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Abstract

This thesis treats two different subjects within the field of random vibrations of structural sys-
tems. For this reason the thesis falls in two parts and consequently this abstract is also split into
two parts.

Part I

The first part concerns a fast simulation technique useful for the examination of the stochastic
characteristics of the random development of the plastic displacement processes of elasto-plastic
oscillators (EPOs) driven by Gaussian white noise. These oscillators are specific examples of
the more general class of systems with hysteresis. The results obtained herein are, however,
valid for general hysteretic systems.

The simulation procedure consists in simulating clumps of plastic displacement increments by
use of the so-called Slepian model and simulating, by simple means, the inter-clump waiting
times. The Slepian model has earlier been applied to ideal EPOs for which analytical results
have been derived. Similar results cannot be derived for non-ideal EPOs, why simulations are
required. In the present work the analytical results valid for the ideal EPO forms the basis of a
semi-analytical simulation scheme used for non-ideal EPOs with strain hardening and softening.
The simulation algorithm, which is basically a time integration algorithm, is fast as it takes
time-steps of half a period or larger. Especially when simulating waiting times it may use time
steps of the same magnitude as the mean waiting time, which gives a considerable time gain
compared to traditional direct numerical time integration.

In former works an approximate waiting time distribution based on asymptotic analytical results
has been suggested. Here an improved waiting time description accounting for the fact that
convergence to the asymptotic result is slow is presented. The problem is that for realistic
yield levels clumps arrive in groups. A phenomenon which is not properly accounted for by
the asymptotic results. For the waiting time simulation a model for the amplitude process of a
linear oscillator driven by white noise is applied. It is derived from two simple Slepian models
for the displacement and velocity processes. In order that the Slepian model simulation of the
clumps be sufficiently simple to code and the computation of the plastic increments not too time
costly, a simplification of the general hysteretic restoring force diagram is suggested and proved



useful. Since yield levels are generally asymmetric with respect to the equilibrium point the
notion of symmetrized yield levels is introduced as they simplify the waiting time simulation.
This implies the so-called clump definition different from what has traditionally been used. It
is demonstrated that the simulation scheme proves well using these symmetrized yield levels
without limiting the applicability of the algorithm.

As the results obtained by the Slepian Model Simulation Method are compared to results ob-
tained by direct time integration a thorough discussion of the applied direct time integration
scheme is given. It is proven that the scheme is at the same time a fair and a realistic benchmark
for the Slepian Model Simulation Method with respect to time consumption and accuracy. Fi-
nally, simulation results are presented. These proves that the Slepian Simulation Method gives
good approximate results and that it exhibits good time gain factors. Especially it is proven that
the merging of clump simulations and waiting time simulations, due to the suggested waiting
time distribution works notably better than results obtained by exponentially distributed waiting
times.

Part II

The second part deals with the random response of a certain class of structures with random
properties subjected mainly to deterministic excitation.

In investigations of noise radiated from submerged ship hulls it turns out that the vibrations of
the ship hull are influenced by the presence of numerous minor devices elastically attached to
the hull. Furthermore, information about the entity of the devices is uncertain, why the devices
are termed fuzzy substructures. The fuzzies are most realistically modeled by stochastic means.
Thus the ship hull, the so-called master, may be considered a structure with random vibration
properties.

Herein it is investigated whether the dynamical damping effect that the master experiences due
to the fuzzies, is obtained if the fuzzies are modeled by a continuous random field. Some
researches have claimed that this is not the case. Constructing, step by step, a piecewise con-
tinuous one-dimensional Poisson square wave field from a discrete model of the fuzzies, and
further proving a certain asymptotic equivalence of the discrete model and the field, it is shown
that continuous fields lead to damping effects too.

Furthermore, a specific example is given in which quantification of the damping effect is ob-
tained by use of Winterstein approximations to the distribution of the change-in-impedance
of the master as caused by the fuzzies. The strength of these results is that, via the Winter-
stein approximations, a mapping from standard Gaussian variables to the change-in-impedance
quantities is obtained thus opening for possible applications in numerical reliability methods.

Though the theory of fuzzy substructures has arisen in the field of submarine engineering the
authors of [22] see potential use of this theory in structural engineering as well.



Resuḿe

Denne afhandling er indleveret som et led i erhvervelsen af den tekniske ph.d.-grad ved Dan-
marks Tekninske Universitet. Afhandlingen bærer titlen: To Problemer i Stokastisk Strukturel
Dynamik, og den behandler to forskellige problemstillinger inden for stokastiske svingninger i
bærende konstruktioner, hvorfor afhandlingen falder i to dele.

