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2 Summary 

This paper treats the behaviour of concrete slabs subjected to lateral load and compressive 

axial force.  

The assumptions regarding the material behaviour are described in [14] and this paper 

demonstrates how to incorporate the stiffnesses found in [14] in the determination of slab 

behaviour.  

The subject is approached from a practical point of view. Thus, the solutions should be 

fairly simple without being too far from the exact ones.  

Generally the behaviour is determined from an estimation of the deflection form and the 

use of the work equation. This means that the solutions are upper bound solutions and the 

equilibrium equations are not necessarily fulfilled.  

Slabs subjected to transverse load, axial load or a combination, and with different support 

conditions are treated theoretically. It is demonstrated how to determine the relation 

between axial force, transverse load and deflection. 

The report is limited to compressive axial force only. 

One test series has been used to demonstrate the practical use of the method and good 

agreement has been found. 
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3 Resume 

Denne rapport behandler emnet betonplader påvirket af tryknormalkræfter og tværlast. 

Antagelser vedrørende materialeopførelse er beskrevet i rapporten Stiffness of concrete 

slabs, se [14], og nærværende rapport demonstrer hvordan man kan anvende disse 

stivheder til bestemmelse af pladens opførsel. 

Emnet behandles ud fra en praktisk synsvinkel. Det er tilstræbes at beskrive den 

overordnede opførsel af pladen på en simpel måde uden at være for langt fra eksakte 

løsninger. 

Beregningsmetoden er baseret på et udbøjningsskøn samt anvendelse af energiligningen. 

Dette betyder at der er tale om en øverværdiløsning og at ligevægtsbetingelserne ikke 

nødvendigvis er opfyldt.  

Plader påvirket med normalkræfter, tværlast eller en kombination af disse er behandlet 

teoretisk og de fundne resultater er eksemplificeret med forskellige pladetyper og 

forskellige armeringsplaceringer. 

Rapporten behandler kun tryknormalkræfter.  

Til verificering af beregningsmetoden er der foretaget en sammenligning mellem teori og 

eksperimenter for en forsøgsserie. Der blev her fundet god overensstemmelse.  
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5 Notation 

The most commonly used symbols are listed below. Exceptions from the list may appear, 

but this will then be noted in the text in connection with the actual symbol. 

 

Geometry  

L Length of a beam 

Lx,Ly Length of a slab in the x- and y- direction, respectively 

h Depth of a cross-section 

hc Distance from the bottom face to the centre of the bottom reinforcement 

hc’ Distance from the top face to the centre of the top reinforcement 

hcx hcy  Distance from the bottom face to the centre of the bottom reinforcement in 

the x- and y- direction, respectively 

hcx’ hcy’  Distance from the top face to the centre of the top reinforcement in the x- 

and y- direction, respectively 

d Effective depth of the cross-section, meaning the distance from the top the 

slab to the centre of the reinforcement.  

A Area of a cross-section 

Ac Area of a concrete cross-section  

As Area of reinforcement per unit length close to the bottom face 

As’ Area of reinforcement per unit length close to the top face 

Asx Asy Area of reinforcement per unit length close to the bottom face in the x- and 

y- direction, respectively 

Asx’ Asy’ Area of reinforcement per unit length close to the top face in the x- and y- 

direction, respectively 

y0 Compression depth  

x, y, z Cartesian coordinates 

 

Physics  

σ Normal stress 

σc Normal stress in concrete  

σcx, σcy Normal stress in concrete in the x- and y- direction, respectively. 
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fc Compressive strength of the concrete. 

φ Reinforcement ratio 

nφ Degree of reinforcement 

φx, φx’ Reinforcement ratio in the x-direction for the lower and upper reinforcement, 

respectively. 

φy, φy’ Reinforcement ratio in the y-direction for the lower and upper reinforcement, 

respectively. 

E Modulus of elasticity 

Es Modulus of elasticity for the reinforcement 

Ec Modulus of elasticity for the concrete 

n Ratio between the modulus of elasticity for the reinforcement and the 

modulus of elasticity for the concrete 

Dx,Dy Bending stiffness for the slab in the x and y-direction, respectively 

Dxy Torsional stiffness for the slab 

nx, ny Axial load per unit length in the x-and y-direction, respectively. Positive as 

compression. 

nxy Shear load per unit length 

mx, my Bending moment per unit length in the x- and y-direction, respectively 

 mxy Torsional moment per unit length 

qx,qy Transverse shear load per unit length in the x- and y-direction, respectively 

, ,n x ym m m  Applied bending moment per unit length at the edge in the n-, x- and y-

direction, respectively 

, ,n x yq q q  Applied transverse shear load per unit length at the edge in the n-, x- and y-

direction, respectively 

p Transverse load 

u Transverse deflection 

κx,κy Curvature in the x and y-direction, respectively 

κxy Torsional curvature 
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6 Introduction 

This paper demonstrates how to incorporate the stiffnesses found in [14] in determination 

of slab behaviour. It is assumed that the reader is familiar with [14] and expressions and 

definitions from this report is used here without further explanation. 

The first section describes the constitutive equations, the compatibility conditions and the 

boundary conditions used in this investigation.  

The next section treats slabs subjected to transverse load only. The method used in this 

investigation is first described in general and then followed by five determinations of the 

slab stiffnesses for some of the most common support conditions of rectangular slabs. 

Two reinforcement arrangements, one with the reinforcement placed in the centre and one 

where it is placed close to the faces, are used for exemplifications. 

Similar approach is used in the following section that treats slabs subjected to axial force 

only. The stability loads for the five slab cases mentioned above are determined and the 

same two reinforcement arrangements are used for exemplification. 

The general approach used for a combination of lateral load and axial force is described in 

the next section. A rectangular slab, simply supported at all sides with axial force in two 

directions, is used for demonstrating the method. In this section some considerations 

regarding the importance of the loading history of the slab are made as well. 

As a verification of the method, test results from a series with square slabs subjected to 

axial force in one direction are compared with calculations. Good agreement is found. 

In the final section conclusions are made. 
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7 Theory 

7.1 General equations 

7.1.1 Constitutive equations 

The constitutive equations assumed in this investigation are: 

 

2

2

2

2

2

x x x x

y y y y

xy xy xy xy

um D D
x

um D D
y

um D D
x y

κ

κ

κ

∂
= = −

∂
∂

= = −
∂

∂
= = −

∂ ∂

 (7.1.1) 

The bending stiffness and the torsional stiffness found in [14] are used.  

