger for bending about the head joint than for bending about the bed
joint. Thisis especially clear in the case of aweak mortar (KC 60/40/850), where failure
is believed to take place in the interface as mentioned above.
Empirical equations for the initial stiffnesses may be established based on the results
listed. The equations have to include properties of the bricks as well as the mortar. From
the results listed in Appendix 1 it may be shown that the flexural modulus of massive
bricks may be calculated as:

ftfb :% fcb
Then empirical equations for the stiffnesses Eox and Egy, respectively, may be estab-
lished. They become:

(6.11)

= 2894504 0%
E tfb (6.12)
E,, =1487.9f%%f0%

where f., is the compressive strength of the mortar. Units are MPa.
Using these equations the mean vaue of the ratios E; g1/ Eg e N

Eoy.612) | Eoymesrea € found to be 0.99 and 1, respectively. The standard deviations
become 0.008 and 0.05, respectively. The calculated values may be seen in Table 6.6

fcb

fcm

fitb

EOx

Eoy

[MPa]

[MPa]

[MPe]

[MPe]

[MPe]

9.8

3.5

14

3504.5

1801.9

9.8

115

14

3690.2

1897.3

23.0

3.5

3.3

4958.7

2551.0

23.0

115

3.3

5221.4

2686.1

Table 6.6 Calculated values of the bending stiffness
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Example 1. Calculation of wall deflections

In this example, the load deflection curve of awall tested in [11] will be calculated by
using the results obtained above. The procedure will be to estimate a simple analytical
form of the deflection. When the deflection corresponding to maximum curvature about
the bed joint is achieved, this stiffness will be set a zero and the wall only has bending
stiffness about the head joint. The wall calculated is shown in Figure 6.11.

AY b

Figure 6.11 Wall for deflection analysis

The data used in the calculations may be seen in Table 6.7. From the table the dimen-
sions of the wall are indicated together with the initial stiffnesses. Furthermore the
maximum curvatures in the x and y direction are listed. These values are estimated since
in [11] no information has been given on this matter. Here the initia stiffnesses are
taken from the Norwegian code which is based on the work of Hallquist[11].

a 2300mm
b |4500mm
t 310mm

2

Eox |5500| MPaffor xy = 68WZ <2.010°else zero

X2

2

Eoy |3667|MPaffor «y = 6aywz <0.410° else zero

2

Table 6.7 Data used in the calculations

The bending stiffnesses and the torsional stiffness are calculated as:
1.3
D =E, —t
X EOX 12
1.3
Dy = EOyEt (613)

D,, =,/D,D,
The deflection of the wall is estimated by equation (6.14), wr, being the midpoint deflec-
tion,
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a

W, =w, sin (%Xj sin (”—yj (6.14)

The load for a given deflection may be obtained by considering the elastic energy. The

internal work may be calculated as:
138 (otw, ) oow, ) ow,
==|(|| D 2|1 +D 21 +2D £ xd 6.15
A2l *(Mj y(awj ”(axayJ oo oo

Inserting (6.14) into (6.15) the internal work may be calculated as

1 D, D D
A :§E4Wriab(g+a_z+ 2a2_tx)yzj (616)
The external work becomes:
128 ab
=— dxdy=2—w 6.17
A =5 ] Jamdidy =2 w0 (6.17)
Thereby the load at a given midpoint deflection may be calculated by:
D, D D
q:Wmﬂ4(b4 +2b2;”2 +a—Zj (6.18)

The load-deflection curve obtained is shown in Figure 6.12. In the same figure, meas-
urements by Hallquist [11] are plotted. It may be seen that the calculations fit the tests
results well, except for very small deflections.

The example gives a preliminary support for calculating the torsional stiffness by equa-
tion (6.13).

1,2 1

— Calculated
deflection

o Hallquist test results

Figure 6.12 L oad-deflection curve
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From the above example it is clear that the maximum curvature is an important factor.
Rob van der Pluijm arrives at similar conclusionsin [38].

