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2 Summary 

In this report, unreinforced and reinforced masonry columns and beam columns have 

been treated by different constitutive models for masonry. The models have been 

compared individually and with experiments. The tensile strength has been set at zero. 

To provide tensile strength to masonry reinforcement must be used. 

 

Unreinforced masonryEquation Section (Next) 

In the report, expressions have been derived for the load carrying capacity of columns 

and beam-columns with and without membrane action and for laterally loaded masonry 

one-way walls without axial load. Comparison with experiments shows that columns 

may be calculated by Ritter’s equation without the correction factor suggested in the 

Danish Code of Practice, DS414. Results for unreinforced masonry beam-columns have 

been compared with experiments and the comparison shows that calculations made by 

using a modified linear elastic model overall provide the best results. The method 

developed is iterative. Simple conservative calculations may be made by using a linear 

elastic model, and in this case the calculations may be made analytically. All together 

307 experiments have been collected and used for the comparison. 

Furthermore, it has been shown that masonry made by Danish bricks has an initial 

stiffness of around 375fcm, where fcm is the compressive strength of the masonry in MPa. 

This value is much smaller than the initial stiffness met in other countries in Europe. 

Thus, an investigation of the behaviour of Danish masonry in compression has been 

undertaken. 

Regarding masonry members with membrane action, it has been shown that a small 

pressure perpendicular to the bed joint increases the lateral strength notably. 
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Furthermore, it has been shown how the lateral strength of masonry walls without 

external axial compression may be calculated by taken the weight of the masonry into 

account. 

 

Reinforced masonry 

In the report reinforced masonry has been treated by the same methods as unreinforced 

masonry. Experiments collected from the literature are very limited in number so a 

thorough comparison has not been possible. Only 24 experiments have been found. 

However, it seems fair to conclude that reinforced masonry beam-columns may be 

calculated by using the method given in DS414. 

In the report, practical calculation methods have been derived to simplify calculations of 

an interaction diagram between the axial load and the bending moment. 
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3 Resumé 

Formålet med nærværende rapport er at undersøge opførslen af murværkssøjler, 

bjælkesøjler og enkeltspændte vægge. Disse kan være armeret eller uarmeret. Rapporten 

er inddelt i tre dele, hvor den første del koncentrerer sig om opførslen af uarmeret 

murværk, den anden del handler om armeret murværk og den tredje del sammenligner 

de fundne teorier med forsøg fundet i litteraturen. Equation Section (Next) 

 

Uarmerede og armerede murværkssøjler og bjælkesøjler er blevet behandlet ved at 

antage forskellige materialemodeller for murværk. Modellerne er blevet sammenlignet 

individuelt og med forsøg. Fælles for modellerne er at de ikke medtager trækstyrken af 

murværk parallelt med liggefugen. Den eneste trækstyrke, som tages i regning, er den, 

der skyldes evt. armering. 

 

Uarmeret murværk 

I rapporten er der udledt udtryk til beregning af bæreevnen af søjler og bjælkesøjler med 

og uden buevirkning. Ydermere er der fortaget gennemregning af enkeltspændte vægge 

uden normaltryk. Sammenligninger med forsøg viser at søjler kan beregnes efter Ritters 

formel uden medtagelse af den korrektionsfaktor som er foreskrevet i den danske norm 

for murværkskonstruktioner, DS414. Beregningsmetoder for uarmerede bjælkesøjler er 

blevet sammenlignet med forsøg, og det har vist sig, at hvis opførslen modelleres som i 

den danske norm for betonkonstruktioner (DS411), får man generelt den bedste 

overensstemmelse med forsøg. Beregninger på den sikre side kan foretages analytisk 

ved at bruge den lineærelastiske model beskrevet i rapporten. I alt er der samlet 307 

forsøg til sammenligning med teorien. 
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Endvidere er det vist, at murværk med danske sten og mørtler har et begyndelses-

elasticitetsmodul på omkring 375fcm, hvor fcm er trykstyrken af murværk i MPa. Dette er 

meget mindre end man finder i andre europæiske lande. Trykarbejdslinien for dansk 

murværk er derfor behandlet nøjere. 

Murværkskonstruktioner med buevirkning er også undersøgt og det er blevet vist at små 

tryk vinkelret på liggefugen øger bæreevnen ved tværlast markant. 

Det er også blevet vist hvorledes bæreevnen af tværbelastet murværk kan bestemmes 

ved at tage massen af murværket i regning.  

 

Armeret murværk 

Armeret murværk behandles efter samme retningslinier som uarmeret murværk. I 

litteraturen er der desværre kun publiceret et meget begrænset antal forsøg, kun 24 

forsøg er fundet. Det har derfor ikke været muligt at foretage en dybtgående 

sammenligning mellem teori og forsøg. Men det synes rimeligt at konkludere at 

beregninger udført efter DS414 giver den bedste overensstemmelse med forsøg.  

Rapporten indeholder også praktiske metoder til bestemmelse af interaktions-

diagrammer mellem normalkraft og ydre moment. 
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5 Notation 

The most commonly used symbols are listed below. Exceptions from the list may 

appear. They will be commented upon in the text. 

 

GeometryEquatio n Sectio n (Next) 

h :Depth of a cross-section 

b :Width of a cross-section 

A :Area of a cross-section 

Ac :Area of a masonry cross-section 

As :Area of reinforcement at the bottom face 

As’ :Area of reinforcement at the top face 

I :Moment of inertia 

i :Radius of inertia 

hc :Distance from the bottom face to the centre of the bottom    

reinforcement 

hc’ :Distance from the top face to the centre of the top reinforcement 

y0 :Distance from the top face to the neutral axis 

l :Length of a beam 

e :Eccentricity 

u :Deflection 

κ :Curvature 

α :Parameter of shape 

x, y, z :Cartesian coordinates 
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Physics  

ε :Strain 

εcm :Masonry strain  

εcmy :Strain of masonry at fcm 

εcmu :Strain of masonry at failure 

εs :Strain in reinforcement 

εsy :Yield strain of reinforcement 

σ :Stress 

σc :Compressive stress in masonry 

σs :Stress in reinforcement 

σcr :Critical stress 

fcm :Compressive strength of masonry 

fcmo :Compressive strength of mortar 

fcb :Compressive strength of brick 

ftlk :Flexural strength of bed joints according to DS414 

fmor,tlk :Strength of the interface use to determine the tensile flexural strength   

according to DS414 

fy :Yield strength of steel 

Es :Modulus of elasticity of steel  

E0 :Initial modulus of elasticity of masonry 

E0
* :Secant modulus of elasticity at εcmy 

Eσ :Tangent modulus of masonry 

n :Ratio between the stiffness of steel and masonry 

ϕ :Reinforcement ratio 

Φ0 :Reinforcement degree 

Ccm :Resulting compressive force in masonry  

Cs :Resulting compressive force in compressive steel  

T :Resulting tensile force in tensile steel  

N :Axial load 

Np :Maximum compressive load 

Ncm :Maximum compressive force in masonry  
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Ncr :Critical load 

Mcm :Moment from stresses in masonry in compression 

M :Moment 

M0 :Simple moment 

Mp :Pure bending yield moment 

Mf :Bending yield moment 

P :Point force 

q :Line load 
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6 Introduction 

This report treats the behaviour of reinforced and unreinforced masonry columns, beam 

columns and one-way slabs. The report is subdivided into a section dealing with 

unreinforced masonry and a section dealing with reinforced masonry. Each section will 

be subdivided into sections dealing with the type of members mentioned above. 

Emphasis is put on unreinforced masonry since masonry often is unreinforced. The 

purpose is to establish theories for the load carrying capacity of masonry with and 

without axial load. If the axial load is small, masonry members may be treated by 

simple membrane action. Simple methods for including membrane action based on the 

yield hinge method are proposed. Equatio n Sectio n (Next) 

At the end of the report, the theories are compared with experiments collected from the 

literature. 
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7 Masonry 

7.1 Properties of Masonry 

Masonry is a composite material of bricks and mortar. When these are joint together, a 

third “material” appears. This “material” is the interface between brick and mortar. The 

bond properties of the interface are very dependent on the properties of the brick and the 

mortar. For a detailed description, see [51]. The mechanism of developing bond is that 

the brick sucks water from the mortar leaving an area between the brick and the mortar 

with other material properties than the mortar. It is believed that the bond is a crystalline 

zone, which develops an interlock with the rough surface of the brick. Depending on the 

suction from the brick and the mortars ability to retain water the bond might be strong 

or weak. In general, it might be said that masonry made with high suction bricks and a 

mortar with a low ability to retain water1 provides a weak bond. Thus, masonry made 

with low suction bricks and a mortar with a reasonable ability to retain water provides a 

strong bond. Equatio n Section (Next) 

Masonry from different parts of the world might have different properties dependent on 

the techniques used to fabricate the bricks. Therefore, a national expression for the 

strength properties often has to be established. 

In this report, masonry will be modelled as a homogeneous material with a uniaxial 

compressive strength and no tensile strength.  

                                                 
1 The mortars ability to retain water is influenced to a high degree by the amount of lime in the mix. 
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7.2 Material behaviour of masonry in compression 

7.2.1 Stress-strain relation 

The failure mode of masonry in pure compression depends on the properties of the 

mortar and the brick. Stiffness as well as strength play a role. A combination of low 

mortar stiffness (equal to low compressive strength) and high brick stiffness (equal to 

high compressive strength) leads to a splitting failure of the masonry specimen. If the 

stiffness' are similar, the failure will be a shear failure. The different types of failure are 

investigated in [45] and [35]. They are shown in Figure 7.1. 

 

 fcb ~ fcmo 
Shear 

 fcb > fcmo 
Splitting 

failure 

 

Figure 7.1 Different compressive failure modes of masonry 

The splitting failure arises because the deformation of the mortar pulls the bricks apart, 

which again are caused by the lower deformation capacity of the bricks, combined with 

the low tensile strength, see Figure 7.2. 
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Crack due 
to tension 

σ 

Brick 
Mortar

 

Figure 7.2 Sketch of the splitting failure mechanism 

From this it is seen that failure of masonry in compression is a rather complex problem. 

This might also be said regarding deformation up to failure and during failure. 

The stress-strain relationship of masonry in compression is non-linear. It is very 

dependent on the brick and mortar used. Some measured stress-strain relationships are 

shown in Figure 7.3. They have been taken from [36]. 
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Figure 7.3 Stress-strain relationships for masonry in compression 

In Figure 7.3, tests results with eight different bricks combined with two mortars (K ~ 

Lime and C ~ Cement measured by weight) are shown. The bricks are referred to by a 

letter, which is explained in Table 7.1 (fcb ~ compressive strength of the bricks and IRA 

~ initial rate of absorption). 
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Brick type Comments fcb [MPa] IRA [kg/m2/min] 

A Red, soft stroked 12.6 2.45 

B Red, soft stroked 9.3 4.28 

C Yellow, soft stroked 9.7 4.05 

D Red, soft stroked 28.7 1.48 

E Red, soft stroked 29.2 2.22 

F Yellow, soft stroked 28.1 2.99 

G Yellow, soft stroked 27.7 2.73 

H Yellow, soft stroked 57.7 2.99 

Table 7.1 The properties of the bricks 

The stress-strain relation may be modelled by a parabolic function. One example is 

shown in Figure 7.4. The equation is: 

 

][ 00
0

cε

σ [MPa] 

εcmy  = 2 εcmu = 3.5 

 fcm 

 

Figure 7.4 Stress-strain relationship for masonry 

 2cm
cmy cmy

f ε εσ
ε ε

 
= −  

 
 (7.1) 

The figure has been drawn for the special case where the compressive strength is 

reached at a strain εcmy = 2 o/oo.  

If the tests in Figure 7.3 are plotted in a diagram with the ordinate axis σ / fcm and the 

abscissa axis ε /εcmy, Figure 7.5 is obtained. 
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Figure 7.5 Stress-strain relationship for masonry for various bricks and mortars 

The initial stiffness E0 obtained from (7.1) is 2fcm/εcmy. If E0 is set equal to 375fcm, see 

section 7.2.2, we get the equation 

 0 2 375cm
cm

cmy

fE f
ε

= =  (7.2) 

which solved for εcmy gives εcmy = 5.33 o/oo. Thus, εcmy may be set to the constant value 

5.33 o/oo. This is the value used in Figure 7.5. 

7.2.2 Stiffness 

For the stress-strain relations shown in Figure 7.3, the initial stiffness E0 may be 

calculated by fitting the parabolic function (7.1) to the test points, see Figure 7.3. Then 

the fully drawn lines in Figure 7.3 appear. 

The calculated initial stiffness’ are listed in Table 7.2 together with the compressive 

strengths of the masonry.  
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E0 fcm fcb fcmo Brick type Mortar 

[MPa] [MPa] [MPa] [MPa] 

KC50/50/750 2582.4 7.8 12.6 6,16 
A 

KC20/80/550   

KC50/50/750 1691.4 5.7 9.3 4.86 
B 

KC20/80/550 1887.7 6.2 9.3 20.82 

KC50/50/750 2365.8 5.1 9.7 6.29 
C 

KC20/80/550 3587.6 7.4 9.7 24.09 

KC50/50/750 5943.4 13.7 28.7 5.86 
D 

KC20/80/550   

KC50/50/750 3584.4 10.6 29.2 6.04 
E 

KC20/80/550 3855.1 15.8 29.2 20.82 

KC50/50/750 5164.9 12.9 28.1 6.04 
F 

KC20/80/550 3695.6 16 28.1 20 

KC50/50/750 5075.9 12.5 27.7 5.68 
G 

KC20/80/550 4790.7 16.4 27.7 20 

KC50/50/750 9269.1 15.2 57.7 6.16 
H 

KC20/80/550 8378.8 19.5 57.7 20.26 

Table 7.2 Values of the initial stiffness E0 and the compressive strength fcm taken from [36] 

In Figure 7.6 the initial stiffness is plotted versus the compressive strength of masonry. 

The points referred to as Piers KC50/50/750 and Piers KC20/80/550 are the results 

listed in Table 7.2. 

Furthermore, measurements on walls have been reported in [36]. Besides measuring the 

ultimate compressive strength, the compressive strains during loading was measured as 

well, making it possible to calculate the initial stiffness of the wall. These results are 

also plotted in Figure 7.6 (referred to as Wall KC50/50/750 and Wall KC20/80/550). 

The values from the wall tests are listed in Table 7.3. 
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E0 fcm Mortar 

[MPa] [MPa] 

KC50/50/750 6697,7 13,7 

KC20/80/550 6506,1 16,2 

Table 7.3 Initial stiffness of walls taken from [36] 

A simple equation for the initial stiffness is proposed in equation (7.3). 

 0 375 cmE f=  (fcm in MPa) (7.3) 

0
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Wall KC50/50/750
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Wall KC20/80/550

E 0  [MPa]

E 0  =1180f c,m
0,83

E 0  = 375f cm

 
Figure 7.6 Initial stiffness versus the compressive strength of masonry 

Figure 7.6 also shows an equation taken from Hendry ([38]), which he supposes to be a 

general value. This indicates that the stiffness of Danish masonry is very different from 

the stiffness of masonry in other countries. 

The initial stiffness used in the Danish Code of Practice is illustrated in Figure 7.7 as the 

5 % fractile. Furthermore, DS414 gives values for the 95% fractile, which is plotted as 

well. 

Hendry: 
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Figure 7.7 Initial stiffness according to DS414 for the same mortars as in Figure 7.6 

In [37] an equation (7.4) for the initial stiffness is proposed, which is based only on the 

strength of the brick.  

 0 120 cbE f=  (fcb in MPa) (7.4) 

0

1000
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E 0  [MPa]

 

Figure 7.8 Equation (7.4) compared with the 5 % fractile given in DS414 
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This value is compared with the 5 % fractile in DS414 in Figure 7.8. 

Since the stiffness of masonry depends on the properties of the mortar as well as the 

properties of the bricks, an equation based on the compressive strength of the masonry 

must be preferred. 

 

Initial stiffness’ have also been measured by Suenson and Dührkop, [16]. 

In earlier time, it was common to have two different types of bricks, a brick for the 

facade and a brick for the rest of the masonry. The reason was that the burning 

temperature and the clay properties were not controlled as well as to day leading to 

bricks with different colours within the same production. This also gave variation in 

strength and stiffness. The best bricks were used in the facade and the remaining 

masonry was built with bricks having errors from the burning. 

The mortars used were the same as known today. However, a mortar referred to as a 

KD-mortar is no longer in production. The mortar consisted of lime, wind sieved clay 

(diatomol) and sand. It was normally used for high suction bricks because the diatomol 

was better in retaining the water than the lime itself. The mix of the mortar was 

KD10/15/100, meaning that the mortar consisted of 10 units of lime, 15 units of 

diatomol and 100 units of sand measured by weight. 

The bricks normally used were “moler” stones and “flamme“ stones. “Moler” stones 

had a very low stiffness and compressive strength, because the density was low, about 

800 kg/m3. “Flamme” stones were as the bricks we know today with similar density 

(1800 kg/m3) and strength properties. 