Only a short explanation of the calculations is given here. For a thorough treatment the 

reader is referred to [14].  

In [14] it is shown that the stiffness may be calculated as a function of the degree of 

cracking. The degree of cracking is the ratio between the cracking moment and the applied 

moment. The cracking moment is defined as the transition point between the cracked and 

the uncracked state. 

For pure bending the cracking moment may be calculated by: 

 

2 2

,

' '1 1 1 3 '
12 2 2 2

'1 ' 1
2

c c c c
x

x crack
c c

h h h hn h n n
h h h h

m
h hn n
h h

φ φ

φ φ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ − + + − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠=
⎛ ⎞+ + −⎜ ⎟
⎝ ⎠

 (7.1.2) 

where nx is the axial force per unit length, n is the ratio between the modulus of elasticity 

for the reinforcement and the modulus of elasticity for the concrete (Es/Ec), h is the 

thickness of the slab, hc is the distance from the bottom face to the lower layer of 

reinforcement, hc´ is the distance from the top face to the upper layer of reinforcement, φ 

is the reinforcement ratio for the lower reinforcement layer and φ´ is the reinforcement 

ratio for the upper reinforcement layer both based on the total section. 
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In the special case with only one layer of reinforcement placed in the centre of the slab we 

get: 

 ,
1
6 1

x
x crack

n hm
nφ

=
+

 (7.1.3) 

It was shown that besides the physical properties of the slab the bending stiffness only 

depends on the nxh/mx ratio. The limits for nxh/mx corresponding to y0=h and y0=0 

becomes: 

 ( )0

2 2

'1 ' 1
2

' '1 1 1 3 '
12 2 2 2

c c

x y h

x c c c c

h hn nn h h h
m h h h hn n

h h h h

φ φ

φ φ

=

⎛ ⎞+ + −⎜ ⎟
⎝ ⎠=

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ − + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (7.1.4) 
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c c

x y

x c c c c

h h
n h h h

m h h h h
h h h h

φ φ

φ φ

=
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 (7.1.5) 

Notice that nx and ny are positive as compression. 

If the nxh/mx ratio is higher than the limit for y0=h the stiffness of the slab will be the 

uncracked stiffness given by: 

 ( )0

2 2

3

´ ´1 1 1 3 ´
12 2 2 2

y hx c c c c

c

D h h h hn n
h E h h h h

φ φ=
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= + − + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (7.1.6) 

If the nxh/mx ratio is lower than the limit for y0=0 the stiffness equals the stiffness of the 

reinforcement only given by: 

 ( 0)0

2 2

3

´ ´1 3 1 ´
2 2 2

yx c c c c

c

D h h h hn n
h E h h h h

φ φ=
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

  (7.1.7) 

In Figure 7.1 and Figure 7.2 the stiffnesses as a function of the degree of cracking are 

shown for two types of slabs. The first type is valid for slabs with reinforcement in the 

centre and the second type is valid for the reinforcement placed symmetrically about the 

centre, close to the faces. These are the two types generally used in this investigation. 
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Figure 7.1 Bending stiffness as a function of the cracking moment over moment ratio. hc=½h. One layer of 

reinforcement.  
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Figure 7.2 Bending stiffness as a function of the cracking moment over moment ratio. hc= hc’ =0.1h. Two 

layers of reinforcement. 
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In [14] it was found that the torsional stiffness dependency on the degree of cracking is the 

same as the bending stiffness dependency on the degree of cracking for a slab with the 

reinforcement placed in the centre. This means that the torsional stiffness is simply found 

by “moving” the reinforcement to the centre of the slab and then calculate the bending 

stiffness. This procedure is illustrated in Figure 7.3.  
 

y 
x 

z 

Asx 

Asx 

Asy 

Asy 

y 
x  

z 

nx 

mx 

nxy 

, ,

3 3

xy cracked x cracked
xy x

xy x

c c

m mD Dm m
h E h E

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠=

myx 

mxy 

nx ny 

s sx syA = 2A 2A
 

 
Figure 7.3. The relation between torsional- and bending stiffness for an isotropic slab. 

 

This means that diagrams for bending stiffnesses may be used if the degree of cracking for 

torsion is replaced by the degree of cracking for bending. The degree of cracking for 

torsion may be calculated from the cracking moment given by: 

 ( ) ( )( )
( ),

1 2 1 2

6 1 2 2 4
y y x x

xy crack y
y x x y

h n n n n
m sign n

n n n n

φ φ

φ φ φ φ

+ +
=

+ + +
 (7.1.8) 

It should be noted that this ratio may only be used for axial forces of the same sign which 

is assumed throughout the report if nothing else is stated.  
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Furthermore, the cracking moment does not have any meaning if one of the axial forces is 

zero. In this case the cracking moment would always be zero meaning that the torsional 

stiffness is independent of the axial force, which is of course not correct. However, this 

problem will be ignored in this report and we shall assume that the cracking moment 

concept may also be used if one of the axial forces is zero. This means that the torsional 

stiffness for a slab loaded by axial force in one direction will be the same as for a slab 

without any axial load. 

It should be noted that the influence of bending moments on the torsional stiffness, and the 

influence of the torsional moment on the bending stiffnesses have not been investigated 

neither in [14] nor here. Thus, the stiffnesses are assumed to be independent of each other.  

7.1.1.1 Exemplification of the stiffnesses 
As an example we consider a slab section with the reinforcement placed close to the face. 