The behaviour of masonry in bending has also been investigated by Klavs Feilberg [37].
In this investigation bending about the head and bed joint is undertaken. Five types of
bricks are used together with two types of mortars. The tests were deformation con-
trolled, making it possible to obtain the maximum deflection from the reported curves,
which may be used to cal culate the maximum curvature.

In the case of bending about the head joint, the specimens tested were made with one
mortar together with two types of bricks. The data for the bricks and the mortar used
may be seen in Table 6.8 and Table 6.9.

Table 6.8 Properties of thebricksin [37]
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Table 6.9 Properties of themortar in [37]

Only tests with bricks in running bond with half a brick overlap are used for determina-
tion of the maximum curvature.

In the case of two different bricks laid with mortar B, the influence of the width of the
specimen was investigated. The results may be seen in Table 6.10, which only covers
bending about the head joint.

No |Brick| fgp [Mortar| b | w, | Ix | kxmax | D/lx Failure
[MPe] [mm]|[mm]|[mm]| [mm]
1| P | 46 B |872| 1.3 |1498| 6E-06 | 0.58 Brick
3| P 46 B |600| 1.7 |1498| 8E-06 |0.40 Interface/brick
5| P 46 B [328| 2.2 |1498| 1E-05 | 0.22 Interface/brick
7| P 46 B |260| 2 |1258| 1E-05 |0.21 Interface/brick
9| S| 26 B |872| 2 |1498| 9E-06 | 0.58 Interface/brick
11| S | 26 B |600| 1.6 |1498| 7E-06 | 0.40 Interface/brick
13| S| 26 B |328| 0.7 |1498| 3E-06 | 0.22 Brick
15| S | 26 B |260|2.15|1258| 1E-05 |0.21 Interface/brick
18| G | 66 B |600| 1.4 |1498| 6E-06 | 0.40 Brick

Table 6.10 Results taken from [37]

If the maximum curvature is plotted versus b/l a variation as shown in Figure 6.13 is
obtained. The point in a dotted circle has to be disregarded since the test produced un-
expected low results. It may be seen that the maximum curvature declines with increas-
ing ratio, b/l. The solid lineis calculated as:

-0.77
K oo = 0.36-10° (?j (6.19)

However a constant level of kxmax iS used in the further calculations. Formula (6.16) is
quoted only to illustrate the importance of a standard specimen for the determination of

K'x.max-
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Figure 6.13 Maximum curvature as a function of the ratio width/length

Furthermore, bending tests with specimens of a constant width, 600 mm, were carried
out using one mortar together with different bricks. Both bending tests about the head
and bed joint were carried out. The results of the tests may be seenin Table 6.11.

Head joint Bed joint
Brick| fon, [Mortar| b | Wy | Ix | Kxmax | b | W, ly Kymex |K

y,max

[MPa] [mm][[mm]|[mm]| [mm™] [[mm]|[mm]|[mm] | [mm™] | ¥ xmex
S | 26 A |600| 1 |1498|4.5E-06| 468 | 0.1 | 668 |2.2E-06| 0.50
P | 46 A | 600| 1.2 |1498|5.3E-06| 468 | 0.1 | 668 |2.2E-06| 0.42
G | 66 A |600| 1.4 |1498|6.2E-06| 468 | 0.1 | 668 |2.2E-06| 0.36
Y | 47 A | 600| 1.3 |1498|5.8E-06| 468 | 0.1 | 668 |2.2E-06| 0.39
O | 26 A |600| 1 |1498|4.5E-06| 468 |0.12| 668 |2.7E-06| 0.60

Table 6.11 Resultstaken from [37]

From Table 6.11 it appears that aratio of 0.5 between the maximum curvaturesis area
sonable estimate. This is the same as the ratio between the initial stiffnesses. It may be
seen that the initial rate of absorption has no influence on the value of the initial stiff-
nesses.

The maximum curvature may be calculated in the case of bending about the head joint
using the secant stiffness at origo. If M(x) is given by (6.10) the secant stiffness is half
the initial stiffness Egx. The curvature is calculated assuming linear elastic material be-
haviour with a maximum stress equal the flexural modulus for bending about the head
joint, see Figure 6.14.

