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2 Summary

This paper treats the subject Yield line Theory for Concrete Slabs Subjected to Axial Force.

In order to calculate the load-carrying capacity from an upper bound solution the dissipation has to
be known.

For a slab without axial force the usual way of calculating this dissipation is by using the normality
condition of the theory of plasticity together with the yield condition. This method is equivalent to
the original proposal by K. W. Johansen. This method has shown good agreement with experiments
and has won general acceptance.

In this paper the dissipation in a yield line is calculated on the basis of the Coulomb yield condition
for concrete in order to verify K. W. Johansen’s method. It is found that the calculations lead to the
same results if the axes of rotation are the same for adjacent slab parts. However, this is only true if
the slab is isotropic and not subjected to axial load.

An evaluation of the error made using K. W. Johansen’s proposal for orthotropic rectangular slabs
is made and it is found that the method is sufficiently correct for practical purposes.

For deflected slabs it is known that the load-carrying capacity is higher. If it is assumed that the axis
of rotation corresponds to the neutral axis of a slab part and the dissipation is found from the
moment capacities about these axes K. W. Johansen’s proposal may be used to find the load-
carrying capacity in these cases too. In this paper this is verified by comparing the results with
numerical calculations of the dissipation. Also for deflected slabs it is found that the simplified
method is sufficiently correct for practical purposes.

The same assumptions are also used for rectangular slabs loaded with axial force in both one and
two directions and sufficiently good agreement is found by comparing the methods.

Interaction diagrams between the axial load and the transverse load are developed at the end of the
paper for both methods. Different approaches are discussed.

Only a few comparisons between experiments and theory are made. These indicate that the theory
may be used if a proper effectiveness factor is introduced and the deflection at failure is known.

If the deflection is unknown an estimate of the deflection based on the yield strains of the concrete

and the reinforcement seems to lead to acceptable results.
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3 Resume

Denne rapport behandler emnet brudlinieteori for plader belastet med normalkrafter og
tverbelastning.

For at kunne beregne bareevnen ud fra en evrevaerdibetragtning er det nedvendigt at kunne udregne
dissipationen.

Plader uden normalkraft beregnes normalt ud fra plasticitetsteoriens normalitetsbetingelse
kombineret med pladens flydebetingelse. Denne metode er &kvivalent med K. W. Johansens
oprindelige forslag. Denne metode har vist god overensstemmelse med forseg og er almindeligt
benyttet.

I denne rapport udregnes dissipationen i en brudlinie ud fra dissipationsformlerne for et Coulomb
materiale og dette ssmmenholdes med K. W. Johansens metode. Af dette fremgar det at resultatet er
det samme hvis rotationsakserne for tilstadende pladedele ligger i samme hgjde. Dette vil dog kun
vere rigtigt for isotrope plader og der er derfor gennemfort en vurdering af fejlen ved beregninger
af ortotrope plader. Fejlen vurderes at veere uden praktisk betydning.

Det vides at baereevnen for en plade stiger under udbgjning. Det er her vist at hvis man antager at
rotationsaksen svarer til nullinien for den enkelte pladedel og beregner dissipationen efter K. W.
Johansens fremgangsméde kan man beregne bareevnen. Dette er eftervist ved at ssmmenligne med
numeriske beregninger der baserer sig pa dissipationsudtrykkene for et Coulomb materiale.
Beregningerne viser, at afvigelserne er uden praktisk betydning.

Beregninger af plader med normalkraft og udbegjede plader med normalkraft i bade en og to
retninger viser tilsvarende god overensstemmelse.

Interaktionsdiagrammer for normal og tvaerlast behandles til sidst og der gives forskellige bud pé
hvordan dette kan gribes an.

Kun ganske fa forseg er her fundet brugbare til verifikation af teorien. Disse data er for kvadratiske
plader med normalkraft i én retning.

Ved sammenligning mellem forseg og teori er det vist at beregninger med en passende
effektivitetsfaktor giver god overensstemmelse med forseg hvis man anvender den mélte
brududbgjning.

Kendes brududbejningen ikke kan man tilsyneladende anvende et skon der baserer sig pa

flydetajningen for beton og armering.
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5 Notation

The most commonly used symbols are listed below. Exceptions from the list may appear, but this

will then be noted in the text in connection with the actual symbol.

Geometry

h Height of a cross-section

A Area of a cross-section

A, Area of a concrete cross-section

Ay Area of reinforcement close to the bottom face

Ay’ Area of reinforcement close to the top face

Ay Area of reinforcement in compression

h. Distance from the bottom face to the centre of the bottom reinforcement

he’ Distance from the top face to the centre of the top reinforcement

hy hy Distance from the bottom face to the centre of the bottom reinforcement about axis /
and /I, respectively

het', e’ Distance from the top face to the centre of the top reinforcement about axis / and /7,
respectively

Vo Compression depth

L Length of an element

L.,L, Length of a slab in the x and y direction, respectively

e Eccentricity

u Deflection

Up Deflection in the mid section

X, V,Z Cartesian coordinates

w Angle between axis / and /7

v Angle between axis // and yield line

Physics

£ Strain

o Stress

o Stress in concrete
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£
S

Compressive strength of concrete

Yield strength of reinforcement

Reinforcement ratio

Degree of reinforcement for the bottom- and top reinforcement, respectively
Degree of bottom reinforcement in the x and y direction, respectively
Degree of top reinforcement in the x and y direction, respectively

Degree of bottom reinforcement in the /7 and /7 direction, respectively
Degree of top reinforcement in the 7 and /7 direction, respectively

Line load, uniform load per unit length

Surface load, uniform load per area unit

Yield moment in pure bending

Yield moment in pure bending in the x and y direction, respectively

Yield moment for a given axial load

Yield moment for a given axial load in the x and y direction, respectively
Axial load per unit length

Axial load per unit length in the x and y direction, respectively

Internal and external work, respectively

Concrete and reinforcement contribution to the dissipation, respectively
Total moment capacity of a yield line

Contribution to the total moment capacity of a yield line from the concrete
Contribution to the total moment capacity of a yield line from the bottom- and top

reinforcement, respectively
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6 Introduction

This paper has two main purposes.

The first one is to investigate the possibility of calculating the load-carrying capacity of a slab in a
simplified way based on an interpretation of K. W. Johansen’s proposal regarding the dissipation
and C. R. Calladine’s proposal regarding the axes of rotation.

The second purpose is to investigate the possibility of finding a calculation method for the relation
between axial load-carrying capacity and lateral load-carrying capacity.

In order to determine the load-carrying capacity for slabs by using an upper bound approach the
dissipation in a yield line has to be found.

In section 7.1 the contribution from the concrete and the reinforcement are found separately. In both
cases formulas for the dissipation are developed for all possible yield lines starting in a corner,
followed by the formulas for the special case of a right-angled corner.

Section 7.2 treats beams. This illustrates the basic problems in these calculations.

The following sections (7.3 to 7.5) treat different cases of rectangular slabs starting with the square
slab without axial force and initial deflection and ending up with rectangular slabs with axial force
and initial deflections.

In section 7.6 a conservative proposal for an interaction curve between the axial load and the
transverse load is given.

In chapter 8 test results are compared with theory.

Finally conclusions are made in chapter 9.
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7 Theory

7.1 Dissipation in a yield line

If the axes of rotation for two slab parts are not at the same depth measured from the slab surface,
the relative displacement discontinuity is no longer perpendicular to the yield line. The angle
between the displacement discontinuity and the yield line changes with the depth from the slab

surface and this must be taken into account when calculating the dissipation.

A
Y
=] )
5| m: ;
o = S (w-v
S [
v
5 § I ur=9g(hi-z)
= g -y Axis of rotation
<< for slab I
<o | R
hir >
hi .V

Figure 7.1. Displacement for two slab parts.

7.1.1 The contribution from the concrete

The concrete dissipation in the yield line may be calculated from the dissipation formulas for plane
stress assuming a modified Coulomb material. Setting the tensile strength of concrete to zero, the

contribution to the dissipation (per unit length) from the concrete may be calculated as:
nlo .
w. :IO chu(l—sm(a))dz (7.1)

u being the relative displacement and « the angle between the displacement and the yield line.
Formula for plane stress has been used, see [5].

Both u and « depends on z, which is the depth from the top surface to the point considered. u; and
uyr are the displacements of slab part 7 and 77, respectively. Depending on whether the displacements

uy and uyyare positive or not, & and u has to be calculated from one of the following cases:

-10 -
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Case 1:

urr0 & u;>0

R

2774

2 2
u :\/u, +uy” = 2u,u, cos (7 —w)

2 2 2
r u”+u,” —u
a=—|=+v—Arccos| —L—~L-
2 2u,u

u<0 & u;>0

Case 2:

-a

Soug

u= \/u,z +uy” —2(—u; )uy cos(w)
2 2 2
a= —{£+v+ Arccos(wn
2 2u,u

u1>0 & ll11<0

Case 3:

s

-uj

_ 2 2
u= \/u, +uy,” = 2uu, cos(—w)

2 2 2
T u +u, —u
a==—-v—Arccos| ——L L
2 —2u,u

-11 -

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

(1.7)
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Case 4:

u<0 & uy<0

uz\/u,2+u,,2—2u,u,, cos(z—w) (7.8)
2 (- 2
a=" v+ drecos M (7.9)
2 —2u,u

It is seen that the calculation of u is the same in all the cases and # may in general be calculated as:

uz\/u12+u,,2+2u,u,, cos(w) (7.10)

The angle between the displacement and the yield line « varies with respect to u; and u;; depending

on whether they are positive or negative.

The relation between the two rotations about / and /I may be found from the geometrical conditions

demanding the same displacement at a point of the yield line.

1A
y A sin)
s 11 sin(w-v)
D = sin (v - v 1 ! v
Wy 6
sin(w—v)
>

Figure 7.2. Geometrical relation between the rotations.

It appears from Figure 7.2 that the rotations may be calculated as

®, = @

! sin(w—v) 1D
w, =—2

" sin(v)

Here @ is the rotation of slab part line about an axis along to the yield line.

-12 -
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In the calculation of the displacement it is assumed that the rotation is small and the displacement
may therefore be calculated as the rotation multiplied with the height. The displacements u;, u;; and

u may be calculated as

7.12
w1 (h_f_ij "
ho  sin(w=v)\h &

u,=nh @ (ﬁ—i)c
sin(v){h &

(7.13)

uy, _ 1 [ﬂ_ij
ho sin(v)\ h h
Inserting (7.12) and (7.13) into (7.10) leads to
2
h__® P _1 EJ
sin (w— sin(V)\h  h
2| h—— ——— h h— ij cos(w)
sm( s1n(v h h (7.14)
T 4] B
U h h h h N h h)\h h
ho sin(w—v) sin(v) sin(w—v)sin(v)
The angle a may be calculated as:
Case 1(u>0 & ui>0):
2 2_ 2
a=—|Zsv-drecos| Lt "M (7.15)
2 2u,u
Case 2 (u<0 & u;>0):
2,2 ( 2
a=—| Z+v+ Arccos M (7.16)
2 2u,u
Case 3 (ur>0 & up<0):
2 22
a="_v_ drecos| LM ~¥ (7.17)
2 —2u,u
Case 4 (u<0 & uy<0):
2 2 ()2
a="—v+ drccos M (7.18)
2 —2u,u

-13-
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It is seen that the contribution to the dissipation from the concrete is a function of both the position
of the axes of rotation Ay, Ay, the depth 4, the rotation @ and the compressive strength f.. The

dissipation may be calculated in a dimensionless form as:

w. 1] .
Ery 05%(1—sm(a))d— (7.19)

A general analytical expression has not been found. However, for the special case of right-angled
corners (w=m/2) the dissipation becomes:

/4 1

c

Kof, - 4sin(v)cos(v) '

1+ {2+ \/(%)2 sin(v) + (hhijz cos(v)’ J(]Z_'sin (v) +hhic08(v)2j
N EE T ey

h

h'jz sin(v)’ +(}Z’T cos(v)’

-%sin(v)2 —h#cos(v)2 +\/

+log

1-%sin(v)2 -%cos(\/)z +\/1+{(}ZIJ2 -2}’}111}:05@)2 +[(}ZT 2’2} sin (v’

(T 8] Yoo

This expression is found from integrating by parts over the interval in which the expressions for &

(7.20)

are valid. Distinctions must be made whether /; is larger than /4, and whether these are larger than

h. As an example it is seen that if 4;<h, and h,>h the formula becomes:

w, nlu . z clu . .
Rof =1, EZ(I—Sln(acasel))dZ‘{'J'hlE;(l—sln(amsez))dz (7.21)

Fortunately all the combinations of 4;, 4 and / lead to the result given in (7.20).