In [16], results of stiffness’ measurements of masonry piers have been given. They are 

listed in Table 7.4 and illustrated in Figure 7.9. 
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“Moler” stone “Flamme” stone 

Water cured Air cured  Water cured Air cured  

E0 fcm E0 fcm E0 fcm E0 fcm 

Stones

  

  

Mortar [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

KD 854.9 3.8 1266.9 3.9 1442.0 6.5 2255.7 7.0 

K 1205.1 3.8 1586.2 3.3 3100.3 7.2 3357.8 5.4 

KC 1637.7 5.0 2399.9 6.1 4181.8 9.5 6705.3 12.7 

C 2399.9 7.4 2441.1 6.9 7591.1 17.7 6705.3 15.1 

Table 7.4 Measured stiffness� and compressive strengths 
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Figure 7.9 Initial stiffness plotted together with the proposed equation (7.3) 

The measured initial stiffness’ are compared with the proposed equation (see (7.3)) and 

the agreement seems to be good. However, the scatter is rather large, which probably is 

due to, among other things, that two types of curing conditions were used. 
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8 Basic assumptions 

The columns2 and beam-columns3 considered in this report are Bernoulli beams, 

meaning that plane sections remain plane and perpendicular to the curve of deflection. 

Further, deformations due to shear are neglected. Equatio n Sectio n (Next) 

Regarding the calculations of masonry beam-columns, some further remarks are made. 

For simply supported beam columns with a deflection symmetrical about the midpoint, 

the maximum deflection in the midpoint may be calculated as 

 21u lκ
α

=  (8.1) 

where κ is the curvature in the midpoint, α a parameter depending on the form of the 

curvature curve and l the length. 

We have α = 9,6 for a parabolic curvature form and α = π2 for a sine curve. Often α = 

10 is a good estimate. 

Formula (8.1) may be used for a column fixed in one end and free in the other one if l is 

inserted as the free length, i.e. twice the length. 

The simply supported beam-column and the column fixed in one end and free in the 

other one are called simple columns. 

In the case of statically indeterminate beams, formula (8.1) may be used to calculate the 

maximum deflection along the free length measured relative to a line through zero 

moment points.  

                                                 
2 A column will normally be a one-way wall loaded by a concentrical axial load 
3 A beam-column will normally be a one-way wall loaded by an eccentrical axial load or a concentrical 

axial load and a transverse load 
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The basic procedure in the calculation of simple beam-columns is to determine the 

moment-curvature relationship and then solve for the point where the line 

corresponding to the midpoint moment 21
0 0M Nu M N lα κ+ = +  is a tangent to the 

moment-curvature relationship. Here M0 is the simple moment and N the axial load. The 

condition is illustrated in Figure 8.1. Any line 21
0M N lα κ+  crossing the moment-

curvature curve gives rise to equilibrium solutions. When the tangent condition 

mentioned is satisfied, the corresponding value of M0 will be at a maximum max
0M , see 

Figure 8.1. 

 

κ 

max
0M

0M

 M 

 κ

max 2
0

1M M N lκ
α

= + ⋅ ⋅ ⋅

 

Figure 8.1 The moment-curvature relationship 

This procedure was proposed in [4] by Jørgen Nielsen and further developed in [5] by 

Ervin Poulsen.  
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9 Unreinforced masonry 

9.1 Introduction 

In this section buckling loads for columns and beam-columns are analysed. The 

moment-curvature relation is obtained by expressing statical equivalence between the 

sectional forces and the internal stresses. The tensile strength of masonry is assumed 

equal to zero.Equation Section (Next) 

Masonry will be modelled by different stress-strain relations for compression, namely 

linear elastic behaviour, non-linear behaviour using a parabolic stress-strain relation and 

finally rigid plastic behaviour. 

At the end of this chapter, membrane-action will be dealt with. 

9.2 Instability of masonry columns 

9.2.1 Linear elastic material behaviour 

If the material is linear elastic, the critical load may be calculated from the Euler 

equation. The Euler equation for a simply supported column with constant normal force, 

N, may be derived from equilibrium conditions and the constitutive equation, relating 

bending moment to bending stiffness. The differential equation governing this problem 

is outlined in equation (9.1) 

 
2

2 0d uEI N u
dx

+ ⋅ =  (9.1) 



                                                                                            Lars Zenke Hansen 
 

 

 

where EI is the bending stiffness. 

By solving this homogeneous ordinary differential equation and using the boundary 

conditions the well-known Euler equation is obtained. 

 
2

2cr E
EIN N

l
π= =  (9.2) 

For other end conditions, the length, l, has to be replaced by the free length.  

9.2.2 Non-linear material behaviour 

If the stress-strain relationship is parabolic, cf. section 7.2.1, the critical load may be 

calculated by Engesser’s first theory. The tangential stiffness Eσ as a function of the 

initial stiffness E0 is given by 

 0 1
cm

E E
fσ
σ= −  (9.3) 

If E in (9.2) is replaced by Eσ and the equation is solved for σ = σcr one finds by 

introducing the Euler stress 

 
2

0
E 2

E
l
i

πσ =
 
 
 

 (9.4) 

the critical stress 

 
2

1 4
2

cr E E E

cm cm cm cmf f f f
σ σ σ σ   = + −    

 (9.5) 

Here i2 = I/A is the radius of inertia. Equation (9.5) renders the critical stress according 

to Engesser’s first theory. 

If instead of (9.3) the tangential stiffness is assumed linear in σ, we have 

 0 1
cm

E E
fσ
σ 

= ⋅ − 
 

 (9.6) 

Equation (9.6) is conservative compared with equation (9.3). The equation (9.6) was 

first proposed by Ritter and leads to the following equation for the critical stress 

 2

2
0

1

1

cr

cm cm
f f l

E i

σ

π

=
 +  ⋅  

 (9.7) 
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The equation is called Ritter’s equation. 

The Danish code of practice DS414 employs Ritter’s equation. However, the critical 

stress is multiplied by a factor kt given in equation (9.8). 

 
0.7 for massive masonry with thickness 90 mm
0.9 for massive masonry with thickness 90 mmt

t
k

t
≤

=  ≥
 (9.8) 

Such factor was proposed by Knutson in 1991, see [40]. He suggested to use kt = 0.8 for 

90 mm  125 mmt≤ ≤ and kt = 0.9 for 125 mm  175 mmt≤ ≤ . For t > 175 mm he 

suggested kt = 1. Knutson gave the following reason for introducing kt: “In masonry, the 

mortar will be confined and compressed during the bricklaying process, but there will 

be no confinement of the mortar at the surface of the masonry. Thus, the joints near the 

surface may be weaker. This may affect the strength of thin walls so it is suggested that 

the assessed carrying capacity is reduced for thin walls, by multiplying by a factor kt”.  

 

The formulas by Euler, Engesser and Ritter are shown for a wall with thickness t and a 

height l in Figure 9.1 (same E0/fcm = 375 is used).  

 

Figure 9.1 Ritter�s, Engesser�s and Euler�s equations verses the slenderness ratio 

σcr/fcm 

l/t 
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9.3 Instability of beam columns and one-way walls 

In this section, three different methods of calculating the load carrying capacity of 

beam-columns will be presented. The only difference in the methods is the assumed 

constitutive  relationship. 

9.3.1 Linear elastic material behaviour 

If the material is linear elastic without any tensile capacity, the stress-strain relationship 

is as shown in Figure 9.2.  

 

cmε

cmσ

εcmy  = fcm/E0 

 fcm 

E0 

 

Figure 9.2 Linear elastic material 

The relationship between the stresses and the strains may be written as 

 cm
cm

cmy

fσ ε
ε

=  (9.9) 

Measuring y’ from the neutral axis as shown in Figure 9.3, the strains in the cross 

section are 

 'cm

cmy

yεε
ε

=  (9.10) 
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  y’

 h

 b 

σcm 

 y0

σcm 

 

Figure 9.3 Definition of y’ 

Combining equation (9.9) and equation (9.10) the stresses in the masonry becomes the 

following function of y’. 

 
0

'cm cm
cm

cmy

f y
y

εσ
ε

=  (9.11) 

 x
N M

 z 

 y  y

 z x 

 y0

 h 

 b 

σcm 

 ½h

 

Figure 9.4 Cross section of unreinforced masonry (the bricks and joints are not shown) 

In what follows M and N are referred to the midpoint of the section. 

The projection equation becomes when y0 ≤ h 

 cmN C=  (9.12) 

where 

cm
cm cm cmA

C dAσ= ∫  

 0

00
0

1' '
2

y cm cm cm
cm cm

cmy cmy

fC y dy b f y
y

ε ε
ε ε

= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅∫  (9.13) 
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If a dimensionless parameter 0y
h

β =  is introduced and equation (9.12) is solved for 

β by inserting equation (9.13), we find 

 2
cm

cm
cmy

N

b h f
β ε

ε

⋅=
⋅ ⋅ ⋅

 (9.14) 

The moment equation around the point y’ = 0 gives for y0 ≤ h 

02 cm
hM N y M − − = 
 

 

where 

( )0 2 2
00

0

1' '
3

y cm cm cm
cm cm

cmy cmy

fM y dy b f y
y

ε ε
ε ε

= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅∫  

If β is introduced into the moment equation, the moment, M, may be calculated by 

 ( )2 21 1 1 2
3 2

cm
cm

cmy

M b h f N hε β β
ε

= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅  (9.15) 

The curvature is 

 
( )

3 30
0

1 1 2
2

1
3

cm

cm
M N h

h
y b h E

ε βεκ
β β

− ⋅ ⋅ ⋅ − ⋅
= = =

⋅ ⋅ ⋅ ⋅
 (9.16) 

When y0 is larger than h, normal theory of elasticity for homogeneous sections may be 

used.  

The moment-curvature relationship and the relationship between the simple moment M0 

and the curvature can now be found. The result is shown in Figure 9.5 and Figure 9.6. 

The data used in these calculations are listed in Table 9.1. The maximum strain is set 

equal to 2 0
00  as in Eurocode 6, [44].  

b h l fcm εcmy 

[mm] [mm] [mm] [MPa] [ 0
00 ] 

1000 108 20 h⋅  15 2 

Table 9.1 Data used for calculating the moment-curvature relationship 
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Figure 9.5 Moment-curvature relationship for different normal forces 

 

Figure 9.6 Simple moment-curvature relationship for different normal forces 

Equations (9.14) to (9.16) do not provide a closed form solution, but the calculations are 

easy to carry out on a computer. 
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To find a closed form solution the moment equation is taken about the resulting 

compressive force of the masonry in compression.  

The projection equation becomes, using the same symbols as in Figure 9.4 

 0
1
2 cmN b yσ= ⋅ ⋅ ⋅  (9.17) 

The moment equation becomes 

 0
1 1 0
2 3

M N h y − ⋅ ⋅ − ⋅ = 
 

 (9.18) 

By inserting the projection equation into the moment equation and introducing the 

curvature, 

 
0 0

cm

E y
σκ =

⋅
 (9.19) 

equation (9.20) can be established 

0
1 23

12 3
2

M NE h
MN h
N

κ ⋅ ⋅ ⋅ ⋅ − ⋅ = ⇔     ⋅ ⋅ − 
 

 

 
2

2
0

1 2
2 9

M N
N h h b E

κ  ⋅ − = ⋅ ⋅ ⋅ ⋅ 
 (9.20) 

If 
0

cm
cm

f
E h

κ =
⋅

 and cm cmN b h f= ⋅ ⋅  are introduced into equation (9.20) the moment- 

curvature relationship may be written as 

 1 2
2 3

cm

cm

M N
N h N

κ
κ

= − ⋅
⋅

 (9.21) 

The derivative of the moment with respect to the curvature may be calculated from 

equation (9.20) 
2

2
0

1 2 0
2 9

d M d N
d N h d h b E

κ
κ κ
    ⋅ − = ⋅ = ⇔     ⋅ ⋅ ⋅    

 

 
21 12 0

2 2

dM
M M d

N h N h N h
κκ   − − + ⋅ ⋅ − =   ⋅ ⋅ ⋅   

 (9.22) 

Equation (9.22) can be rewritten by use of equation (9.20) and the derivative is then 

determined by equation (9.23). 
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3

0
127
2

dM M E I
d N hκ

 = ⋅ − ⋅ 
 (9.23) 

where 31
12

I b h= ⋅ ⋅  

From the equilibrium equation we get 

2
0

1M M l Nκ
α

= + ⋅ ⋅ ⋅ ⇒  

2dM N l
dκ α

⋅=  

Then the maximum moment may be found inserting this value of dM/dx into (9.23). The 

result is 

 3
1 1
2 3 E

M N
N h N α

= −
⋅

 (9.24) 

where 0
2E
E IN

lα
α ⋅=  is the critical load obtained by replacing in the Euler equation π2 

with α. 

The curvature becomes 

 0 3 2

1 1
2 3 E

M N h
N h N lα

ακ
  ⋅= − − ⋅  ⋅ 

 (9.25) 

Thus, the maximum deflection may be calculated by using this κ-value in the formula 

 21u lκ
α

= ⋅  (9.26) 

By inserting (9.24) and (9.25) into (9.21) an equation for the simple moment as a 

function of N is found to be 

 0 3 2
3

2

1 1 2
2 3

cm

cm cm

E

M N N
N h N N h N

l N α

κ

α
= − − ⋅

⋅  ⋅ ⋅ 
 

 (9.27) 

The equations are only valid as long as 0y h≤ and σcm < fcm. When y0 > h, the stresses 

may be determined by Navier’s equation. In this case κ = M/EI and a simple equation 

may be established to find M0max as a function of N. 
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Results using equation (9.25) and (9.27) are plotted in Figure 9.8 showing the simple 

moment-curvature relationship. The values of M0 are shown by circles. 

These expressions only cover the cases when σcm is smaller than the compressive 

strength. To cover the case of compressive failure a new cross-section analysis has to be 

made. 

 x 
N M

 z 

 y  y

 z x

 y0

 h

 b

 fc,m

 ½h

 

Figure 9.7 Cross section of unreinforced masonry (the bricks and joints are not shown) 

The projection equation now becomes 

 0
1
2 cmN b f y= ⋅ ⋅ ⋅  (9.28) 

The moment equation becomes 

 0
1 1
2 3

M N h y = ⋅ ⋅ − ⋅ 
 

 (9.29) 

The depth of the compressive zone y0 is found from equation (9.28) and inserted into 

the moment equation, which again is inserted into the equilibrium equation 
21

0M M N lα κ= + . Thereby equation (9.30) is obtained. 

2
0

1 1 2 1
22 3
cm

cm
m

cm

fNN h M l NNb f E
b f

α
 ⋅⋅ ⋅ − ⋅ = + ⋅ ⋅ ⋅ ⇔  ⋅⋅ 

⋅

 

 
2

0 1 2 1
2 3 6

cm

cm E

M NN
N h N N Nα

= − ⋅ −
⋅ ⋅

 (9.30) 

 The curvature is calculated as 0 0/( )cmf E yκ = . In Figure 9.8 the points determined by 

equation (9.30) (represented by a plus), are plotted together with the previous results 

(the slenderness (l/h) ratio is 20).  
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Figure 9.8 Simple moment-curvature relationship 

Figure 9.8 shows that equation (9.27) and (9.30) provides the maximum values of M0 

until the entire cross section is in compression, where the usual theory of linear 

elasticity is used (these points are marked with a *). 

This means that the interaction diagram may be found as shown in Figure 9.9. A 

simplified interaction diagram is shown in the figure. It consists of straight lines through 

points corresponding to some characteristic stress conditions and the Ritter value. 
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Figure 9.9 Interaction diagram 
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9.3.1.1 Instability of beam-columns and one-way walls according to DS414 

and a modified linear elastic model 

DS414 

The Danish Code of Practice, DS414, provides an equation for eccentrically loaded 

masonry columns and one-way slabs. In this equation, an effective cross-section is used. 

The method may only be used for very simple columns where a line of compression 

may be drawn. 

 

e

e

 P

 P

 P
σcr 

t-2e 

t 

½t

 

Figure 9.10 Eccentrically loaded column, Danish code of practice (DS414) 

As shown in Figure 9.10 the effective cross-section is defined as the total thickness 

minus two times the eccentricity. The load carrying capacity is then calculated from the 

Ritter equation: 

 
2

2
0

1

cm
cr t

cm

fk f
E

σ
λ

π

=
+

 (9.31) 

where λ is determined by 

 
2

12
2

l l
i t e

λ  = =  − 
 (9.32) 

 The parameter kt is defined in section 9.2.2. Thereby the critical load can be determined 

as 

 ( )2cr cm cr crN A b t eσ σ= = −  (9.33) 
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Modified linear elastic model 

In the Danish concrete code, DS411, laterally loaded or eccentrically loaded columns 

may be calculated by means of a modified linear elastic model. It is natural to try to 

extend this method to cover masonry columns, which turn out to be possible. However, 

some parameters have to be changed. 

The stress-strain relation for masonry is assumed parabolic as given by equation (9.34), 

i.e. 

