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2 Summary 

This paper treats bending- and torsional stiffness of reinforced concrete slabs subjected 

to axial forces.  

It is assumed that the reinforcement behaves linear elastic in both tension and 

compression and that the concrete behaves linear elastic in compression and has no 

tensile strength. Furthermore, it is assumed that the tensile and compressive strength of 

the reinforcement and the compressive strength of the concrete are not exceeded.  

From these assumptions analytical and numerical exact stiffnesses are found for 

bending and torsion and also for the combination of bending and axial force and the 

combination of torsion and axial force.  

Lower bound solutions have also been investigated and it has been found that such 

approach may be very useful for the determination of the bending stiffness but it has not 

lead to satisfactory results for the torsional stiffness.  

The relation between bending stiffness and torsional stiffness has been investigated, and 

it was found that a proposed relation between the stiffnesses given by Dxy=½(DxDy)½ 

may not be used in general.  

Instead it is shown that the torsional stiffness for a given degree of cracking is the same 

as the bending stiffness for the same degree of cracking for a slab where the 

reinforcement is placed in the centre. This result is based on a certain way of calculating 

the degree of cracking, as described in the report, and it is also assumed that the axial 

forces have the same sign. 
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3 Resume 

Denne rapport behandler emnet bøjnings- og vridningsstivhed for armerede betonplader 

påvirket med normalkræfter. 

Det antages at både armeringen og beton har en lineær elastisk opførelse og at betonen 

ikke har nogen trækstyrke. Derudover antages det, at armeringsspændingerne ikke 

overskrider armeringens tryk- og trækstyrke og at betonens trykstyrke ikke overskrides. 

Ud fra disse antagelser bestemmes analytiske og numeriske eksakte stivheder for 

bøjning og vridning samt kombinationerne bøjning og normalkraft og vridning og 

normalkraft. 

Rapporten beskriver hvorledes man kan opstille øvre- og nedreværdiløsninger for 

stivhederne. Det er vist at nedreværdiløsninger kan være brugbare i tilfældet bøjning 

mens de ikke er fundet brugbare for vridning med normalkraft. 

Sammenhængen mellem bøjnings- og vridningsstivhed er ligeledes beskrevet. Det er i 

litteraturen forslået at man kan anvende sammenhængen Dxy=½(DxDy)½ men i rapporten 

er det vist, at dette udtryk ikke kan anvendes generelt. 

Til gengæld vises det, at pladens vridningsstivhed for en given revnegrad er den samme 

som bøjningsstivheden for den samme revnegrad, hvis armeringen er placeret i midten. 

Dette forudsætter naturligvis en bestemt definition af revnegraden som beskrevet i 

rapporten, samt at normalkræfterne har samme fortegn. 
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5 Notation 

The most commonly used symbols are listed below. Exceptions from the list may 

appear, but this will then be noted in the text in connection with the actual symbol. 
 

Geometry  

h Depth of a cross-section 

hc Distance from the bottom face to the centre of the bottom reinforcement 

hc’ Distance from the top face to the centre of the top reinforcement 

hcx ,hcy  Distance from the bottom face to the centre of the bottom reinforcement in 

the x- and y- direction, respectively 

hcx’ ,hcy’  Distance from the top face to the centre of the top reinforcement in the x- 

and y- direction, respectively 

d Effective depth of the cross-section, meaning the distance from the top 

face of the slab to the centre of the reinforcement.  

A Area of a cross-section 

Ac Area of a concrete cross-section  

As Area of reinforcement per unit length close to the bottom face 

As’ Area of reinforcement per unit length close to the top face 

Asx ,Asy Area of reinforcement per unit length close to the bottom face in the x- and 

y- direction, respectively 

Asx’, Asy’ Area of reinforcement per unit length close to the top face in the x- and y- 

direction, respectively 

y0 Compression zone depth  

x, y, z Cartesian coordinates 

 

Physics  

ε Strain 

ε1, ε2, εx, εy Strain in the 1st principal direction, 2nd principal direction, x- direction and 

y- direction, respectively. 

γxy Shear strain 

ϕ (=2γxy) Change of angle 
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κ Curvature 

κx, κy, κxy Curvatures and torsion in slab. 

σ Normal stress 

σc Normal stress in concrete  

σcx, σcy Normal stresses in concrete in the x- and y- direction, respectively. 

τ Shear stress in concrete  

φ Reinforcement ratio (for slabs based on total area) 

φx, φx’ Reinforcement ratio in the x-direction for the lower and upper 

reinforcement, respectively. 

φy, φy’ Reinforcement ratio in the y-direction for the lower and upper 

reinforcement, respectively. 

ρdisk Reinforcement ratio. 

E Modulus of elasticity 

Es Modulus of elasticity for the reinforcement 

Ec Modulus of elasticity for the concrete 

n Ratio between the modulus of elasticity for the reinforcement and the 

modulus of elasticity for the concrete 

Ex, Ey Modulus of elasticity for the slab in the x- and y-direction, respectively 

Gxy Shear-modulus of elasticity for the slab 

Db Bending stiffness for the slab  

Dx,Dy Bending stiffness for the slab in the x- and y-direction, respectively 

Dxy Torsional stiffness for the slab 

Dxy,tor uncracked Torsional stiffness for the uncracked slab 

Dxy,tor NJN Torsional stiffness for the slab according to N. J. Nielsen 

nx, ny Axial force per unit length in the x-and y-direction, respectively 

nxy Shear force per unit length 

mx, my Bending moment per unit length in the x- and y-direction, respectively 

 mxy Torsional moment per unit length 

 

k1 to k6 Constants used in the formulas for the strain field. 
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6 Introduction 

The main purpose of this investigation is to determine the torsional stiffness of 

reinforced concrete slabs subjected to axial force.  

In the investigation of slabs subjected to axial forces the deflection of the slab plays a 

main role and stiffnesses of the slab are therefore equally important. Previous 

investigations have shown that in some special cases it may be sufficient to model a slab 

by a strip model and thereby completely ignore the torsional stiffness. Other 

investigations use an approximation for the torsional stiffness, based on the bending 

stiffnesses. 