Plots of results of calculations for 4;7/h =0.5 w=0.5m and v=0.251 may be seen in Figure 7.1 to
Figure 7.6.

These plots show which case has to be used in the calculation, how the different parts in the

function (7.19) depends on the height and finally the function it self.

- 14 -
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1 ‘ ‘ ‘
— h/h=0h jh=1/2 w=1/27 v=1/4
0.9+ —— h¢h=1/8h /h=1/2 w=1/2z v=1/4x I
- hyh=1/4 b h=1/2 w=1/27 v=1/d
0.8  h/h=1/2.6667 h /h=1/2 w=1/27 v=1/d7 |
07!  hh=1/2 h /h=1/2 w=1/27 v=1/4x I
06" ]
305
04 ]
0.3r |
02 ]
o1 ]
0 1
1 2 3 4

Case no

Figure 7.3. z/h as a function of the case no.

1 : :
i —— h/h=0h /h=1/2 w=1/27 v=1/4x
0.9 —— h/h=1/8 h /h=1/2 w=1/27 v=1/4x "
o\ ~ h/h=1/4 h /h=1/2 w=1/27 v=1/4x
081!  h/h=1/2.6667 h /h=1/2 w=1/2z v=1/47 |
070" — hfh=1/2h [h=1/2 w=1/27 v=1/47
06- .
305
0.4 1
0.3 ]
0.2
0.1 .
|
% 2

Figure 7.4. z/h as a function of 1-sin(c).
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0.9

0.8}
0.7}
0.6

N 0.5
0.4
0.3
0.2
0.1

T T

— h/h 0 h /h 1/2 W—1/27r v=1/4x
— h/h 1/8 h /h 172 w=1/2 v=1/47
- h/h 1/4 h /h 172 w=1/2x v=1/4x

- h/h=1/2. 6667 hl/h= 1/2 w=1/2z v=1/4r ||

S h/h= 1/2 h//h= 172 w=1/2x v=1/4x

0.9
08 |
0.77 !
0.6

S050.
0.4
0.3
0.2
0.1

— h’/h=0 h"/h= 172 w=1/2zx v=1/4x
— h/h= 1/8 h//h= 172 w=1/2 v=1/47
--- h,/h=1/4 h”/h= 172 w=1/2x v=1/4x

- h/h=1/2. 6667 h//h= 1/2 w=1/2z v=1/4z ||

S h/h= 1/2 h//h= 172 w=1/2x v=1/4x

Figure 7.6. z/h as a function of AW.

AW =u/(hw)(1-sin(a))

As expected, most of the contribution to the dissipation is from the top (z/A is small).

-16 -
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Plots of results of calculations for 4;/h =0 w=0.57 and v=0.257 may be seen in Figure 7.7 to Figure

7.10.

1 :
—— h/h=0 h /h=1/Inf w=1/27 v=1/47
0.9 —— h¢h=1/8 h /h=1/Inf w=1/2z v=1/4x I
——— h/h=1/4 h /h=1/Inf w=1/27 v=1/4x
0.8  h/h=1/2.6667 h /h=1/Inf w=1/27 v=1/d7 |
| __ h/h=1/2 h /h=1/Inf w=1/27 v=1/47
0.7 f il
0.6f .
305
04r
0.3+ .
0.2+ |
o1t ]
0
3 4
caseno
Figure 7.7. z/h as a function of the case no.
1 ‘ :
I | —— h/h=0 h /h=1/Inf w=1/27 v=1/47
0.9: | —— h¢h=1/8h /h=1/Inf w=1/2z v=1/4x I
Ll\ ! ——~ h/h=1/4 h /h=1/Inf w=1/2x v=1/4x
08 |  h/h=1/2.6667 h /h=1/Inf w=1/27 v=1/d7 |
0_7t‘ “ \\ — h/n=1/2 h /h=1/Inf w=1/2x v=1/4x
[} \
o.sb \ 1
VN
S05 . .
“ 4 ' AN
0.4r g :
0.37\\ . ]
0.2- L :
0.1+ T — |
0 L
0 0.5 2

Figure 7.8. z/h as a function of 1-sin(c).
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1 : N
—— h/h=0h /h=1/Inf w=1/27 v=1/4x
0.9¢ —— h¢h=1/8h /h=1/Inf w=1/2z v=1/4x I
— h/h=1/4 h /h=1/Inf w=1/27 v=1/47
08¢  h/h=1/2.6667 h /h=1/Inf w=1/27 v=1/d7 |
07 — h/h=1/2 h fh=1/Inf w=1/27 v=1/47 1
7 ’/«’
0.6 |
N 0.5+ 1
0.4r g
0.3 1
0.2r 8
01/ -
\
0O 1.5 2
Figure 7.9. z/h as a function of u/(h®)
1 : : ‘ ‘
. ‘T —— h/h=0h /h=1/Inf w=1/27 v=1/4x
0.97 \ —— h/h=1/8h /h=1/Inf w=1/27 v=1/4x i
P ~ h/h=1/4 h /h=1/Inf w=1/27 v=1/47
0'8%; 1 \ - h/h 1/2.6667 h [h=1/Inf w=1/27 v=1/47 |
07 k : \\ — h/h=1/2 h fh=1/Inf w=1/27 v=1/47
: \ \\
N |
06 |
< Jf ‘\ “‘ \\
NOS[ N ,
0 4J AN
0.3—‘H L ]
| -
0.2t ~_ |
\ \\'\
01 e T -
0 M I T 7\ - I T —
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 7.10. z/h as a function of AW.

In the case where one of the axes of rotation is in the top face it is seen that the main contribution is

from the top of the slab.

AW =u/(hw)(1-sin(a))
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A plot of the dimensionless dissipation contribution from the concrete is shown as a function of 4/h

and Ay/h for w=0.51t and w=0.257 in Figure 7.11 and Figure 7.12.

These values are found from numerical integration over the depth of the section.

W /(hof ) for w=1/2r v=1/4z

e
S

—
SSOSS

=
=
SO

OSSO

S S SOS SIS SSS
=

SIS SIS SO SIS
SIS

S
SIS
SISO

—— 5SS

=
oS SSSSSSSS

=
= S

S
SSOSSS

h /h

SESSSSSS
eV
oS
=

=S =
SO
SIS

h/h

Figure 7.11. Surface and contour plot of the dimensionless dissipation contribution from the concrete.

W J(hof ) for w=1/2r v=1/4n

1 U6 : Q
) 0 )
0.9 0.5 06 02 ™ 9\
0.8 0.4 05 J
0.7 —— 04 o |
— e A
0.6 ]
4.%\0 o 2
| ‘@ o @ 1
=05 ) g
047 9.1 |
0.3 E
0.2 o o |
o o
0.1 “ ® ]
0 ‘ ‘ | |
5 02 0.4 0.6 0.8 1
h/h

Figure 7.12Contour plot of the dimensionless dissipation contribution from the concrete.
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It appears that the actual calculations are somewhat comprehensive and a simplification is therefore
desirable.

K. W. Johansen, see [1], proposed that the bending moment in a section perpendicular to the yield
line may be calculated as if the principal directions were coinciding with the directions of the
reinforcement. The agreement between the yield condition and K. W. Johansen’s proposal has been
demonstrated by M. P. Nielsen in [5].

If a similar relation is valid for the dissipation, the dissipation contribution from the concrete might
be calculated from the rotation about the axis, assuming a displacement perpendicular to the axis of
rotation. This may be calculated quite easily since only the compression zone contributes to the

dissipation and the displacement is perpendicular to the axis of rotation. In this case

n ] .
WL;K.W.J = J.o EfLM (1 —Sin (a))dz
W, xws= j:] %fcu, 2COS(W- v) dz + j:” %fru” 2cos(v)dz

W, xw, =1, (Ioh' u, cos(w—v)dz+j:" u, cos(v)dz)
0] hl /’11 (2] h[[ z
o= )(I—Zj cos(w—v) dz+I (o) (7_Z] cos(v)dzJ
cos(v) ¢ ( hy z 2
J) ( jdﬂsm(v)jo (7 hde
_ cos(v) (i hy z
WL;K.W.J =hof, [ I ( jdz+ sin(v) J.O ( h hjdzj

T A (Y 1
We ks =l o], (E[Ij tan (w—v) " 2( h j tan(v)} (7.22)

A numerical comparison between the simplified calculation and the theoretical one may be seen in

hy
Wc_K.W.J = fc[ h
si

w—

VV(LK.WJ =hof, (

os(w-v)
sin(w—v) 70
(w=v)
(w=v) 0

z
hoh
_Z
w—v h h

Figure 7.13 to Figure 7.18 along with the deviation. These plots illustrate how large the difference
is and how it depends on the position of the axis of rotation. They are made for different values for

v in order to illustrate the influence of such a variation.
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W /(h*wf ) for w=1/2r v=1/4n
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Figure 7.13 Contour plot of the dimensionless dissipation contribution from the concrete
(Wc K.W.J.'Wc)/VVC for w=1/2n v=1/4rn
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Figure 7.14. Deviation plot for the two calculation methods.
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W /(h*wf ) for w=1/2r v=1/6n
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Figure 7.15 Contour plot of the dimensionless dissipation contribution from the concrete
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Figure 7.16. Deviation plot for the two calculation methods.
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W /(h*of ) for w=1/2r v=1/12n
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Figure 7.17 Contour plot of the dimensionless dissipation contribution from the concrete

(W, g g “WIW_ for w=1/2r v=1/12n
1 T
0.9+ & |
0.8 |
0.7+ s |
0.6 S |
ey
S5 . |
0.4 ]
oA
0.3+ N . )
0.2+ QoA 0.2
02 B
0.1 QA 03 |
. O’GWO 4\
0 0.2 0.4 0.6 0.8 1

h/h

Figure 7.18. Deviation plot for the two calculation methods.

It appears that the simplification underestimates the dissipation if w=1/2n. The underestimation is

large where the difference between i/ and hy/h is large. Furthermore, it also appears that an

increasing difference between v and n/4 leads to a larger underestimation.
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The influence of w has also been studied and the following conclusions may be made:

If w is larger than 1/27 the simplification underestimates the dissipation as seen in Figure 7.19 to
Figure 7.20

If wis less than 1/2n the simplification overestimates the dissipation as seen in Figure 7.21 to
Figure 7.24.