This is named a case 2 arrangement. For a section without any axial force the degree of 

cracking is zero and the stiffnesses therefore are only depending on the degree of 

reinforcement. Assuming a degree of isotropic reinforcement of nφ=nφ’=0.1 we find, 

using Figure 7.2, that the bending stiffness is: 

 3 3 0.05yx

c c

DD
E h E h

= ≈  (7.1.9) 

The torsional stiffness is found from Figure 7.1 using a fictitious degree of reinforcement 

of nφ=0.2 which takes into account both layers of reinforcement. Thus the torsional 

stiffness becomes: 

 3 0.017xy

c

D
E h

≈  (7.1.10) 

If we consider a slab section with only one layer of isotropic reinforcement placed in the 

centre, named a case 1 arrangement, having a degree of reinforcement of nφ=0.2, we find 

that in this case the stiffness becomes: 

 3 3 3 0.017y xyx

c c c

D DD
E h E h E h

= = ≈  (7.1.11) 

As seen the position of the reinforcement is decisive for the ratio of the bending and 

torsional stiffness. If the reinforcement is placed in the centre, the bending and torsional 

stiffnesses are the same and if the reinforcement is placed close to the faces the torsional 

stiffness is only about 1/3 of the bending stiffness. This conclusion is only valid for cases 

without axial force. If axial force is applied, the ratio between the stiffnesses changes as a 

function of the axial force. 
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If we consider the uncracked state the stiffnesses in case 1 (reinforcement in the centre 

nφ=0.2) becomes: 

 3 3 3 0.083y xyx

c c c

D DD
E h E h E h

= = ≈  (7.1.12) 

In case 2 (isotropic reinforcement close to the faces, nφ=nφ’=0.1, hc/h=0.1) we have: 

 

3

3 3

0.083

0.115

1.4

xy

c

yx

c c

x y xy

D
E h

DD
E h E h
D D D

≈

= ≈

= =

 (7.1.13) 

If the bending stiffness in the x-direction is calculated for uncracked concrete and if the 

bending stiffness in the y-direction as well as the torsional stiffness are calculated for 

cracked concrete, we get: 

In case 1: 

 

3

3 3

0.083

0.017

4.9 4.9

x

c

y xy

c c

x y xy

D
E h
D D

E h E h
D D D

≈

= ≈

= =

 (7.1.14) 

In case 2: 

 

3

3

3

0.115

0.083

0.017

1.4 6.7

x

c

y

c

xy

c

x y xy

D
E h
D

E h
D
E h
D D D

≈

≈

≈

= =

 (7.1.15) 

These cases are used for exemplification later in this report. 

7.1.2 Compatibility conditions 

The compatibility conditions for slabs are: 

 

xyx

y xy

y x

x y

κκ

κ κ

∂∂
=

∂ ∂
∂ ∂

=
∂ ∂

 (7.1.16) 
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If curvatures are determined from a deflection function these condition will be identically 

fulfilled.  

A derivation may be found in [3]. 

7.1.3 Equilibrium equations 

The equilibrium equations for a slab element are, see [3]: 

 

0

0

0

xyx
x

y xy
y

yx

mm q
x y

m m
q

y x
qq p

x y

∂∂
+ − =

∂ ∂
∂ ∂

+ − =
∂ ∂

∂∂
+ + =

∂ ∂

 (7.1.17) 

Eliminating the shear forces we get: 

 
2 22

2 22 xy yx m mm p
x x y y

∂ ∂∂
+ + = −

∂ ∂ ∂ ∂
 (7.1.18) 

If this equation is fulfilled we have a statically admissible moment field. 

If we introduce the constitutive equations given by formula (7.1.1) into the equilibrium 

equation we get: 

 
4 4 4

4 2 2 42x xy y
u u uD D D p

x x y y
∂ ∂ ∂

+ + =
∂ ∂ ∂ ∂

 (7.1.19) 

If the bending stiffnesses are equal to the torsional stiffness we get well known differential 

equation: 

 
4 4 4

4 2 2 42u u u p
x x y y D

∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
 (7.1.20) 

This is called the Lagranges equation.  

7.1.4 Boundary conditions 

In this paper the edge conditions are defined in Figure 7.4 (n normal to the edge). 

 



Behaviour of Concrete Slabs Subjected to Transverse Load and Compressive Axial Forces 

 - 18 - 

 

Free edge 
Geometrical conditions: 
 
 
 
 
Statical conditions: 

0

0
n

n

m

q

=

=
 

Simply supported edge 
 

0u =   
 
 
 
 

0nm =  

Fixed edge 
 

0

0

u
du
dn

=

=  

 
 

 
Figure 7.4Definition of  edge conditions 

The statical boundary conditions are defined using the notation of Figure 7.5. 

 

n s 
mn 

qn 
t 

mnt 

 
Figure 7.5 Forces along an edge. 

The statical boundary conditions, also called the Kirchhoff boundary conditions, are in 

general (see [3]): 

 
n n

nt nt
nn

m m

mmq q
s s

=

∂∂
+ = +

∂ ∂

 (7.1.21) 

If the edge is a straight line parallel say to the t-axis we may insert formulas (7.1.1) and 

(7.1.17) into (7.1.21). Then: 

 
2

2n n
um D

n
∂

= −
∂

 (7.1.22) 

 
3 3

3 22nt
n ntn

m u uq D D
s n n t

∂ ∂ ∂
+ = − −

∂ ∂ ∂ ∂
 (7.1.23) 

For a boundary parallel to the y-axis we find: 
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x 

mx 

qx 
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mxy

 
Figure 7.6 Forces along an edge. 
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um D

x
∂

= −
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 (7.1.24) 

 
3 3

3 22xy
x xyx

m u uq D D
y x x y

∂ ∂ ∂
+ = − −

∂ ∂ ∂ ∂
 (7.1.25) 

7.2 Deflections of slabs with no axial force 

7.2.1 Estimation of deflections using Rayleigh’s principle 

If we estimate the deflected form of a slab, we may use the energy equation to find an 

estimate of the deflections. This of course means that we do not necessarily satisfy the 

equilibrium equations since the sectional forces may not correspond to the load. This use 

of the energy equation is sometimes termed Rayleigh’s principle. 

 

The energy equation gives a relation between the load and the parameters of the deflected 

form.  

The accuracy of the estimated deflection form is of course decisive for the accuracy of the 

method. In general, it is not necessary to choose a deflection form that fulfills all boundary 

conditions. Nevertheless, it is obvious that the most correct solution is found when both 

statical and geometrical boundary conditions are fulfilled. In this paper solutions, which 

fulfill the geometrical boundary conditions, are used. The statical boundary conditions are 

not fulfilled in general. The statical boundary conditions require the fulfillment of the 

Kirchhoff boundary conditions, formula (7.1.25). Since the ratio between the bending 

stiffness and the torsional stiffness is different from slab to slab it is not possible to give a 

general solution. 