However, in order to calculate slabs subjected to axial force in general the determination 

of the torsional stiffness is necessary. Therefore, this investigation treats torsional 

stiffness of slabs subjected to axial force of the same sign in two directions.  

 

The investigation is limited to an investigation on the stiffness dependence of the 

corresponding actions and the axial force, for instance the bending stiffness dependence 

on the bending moment and axial forces. 

An investigation of bending stiffness dependence on the torsional moment or shear 

force has not been carried out. 

Furthermore, the investigation does not include effects of nonlinear behaviour of the 

materials and the influence of the tensile strength of concrete. 
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7 Theory 

7.1 Stiffness of slabs 

7.1.1 General assumptions 

In this section we consider a slab part as the one shown in Figure 7.1. This figure also 

gives the sign conventions adopted. 

y 
x 

nx 

mx 

nxy 
ny 

nyx 

my 

qx qy 

myx 
mxy 

z 

 
Figure 7.1. Slab part. 

Normal forces per unit length nx and ny are positive as compression. Bending moments 

per unit length mx and my are positive when giving tension in the bottom face (the face 

with the z-axis as an inward normal). 

Concrete normal stresses σ are normally positive as compression and the corresponding 

strains positive as shortening. 

Reinforcement stresses are normally positive as tension and the corresponding strains 

positive as elongation. 

In this paper we neglect the influence of the shear forces qx and qx perpendicular to the 

slab surfaces.  

Regarding constitutive equations it is assumed that the stresses vary linearly with the 

strains and the concrete has zero tensile strength.  
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Full compatibility between the longitudinal strains in concrete and reinforcement is 

assumed i.e. dowel action is neglected. Cracks are smeared out. 

For concrete in compression we have therefore: 

 c cEσ ε=  (7.1.1) 

For concrete in tension we have: 

 0cσ =  (7.1.2) 

For the reinforcement we have: 

 s s cE nEσ ε ε= =  (7.1.3) 

The compatibility conditions are in general (see [9]): 

 

2 22

2 2

2 22

2 2

2 22

2 2

2

2

2

2

2

2

y xyx

y yzz

x xzz

yz xyx xz

y xy yzxz

xy zy xzz

y x x y

z y y z

x z x z

y z x x y z

x z y y z x

x y z z x y

ε γε

ε γε

ε γε

γ γε γ

ε γ γγ

γ γ γε

∂ ∂∂
+ =

∂ ∂ ∂ ∂

∂ ∂∂
+ =

∂ ∂ ∂ ∂

∂ ∂∂
+ =

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂∂

= − + + ∂ ∂ ∂ ∂ ∂ ∂ 
∂ ∂ ∂ ∂∂

= − + + ∂ ∂ ∂ ∂ ∂ ∂ 
∂ ∂ ∂∂ ∂

= − + + ∂ ∂ ∂ ∂ ∂ ∂ 

 (7.1.4) 

If plane stress is assumed (σz=τxz=τyz =0) the compatibility conditions are reduced to: 

 

2 22

2 2

2 2 2

2 2

2

0

y xyx

z z z

y x x y

x y x y

ε γε

ε ε ε

∂ ∂∂
+ =

∂ ∂ ∂ ∂

∂ ∂ ∂
= = =

∂ ∂ ∂ ∂

 (7.1.5) 

In general the compatibility conditions are fulfilled if εx, εy and γxy vary linearly with z. 

This means that εx, εy and γxy may be calculated as: 

 
1 2

3 4

5 6

x

y

xy

k z k
k z k

k z k

ε
ε

γ

= +
= +

= +

 (7.1.6) 

where  k1 to k6 are constants. According to the transformation formulas the relations 

between the principal strains and the strains in a system rotated the angle α are: 



Stiffness of Concrete Slabs 

 - 14 - 

 

( ) ( )
( ) ( )

( ) ( )

2 2
1 2

2 2
1 2

1 2

cos sin

sin cos

1 sin 2
2

x

y

xy

ε ε α ε α

ε ε α ε α

γ ε ε α

= +

= +

= − −

 (7.1.7) 

From this it may be seen that the angle α may be calculated as: 

 
21 tan

2
xy

x y

Arc
γ

α
ε ε

 
=   − 

 (7.1.8) 

Inserting the functions given in (7.1.6) into (7.1.7) and solving the equations with 

respect to the principal strains lead to: 

  

( )( ) ( )( )

( )( ) ( )( )

( ) ( )( )( ) ( )( )
( )( )

1 2 4 1 3 2 4 1 3

2 2 4 1 3 2 4 1 3

2 22 2 2
2 4 6 1 3 2 4 5 6 1 3 5

2
2 4 1 3

1 
2
1 
2

4 2 4 4

k k k k z C k k k k z

k k k k z C k k k k z

and

k k k k k k k k k z k k k z
C

k k k k z

ε

ε

= − + − + + + +

= − − + − + + + +

− + + − − + + − +
=

− + −

 (7.1.9) 

This solution of course only has meaning for C real: 

This means that in the case of plane stress the problem is reduced to the determination 

of the factors k1 to k6. These factors must be determined so that the equilibrium 

equations are fulfilled when the constitutive equations are used. However, the 

calculations do in some cases become quite cumbersome and in some cases the use of 

numerical calculations is advantageous.  

7.2 Beam example 

An exact solution requires that both the equilibrium equations, the compatibility 

equations and the constitutive equations are fulfilled. For slabs the exact solution and 

thereby the correct stiffness is not always easily found.  

However, lower and upper bound solutions may be established and these solutions are 

much less comprehensive and therefore worth of studying. In this section a beam is 

calculated as an illustrative example.  

7.2.1 Exact stiffness for beams in bending  

We consider a reinforced beam subjected to a bending moment only as illustrated in 

Figure 7.2. 
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κ 

y0 

M 

σc 

σs 

h 

ε 

 
Figure 7.2 Stresses and strains in a beam.  