If w is very small the overestimation becomes quite significant as seen in Figure 7.25 and Figure
7.26.

These figures (Figure 7.19 to Figure 7.26) are illustrative representations of the different situations
where w is larger or smaller than 1/2m.

W_J(hof ) for w=1/1.3333r v=1/2.6667x
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Figure 7.19 Contour plot of the dimensionless dissipation contribution from the concrete
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Figure 7.20. Deviation plot for the two calculation methods.
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Figure 7.21 Contour plot of the dimensionless dissipation contribution from the concrete
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(W, kw - WW for w=1/4n v=1/8r
1 \ T
Lo v 2 S
09 | 59 A’; o O . |
TS
0.8 @/ |
07 | |
06 | ol S |
= “ C?Log o
_C\—O.5 r 0(\, |
F 0
0.4} . —
0.3 o 15
by M ' 02 |
02 N;C/Q \ /0325 025
o ; '
01 = qi? 025 03 35 |
0 9 03 035 o4
0 0.2 0.4 0.6 0.8 1

h|/ h
Figure 7.22. Deviation plot for the two calculation methods.
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Figure 7.23 Contour plot of the dimensionless dissipation contribution from the concrete
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Figure 7.24. Deviation plot for the two calculation methods.
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Figure 7.25 Contour plot of the dimensionless dissipation contribution from the concrete
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(Wc KW.J.
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S 324 4

0.5+

03} / -
I %-V%%” A
‘ 4 0. |

0.1¢ L7/8 0. 0.6 S //,,0;67”0_7,,
0 086 &7 — 08
0 0.2 0.4 0.6 0.8 1

h/h

Figure 7.26. Deviation plot for the two calculation methods.

It appears that the formula proposed by K. W. Johansen is not accurate if w derivates significantly
from n/2. However, this does not necessarily mean that this way of calculating leads to a similar

over- and underestimations when calculating the load-carrying capacity of a slab since concrete

dissipation is only a part of the dissipation.

One of the most common situations is a yield line starting from a right-angled corner and the

formulas for this particular situation is therefore found. In these cases the following formula is

valid:
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W, _ 1 .
Rof, 4sin(v)cos(v)

-1 +[2 + \/(%jz sin (v)’ J{};’_ij cos(v)’ ](%Sin(")z +%COS(V)2)
+\/1 +((’Z—2T 2%} cos(v)’ +(+(%T 2%} sin (v)’ [1 -%Sin(V)2 -%COS(V)ZJ

+log

A h
2 2
1-%Sin (v)2 —%cos(v)2 +\/1+[(}Zj -2}2] COS(V)2 +{+(}2j 'Z}hllj sin(v)2
. zﬁh_z_(ﬂjz (ﬁjz (cos(v)2 - cos (v)4)
hh \h h

The formula for the simplified calculation becomes:
W ’ ’

c{K.W../ _ l(ﬂj tan(v)+l(hij 1 (7.24)

Rof. 2\ h 2\ ) tan(v)

7.1.2 The contribution from the reinforcement

(7.23)

If the reinforcement is placed in a direction perpendicular to the axis of rotation at a distance from
the slab surface as shown in Figure 7.27 the contribution from the reinforcement to the dissipation
per unit length becomes:
W, =, cos(w-v)(4,,
2 COS(V)(AS,H |h - th - h11 | + As,u '|h11 - hc]] '

h_hd _h1|+As,1 '|h1 _hcl'

)

where @y and @y are the rotations about axis / and /I, respectively. These are determined in (7.11)

)+

(7.25)

and the expression may be written as:

w, 1 Lt h b k),
oh’f, tan(w-v){ " & A
1 A i PR (7.26)
[0) l——L Iy AL _di
tan(v) [ o h h Yy h j
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1

Figure 7.27. Reinforcement arrangement

If the corner is right-angled the dissipation becomes:

VIE =tan(v) @, _h;l_&"' 01’h_l_hé_1 +
ol f, Y R P
(127)
U (o hha g |’
tan(v) ot h “h

7.2 Beam example

For slabs the position of the axes of rotation are not always easily found. An exact analysis for a
slab is impossible since no correct analytical expression may be found for the dissipation.
Therefore, a numerical investigation has to be made in each situation.

However, it may be assumed that the axes of rotation must be placed at the same position as the
neutral axis. For a beam this assumption may be shown to be correct and is therefore worth studying
first.

For all combinations of transverse loads, the load-carrying capacity always depends on the
dissipation for a unit rotation @=1 in the yield line. Therefore, it is sufficient to find the minimum

dissipation in order to find the minimum load-carrying capacity.
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Figure 7.28 Stresses in a beam.

Considering the beam in Figure 7.28 it is seen that the position of the neutral axis may be found

from a projection equation as:

Asf:v = byOf;
Dyhf.b=by,f. (7.28)
Yo =Dk
where
Af,
D, = s (7.29)
bhf,
The yield moment becomes
1 1
Mp :EJ’ofcb(d _Eyoj =
| g (7.30)
2
Mp ZE(DO}Z fpb(;-aq)o]
An upper bound approach leads to the following result:
] .
W= J.O Efcbu(l—sm(a))dz+ Afo(d-y,) e
1 1
W == fb=y,wy,(2)+®hf.bo(d-y,) =
2°°2
] (7.31)
w :Efcba)yo2 — @ hf.bwy, + D hf.bod <
aw_ f.boy, — D hf.bo
dy,
W _ oy, =Dy (7.32)
dy,

As seen, the minimum load-carrying capacity is found where the position of the axis of rotation
equals the position of the neutral axis. Furthermore, it is seen that the dissipation found by the upper

bound approach is the same as the yield moment times the rotation.
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Similarly it may be shown that this assumption is valid if both top reinforcement and bottom
reinforcement are included. Furthermore, it may also be shown that the assumption is valid if an
axial force is applied. In these situations the dissipation plus the work caused by the dissipation of
the axial force equals the yield moment (including the contribution from the axial force) times the

rotation.

e /¢00f1ﬁ
1 é%
h <2 '}M
he

A

Dyhf,
Figure 7.29. Beam with axial force.

For the reinforced beam illustrated in Figure 7.29 the position of the neutral axis may be calculated

as:
For0<Z <™ _o o,
c h
%:%HDOHDO’ (7.33)
For h;, —CDO—CDO’S%S}Z;Z —®,+ D,
(4
%:% (7.34)
For h;l —q>0+c1>0'g%sh_hhf —®,+ D,
C
%=—+®0—<DO (7.35)
For h_hhc—qnojuq)o's%s Lo, +D,
C
h—h,
%: - (7.36)
For "=l v+, < <14, +®,
h fe
o ,
%:E_q)o_q)o (7.37)
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Knowing the position of the axis of rotation the dissipation per unit length may be calculated as:

2
W__1n) e, AN
Rof, 2\ h h) h

It appears that since the assumption about the neutral axis being the axis of rotation is valid the

b2
h h

+@ (7.38)

0

dissipation may be calculated quite easily for a beam.

7.3 Square slab without axial force

For slabs in general the assumption about the neutral axes being the axes of rotation can not be
shown analytically.
In the following examples the results of numerical calculations will be evaluated both regarding the

assumption about the axes of rotation and the error made using K. W. Johansen’s simplification.

Considering a uniformly laterally loaded isotropic square slab with the same amount of
reinforcement in the top and bottom and simply supported along all four edges, it is known (see [5])

that the exact solution is:

_y (7.39)

Figure 7.30. Prager’s exact solution for a square slab

If it is assumed that the failure mode in Figure 7.31 is the one that will occur the load-carrying

capacity found from the above dissipation formulas is as follows:
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/4
m
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L %mp $Dy
A
z7 2
-
L
Failure mode 1
Figure 7.31. Failure mode 1 for square slab.
Failure mode 1:
The external work becomes:
_ 1 1
W, =68q EDyL+§(L—D),)L (7.40)

The dissipation becomes:

6 WL'V WS‘V 2 5 VV(‘O W\‘O 2

W,=4r, 2| Sy s |p2pp Lol Jet y _Te0 p2p (7.41)
L\ Faof hrof, "L\ Kof Rof, ’

2

The work equation leads to:

/4 /4 W /4
24];}12 L > c,v + : ERY +D, . c,0 + : 5,0
Pof, hFof, "\ Pof, Rof,
(D, +2L)L

q, = (7.42)

Here W, , and W;, are the contributions to the dissipation per unit length for the yield line (L) from
the concrete and reinforcement, respectively. Similarly, W, o and W are the contributions to the

dissipation per unit length for the yield line (D,) from the concrete and reinforcement, respectively.
Calculating all possible combinations of the positions of the two axes of rotation and plotting the

lowest load-carrying capacity for a given D, leads to the results shown in Figure 7.32 and Figure

7.33.
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Figure 7.32. Load-carrying capacity q; for a square slab with L=2000mm, @y=®,"=0.1, h/h= h./h=0.1, f.=30MPa

(solid) and load-carrying capacity according to (7.39) (dashed).
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Figure 7.33 Position of the axes of rotation for a square slab with L=2000mm

£.=30MPa.
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The yield moment m,, used in these calculations is calculated as described in [5] (having h./h=

he'/h):

D,
=5 7.43
iy (7.43)
For ,LIZI—Li and(DogLi
D, h I+u h
h, ho1 s
m, = 1—27+(1+,u) 7—5(D0(1+,u) NS (7.44)
For ,uZl—Lﬂ and(I)OZLﬂ
D, h I+u h
m = 1—2£+1L h_< ’ 10) /’lzf (7.45)
3 h 20, h o e :
For ,u<1—Li
@, h
h, ho1 R
m, =|1=24 (1= p)| 5= @ (1= ) | | RS, (7.46)

From Figure 7.32 it appears that the numerical calculations using the dissipation formulas above
leads to the same solution as the one found using the yield condition for the slab when D,=0.
Furthermore, Figure 7.33 shows that the axes of rotation are at the same depth and this depth
corresponds to the neutral axes. More plots for different degrees of reinforcement and different

values of /./h are shown in section 11.1.1.1.

For isotropic square slabs it may be concluded that the position of the axes of rotation corresponds
to the neutral axes and that the load-carrying capacity found from the above dissipation formulas

corresponds to the exact solutions found from the yield conditions.

7.3.1.1 Rectangular slabs
For rectangular slabs the failure modes assumed in this paper are illustrated in Figure 7.34

(Ingerslev’s solutions). These failure modes are not always exact solutions to the problem.

However, it is believed that the results are close to the exact solution and therefore acceptable.
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Figure 7.34. Failure modes.
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Failure mode 1 Failure mode 2

An upper bound solution leads to the following load-carrying capacity for a uniformly loaded slab:

L
For L > —

y =
ﬂm

and

L
For Ly <=
ﬂm

and

qlngerslev - 2

qlngerslev = 2

2
L L
L 3+u, | 2| —Ju, -
'y fum{Lj ﬂmL
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Formula (7.48) corresponds to failure mode 1 and (7.50) to failure mode 2. The yield moments m,,,
and my, are calculated from cross-section analyses perpendicular to the x-axis and the y-axis,
respectively.