-02-



Lars Zenke Hansen

f

tIb,head

%!

=

‘4
‘

)

‘4
“

Figure 6.14 Deter mination of &y

_ 2 ftlb,head

 Eyt

max

(6.20)

To illustrate the procedure of the calculations, an example with Danish brickwork is

outlined.

Example 2. Load-deflection curve
A simply supported wall as shown in Figure 6.15 is considered. The wall is built with G
bricks and an A mortar (data taken from the text above). The moment capacity is meas-
ured in [37] to be 2.3 kNm/m. By means of the yield line theory, see Chapter 2, the load
carrying capacity of the wall shown in Figure 6.15 is found to be 2.6 kN/m?.

AY

Figure 6.15 Wall for deflection analysis

The data necessary to carry out the calculations are shown in Table 6.12. The maximum
curvatures are taken from Table 6.11. The maximum curvature in the x-direction is re-
duced so that aratio of ¥~ between the maximum curvatures is achieved.

a | 2500mm

b | 4500mm

t 108mm

Eox

5000 MPa

2

for iy = aavgz <6.210° else zero
X

2500 MPa

2
for iy = a@ywz <3.110°else zero

2

Table 6.12 Data used in the calculations
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By the same procedure as outlined in Example 1 the result becomes as shown in Figure
6.16.

09 {-Etooborb b

08 1P
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06 -t

05 | b

T e e e

R e S

T

O b [
0 ! ‘

o
N N [
.h J
m N [
m P
[
o
[EEN
N

Figure 6.16 L oad deflection curve

It appears from Figure 6.16 that the ultimate load found by deflection calculation is a-
most the same as the load obtained by the yield line theory (p*). The shape of the load
deflection curve is believed to be correct since atest made by Rob van der Pluijm, [38]
givenin Figure 6.17 shows similar behaviour.

Figure 6.17 M easur ed load-deflection curve, taken from[38]

Figure 6.17 was obtained for awall with the height 1740 mm and the width 3950 mm.
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This appendix has demonstrated how to calcul ate deflections of a masonry wall. Differ-
ent bending stiffnesses about the head and the bed joint have to be introduced together
with a simple equation for the torsional stiffness and maximum values of the curvatures
in each direction. This provides the bilinear behaviour shown in Figure 6.16. Thereby it
ispossible to get estimates of the deflection and furthermore a value of the load carrying

capacity.
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6.3 Appendix 3. Inclination of adiagonal yield line

The inclination of a diagona yield line running in the interface, depends on the bond in
which the masonry wall is built. In Denmark different types of bonds are used. In this
Appendix a short survey of diagonal yield lines and the mean inclination will be pre-
sented.

Theinclination is calculated as, see Figure 2.14 for the notation X, and Yo,

0 = Arctan (ﬁ] (6.21)
Yo

LI | ] LI | I I I I I |

I I ]| I | | | | | | |
L] IDI LA 1 | | | | I | |
I IDI ] I I 0=345°___1[ ]
g Ig 207TD | I ||II % l I IIII — | |
D I | | I [ Il [ |
Polish or Gothic bond Running bond with ¥4 overlap
| I | P | LI I I ]
I I I I I | I I | |
I DFDFD$ I U | - I : | IDIII : I ] l
I T [ R | Il | IC ]| |

[~ N\ p=p9s][ ] ]l [ 1 1i | |
DDD@DE_H_HJD 1 [10=20.7°7 ][]

| [—Te | | - v []] |
DDDDDDDDD LI | I I |
Block bond Monk bond
| I I I | | I I I I |
lDDDDDFDDD/l | | ” [ ” I - [ : | |
[ | | [ O [ 7 [ | I I I |
e e e
| I I [ I | | 1 | —
I DFDD 0= 375°]D| I I . II/|| | ”H’ﬁ” | I
DDD@D@QDD | | I [ |