The beam has a rectangular section b·h. For simplicity the reinforcement is placed in the 

bottom face. The projection equation becomes: 

 0
10
2 c s sN b y Aσ σ= = −  (7.2.1) 

The moment equation becomes: 

 0 0
1 1
2 2 3 2c s s

h hM b y y Aσ σ = − + 
 

 (7.2.2) 

where As is the cross-section area of the reinforcement. 

 

Assuming that the strains vary linearly as illustrated in Figure 7.2 it is seen that the 

compatibility equations are fulfilled.  

The constitutive relation are also illustrated in Figure 7.2 where the constitutive 

equations (7.1.1) to (7.1.3) have been used.  

Solving the problem leads to the following bending stiffness, Db, for the beam: 

 
( ) ( )

( ) ( ) ( )

3 2

3 3
2 2 2

2 2
1 3

2 42 2
3 3

b

c c

n n nD M
E bh E bh n n n n n n

φ φ φ

κ φ φ φ φ φ φ

 + + 
= =  

 − + − + 
 

 (7.2.3) 

Formula (7.2.3) is generally valid for beams with one layer of reinforcement if h is 

substituted with d, where d is the effective depth.  

7.2.2 Lower bound stiffness for beams in bending 

Fulfilling only the equilibrium conditions and the constitutive equations and thereby 

disregarding the compatibility equations establish a lower bound solution. For an elastic 

system the virtual work equation may be used in order to determine a lower bound 

stiffness.  
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Since we are dealing with a “changeable” system in which parts of the section may or 

may not be effective depending on the cracks the application of standard theorems for 

elastic systems may be doubtful. This may be compared with a cable structure with 

cables only effective in tension. However, in what follows we apply the theory of elastic 

systems without any further comments.  

In this example we choose the stress distribution shown in Figure 7.3. This stress 

distribution has zero stress in the middle, which corresponds to the correct solution for a 

beam without reinforcement and sufficient tensile strength.  

 

y0=½h 
M 

σc 

σs 

h 

εc 

εs 

 
Figure 7.3 Stresses and strains in a beam.  

From the projection equation we have: 

 1 10
2 2 c sN b h bhσ φ σ= = −  (7.2.4) 

The moment equation becomes: 

 1 1 2
2 2 3 2 2c s

h hM b h bhσ φ σ= +  (7.2.5) 

Combining these equilibrium equations with the constitutive equations leads to the 

determination of the strain field. The strains are illustrated in Figure 7.3 and the main 

values become: 

 2

24  
5c

c

M
h bE

ε =  (7.2.6) 

 2

6 
5s

c

M
h bE n

ε
φ

=  (7.2.7) 

With the strains given, it is possible to find the stiffness using the virtual work equation, 

which for a beam in bending may be written: 

 1 1

A
M dAκ σ ε= ∫  (7.2.8) 

Here M1 is a fictitious (virtual) moment and σ1 is a stress distribution equivalent to the 

fictitious moment. The stresses σ1 may therefore be chosen freely as long as the 
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moment and projection equations are fulfilled. A simple solution is to apply a moment 

of magnitude 1 (M1=1) and choose a stress distribution similar to the one valid for the 

real moment M. In this case we get the stress and strain distributions shown in Figure 

7.4. 

 ε 

y0=½h 

M1=1

σ1
c 

σ1
s 

h 

εc 

εs 

σ1 

 
Figure 7.4 Stresses and strains in a beam.  

The stresses may be found using the projection equation and the moment equation, 

which leads to: 

 1
2

24 1  
5c h b

σ =  (7.2.9) 

 1
2

6 1 
5s h b

σ
φ

=  (7.2.10) 

Using the virtual work equation leads to the following stiffness: 

 

1

0

1 1

3

1

1
3 2
1 25

96 36

h

c c s s

c

b dy

hb bh

M n
E bh n

κ σ ε

κ σ ε φ σ ε

φ
κ φ

= ⇔

= + ⇔

=
+

∫
 (7.2.11) 

This result is compared with an upper bound and the exact solution below. 

7.2.3 Upper bound stiffness for beams in bending 

Fulfilling only the compatibility conditions and the constitutive equation and thereby 

disregarding the equilibrium equations, establish an upper bound solution. Using the 

virtual work equation it is possible to determine an upper bound stiffness.  

In this example we choose the strain distribution shown in Figure 7.3. This strain 

distribution has zero strains in the middle, which corresponds to the correct solution for 

a beam without reinforcement and with sufficient tensile strength.  
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y0=½h h 
M 

σc 

σs 

εc 

εs 

κ 

 
Figure 7.5 Stresses and strains in a beam.  

The constitutive equations lead to the following stresses: 

 
2c c c c
hE Eσ ε κ= =  (7.2.12) 

 
2s s s c
hE nEσ ε κ= =  (7.2.13) 

With the stresses given it is possible to find the stiffness using the virtual work 

equation. In this case we apply a virtual relative rotation and thus we get: 

 1 1

A
M dAκ σε= ∫  (7.2.14) 

Here κ1 is the virtual rotation and ε1 is a strain distribution corresponding to the virtual 

rotation. This distribution may be chosen freely as long as the compatibility conditions 

are fulfilled. A simple solution is to apply a rotation of magnitude 1 (κ1=1) and choose a 

strain distribution similar to the one valid for the real rotation. In this case we get the 

stress and strain distribution as shown in Figure 7.6. 

 ε1 

y0=½h 

σc 

σs 

h 

εc 

εs 

σ 

κ1=1 

 
Figure 7.6 Stresses and strains in a beam.  

The strains are: 

 1 1  
2 2c
h hε κ= =  (7.2.15) 

 1 1 
2 2s
h hε κ= =  (7.2.16) 
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Using the virtual work equation leads to the following stiffness: 

 

1

0

1 1

3

1

1
3 2

1 1 1+ n
24 4

h

c c s s

c

M b dy

hM b bh

M
E bh

σε

σ ε φ σ ε

φ
κ

= ⇔

= + ⇔

=

∫
 (7.2.17) 

7.2.4 Comparison of stiffnesses 

Having the exact stiffness, a lower bound stiffness and an upper bound stiffness given 

by equations (7.2.3), (7.2.11) and (7.2.17), respectively, it is possible to compare the 

results and evaluate the accuracy. This is done in Figure 7.7 and Figure 7.8. The 

deviation is defined as the absolute value of the difference between the solutions over 

the exact stiffness.  
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Figure 7.7 Exact, lower and upper stiffness for a beam. 

x 10-1 
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Figure 7.8 Deviations for upper and lower stiffness. 