For the two failure modes the equations according to the dissipation formulas becomes:

Failure mode 1:

The internal work becomes:
_s 1 1
W,=5q EDyLﬁg(Ly—Dy)LX (1.52)

The external work becomes:

/4 /4 /4 74
wo=ar, O Doy Do ljppyp O ol De y ey (7.53)
L\ Pof., hof, YL\ Roef, Rof,

2

The work equation leads to:
2 D, /8 w, D, ( w, W,
6f;]2’l 4 ¥ _1 g g c,v + - ,\,v' +7y g c,0 + g 5,0 .
L, L, L\hof, hof,) L \hof hof,

AR

where W, and W;, are the contributions to the dissipation per unit length for the yield line (L)

g = (7.54)

from concrete and reinforcement, respectively. Similarly, W, o and W are the contributions to the

dissipation per unit length for the yield line (D,) from concrete and reinforcement, respectively.

The work equation for failure mode 2 leads to load-carrying capacity:

2 L (W w. /4 w.
6.}(;? 4 Dx _1 -y zc,v + zs,v +Dx 26,0 + 23»0
L L L\hof hof ) L\FhFof hof,

q, = 7\ (7.55)
S B -1 D, +2
Lx LX LX

Calculating all the possible combinations of the position of the two axes of rotation and plotting the

lowest load-carrying capacity for a given D, lead to the results shown in Figure 7.35.
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Figure 7.35. Load-carrying capacity q; and q, ,according to (7.54) (dashed dotted) and (7.55) (dotted), for a
rectangular slab with L=2000mm, L,=16000mm, @y=D,’=0.1, h/h= h./h=0.1, {,=30MPa and load-carrying

capacity according to (7.48) or (7.50) (*).The vertical line indicates the minium for the numerical calculculations.
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Figure 7.36 Position of the axes of rotation for a rectangular slab with L.=2000mm, L,=16000mm, @y=®,'=0.1, h/h=

he'/h=0.1, £.=30MPa.
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Apparently, the assumption about the neutral axes being the axes of rotation is correct and this may
also be shown for isotropic slabs. Nevertheless, as shown in Figure 7.38, the assumption is not
always correct. Numerical calculations show that the assumption is incorrect if the slab is
orthotropic. In Figure 7.38 it is seen that the minimum load-carrying capacity is found where the
axes of rotation are at positions 0.14 4,/h and 0.1 A,/h in a slab with the reinforcement degrees
Do=Dgx'=0.1 and Py,=Dp,'=0.05 and not at 0.2 A,/k and 0.1 h,/h as expected. However, the
minima of these curves are very flat as seen in Figure 7.39 where the load-carrying capacity is

plotted as a function of the position of the axis of rotation in the x direction.

,=<1>0X’O.1,<;D0 =@ _ '=0.05,fc=30MPa,h=100mm,h /h=0.2,Lx=2000mm and Ly=160!
‘ y Oy c

0.06-

0.05- ]

004~ — - :

qin MPa
|
£
|

0.02r- ]

0.01¢ ,

0O 0.2 0.4 0.6 0.8 1

Dy/Ly forg, orD/L forg,

Figure 7.37. Load-carrying capacity q; and q,, according to (7.54) (dashed dotted) and (7.55) (dotted), for a square
slab Ly=2000mm, L,=16000mm, @p=Dy,'=0.1, Dp,=Dy,'=0.05, ho/h= hey Th= ho/h= he, 7Th=0.2, f,=30MPa and load-
carrying capacity according to (7.48) or (7.50) (*).
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Figure 7.38 Position of the axes of rotation for a rectangular slab L,=2000mm, L,=16000mm, @y=d,,'=0.1,

DBy =Dy, '=0.05, ho/h= hey /h= hoy/h= he, /h=0.2, f.=30MPa.
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Figure 7.39 Load-carrying capacity as a function of the position of the axis of rotation in the x direction for a

rectangular slab L,=2000mm, L,=16000mm, @y.=Dy,'=0.1, p=Dy,'=0.05, her/h= hey /h= he/h= he, /h=0.2,

f:=30MPa, D,/L,=0.73, hy/h=0.1.
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If the slab is reinforced in the top and bottom and ®y+®d,">h. /h the axis of rotation will be at the
neutral axis (assuming ®y=Dy"). If Oy+Dy <Ak, /h the assumption is incorrect but the error made by
such assumption is negligible.
If the slab is not reinforced in the top the assumption is incorrect and the error may become
noticeable. This is illustrated in Figure 7.40 and Figure 7.41 where the positions of the axes of
rotation for a slab with @, "=®¢,'=0, Dox=0.7 and Py,=0.1 are at 0.4%,/h and 0.1h,/h, respectively.
Even though the position of the axes of rotation is different in the two directions it is seen that the
load-carrying capacity is only underestimated about 5% in this case.

Doy’ =Doy'=0,D0,=0.7,Dp,'=0.1,fc=30MPa,h=100mm,h,/h=0.1,Lx=2000mm and Ly=16000mm

0.14;r — q

| 7 - q,
0.12r + Ingerslev ||

00 0.2 0.4 0.6 0.8 1

Dy/Ly forg, orD/L forg,

Figure 7.40. Load-carrying capacity q; and q,, according to (7.54) (dashed dotted) and (7.55) (dotted), for a square
slab Ly=2000mm, L,=16000mm, @y.'=Dy, =0, Dp=0.7, Pp,=0.1, he/h= hey/h= heo/h= he,7h=0.1, f;=30MPa and
load-carrying capacity according to (7.48) or (7.50) (*).
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Figure 7.41 Position of the axes of rotation for a rectangular slab L,=2000mm, L,=16000mm, @p=Dy,"=0.7,
Dy, =Dy, =0.1, he,/h= hey'/h= hey/h= he, /h=0.1, f.=30MPa.

It is obvious that the error decreases for increasing difference between the two side lengths, since a
larger difference leads to larger contribution from the yield line parallel to the supports (D or D,)
where the assumption is correct. In other words the slab starts to carry the load as a beam.

The fact that an increasing difference between the two degrees of reinforcement increases the error
is also quite obvious. Therefore, in order to estimate the largest error a slab with the largest
difference in the degrees of reinforcement and a side length ratio leading to almost no parallel parts
of the yield line is considered. Setting @g, =D, '=0, Dox=0.9 and DPy,=0.1 L,/L,=2.2 (see Figure
11.7) leads to an error of about 17%. However, such a degree of reinforcement is quite unrealistic.
A realistic guess on the limits found in practice may be found for ®g, =D =0, P¢,=0.3 and
®0,=0.05 L,/L,=2.2 (see Figure 11.8) which lead to an error less than 4%.

Keeping in mind that the assumption about the neutral axes being the axes of rotation leads to an
underestimation of less than 4% for rectangular slabs, it is believed that the assumption may be

acceptable for such slabs.
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7.4 Rectangular slabs with axial force

For rectangular slabs with axial force the failure modes assumed are the same as for slabs without

axial force. They are shown in Figure 7.42.
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Figure 7.42. Failure modes for rectangular slabs with axial force.

An approximate solution to this problem is to calculate the yield moments in each direction
including the axial force and then use these yield moments in Ingerslev’s solution. This calculation
corresponds to the assumption about the neutral axes being the axes of rotation. The result is the
same as if the dissipation is determined according to K. W. Johansen’s method for calculating the

dissipation.
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Figure 7.43.Cross section in a slab.

For the cross-section shown in Figure 7.43 the yield moments becomes:

For Os%s hh —®,-D,
C

N_9% 0+, (7.56)

ly Y 1 h (1 h’
=R f| = 1=t 4D | == -] | ———= 7.57
" ﬁ[zh( h] °(2 h] °[2 h]) 737
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H_% o -0, (7.64)

W 2 _o (L k) o (L A
_hf( ( h) @0(2 h)+®°(2 hD (73

The formulas above are valid in both the x and y direction.

For the two failure modes the equations using the dissipation formulas above becomes:
Failure mode 1:

The internal work becomes:

/4 W, W, W,
W, =4L, 5( — = jhsz+DyL£2( Loy ]hzfc (7.66)

Rof, ha)f Rof Rof,
2
The external work becomes:
W, = é'q( DL, +1(LV—D_)LX +o 2L, hv—— d [h(—ﬁjLa.m)
3V Y 2) L, * 2)(L,-D,)

2 2
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where A, and 5, are the distances from the top surface to the axes of rotation in the x and y direction,
respectively.
The work equation leads to:

o P4 Lv w..
12/ L, Haof, hzwf wf hza)f
LZ
y +o'x[[Dy_lJ 2/1 [ D ]j {L] (zh_lj
S \LL, h L, f L h
q,= 5 (7.68)

L (D, D.
1 =R +2
Bl

where W, and W, are the contributions to the dissipation per unit length for the yield line (Ly)

from concrete and reinforcement, respectively. Similarly, W, o and W, are the contributions to the
dissipation per unit length for the given line (D,) from concrete and reinforcement, respectively.

The work equation for failure mode 2 leads to:

D Lv w,, W, |\ D[ W, W,

21 2 3 e ot

12fn7| UL Rof. hKof. ) L \Fof "rof

L’ L Y( h
+j—v [(%—1}2}2(1—%)}?[;) (2};’—1)
q,= — . - S (7.69)

LDy 2
L)L, L

Calculating all possible combinations of the position of the two axes of rotation and plotting the

lowest load-carrying capacity for a given axial force in one direction lead to the results shown in

Figure 7.44 to Figure 7.48.
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Figure 7.44. Load-carrying capacity for a rectangular slab L,=2000mm, L,=2000mm, @y=Dy,'=0.1, Dyp,=Dy,'=0.1,
he/h= hey'/h= he/h= he,/h=0.1, f,=30MPa, h=100mm, increasing oy and o,=0.

40 ‘

IqIngerz;lev mod.

-min(q,,q,)|/min(q,,q,)*100%

35¢

0 0.2 0.4 0.6 0.8 1 1.2 14

Figure 7.45 Difference between the calculation methods for a rectangular slab L,=2000mm, L,=2000mm,
Dpe=Dy,"'=0.1, Dpy=Dy,'=0.1, hes/h= he /h= hey/h= he, /h=0.1, f.=30MPa, h=100mm, increasing oy and c,=0.
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Figure 7.46.Length of the part of the yield line parallel to the axes of rotation for a rectangular slab L,=2000mm,
L,=2000mm, @p=Dy,'=0.1, @p,=Dy,"=0.1, he/h= he'’h= he/h= he, /h=0.1, f,.=30MPa, h=100mm, increasing o, and

,=0.
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Figure 7.47.Position of the axes of rotation for failure mode 1 for a rectangular slab L,=2000mm, L,=2000mm,
Dpe=Dy,'=0.1, Dpy=Dy,'=0.1, hes/h= he /h= hey/h= he, /h=0.1, f.=30MPa, h=100mm, increasing oy and c,=0.
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Figure 7.48 Position of the axes of rotation for failure mode 2 for a rectangular slab L,=2000mm, L,=2000mm,
Dpe=Dy,"'=0.1, Dpy=Dy,'=0.1, hes/h= he /h= hey/h= he, /h=0.1, f.=30MPa, h=100mm, increasing o, and c,=0.

As expected the calculations using the method based on Ingerslev’s solution lead to an
underestimation of the load-carrying capacity. In general the underestimation increases as the axial
force increases. This underestimation is caused by the underestimation of the dissipation
contribution from the concrete.

As seen in Figure 7.46 the length of the part of the yield line parallel to one of the axes for the
Ingerslev solution is not the same as the one found from the dissipation formulas. It is seen that for
o=f. the load-carrying capacity found for failure mode 1 is the same as the load-carrying capacity
found for failure mode 2 and both have a part of the yield line parallel to the axes. Ingerslev’s
solution also leads to changes in failure mode at this stress but has no part of the yield line parallel
to the axes.