Running bond with ¥ overlap
Kochs bond

Figure 6.18 Survey of diagonal yield lines
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In the case of Polish or Gothic bond: X, Zg(% +hj) and y, =h,+h;, which for a nor-

mal size Danish brick with ajoint thickness of 12 mm gives 6 = 20.7°.
Other bonds may be found in [11].
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7 Supplements

7.1 Lateraly loaded walls

7.1.1 Kheir, A.M.A. 1975

no. Brick | Supports | b h Prmeas Mo P'min | Press | b
Mortar [mm] | [mm] [[kN/m?]|[KNm/m] [[kN/m?]| p* h
Al - 3 190 380 8.4 0.08 7.6 1.1 0.5
A2 - 3 190 380 58 0.07 7.0 0.8 0.5
A3 - 3 190 380 6.3 0.08 7.3 0.9 0.5
A5 - 3 190 380 9.3 0.09 9.1 1.0 0.5
A6 - 3 190 380 10 0.10 9.4 1.1 0.5
B1 - 3 380 380 31 0.07 3.3 0.9 1.0
B7 - 3 380 380 4.7 0.09 4.0 1.2 1.0
B8 - 3 380 380 4.6 0.09 4.1 1.1 1.0
C3 - 3 760 380 2.35 0.08 1.5 1.6 2.0
C4 - 3 760 380 29 0.09 1.8 1.7 2.0
C5 - 3 760 380 2.8 0.08 1.6 1.8 2.0
Gl - 4 400 200 18.2 0.10 16.8 1.1 2.0
G2 - 4 400 200 19 0.10 17.2 1.1 2.0
G3 - 4 400 200 18 0.09 14.4 1.2 2.0
F1 - 4 400 400 8.4 0.08 8.5 1.0 1.0
F2 - 4 400 400 10.5 0.09 9.3 1.1 1.0
F3 - 4 400 400 10 0.10 10.7 0.9 1.0
H1 - 4 400 800 5.6 0.09 6.5 0.9 0.5
H2 - 4 400 800 7 0.09 6.8 1.0 0.5
Table7.1u =04
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o Kheir, A. M. A, 1975
a Kheir, A. M. A, 1975
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7.1.2 West,H. W.H et. al. 1977