Del I

Den første del omhandler en effektiv simuleringsmetode, der er anvendelig ved undersøgelsen
af de stokastiske karakteristika for den tidslige udvikling af den plastiske flytning i elastisk-
plastiske oscillatorer (EPOer) belastet med gaussisk hvid støj. Elastisk-plastiske oscillatorer er
specielle eksempler fra den generelle klasse af systemer med hysterese. Resultaterne beskrevet
i nærværende afhandling er dog ogs˚a gyldige for hysteresesystemer i almindelighed.

Simuleringsmetoden best˚ar i, ved brug af den s˚akaldte Slepian-model, at simulere klumper af
plastiske flytningsinkrementer og p˚a simpel måde at simulere ventetiden mellem klumperne.
Tidligere har Slepianmodellen været anvendt p˚a ideelle EPOer, for hvilke det er muligt at
udlede analytiske resultater. Tilsvarende resultater kan ikke udledes for ikke-ideelle EPOer,
hvorfor simuleringer er p˚akrævede. I nærværende arbejde udnyttes de analytiske resultater for
den ideelle EPO som grundlag for en semianalytisk simuleringsalgoritme anvendelig p˚a ikke-
ideelle EPOer med strain hardening og softening. Simuleringsalgoritmen, der grundlæggende
er en tidsintegrationsalgoritme, er hurtig, fordi den anvender tidskridt af størrelse en halv sving-
ningstid eller mere. Specielt ved simulering af ventetiderne kan der anvendes tidsskridt af
samme størrelsesorden som middelventetiden, hvilket giver en anseelig tidsbesparelse i forhold
til traditionel direkte numerisk tidsintegration.

I tidligere arbejder er en approksimativ ventetidsfordeling baseret p˚a asymptotiske resultater
blevet foreslået. Heri beskrives en forbedret ventetidsfordeling, som tager hensyn til det fak-
tum, at konvergensen til det asymptotiske resultat er langsom. Problemet er, at for realistiske fly-
deniveauer forekommer klumperne i grupper. Et fænomen som de asymptotiske resultater ikke
inkluderer. Til anvendelse ved ventetidssimuleringen benyttes en model for amplitudeprocessen
for en lineær oscillator belastet med hvid støj. Denne model dannes udfra to simple Slepianmod-
eller for flytningen og hastigheden. For at sikre at Slepianmodelsimuleringerne af de plastiske
inkrementer hverken bliver for komplicerede eller for beregningsmæssige tunge indføres en



simplificering af det generelle arbejdsdiagram, og det vises, at denne simplifikation er brugbar.
Idet flydegrænserne generelt er asymmetriske mht. ligevægtspunktet, introduceres de s˚akaldte
symmetriserede flydegrænser. Dette medfører, at den s˚akaldte klumpdefinition ændres i forhold
til den traditionelle. Det vises, at simuleringsmetoden p˚a tilfredsstillende m˚ade kan h˚andtere
disse symmetriserede flydegrænser, uden at det begrænser metodens anvendelsesomr˚ade.

Da resultaterne, der opn˚aes ved anvendelse af Slepianmodelsimuleringsmetoden, sammenlignes
med resultater opn˚aet ved direkte numerisk tidsintegration, gives en grundig gennemgang af
metoden anvendt ved direkte tidsintegration. Det vises, at denne direkte metode giver et rimeligt
og realistisk sammenligningsgrundlag for Slepianmodelsimuleringsmetoden mht. tidsforbrug
og nøjagtighed. Sluttelig præsenteres simuleringsresultater. Disse viser, at Slepianmodelsimu-
leringsmetoden giver gode approximative resultater, og at den udviser gode beregningstidsbe-
sparelser.

Del II

Den anden del af afhandlingen ang˚ar det stokastiske respons af en bestemt klasse af konstruk-
tioner med stokatiske egenskaber og som drives af en deterministisk last.

I forbindelse med undersøgelser af støj udsendt fra ub˚ade viser det sig, at svingningerne i
ubådens skrog p˚avirkes af alle de mindre instrumenter, der er elastisk fastgjort til skroget. Des-
uden er den tilgængelige information om instrumenterne forbundet med usikkerhed. Af samme
grund kaldes instrumenterne p˚a engelsk under ´et fuzzy substructures. Det er derfor kun rimeligt
at anvende en stokastisk modellering af fuzzy’erne. S˚aledes kan man betragte skroget (kaldet
masteren) som en konstruktion med stokastiske svingningsegenskaber.