7.2.2 Beam example 

In this section the method is illustrated for a beam, see Figure 7.7.  
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Figure 7.7 Beam 

We assume a deflection in the form of a parabola given by: 

 ( )max
2

4 -u x L x
u

L
=  (7.2.1) 

The curvature is: 

 
2

max
2 2

8
x

ud u
dx L

κ = − =  (7.2.2) 

The work equation becomes: 
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81 2 1
2 3 2

96

1
96

L L

x x
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D

κ

κ

=

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

=

=

∫ ∫

∫ ∫

 (7.2.3) 

It is evident that the assumed deflection does not fulfil the statical boundary conditions 

and the equilibrium equation. The deviation between the exact solution (5/384 instead of 

1/96) and this solution is 20%.  

 

If we want a deflection form that fulfils the statical boundary conditions we may take: 

 max sin xu u
L

π⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (7.2.4) 

The work equation gives: 
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5
max

4

4

max 5

4

4

x

x

up D
L

or
pLu
D

π

π

=

=

 (7.2.5) 

In this case the deviation is less than 1%.  

A deviation of this order is acceptable for all practical calculations. 

7.2.3 Rectangular slab simply supported at all sides 

In this case we consider a rectangular slab simply supported at all sides and loaded with a 

uniformly distributed load p, see Figure 7.8. 

 

Lx 

Ly 
x 

y 

 
Figure 7.8Rectangular slab simply supported at all sides 

We estimate a deflection function given by: 

 max

2 2sin sin

y x

y x

L Ly x
u u

L L

π π
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞+ +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 (7.2.6) 

The deflected form is illustrated in Figure 7.9. 
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Figure 7.9Deflection over maximum deflection. 

It is seen that the geometrical boundary conditions are fulfilled: 

 
2 2 2 2

0
x x y yL L L L

x x y y
u u u u⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞=− = =− =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= = = =  (7.2.7) 

In this case we should have a bending moment of zero along the edges in order to fulfil the 

statical boundary conditions. These are fulfilled if: 

 
2 2 2 2

0
x x y yx x y yL L L L

x x y y
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Using the energy or work equation we get: 
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 (7.2.9) 
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7.2.4 Rectangular slab simply supported at three sides and one free edge 

We now consider a rectangular slab simply supported at three sides, one free edge and 

loaded with a uniformly distributed load p,see Figure 7.10. 
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Figure 7.10Rectangular slab simply supported at three sides 

In this case, we estimate a deflection function given by: 

 max

2 2sin sin
2

y x

y x

L Ly x
u u

L L

π π
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞+ +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 (7.2.10) 

The deflected form is illustrated in Figure 7.11 
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Figure 7.11 Deflection over maximum deflection. 
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It is seen that the geometrical boundary conditions are fulfilled: 

 ( )
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 (7.2.11) 

In this case the statical boundary conditions are not fulfilled since we have: 
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 (7.2.12) 

The moment mx(x=½Ly) becomes: 
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which means that the boundary condition for mx is not fulfilled. Further the Kirchhoff 

boundary conditions (7.1.25) along the free edge are not fulfilled. 

Using the work equation we get: 
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 (7.2.14) 

We now assume another deflection form given by: 
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y x
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The deflected form is illustrated in Figure 7.12. 
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Figure 7.12 Deflection over maximum deflection. 

It appears that the statical boundary condition (7.1.25) is still not fulfilled. However, this 

deflection form leads to no bending moments along the edges and is therefore more 

accurate. In this case we find the following relation between p and umax.
 

 
2 2 23

max
2 4

6
 

6
xy y x y

x y

D L L Dup
L L

ππ +
=  (7.2.16) 

Notice that in this case the bending stiffness in the x- direction has no influence.  

As a third possibility consider a deflection given by, see Figure 7.13:
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 (7.2.17) 



Behaviour of Concrete Slabs Subjected to Transverse Load and Compressive Axial Forces 

 - 26 - 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

x/Lx

y/
L y

0.1

0.1

0.
1

0.1

0.1

0.2

0.
2

0.2

0.2

0.3

0.
3

0.3

0.3

0.4

0.
4

0.4

0.5

0.
5

0.5

0.
6

0.6

0.7

0.7

0.8

0.8

0.
9

 
Figure 7.13Deflection over maximum deflection. 

Still the statical boundary conditions are not fulfilled in general but the bending moment 

mx at the free edge is zero.  

We find the following relation between p and umax. 
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(7.2.18) 

If we compare this solution with the previous solution we notice that the last solution 

involves the bending stiffness in the x –direction. Whether this is relevant or not depends 

on the ratio between the side lengths. If Ly is very large compared to Lx it is logical that the 

bending stiffness in the x- direction will have a small effect since the slab is unable to 

carry any substantial load in that direction. The other extreme is when Lx is very large 

compared to Ly and in this case the slab will of course be able to carry a substantial part of 

the load in the x –direction. 
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7.2.5 Rectangular slab fixed at all sides 

In this case we consider a rectangular slab fixed at all sides and loaded with a uniformly 

distributed load p, see Figure 7.14. 
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Figure 7.14Rectangular slab fixed at all sides 

We estimate a deflection function given by, see Figure 7.15: 
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 (7.2.19) 
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Figure 7.15 Deflection over maximum deflection 
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In this case it may be shown that both the geometrical and statical boundary conditions are 

fulfilled. 

Using the work equation we get: 

 
4 4 2 2

4
max 4 4

3 3 2x y x y xy x y

y x

D L L D D L L
p u

L L
π

+ +
=  (7.2.20) 

7.2.6 Rectangular slab with two adjacent sides fixed and two sides free 

In this case we consider a rectangular slab fixed at two sides next to each other and loaded 

with a uniformly distributed load p, see Figure 7.16. 
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Figure 7.16Rectangular slab fixed  at two sides and with two sides free. 

In this case, we may estimate a deflection function given by, see Figure 7.15: 
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 (7.2.21) 
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Figure 7.17 Deflection over maximum deflection 

It may be shown that the geometrical boundary condition are fulfilled. The statical 

boundary condition (7.1.25) is not fulfilled. 

Using the work equation we get: 
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7.2.7 Rectangular slab with two adjacent sides simply supported and two 
sides free 

In this case we consider a rectangular slab simply supported at two sides next to each 

other and loaded with a uniformly distributed load p see Figure 7.18. 
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Figure 7.18Rectangular slab simply supported at two sides, two sides free. 
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In this case, we may estimate a deflection function given by, see Figure 7.19: 
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Figure 7.19 Deflection over maximum deflection 

It may be shown that the geometrical boundary conditions are fulfilled. The statical 

boundary condition (7.1.25) is not fulfilled. 