no. Brick | Supports b h Preas My P min | Press
Mortar [mm] | [mm] [[KN/m?] |[kNm/m] |[kN/m?] | p*
Brick A, 1:1/4:3 Mortar, IRA = 0.84 kg/n/min
757 AX 3 5500 | 2600 | 2.9 4.90 2.9 10 | 21
795 AX 3 5500 | 2600 | 3.45 4.90 2.9 12 | 21
825 AX 3 5500 | 2600 | 3.1 4.90 2.9 11 | 21
826 AX 3 5500 | 2600 | 3.52 4.90 2.9 12 | 21
844 AX 3 5500 | 2600 | 2.83 4.90 2.9 10 | 21
845 AX 3 5500 | 2600 | 2.96 4.90 2.9 10 | 21
852 AX 3 5500 | 2600 | 3.21 4.90 2.9 11 | 21
869 AX 3 5500 | 2600 | 3.45 4.90 2.9 12 | 21
782 AX 3 5500 | 2600 | 3.79 4.90 2.9 13 | 21
827 AX 3 5500 | 2600 | 4.38 4.90 2.9 15 | 21
835 AX 3 4570 | 2600 | 3.79 4.90 36 10 | 18
841 AX 3 4570 | 2600 | 4.21 4.90 36 12 | 18
892 AX 3 4570 | 2600 | 4.72 4.90 36 13 | 18
821 AX 3 3660 | 2600 | 5.45 4.90 5.0 11 | 14
836 AX 3 3660 | 2600 | 3.1 4.90 5.0 06 | 1.4
842 AX 3 3660 | 2600 | 4 4.90 5.0 08 | 14
850 AX 3 3660 | 2600 | 5.38 4.90 5.0 11 | 14
893 AX 3 3660 | 2600 | 5.58 4.90 5.0 11 | 14
809 AX 3 3050 | 2600 | 5.03 4.90 6.6 08 | 1.2
834 AX 3 3050 | 2600 | 5.79 4.90 6.6 09 | 1.2
840 AX 3 3050 | 2600 | 5.1 4.90 6.6 08 | 1.2
822 AX 3 2440 | 2600 | 5.1 4.90 9.4 05 | 09
829 AX 3 2440 | 2600 | 6.69 4.90 9.4 07 | 09
830 AX 3 2440 | 2600 | 6.83 4.90 9.4 07 | 09
919 AX 3 2440 | 2600 | 5.1 4.90 9.4 05 | 09
1078 AX 3 2440 | 2600 | 7.65 4.90 9.4 08 | 09
1079 AX 3 2440 | 2600 | 8.25 4.90 9.4 09 | 09
932 AX 3 1520 | 2600 | 1551 | 4.90 212 | 07 | 06
Brick B, 1:1/4:3 Mortar, IRA = 2.5 kg/m’/min
787 BX 3 5500 | 2600 | 2.76 3.10 1.8 15 | 21
820 BX 3 5500 | 2600 | 2.76 3.10 1.8 15 | 21
838 BX 3 5500 | 2600 | 2.62 3.10 1.8 14 | 21
839 BX 3 5500 | 2600 | 2.48 3.10 1.8 14 | 21
846 BX 3 5500 | 2600 | 2.83 3.10 1.8 16 | 21
847 BX 3 5500 | 2600 | 2.45 3.10 1.8 14 | 21
896 BX 3 5500 | 2600 | 2.65 3.10 1.8 15 | 21
897 BX 3 5500 | 2600 | 2.76 3.10 1.8 15 | 21
899 BX 3 5500 | 2600 | 3.03 3.10 1.8 17 | 21
851 BX 3 3660 | 2600 | 2.89 3.10 32 09 | 14
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903 BX 3 3660 | 2600 | 4.83 | 3.10 32 | 15 | 14
898 BX 3 2440 [ 2600 | 658 | 3.10 60 | 1.1 | 09
920 BX 3 2440 [ 2600 | 4.96 | 3.10 60 | 08 | 09
1075 BX 3 2440 | 2600 | 3.2 3.10 60 | 05 | 09
1076 BX 3 2440 | 2600 | 5.2 3.10 60 | 09 | 09
904 BX 3 1520 | 2600 | 12.06 | 3.10 134 | 09 | 06

Brick A, 1:1:6 Mortar, IRA = 0.84 kg/m’/min
786 AY 3 5500 | 2600 | 2.14 | 4.10 24 ] 09 [ 21
907 AY 3 5500 | 2600 | 255 | 4.10 24 | 11 | 21
912 AY 3 5500 | 2600 | 2.48 | 4.10 24 | 10 | 21
913 AY 3 5500 | 2600 | 2.31 | 4.10 24 | 10 | 21
910 AY 3 2440 [ 2600 | 545 | 4.10 79 | 07 | 09
895 AY 3 1520 | 2600 | 12.41 | 4.10 178 | 07 | 06
908 AY 3 1520 | 2600 | 14.82 | 4.10 178 | 08 | 06

Brick B, 1:1:6 Mortar, IRA = 2.5 kg/mé/min
789 BY 3 5500 | 2600 [ 2.21 | 260 15 | 15 [ 21
902 BY 3 5500 | 2600 | 2.21 | 260 15 | 15 | 21
918 BY 3 5500 | 2600 | 1.65 | 2.60 15 | 11 | 21
922 BY 3 3660 | 2600 | 2.28 | 260 27 | 09 | 14
901 BY 3 2440 [ 2600 | 655 | 260 50 | 1.3 | 09
911 BY 3 2440 [ 2600 | 6 2.60 50 | 1.2 | 09
921 BY 3 1520 | 2600 | 9.38 | 2.60 113 | 08 | 06