It appears that even a very simple lower bound solution leads to a reasonable result for 

most reinforcement ratios. The upper bound solution on the other hand overestimates 

the stiffness for small reinforcement ratios. Furthermore, it should be noted that the 

lower bound solution gives a dependency on the reinforcement ratio (nφ) that is very 

similar to the correct solution. 

Whether solutions of this kind are sufficiently accurate or not does of course depend on 

the context in which they are used. Nevertheless, these simple calculations indicate that 

such methods may be used to calculate stiffnesses in more complicated cases such as 

slabs with axial forces and torsion. 

 

The choice of stress or strain fields affects the resulting stiffness. To get an idea of this 

influence we calculate a lower bound stiffness for the beam choosing a statically 

admissible stress field as shown in Figure 7.9 and a virtual stress field as shown in 

Figure 7.10. 

x 10-1 
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y0=½h 
M 

σc 

σs 

h 

εc 

εs 

 
Figure 7.9 Stresses and strains in a beam. 

 ε 

y0=½h 

M1=1

σ1
c 

σ1
s 

h 

εc 

εs 

σ1 

 
Figure 7.10 Stresses and strains in a beam. 

By similar calculations as those described in section 7.2.2 we find the stiffness: 

 3

1 9
32 16c

M n
E bh n

φ
κ φ

=
+

 (7.2.18) 

The dependency on the reinforcement ratio (nφ) may be seen in Figure 7.11 where it has 

been compared with the previous solutions. The present solution is marked Lower 2 in 

the plots. 
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Figure 7.11 Exact, lower1, lower 2 and upper bound stiffness for a beam. 
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Figure 7.12 Deviations for upper, lower 1  and lower 2 bound stiffnesses. 
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As seen, even a stress field quite different from the exact stress field leads to reasonable 

results.   

7.3 Slab stiffness 

In this chapter the geometry is defined according to Figure 7.13. 

h 
nx 

φ0´ 

φ0

hc
´

hc 

mx 

 
Figure 7.13. Slab with axial force. 

 

7.3.1 Bending stiffness for slabs without torsion 

For slabs subjected to bending only the bending stiffness may be calculated as for a 

beam and the calculations are easily made. However, even for a slab subjected to 

bending and axial force the calculations start to become cumbersome. The equilibrium 

equations are: 
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 (7.3.2) 

These may be written in dimensionless form as: 
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The depth of the compression zone y0 may be found for a given combination of mx and 

nx by solving these equations. It appears that y0 is constant for a given ratio of nxh/mx 

and may therefore be written as a function of this ratio. The problem leads to a 3rd-

degree equation: 
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(7.3.5) 

It may be shown that the discriminant is positive if 0<y0/h<1 and only one real solution 

exists to the problem. The solution is extensive and may be seen in appendix 10.1.  

In the special case of only one layer of reinforcement placed in centre we get: 
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 (7.3.6) 

σc may now be determined from the projection equation (7.3.3) giving: 
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 (7.3.7) 

 

Knowing the depth of the compression zone, the bending stiffness D=Dx may be 

calculated as: 
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 (7.3.8) 

It is seen that besides from the physical properties of the slab the bending stiffness only 

depends on the nxh/mx ratio in combination with the sign of nx. The limits for nxh/mx 

corresponding to y0=h and y0=0, respectively, become: 
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 (7.3.10) 

If the nxh/mx ratio is larger than the limit for y0=h the stiffness of the slab equals the 

uncracked stiffness given by: 
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 (7.3.11) 

If the nxh/mx ratio is lower than the limit for y0=0 the stiffness of the slab equals the 

stiffness of the reinforcement only given by: 



Stiffness of Concrete Slabs 

 - 26 - 

 ( 0)0

2 2

3

´ ´1 3 1 ´
2 2 2

yx c c c c

c

D h h h hn n
h E h h h h

φ φ=
      = + − + −               

 (7.3.12) 

Calculations for some slabs with the same reinforcement in the top and bottom (φ=φ’) 

are shown in Figure 7.14. In Figure 7.15 the variation of the depth of the compression 

zone may be seen. 
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Figure 7.14 Bending stiffness for slabs subjected to bending and axial force. The * point and the O point 

mark the uncracked and the fully cracked stiffness given by formulas (7.3.11) and (7.3.12), respectively.  
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Figure 7.15 Variation of the depth of the compression zone with the axial force. 

For slabs reinforced only in the bottom face the variation is quite different. This may be 

seen in  Figure 7.16 and Figure 7.17 showing the stiffness and depth of the compression 

zone for different slabs. 
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 Figure 7.16 Bending stiffness for slabs subjected to bending and axial force. The * point and the O point 

mark the uncracked and the fully cracked stiffness given by formulas (7.3.11) and (7.3.12), respectively. 
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Figure 7.17 Variation of the depth of the compression zone with the axial force. 
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From  Figure 7.16 it appears that the slab is actually a bit stiffer when it is a bit cracked 

compared to the uncracked situation. This may seem somewhat strange since it is well 

known that the moment of inertia of an uncracked cross-section is larger than the 

moment of inertia of a cracked cross-section. Also the fact that a fully cracked cross-

section has some stiffness may seem strange. However, the explanation is to be found in 

the definition of the reference point for the axial force. In this paper the reference point 

is kept constant at a distance of h/2 from the top surface. Compared to the usual use of 

Naviers formula where the reference point of the axial force is at the centre of gravity of 

the transformed cross-section, the definition used in this paper results in an additional 

moment.  

The reason for choosing this, apparently strange, definition is simply the fact that it 

makes the calculations somewhat simpler.  