The positions of the axes of rotation found from the two methods are also different. It is seen that
the normal force does not effect the position as assumed. The position found by using the
dissipation formulas determined by 4,/4, is in general lower. This means that the axis of rotation is
placed closer to the top of the slab and therefore the positive effect for the load-carrying capacity is
higher.

In order to evaluate the overestimation, an extreme slab is considered.
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Knowing that the contribution to the dissipation from the concrete is calculated differently in the
two methods it is obvious that a lower degree of reinforcement leads to a larger difference between

the methods.

51 . ]

00.04 T 0.06 0.08 0.1 0.12 0.14 0.16
O =0 ‘=0 =0 °
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Figure 7.49. Maximum (*) and minimum (+) difference between the two calculation methods for a rectangular slab
L=2000mm, L,=2000mm, he/h= he./h= ho/h= h, ' /h=0.1, f.=30MPa, h=100mm, o variation from 0 to
J(1+Dy+Dy), 06,=0 and different Dp=Dy,'= Dy, =D,".

When it comes to the L,/L, ratio an extreme case cannot be found from similar simple
considerations. As illustrated in Figure 7.50 and Figure 7.51 extreme combinations of L, and L,
changes along with the degree of reinforcement. In these plots * and + represents the maximum and

minimum difference between the two calculation methods.
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Figure 7.50. Maximum (*) and minimum (+) difference between the two calculation methods for a rectangular slab
L,=2000mm, @p=Dy,'=0.1, @p,=Dy,"=0.1, he/h= hey ’h= he/h= he, /h=0.1, f,=30MPa, h=100mm, o variation from
0 to fo(1+ Dy+Dy,’), 0,=0 and different L,/L, ratios.
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Figure 7.51. Maximum (*) and minimum (+) difference between the two calculation methods for a rectangular slab

L=2000mm, @p=Dy,'=0.05, @p=Dy,"=0.05, ho./h= he, /h= he/h= he, /h=0.1, f;=30MPa, h=100mm, oy variation

Sfrom 0 to fo(1+ Dyt Dy,’), 0,=0 and different L./L, ratios.
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Figure 7.51 shows that the maximum positive deviation is found for a L,/L, ratio of approximately
0.5 if the degree of reinforcement is 0.05. It is also seen that the minimum deviation is always
positive and this means that the simplified calculation always underestimates the load-carrying
capacity.

In Figure 7.52 to Figure 7.56 the results of the calculations for a slab with the L,/L, ratio of 0.5 and
a degree of reinforcement of 0.05 are shown. Ingerslev modified refers to calculations using
Ingerslevs solution ((7.54) or (7.55)) with the yield moment found when including the axial force

((7.57) to (7.65)) and Ingerslev 1 and Ingerslev 2 refers to the solutions for the two yield patterns..
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Figure 7.52. Load-carrying capacity for a rectangular slab L,=2000mm, L,=4000mm, @y=d,.'=0.05,
Dy =Dy,'=0.05, he/h= he'/h= hey/h= he, /h=0.1, f.=30MPa, increasing o and c,=0.
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Figure 7.53 Difference between the calculation methods for a rectangularslab L,=2000mm, L,=4000mm,
D= Dy, =0.05, Dpy=Dy,'=0.05, he/h= hey ’h= hey/h= he, /h=0.1, f.=30MPa, increasing o and c,=0.
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Figure 7.54.Length of the part of the yield line parallel to the axes of rotation for a rectangular slab L,=2000mm,
L,=4000mm, @p=Dy,'=0.05, Dpy=Dy, ' =0.05, he/h= he'/h= hey/h= he, /h=0.1, f.=30MPa, increasing o and c,=0.
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Figure 7.55. Position of the axes of rotation for failure mode 1 for a rectangular slab L,=2000mm, L,=4000mm,

1.2

Dpe=Dy,"=0.05, Dpy=Dy,'=0.05, hex/h= he,,'/h= hey/h= he, /h=0.1, f.=30MPa, increasing o and c,=0.
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Figure 7.56 Position of the axes of rotation for failure mode 2 for a rectangular slab L,=2000mm, L,=4000mm,

1.2

Dpe=Dy,'=0.05, Dpy=Dy,'=0.05, hex/h= hey'/h= hey/h= he, /h=0.1, f.=30MPa, increasing oy and c,=0.
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It appears that the deviation between the two methods in general increases with the axial force. The
largest deviation is approximately 50% and it is larger for axial stresses closer to f. + @¢+D .
However, this deviation is valid for an axial stress larger than £, and such a stress would not be
allowed in practice because of problems of stability. Assuming that the maximum axial stress is f.,
the deviation is 40%.

From this it may be concluded that the simple way (Ingerslev modified) of calculating the load-
carrying capacity for a rectangular slab loaded with axial force is always safe and the method
underestimates the load-carrying capacity with max 40%. A 40% deviation is an extreme case and it

is believed that the simplification is acceptable for most practical purposes.

7.5 Rectangular slabs with axial force and with deflection

If the slab is deflected, the calculation of the dissipation must be changed since the distance to the
axes of rotation changes along the yield line. In these calculations it is assumed that the deflection

follows the yield line pattern as shown in Figure 7.57.

_—~Non deflected form
—Deflected form

Figure 7.57. Deflection assumption for rectangular slabs.

Compared with the calculations for a slab without deflection the only difference is the calculation of
the dissipation. In these calculations the vertical distance to the axes of rotation changes and this
leads to different values of Wy W90 W, Weo, We00, W

Regarding Wy W99 W0 and W gy the distance from the top of the slab to the axes of rotation
changes from A, to /,-u and from A, to hy-u. Regarding W, and W, the distance from the top of
the slab to the axes of rotation varies along the yield line. This means that W, and W, must be
calculated as average values. The calculations are made numerically.

When calculating the dissipation as described above, the formulas ((7.68) and (7.69)) for non-

deflected slabs may be used to determine the load-carrying capacity.
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For a square slab the calculations lead to the results shown in Figure 7.58 to Figure 7.60. Since the
slab is square and the reinforcement is the same in both direction the two yield patterns leads to the

same results.
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Figure 7.58 Load-carrying capacity for a rectangular slab L,=2000mm, L,=2000mm, @p=Dy,"=0.2, Dp,=Dy,"=0.2,
he/h= hey'th= he/h= he,/h=0.1, f,.=30MPa, o, and c,=0
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Figure 7.59 Difference between the load-carrying capacity for a non-deflected and a deflected rectangular slab with
L,=2000mm, L,=2000mm, @y,=Dy,'=0.2, @p,=Dy,'=0.2, he/h= hey /h= hey/h= he,/h=0.1, f.=30MPa, o, and c,=0
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Figure 7.60 Position of the axes of rotation for failure mode 2 for a rectangular slab L,=2000mm, L,=2000mm,

Dp= @y, '=0.2, Dp=By,'=0.2, ho/h= ey /h= hoy/h= he, /h=0.1, f,=30MPa, o, and 6,=0.
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In these figures it is seen that the load-carrying capacity increases as the slab deflects. This
phenomenon is well-known and may be explained by the change in geometry from a slab to a
shallow shell. In these calculations only the displacements at failure are included in the work
equation, which means that the deflected slab is calculated as a shell with the shape corresponding
to the deflection.

As for non-deflected slabs it is interesting to investigate if the axes of rotation correspond to the
neutral axes. Of course, the stresses are not known in the upper bound solution, but if we assume
that the concrete stresses equal f. in the direction of the displacement and the reinforcement stresses
equal f, it is found that the axes of rotation correspond to the neutral axes.

Calculations verifying this result are usually very complicated since the direction of the
displacement changes along the yield line area. However, some simple cases may be used to
demonstrate the result.

A square slab with @y,=®y,'=0.25, Dy,=Dy,'=0.25, hex/h= he /h= he/h= he, /h=0 is used here to
demonstrate the result mentioned. The calculations of this slab lead to the results shown in Figure

7.60 to Figure 7.62.
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Figure 7.61 Load-carrying capacity for a rectangular slab L.=2000mm, L,=2000mm, @y=d),'=0.25, Dy,=d,, '=0.25,
he/h= he,'/h= he/h= h,/Th=0, f,=30MPa, o, and c,=0
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Figure 7.62 Difference between the load-carrying capacity for a non-deflected and a deflected rectangular slab with
L,=2000mm, L,=2000mm, ®y,=Dy,'=0.25, @p,=D,),"=0.25, he/h= hey /h= he/h= he,/h=0, f,.=30MPa, oy and c,=0
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Figure 7.63 Position of the axes of rotation for failure mode 2 for a rectangular slab L,=2000mm, L,=2000mm,
Dy =By, '=0.25, Dyp=Dy,'=0.25, he/h= he,'/h= he/h= he,'/h=0, f.=30MPa, o, and c,=0.
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It appears that the axes of rotation move downward as the deflection increases. For the situation
where u/h equals 2 it is seen that the relative position of axes of rotation is 1. This situation is
illustrated in Figure 7.64.

From a projection equation in the x-direction it appears that if u/h =2 and h=h,=h the degree of

reinforcement becomes:

LR LN2
e =@ f %L

NG oShAL & (7.70)
®,=0.25

This corresponds to the degree of reinforcement used in the calculations.

0 fch??
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FhAAIN2
A )
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Figure 7.64 Failure mode for a square deflected slab.

Similar observations may be made for slabs with axial force. In Figure 7.65 to Figure 7.67 the
results of calculations for a square slab with @y, =@y, '=0.15, Dy, =Dy,'=0.15, he/h= hex Th= he/h=

hey /h=0 and o,=0,=0.If. are shown. It appears that the axes of rotation correspond to the neutral

axes.
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Figure 7.65 Load-carrying capacity for a rectangular slab L,=2000mm, L,=2000mm, @y=®,,'=0.15, @y,=d,, =0.15,
he/h= he'/h= hey/h= he,'/h=0, {,=30MPa, oc,=0,=0.1f.
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Figure 7.66 Difference between the load-carrying capacity for a non-deflected and a deflected rectangular slab with
L.=2000mm, L,=2000mm, @p=Dy,'=0.15, Dp,=Dy,'=0.15, ho,/h= he,'/h= he/h= h, /h=0, f.=30MPa, oc,=0,=0.1f,
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Figure 7.67 Position of the axes of rotation for failure mode 2 for a rectangular slab L,=2000mm, L,=2000mm,
Dp=By,'=0.15, Dyp,=Dy,'=0.15, he/h= he,'/h= he/h= he,/h=0, f.=30MPa, c,=0c,=0.1f..

One might suspect that the assumption about the axes of rotation being the same as the neutral axes
is only valid for isotropic slabs. However, numerical calculations as the one shown in Figure 7.68 to
Figure 7.70, show that this is not the case. In the calculations the reinforcement is orthotropic and
the slab is only subjected to axial load in one direction (@y,=Dy, '=0.15, Dy,=Dy,'=0.25, ho/h=

hex Th= hey/h= hey /h=0 and 0,=0, 0,=0.1f.). Since the axial load equals the difference in the

reinforcement the slab behaves as if the reinforcement was isotropic.
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Figure 7.68 Load-carrying capacity for a rectangular slab L.=2000mm, L,=2000mm, @y=d),'=0.15, Dyp,=d,, '=0.25,
he/h= hey'/h= he/h= he, /h=0, f,=30MPa, oc,=0.1f., c,=0
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Figure 7.69 Difference between the load-carrying capacity for a non-deflected and a deflected rectangular slab with
L=2000mm, L,=2000mm, @p=Dy,"=0.15, @p=Dy,'=0.25, ho/h= ho, /h= he,/h= he, /h=0, f,=30MPa, o=0.1f, 6,=0
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Figure 7.70 Position of the axes of rotation for failure mode 2 for a rectangular slab L,=2000mm, L,=2000mm,
Dy =Dy, '=0.15, Dyp,=Dy,'=0.25, ho/h= he,'/h= heo/h= he,'/h=0, f.=30MPa, c,=0.1f,, c,=0.