Brick W2, 1:1/4:3 Mortar, IRA=3.20 kg/m?/min
928 W2x 3 5500 | 2600 [ 2.14 | 351 21 [ 10 [ 21
960 W2x 3 5500 | 2600 | 3.03 | 351 21 | 15 | 21
973 W2x 3 3660 | 2600 | 3.03 | 351 36 | 08 | 14
926 W2X 3 2440 [ 2600 | 414 | 351 68 | 06 | 09
974 W2X 3 2440 [ 2600 | 5.38 | 351 68 | 08 | 09

Brick W2, 1:1:6 Mortar, IRA=3.20 kg/m¥/min
924 w2y 3 5500 [ 2600 | 1.72 | 284 17 | 10 [ 21
956 w2y 3 5500 | 2600 | 2.76 | 284 17 | 17 | 21
954 w2y 3 3660 | 2600 | 345 | 284 29 | 12 | 14
944 w2y 3 2440 [ 2600 | 579 | 284 55 | 1.1 | 09

Brick W8, 1:1/4:3 Mortar, IRA=0.10 kg/m?/min
923 W8x 3 5500 | 2600 | 2.07 | 284 17 [ 12 | 21
931 W8x 3 3660 | 2600 | 462 | 284 29 | 16 | 14
927 W8x 3 2440 [ 2600 | 9.93 | 284 55 | 1.8 | 09
1080 W8x 3 2440 [ 2600 | 7.1 2.84 55 | 1.3 | 09
1081 W8x 3 2440 [ 2600 [ 7.5 2.84 55 | 14 | 09

2
T%blZuz[—jﬁi&l—j=OA4
1/z(215+10)
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XWest, H. W. H.€t. al.
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7.1.3 Cajdert, A. 1980

b
h

18
18
18
17
3.0
2.3

Preas
p+

11
1.2
1.2
2.0
2.3
2.2

T
P min

7.9
7.9
7.9

31

5.0
3.9

Mpx

4.25
4.25
4.25
4.25
4.25
4.25

Preas

8.6
9.6
9.8

6.2

115

8.7

[mm] [[kN/m?] | [kNm/m] | [kN/m?]

b
[mm]

3400 | 1900

3400 | 1900

3400 | 1900

3400 | 1950

3400 | 1130

3400 | 1450

Supports

4
4
4
3
3
3

Brick
Mortar
1B

3B
4B
5B
6B

no.

51

56

58
60
61

66

0,28
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x Cajdert, A.1980
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7.1.4 Lawrence, S. J. 1983

no. Brick | Supports b h Preas Mo P min | Press b
Mortar [mm] | [mm] |[[KN/m?] | [kKNm/m] [[kN/m?] | p* h
Category 1
12 0 4 2500 | 2500 | 8.6 3.89 10.9 08 | 10
18 0 4 3750 | 2500 | 4.9 4.15 6.6 07 | 15
22 0 4 5000 | 2500 | 4.7 3.99 4.4 11 | 20
27 0 4 6000 | 2500 | 3.1 3.89 35 09 | 24
8 0 4 6000 | 3000 3 3.95 3.0 10 | 20
32 0 4 6000 | 3000 | 3.5 4.70 3.6 10 | 20
Category 2
13 0 4 2500 | 2500 | 9.1 4.19 18.1 05 | 10
37 0 4 2500 | 2500 | 10.7 2.40 10.3 10 | 10
20 0 4 3750 | 2500 | 5.2 3.83 9.1 06 | 15
23 0 4 5000 | 2500 | 5.5 4.48 7.2 08 | 20
31 0 4 6000 | 2500 | 4.2 4.44 5.6 07 | 24
6 0 4 6000 | 3000 | 4.4 3.83 4.3 10 | 20
7 0 4 6000 | 3000 | 4.4 3.89 4.3 10 | 20
33 0 4 6000 | 3000 | 3.3 3.77 4.2 08 | 20
Category 3
14 0 4 2500 | 2500 | 11.3 4.15 17.8 06 | 10
38 0 4 2500 | 2500 9 2.76 118 08 | 10
19 0 4 3750 | 2500 | 4.8 3.55 8.4 06 | 15
24 0 4 5000 | 2500 5 5.16 8.2 06 | 20
30 0 4 6000 | 2500 | 4.7 4.70 5.9 08 | 24
9 0 4 6000 | 3000 | 25 4.68 5.2 05 | 20
34 0 4 6000 | 3000 3 3.57 3.9 08 | 20
Category 4
16 0 3 2500 | 2500 8 4.38 8.3 10 | 10
21 0 3 3750 | 2500 | 3.9 2.76 2.8 14 | 15
25 0 3 5000 | 2500 | 2.6 4.21 29 09 | 20
29 0 3 6000 | 2500 | 24 4.28 24 10 | 24
35 0 3 6000 | 3000 | 1.7 3.61 17 10 | 20
Category 5
15 0 3 2500 | 2500 | 7.8 4.21 4.7 1.7 | 10
17 0 3 3750 | 2500 | 34 3.89 25 14 | 15
26 0 3 5000 | 2500 | 2.7 4.01 19 15 | 20
28 0 3 6000 | 2500 | 2.3 4.15 16 14 | 24
10 0 3 6000 | 3000 | 1.7 4.24 14 13 | 20
36 0 3 6000 | 3000 | 1.9 2.74 0.9 22 | 20
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7.1.5 Buhelt, M. 1984