Using the work equation we get: 
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max 4 4

10.4 10.4 52.4x y x y xy x y
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D L L D D L L
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=  (7.2.24) 

7.2.8 Exemplification of deflection calculations 

In order to evaluate the influence of the torsional stiffness and the influence the position of 

the reinforcement we show the result of some examples. 

In section 7.1.1.1 it was demonstrated that if the reinforcement is placed close to the faces 

the torsional stiffness is of the order one third of the bending stiffness and if the 

reinforcement is placed in the centre the torsional stiffness is the same as the bending 

stiffness.  
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If we consider a square slab and assume that the reinforcement is isotropic we may 

compare the maximum deflection for a given load using the formulas above.  

 

Lx/Ly=1, Isotropic 
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Formula Case 1. 
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Table 7.1Relation between load and deflection for different slabs. 

Table 7.1 demonstrates the effect of a change in the ratio between the bending stiffness 

and the torsional stiffness. In is clear that the effect is most pronounced for the slabs with 

two free adjacent sides. This is to be expected since the slab “carries” the load mainly in 

torsion.  
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Also a slab simply supported at all four sides is quite affected whereas the slab fixed at all 

four sides is much less affected, which is due to the fact that the torsional moments are 

small.  

For the slab simply supported at 3 sides and one free, 3 formulas for different deflection 

forms are used as described in section 7.2.4. Formula (7.2.14) is a deflection form that 

leads to bending moments along the free edge and thus is does not lead to a particularly 

good solution. However, it is seen that even though this deflection form is not accurate the 

result does not deviate that much from the other two solutions where bending moments 

along the free edge are zero. 

As for the two other solutions the difference is here whether the deflection varies linearly 

or sinusoidal in the x-direction. It is seen that for the present ratio between the side lengths 

a linear variation leads to a lower stiffness. Since we are dealing with upper bound 

solutions the solution with the lower stiffness is to be preferred. 

If the ratio between the side lengths, Lx/Ly, is more than approximately 3, the sinusoidal 

deflection form will lead to a better result.  

7.3 Stability of slabs loaded with axial force 

If a slab is subjected to axial forces in one or two directions the maximum load may be 

governed by instability.  

If the slab is subjected to axial forces (compressive) in both directions the slab initially 

will be uncracked, and the stiffness may be calculated for uncracked concrete. 

If the reinforcement is placed in the centre and the bending stiffnesses are the same as the 

torsional stiffness, the calculations may be carried out according to the standard theory of 

elastic stability. In this case the solutions described in for example [3] or [15] may be used 

directly. The nonlinear stress-strain relation for concrete may be taken into account by 

letting the modulus of elasticity depend on the normal force, cf. the standard theory for 

concrete columns. 

In all other cases the load at instability must be found in a way that takes into account the 

difference in the stiffnesses. In this report the use Bryan’s equation is described. 

Bryan’s equation for a slab is (see[12],[3]): 
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∫ ∫

∫ ∫
 (7.3.1) 

Here nx and ny are positive for tensile forces. The sign convention for nxy follows the 

coordinate system in the usual way.   

The method is to estimate a deflection form and then use Bryan’s equation to find the load 

at instability. The method is demonstrated in the next section. 

7.3.1 Rectangular slab simply supported at all sides 

In this case we consider a rectangular slab simply supported at all sides. The slab is loaded 

by a uniformly distributed load p and there may be axial forces in one or two directions, 

see Figure 7.20. 
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Figure 7.20Rectangular slab simply supported at all sides 

We estimate the same deflection function as in the case with no axial forces: 
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 (7.3.2) 

Inserting into Bryan’s equation we get: 
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 (7.3.3) 

Similar calculations are made without any further comments for other slabs in the 

following sections. 
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7.3.2 Rectangular slab simply supported at three sides and one free edge 
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Figure 7.21Rectangular slab simply supported at three sides 

Deflection function: 
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 (7.3.4) 

Bryan’s equation: 
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Deflection function: 
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 (7.3.6) 

Bryan’s equation: 
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7.3.3 Rectangular slab fixed at all sides 
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Figure 7.22Rectangular slab fixed at all sides 

Deflection function: 
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 (7.3.8) 

Bryan’s equation: 
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=  (7.3.9) 

7.3.4 Rectangular slab with two adjacent sides fixed and two sides free 

 

Lx

Ly x 

y 

ny 

nx 

 
Figure 7.23Rectangular slab fixed  at two sides, two sides free 

Deflection function: 
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 (7.3.10) 

Bryan’s equation: 
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7.3.5 Rectangular slab with two adjacent sides simply supported and two 
sides free 
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Figure 7.24Rectangular slab simply supported at two sides, two sides free 

Deflection function: 
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Bryan’s equation: 
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7.3.6 Exemplification of stability calculations 

Again we evaluate the influence of the torsional stiffness and the influence the position of 

the reinforcement through some examples. 

We consider a square slab subjected to the same axial force in both directions and assume 

that the reinforcement is isotropic. The stiffnesses in this situation are given by formulas 

(7.1.12) and (7.1.13). Using the formulas from the previous sections we get the results in 

Table 7.2.  
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Table 7.2Load at instability for different cases and slabs. 

Table 7.2 demonstrates the effect of a change in the ratio between the bending stiffness 

and the torsional stiffness. As expected the effect is most pronounced for slabs with two 

free adjacent sides.  

It is seen that if the slab is subjected to compressive axial force in two directions, the 

position of the reinforcement does not influence the stability load significantly. 
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It should be noted that for the slab simply supported at three sides and with one free edge 

the lower value of the axial force at instability should be used since we are dealing with 

upper bound solutions. 

 

We now consider a square slab subjected to axial force in one direction only and assume 

that the reinforcement is isotropic. The stiffnesses in this situation are given by formulas 

(7.1.14) and (7.1.15). Using the formulas from the previous sections we get the results 

shown in Table 7.3.  
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Table 7.3Load at instability for different cases and slabs. 
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In these cases neither the ratio between bending stiffnesses and the torsional stiffness nor 

the ratio between the two bending stiffnesses is the same. It is seen that the change in the 

ratio between the bending stiffnesses gives the most dominant effect.  

As expected, the slabs with two sides free are not as affected by a difference between the 

bending stiffnesses as the other ones.  