 

The bending stiffness is, in general, a function of the degree of cracking. For a given 

axial force the moment at the transition state between cracked and uncracked (y0=h) 

section is named the cracking moment. The ratio between the applied moment and the 

cracking moment may be used as a degree of cracking, thereby making it possible to 

express the stiffness as a function of the degree of cracking. 

The cracking moment may be found from equation (7.3.9) as: 
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 (7.3.13) 

In the special case with only one layer of reinforcement placed in the centre of the slab 

we get: 
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x y h
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n h
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+
 (7.3.14) 

In Figure 7.18 the stiffness as a function of the degree of cracking is shown for a slab 

with one layer of reinforcement in the centre. In Figure 7.19 the stiffness is shown for 

two layers and in Figure 7.20 for one layer placed at a distance of hc=0.1h.  
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Figure 7.18 Bending stiffness as a function of the ratio cracking moment over moment. hc=½h and one 

layer of reinforcement.  
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Figure 7.19 Bending stiffness as a function of the ratio cracking moment over moment. hc= hc’ =0.1h and 

two layers of reinforcement. 
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Figure 7.20 Bending stiffness as a function of the ratio cracking moment over moment. hc= 0.1h and one 

layer of reinforcement. 

The diagrams shown in Figure 7.18 to Figure 7.20 may be used directly to calculate the 

stiffness.  

This way of determining the stiffness as a function of the degree of cracking may seem 

as unnecessary playing around with already existing knowledge. However, it will later 

be shown that the approach has some advantages. 

7.3.2 Numerical calculation of the stiffness 

As mentioned previously in section 7.1.1 the determination of the strains and stresses 

may be reduced to the problem of determining the six constants k1 to k6. This may be 

done numerically and in this paper a program with the structure described in Appendix 

10.2 is used. The main content of this program is the Newton-Raphson method. A guess 

on the six constants k1 to k6 is made and then the Newton-Raphson method is used until 

a satisfactory result is achieved (see [7]). From the applied forces and moments the 

stiffnesses may be calculated as: 
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x y xy
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m mmD D D
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 (7.3.15) 
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The program makes it possible to determine the stiffness for any combination of 

actions.  

7.3.3 Torsional stiffness without bending 

One of the most interesting investigations is the change of torsional stiffness as a 

function of the axial force.  

In the case of pure torsion of an isotropic slab, N. J. Nielsen has shown that the exact 

stiffness may be calculated as (see [1] or [11]): 
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 (7.3.16) 

This may also be written as: 
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 (7.3.17) 

It appears that the torsional stiffness is independent of the position of the reinforcement, 

still being symmetrical with respect to the slab middle surface. 

In the uncracked case we have when Poisson’s ratio is zero (see [11]): 

 3
, _

1
12xy tor uncracked cD E h=  (7.3.18) 

If an axial force in both the x- and y- direction is applied gradually, the torsional 

stiffness changes from the cracked stiffness to the uncracked stiffness. This means that 

the stiffness depends on how cracked the cross-section is. In order to quantify the 

degree of cracking it is practical to introduce a ratio of some kind.  

In this case the transition point between the cracked and the uncracked state is used as a 

reference state. This state is indexed cracked. The state is found from the formulas for 

an uncracked cross-section corresponding to the state where one of the principal strains 

is zero. This approach is similar to the determination of the bending stiffness. 

In the uncracked case with axial force and torsion we have the following longitudinal 

strains in the middle surface of the slab (positive as shortening): 
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 (7.3.19) 

And we have the torsion: 
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Using the transformation formulas it is possible to determine the principal strains and 

the angle between the first principal axis and the x-axis. However, the formulas are quite 

extensive and will not be given here. The principal strains are functions of the position 

(z). Setting the position equal to a point in the top face of the slab and setting the 

principal strain equal to zero lead to an equation from which the torsional cracking 

moment may be found. In the case of torsion and axial force we get:  
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 (7.3.21) 

Torsional moments larger than this lead to a more cracked cross-section and it is 

therefore reasonable to use the ratio between the applied moment and the cracking 

moment as a measure of the degree of cracking.  

Such ratio for the degree of cracking is only meaningful if the cross-section is 

uncracked when no torsion is applied. This means that if one of the axial forces is 

negative (tension) this measure does not have any physical meaning. Similarly if both 

axial forces are negative no physical meaning may be attributed to the cracking moment 

but we do have a solution and thereby a reference point. If we redefine the torsional 

cracking moment so that it changes sign for negative axial force (tension) in both 

directions we get: 
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 (7.3.22) 

Using this definition we may now calculate numerically the torsional stiffness as a 

function of the degree of cracking, i.e. the torsional cracking moment over the applied 

torsional moment.  

Figure 7.21 shows the results of the calculations for a slab with a degree of 

reinforcement of nφ=0.05.  
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Figure 7.21 Torsional stiffness for a slab subjected to axial force in two directions, ny=½nx. The degree of 

reinforcement is nφ=0.05 and the slab is isotropic. 
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Figure 7.22 Variation of k1 to k6  for a slab subjected to axial force in two directions. The degree of 

reinforcement is nφ=0.05 and the slab is isotropic. 

In Figure 7.22 the variation of k1 to k6 is shown as a function of the axial force. From 

this plot it appears that k1, k3 and k6 are zero. This is quite logical since the slab is 

isotropic and therefore, no curvature in the x- and y- directions is to be expected. k6 

determines the point of zero shear strain and since there are no shear forces it is logical 

that the relative rotation takes place around the centre of the slab. Furthermore, we have 

k2 equal to k4 which is also logical since the reinforcement is the same in the x- and y- 

directions. 

Considerations of this kind may be used directly to find a general stiffness formula for 

the isotropic case. We assume that k1, k3 and k6 are zero, and that k2 equals k4. 