 2cm
cmy cmy

f ε εσ
ε ε

 
= −  

 
 (9.34) 

It is recalled that when 0 375 cmE f= , the strain at the stress fcm is 5.33 0/00. In the 

moment-curvature relations, the maximum moment will occur for a larger strain in the 

compressive face than εcmy. In Figure 9.11 the moment as a function of the strain εcm for 

different levels of axial load is shown. It turns out, that maximum moment for pure 

bending is obtained at a maximum strain equal to 6.8 0/00. Larger N-levels lead to 

somewhat lower values.  
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Figure 9.11 Moment as a function of the strain in masonry for different N-levels 
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cm

N
hbf 21

6 cm

M
bh f 0

00max [ ]cε

0,10 0,27 6,75 

0,20 0,47 6,75 

0,30 0,61 6,75 

0,40 0,68 6,75 

0,50 0,69 6,75 

0,60 0,64 6,75 

0,70 0,52 6,75 

0,80 0,35 6,55 

0,90 0,17 6,20 

Table 9.2 The maximum strain for different N-levels 

The strain values leading to maximum moment are shown in Table 9.2. 

A linear elastic model to calculate the load carrying capacity is obtained by setting the 

area under the parabolic stress-strain relation equal to a area under the linear stress-

strain relation. Further, it is assumed that in the linear elastic model the modulus of 

elasticity is set to the secant modulus. 

 *
0 188cm

cm
cmy

fE f
ε

= =  (9.35) 

The area A under the parabolic stress-strain curve is obtained by integration from zero to 

the maximum strain, i.e. 

 ( )
2

2
0 00 0

1 1 11
2 2 3

cmu cmu

cmu

cmu

cmy cmy

A d E d E
ε ε εεσ ε ε ε ε ε

ε ε
   

= = − = −      
   

∫ ∫  (9.36) 

The area given by equation (9.36) is set equal to the area of a rectangle with the lengths 

kεcmu and fcm. Then k = 0.73. The area of the rectangle is then set equal to the area under 

the linear elastic stress-strain curve with the inclination E0
* given by (9.35). Thus, 

equation (9.37) is obtained: 

 * 2
0

1 0.73
2 cm cmuE fε ε=  (9.37) 

This gives a maximum strain ε = εcmu =  7,2 0/00, corresponding to fcm
* = 1,35 fcm. If, as 

for concrete, fcm
*=1,25fcm is chosen as the maximum stress, this is achieved at the strain 
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ε = 6.6 0/00 ≅ εcmu. This is a conservative value of fcm
* since it provides a smaller strain 

energy than corresponding to equal areas. Thus in the calculations the following linear 

elastic model is suggested. 

 * * 0
000 188 1, 25 6,7cm cm cm cmuE f f f ε= = =  

 

To include the non-linear behaviour a modified modulus of elasticity has to be 

introduced in the calculations of the deflections. The modulus must vary with the 

stresses in the section and fulfil three conditions: 

1. When the stress is zero in the entire cross-section the modulus of elasticity has 

to be equal to the initial stiffness E0. 

2. For a uniform stress distribution, the modulus of elasticity has to be equal to Eσ, 

the tangential stiffness used in the Ritter equation. 

3. When the cross-section is cracked and the zone of compression is completely 

utilized the modulus of elasticity must be equal to E0
*=188fcm. 

The maximum stress in compression is defined as 

 *
,min

1, 25

1, 25 1 0,2

cm

cm cm
cm

cm

f
f

f
f

σ

=   − 

 

 (9.38) 

To fulfil the first two conditions above the modulus of elasticity has to vary as 

 ( ),max ,min
0 1 1c c

cr
cm cm

E E k k
f f

σ σ 
= − − − 

 
 (9.39) 

The third condition determines the value of k as 

 
*
0

0

1880,8 1 0,8 1 0,3989 0, 4
375

Ek
E

   = − = − = =   
  

 (9.40) 

When the stresses are known the deflection at a certain stress level may be determined 

as 

 ,max ,min 21 cm cm

cr

u l
E h

σ σ
α

−
=

∆
 (9.41) 

where ∆h is the distance between the fibres with the stresses σcm,max and σcm,min, 

respectively, α is a parameter of shape and l is the length of the column. 
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The calculation procedure is to estimate the deflection, calculate the stresses and 

determine the deflection by using equation (9.41), compare it with the estimated 

deflection and when a sufficient correlation is achieved, the calculation is finished. 

If the parabolic4 and the modified elastic model are compared in the case of a short 

beam column and a slender beam column, the result is as shown in Figure 9.12. 
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Figure 9.12 Interaction diagram for l/h=12 in the top figure and 24 in the bottom figure 

                                                 
4 The interaction diagram for a parabolic material is described thoroughly in section 9.3.2 
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In Figure 9.13 the maximum axial load as a function of the curvature is shown for, 

l/h=12. 
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Figure 9.13 Maximum axial load as function of the curvature for two models 

9.3.2 Non-linear material behaviour 

In this section, the constitutive equation is the parabolic relation treated previously. 

 εcm 

Ccmy0 
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σ ε 
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½h  x 

 y  y’ 

 

Figure 9.14 Cross section with a parabolic stress distribution 

Projection equation, when y0 ≤ h: 

cmN C=  

where 
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0

0
'

y

cm cmC b dyσ= ∫  

0 0 0

' '

00
2 ' 1

3

y y
y cm cmy y cm cm

cm cm cm
cmy cmy cmy cmy

f bC b f dy y
ε ε εε
ε ε ε ε

   
= − = −        
∫  

Moment equation, when y0 ≤ h: 

02cm
hM M N y = + − 

 
 

where 
0

0
' '

y

cm cmM b y dyσ= ∫  

0 0 0

' '
2
00

22 ' '
3 4

y y
y cm cmy y cm cm

cm cm cm
cmy cmy cmy cmy

f bM b f y dy y
ε ε εε
ε ε ε ε

   
= − = −        
∫  

From these equations the moment-curvature relationship may be determined, see Figure 

9.15. Then the load carrying capacity is determined as before. For the data given in 

Table 9.1 results are shown in Figure 9.16. Distinction must be made between the cases 

where the depth of the compression zone is smaller or larger than the depth of the cross 

section, respectively.  

 

Figure 9.15 The moment-curvature relationship 
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Figure 9.16 The simple moment-curvature relationship 

The maximum strain, εcmu, is in this calculation set equal to 3.50/00 as in Eurocode 6, 

[44]. 

9.3.3 Rigid plastic material behaviour 

The ultimate moment as a function of the axial load is calculated on the basis of the 

stress distribution shown in Figure 9.17 where the material is rigid plastic. 

 x
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Figure 9.17 Cross-section of unreinforced masonry with rigid plastic stress block 

The projection equation becomes, ν being the effectiveness factor on fcm. 
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 0cmN b f yν= ⋅ ⋅  (9.42) 

The moment equation becomes, Mf being the ultimate moment. 

0
1 1
2 2fM N h y = ⋅ ⋅ − ⋅ ⇔ 

 
 

 1 1
2

f

cm

M N
N h N

 
= ⋅ − ⋅  

 (9.43) 

where cm cmN b h fν= ⋅ ⋅ . The simple moment may be calculated by using the equilibrium 

equation: 

 2
0

1
fM M l Nκ

α
= + ⋅ ⋅ ⋅  (9.44) 

In this case, the curvature must be estimated. The following estimate is suggested: 

 
0

*
cmf

E h
κ =  (9.45) 

where in the case of Danish masonry E0
* = 188fcm. 

The relation between the simple moment and the axial load may be expressed as done in 

(9.46) 

 
2

0 1 1
2 2cm cm cm

M N l N
N h N h N

κ
α

 ⋅= − − ⋅ 
 (9.46) 

which may be rewritten into 

 
2 2 2

01 1 2 1 4 1 8
2cm cm

MN l l l
N h h h N h

κ κ κ
α α α

  ⋅ ⋅ ⋅ = − ± − − +  ⋅ ⋅ ⋅  
 (9.47) 

The maximum value of M0 corresponding to equation (9.46) is easily found by 

differentiation with respect to N: 

20 1 1 0
2 cm

dM N hh l
dN N

κ
α

⋅= − − ⋅ ⋅ = ⇔  

 
21

2cm

N l
N h

κ
α

⋅= −
⋅

 (9.48) 

Equation (9.46) renders M0 = 0 when N = 0 and when N has the value given by equation 

(9.49), which is easily found by requiring M0 = 0 and introducing equation (9.45). 
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2

0

2 cm

cr

cm cm

f l
E hN

f b h f

α
σ

α

 −  
 = =

⋅
 (9.49) 

Results for the rigid plastic model with ν = 1 are shown in Figure 9.18. The curvature 

has been estimated according to (9.45) in the curve to the right. In the curve to the left 

E0
* in (9.45) is replaced by E0. 

The rigid plastic model severely underestimates the load carrying capacity. To render 

good results the estimate of the curvature must be refined. As a minimum it must 

depend on the slenderness ratio. 

 

Figure 9.18 Critical load for estimated curvature 
0

cmf
E hκ =  to the left and *

0

cmf
E h

κ =  to the right 

9.3.4 Comparison of calculation methods   

The three calculation methods are compared in Figure 9.19 in the case of Danish 

masonry. For the rigid plastic material, the effectiveness factor ν is set equal to one. 
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Figure 9.19 Interaction curves for the different models  

Figure 9.19 shows that the non-linear, the modified linear elastic and the rigid-plastic 

material behaviour render higher load carrying capacity than the linear elastic model. 

Figure 9.20 is similar to Figure 9.19, the only difference being, that the effectiveness 

factor suggested in [11] for concrete is used, i.e. 

 0.85
300

cmfν = −  (9.50) 

This is done because concrete and masonry has similar behaviour in compression, 

which means that a similar reduction of the compressive strength of masonry may be 

expected when using a rigid-plastic material model. 

40l
h

=

20l
h

=
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Figure 9.20 Interaction curves for the different models 

It appears that for short beam-columns three of the models (modified linear elastic 

model, non-linear model and the rigid plastic model with reduced compressive strength) 

produce similar results. It also appears that the linear elastic model is conservative 

compared with the other models. 

9.3.5 Load carrying capacity of beam-columns with small axial load 

In this section, simple upper bound solutions will be used to calculate the load carrying 

capacity of masonry beam-columns. It is assumed that the axial load is small so the 

additional moment from the axial load multiplied with the deflection can be 

disregarded.  

First we consider the case shown in Figure 9.21 where the failure mechanism is 

illustrated. It is assumed that the relative rotation point in the midpoint is at the right 

face. This assumption implies that the internal work becomes equal to zero when the 

tensile strength of the bed joint is set equal to zero. 

40l
h

=

20l
h

=
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∆
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 N  
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t  

Figure 9.21 Failure mechanism of masonry with small axial load 

The external work becomes 

 1
2EW N q b l δ= − ⋅∆ + ⋅ ⋅ ⋅ ⋅  (9.51) 

where 
1
2

1
2

4 t
t l l

δ δ∆ = ⇔ ∆ = ⋅ ⋅  

N is the normal force acting in the left top corner, q is the transverse load per unit area 

and b is the width. 

Setting WE = 0 provides a relation between the axial load and the transverse load: 

 
21

8
lN q b
t

= ⋅ ⋅ ⋅  (9.52) 

Equation (9.52) is plotted in a (q,N) diagram in Figure 9.22 

In the above calculation, the resultant normal force acts in the outermost position 

possible, i.e. at the left face. This position leads to maximum work of the normal force. 

If the position of the resultant normal force is statically determined this assumption may 

not apply, and the calculation may be on the unsafe side. An upper bound solution 

corresponding to another position of the resultant normal force may easily be obtained 

in the same way. 
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Figure 9.22 Interaction curve with membrane actions 

The method is compared with experiments in [38], section 7.3, from where Figure 9.23 

is taken. 

 

Figure 9.23 Upper bound method compared with theory taken from [38] 

9.3.6 Load carrying capacity of transversely loaded one-way walls  

The load carrying capacity of transversely loaded masonry one-way walls without 

tensile strength and without external normal forces is equal to zero when calculated by 

q [kN/m]

N [kN] l = 3.5 m 

t = 108 mm
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the previous analysis. However using an upper bound solution where the mass of the 

masonry wall is considered a load carrying capacity different from zero may be found. 

 

δ

∆
q 

½G

½G

t 

l 

 

Figure 9.24 Lateral load carrying capacity of masonry without precompression 

The geometrical relation between δ and ∆ is given as 

 4 t
l

δ∆ = ⋅ ⋅  (9.53) 

The internal work is zero because of the assumption of zero tensile strength of the 

masonry. The external work then determines the load carrying capacity: 

 

1 1 1 1 3
2 2 4 2 4
1 2
2

E

E

W q l b G G

tW q b l G
l

δ

δ δ

 = ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅∆ + ⋅ ⋅ ⋅∆ ⇔ 
 

= ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅
 (9.54) 

where b is the total thickness of the wall and G b t lγ= ⋅ ⋅ ⋅ . γ being the specific weight. 

Setting WE = 0 a relation between the weight, G, and the transverse load, q, can be 

obtained. 

 
2

24 4t tq G
bl l

γ= ⋅ ⋅ = ⋅ ⋅  (9.55) 

 

The load carrying capacity of a one-way wall may, according to DS414, be calculated 

assuming a linear elastic stress variation along the cross-section. The maximum stress at 
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the edge in tension is equal to the tensile flexural strength. In pure bending the absolute 

value of the maximum compressive stress is also equal to the tensile flexural strength. 

The tensile flexural strength is determined from fmor,tlk, which according to DS414 is the 

strength of the interface when the masonry is bent above the bed joint. Based on fmor,tlk 

the flexural strength may be taken from two tables (G.4e and G.4d in DS414). Thereby 

the moment capacity may be determined as: 

 21
6 tlkM f bt=  (9.56) 

 

t b l γ 

[mm] [mm] [mm] [kN/m3]

108 1000 2500 18.2 

Table 9.3 Geometry of the two walls 

To compare the load carrying capacity calculated using (9.55) with the method in 

DS414, two walls with the same geometry (see Table 9.3) are considered. The walls are 

built with two different types of brick and mortar. The combinations of brick and mortar 

results in the strengths listed in Table 9.4 based on DS414. The mortar is of minor 

importance in determining ftlk, from  DS414. Using (9.56) the moment capacity listed in 

Table 9.4 may be obtained.  

fmor,tlk = 0.25 MPa fmor,tlk = 0.50 MPa

fcb = 30 MPa fcb = 30 MPa 

 ftlk = 0.24 MPa ftlk = 0.40 Mpa 

M: kNm 0.47 0.78 

Table 9.4 Moment capacity according to DS414 

From (9.55), the load carrying capacity may be calculated and thereby the moment 

having the simple relation 

 21
8

M ql=  (9.57) 

Using the values in Table 9.3 the moment calculated from (9.57) becomes 0.26 kNm.  

It is seen that the moment calculated using (9.55) and (9.57) is a significantly smaller 

than the value calculated according to DS414. However, the moment calculated 
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represents characteristic values of the moment capacity. A comparison of the two 

methods must be made with regards to the design values.  

The design value of the moment capacity using (9.55) and (9.57) is obtained 

multiplying the moment obtained by 0.8, since according to the Danish code for the 

safety of structures, the mass must be multiplied with 0.8 when used to stabilize the 

structure. This gives a moment capacity of 0,21 kNm. 

The design moment capacity using DS414 is calculated using a material safety factor, 

γm, for a structural element in normal safety class and control class. In this case, γm 

becomes 2.00 and the moment capacities become 0.23 kNm and 0.39 kNm, 

respectively.   

It appears that in the case of fmor,tlk = 0.25 MPa the two methods provide almost the 

same results. It may be noticed that fmor,tlk = 0.25 MPa is the highest value, which can be 

achieved using DS414 alone. To obtain a higher moment capacity, fmor,tlk has to be 

known for the masonry used.  
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10 Reinforced masonry 

10.1 Introduction 

In this section, reinforced masonry will be analysed by different constitutive relations in 

compression, namely a parabolic stress-strain curve and a linear elastic one. 

Reinforcement is linear elastic perfectly plastic with the same yield stress fy in tension 

and compression. A rigid plastic model will not be considered since it is only relevant 

when the beam-column is short and failure is due to material failure.  

10.2 Instability of reinforced masonry columns 

The analysis of reinforced columns is similar to the analysis of unreinforced masonry 

columns the only difference being that the contribution from the reinforcement must be 

added to the load carrying capacity determined by the Ritter or the Engesser equation 

(see equation (10.1)).  

The critical load when using the Ritter or Engesser equations may be determined byEquatio n Sectio n (Next) 

 
(1 )

min cr c
cr

cr c s y

A n
N

A A f
σ ϕ
σ

⋅ + ⋅
=  + ⋅

 (10.1) 

where *
0

sEn
E

=  and s

cm

A
A

ϕ = . It appears that the reinforced contribution is simply added 

as in sectional analysis, i.e. the contribution from the reinforcement to the bending 

stiffness is neglected. 
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The theoretical method is based on the equilibrium method explained in section 10.3.1. 

The critical load for concentrically loaded columns is obtained by letting the deflection 

u go towards zero. 

In Figure 10.1, the results of the different methods are shown in a specific example. It is 

seen that Ritter’s equation provides a conservative result, making it suitable for practical 

purposes. The theoretical calculation leads to a flat plateau, which is due to yielding in 

the compression reinforcement. The strain distribution switches between the cases 37, 

38 and 39, see the following Figure 10.2.  

The reinforcement only renders a limited additional load carrying capacity. Thus, a 

simple and almost correct theory is Engesser’s first theory where the contribution from 

the reinforcement is added as done in equation (10.1). 