I afhandlingen undersøges det hvorvidt den dynamiske dæmpning, som masteren p˚avirkes af
pga. fuzzy’erne, kan beskrives hvis fuzzy’erne modelleres som et kontinuert stokastisk felt.
Nogle forskere hævder, at dette ikke er muligt. Ved, skridt for skridt, at konstruere et stykkevis
kontinuert endimensionelt Poisson square-wave felt fra en diskret model, og desuden bevise at
der eksisterer en anden-moment-ækvivalens mellem Poisson square-wave feltet og det diskrete
felt, vises det, at kontinuerte felter ogs˚a kan give en dæmpningseffekt.

Endvidere gives et specifikt eksempel, i hvilket en kvantificering af dæmpningseffekten opn˚aes
vha. Wintersteinapproksimationer til impedansændringerne pga. fuzzy’erne. Disse resultaters
styrke er, at der opn˚aes en afbildning fra gaussiske stokastiske variable til de størrelser, der
beskriver impedansændringerne. Derved er der ˚abnet mulighed for anvendelser inden for nu-
merisk sikkerhedsanalyse.

Selvom teorien for fuzzy substructures oprindeligt udvikledes inden for ub˚addesign ser forfat-
terne af [22] mulighed for anvendelse af teorien inden for bærende konstruktioners sikkerhed.
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Background and Organization

This first chapter gives a survey of the very background of the field to which the problems
treated in this thesis belong. In addition it presents the outline of the thesis and also a few
remarks concerning the nomenclature used are given.

Background

Basically, any design problem a structural engineer is faced with involves randomness. There
are different sources of randomness of which one or more may be relevant to the design problem
at hand.

One of the sources is the inherent randomness of nature itself which is easily appreciated, ac-
cepted and understood even by non-professionals. Almost anyone knows, by some sort of
experience, that two wooden sticks, though geometrically alike, may exhibit considerable dif-
ferences with respect to flexibility and strength properties. Further, we all understand that not
only structural properties are affected by the randomness of nature. The actions that structures
are subjected to are also random. Obvious examples of such actions are forces due to wind and
sea waves. More rare, but at the same time with the risk of being of more devastating nature,
are earthquake loads.

Less familiar to layman is randomness due to insufficient information about various parameters
going into the design process. For instance, these parameters are distribution parameters of the
distributions that describe the randomness of structural properties and actions. Such insufficient
knowledge, or in other words: uncertain information, is usually reflected as stochastic uncer-
tainty. However, it need not be distribution parameters that are assessed with uncertainty. As it
is discussed later, it might simply be deterministic quantities like the mass of some part of the
structure that is not well defined.

Also the human factor plays a role. Generally structures are designed for human use. Take
furniture in apartments as an example. They are, from a technical point of view, randomly
scattered over floors, walls and ceilings. Thus, designing structures for human living involves a
contribution to uncertainty in addition to that due to the randomness of nature. Another example
of the effect of human activity is traffic on bridges.

1



Model uncertainty is yet another contributor to uncertainty that must be mentioned here to
complete the picture. It arises from the fact that in all design situations a simplified model is
set up in order to make computations practicable or simply because the amount of information
available does not allow a more complicated model. The simple model excludes quantities
(physical, geometrical etc.) that may randomly influence the performance of the system. Thus,
as a consequence of the design process itself, unclarified uncertainty is present.

Though randomness appears everywhere it is not necessarily justifiable from an engineering
point of view to always include it in the design process. Actually an engineer may account
for randomness by simply stating that it is negligible as fluctuations are small or it appears in
places where even severe randomness does not affect the design significantly because the system
is maybe dominated by deterministic effects that are orders of magnitude more important to
system behavior than those due to randomness. The engineer may even for simplicity reasons
choose to replace random quantities by deterministic quantities that results in a design that in
his judgement is on the safe side.

As design demands tend to favor optimized structures to those that results from very conser-
vative assessments neglecting randomness, there is a need for studies in stochastic mechanics.
Especially studies of computational methods in stochastic mechanics are relevant, as the com-
plexity of the computations in stochastic design problems is in general greater than those of
computations in deterministic problems as adding randomness to a given problem seldom re-
duces the governing equations. This problem may of course be circumvented by lowering the
demands on the amount of information on system behaviour required to make design decisions.
One may decide to use only information about, say, expectations and scatter of the random sys-
tem behaviour in terms of mean values, standard deviations and correlations. However, even
obtaining this limited information may be difficult - or if not difficult then at least cumbersome.