Introducing these values into (7.1.6) we get: 
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 (7.3.23) 

From (7.1.8) it follows that the angle α is: 
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 (7.3.24) 

The principal strains may then be calculated from (7.1.7) as: 



Stiffness of Concrete Slabs 

 - 36 - 

 

( )

2 1 2

1 2 5
2 1 2

2 2 5

5 1 2

1 1
2 2
1 1
2 2

1
2

k

k k z
k

k k z

k z

ε ε

ε
ε ε

ε

ε ε

= + 
 = −= + ⇔  = +
= − − 

 (7.3.25) 

This results in the stresses and strains shown in Figure 7.23.  
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Figure 7.23 Stresses and  strains for pure torsion. 

The main stresses illustrated in Figure 7.23 become: 
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Using this strain field in the equilibrium equations and simplifying the expressions we 

get: 

 0xm =  (7.3.27) 

 0ym =  (7.3.28) 
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 0xyn =  (7.3.31) 
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The stiffness becomes: 
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It is seen that the strain field assumed leads to the stress field required and the stiffness 

found above is therefore an exact solution to the problem of an isotropic slab having the 

same axial force in the x- and y- direction.  The expressions are very simple and by 

varying the point of zero stains ( k2/(k5h) ) from –0.5 to 0.5 one will get the stiffness as a 

function of the axial load. The curves are of course the same as the ones found from the 

numerical calculations.  

Now, if one knows the applied loads and want to determine the stiffness one has to 

solve the 3rd-degree equation:  
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 (7.3.34) 

The approach for solving this equation is of course the same as for bending. 

 

7.3.3.1 Different axial forces 
If the axial force in the two directions are different but still have the same sign 

numerical calculations show that the torsional stiffness, as a function of the degree of 

cracking, is the same.  

An example may be seen in Figure 7.24 where results for the cases ny=2nx and ny=nx 

are plotted. 
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Figure 7.24 Torsional stiffness for a slab subjected to axial force in two directions, ny=2nx ( red x) and a 

slab subjected to axial force in two directions, ny=nx (blue o) . The degree of isotropic reinforcement is 

nφ=0.05 in both cases. 

If the axial forces do not have the same sign it is not possible to define a degree of 

cracking and a simple approach has not been found. In this case one needs to carry out 

the numerical calculations for the given axial forces. Stiffnesses for different ratios of 

axial forces may be seen in Figure 7.25. 

Dxy for ny=2nx ( red x) 

and ny=nx (blue o) 
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Figure 7.25 Torsional stiffness for a slab with different ratios of axial forces. The degree of isotropic 

reinforcement is nφ=0.05. 

7.3.3.2 Anisotropic reinforcement 
Often the reinforcement in the x- and y- directions are different. For example it is more 

economical to let the direction of the shorter span in a rectangular slab supported along 

all edges carry more than the longer one. Thus it is interesting to investigate this case.  

It has been proposed, see [11], that in the case of no axial force the stiffness for an 

anisotropic slab may be calculated using the formulas for isotropic slabs and inserting 

an amount of reinforcement of: 

 s sx syA A A=  (7.3.35) 

Numerical calculations have shown that this assumption, equation (7.3.35), is correct. In 

Figure 7.26 it is seen that calculations on an anisotropic slab with a ratio of one to five 

between the reinforcements in the x- and y-direction lead to the same result as 

calculations on an isotropic slab with the reinforcement calculated according to (7.3.35). 
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Figure 7.26 Torsional stiffness for slabs subjected to axial forces in two directions, ny=nx. Blue, solid line 

with o –markers is valid for an isotropic slab with nϕx= nϕx’= nϕy= nϕy’=0.07454 and red, dotted line 

with x- markers is valid for a slab with nϕx= nϕx’= 0.0333 and nϕy= nϕy’=0.1667. 

 

7.3.4 Lower bound solutions 

As for beams, we shall try to find lower bound stiffnesses for slabs subjected to torsion 

by assuming a statically admissible stress distribution and then use the virtual work 

equation. 

If the concrete stresses are assumed to vary linearly from zero to σc over the depth a, as 

illustrated in Figure 7.27, we know that in the isotropic case with nx=ny we have the 

correct destribution.  

Dxy for ny=nx and 

red x: nϕx= nϕx’= 0.0333 and nϕy= 

nϕy’=0.1667  

blue o: nϕx= nϕx’= nϕy= nϕy’=0.07454
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Figure 7.27 Stress destribution assumed in the lower bound solution for torsional stiffness. 

In the isotropic case with nx=ny the principal strains are determined by an angle α = 45° 

which means that cos2(α)=sin2(α)=½. Thus we have the stresses illustrated in Figure 

7.27. 

The equilibrium equations become: 

 2 1 1
3 2 2xy cm h a a σ = − 

 
 (7.3.36) 

 0x ym m= =  (7.3.37) 

 1 12 2
2 2x y c sn n a hσ φ σ= = −  (7.3.38) 

 0xyn =  (7.3.39) 

σc may be determined from the moment equation and σs may be determined from the 

projection equation which lead to: 
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Applying a fictitious torsional moment of magnitude 1 and choosing the same stress 

distribution as determined above, we get: 
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 (7.3.44) 
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 (7.3.45) 

It should be noted that when applying the fictitious moment we have no axial force. 

The work equation becomes: 

 1 1 112 2 4
3xy xy c c s sm a hκ σ ε φ σ ε= +  (7.3.46) 

Solving this equation with respect to the geometrical torsion we get: 
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 (7.3.47) 

From this we may calculate the torsional stiffness as:  
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 (7.3.48) 

It should be noted that setting the axial force to zero and using the compatibility 

conditions to determine a/h, as described by equation (7.3.16), we get the exact 

solution.  

In Figure 7.28 results of the lower bound solution for the value of a leading to the 

largest stiffness are shown along with the exact solution from the numerical 

calculations. Figure 7.29 shows the values of a/h used in the calculations of the stiffness 

in Figure 7.28. The values of a/h are found by differentiation of formula (7.3.48) with 
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respect to a/h, setting this expression equal to zero and then solving with respect to a/h. 

The expression for a/h is quite extensive and will not be given here. 
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Figure 7.28Torsional stiffness for s slab found by formula (7.3.48) (red *) and the exact solution. It is 

assumed that nφ= nφ’=0.05. 
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Figure 7.29a/h used in the calculations I Figure 7.28. 