 

Figure 10.1 Concentrically loaded column. Theory compared with the Ritter, the Euler and the 

Engesser equation. In the calculations fcm = 25MPa, fy = 300MPa, =Φ 0.050 , hc = 0.10h and α = 10. 

N/Np 

l/h 
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10.3 Instability of reinforced masonry beam-columns 

In this section, the behaviour of reinforced masonry beam-columns will be investigated 

using a linear elastic and a parabolic material behaviour. Reinforcement is elastic-

perfectly plastic with the same yield stress fy in tension and compression. 

To obtain the moment-curvature relationship, nine different situations have to be 

examined (see Figure 10.2). 

10.3.1 Non-linear material behaviour 

The nine different cross-section analyses are characterised by a number so that the 

conditions at failure5 may be tracked. The nine cases are shown in Figure 10.2. 

                                                 
5A point of failure is characterized either as failure due to instability or to material failure. 
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37 

33 35

32 34 36

31

3938

Yielding due to  compression 
and tension 

Stress due to compression 
and tension 

 

Figure 10.2 Calculation of the moment-curvature relationship is based on nine cross-section 

analyses. 

For a prescribed normal force and masonry strain, the neutral axis is determined from 

the projection equation, whereby the curvature may be determined. From the moment 

equation, the bending moment is determined. 

As before the normal force and the bending moment are referred to the midpoint of the 

section, see Figure 10.3. The cross section is shown in Figure 10.4.  
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Figure 10.3 Stress and the strain distribution in a cross-section  

The projection equation, when y0 ≤ h and the reinforcement is in the linear elastic range: 

 cm sN C C T= + −  (10.2) 

where 
0

0
'

y

cm cmC b dyσ= ∫  

0 0 0

' '

00
2 ' 1

3

y y
y cm cmy y cm cm

cm cm cm
cmy cmy cmy cmy

f bC b f dy y
ε ε εε
ε ε ε ε

   
= − = −        
∫  

' '0

0

c
s cs s sc s s cm s s

y hC A E A E A
y

σ ε ε−= = =  

'0

0

e
s s s s s cm s s

h yT A E A E A
y

σ ε ε−= = =  

The moment equation, when y0 ≤ h and the reinforcement is in the linear elastic range: 

 ( ) ( )0 0 02cm s c e
hM M C y h T h y N y = + − + − + − 

 
 (10.3) 

where 
0

0
' '

y

cm cmM b y dyσ= ∫  

0 0 0

' '
2
00

22 ' '
3 4

y y
y cm cmy y cm cm

cm cm cm
cmy cmy cmy cmy

f bM b f y dy y
ε ε εε
ε ε ε ε

   
= − = −        
∫  

When the reinforcement yields, Esεs is replaced by fy. 

When these equations are solved in the nine cases the M-κ relationship and the M0 -κ 

relationship may be obtained for a specific beam-column. 

The M-κ relationship depends on the reinforcement ratio, the compressive strength and 

the yield strength of the reinforcement. Results are shown in Figure 10.5. 
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The value of the axial load is set at 2/9 Np, where Np = hbfcm + 2Asfy assuming the 

reinforcement to yield when the masonry stress reaches its maximum value. 

 

h 
 

b  

hc  As’

As 

 

Figure 10.4 Cross-section used in the calculations 

The calculations are carried out for the values listed in Table 10.11. 

b h hc l fcm εcmy fy Φ0 

[mm] [mm] [mm] [mm] [MPa] [ 0
00 ] [MPa] [] 

250 250 20 3000 15 2 300 0.05 

Table 10.1. Data used in the calculation of the figures when values are not listed. 

These data are used in the following unless otherwise stated. The maximum strain is set 

equal to 3,5 0
00  as done in Eurocode 6, [44].  
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05.00 =Φ

10.00 =Φ

15.00 =Φ

20.00 =Φ  fcm = 80 MPa 

 fcm = 60 MPa 

 fcm = 40 MPa 

 fcm = 20 MPa 

 

 fy = 200 MPa 
 fy = 400 MPa 
 fy = 600 MPa 
 fy = 800 MPa 

 

Figure 10.5  Moment-curvature relationship as a function of the degree of reinforcement, the 

compressive strength and the yield strength  

Figure 10.6 and Figure 10.7 shows the moment-curvature relationship and applied 

moment-curvature relationship for different axial loads, respectively. 
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Figure 10.6 Moment-curvature relationship for different axial loads 
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Figure 10.7 Simple moment-curvature relationship for the same axial loads as in Figure 10.6 

Table 10.2 illustrates the different stress distributions met in the calculations of the 

moment-curvature relationships. 
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p

N
N

 M interval in kNm Case 

0 
0 20M≤ ≤  

20M ≥  

31 

32 

1
9

 

0 10M≤ ≤  

10 40M≤ ≤  

40M ≥  

37 

31 

32 and 34 

2
9

 

0 20M≤ ≤  

20 58M≤ ≤  

58 60M≤ ≤  

60M ≥  

37 

31 

32 

32 and 34 

3
9

 

0 29M≤ ≤  

29 65M≤ ≤  

65M ≥  

37 

31 

34 and 36 

4
9

 

0 38M≤ ≤  

38 60M≤ ≤  

60M ≥  

37 

31 

36 

5
9

 

0 45M≤ ≤  

45 51M≤ ≤  

51M ≥  

37 

31 

36  

6
9

 
0 35M≤ ≤  

35M ≥  

37 

36 and 38 

7
9

 
0 12M≤ ≤  

12M ≥  

37 

37 and 38 

8
9

 
0 7M≤ ≤  

7M ≥  

37 and 38 

38 

Table 10.2 Cases for which the moment-curvature relationship is calculated 

It appears that a great variety of N levels may be described by the same cases. All the 

curves in Figure 10.6 starts in situation 37 except the curve for pure bending, where the 

stress distribution starts in case 31. Then the case changes to one of the cases where the 
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compression depth is smaller than the depth of the cross section. For 5
9p

N
N

≤  the case 

reached after case 37 is case 31 (in general dependent on the degree of reinforcement). 

For N larger than this level the case will be 36, because when the axial load is large the 

top face reinforcement yields (in general dependent on the reinforcement ratio). The 

moment-curvature relationship changes in shape for an N level above 3/9Np. The reason 

is that the axial load is at a level where the compressive reinforcement begins to yield 

before the tension reinforcement yields, indicating that the depth of cracked cross 

section is decreasing. Thus, the moment-curvature relationship after this level will have 

no slope discontinuity for changes from uncracked to cracked cross section. 

The point where the simple moment reaches its maximum value is the load carrying 

capacity of the column. This point may be influenced by the degree of reinforcement as 

shown in Figure 10.8 and the slenderness ratio as shown in Figure 10.9. 

In Figure 10.8, the length l (500 mm) is small  so the slenderness ratio has no effect.  

N/Np 

0 0.05Φ =
0 0.10Φ =
0 0.15Φ =
0 0.20Φ =

 

Figure 10.8 Influence of the degree of reinforcement 

Figure 10.8 shows, that the effect of the axial load on the load carrying capacity is 

pronounced for low degrees of reinforcement.  

The influence of the slenderness ratio is illustrated for one degree of reinforcement (Φ0 

= 0.05) in Figure 10.9. 
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10l
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Figure 10.9 Influence of the slenderness ratio 

Figure 10.9 shows, that the additional load carrying capacity due to the reinforcement is 

influenced a great deal by the slenderness ratio. A radical change in shape occurs, when 

the beam-column becomes slender (in the example for l/h = 30). The curves have a 

discontinuity in slope and they become non-convex. This phenomenon is due to a large 

change in the curvature for a small change in axial load. These large changes are 

illustrated in Figure 10.10 showing the maximum curvature as a function of the axial 

load for the same values of l/h as in Figure 10.9. 
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Figure 10.10 Maximum curvature versus axial load. 

Large changes of curvature for small changes in the axial load may be understood by 

studying the moment-curvature relationship. Obviously, the phenomenon gets more 

pronounced for slender beam-columns. For slender beam-columns, the axial load is 

small, since the critical load is small. For small values of N the moment-curvature 

relationship has two points where the shape changes abruptly, see Figure 10.11. This 

takes place when we go from case 37 to case 31 and from case 31 to a case where the 

reinforcement yields. 

 
M 

N=0 

N 

M0’ A (case 32) 

C (case 32) 

B (case 37) 
O 

α1 

α0’

'0κ  κ  
 

Figure 10.11 Schematical illustration of the moment-curvature relationship 

fy=500 MPa, Φ0 = 0.1 
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For small values of N, the slope of the straight line OA valid for N = 0 is almost the 

same as the slope of the straight line BC. The real curve only deviates a little from a 

straight line, which means that the straight line M=M0 + Nu may be tangent to almost 

identical moment-curvature relationships at two very different points ( ), Mκ . This is 

why a jump in the maximum moment and the corresponding curvature may be expected 

for small values of N.  

Since OA and BC as stated above has almost the same slope, the level of axial load 

where the interaction curve changes shape may be found by equation (10.4). 

 
2

0

0

'
'

MN l
α κ
⋅ =  (10.4) 

where the meaning of M0’ and κ0’ is explained in Figure 10.11. 

The corresponding moment may be obtained from the cross-section analysis 

corresponding to C in Figure 10.11. This analysis is only valid for slender columns 

since for short columns the straight line approximation (OA) is no longer valid.  

The criterion for a beam-column to be short is that the N level found from equation 

(10.4) is larger than the N level found for case 36 where the top and bottom 

reinforcement are yielding (the case may depend on the amount of reinforcement). On 

the other hand, if a beam-column is slender the N-level found from equation (10.4) has 

to be smaller than the N level found for case 36.  

10.3.2 Linear elastic material behaviour  

In this section calculations by a simple linear elastic method and the method used in the 

Danish code of Practice DS414 is presented. The two methods also comprise nine 

different cases. 
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Figure 10.12 Cross-section analysis used in the linear elastic method 

10.3.2.1 Linear elastic material 

The masonry is assumed to reach its compressive strength fcm at a strain εcmy = fcm/E0
*. In 

the interval where the stress goes from zero to fcm the variation is linear as shown in 

Figure 10.13.  
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ε

σ  

εcmy  = fcm/E0
*

 fcm 

E0
*=188fcm

 

Figure 10.13. Linear elastic material behaviour 

The moment-curvature relation for the linear elastic method is obtained in a similar way 

as in the previous section and results are shown in Figure 10.14.  

 

Figure 10.14 Moment-curvature relation using the linear elastic model  

10.3.2.2 DS414 method B 

The masonry is assumed to reach its compressive strength fcm
* at a strain εcmy = fcm

*/E0
*. 

In the interval where the stress goes from zero to fcm
* the variation is linear as shown in 

Figure 10.15.  
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*=188fcm

 

Figure 10.15. Linear elastic material behaviour used in DS414 method B 

The moment-curvature relation for method B is obtained as before. However, the 

calculation of the deflection must be changed so the non-linear material behaviour is 

taken into consideration.  

The Danish code, DS414, prescribes a stiffness that declines with the stress level as 

seen in equation (10.5).  

 ,max ,min
0 1 0, 4 0,6cm cm

cr
cm cm

E E
f fσ

σ σ 
= − − 

 
 (10.5) 

where σcm,max and σcm,,min are the maximum and minimum stresses in the masonry, 

respectively, and E0cr = 375fcm in case of Danish masonry. If the cross-section is cracked 

σ cm,,min = 0. 

The maximum stress in the masonry is determined by 

 *
,min

1, 25

1, 25 1 0,2

cm

cm cm
cm

cm

f
f

f
f

σ

=   − 

 

 (10.6) 

The moment-curvature diagrams obtained from these calculations are shown in Figure 

10.16. 
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Figure 10.16 Moment-curvature relation using DS414 method B 

10.3.3 Comparison of calculation methods  

In this section the three methods are compared in an interaction diagram, see Figure 

10.17 
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Figure 10.17 The influence of the slenderness ratio 

As seen from Figure 10.17 the method of DS414 gives similar results as the method 

using a parabolic material behaviour. Further, the figure shows that the linear elastic 

model is conservative compared with the other methods. 

10.3.4 DS414 Method A 

In the Danish code of practice, DS414, another calculation method is described. The 

method is based on a cross-section analysis as outlined in Figure 10.18. 

 b

 h 

 εcmu  fcm
 σs’  y0

 σs = fy 

 N 

 M 
 hc’

 hc

 05
4 y

 εsy

 ½h

 

Figure 10.18 Cross section analysis, DS414, method A  

The curvature is calculated from the strain diagram, i.e.: 

10l
h

=

20l
h

=

30l
h

=
40l

h
=
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 cmu sy

h
ε ε

κ
+

=  (10.7) 

where the maximum strain, εcmu, is equal to 3.5 0/00 according to DS414. 

Thereby the deflection may be calculated in the normal way by 21u lκ
α

= . However, the 

value of the maximum strain is questionable, since it is not related to the stress-strain 

relation of Danish masonry. 



                                                                                            Lars Zenke Hansen 
 

 

 

 

Figure 10.19 Interaction diagram comparing DS414 method A with calculations made by assuming 

non-linear material behaviour 

In Figure 10.19, interaction diagrams for reinforced masonry beam-columns are shown. 

The deflection is calculated according to DS414 in the diagram at the top and at the 
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bottom diagram the deflection is calculated for a maximum strain equal to εcmy = 5.33 
0/00. 

Figure 10.19 shows that DS414 method A provides results, which, compared with 

calculations based on a parabolic stress-strain relation, overestimates the load carrying 

capacity. If the maximum strain is adjusted to the stress-strain relation of Danish 

masonry, it is seen that the methods provide almost similar results.  

10.4 Practical calculation procedure 

10.4.1 Simplified interaction diagram 

A simple method for calculating the load carrying capacity of reinforced masonry beam-

columns may be developed from the investigations made in the previous sections. This 

section describes a simple way of constructing an interaction diagram between the axial 

load and the additional moment on the beam-column. The simplified interaction 

diagram may be constructed from 3-4 cross-section analyses shown in Figure 10.20. In 

this figure, five cross-section analyses are outlined because B and E may substitute each 

other.  

The cross-section analyses are as follows: 

A: Pure bending, where the strain in the masonry is either equal to 3.5 0/00 

or 6.8 0/00 in case of Danish masonry and where the stress in the 

masonry equals fcm. The stress is constant over the stress block. 

B: Bending with axial load, otherwise the same as A. 

C: Compression in the entire cross-section, where the stress in the bottom 

face is zero and the maximum stress at the top face is 1.25 fcm. 

D: Bending with axial load, where the masonry is calculated as linear 

elastic and cracked and where the bottom reinforcement yields. 

E:  Bending with axial load. The masonry is assumed linear elastic with a 

maximum stress equal to 1.25 fcm in the masonry and yielding in the 

bottom reinforcement. 
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In B and E, the top reinforcement might also yield for certain reinforcement ratios and 

yield strengths. B and E are cases characterising the top point of the interaction diagram 

in the case of short beam-columns. 

I all the cross-section analyses assuming linear elastic material behaviour the modulus 

of elasticity is equal to the secant modulus, i.e. 500fcm or 188 fcm in the case of Danish 

masonry. 

The five situations are illustrated in Figure 10.20. 
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E  h 

 b  εsy
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Figure 10.20 Cross-section analysis used to estimate the interaction curve between the simple 

moment and the axial load. 

10.4.1.1 The calculation procedure  

a. Determine the critical load by use of Ritter’s equation for the critical 

stress. 

b. Calculate the moment, simple moment and curvature from cross-section 

analysis D without N and determine Ni (see equation below). 

c. Calculate the maximum M, N combination from cross-section analysis B 

or E and determine if the column is slender or short. 

d. If the column is short, calculate the point obtained from C; plot this 

together with A, B or E and the critical load in an interaction diagram. 

e. If the column is slender, calculate the point obtained from cross-section 

analysis D and plot this together with the point obtained from A and the 

critical load in an interaction diagram. 

 

Re 1.  

The critical stress determined by the Ritter equation is 

2

2
0

1

c
cr

c

cr

f
f l
E i

σ

π

=
 +  
 

 

where in the case of Danish masonry 

0 375cr cmE f=  

The maximum axial load is determined by: 
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(1 )
min cr c

cr
cr c s y

A n
N

A A f
σ ϕ
σ

⋅ + ⋅=  + ⋅
 

 

Re 2.  

Calculate MD,N=0 and 0D,N =κ  from cross section analysis D when N = 0.  

Calculate the N level Ni from the equation: 

2
0,

0,

l
M

N
ND

ND
i

α
κ =

==  

Re 3. 

Calculate the N, M0 -combination from cross-section analysis B or E 

If Ni > N from B or E then the column is short 

If Ni < N from B or E then the column is slender 

Point 4 and 5 do not require any more comments. 

10.4.1.2 Interaction diagrams compared with theory 

In this section, the simple procedure outlined in the previous section is compared with 

calculations using the parabolic stress-strain relation. First, the results for short columns 

will be shown and then the results for slender columns. 