Since the calculations are made numerically it is not possible to prove strictly that the axes of
rotation and the neutral axes are identical. However, assuming that the contribution to the
dissipation from the concrete may be calculated according to the simplified formulas given in

section 7.1.1, it may be shown that the axes of rotation corresponds to the neutral axes.
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Figure 7.71. Yield pattern and cross sections.
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For a failure mode as the one shown in Figure 7.71 the calculations becomes as follows.

The external work:

1 h o h) o
W, = 5q[2DL +3(LX—DX)Lijraxthy(hy—E)ﬁ+ayhux(hx—EjL—y(ml)
2 2
The internal work becomes:
1(L -D,)u [h Cutiy Lxl(h—u)2
3 2
20 ,
L—y +(D h( h —Eu ]’l j (hx—u—hcx )J
2 1
W, =f. h[(LX -D,) h h, (AU hj x(h-h“u-hx)j (7.72)
1 1 1 2
) )5 2L}u(hy—u+§uj+Ly5(hy—u)
L. -D, , 1 , 1
5 +®,,'hL, hy—Eu—h(,y +®@ AL, h—hﬁy—Eu—hy

The load-carrying capacity becomes:

- 65 -



Yield line Theory for Concrete Slabs Subjected to Axial Force

2410 1

- sz I 2 .
' — —1+Dx DX+2
LX LX LX
D, I—D‘ +®@, —1+D'* +& I—D"
h u LX LX f;‘ LX

D h, 1D u) h, lu
+O, | -1+ 1 -+ ——— |+ & ———
L, h 2L h) h 2h
(tu n  1(DYu h D,
+0, | ==+ —— ———
“\2h h 2L ) h h L
2 2
LY (h, L, h,’ 7.73
+@, | =+ i+l£—1 +@, 12 lz+ : (7.73)
L)\ h 2 L) \2h h

2 2 2 2
o 1 1D 1oL, (uj 1(L,) 1(D | 1D,
2 = || 2| | | | 1| 2] 4= —-——
2 2L ) 2f\L h 6\ L, 3L L 6L
The minimum load-carrying capacity is found for:

dq

=0=
ol
h (7.74)
£:ﬁ+l£ I+—=[+®, - D,
h f. 2h 2
dgv =0=>
d=r
h (7.75)
h
y :i+l£+¢) (I)Oy'

ho f 2h "
It appears that the axes of rotation correspond to the neutral axes for each slab part since the
minimization leads to the same result as a projection equation. Similar calculations may be made for

other positions of the axes of rotation and deflections and they all show that the axes of rotation

correspond to the neutral axes.
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For a given axial stress and deflection it is thus possible to determine the axes of rotation and
thereby also the dissipation in the yield line (the simplified dissipation according to the K.W.
Johansen’s method).

The following equations are obtained from a projection equation of a deflected section of a slab, as

shown in Figure 7.72.

VL
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Y o ‘\(D()’hﬁ
he & .

X.K(Dohfc

Figure 7.72. Cross-section of a deflected slab subjected to axial load.

The projection equation used for the determination of the compression zone depends on both the
deflection and the compression zone it self. This means that there are quite a lot of intervals to
consider. They may all be seen in 11.2.An example is given below for the situation where 0<u<h,
& he'<u+ h.'<h+ he & h-h.<u+h-h.<h.

if 0<u<h. & h.'<u+ h.'<h+ h. & h-h.<u+h-h.<h

and 0<=yy<u

-l > (1—D) (7.76)
L
—~— anduspp<h.
. . ﬁ:l[2£+2q>’+z® +3+32j (1.77)
— " ho 2 f. hohL
and h.<yp<u+h,
T 2
L — (_]_D)u _,__2(5_,_@'_,_@]“_'_4@,}15(1)_1)
R ) LA (7.78)
T h 2 -2q>'+2c1>'%-%
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and u+h.=y

] (l_lgjﬂ qp-zq)_-q)+hL szs(l-lgjz-dniﬂb' (7.79)
. 2 2L)h h f, \2 2L)h h
T and u+h.<yy<h-h,
. lu luD
i B ® N 1% pyprt "2 (7.80)
. . h f. 2h 2hL
\

and h-h.<yp<h-h.+u

. T 1(-1-DJ(”T+(-G+cb'-<1>}“+(2q>h"-2@](1-1))
¢ o &_ 2 L h fL h h L

= (7.81)
[pa— L) h
— and h—hc+u_<yo<h
. &:E_qy_quZ[HQJ (7.82)
RSO, S S ] h f(, 2h L
\
and M+h—hczy()
\
S PR L AP S B PP GRS L O LS (7.83)
20 L)k LT f 20 L)k h
and A<yyp<u+th
o D DY u(DY
I Li1-Zx 2] T o1 (o+0) (1}”(}
.. A a7 L) n\L s
S D (7.84)

1-=
L

The dissipation is most easily calculated as the dissipation per unit rotation about the neutral axes.

Using the K. W. Johansen method this may be done by taking moments about the rotation axes for

each slab part.

The moments are most easily calculated as contributions from the top and bottom reinforcement and

the concrete.

M, =M, +M, +M,| (7.85)
for M. we get:
ifu<n

and yg<u
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(-7
N
Mre _ 1[5 L (7.86)
LRL 12\ h u )
h

and u<yy<h

M ‘ 2 2 2

re 1 -31&+[1) -332&+2(ﬁj D 5[ % (7.87)

L 120 hh \n) ThrLn \n)L TUh

and hA<yy<h+tu

2 3 2D
S yo{u AR
h) h h L h

2
+[1_3,20+3(;] -
M, 1

< _ 7.88
LRl 12 u (7.88)
h
ifu>h
and yy<h
3 1+D
e 1+ 2
L =-i(&j L (7.89)
Ll 12\ h u
h
andh<yg_<u
Y ’ Y
3((’) -32041
M,
_/;:-L(_1+2]u (7.90)
Ll 12 u
h
and u<yy<h+u
S(uY 2 (u) 5(u) Pye H(u) D qu(n)
h) h \h h) L h h h\ h
2 3
+ 1320 43[ o) [ 2 1—D)
M 1 h h h L
L= — (7.91)
fRL 12 u
h
for My, we get:
if yo<h,
M,
—f;:_lqy _2£+£_2&+ 2£+2_2&2_22ﬂ+2_ﬁ (7.92)
fhL 4 h h h h h h|L Llh h h
if he<yopsu+h,
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2 2 2
_4%’%_2u%+2%u+(uj +2(’hj +2(yo} (I_D)”/mu_yoDu
M, I(D’ hh hh hh \h h h L h h h|Lh
L4 u
h
(7.93)
if u+h.<yo<h+u
M. .
%:lqy _2£+£_2&_2£+2_2&2+22i+2_& (7.94)
Ll 4 h h h h h h|L Lih h h
for M, we get:
if yo<h-h,
M,
L LN (S ') I PSP Y 1) E A VO A
fh°'L 4 h h h h h h|L L| h h h
if h-h.<yo<u-~+h-h.
M
%:-1/4@(2-%3-1/4@ [2&+2£-2J(1-2j—21-£+u p-2o| 2
f.h°L L Jh h h L h T h|L
2 2
2l Yo _z[hc +4&+4@_2_4&& (1_1)} (7.96)
h h h h h h L
-1/4®
u
h
if uth-h.<yp<h+u
M
e Ly ool ol R # NP Dl R u Vo) g gg)
LA 4 h h h h h h|L L| h h h
From the formulas above the load-carrying capacity may be found as:
Failure mode 1:
The internal work becomes:
o S5
2 2 2
The external work becomes:
W, =dq, L) +1(L -D,)L, |+0o,h2L, h,-ﬁ im,hu h -l o (7.99)
e 2 yx 2 v y x X 'y y 2 1 y x X 2 1
~L ~(z,-D,)
2" 28V Y

The work equation leads to:
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2M (L +20.hL’h -20 hL h D -c h’L’+0 h’L D, +20 hL’h -0 h’L’>-2M L +2M D,

=12
s (_Ly + D)’)sz (Dy + ZLY)
or
2 2
At gt )l
s Ly f.hL, f. h f. f.h L} L, f. Ly h
ql,eq - c L 2 2
Ly L.v

(7.100)

A similar formula is obtained for failure mode 2:
2 2
L M M L,
2 2(}’) f +[-20~"+0”+2 f j[l-Dx}G{’j (l—zyo*’)
o \L ) fIL, /. Jo  JhL, L) f\L h

Yox
=12f — d
SRR S
LX L.’C LX
(7.101)

For a given slab having a certain deflection and failure mode (v and D/L) it is now possible to

calculate the load-carrying capacity without making any numerical integrations. This leads of
course to a substantial reduction of the calculations since a theoretically correct calculation involves
integration over the yield line (the L-part).

In the following, the index .q indicates that the axes of the rotation are found from equilibrium of a
slab part as described above. The index ,, indicates that the axes of rotation is found numerically
from the minimum of upper bound solutions.

In order to find the minimum load-carrying capacity for a given deflection the most optimal failure
mode has to be found.

In Figure 7.73 to Figure 7.75 and Figure 7.76 to Figure 7.78 the results of calculations for a square
slab with axial force in two direction are shown for o//,=0.1 and o/f;=0.4 respectively. In these plots
both the results of the simplified way of calculating the load-carrying capacity (index eq) and the
results of the numerical calculations (index up) are shown. Index 1 and 2 refers to the yield line
pattern.

In Figure 7.75 the contributions from reinforcement (index s) and concrete (index c) to the work are

plotted and thereby showing the difference between the two calculation methods.
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Figure 7.73.Results of calculations by equations (7.76) to (7.101) (solid) and numerical calculations (dashed) on a slab
with Ly=L,= 2000mm, @y,= Dy, "= Dyy= Dy, '=0.1,h/h=0.1, h=60mm, fc=50MPa, u/h=1 and oy/f.=0c/f.=0.1.
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Figure 7.74.Results of calculations by equations (7.76) to (7.101) (solid) and numerical calculations (dashed) on a slab
with Ly=L,= 2000mm, @p,= Dy, "= Dyp,=Dy,'=0.1,h/h=0.1, h=60mm, fc=50MPa, u/h=1 and c,/f.=c/f.=0.1.
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Figure 7.75.Results of calculations by equations (7.76) to (7.101) (solid) and numerical calculations (dashed) on a slab
with L,=L,= 2000mm, @p,= D), "= Dy, =Dy, '=0.1,h/h=0.1, h=60mm, fc=50MPa, u/h=1 and c./f.=c,/f.=0.1.
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Figure 7.76.Results of calculations by equations (7.76) to (7.101) (solid) and numerical calculations (dashed) on a slab
with Ly=L,= 2000mm, @y,= Dy, "= Dy,= Dy, '=0.1,h/h=0.1, h=60mm, fc=50MPa, u/h=1 and oy/f.=c/f.=0.4.
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Figure 7.77.Results of calculations by equations (7.76) to (7.101) (solid) and numerical calculations (dashed) on a slab
with Ly=L,= 2000mm, @y,= Dy, "= Dyy= Dy, '=0.1,h/h=0.1, h=60mm, fc=50MPa, u/h=1 and oy/f.=c/f.=0.4.
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Figure 7.78.Results of calculations by equations (7.76) to (7.101) (solid) and numerical calculations (dashed) on a slab
with Ly=L,= 2000mm, @p,=Dy, "= Dyp,=Dy,'=0.1,h/h=0.1, h=60mm, fc=50MPa, u/h=1 and c,/f.=c/f.=0.4.
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In the case o/f=0.1 it is seen that the agreement is very good for both the load-carrying capacity
and the internal work per unit deflection increase even though the position of the axes of rotation is
not quite the same. Part of the error is of course due to the limited accuracy of the numerical
calculations. Despite this it is seen that the position of the axes of rotation has the right performance
but not entirely the correct value. The same conclusions may be made when the axial force is
increased to o/f.=0.4.