7.4 Deflections of slabs with axial force 

If a slab is subjected to both axial forces and transverse load both types of loads must be 

taken into account in the work equation. The work equation becomes: 
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 (7.4.1) 

Notice that in this equation nx and ny are positive for tension. 

For such slabs there are some further complications. First of all, the stiffnesses change as a 

function of the loads and as a function of the position in the slab. The stiffnesses are 

functions of the ratio between the axial forces and the moments. Since the moments 

change throughout the slab the stiffnesses will also change throughout the slab.  

For most practical purposes a reasonable estimate of the behaviour of the slab is sufficient. 

Therefore we will demonstrate how to carry out the calculations using only one set of 

stiffnesses throughout the slab equal to the lower values of the actual stiffnesses. The 

procedure is demonstrated in the following section. 

7.4.1 Rectangular slab simply supported at four sides loaded with an axial 
force in one direction 

In this section we consider a slab simply supported at all sides. The slab is loaded by an 

axial force in one direction only and a uniformly distributed transverse load, see Figure 

7.25. 
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Figure 7.25Rectangular slab simply supported at all sides. Uniform load and axial force in one direction. 

The deflection form is given by formula (7.3.2). The work equation, formula (7.4.1), leads 

to the following relation between the axial force, maximum deflection and transverse load: 
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We have, as mentioned above, assumed that the stiffnesses are the same throughout the 

slab.  

This assumption is correct regarding the bending stiffness in the y-direction and it is also 

correct for the torsional stiffness if we use the constitutive equations described previously 

in section 7.1.1.  

However, the assumption is not correct regarding the bending stiffness in the x-direction. 

This bending stiffness is estimated by using the stiffness at the point of maximum bending 

moment in the x-direction. This point is determined by: 
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 (7.4.3) 

Thus the bending stiffness in the centre of the slab is used throughout the slab. Formula 

(7.4.3) may also be used to determine the relation between bending moment, stiffness and 

maximum deflection. This is: 

 
22

,maxmax
,max ,max max2 2

,max

x x
x x

x x

L mum D u
L D

π
π

= ⇔ =  (7.4.4) 

The calculation of an interaction diagram between the axial force and the transverse load 

may now be done in the following way: 

For a given axial load a maximum bending moment in the x-direction is assumed, and by 

using the constitutive equations described in section 7.1.1 the stiffnesses are determined. 
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Then the maximum deflection may be determined by formula (7.4.4). Knowing the 

maximum deflection, formula (7.4.2) may then be used to determine the transverse load. 

By varying the bending moment for different constant axial forces diagrams like those 

shown in Figure 7.26 and Figure 7.27 are obtained. 

umax

D
x

 
Figure 7.26 Bending stiffness as a function of maximum deflection for different axial loads. 
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Figure 7.27 Transverse load as a function of maximum deflection for different axial loads. 

Using Figure 7.27 the maximum transverse load may be found for a given axial force as 

illustrated in Figure 7.28. It is evident that if the axial force is sufficiently low the load 

continues to increase as the maximum deflection increases. In such cases, we do not have 

failure by instability and these points are therefore left out in Figure 7.28. We may still use 

the formulas to determine the relation between axial force, maximum deflection and 

transverse load. The failure will be a material failure. In such case, the load carrying 

capacity may be determined by introducing maximum stresses.  

A short description of the procedure for may be seen in List 1. 
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1. The following data for the slab are loaded: fc, φx, φy, h, hc, Lx, Ly and Es. 

2. A loop is started where the axial force in x-direction is increased in each step. 

a. A loop is started where the bending moment in x-direction is increased in 

each step. 

i. n=Es/Ec is calculated. 

ii. Dy and Dxy are calculated using n and Figure 7.1  

iii. The maximum deflection is determined according to formula 

(7.4.4). 

iv. The transverse load is determined according to formula (7.4.2).  

v. If the maximum stress exceeds the maximum admissible stress the 

solution for this deflection and transverse load is disregarded. 

b. The maximum deflection versus transverse load is plotted and the 

maximum transverse load and the corresponding load is determined for a 

given axial force. 

3. The axial load as a function of the maximum transverse load is plotted. 
List 1. Description of the calculation procedure. 
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Figure 7.28 Axial force as a function of transverse load. 
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7.4.1.1 Influence of the loading procedure 
Tests made by MacGregor, [6], indicate that the loading procedure influences the load 

carrying capacity. This can not be explained by the present method. Indeed, we may show 

that the loading procedure is without influence if the modulus of elasticity is kept constant. 

In Figure 7.29 the solid line shows how the slab behaves if it is loaded with a transverse 

load first and then with a lateral load. The dotted line shown the opposite loading 

procedure. Both failure by instability and by material failure are covered. It is seen that 

both loading procedures lead to the same result. 
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Figure 7.29 Transverse load as a function of maximum deflection for different axial loads. 

Such are the facts when the modulus of elasticity remains constant. However, it is well 

known that this is actually not true for concrete because of its nonlinear behaviour. To 

take this into account we may assume that the modulus of elasticity is a function of the 

maximum stress, meaning that a higher stress leads to a lower modulus of elasticity. As an 

example we might assume a modulus of elasticity of the form: 
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Here σc,max is the maximum compressive stress and fc is the compressive strength of the 

concrete. An assumption of this kind may lead to quite different behaviour of the slab as 

illustrated in Figure 7.30.  

The red lines illustrate the behaviour of the slab if it is loaded by a relatively large 

transverse load. The solid line is valid when the transverse load is applied first and the 

dotted line is valid if the axial load is applied first. It is seen that in this case the two 

loading procedures do not lead to the same axial load even though the transverse load is 

the same. 
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Figure 7.30 Transverse load as a function of maximum deflection for different axial loads. 

The black lines illustrate the behaviour if the transverse load is relatively low. In this case 

both procedures result in the same transverse and axial load. Nevertheless, attention 

should be given to the fact that if the transverse load is applied first the maximum 

deflection will decrease and then increase again. Such behaviour will of course influence 

the behaviour of the concrete since some of the concrete that was cracked starts to be 

compressed. This fact is not taken into consideration in this investigation. 

The results are illustrated by some data from tests, [11]. 