In the calculations, the parameters shown in Table 10.3 are used together with a 

maximum strain equal to 3.5 0/00. For the short columns the slenderness ratio is varied 

between: 

5 30l
h

≤ ≤  

For slender columns the slenderness ratio is varied within: 

30 60l
h

≤ ≤  
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b h hc l fcm εcmy fy Φ0 

[mm] [mm] [mm] [mm] [MPa] [ 00
0 ] [MPa] [] 

250 250 20 3000 30 2 300 0.1 

Table 10.3. Data used when otherwise not stated 

 

 

Figure 10.21 Interaction diagrams for short columns 
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In Figure 10.21, the solid straight line represents the simplified interaction diagram 

using the case E points and the broken straight line represents the simplified interaction 

diagram using the case B point as the top point. The curves illustrates that the 

simplifications made underestimate the load carrying capacity in the case of slender 

beam-columns. The reason is the applied value of the stiffness of the masonry. Since the 

stresses in the masonry are small for slender beam-columns, the stiffness is closer to the 

initial stiffness than to the secant stiffness. 
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11 Comparison with experiments 

11.1 Introduction 

In this section, experiments with unreinforced and reinforced masonry will be compared 

with the theories outlined in the previous sections. Equatio n Sectio n (Next) 

11.2 Unreinforced masonry 

This section compares the calculation methods for unreinforced masonry with 

experiments collected from the literature. In the case of investigations made in other 

countries than Denmark, a model similar to the one suggested in DS/ENV, 1996-1-1, 

[44], is used, see Figure 11.1. This model is similar to the one used for concrete and 

similar to the stress-strain relations suggested in [38]. 

 

][ 00
0

cε

σ [MPa] 

εcmy  = 2 εcmu = 3.5 

 fcm 
E0

*= 500fcm 
E0

 = 1000fcm

 

Figure 11.1 Parabolic model used for non-Danish masonry  
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The stiffness E0
* will be used in the linear elastic model and the modified linear elastic 

model. 

 

In the case of Danish masonry the constitutive equations are formulated in the way 

explained in section 7.2 and section 9.3.1.1.   

11.2.1 Investigations used in the comparisons 

Rambøll, B. J., Clarbo, O. & Manniche, K. 1953 [19] 

The experimental investigation made by Rambøll et. al. consists of 76 masonry wall 

columns, 44 of which were made using the same stone through the entire wall. This was 

“Flamme” stone (F), “Moler” stone (M), “Gasbeton” stone (G) and “Klinkerbeton” 

stone (K). The rest was made with “Flamme” stone on one side and another type of 

brick on the other side. The walls were all 1½ brick thick, 0.85 m wide, 2.6 m high and 

simply supported at both ends. The bricks were laid in English bond. Furthermore, 84 

quadratic piers (1½ brick in side length and with a height of 1.2 m) were tested. The 

walls and piers were tested under three eccentricities. Three types of mortars were used, 

a lime mortar (7.5 % Ca(OH)2 from Kjøbenhavns Mørtelværker A/S), a lime cement 

mortar (C:L = 1:2 by weight) and a pure cement mortar (C:S = 1:3 by weight). 

Measurements of the compressive strength of bricks, mortar and masonry were carried 

out. Measurements of the flexural strength of the mortar were also recorded. The 

relevant data for this investigation can be seen in section 14.1.1.  

 

Report 9 1965 Structural Clay Product Research Foundation [21]  

The experimental investigation in Report 9 from Structural Clay Product Research 

Foundation consists of 40 wall columns and 15 transversely loaded walls without 

precompression. The transverse load was applied by an air bag. The wall thickness was 

equal to the width of a brick. The bricks used had three holes with a diameter of 35 mm. 

The size of the bricks was 57 mm, 92 mm and 206 mm (height, width and length). The 

compressive strength of the bricks covered a span of 27 different types of bricks, which 

means that a high (111 MPa), mean (73.9 MPa) and low (43.5 MPa) strength brick was 

used. These are labelled H, M and L respectively. The mortar was a 1:½:4½ mortar 

(C:L:S) measured by volume. Water was added to the mix to produce workability 



Stability of Masonry Columns 
 

 

 - 82 - 

suitable for the mason. The tensile strength was also measured together with the flexural 

strength. The relevant data for this investigation can be seen in section 14.1.2. 

 

Report 10 1966 Structural Clay Product Research Foundation [22] 

The experimental investigation reported in Report 10 from Structural Clay Product 

Research Foundation consists of 35 wall columns and 10 transversely loaded walls 

without precompression. The transverse load was applied by an air bag. The wall 

thickness was equal to the length of a brick. The bricks used had three holes with a 

diameter of 35 mm. The size of the bricks was 57 mm, 92 mm and 206 mm (height, 

width and length). The compressive strength of the brick was kept constant equal to 

73.9 MPa like the medium brick in Report 9. The walls were built as two walls with the 

thickness equal to the width of the brick and then they were held together with either 

metal ties for each 7 course or in one case with brick headers, which means that for each 

7 course the bricks were turned 90 degrees. The mortar was a 1:½:4½ mortar (C:L:S) 

measured by volume. Water was added to the mix to produce workability suitable for 

the mason. The relevant data for this investigation can be seen in section 14.1.3. 

 

Grenley, D. G, Cattaneo, L. E. & Pfrang, E. O. 1969 [26] 

The scope of this investigation is to investigate the interaction between the axial load 

and the transverse load. 39 one-way walls were prepared. The walls were built in 

running bond. Three different types of bricks were used: A, B and S. The initial rate of 

absorption was 6.2 g, 2.6 g and 19.8 g per minute of suction for the A, B and S brick, 

respectively. Two different types of mortar were used, a conventional mortar and a 

high-bond mortar. The mix was 94 lb cement, 50 lb of lime and 360 lb of washed sand 

in the case of conventional mortar. In the case of the high bond mortar the contents of 

cement, lime and sand was the same but four gallons of liquid additive was added. The 

relevant data for this investigation can be seen in section 14.2.1. 

 

Yokel, F. Y. , Mathey, R. G. and Dikkers, R. D. 1971 [28] 

The experimental investigation made by Yokel et. al. consists of 36 transversely and 

axially loaded tests. Three different bricks were used A, B and S. The two first ones 

were perforated bricks and that last one was a solid brick. The compressive strength was 
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measured to 100 MPa, 142 MPa and 121 MPa, respectively. The IRA was measured to 

0.32, 0.13 and 1 kg/m2/min, respectively. The mortars used were 1:1:4 and the high 

bond mortar was also a 1:1:4 mortar. In the latter additives were added (poly vinylidene 

chloride named sarabond). The compressive strength of the mortar was 33.9 MPa. The 

strength of the normal 1:1:4 mortar was not reported. The relevant data for this 

investigation can be seen in section 14.2.2 

 

Hasan, S. S. & Hendry, A. W. 1976 [31]  

The investigation made by Hasan, S. S. and Hendry, A. W. consists of 72 wall columns, 

48 concentrically loaded and 24 eccentrically loaded. The bricks used were third scale 

bricks. The mortar used was a 1:3 cement mortar (C:S). The wall thickness was equal to 

the width of the brick. The walls had different slenderness ratios varying between 6 and 

25. Three different end conditions were used: hinged, flat and fixed ends. This led to a 

relative reduction in theoretical column length ratio, which was 1, 0.9 and 0.75, 

respectively. The relevant data for this investigation can be seen in section 14.1.4. 

 

Fattal, S. G. and Gattano, L. E. 1976 [32] 

The experimental investigation made by Fattal et. al. consist of 12 eccentrically loaded 

masonry walls. The bricks used had three holes and a compressive strength of 90.2 

MPa. The IRA was measured to 1.09 kg/m2/min. The mortar used was a 1:½:4½ 

(C:L:S) mortar, with a compressive strength of 10.4 MPa. The walls were simply 

supported at both ends. The relevant data for this investigation can be seen in section 

14.1.5. 

 

Murværkscenteret 1979 [33]  

The experimental investigation made at Murværkscenteret consists of 21 story high wall 

columns tested together with 21 piers. The walls were built of six different types of 

bricks. Nine of the walls were built with a Danish “bredsten” (52mm x 168mm x 228 

mm) and the rest with a normal size Danish brick (52mm x 108mm x 228 mm). The 

bricks selected were a weak brick, a strong brick and one in between. All of the bricks 

had several holes as illustrated in Figure 11.2. The wall columns were all simply 
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supported at both ends and those made of normal size brick were built in English bond 

so the wall thickness was 1/1 stone (228 mm). 

 

 

Figure 11.2 Example of a Danish brick with several holes. 

The initial rate of absorption was in the interval from 3.6 –5.0, kg/m2/min, measured 

according to the Danish code. Two different mortars were used. Both were cement lime 

mortars; the mix was C/L/S 50/50/750 and 20/80/550, respectively. The content of 

cement, lime and sand is by weight. The relevant data for this investigation can be seen 

in section 14.1.5. 

 

Kalk og teglværkslaboratoriet 1984 [36] 

The experimental investigation made at Kalk og teglværkslaboratoriet consists of 17 

wall columns. The walls varied in height from 1600 mm to 4600 mm. The walls were 

built of one type of brick. The brick used were a massive normal size Danish brick 

(52mm x 108mm x 228 mm) with an initial rate of absorption of 1.5 kg/m2/min and a 

compressive strength of 28.7 MPa.  

Thirteen of the walls were built with 71 brick headers per m2, two with 21 brick headers 

per m2 and two with 16 metal ties per m2. The wall columns were all simply supported 

in both ends. Two different mortars were used. Both were cement lime mortars with the 

mix C/L/S 50/50/750 and 20/80/550, respectively. The content of cement, lime and sand 

is by weight. The important data for this investigation can be seen in section 14.1.7. 

 

The mean value (µ) and standard deviation (s) are calculated for each series. The results 

are shown in Table 11.1, where 1 indicates calculations according to a parabolic stress-

strain relation, 2 indicates calculations according to a linear elastic stress-strain relation, 

3 indicates calculations according to the modified linear elastic model and 4 indicates 

calculations according to DS414. 
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Investigation Number of 

tests 

 1 2 3 4 

Rambøll, B. J., Clarbo, 

O. & Manniche, K. 1953 

[19] 

40 

 

µ 

s 

1.24 

0.27 

1.48 

0.31 

1.29 

0.28 

1.57 

0.35 

Report 9 1965 [21] 39 µ 

s 

0.97 

0.18 

 1.14 

0.22 

1.27 

0.24 

Report 10 1966 [22] 39 µ 

s 

0.90 

0.26 

 0.97 

0.29 

1.08 

0.32 

Grenley, D. G, Cattaneo, 

L. E. & Pfrang, E. O. 

1969 [26] 

39 µ 

s 

0.97 

0.29 

1.33 

0.44 

1.11 

0.38 

 

Yokel, F. Y. , Mathey, R. 

G. and Dikkers, R. D. 

1971 [28] 

35 µ 

s 

1.31 

0.82 

1.87 

1.61 

1.42 

0.88 

 

 

Hasan, S. S. & Hendry, 

A. W. 1976 [31] 

72 µ 

s 

1.01 

0.1 

1.19 

0.33 

1.13 

0.35 

1.72 

0.5 

Fattal, S. G. and Gattano, 

L. E. 1976 [32] 

10 µ 

s 

1.06 

0.20 

1.54 

0.52 

1.14 

0.24 

1.70 

0.34 

Murværkscenteret 1979 

[33] 

18 µ 

s 

0.74 

0.11 

 0.99 

0.13 

1.10 

0.15 

Kalk og teglværks-

laboratoriet 1984 [36] 

15 µ 

s 

0.97 

0.14 

1.28 

0.34 

1.02 

0.16 

1.26 

0.18 

Total 

Centrically/Eccentrically 

loaded  

Laterally loaded 

307 

233 

 

74 

     

Table 11.1 Mean value and standard deviation for different constitutive equations 
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In the case of Danish masonry, the correlation is best for method 3 (the modified linear 

elastic calculation method). The mean value and standard deviation in the other 

comparisons have to be taken with some caution since a correct constitutive equation is 

not available. Problems of this kind seem to be particularly present in the investigations, 

which are hatched in Table 11.1. 

11.2.2 Interaction diagrams 

11.2.2.1 Concentrically loaded columns and one-way walls 

 

 

Figure 11.3 Results on columns with different end conditions 

In Figure 11.3, load carrying capacity diagrams for three different end conditions are 

illustrated. The investigation is due to Hasan, S. S. and Hendry, A. W. [31]. Figure 

11.3a deals with simply supported columns, Figure 11.3b with columns tested on flat 

ends and Figure 11.3c with rigidly supported columns. The diagrams indicate that the 

experiments with simply supported columns fit the Ritter equation. In the case of flat 

a 

c 

b 
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end supports and rigid supports the test results do not fit as well for small slenderness 

ratios. This may be due to the support conditions where membrane action may be 

introduced. 

In Figure 11.4 a comparison between Ritter’s equation and all column experiments are 

shown. The agreement is seen to be good. 
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Figure 11.4 Ritter�s equation compared with experiments 

11.2.2.2 Eccentrically loaded columns and one-way walls 

In Figure 11.5-Figure 11.6 the results from the investigation reported in [31] is shown. 

 

Figure 11.5 Results of tests shown in an interaction diagrams valid for l/h = 6.0 and l/h = 12.0 

10 

9 

linear linear 
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Figure 11.6 Results of tests shown in a interaction diagrams valid for l/h = 18.0 and l/h = 25.0 

Interaction diagrams like the ones shown above may be found in Chapter 10. 

The interaction diagrams show that the modified linear elastic model provides good 

agreement with experiments.  

In Figure 11.7, all experiments collected from the literature are compared with 

calculations made by the modified linear elastic model. 
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Figure 11.7 Modified linear elastic theory compared with experiments 

The correlation is seen to be good. 

linear linear
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11.2.2.3 Laterally and concentrically loaded one-way walls 

In Figure 11.8 results taken from Grenley, G, A et. al.  and Yokel, F. Y. et. al. are 

shown. It is seen that a linear elastic prediction is conservative.  

 

 

Figure 11.8 Results of tests reported in [26] and [28] shown in interaction diagrams  

Further, it is seen that the results have a large scatter. The modified linear elastic 

calculation method seems to fit best to the results. In Figure 11.9, this method is 

compared with all the tests available from the literature. 

linear linear 

linear linear 
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Figure 11.9 Linear elastic theory compared with experiments 

11.2.2.4 Laterally loaded one-way walls 

The comparisons for laterally loaded masonry are based on experiments reported in [21] 

and [22]. 
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Figure 11.10 Results of the theory in section 9.3.6 compared with experiments 

However, it must be noted that the gravity of the bricks and the mortar have not been 

reported. Nevertheless, if the gravity for the specimens reported in [22] is set to 22 

kN/m2 and for the specimens reported in [21] to 22, 18, 14 kN/m2, respectively, the 

results shown in Figure 11.10 are obtained. The reason why the gravity is varied for the 

specimens reported in [21] is that the IRA indicates that the bricks have had different 

densities.  

11.3 Reinforced masonry 

In this section experiments on reinforced masonry are compared with the theories 

outlined in Chapter 10. As for unreinforced masonry, the initial stiffness is calculated in 

different ways. For the tests in [15] the compressive strength of masonry has not been 

reported and cannot be calculated. Thus, this test series has been disregarded. 
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11.3.1 Investigations used in the comparisons 

Davey, N. & Thomas, F. G. 1949-50 [17] 

The experimental investigation made by Davey et. al. dealt with reinforced masonry, 

where the entire cross-section was of masonry (see Figure 11.11). The piers were 

prepared on a concrete base and a concrete cap was cast on the top after 7 days. The 

eccentrical axial load was applied on the concrete cap through a knife-edge. The 

reinforcement was symmetrically placed as shown in Figure 11.11 and had a diameter 

of 6.35 mm (~ ¼ inch). The piers were built of Felton bricks with a compressive 

strength of 21.4 MPa and a 1:¼:3 mortar with a cube strength of 27.6 MPa after 28 

days. The relevant data for this investigation can be seen in section 15.1.1.  

 

127 mm  

Figure 11.11 Cross-section for the reinforced piers 

 

Anderson, D. E. & Hoffman, E. S. 1969 [27] 

The experimental investigation made by Anderson et. al. consists of reinforced masonry 

piers, where the core was crout (see Figure 11.12). The piers are simply supported in the 

top and rigidly supported at the bottom. The column length was reported to be 0.75 of 

the entire length. The bricks used had a compressive strength of 93.1 MPa. The mortar 

used was an ASTM Type S. The crout had an average compressive strength of 25 MPa. 

This gave a masonry compressive strength of 36.2 MPa. The reinforcement used were 

four steel bars with a diameter of 16 mm (~5/8 in ~ #5) and a yield strength of 275.8 

MPa. The important data for this investigation can be seen in section 15.1.2. 
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Figure 11.12 Cross-section for the reinforced piers 

 

The mean value (µ) and the standard deviation (s) for calculations using the parabolic 

stress-strain relation (1), the model used in DS414, method B (2) and the linear elastic 

model (3) are presented in Table 11.2 for all experiments. 

  

Investigator Number of tests  1 2 3 

Davey, N. & Thomas, F. 

G. 1949-50 [17] 

13 µ 

s 

0,82 

0,08 

0,98 

0,09 

0,87 

0,09 

Anderson, D. E. & 

Hoffman, E. S. 1969 [27] 

11 µ 

s 

1,16 

0,15 

1,35 

0,19 

1,14 

0,12 

Total 24     

Table 11.2 Mean value and standard deviation for reinforced masonry columns 

It is seen that the best correlation is achieved with calculations made according to 

DS414 method B. 