As described previously it may be proven that equalizing the axes of rotation with the neutral axes
leads to the minimum load-carrying capacity if the concrete contribution to the dissipation is
calculated in the simplified way. It may be seen in these plots that it is not quite the same if the

correct dissipation formulas are used but the results are close enough to furnish the correct load-

carrying capacity.

It is previously shown that the simplified way of calculating the concrete contribution to the
dissipation is less accurate for small values of the angle v and for large differences between the
positions of the two axes of rotation. A difference in the axial force in the two directions leads to a
difference in the position of the axes of rotation. Therefore, it is expected that the agreement is less
good if the slab is only subjected to axial force in one direction. Results of calculations for such a
case may be seen in Figure 7.79 to Figure 7.80.

It appears that the agreement is good. It is also seen that the simplified calculations lead to both
over- and underestimations for different values of D/L in failure mode 2. However, it is also seen
that the minimum load-carrying capacity is almost the same. It is therefore believed that the

simplified method is sufficiently accurate for practical purposes.
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Figure 7.79.Results of calculations by equations (7.76) to (7.101) (solid) and numerical calculations (dashed) on a slab
with L,=L,= 2000mm, @p,=D,,"= Dy,= Dy, '=0.01,h /h=0.1, h=60mm, fc=50MPa, u/h=1 and o,/f.=0.4, o,/f.=0.
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Figure 7.80. Results of calculations by equations (7.76) to (7.101) (solid) and numerical calculations (dashed) on a slab
with Ly=L,= 2000mm, @y,= Dy, "= Dy,= Dy, '=0.01,h/h=0.1, h=60mm, fc=50MPa, u/h=1 and o/f.=0.4, o,/f.=0.
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Figure 7.81 Results of calculations by equations (7.76) to (7.101) (solid) and numerical calculations (dashed) on a slab
with L,=L,= 2000mm, @p,=D),'= Dy,= Dy, '=0.01,h /h=0.1, h=60mm, fc=50MPa, u/h=1 and oy/f.=0.4, o,/f.=0
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7.6 Interaction curves

It is obvious that the load-carrying capacity must be determined as the minimum for all values of
D/L. How the load-carrying capacity should be determined in relation to the deflection is a question
somewhat more difficult to answer.

In Figure 7.82 the results of calculations of the load-carrying capacity as a function of the deflection

are shown.
0.2
0.18 1
* - q‘l eq
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Figure 7.82 Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab
with Ly=L,= 2000mm, @y,= Dy,'=Dy,= Dy, '=0.01,h/h=0.1, h=60mm, fc=50MPa and o/f.=0.4 or 0.2, o,/f.=0

For low axial force it is seen that the load-carrying capacity has a minimum with respect to the
deflection. For higher axial force the load-carrying capacity decreases as the deflection increases.
Assuming that the slab is perfectly rigid plastic it is obvious that the load-carrying capacity is the
maximum of the load carrying capacities found for different deflections. Nevertheless, taking into
consideration the actual behaviour of a concrete slab it is equally obvious that the plastic behaviour
does not give the correct picture for a non-deflected slab. A more thorough investigation would take
into account the actual behaviour of the concrete to determine the deflection at failure but such
calculations would be cumbersome.

Instead the minimum value with respect to the deflection may be used. This is of course

conservative.
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Using the minimum value with respect to both D/L and the deflection, it is possible to calculate an
interaction curve giving the load-carrying capacity for combinations of axial load and lateral load.
Results from calculations with both methods are plotted in Figure 7.85 and

Figure 7.88. Figure 7.85 shows results for a slab with axial force in one direction and

Figure 7.88 shows results for a slab with axial force in two directions. In both cases the deflection is
determined in the one corresponding to the minimum of the load-carrying capacity. It should be
noted that the results are obtained through numerical calculations and that the maximum deflection

is set at 110mm.
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Figure 7.83 Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab
with L,=L,= 2000mm, @p,=Dy, "= Dy,=Dy,'=0.1,h/h=0.1, h=60mm, fc=50MPa, c,/f,=0.
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Figure 7.84 Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab
with L,=L,= 2000mm, @p,= D, "= Dy,= Dy, '=0.1,h/h=0.1, h=60mm, fc=50MPa, c,/f.=0.
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Figure 7.85. Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab
with L,=L,= 2000mm, @p,= D, "= Dy,= Dy, '=0.1,h/h=0.1, h=60mm, fc=50MPa, o,/f.=0.
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Figure 7.86Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab
with Ly=L,= 2000mm, Dy,= Dy, "= Dy,= Dy, '=0.1,h/h=0.1, h=60mm, fc=50MPa, c,=o0x
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Figure 7.87Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab
with Ly=L,= 2000mm, @p,=Dy, "= Dy, =Dy, '=0.1,h/h=0.1, h=60mm, fc=50MPa, c,=0;
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Figure 7.88. Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab
with Ly=L,= 2000mm, @p,= Dy, "= Dyp,=Dy,'=0.1,h./h=0.1, h=60mm, fc=50MPa, oc,=o.

These figures (Figure 7.83 to Figure 7.88) confirm that using the neutral axes as the axes of rotation
and combining this assumption with the simplified way of calculating the dissipation lead to a load-
carrying capacity close to the theoretically correct one. This goes for slabs subjected to axial force
in both one and two directions. It is also seen that the failure form (D/L) and the deflection at failure
is not found to be the same in the two methods. Nevertheless, the most important issue here is the
load-carrying capacity and it is seen that this is quite accurate.

For rectangular slabs with a L,/L, ratio different from one, the simplified calculation method is not

as good as for the square slabs. Examples of this may be seen in Figure 7.89 to Figure 7.95
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Figure 7.89. Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab
with L,=2000mm, L,=1000mm, @y=Dy, = Dy,=Dy,'=0.1,h./h=0.1, h=60mm, fc=50MPa, oc,=o0x.
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Figure 7.90 Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab
with L,=2000mm, L,=1000mm, @y,=Dy,'=Dy,=Dy,'=0.1,h./h=0.1, h=60mm, fc=50MPa, c,=o.
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Figure 7.91 Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab

with L,=2000mm, L,=1000mm, @y=Dy, "= Dy,=Dy,'=0.1,h./h=0.1, h=60mm, fc=50MPa, oc,=ox.
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Figure 7.92 Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab

with L,=2000mm, L,=1000mm, @y.=Dy,'=Dy,=Dy,'=0.1,h/h=0.1, h=60mm, fc=50MPa, o0,=0.
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Figure 7.93 Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab
with L,=2000mm, L,=1000mm, @y.= Dy, "= Dy,=Dy,'=0.1,h/h=0.1, h=60mm, fc=50MPa, oc,=0.
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Figure 7.94 Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab
with L,=2000mm, L,=1000mm, @y,= Dy, = Dy,=Dy,'=0.1,h./h=0.1, h=60mm, fc=50MPa, c,=0.
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Figure 7.95. Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab
with L,=2000mm, L,=1000mm, @y.=Dy,'=Dy,=Dy,'=0.1,h/h=0.1, h=60mm, fc=50MPa, o,=0.
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Figure 7.96 Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab
with L,=2000mm, L,=1000mm, @y.=Dy,'=Dy,=Dy,'=0.1,h/h=0.1, h=60mm, fc=50MPa, o,=0.
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Figure 7.97 Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab
with L,=2000mm, L,=1000mm, @y.= Dy, "= Dy,=Dy,'=0.1,h/h=0.1, h=60mm, fc=50MPa, o,=0.

It may be seen that the simplified calculations underestimate the load-carrying capacity somewhat
for rectangular slabs with axial force in both directions and also for rectangular slabs with axial
force perpendicular to the longer side. Nevertheless, it is believed that the simplified calculation
method is still useful due to the simplicity of the calculations.

From the interaction curves it appears that the curve at a certain level of axial force almost makes a
cut off. At this point the deflection actually goes towards infinity. In these figures the deflection is
limited to 170mm in order to keep the number of calculations at a reasonable level. This axial force
corresponds to stability failure. The slab may carry the load in a non-deflected state but a small
deflection would lead to collapse of the slab.

In an actual slab the level of stability found in this way is of course not quite correct since the slab
may be far from a plastic state close to the non-deflected state and only gets closer to plastic states
as the deflection increases. Therefore, a cut off level as the one seen in the interaction diagram

Figure 7.92 may not be expected to be verified by experiments.
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8 Theory compared with tests

Only a few experimental investigations have been made on simply supported slabs subjected to both
lateral and transverse loads. A. O. Aghayere and J. G. MacGregor (see [4]) made a test series, but
because of the variation of many parameters (reinforcement ratio, concrete strength etc.) these tests
are not very useful for the verification of the theory. Instead some of the tests made by L. Z. Hansen
and T. Gudmand-Heyer (see[6]) are used.

The main data are given in Table 8.1 and Table 8.2.

No| f, E. fy | e h |Laye] Ay |hy| Pog I, | he Ay Po [
[MPa]] [MPa] |[MPa]|[mm]| [mm] (mm’/m] |fmm]]  [] | {mm] | (mm]| (mm®/m] [ [mm]
3[60,4]18081] 593 | 0 [61,66] 1 | 523,6 | 35]0,008]2000] 25| 523,6 | 0,0085 | 2000
4159,5]17425[593[ 0 162,03 1 | 523,6 | 35]0,008]2000] 25 | 523,6 | 0,0084 [ 2000
5[58,8]17662] 593 | 0 [61,63] 1 | 523,6 | 35]0,008]2000] 25| 523,6 | 0,0085 | 2000
6[64,6]18688] 593 | 0 [61,37] 1 | 523,6 | 35]0,009]2000] 25| 523,6 | 0,0085 | 2000
7164,0]18466] 593 | 0 [61,26] 1 | 523.,6 | 35]0,009]2000] 25| 523,6 | 0,0085 | 2000
8161,4]117718] 593 0 160,99] 1 | 523,6 | 350,009 [2000f 25| 523,6 | 0,0086 | 2000
9[66,7118744]| 593 | 0 [61,56] 1 | 523,6 | 35]0,009]2000] 25| 523,6 | 0,0085 | 2000
16| 66,7119394] 593 0 |61,48] 1 | 523,6 [ 35[0,009[2000f 25| 523,6 | 0,0085 | 2000

Table 8.1. The data of the reinforced slabs.