It appears that the stiffnesses found are sometimes higher than the exact stiffness and 

therefore they can not be true lower bound solutions. Evaluating the stiffness from 

formula (7.3.48) it appears that there is a point where the stiffness becomes infinitely 

large. 

This leads to the important conclusion that the stiffness found using the work equation 

does not always lead to a true lower bound solutions. The reason is that in this case we 

are dealing with not only one single stiffness constant but with stiffnesses for curvature 

as well as for stretching. 

Another approach that can be used in cases of several stiffnesses is to minimize the 

complementary energy with respect to a/h. If this method is used on the stress field 

described above it leads to the exact solution.  

 

7.3.5 Torsional stiffness from disk solutions 

Another way of approaching the problem is to subdivide the slab into two disks at top 

and bottom and then calculate the stiffness from the formulas for disk stiffness. If 

equilibrium is satisfied we have a lower bound solution since the compatibility 

conditions are disregarded.  
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Determination of the torsional stiffness for an isotropic slab with to no axial forces leads 

to the following calculations: 

For an isotropic disk in the cracked state we have, see [11]: 

 

12
2

12
2

c

disk

c

disk

E
n

E
n

τϕ ρ
τ ϕ

ρ

 
+ 

 = ⇔ =
+

 (7.3.49) 

 where ϕ is the change of angle and ρdisk is the reinforcement ratio for the fictitious disk. 

Assuming that the disks have the thickness a and the slab has the depth h we find: 

 disk
h

a
φρ =  (7.3.50) 

The equilibrium equations give: 

 ( )xym h a aτ= −  (7.3.51) 

where τ is the shear stress in the disks. 

Using the work equation we find: 
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The optimum solution for the stiffness may be found by differentiating with respect to a 

and inserting the result into the solution for the stiffness: 
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This solution and the exact solution may be compared for specific values of φn. Setting 

n=10 and φ=1% lead to a stiffness Dxy/(Ech3) = 0.016 whereas the exact stiffness 

according to (7.3.17) becomes Dxy/(Ech3) = 0.0169. Thus the agreement is very good. 

Disk solutions may also be found for slabs subjected to axial forces as well.  

7.3.6 The relation between bending stiffness and torsional stiffness  

It is of course interesting to look for a relation between the bending stiffness and the 

torsional stiffness. An approximation formula for different reinforcement arrangements 

has been given in the literature and has also been used for verification purposes in 

section 7.3.3.2. Nevertheless, the formula has never been verified in the cracked state 

with axial forces.  

The suggested formula for the torsional stiffness expressed by the bending stiffness, see 

[11],[5],[6], is: 

 1
2xy x yD D D=  (7.3.55) 

In [11] it is argued that this approximation leads to good agreement if there is no axial 

force and if the effective depth, d, equals the depth of the slab, h. Nevertheless, it is 

evident that in the uncracked state this formula lead to a torsional stiffness of only half 

the bending stiffness instead of giving almost the same stiffness as the bending stiffness. 

Therefore, the formula can not be general. 

 

The fact that the formula can not be general may also be demonstrated in the following 

way: 

One of the differences in the stiffness calculations for bending and torsion is the effect 

of the position of the reinforcement. Assuming that the reinforcement is placed 

symmetrically, the bending stiffness increases when the reinforcement is placed more 

and more close to the faces while the torsional stiffness remains constant. This fact also 

rules out any general relation between the stiffnesses.  

Nevertheless, we may show that there is a way of calculating the torsional stiffness from 

the formulas of bending stiffness. Using the knowledge about the effect of the position 

of the reinforcement it is evident that we must lock the position of the reinforcement in 

the bending situation in order to reach the possibility of a general agreement. Knowing 

that in the uncracked case the torsional stiffness is the same as the bending stiffness for 

an unreinforced slab the locked position must be the centre of the slab. Here we keep in 
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mind that in the uncracked case the bending stiffness of an unreinforced slab is the same 

as for a reinforced slab with the reinforcement in the centre. 

If the torsional stiffness is calculated from the bending stiffness of a slab where all the 

reinforcement is “moved” to the centre we shall have agreement in the uncracked state 

as well as for all positions of the reinforcement. Then only the amount of reinforcement 

and the applied axial force to be used in the calculation has to be determined. 

Considering the case of no axial force, formula (7.2.3) may be used to determine the 

bending stiffness of the fictitious slab by setting the effective depth, d, equal to half the 

depth, h. In this case we get: 
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 (7.3.56) 

The torsional stiffness calculated according to formula (7.3.17) is: 
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 (7.3.57) 

From these two formulas it seems that the influence of the reinforcement is not the 

same. However, if we assume that the reinforcement ratio applied when calculating the 

fictitious bending stiffness is twice the reinforcement ratio applied for the torsional 

stiffness calculation we find that the formulas are the same. Formula (7.3.56) is valid for 

one layer of reinforcement and therefore one may say that they are the same if all 

reinforcement is moved to the centre. 

It is hereby shown that in the case of no axial force and in the uncracked slab the 

torsional stiffness is the same as the bending stiffness of a slab with twice the 

reinforcement placed in the centre. 

More generally it may be shown that an isotropic slab, with the reinforcement placed in 

the centre and subjected to the same axial force in both directions, has the same 

torsional and bending stiffness. This is easily seen by considering the equilibrium 

equations as demonstrated in Appendix 10.3. 

Numerical calculations also confirm that this approach leads to perfect agreement. 

 Figure 7.30 shows the bending stiffness for a slab with nφ=0.10 (one layer of 

reinforcement) as a function of the degree of cracking, and the torsional stiffness for a 

slab with nφ=0.05 as a function of the degree of cracking.  Figure 7.30 is a combination 

of Figure 7.18 and Figure 7.21 into the same graph.  
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 Figure 7.30Bending stiffness and torsional stiffness compared. 