11.3.2 Interaction diagrams 

11.3.2.1 Eccentrically loaded columns and one-way slabs 

In this section, eccentrically loaded masonry beam-columns are compared with the 

theories by means of interaction diagrams: The results are shown in Figure 11.13 
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Figure 11.13 Interaction diagrams for reinforced masonry compared with tests from [17] and [27] 

The remaining of the interaction diagrams may be found in Chapter 10. 

All experiments are plotted in Figure 11.14 together with calculated values using 

DS414, method B. The agreement is seen to be good. 
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Figure 11.14 Comparison between DS414, method B and experiments 
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12 Conclusion 

In this report, unreinforced and reinforced masonry columns and beam columns have 

been treated by different constitutive models. The models have been compared 

individually and with experiments. The tensile strength has been set at zero. To provide 

tensile strength to masonry reinforcement must be used. 

 

Unreinforced masonryEquation Section (Next) 

In the report, expressions have been derived for the load carrying capacity of columns 

and beam-columns with and without membrane action and for laterally loaded masonry 

without axial load. Comparison with experiments shows that concentrically loaded 

columns may be calculated by Ritter’s equation without the kind of correction factor 

suggested in the Danish Code of Practice, DS414. Results for unreinforced masonry 

beam-columns have been compared with experiments. The comparison shows that 

calculations made by using a modified linear elastic model overall provide the best 

results. The method developed is iterative. Simple conservative calculations may be 

made by using a simplified linear elastic model, and then closed form solutions may be 

given. All-together 307 experiments have been collected and used for the comparison. 

Furthermore, it has been shown that masonry made by Danish bricks have an initial 

stiffness which may be taken as 375fcm, where fcm is the compressive strength of the 

masonry in MPa. This value is much smaller than the initial stiffness used in other 

countries in Europe. Thus, an investigation of the behaviour of Danish masonry in 

compression has been undertaken. 

Regarding masonry members with membrane action, it has been shown that a small 

pressure perpendicular to the bed joints increases the lateral strength notably. 
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Furthermore, it has been shown how the lateral strength of masonry walls without other 

external axial compression may be calculated by taken the weight of the masonry into 

account. 

 

Reinforced masonry 

In the report, reinforced masonry has been treated by the same methods as used for 

unreinforced masonry. Experiments collected from the literature are very limited in 

number so a thorough comparison has not been possible. Only 24 experiments have 

been found. However, it seems fair to conclude that reinforced masonry beam-columns 

may be calculated by using the method given in DS414. 

In the report, practical calculation methods have been derived by using interaction 

diagrams between axial load and bending moment. 
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14 Appendix 1. Experiments, unreinforced 

masonry 

Eccentrically and concentrically loaded columns and one-way slabs. 

B. J. Rambøll,  O. Glarbo & K. Manniche 

Research report number 9, Structural Clay Product Research Foundation 

Research report number 10, Structural Clay Product Research Foundation 

Hasan, S. S. & Hendry, A. W. 

Fattal, S. G. and Cattaneo, L. E.  

Murværkscenteret 

Kalk- og teglværkslaboratoriet Hasselager 

 

Laterally loaded beam columns 

Grenley, G, A. 

Yokel, F. Y., Mathey, R. G. and Dikkers, R. D. 

 

In almost all of the interaction curves, the compressive strength is calculated using the 

test results for pure compression, i.e. without any applied external moment. In the case 

of the investigation made at Murværkscenteret (The Danish centre of masonry) this was 

not possible. Instead, the compressive strength was calculated by the formula suggested 

by Hagsten [45]. Thus the compressive strengths reported in the tables are either 

measured values or values calculated by means of Hagsten’s formula.  
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14.1 Concentrically and eccentrically loaded columns 

14.1.1 B. J. Rambøll,  O. Glarbo & K. Manniche 

Ref no. b h fc,m ei/h l/h Nexp M0,exp

  [mm] [mm] [MPa]     [kN] [kNm]

Nexp 

Ntheo,par 

Nexp 

Ntheo,el 

Nexp 

Ntheo,DS411

Nexp 

Ntheo,DS414

1 850,00 163,30 4,57 0,00 15,92 678,85 0,00 1,11 1,43 1,29 1,43 

2 850,00 163,30 4,57 0,00 15,92 590,56 0,00 0,97 1,25 1,12 1,25 

5 850,00 163,30 4,57 0,08 15,92 466,96 6,35 1,06 1,21 1,07 1,27 

6 850,00 163,30 4,57 0,08 15,92 469,90 6,39 1,06 1,22 1,08 1,28 

7 850,00 163,30 4,57 0,17 15,92 317,84 8,65 0,96 1,14 0,95 1,22 

8 850,00 163,30 4,57 0,17 15,92 288,41 7,85 0,87 1,03 0,86 1,11 

11 850,00 163,30 4,57 0,25 15,92 180,50 7,37 0,88 1,00 0,88 1,15 

12 850,00 163,30 4,57 0,25 15,92 168,73 6,89 0,82 0,94 0,82 1,08 

14 850,00 163,30 10,00 0,00 15,92 1458,75 0,00 1,09 1,41 1,27 1,41 

15 850,00 163,30 10,00 0,00 15,92 1318,46 0,00 0,99 1,27 1,14 1,27 

16 850,00 163,30 10,00 0,08 15,92 1043,78 14,20 1,08 1,24 1,10 1,30 

17 850,00 163,30 10,00 0,08 15,92 1171,31 15,94 1,21 1,39 1,23 1,46 

18 850,00 163,30 10,00 0,17 15,92 984,92 26,81 1,37 1,61 1,34 1,73 

19 850,00 163,30 10,00 0,17 15,92 808,34 22,00 1,12 1,32 1,10 1,42 

20 850,00 163,30 10,00 0,25 15,92 621,95 25,39 1,38 1,58 1,38 1,81 

29 850,00 163,30 10,00 0,25 15,92 590,56 24,11 1,31 1,50 1,31 1,72 

21 850,00 163,30 15,05 0,00 15,92 2220,98 0,00 1,11 1,42 1,28 1,42 

22 850,00 163,30 15,05 0,00 15,92 1956,11 0,00 0,97 1,25 1,13 1,25 

23 850,00 163,30 15,05 0,08 15,92 2181,74 29,69 1,50 1,72 1,52 1,81 

24 850,00 163,30 15,05 0,08 15,92 1975,73 26,89 1,36 1,56 1,38 1,63 

25 850,00 163,30 15,05 0,17 15,92 1661,81 45,23 1,53 1,80 1,50 1,94 

28 850,00 163,30 15,05 0,17 15,92 1534,28 41,76 1,41 1,67 1,39 1,79 

26 850,00 163,30 15,05 0,25 15,92 1279,22 52,22 1,89 2,15 1,89 2,48 

27 850,00 163,30 15,05 0,25 15,92 1161,50 47,42 1,72 1,96 1,72 2,25 

30 850,00 163,30 2,82 0,00 15,92 420,85 0,00 1,12 1,44 1,30 1,44 

31 850,00 163,30 2,82 0,00 15,92 361,99 0,00 0,96 1,24 1,11 1,24 

32 850,00 163,30 2,82 0,08 15,92 323,73 4,41 1,19 1,36 1,21 1,43 

33 850,00 163,30 2,82 0,08 15,92 357,08 4,86 1,31 1,50 1,33 1,58 

36 850,00 163,30 2,82 0,17 15,92 268,79 7,32 1,32 1,56 1,30 1,67 
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37 850,00 163,30 2,82 0,17 15,92 265,85 7,24 1,31 1,54 1,28 1,66 

38 850,00 163,30 2,82 0,25 15,92 163,83 6,69 1,29 1,47 1,29 1,69 

39 850,00 163,30 2,82 0,25 15,92 180,50 7,37 1,43 1,62 1,43 1,87 

49 850,00 163,30 1,57 0,00 15,92 413,00 0,00 1,97 2,54 2,29 2,54 

75 850,00 163,30 5,73 0,00 15,92 756,35 0,00 0,99 1,27 1,15 1,27 

76 850,00 163,30 5,73 0,00 15,92 834,83 0,00 1,09 1,41 1,26 1,41 

77 850,00 163,30 5,73 0,17 15,92 572,90 15,59 1,39 1,63 1,36 1,76 

78 850,00 163,30 5,73 0,17 15,92 552,30 15,03 1,34 1,57 1,31 1,69 

71 850,00 163,30 4,77 0,00 15,92 735,75 0,00 1,16 1,49 1,34 1,49 

72 850,00 163,30 4,77 0,00 15,92 587,62 0,00 0,92 1,19 1,07 1,19 

73 850,00 163,30 4,77 0,17 15,92 518,95 14,12 1,51 1,78 1,48 1,91 

74 850,00 163,30 4,77 0,17 15,92 543,47 14,79 1,58 1,86 1,55 2,00 

Table 14.1 Data for the calculation of tests taken from [19]. Only results of walls built with the same 

brick and mortar through the entire wall are found useful. The compressive strength is calculated 

by using Hagstens formula 

 

Figure 14.1 Results of tests shown in an interaction diagram, FIKM is �Flamme� stones with lime 

mortar 

linear
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Figure 14.2 Results of tests shown in an interaction diagram, FIKCM is �Flamme� stones with lime 

cement mortar 

 

Figure 14.3 Results of tests shown in an interaction diagram, FICM is �Flamme� stones with 

cement mortar 

linear

linear
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Figure 14.4 Results of tests shown in an interaction diagram, MKM is �Moler� stones with lime 

mortar,  

 

linear
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14.1.2 Research report 9. Structural Clay Product Research Foundation.  

Ref no. b h fc,m ei/h l/h Nexp M0,exp 

  [mm] [mm] [MPa]     [kN] [kNm] 

Nexp 

Ntheo,par 

Nexp 

NRitter 

Nexp 

Ntheo,DS414

c8-1 609,60 101,60 38,10 0,00 23,75 2099,46 0,00 0,95 1,13 1,26 

c8-2 609,60 101,60 38,10 0,00 23,75 2215,10 0,00 1,00 1,19 1,32 

c8-3 609,60 101,60 38,10 0,00 23,75 2250,69 0,00 1,02 1,21 1,35 

c8-4 609,60 101,60 38,10 0,00 23,75 2335,20 0,00 1,06 1,26 1,40 

c8-5 609,60 101,60 38,10 0,00 23,75 2357,44 0,00 1,07 1,27 1,41 

c3-1 609,60 101,60 29,73 0,00 9,75 2046,08 0,00 1,11 1,16 1,29 

c3-2 609,60 101,60 29,73 0,00 9,75 1779,20 0,00 0,97 1,01 1,12 

c3-3 609,60 101,60 29,73 0,00 9,75 1948,22 0,00 1,06 1,10 1,23 

c3-4 609,60 101,60 29,73 0,00 9,75 1703,58 0,00 0,93 0,97 1,07 

c3-5 609,60 101,60 29,73 0,00 9,75 1966,02 0,00 1,07 1,11 1,24 

c5-1 609,60 101,60 29,73 0,00 15,50 0,00 0,00 0,00 0,00 0,00 

c5-2 609,60 101,60 29,73 0,00 15,50 1894,85 0,00 1,04 1,14 1,27 

c5-3 609,60 101,60 29,73 0,00 15,50 1632,42 0,00 0,90 0,98 1,09 

c5-4 609,60 101,60 29,73 0,00 15,50 1894,85 0,00 1,04 1,14 1,27 

c5-5 609,60 101,60 29,73 0,00 15,50 1712,48 0,00 0,94 1,03 1,15 

c8-6 609,60 101,60 29,73 0,00 23,75 1859,26 0,00 1,07 1,27 1,41 

c8-7 609,60 101,60 29,73 0,00 23,75 1779,20 0,00 1,03 1,22 1,35 

c8-8 609,60 101,60 29,73 0,00 23,75 1756,96 0,00 1,01 1,20 1,33 

c8-9 609,60 101,60 29,73 0,00 23,75 1587,94 0,00 0,92 1,09 1,21 

c8-10 609,60 101,60 29,73 0,00 23,75 1552,35 0,00 0,90 1,06 1,18 

c10-1 609,60 101,60 29,73 0,00 30,25 1779,20 0,00 1,11 1,37 1,52 

c10-2 609,60 101,60 29,73 0,00 30,25 1761,41 0,00 1,10 1,36 1,51 

c10-3 609,60 101,60 29,73 0,00 30,25 1561,25 0,00 0,98 1,20 1,34 

c10-4 609,60 101,60 29,73 0,00 30,25 1543,46 0,00 0,97 1,19 1,32 

c10-5 609,60 101,60 29,73 0,00 30,25 1712,48 0,00 1,07 1,32 1,47 

c12-6 609,60 101,60 29,73 0,00 36,75 1583,49 0,00 1,11 1,39 1,55 

c12-7 609,60 101,60 29,73 0,00 36,75 1361,09 0,00 0,96 1,20 1,33 

c12-8 609,60 101,60 29,73 0,00 36,75 1187,62 0,00 0,84 1,04 1,16 

c12-9 609,60 101,60 29,73 0,00 36,75 1352,19 0,00 0,95 1,19 1,32 

c12-10 609,60 101,60 29,73 0,00 36,75 1432,26 0,00 1,01 1,26 1,40 

c15-1 609,60 101,60 29,73 0,00 45,50 1076,42 0,00 0,92 1,14 1,27 

c15-2 609,60 101,60 29,73 0,00 45,50 889,60 0,00 0,76 0,94 1,05 

c15-3 609,60 101,60 29,73 0,00 45,50 1000,80 0,00 0,85 1,06 1,18 
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c15-4 609,60 101,60 29,73 0,00 45,50 1223,20 0,00 1,04 1,29 1,44 

c15-5 609,60 101,60 29,73 0,00 45,50 1187,62 0,00 1,01 1,26 1,40 

c8-11 609,60 101,60 22,21 0,00 23,75 1103,10 0,00 0,85 1,00 1,11 

c8-12 609,60 101,60 22,21 0,00 23,75 1454,50 0,00 1,12 1,32 1,46 

c8-13 609,60 101,60 22,21 0,00 23,75 1392,22 0,00 1,07 1,26 1,40 

c8-14 609,60 101,60 22,21 0,00 23,75 1303,26 0,00 1,00 1,18 1,31 

c8-15 609,60 101,60 22,21 0,00 23,75 1174,27 0,00 0,90 1,06 1,18 

Table 14.2 Data for the calculation of tests taken from [21] 

 

Figure 14.5 Results of tests  
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Figure 14.6 Results of tests  

 

Figure 14.7 Results of tests  
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14.1.3 Research report 10. Structural Clay Product Research Foundation. 

Ref no. b h fc,m ei/h l/h Nexp M0,exp 

  [mm] [mm] [MPa]     [kN] [kNm] 

Nexp 

Ntheo,par

Nexp 

Ntheo,el 

Nexp 

Ntheo,DS 

CPR-S1 406,40 203,20 33,31 0,00 2,61 2677,70 0,00 0,97 0,98 1,09 

CPR-S2 406,40 203,20 31,03 0,00 2,61 2504,22 0,00 0,98 0,98 1,09 

CPR-S3 406,40 203,20 32,22 0,00 2,61 2588,74 0,00 0,97 0,98 1,09 

CPR-S4 406,40 203,20 32,19 0,00 2,61 2553,15 0,00 0,96 0,96 1,07 

CPR-S5 406,40 203,20 32,16 0,00 2,61 2593,18 0,00 0,98 0,98 1,09 

C3-1 609,60 203,20 32,18 0,00 4,83 3785,25 0,00 0,95 0,96 1,07 

C3-2 609,60 203,20 32,18 0,00 4,83 4345,70 0,00 1,09 1,10 1,22 

C3-3 609,60 203,20 32,18 0,00 4,83 4087,71 0,00 1,03 1,04 1,15 

C3-4 609,60 203,20 32,18 0,00 4,83 0,00 0,00 0,00 0,00 0,00 

C3-5 609,60 203,20 32,18 0,00 4,83 3834,18 0,00 0,96 0,97 1,08 

C6-1 609,60 203,20 32,18 0,00 9,33 4056,58 0,00 1,02 1,06 1,18 

C6-2 609,60 203,20 32,18 0,00 9,33 3629,57 0,00 0,91 0,95 1,05 

C6-3 609,60 203,20 32,18 0,00 9,33 4074,37 0,00 1,02 1,06 1,18 

C6-4 609,60 203,20 32,18 0,00 9,33 4132,19 0,00 1,04 1,08 1,20 

C6-5 609,60 203,20 32,18 0,00 9,33 3811,94 0,00 0,96 0,99 1,10 

C8-1 609,60 203,20 32,18 0,00 12,23 3727,42 0,00 0,94 1,00 1,11 

C8-2 609,60 203,20 32,18 0,00 12,23 3767,46 0,00 0,95 1,01 1,12 

C8-3 609,60 203,20 32,18 0,00 12,23 3598,43 0,00 0,91 0,96 1,07 

C8-4 609,60 203,20 32,18 0,00 12,23 3923,14 0,00 0,99 1,05 1,17 

C8-5 609,60 203,20 32,18 0,00 12,23 3923,14 0,00 0,99 1,05 1,17 

C10-1 609,60 203,20 32,18 0,00 15,13 3998,75 0,00 1,01 1,11 1,23 

C10-2 609,60 203,20 32,18 0,00 15,13 3927,58 0,00 1,00 1,09 1,21 

C10-3 609,60 203,20 32,18 0,00 15,13 3918,69 0,00 0,99 1,09 1,21 

C10-4 609,60 203,20 32,18 0,00 15,13 4034,34 0,00 1,02 1,12 1,24 

C10-5 609,60 203,20 32,18 0,00 15,13 4176,67 0,00 1,06 1,16 1,29 

C13-1 609,60 203,20 32,18 0,00 19,95 3585,09 0,00 0,93 1,07 1,18 

C13-2 609,60 203,20 32,18 0,00 19,95 3811,94 0,00 0,99 1,13 1,26 

C13-3 609,60 203,20 32,18 0,00 19,95 3789,70 0,00 0,98 1,13 1,25 

C13-4 609,60 203,20 32,18 0,00 19,95 4007,65 0,00 1,04 1,19 1,32 

C13-5 609,60 203,20 32,18 0,00 19,95 3763,01 0,00 0,98 1,12 1,24 

CB13-1 609,60 203,20 32,18 0,00 19,95 3625,12 0,00 0,94 1,08 1,20 

CB13-2 609,60 203,20 32,18 0,00 19,95 3740,77 0,00 0,97 1,11 1,24 

CB13-3 609,60 203,20 32,18 0,00 19,95 0,00 0,00 0,00 0,00 0,00 
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CB13-4 609,60 203,20 32,18 0,00 19,95 3260,38 0,00 0,84 0,97 1,08 

CB13-5 609,60 203,20 32,18 0,00 19,95 0,00 0,00 0,00 0,00 0,00 

C15-1 609,60 203,20 32,18 0,00 22,86 3571,74 0,00 0,95 1,11 1,24 

C15-2 609,60 203,20 32,18 0,00 22,86 3665,15 0,00 0,97 1,14 1,27 

C15-3 609,60 203,20 32,18 0,00 22,86 3371,58 0,00 0,89 1,05 1,17 

C15-4 609,60 203,20 32,18 0,00 22,86 3527,26 0,00 0,93 1,10 1,22 

C15-5 609,60 203,20 32,18 0,00 22,86 3318,21 0,00 0,88 1,03 1,15 

Table 14.3 Data for the calculation of tests taken from [22] 

 

Figure 14.8 Results of tests, metal ties 
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Figure 14.9 Results of tests, brick headers 
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14.1.4 Hasan, S. S. & Hendry, A. W. 