Figure 7.31 and Figure 7.32 show how two different levels of axial load for the same level 

of transverse load may be reached. 
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Figure 7.33 illustrates how the deflection of the slab may decrease as the axial load is 

increased. 
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Figure 7.31. The loading curves for slab no 6 in [11]. 
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Figure 7.32. The loading curves for slab no 16 in [11]. 
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Figure 7.33 The loading curves for slab no 4 in [11] 
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8 Theory compared with tests 

In this section we demonstrate how the methods described in the previous sections may be 

used to calculate the load carrying capacity for an actual slab that has been tested. The test 

series was carried out by Larz Z. Hansen and the author, see[11].  

In this investigation a square slab loaded with axial force in the x-direction was examined 

for different combinations of axial force and transverse load. 

The main data and results are given in Table 8.1 and Table 8.2. 

No fc  Ec fY h Layer Asx hcx ρ0x lx hcy Asy ρ0y ly 

  [MPa] [MPa] [MPa] [mm]   [mm2/m] [mm] [ ] [mm] [mm] [mm2/m] [ ] [mm] 

1 62,5 14495 593 63,42 1 523,599 35 0,0083 2000 25 523,599 0,00826 2000

2 56,0 17545 593 61,38 1 523,599 35 0,0085 2000 25 523,599 0,00853 2000

3 60,4 18081 593 61,66 1 523,599 35 0,0085 2000 25 523,599 0,00849 2000

4 59,5 17425 593 62,03 1 523,599 35 0,0084 2000 25 523,599 0,00844 2000

5 58,8 17662 593 61,63 1 523,599 35 0,0085 2000 25 523,599 0,0085 2000

6 64,6 18688 593 61,37 1 523,599 35 0,0085 2000 25 523,599 0,00853 2000

7 64,0 18466 593 61,26 1 523,599 35 0,0085 2000 25 523,599 0,00855 2000

8 61,4 17718 593 60,99 1 523,599 35 0,0086 2000 25 523,599 0,00858 2000

9 66,7 18744 593 61,56 1 523,599 35 0,0085 2000 25 523,599 0,00851 2000

16 66,7 19394 593 61,48 1 523,599 35 0,0085 2000 25 523,599 0,00852 2000

Table 8.1. The data for the reinforced concrete slabs, see [11] for further details. It should be noted that hc 

in this case is the distance from the top of the slab to the reinforcement 

No q Nx u Notes 

  [kN/m2] [kN/m] [mm]   

1 5,3 0,0 1,6 Test slab no failure

2 49,8 0,0 62 Test slab no failure

3 74,5 0,0 78 Material failure 

4 21,5 1084,1 29 Rig failure 

5 33,2 462,9 53 Stability failure 

6 25,1 653,3 46 Stability failure 

7 41,5 436,0 61 Stability failure 

8 16,7 800,0 42 Stability failure 

9 8,5 1103,4 17 Material failure 

16 25,1 1030,1 37 Material failure 

Table 8.2. Results from tests. 
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The calculations in this section will be based on the following data for the slab: 

fc=62MPa, Lx=Ly=2000mm, h=62mm,hc=31mm, φx=φy=0.0085 (one layer of 

reinforcement). It should be noted that in this case hc is the distance from the top of the 

slab to the reinforcement. Also it should be noted that in Table 8.2 the comment “material 

failure” means material failure at the place where the axial force was applied, i.e. a local 

failure. 

The moduli of elasticity are: 

 

( )
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0

max min

2 10 MPa
1000

min 3 51000
4 13

0.8 400                                         in MPa
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= − − −⎜ ⎟

⎝ ⎠

 (7.4.6) 

where σmax and σmin is the maximum and minimum compressive strength in the section, 

respectively.  

Furthermore it is assumed that material failure will take place when the maximum stress in 

the concrete exceeds 1.25fc.  

These assumptions are basically those given in the Danish Code of Practice DS411 and 

represent a simple way of taking the nonlinear behaviour of the concrete into account.  

Maximum and minimum stresses should strictly speaking be taken as the maximum and 

minimum principal stresses. However, determination of the principal stresses is not 

possible on the basis of the present constitutive equations. The reason is that we have 

assumed that the stiffnesses are independent of each other, which means that the depth of 

the compression zone when dealing with the torsional stiffness may not be the same as the 

depth of the compression zone when dealing with the bending stiffnesses. Thus it is not 

possible to make any correct calculation of the principal stresses. Instead it is assumed that 

the actions in the x-direction are the dominating ones so that the x-direction may be 

considered one of the principal directions. Hence the maximum and minimum stresses in 

formula (7.4.6) are the maximum and minimum stresses in the x-direction. 

A description of the computer program may be found in Appendix 11.1. Results of the 

calculations may be seen in Figure 8.1 to Figure 8.3 
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Figure 8.1 Axial force as a function of  lateral load.* marks failure by instability,+ marks rig failure or 

material failure and o marks slabs that have not been loaded to failure. 
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Figure 8.2 Axial force as a function of  modulus of elasticity. 
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Figure 8.3 Axial force as a function of  maximum stresses. 
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It appears that the calculated values generally are lower than the test results. Only three 

test values are lower than the calculated ones. Two of these values are valid for a slab that 

was not tested to failure and in the third test there was material failure. This means that the 

stability load might have been higher. 

The agreement is fairly good considering the simplicity and the assumptions made. The 

method underestimates the load carrying capacity somewhat. The main reason is the 

disregarding of the variation of the bending stiffness in the x-direction. 

 

Before we illustrate how the result may be improved we evaluate the variation of the 

modulus of elasticity. Figure 8.2 shows that the modulus of elasticity varies less than 2%. 

Therefore it is natural to investigate the effect of using only one modulus of elasticity 

instead of a varying modulus of elasticity. We thus decide to use the modulus of elasticity 

found by formula (7.4.6) by assuming that the cross-section is cracked (σmin=0) and the 

maximum stress is 1.25fc. In this case we get the modulus of elasticity 31000MPa 

(=500fc). The influence of this assumption may be seen in Figure 8.4. 
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Figure 8.4 Axial force as a function of  lateral load. Blue solid line is based on constant bending stiffness, 

constant torsional stiffness, hc/h=½ and constant modulus of elasticity. Red dotted line is based on the same 

assumptions expect for the modulus of elasticity which is varied according to formula (7.4.6). 



Behaviour of Concrete Slabs Subjected to Transverse Load and Compressive Axial Forces 

 - 54 - 

As seen in Figure 8.4, the influence is insignificant. Therefore, we shall assume that the 

modulus of elasticity is constant in what follows. 