Following the same line of argumentation as above, it is clear that almost all mechanical systems
are dynamic as well as random. They respond dynamically since loads are applied or removed
over some finite time. But, then again, many systems are from an engineering point of view
most reasonably considered quasi-static as the duration of load application is long compared to
the relevant characteristic time-scale of the load carrying mechanism.

Though a lot randomness and uncertainty effects as well as dynamic effects may be neglected,
systems still exist that are only given a proper treatment if they are analyzed applying methods
from the field of stochastic dynamics. This may be so because of significantly temporal and/or
spatial random fluctuations of the driving forces and/or system properties.

In the present thesis two problems within the field of random vibrations of engineering systems
are treated. Firstly one, in which temporal random loading is essential and system properties
are considered deterministic, and secondly one, where random system properties is brought into
focus, whereas the driving forces may or may not be random.

2



Random Temporal Forcing

A classical case study in the field of random loading is the single degree of freedom (SDOF)
oscillator subjected to some random driving force which, with almost equal power, in the long
run excites the oscillator at many different frequencies around its resonant frequency at which
amplification is strongest. As the response is dominated by the amplified frequencies, one
usually does in these studies, with only small error, replace the forcing process by the white
noise process that is characterized by containing, in the long run, equal power at all frequencies.

Herein such a hysteretic, i.e. non-linear, SDOF oscillator subjected to white noise is studied.
As opposed to linear oscillators closed form solutions for the joint distribution or even the
second moment structure of the response process do seldom exist. Therefore one is faced with
the above mentioned computational problem. In [6] it is presented how one by approximate
reasoning in terms of the so-called Slepian model is able to obtain analytical expressions for
the probabilistic characteristics of different quantities associated with the response of a linear-
elastic-ideal-plastic SDOF oscillator excited by Gaussian white noise. If the linear-elastic-ideal-
plastic strain-stress relation is replaced by a stress-strain relation of general hysteresis type the
simplifications obtained in the linear-elastic-ideal-plastic case do not carry through. It may then
seem necessary to resort to Monte Carlo simulation. Such simulations can become quite time
costly if they are performed by straight-forward numerical time integration. However, some of
the analytical results from the linear-elastic-ideal-plastic case may form the basis of a fast semi-
analytical simulation scheme which makes the simulation time for a single response path sample
become conveniently small. As it will be shown this is done without loosing essential features
of the response. The simulation strategy is termed theSlepian Model Simulation Method.

Random System Properties

During the design process of complicated structures or mechanical systems one often encounter
situations where either statements about the system must be given, even though the final config-
uration of the systems is unknown, or it is known that the configuration changes unpredictably
during use. As it is pointed out below these situations may be considered as examples of systems
with random properties.

The area of research that has initiated investigations of the kind of problem considered herein is
submarine engineering. In that field one needs to give statements about the dynamical charac-
teristics of the submarine before all details concerning the equipment of the submarine is well
known. In one of the previous sections it was mentioned, that in the field of structural engineer-
ing buildings and bridges can be thought of as structures of which the configuration changes
during use. Characteristic of the described problems is that they involve a larger main structure
and several minor structures or mechanical devices such as the equipment attached to the main
structure. It is the ensemble of the minor structures that is not well-defined and for that reason
it is termed afuzzy sub-system. The main structure, the so-called master structure, on the other
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hand is well-defined. Clearly the dynamical properties of the complete system depends on the
interaction between the master structure and the fuzzy sub-system.

Usually some information is available about the dynamical properties of the fuzzy sub-system.
Assume that it is possible to quantify this information by density functions for the random
distribution of the properties of the fuzzy sub-system over the master structure. Then one can
simply consider the fuzzy sub-system as giving rise to random system properties of the master
structure. It is this line of reasoning that is investigated herein. Especially the case study of a
master structure being a linear SDOF oscillator and a fuzzy sub-system of likewise linear SDOF
oscillators which is considered. The aim is to compute the stochastic properties of the frequency
response function of the complete system.

Organization of the Thesis

As the consequence of having two different subjects in the field of random vibrations treated in
the present thesis, the thesis is split into two parts. The first part concerns the efficient Slepian
model simulation technique for systems with hysteresis driven by certain types of random load-
ing, while the second part treats the stochastic properties of the frequency response function of
a linear SDOF oscillator having a fuzzy sub-system attached.