Ref no. b h fc,m ei/h l/h Nexp M0,exp 

  [mm] [mm] [MPa]     [kN] [kNm] 

Nexp 

Ntheo,par 

Nexp 

Ntheo,el

Nexp 

Ntheo,DS

B1W6-1 380,00 76,20 14,19 0,00 6,00 611,80 0,00 1,49 1,56 2,23 

B1W6-2 380,00 76,20 17,11 0,00 6,00 641,70 0,00 1,30 1,36 1,94 

B1W6-3 380,00 76,20 16,65 0,00 6,00 679,30 0,00 1,42 1,48 2,12 

B1W8-1 380,00 76,20 15,89 0,00 8,00 627,70 0,00 1,37 1,48 2,11 

B1W8-2 380,00 76,20 14,59 0,00 8,00 647,70 0,00 1,54 1,66 2,37 

B1W8-3 380,00 76,20 17,20 0,00 8,00 651,60 0,00 1,32 1,42 2,03 

B1W12-1 380,00 76,20 15,70 0,00 12,00 579,90 0,00 1,32 1,52 2,17 

B1W12-2 380,00 76,20 16,00 0,00 12,00 737,30 0,00 1,65 1,90 2,71 

B1W12-3 380,00 76,20 15,99 0,00 12,00 607,80 0,00 1,36 1,56 2,24 

B1W18-1 380,00 76,20 16,32 0,00 18,00 726,40 0,00 1,79 2,21 3,15 

B1W18-2 380,00 76,20 17,13 0,00 18,00 649,65 0,00 1,53 1,89 2,70 

B1W18-3 380,00 76,20 16,77 0,00 18,00 701,50 0,00 1,68 2,07 2,96 

WM6-1 480,00 38,10 14,53 0,00 6,00 320,84 0,00 1,21 1,27 1,81 

WM6-2 480,00 38,10 14,63 0,00 6,00 310,90 0,00 1,16 1,22 1,74 

WM6-3 480,00 38,10 14,13 0,00 6,00 342,76 0,00 1,33 1,39 1,99 

WM12-1 480,00 38,10 15,22 0,00 12,00 333,80 0,00 1,20 1,43 2,04 

WM12-2 480,00 38,10 14,10 0,00 12,00 362,70 0,00 1,41 1,67 2,39 

WM12-3 480,00 38,10 14,53 0,00 12,00 313,80 0,00 1,18 1,41 2,01 

WM18-1 480,00 38,10 17,29 0,00 18,00 258,00 0,00 0,82 1,17 1,68 

WM18-2 480,00 38,10 17,06 0,00 18,00 272,00 0,00 0,87 1,25 1,79 

WM18-3 480,00 38,10 16,90 0,00 18,00 261,06 0,00 0,84 1,21 1,73 

WM25-1 480,00 38,10 16,56 0,00 25,00 191,31 0,00 0,63 1,16 1,66 

WM25-2 480,00 38,10 18,74 0,00 25,00 203,30 0,00 0,59 1,10 1,58 

WM25-3 480,00 38,10 17,77 0,00 25,00 193,20 0,00 0,59 1,10 1,57 

WS4-1 480,00 38,10 15,79 0,00 4,00 334,67 0,00 1,16 1,18 1,68 

WS4-2 480,00 38,10 15,84 0,00 4,00 334,67 0,00 1,16 1,18 1,68 

WS6-1 480,00 38,10 16,58 0,00 6,00 320,04 0,00 1,06 1,09 1,56 

WS6-2 480,00 38,10 16,68 0,00 6,00 369,42 0,00 1,21 1,25 1,79 

WS9-1 480,00 38,10 17,35 0,00 9,00 323,70 0,00 1,03 1,10 1,57 

WS9-2 480,00 38,10 12,70 0,00 9,00 385,88 0,00 1,67 1,78 2,55 

WS9-3 480,00 38,10 14,74 0,00 9,00 369,42 0,00 1,38 1,48 2,11 

WS14-1 480,00 38,10 16,47 0,00 14,00 261,52 0,00 0,89 1,03 1,46 
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WS14-2 480,00 38,10 16,27 0,00 14,00 250,55 0,00 0,87 0,99 1,42 

WS14-3 480,00 38,10 16,32 0,00 14,00 250,55 0,00 0,87 0,99 1,42 

WS19-1 480,00 38,10 16,07 0,00 19,00 205,74 0,00 0,77 0,93 1,33 

WS19-2 480,00 38,10 16,18 0,00 19,00 228,60 0,00 0,85 1,03 1,47 

WS19-3 480,00 38,10 17,11 0,00 19,00 276,15 0,00 0,97 1,18 1,69 

W06-1 480,00 38,10 16,56 0,00 6,00 238,84 0,00 0,79 1,17 0,82 

W06-2 480,00 38,10 18,59 0,00 6,00 259,69 0,00 0,76 1,14 0,80 

W06-3 480,00 38,10 17,80 0,00 6,00 259,69 0,00 0,80 1,19 0,83 

W66-1 480,00 38,10 17,56 0,17 6,00 179,22 1,14 0,93 0,92 0,92 

W66-2 480,00 38,10 17,05 0,17 6,00 169,35 1,08 0,91 0,89 0,89 

W66-3 480,00 38,10 17,94 0,17 6,00 183,79 1,17 0,94 0,92 0,92 

W36-1 480,00 38,10 17,17 0,33 6,00 90,71 1,15 1,09 1,05 1,05 

W36-2 480,00 38,10 18,17 0,33 6,00 65,84 0,84 0,75 0,72 0,72 

W36-3 480,00 38,10 17,94 0,33 6,00 71,32 0,91 0,82 0,79 0,79 

W012-1 480,00 38,10 16,97 0,00 12,00 213,97 0,00 0,71 1,16 0,81 

W012-2 480,00 38,10 17,82 0,00 12,00 232,26 0,00 0,73 1,20 0,84 

W012-3 480,00 38,10 17,76 0,00 12,00 241,40 0,00 0,76 1,24 0,87 

W612-1 480,00 38,10 14,88 0,17 12,00 138,07 0,88 0,96 0,92 0,92 

W612-2 480,00 38,10 17,82 0,17 12,00 153,62 0,98 0,89 0,86 0,86 

W612-3 480,00 38,10 17,05 0,17 12,00 138,07 0,88 0,83 0,80 0,80 

W312-1 480,00 38,10 16,41 0,33 12,00 36,03 0,46 0,77 0,82 0,82 

W312-2 480,00 38,10 18,14 0,33 12,00 47,55 0,60 0,92 0,98 0,98 

W312-3 480,00 38,10 17,23 0,33 12,00 27,43 0,35 0,56 0,59 0,59 

W018-1 480,00 38,10 17,05 0,00 18,00 193,85 0,00 0,70 1,23 0,86 

W018-2 480,00 38,10 18,49 0,00 18,00 237,74 0,00 0,80 1,40 0,98 

W018-3 480,00 38,10 18,77 0,00 18,00 212,14 0,00 0,70 1,23 0,86 

W618-1 480,00 38,10 15,79 0,17 18,00 97,66 0,62 0,80 0,82 0,82 

W618-2 480,00 38,10 18,56 0,17 18,00 85,95 0,55 0,60 0,61 0,61 

W618-3 480,00 38,10 18,01 0,17 18,00 104,24 0,66 0,75 0,77 0,77 

W318-1 480,00 38,10 16,45 0,33 18,00 21,95 0,28 0,93 0,93 0,93 

W318-2 480,00 38,10 17,59 0,33 18,00 16,20 0,21 0,64 0,64 0,64 

W318-3 480,00 38,10 18,61 0,33 18,00 27,43 0,35 1,03 1,03 1,03 

W025-1 480,00 38,10 15,89 0,00 25,00 146,30 0,00 0,71 1,26 0,89 

W025-2 480,00 38,10 18,54 0,00 25,00 173,74 0,00 0,72 1,29 0,90 

W025-3 480,00 38,10 18,69 0,00 25,00 128,02 0,00 0,53 0,94 0,66 

W625-1 480,00 38,10 14,28 0,17 25,00 77,91 0,49 1,01 1,09 1,09 

W625-2 480,00 38,10 19,15 0,17 25,00 98,39 0,62 0,95 1,02 1,02 
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W625-3 480,00 38,10 18,37 0,17 25,00 65,84 0,42 0,67 0,71 0,71 

W325-1 480,00 38,10 13,29 0,33 25,00 14,63 0,19 1,22 1,22 1,22 

W325-2 480,00 38,10 15,79 0,33 25,00 19,75 0,25 1,40 1,40 1,40 

W325-3 480,00 38,10 19,06 0,33 25,00 16,64 0,21 0,97 0,97 0,97 

Table 14.4 Data for the calculation of tests taken from [31] 

 

Figure 14.10 Results of tests  
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Figure 14.11 Results of tests  

 

 

Figure 14.12 Results of tests  
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Figure 14.13 Results of tests shown in an interaction diagram l/h = 6.0 

 

Figure 14.14 Results of tests shown in an interaction diagram l/h = 12.0 

0 

0 

linear

linear



Stability of Masonry Columns 
 

 

 - 118 - 

 

Figure 14.15 Results of tests shown in an interaction diagram l/h = 18.0 

 

Figure 14.16 Results of tests shown in an interaction diagram l/h = 25.0 
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14.1.5 Fattal, S. G. and Gattano, L. E.  

Ref no. b h fc,m ei/h l/h Nexp M0,exp

  [mm] [mm] [MPa]     [kN] [kNm]

Nexp 

Ntheo,par 

Nexp 

Ntheo,el 

Nexp 

Ntheo,DS411

Nexp 

Ntheo,DS414

4A7 812,80 101,60 26,96 0,00 24,00 2228,45 0,00 1,65 1,89 1,70 2,27 

4A8 812,80 101,60 26,96 0,00 24,00 2224,00 0,00 1,65 1,89 1,70 2,26 

4A1 812,80 101,60 16,93 0,00 24,00 1365,54 0,00 1,55 1,85 1,66 2,13 

4A2 812,80 101,60 16,93 0,00 24,00 1430,03 0,00 1,62 1,93 1,74 2,23 

4A9 812,80 101,60 16,93 0,07 24,00 750,38 5,66 1,03 1,22 1,07 1,63 

4A10 812,80 101,60 16,93 0,07 24,00 744,15 5,61 1,02 1,21 1,07 1,61 

4A3 812,80 101,60 16,93 0,15 24,00 480,38 7,24 1,00 1,35 1,06 1,60 

4A4 812,80 101,60 16,93 0,15 24,00 498,18 7,50 1,04 1,40 1,10 1,65 

4A5 812,80 101,60 16,93 0,30 24,00 177,48 5,35 1,44 2,59 1,62 2,36 

4A6 812,80 101,60 16,93 0,30 24,00 102,30 3,08 0,83 1,49 0,93 1,36 

Table 14.5 Data for the calculation of tests taken from [32] 

 

Figure 14.17 Results of tests shown in an interaction diagram 
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14.1.6 Kalk og teglværkslaboratoriet 

Ref no. b h fc,m ei/h l/h Nexp M0,exp

  [mm] [mm] [MPa]     [kN] [kNm]

Nexp 

Ntheo,par

Nexp 

Ntheo,el

Nexp 

Ntheo,DS411

Nexp 

Ntheo,DS414 

1 960,00 228,00 13,70 0,17 7,02 1400,83 53,23 0,87 1,01 0,85 1,06 

2 960,00 228,00 13,70 0,17 7,02 1269,50 48,24 0,79 0,92 0,77 0,96 

3 960,00 228,00 13,70 0,17 11,40 1050,62 39,92 0,85 0,99 0,89 1,14 

4 960,00 228,00 13,70 0,17 11,40 1079,81 41,03 0,87 1,02 0,92 1,17 

5 960,00 228,00 13,70 0,17 11,40 1386,24 52,68 1,12 1,31 1,18 1,50 

6 960,00 228,00 13,70 0,17 11,40 992,26 37,71 0,80 0,94 0,84 1,07 

7 960,00 228,00 13,70 0,17 11,40 1123,58 42,70 0,91 1,06 0,96 1,22 

10 960,00 228,00 13,70 0,17 15,79 802,56 30,50 0,98 1,44 1,05 1,26 

11 960,00 228,00 13,70 0,17 15,79 933,89 35,49 1,13 1,67 1,22 1,46 

12 960,00 228,00 13,70 0,17 20,18 598,27 22,73 1,07 1,70 1,13 1,32 

13 960,00 228,00 13,70 0,17 20,18 481,54 18,30 0,86 1,37 0,91 1,06 

16 960,00 228,00 13,70 0,17 11,40 1079,81 41,03 0,87 1,02 0,92 1,17 

17 960,00 228,00 13,70 0,17 11,40 1094,40 41,59 0,89 1,03 0,93 1,19 

8 960,00 228,00 16,20 0,17 11,40 1619,71 61,55 1,11 1,29 1,17 1,48 

9 960,00 228,00 16,20 0,17 11,40 1444,61 54,90 0,99 1,15 1,04 1,32 

14 960,00 228,00 16,20 0,17 20,18 787,97 29,94 1,19 1,89 1,26 1,47 

15 960,00 228,00 16,20 0,17 20,18 817,15 31,05 1,24 1,96 1,31 1,53 

Table 14.6 Data for the calculation of tests taken from [36]. The compressive strength has been 

calculated by using Hagstens formula 
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Figure 14.18 Results of tests shown in an interaction diagram, KC50/50/750 

 

Figure 14.19 Results of tests shown in an interaction diagram, KC50/50/750 
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Figure 14.20 Results of tests shown in an interaction diagram, KC50/50/750 

 

Figure 14.21 Results of tests shown in an interaction diagram, KC50/50/750 
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Figure 14.22 Results of tests shown in an interaction diagram, KC20/80/550 

 

Figure 14.23 Results of tests shown in an interaction diagram, KC20/80/550 
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Figure 14.24 Results of tests, KC50/50/750 

 

Figure 14.25 Results of tests, KC20/80/550 
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14.1.7 Murværkscenteret 

Ref no. b h fc,m ei/h l/h Nexp M0,exp 

  [mm] [mm] [MPa]     [kN] [kNm] 