no. Brick | Supports b h Preas Mo P min | Press b
Mortar [mm] | [mm] |[[KN/m?] | [kKNm/m] [[kN/m?] | p* h
S121 2 2 1430 | 1470 | 241 | 2.83 22 | 11 | 10
S122 2 2 1430 | 1470 | 2.73 | 2583 22 | 12 | 10
S123 2 2 1430 | 1470 | 1.69 | 2.83 22 | 08 | 10
S221 2 2 2390 | 1470 | 166 | 2.83 14 | 12 | 16
S222 2 2 2390 | 1470 | 155 | 2.83 14 | 11 | 16
S223 2 2 2390 | 1470 | 165 | 2.83 14 | 11 | 16
55+12 |
+
Table75 u = =0.14
0,75(228+12)

4 T [ N ‘
p* [KN/m?] 3 3 ' o Buhelt, M. 1984
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7.2 Laterally loaded walls with small axial loads

7.2.1 Hendry, A. W., Sinha, B. P. and Maurenbrecher, A. H. P. 1973

no. Returng b h fon | Preas ny Mpx P'min | Prmeas | b

[mm] | [mm] [MPd]| [kN/m? | [MPa] |[kNm/m]|[kN/m3 | p* | h
5| 1 |1370.00|2634.62|144| 2620 | 114 | 466 | 2361 | 1.03 |0.52
6 | 1 |1370.00|2634.62| 85 | 2550 | 096 | 4.28 | 2103 | 1.06 |0.52
15| 1 |1320.00|2640.00|14.7| 2400 | 1.00 | 439 | 2225 | 0.95 |0.50
16 | 1 |1880.00|2506.67|14.1| 17.00 | 073 | 454 | 17.20 | 0.97 |0.75
9 | 1 |2590.00(2590.00(9.05| 1520 | 065 | 456 | 1297 | 119 |1.00
10 | 1 |2590.00|2590.00(13.15| 1600 | 051 | 4.67 | 12.00 | 1.37 |1.00
13| 1 |4670.00|2457.89|17.9| 550 | 048 | 443 | 7.72 | 0.84 |1.90
14 | 1 |4730.00|2489.47 [15.35| 620 | 055 | 452 8.15 | 0.90 |1.90
11| 2 |2720.00|2720.00|9.76 | 20.70 | 048 | 439 | 21.87 | 1.28 |1.00
12| 2 |2720.00|2720.00|145| 2390 | 054 | 438 | 2238 | 1.43 |1.00
17 | 2 [3890.00|2593.33|17.1| 1200 | 038 | 446 | 1412 | 1.14 |150
18| 2 |4570.00|2538.89|225| 970 | 036 | 431 | 11.70 | 1.07 |1.80

Table7.6
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