No q N, u Notes
kN/m’] | fieN/m] | pmmg
3| 74,5 0,0 | 78 |Material failure
4{ 21,5 |1084,1] 29 |Rig failure
51 33,2 ]462,9] 53 [Stability failure
6| 25,1 [653,3] 46 |Stability failure
-
8
9

41,5 | 436,0] 61 [Stability failure
16,7 | 800,0 | 42 |Stability failure
8,5 |1103,4| 17 |Material failure
16| 25,1 |1030,1| 37 [Material failure

Table 8.2. The results of the tests.

The following calculation are made for a slab with f,/=60MPa, f,=593MPa, #/=60mm, A.,,/h=0.5,
L=L,=2000mm, ®’=’y=0.0085f,/f., Px=D,=0 if nothing else is mentioned.
If the conservative simplified method proposed in the previous chapter is used to calculate the load-

carrying capacity for the slabs tested the results in Figure 8.1 to Figure 8.3 are obtained.
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Figure 8.1 Results of calculations for a slab with f.=60MPa, f,=593MPa, h=60mm, he,/h=0.5, L,=L,=2000mm,
D =@',=0.00851,/f., D,.=P,=0 and v=1.
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Figure 8.2 Results of calculations for a slab with f.=60MPa, f,=593MPa, h=60mm, he,/h=0.5, L,=L,=2000mm,
'\ =@',=0.00851,/f., D.=DP,=0 and v=1.
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Figure 8.3 Results of calculations for a slab with f,=60MPa, f,=593MPa, h=60mm, h,/h=0.5, L,=L,=2000mm,
D' =D',=0.00854/f.. ®.=D,=0and v=1.

It is obvious that the theoretical load-carrying capacity is much too high. This is of course expected
since it is known that the concrete does not behave entirely according to plastic theory so an
effectiveness factor should therefore be introduced.

Besides from the load-carrying capacity being much too high, also the deflection is wrong. Not only
is it wrong when it comes to the numerical value but also when it comes to the relation between
axial force and deflection. The experiments shows that the deflection decreases as the axial force
increases and the conservative method of calculation shows the opposite relation. This tendency is
also expected to a certain extent. For instance it is obvious that for no axial force the conservative
method of calculation corresponds to zero deflection whereas in the tests the slabs of course will

have some deflection.
In order to determine the effectiveness factor, interaction curves are found using the measured

deflection (an approximate line close to the measured points). In Figure 8.4 and Figure 8.5 the

results are shown for both v=1 and v=0.45 (f. is set to 0.45¢60MPa)
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Figure 8.4. Effectivenessfactor v=0.45 or v=1. Results of calculations for a slab with f.=60MPa, f,=593MPa,
h=60mm, h,/h=0.5, L,=L,=2000mm, @',=D",=0.0085},/f., @.=D,=0.
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Figure 8.5 Results of calculations for a slab with f,=60MPa, f,=593MPa, h=60mm, h,/h=0.5, L,=L,=2000mm,
' =D',=0.00851,/f,, B,=B,=0.
It is seen that if vis set to 0.45 the calculations are in good agreement with the experiments.
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This effectiveness factor is quite small compared to the effectiveness factors normally used in
calculations of moment capacities (approx. 0.85). In evaluation of such an effectiveness factor one
should keep in mind that the strains in the yield lines may be far from the yield strains. Assuming
that the yield strain for concrete is 3.5 %o and that the yield strain is 1,465%o for the reinforcement
the deflection at the midpoint would approximately be

u, = %%ZOOO2 = 66mm (8.1)

if the stresses in the mid section should be close to the yield stresses. Keeping in mind that a
deflection of 66mm only leads to yielding in the top of the compression zone in the midpoint and
not in the remaining parts of the yield line, it may seem reasonable that the effectiveness factor of
the magnitude found above has to be used.

If vis set to 0.45 and the conservative simplified method is used to calculate the load-carrying

capacity, Figure 8.6 and Figure 8.7 are obtained.

3000
q1,eq
—— q2,eq
2500/ g
o o j (éiup
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= o
%1500/ W ]
pzd o
1000F ]
500] ]
% 0.02 004 0.06 0.08 0.1
q [MPa]

Figure 8.6. Results of calculations for a slab with f.=60MPa, f,=593MPa, h=60mm, he,/h=0.5, Ly=L,=2000mm,
D'\ =",=0.0085},/f., D=B,=0 and v=0.45.
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Figure 8.7. Results of calculations for a slab with f,.=60MPa, f,=593MPa, h=60mm, h.,/h=0.5, L,=L,=2000mm,
' =@',=0.00851,/f., D,=DP,=0 and v=0.45.

It is seen that this approximation does not lead to useful results since the deviation from the tests is
very large.

Another approach could be to use the deflection corresponding to yielding in mid-section (in this
case 66mm) for all axial forces. A similar approach is used in calculations of reinforced concrete
columns and one might suspect that it might give useful results for slabs as well. Results using this
approximation may be seen in Figure 8.8 and Figure 8.9.

It appears that the results are closer to the values from tests. Nevertheless, these results only
represent one slab type and further investigations and tests have to be made in order to verify the

approach.
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Figure 8.8. Results of calculations for a slab with f.=60MPa, f,=593MPa, h=60mm, he,/h=0.5, Ly=L,=2000mm,
D' =D, =0.0085f/f.. D=D,=0 and v=0.45.
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Figure 8.9. Results of calculations for a slab with f,.=60MPa, f,=593MPa, h=60mm, h,/h=0.5, L,=L,=2000mm,
' =@',=0.00851,/f., D.=DP,=0 and v=0.45.
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These comparisons with test results show that the theory developed may be used if the deflection at
failure is known and a proper effectiveness factor is introduced.

If the deflection at failure is unknown the conservative simplified method may be used but it will
lead to a large underestimation for low axial forces.

Using a deflection corresponding to the yield strain in concrete and reinforcement in the mid section
for all levels of axial force seems to lead to reasonable agreement with tests.

From a critical point of view it may be said that this way of calculating the load-carrying capacity
does not lead to any simple and useful calculation since the deflection has to be known from either
experiments or from calculations that involve a much more detailed description of the behaviour of

concrete.
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9 Conclusion

In this paper it is shown that calculations of the load-carrying capacity of rectangular slabs using the
K.W. Johansen method agree with a calculation based on the correct dissipation formulas that is
sufficiently correct for practical purposes.

Furthermore, it is shown that for a deflected rectangular slab with axial force the load-carrying
capacity may be calculated in the same way if the axes of rotation correspond to the neutral axes of

the slab parts.

Only rectangular slabs have been treated here but the agreement between the concrete contribution
to the dissipation calculated according to the K.W. Johansen method and according to the correct

dissipation formulas for a Coulomb material has been investigated in general. It is shown that if the
corner angle w is larger than 1/2n the Johansen simplification underestimates the dissipation and if

w is less than 1/27 the simplification overestimates the dissipation.

Only tests with seven rectangular slabs with axial force in one direction have been used for
verification of the theory and the conclusions are therefore not general. Furthermore, it should be
noted that due to the small number of tests no great effort has been made in order to determine the
effectiveness factor v.

However, it has been shown that if a proper effectiveness factor is used, the calculations seem to be
in good agreement under the condition that the deflection at failure is known.

A conservative approach using the minimum load-carrying capacity for all deflections leads to a
large underestimation in some cases and thus can only be recommended as a rough estimate.

If the deflection corresponding to yield strains of the concrete and the reinforcement is used for all

levels of axial force, predictions of the load-carrying capacity seem to be reasonable.
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11 Appendix

11.1.1Results of calculations for different slabs

11.1.1.1 Square slab without axial force
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Figure 11.1. Load-carrying capacity q; for a square slab with L=2000mm, @y=@,'=0.1, h/h= h./h=0.1, {.=30MPa
(solid) and load-carrying capacity according to (7.39) (dashed) at the left hand side and position of the axes of rotation
at the right hand side.
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Figure 11.2. Load-carrying capacity q; for a square slab with L=2000mm, @y=®,"=0.05, h/h= h."/h=0.2, f.=30MPa
(solid) and load-carrying capacity according to (7.39) (dashed) at the left hand side and position of the axes of rotation
at the right hand side.
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Figure 11.3. Load-carrying capacity q; for a square slab with L=2000mm, @,=®,'=0.1, h/h= h."/h=0.2, f.=30MPa
(solid) and load-carrying capacity according to (7.39) (dashed) at the left hand side and position of the axes of rotation
at the right hand side.

11.1.1.2 Rectangular slab without axial force
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Figure 11.4. Load-carrying capacity q, for a rectangular slab Ly=2000mm, L,=16000mm, @y.=Dy,"=Dy,=D,,'=0.1,
he/h= hey'/h= ho/h= he,'/h=0.1, f,.=30MPa (solid) and load-carrying capacity according to (7.48) or (7.50) at the left
hand side and position of the axes of rotation at the right hand side.
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Figure 11.5. Load-carrying capacity q; for a rectangular slab L,=2000mm, L,=16000mm, @y=®,, = Dy,=d,,"=0.05,
he/h= he'/Th= hey/h= he, /h=0.2, f.=30MPa (solid) and load-carrying capacity according to (7.48) or (7.50) at the left

hand side and position of the axes of rotation at the right hand side.
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Figure 11.6. Load-carrying capacity q; for a rectangular slab L,=2000mm, L,=16000mm, @y=d,.'=0.1,
Dy =Dy, '=0.05, hex/h= he,'/h= hey/h= h,, /h=0.2, f.=30MPa (solid) and load-carrying capacity according to (7.48) or
(7.50) at the left hand side and position of the axes of rotation at the right hand side.
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Figure 11.7. Load-carrying capacity q; for a rectangular slab L,=2000mm, L,=4800mm, @p=ad,,'=0.7,
Dy, =Dy, '=0.1, her/h= hey /h= hey/h= he, /h=0.1, f.=30MPa (solid) and load-carrying capacity according to (7.48) or
(7.50) at the left hand side and position of the axes of rotation at the right hand side.
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Figure 11.8. Load-carrying capacity q; for a rectangular slab L,=2000mm, L,=4800mm, @y.=Dy,'=0.3,
Dy =Dy, '=0.05, hex/h= he'/h= hey/h= he, /h=0.1, f.=30MPa (solid) and load-carrying capacity according to (7.48) or
(7.50) at the left hand side and position of the axes of rotation at the right hand side.
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11.1.1.3 Rectangular slab with axial force
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Figure 11.9. Load-carrying capacity (top left hand side), difference between the calculation methods (top right hand
side), length of the part of the yield line parallel to the axes of rotation (middle left hand side), position of the axes of
rotation for failure mode I(middle left hand side) and position of the axes of rotation for failure mode 2(bottom) for a
rectangular slab L,=2000mm, L,=2000mm, @p=Dy,'=0.1, @y, =Dy, '=0.1, hey/h= hey /h= hey/h= he,/h=0.1, f.=30MPa,

increasing oy and c,=0.
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Figure 11.10. Load-carrying capacity (top left hand side), difference between the calculation methods (top right hand
side), length of the part of the yield line parallel to the axes of rotation (middle left hand side), position of the axes of
rotation for failure mode 1(middle left hand side) and position of the axes of rotation for failure mode 2(bottom) for a
rectangular slab L,=2000mm, L,=16000mm, @y=Dy,'=0.1, Dyp=Dy,'=0.1, her/h= hey /h= hey/h= he, /h=0.1,
fe=30MPa, increasing o, and o,=0.

11.2Calculations of the compression depth

if O<u<h, & h.'<u+ h.'<h+ h. & h-h.<u+h-h.<h

and 05y9<u
.\
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