Nexp 

Ntheo,par 

Nexp 

NRitter 

Nexp 

Ntheo,DS

1 960,00 228,00 4,70 0,00 11,40 678,53 0,00 0,72 0,86 0,96 

2 960,00 228,00 4,60 0,00 11,40 809,86 0,00 0,87 1,05 1,17 

3 960,00 228,00 4,80 0,00 11,40 722,30 0,00 0,75 0,90 1,00 

4 960,00 228,00 7,10 0,00 11,40 1138,18 0,00 0,80 0,96 1,06 

5 960,00 228,00 8,10 0,00 11,40 1313,28 0,00 0,80 0,97 1,07 

6 960,00 228,00 7,90 0,00 11,40 1291,39 0,00 0,81 0,97 1,08 

7 960,00 228,00 9,90 0,00 11,40 1532,16 0,00 0,77 0,92 1,02 

8 960,00 228,00 10,00 0,00 11,40 1444,61 0,00 0,72 0,86 0,96 

9 960,00 228,00 7,30 0,00 11,40 1554,05 0,00 1,06 1,27 1,41 

19 960,00 228,00 11,50 0,00 11,40 1904,26 0,00 0,82 0,99 1,10 

20 960,00 228,00 13,00 0,00 11,40 1794,82 0,00 0,68 0,82 0,91 

21 960,00 228,00 13,70 0,00 11,40 1816,70 0,00 0,66 0,79 0,88 

10 960,00 168,60 7,20 0,00 15,42 809,28 0,00 0,69 1,08 1,20 

11 960,00 168,60 7,80 0,00 15,42 857,84 0,00 0,68 1,06 1,17 

12 960,00 168,60 8,60 0,00 15,42 890,21 0,00 0,64 0,99 1,11 

13 960,00 165,50 10,00 0,00 15,71 1096,27 0,00 0,69 1,09 1,21 

14 960,00 165,50 10,50 0,00 15,71 1175,71 0,00 0,70 1,11 1,24 

15 960,00 165,50 9,20 0,00 15,71 1207,49 0,00 0,83 1,30 1,45 

16 960,00 168,60 8,80 0,00 15,42 922,58 0,00 0,65 1,01 1,12 

17 960,00 168,60 9,50 0,00 15,42 890,21 0,00 0,58 0,90 1,00 

18 960,00 168,60 9,70 0,00 15,42 938,76 0,00 0,60 0,93 1,03 

Table 14.7 Data for the calculation of tests taken from [33]. The compressive strength was 

measured 
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Figure 14.26 Results of tests on elements simply supported in both ends, block course, KC5050750 

 

Figure 14.27 Results of tests on elements simply supported in both ends, block course, KC5050750 
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Figure 14.28 Results of tests on elements simply supported in both ends, block course, KC5050750 

 

Figure 14.29 Results of tests on elements simply supported in both ends, block course, KC2080550 
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Figure 14.30 Results of tests on elements simply supported in both ends, running course, 

KC5050750 

 

Figure 14.31 Results of tests on elements simply supported in both ends, running course, 

KC5050750 
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Figure 14.32 Results of tests on elements simply supported in both ends, running course, 

KC5050750 
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14.2 Laterally loaded beam columns 

14.2.1 Grenley, D. G, Cattaneo, L. E. & Pfrang, E. O 

Ref no. b h fc,m ei/h l/h Nexp M0,exp

  [mm] [mm] [MPa]     [kN] [kNm]

Nexp 

Ntheo,par

Nexp 

Ntheo,el

Nexp 

Ntheo,DS411

1 1270,0 101,60 22,00 0,00 20,63 0,00 1,21 - - - 

2 1270,0 101,60 22,00 0,00 20,63 0,00 1,17 - - - 

3 1270,0 101,60 22,00 0,00 20,63 497,33 19,80 0,89 1,05 0,85 

4 1270,0 101,60 22,00 0,00 20,63 995,55 30,33 0,94 1,15 0,94 

5 1270,0 101,60 22,00 0,00 20,63 1243,77 31,97 0,95 1,18 0,95 

6 1270,0 101,60 22,00 0,00 20,63 1492,88 29,96 0,94 1,17 0,93 

7 1270,0 101,60 22,00 0,00 20,63 1741,10 25,97 0,93 1,16 0,93 

8 1270,0 101,60 22,00 0,00 20,63 2812,26 0,00 0,99 1,67 1,50 

9 1270,0 101,60 22,00 0,00 20,63 2862,09 0,00 1,01 1,70 1,53 

10 1270,0 101,60 33,30 0,00 20,63 0,00 5,41 - - - 

11 1270,0 101,60 33,30 0,00 20,63 0,00 5,42 - - - 

12 1270,0 101,60 33,30 0,00 20,63 498,22 23,53 1,69 2,37 1,69 

13 1270,0 101,60 33,30 0,00 20,63 994,66 41,38 1,39 1,69 1,39 

14 1270,0 101,60 33,30 0,00 20,63 1243,77 42,50 0,95 1,18 0,95 

15 1270,0 101,60 33,30 0,00 20,63 1492,88 41,90 0,84 1,04 0,82 

16 1270,0 101,60 33,30 0,00 20,63 1741,10 40,84 0,81 1,01 0,81 

17 1270,0 101,60 33,30 0,00 20,63 1990,20 50,32 0,98 1,24 0,98 

18 1270,0 101,60 33,30 0,00 20,63 4230,41 0,00 0,98 1,66 1,49 

19 1270,0 101,60 33,30 0,00 20,63 4369,20 0,00 1,02 1,71 1,54 

20 1270,0 101,60 35,65 0,00 20,63 0,00 5,66 - - - 

21 1270,0 101,60 35,65 0,00 20,63 0,00 7,14 - - - 

22 1270,0 101,60 35,65 0,00 20,63 759,78 37,74 - - - 

23 1270,0 101,60 35,65 0,00 20,63 1518,68 61,50 1,77 2,25 1,77 

24 1270,0 101,60 35,65 0,00 20,63 1518,68 52,88 1,12 1,40 1,12 

25 1270,0 101,60 35,65 0,00 20,63 1945,72 58,57 1,11 1,39 1,11 

26 1270,0 101,60 35,65 0,00 20,63 2372,76 56,68 1,05 1,28 1,03 

27 1270,0 101,60 35,65 0,00 20,63 2846,96 61,27 1,15 1,44 1,15 

28 1270,0 101,60 35,65 0,00 20,63 4544,46 0,00 0,99 1,67 1,50 

29 1270,0 101,60 35,65 0,00 20,63 4649,44 0,00 1,01 1,70 1,53 
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30 1270,0 101,60 42,06 0,00 20,63 0,00 3,39 - - - 

31 1270,0 101,60 42,06 0,00 20,63 0,00 3,19 - - - 

32 1270,0 101,60 42,06 0,00 20,63 694,84 22,94 0,40 0,48 0,40 

33 1270,0 101,60 42,06 0,00 20,63 1092,52 31,17 0,49 0,60 0,49 

34 1270,0 101,60 42,06 0,00 20,63 1439,50 41,63 0,66 0,82 0,66 

35 1270,0 101,60 42,06 0,00 20,63 1737,54 42,02 0,65 0,82 0,65 

36 1270,0 101,60 42,06 0,00 20,63 1985,76 40,71 0,67 0,81 0,65 

37 1270,0 101,60 42,06 0,00 20,63 2978,63 31,55 0,75 0,89 0,76 

38 1270,0 101,60 42,06 0,00 20,63 5446,59 0,00 1,00 1,69 1,52 

39 1270,0 101,60 42,06 0,00 20,63 5301,58 0,00 0,98 1,65 1,48 

Table 14.8 Data for the calculation of tests taken from [26]. Only some of the results are used. The 

compressive strength was measured 

 

Figure 14.33 Results of tests shown in an interaction diagram, conventional mortar brick A 

linear
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Figure 14. Results of tests shown in an interaction diagram, high bond mortar brick A 

 

Figure 14.34 Results of tests shown in an interaction diagram, high bond mortar brick B 

linear

linear
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Figure 14.35 Results of tests shown in an interaction diagram, high bond mortar brick S 

linear
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14.2.2 Yokel, F. Y. , Mathey, R. G. and Dikkers, R. D. 

Ref no. b h fc,m ei/h l/h Nexp M0,exp

  [mm] [mm] [MPa]     [kN] [kNm]

Nexp 

Ntheo,par

Nexp 

Ntheo,el

Nexp 

Ntheo,DS411 

.4-1 1219,2 101,60 21,97 0,00 20,63 0,00 0,92 - - - 

.4-2 1219,2 101,60 21,97 0,00 20,63 0,00 0,92 - - - 

.4-3 1219,2 101,60 21,97 0,00 20,63 444,80 15,60 1,67 2,78 1,85 

.4-4 1219,2 101,60 21,97 0,00 20,63 889,60 23,99 1,23 1,59 1,33 

.4-5 1219,2 101,60 21,97 0,00 20,63 1112,00 25,29 1,13 1,30 1,16 

.4-6 1219,2 101,60 21,97 0,00 20,63 1334,40 19,10 0,89 1,04 0,86 

.4-7 1219,2 101,60 21,97 0,00 20,63 1556,80 20,63 1,01 1,17 0,97 

.4-8 1219,2 101,60 21,97 0,00 20,63 2499,78 0,00 0,97 1,28 1,15 

.4-9 1219,2 101,60 21,97 0,00 20,63 2562,05 0,00 1,00 1,31 1,18 

.5-1 1219,2 101,60 33,14 0,00 20,63 0,00 3,69 - - - 

.5-2 1219,2 101,60 33,14 0,00 20,63 0,00 3,69 - - - 

.5-3 1219,2 101,60 33,14 0,00 20,63 444,80 17,90 3,69 5,53 3,69 

.5-4 1219,2 101,60 33,14 0,00 20,63 889,60 29,90 1,84 2,76 1,84 

.5-5 1219,2 101,60 33,14 0,00 20,63 1112,00 32,30 1,26 1,73 1,38 

.5-6 1219,2 101,60 33,14 0,00 20,63 1334,40 31,84 0,98 1,11 1,01 

.5-7 1219,2 101,60 33,14 0,00 20,63 1556,80 31,05 0,90 1,02 0,90 

.5-8 1219,2 101,60 33,14 0,00 20,63 1779,20 38,25 1,11 1,26 1,13 

.5-9 1219,2 101,60 33,14 0,00 20,63 3754,11 0,00 0,97 1,27 1,15 

.5-10 1219,2 101,60 33,14 0,00 20,63 3878,66 0,00 1,00 1,32 1,18 

.6-1 1219,2 101,60 41,71 0,00 20,63 0,00 1,85 - - - 

.6-2 1219,2 101,60 41,71 0,00 20,63 0,00 2,49 - - - 

.6-3 1219,2 101,60 41,71 0,00 20,63 622,72 18,18 0,56 0,77 0,61 

.6-4 1219,2 101,60 41,71 0,00 20,63 978,56 32,76 1,49 2,42 1,61 

.6-5 1219,2 101,60 41,71 0,00 20,63 1289,92 32,76 0,85 0,98 0,88 

.6-6 1219,2 101,60 41,71 0,00 20,63 1556,80 32,90 0,77 0,85 0,77 

.6-7 1219,2 101,60 41,71 0,00 20,63 1779,20 32,02 0,73 0,84 0,72 

.6-8 1219,2 101,60 41,71 0,00 20,63 4839,42 0,00 0,99 1,30 1,17 

.6-9 1219,2 101,60 41,71 0,00 20,63 4670,40 0,00 0,96 1,26 1,13 

.7-1 1219,2 101,60 35,44 0,00 20,63 0,00 5,08 - - - 

.7-2 1219,2 101,60 35,44 0,00 20,63 0,00 6,18 - - - 

.7-3 1219,2 101,60 35,44 0,00 20,63 711,68 31,88 - - - 

.7-4 1219,2 101,60 35,44 0,00 20,63 1423,36 52,09 4,13 8,27 4,73 
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.7-5 1219,2 101,60 35,44 0,00 20,63 1423,36 44,67 1,95 3,01 2,07 

.7-6 1219,2 101,60 35,44 0,00 20,63 2668,80 51,72 1,38 1,59 1,38 

.7-7 1219,2 101,60 35,44 0,00 20,63 4216,70 0,00 1,02 1,34 1,20 

.7-8 1219,2 101,60 35,44 0,00 20,63 4314,56 0,00 1,04 1,37 1,23 

Table 14.9 Data for the calculation of tests taken from [28] 

 

Figure 14.36 Results of tests shown in an interaction diagram 

linear
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Figure 14.37 Results of tests shown in an interaction diagram 

 

Figure 14.38 Results of tests shown in an interaction diagram 

linear

linear
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Figure 14.39 Results of tests shown in an interaction diagram 

linear
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15 Appendix 2. Experiments, reinforced masonry 

Eccentrically and concentrically loaded columns and one-way slabs. 

Davey, N. & Thomas, F. G. 

Anderson, D. A. & Hoffman, E. S. 

15.1 Eccentrically loaded reinforced masonry columns 

15.1.1 Davey, N. & Thomas, F. G. 
Ref no. b h d/h 100ρ fcm fy ei/h l/h Nexp 

  [mm] [mm] [] [] [MPa] [MPa] [] [] [kN] 

Nexp 

Ntheo,par 

Nexp 

Ntheo,el 

Nexp 

Ntheo,DS 

40/33B 571,5 685,8 0,8 0,20 11,8 303,4 0,4 4,0 735,8 0,69 0,83 0,72 

40/33B 571,5 685,8 0,8 0,20 11,8 303,4 0,8 4,0 264,9 0,95 0,95 0,95 

30/33B 457,2 685,8 0,8 0,16 11,8 303,4 0,4 4,0 608,2 0,78 0,91 0,81 

30/33B 457,2 685,8 0,8 0,16 11,8 303,4 0,8 4,0 180,5 0,81 0,97 0,97 

30/22B 457,2 571,5 0,8 0,19 11,8 303,4 0,5 4,8 294,3 0,68 0,79 0,73 

30/22B 457,2 571,5 0,8 0,19 11,8 303,4 0,9 4,8 127,5 0,82 1,02 1,02 

40/110/AC 685,8 914,4 0,9 0,18 11,8 303,4 0,3 3,0 3001,9 0,79 0,98 0,80 

40/110/BC 685,8 914,4 0,9 0,18 11,8 303,4 0,4 3,0 1667,7 0,83 0,97 0,86 

40/90/AC 685,8 914,4 0,9 0,13 11,8 303,4 0,3 3,0 3237,3 0,88 1,08 0,88 

40/90/BC 685,8 914,4 0,9 0,13 11,8 303,4 0,4 3,0 1373,4 0,77 0,92 0,77 

40/77/AC 571,5 914,4 0,9 0,10 11,8 303,4 0,3 3,0 2599,7 0,85 1,07 0,87 

40/77/BC 571,5 914,4 0,9 0,10 11,8 303,4 0,4 3,0 1226,3 0,86 1,04 0,90 

40/55/AC 457,2 800,1 0,8 0,18 11,8 303,4 0,3 3,4 1687,3 0,86 1,11 0,90 

40/55/BC 457,2 800,1 0,8 0,18 11,8 303,4 0,5 3,4 735,8 0,89 1,06 0,94 

Table 15.1 Data for the calculation of tests taken from [17].  
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Figure 15.1 Results of tests shown in an interaction diagram 

 

Figure 15.2 Results of tests shown in an interaction diagram 
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linear
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Figure 15.3 Results of tests shown in an interaction diagram 

 

 

Figure 15.4 Results of tests shown in an interaction diagram 
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Figure 15.5 Results of tests shown in an interaction diagram 

 

 

Figure 15.6 Results of tests shown in an interaction diagram 
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Figure 15.7 Results of tests shown in an interaction diagram 

linear
linear
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15.1.2 Anderson, D. A. & Hoffman, E. S. 
Ref no. b h d/h 100ρ fcm fy ei/h l/h Nexp 

  [mm] [mm] [] [] [MPa] [MPa] [] [] [kN] 

Nexp 

Ntheo,par 

Nexp 

Ntheo,el 

Nexp 

Ntheo,DS 

WUGI1 304,8 406,4 0,7 0,6 36,2 275,8 0,1 7,6 4127,7 1,08 1,17 1,07 

WUGI2 304,8 406,4 0,7 0,6 36,2 275,8 0,1 7,6 4127,7 1,08 1,17 1,07 

WUGI3 304,8 406,4 0,7 0,6 36,2 275,8 0,1 7,6 4096,6 1,08 1,16 1,06 

WUGI4 304,8 406,4 0,7 0,6 36,2 275,8 0,1 7,6 3731,9 1,11 1,31 1,11 

WUGI5 304,8 406,4 0,7 0,6 36,2 275,8 0,1 7,6 3520,6 1,05 1,23 1,05 

WUGI6 304,8 406,4 0,7 0,6 36,2 275,8 0,1 7,6 3525,0 1,05 1,24 1,05 

WUGI7 304,8 406,4 0,7 0,6 36,2 275,8 0,2 7,6 2682,1 1,12 1,38 1,12 

WUGI8 304,8 406,4 0,7 0,6 36,2 275,8 0,2 7,6 2704,4 1,13 1,39 1,13 

WUGI9 304,8 406,4 0,7 0,6 36,2 275,8 0,2 7,6 2442,0 1,02 1,25 1,02 

WUGIX 304,8 406,4 0,7 0,6 36,2 275,8 0,3 7,6 1805,9 1,37 1,59 1,29 

WUGIY 304,8 406,4 0,7 0,6 36,2 275,8 0,3 7,6 1861,5 1,42 1,64 1,33 

WUGIZ 304,8 406,4 0,7 0,6 36,2 275,8 0,3 7,6 1894,8 1,44 1,67 1,35 

Table 15.2 Data for the calculation of tests taken from [27] 

 

Figure 15.8 Results of tests shown in an interaction diagram 
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