It is seen from  Figure 7.30 that besides from the numerical deviations the graphs are the 

same. This means that the suggested approach may be used in general. The approach 

facilitates the calculations of the torsional stiffness a great deal.   

Figure 7.31 illustrates the relation between torsional- and bending stiffness in general. 
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Figure 7.31. The relation between torsional- and bending stiffness for an isotropic slab. 
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8 Conclusion 

In this paper it is shown how to calculate the stiffnesses of cracked concrete slabs in 

general using an assumption of linear elastic behaviour of both reinforcement and 

concrete and of no tensile strength of the concrete.  

Any slab stiffness may be found by the numerical method described in this paper. 

However, the main result of this investigation is the determination of the torsional 

stiffness of a slab subjected to axial forces.  

If the axial forces have the same sign the torsional stiffness for a certain degree of 

cracking is the same as the bending stiffness for the same degree of cracking if the 

reinforcement is placed in the centre. Since the torsional stiffness is independent of the 

position of the reinforcement, as long as it is placed symmetrically about the centre, the 

torsional stiffness may be calculated from the formulas for the bending stiffness. 

If the axial forces do not have the same sign, no simple method has been found and in 

this case it is necessary to determine the torsional stiffness using the numerical methods. 

 

The use of lower bound methods has also been investigated. For bending such solutions 

may be useful for practical purposes. For torsion and axial force simple lower bound 

solutions are shown to be too inaccurate. 
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10 Appendix 

10.1  The depth of the compression zone, y0, for bending with 

axial force. 

The problem, given in section 7.3.1 in (7.3.5), is: 
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    − + −           + − − + + −        
 

2'ch
h h

    +        

(10.1.1) 

Writing this equation in a general form leads to the following coefficients: 
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 
 +      = − − + −         
 
 

    − + −          = − − +    
 
 

2 2' '1'
2

c ch hn
h h

φ
      + − +               

 (10.1.2) 

The solution is: 
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3 23
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2
2 1

3
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1
3
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54

y S T a
h

where

S R Q R

T R Q R

a aQ

a a a aR

= + −

= + +

= − +

−
=

− −
=

 (10.1.3) 

 

10.2 Description of a general program for the determination of the 

strains in a section 

The program has the structure described below: 

 

1. The geometrical and physical properties are given (h, hcx, hcx’ hcy, hcy’, Asx, Asx’, 

Asy, Asy’, Es, Ec). 

2. The applied forces and moments are given (nx , ny, nxy, mx, my, mxy). 
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3. An estimate of the six constants k1 to k6 is made. These are combined into a 

vector K 

1

2

3

4

5

6

k
k
k
k
k
k

 
 
 
  =  
 
 
 
  

K  

4. An acceptable deviation is set. This deviation is defined as 
* * *

* * *x x y y xy xy
x x y y xy xy

y xyx
x y xy

m m m m m m
n n n n n n

h h hdev
m mm

n n n
h h h

− − −
+ + + − + − + −

=

+ + + + +

 

where the upper index * indicates the results for a given estimate of K. 

5. The number of sections into which the depth is subdivided when making a 

numerical integration is set. 

6. A loop is started and this loop runs while the deviation is larger than the 

deviation, set in 4. 

a. The applied forces and moments corresponding to K is calculated (nx
*

 , 

ny
*, nxy

*, mx
*, my

*, mxy
*). 

b. A loop is started that runs 6 times varying one of the k values at a time 

from k to k+ and each time calculating the applied forces and moments 

(upper index +). Thereby a difference operator called JJ is established. 

JJ is given by: 

1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

x x x x y y y y xy xy xy xy
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+ + + + + +
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+
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 
 
  
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 
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c. A vector F containing the differences in the applied forces and moments 

is calculated: 

 

*

*

*

*

*

*

x x

x x

y y

y y

xy xy

xy xy

m m
n n

m m
n n

m m
n n

 −
 − 
 − =  − 
 −
 

−  

F  

 

d. New values of K is calculated as 

( ) 1T
new

−
= −K K JJ F  

e. The deviation is calculated and an evaluation of this decides whether the 

loop starts again or not. 

7. The stiffnesses are calculated from the curvatures determined by K and the 

applied forces and moments. 

 

10.3 Torsional and bending stiffness for a slab with the 

reinforcement placed in the centre 

In this appendix we consider a slab with the isotropic reinforcement placed in the 

centre. The reinforcement ratio is 2φ. The slab is subjected to the same axial force in 

both the x- and y- direction. 

By comparing the equations for the bending stiffness and the torsional stiffness we may 

show that the stiffnesses are the same. 

Generally the stiffnesses are defined by: 

 

x
x

x

xy
xy

xy

mD

m
D

κ

κ

=

=
 (10.1.4) 

By showing that the moments and the curvatures have the same dependency on the axial 

force it is demonstrated that the stiffnesses are the same.  

The moments are (see (7.3.2) and (7.3.36)): 
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   = = −   
   
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 (10.1.5) 

The curvatures are: 

 0

1 2

c

c
x

c

c
xy

E
y

E
a

σ

κ

σ

κ κ κ

=

= = =

 (10.1.6) 

The projection equation for the bending case is (see (7.3.1)): 

 

0 0 0
0 0

2
0 0
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1 - - - '
2 2 2
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σ

   
         = − − − ⇔         
   
   

   − +     =

 (10.1.7) 

For the torsion case we have the following formula for the stresses when the 

compatibility conditions are fulfilled: 

 ( )

1
21

2

c

c
c

s c
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E h a E n
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σ
σ

σ

 
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 
 = − −
 
 
  
 

 (10.1.8) 

This leads to the following projection equation (see (7.3.38): 

 
2

1 12 2
2 2

2 4
1 
2

x c s

x c

n a h

a an n
h h

n h a
h

σ φ σ

φ φ
σ

= + ⇔

   − +     =

 (10.1.9) 

It is seen that in both cases we have the same relation between moment, axial force, 

compression zone, maximum stress, curvature and therefore also stiffness. It is hereby 

shown that the torsional stiffness is the same as the bending stiffness if the 

reinforcement is isotropic and placed in the centre. 
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