Another assumption that could be discussed, is the assumption that the reinforcement is 

placed in the centre. It was in fact placed ±5mm from the centre. In the x-direction the 

reinforcement was placed 5mm closer to the bottom of the slab, thus the stiffness is 

underestimated. The opposite is valid for the y-direction. If we take these facts into 

consideration formula (7.4.11) in Appendix 11.1 should be replaced with the following 

formulas: 

 

8 4 6 3 5 2 3
3

7 4 6 3 4 2 3
3

6.9793 10 3.6694 10 7.8220 10 1.2172 10

1.0145 10 5.1966 10 1.0919 10 1.6956 10

y

c
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c

D
n n n n

E h
D

n n n n
E h

− − − −

− − − −

= − ⋅ + ⋅ − ⋅ + ⋅

= − ⋅ + ⋅ − ⋅ + ⋅
 (7.4.7) 

The result of these changes are shown in Figure 8.5. It appears that the changes do not 

significantly change the results. So we go back to the assumption that the reinforcement is 

placed in the centre. 
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Figure 8.5 Axial force as a function of  lateral load. Blue solid line is based on constant bending stiffness, 

constant torsional stiffness, hc/h=½ and constant modulus of elasticity. Red dotted line is based on the same 

assumptions expect for the position of the reinforcement that were hcx=36mm and hcx=26mm. Note that these 

measurements are from the top of the slab to the centre of the reinforcement.  
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Next we turn our attention to the assumption of using a lower value of the bending 

stiffness in the x-direction throughout the slab. To check this assumption the calculations 

are carried out using numerical integration with varying bending stiffness. 

Formula (7.4.2) becomes: 

 

3 3
2 4 2 2 2 4 2

var 2 2
4 max

max 2 4

8
2

1
16

y x
x y xy x y y x x

x y

L L
K L D D L L L L n

up u
L L

π π
ππ

+ + −
=  (7.4.8) 

where Kvar is calculated numerically as: 

 2
var

1
2 x xK D dxdyκ= ∫ ∫  (7.4.9) 

For comparison, if the variation of the bending stiffness is not taken into account, the K 

value, indexed const, is: 

 
2 4

max
3

1
8

y x
const

x

L u D
K

L
π

=  (7.4.10) 

As required, inserting (7.4.10) into (7.4.8) leads to (7.4.2).  

The ratio Kvar over Kconst varies as shown in Figure 8.6. The slab has been subdivided into 

5 times 5 elements and the correct bending stiffness in the x-direction is determined 

iteratively until an accuracy of 1% is achieved. The procedure is similar to the procedure 

for determining the modulus of elasticity described in section 11.1. 
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Figure 8.6 Axial force as a function of  Kvar/Kconst 
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Figure 8.7 Axial force as a function of  lateral load. Blue solid line is based on constant bending stiffness, 

constant torsional stiffness, hc/h=½ and constant modulus of elasticity. Red dotted line is based on the same 

assumptions expect for the bending stiffness which varies throughout the slab.  
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It is seen from Figure 8.6 that the deviation of K is more than 35% in some cases.  Figure 

8.7 illustrates the changes obtained in the load carrying capacity diagram.  

It appears that the difference between the two calculations is significant and it most 

pronounced for axial forces about 1000-1500kN. 

 

The agreement between the more accurate calculations and the test results is good.   

 



Behaviour of Concrete Slabs Subjected to Transverse Load and Compressive Axial Forces 

 - 58 - 

9 Conclusion 

In this paper it is shown that the use of an upper bound approach for the determination of 

slab behaviour results in relatively simple calculations. The solutions are believed to be 

sufficiently correct for many practical purposes and, more important, they demonstrate 

how to calculate slabs with different torsional- and bending stiffness.  

For slabs subjected to transverse load only it is shown that the difference between the 

torsional- and bending stiffnesses, due to different position of the reinforcement, leads to a 

difference in the overall slab behaviour of up to a factor of 1.9. This result is valid for a 

square slab supported at two adjacent sides. 

Similar conclusions are reached for slabs subjected to axial force only.  

The approach for slabs subjected to both axial force and transverse load is described in 

general and one test series has been used to verify the method. Good agreement was 

found.  
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11 Appendix 

11.1 Description of computer program 

This is a description of the program used to calculate the load carrying capacity of the slab 

used in the test series [11]. 

 

4. The following data for the slab are loaded: fc, φx, φy, h, hc, Lx, Ly and Es. 

5. A loop is started where the axial force in x-direction is increased in each step. 

a. A loop is started where the bending moment in x-direction is increased in 

each step. 

i. The modulus of elasticity is assumed to be Ec=500fc.  

ii. n=Es/Ec is calculated. 

iii. Dy and Dxy are calculated for the n-value according to ii. Generally 

the stiffness may be found from Figure 7.1 (using nφ), but in this 

case the following formula is used (a polynomial fit to calculated 

values): 

7 4 6 3 4 2 3
3 3 1.0145 10 5.1966 10 1.0919 10 1.6956 10y xy

c c

D D
n n n n

E h E h
− − − −= = − ⋅ + ⋅ − ⋅ + ⋅  (7.4.11) 

iv. A loop is started and runs as long as the difference between the 

modulus of elasticity and a new modulus of elasticity calculated in 

the loop is more than 1%. If the difference is large the modulus of 

elasticity is set to the average of the two. 

1. From the axial force and the bending moment in the x-

direction the stiffness and the maximum and minimum 

stresses are found. The stiffness may be read off Figure 7.1 

using nφ and the stresses found from a simple cross section 

analysis. In this case the formulas for the stiffness and 

stresses from [14] are used. 



Behaviour of Concrete Slabs Subjected to Transverse Load and Compressive Axial Forces 

 - 62 - 

2. The new modulus of elasticity is calculated according to 

formula (7.4.6). 

3. Dy and Dxy are calculated from n using formula (7.4.11). 

v. The maximum deflection is determined according to formula 

(7.4.4). 

vi. The transverse load is determined according to formula (7.4.2).  

vii. If the maximum stress exceeds 1.25fc the solution for this 

deflection and transverse load is disregarded. 

b. The maximum deflection versus transverse load is plotted and the 

maximum transverse load and the corresponding load is determined for a 

given axial force. 

6. The axial load as a function of the maximum transverse load is plotted. 

7. The test values are plotted. 
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