Nomenclature

The nomenclature applied in the thesis generally follows the most commonly used nomenclature
in the theory of stochastic mechanics. It is, however, considered worthwhile to explain the
conventions used herein. The table below lists the typography. The typographic rules used
are not very strict,SW , for instance, denotes a power spectrum rather than a random variable.
However, the context will warrant that no misunderstandings occur.

Variable type Typography Example

Random variable Capital italics X
Random matrix/vector Capital boldface roman Y
Realization of random variablesSmall italics x
Deterministic variable Small italics z
Deterministic matrix Capital boldface sans serifA
Deterministic vector Small boldface sans serif b
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Part I

Slepian Modeling of Random Vibrations in
Systems with Hysteresis
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Chapter 1

Introduction

This introductory chapter gives a thorough discussion of the physical background and the basic
assumptions leading to the model used for the considered mechanical problem. Next it briefly
presents the main features of the simulation technique which is the subject of this first part of
the thesis. Finally a short outline of the following chapters is given.

1.1 Background and Mechanical Modeling

Randomly dynamically loaded deterministic mechanical systems with hysteresis is the back-
ground of the work presented here. Figure 1.1 shows schematics of a few cycles in typical
hysteretic displacement/restoring-force diagrams representing kinematic strain hardening and
softening. The first case, the so-called strain hardening case, is well-known from the theory of
plasticity which deals with the behaviour of elasto-plastic materials. The latter case, typically

Strain Hardening Strain Softening

YY

q�Y � q�Y �

Figure 1.1: Schematics of a few cycles in typical hysteretic displacement/restoring-force
diagrams.
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1.1 Background and Mechanical Modeling

is derived from the first. It arises when structural elements like a column, made out of a plastic
material with almost no strain hardening, is subject to compressive normal forces. These forces
reduce stiffness and may thus bring an otherwise up-going hardening branch into a down-going
softening branch. In the remainder of this part of the thesis the hysteretic systems are in fact
exemplified by such elasto-plastic structural systems. The obtained results are, however, still
generally valid for any hysteretic system that comply with the assumptions made.

For elasto-plastic structures like frames and trusses a common design criterion is that the prob-
ability of the formation of a mechanism should be below some specific value. However, such
mechanism formations need not be catastrophic for a dynamically loaded structure. It is catas-
trophic only if the structure starts moving and collapses. Due to the dynamical load the elements
of the structure may for a short while move in a mechanism pattern and shortly after move in
another pattern bringing the mechanism formation to an end. Thus an important design issue is
rather the degradation of the structure due to several mechanism formations than the mere for-
mation of a mechanism. Therefore the response process of the structural system is of interest.

An important implication of the considered physical systems being mechanical is that they
may exhibit resonant behaviour when dynamically loaded. For strongly non-linear or heavily
damped systems resonance may not be an important issue. Here damping is taken light and
viscous in accordance with the reality of structural systems (typically the damping ratios are
0.005–0.05). Furthermore it follows from design practice that structural systems are highly re-
liable, why the presence of hysteresis is assumed not dominating for the response. As it will
show, these assumptions imply that many of the features of the response of lightly viscously
damped linear systems, with some approximation carry over to the considered hysteretic sys-
tems. For this reason the notions of anelasto-plastic oscillator (EPO) and itsassociated linear
oscillator (ALO) are introduced. The ALO is defined as the linear oscillator obtained by lin-
earizing the EPO at the zero-point.

What is meant by ’not dominating hysteresis’ needs some clarification. Clearly the interplay be-
tween the power of the driving force and the dynamical characteristics of the system influences
the magnitude of the response and thereby also the possibility of having response realizations
that will pass through the hysteretic branches in the restoring force diagram. Consequently a
quantitative discussion of the ’not dominating hysteresis’ phrase certainly requires a specifica-
tion of the type of loading considered.

The origin of the kind of problem treated in the next chapters is for instance earthquake loaded
structures. A record of the ground acceleration in the east-west direction during the Loma
Prieta earthquake in the Santa Cruz Mountains on October 17, 1989 is shown in Fig.1.2 (data
was sampled at a rate of 200 Hz.) A zoom of the central part of the record is also shown.
This zoom shows that the frequency content of the record is rich. This is a typical feature of
dynamical loading of mechanical systems and is termedbroad banded load. As it is assumed
that the mechanical systems regarded here are only little and at most moderately non-linear,
they exhibit resonant behaviour. This means that there are generally two possibilities. Either,
the load process covers a frequency range that falls outside the critical frequency domain of the
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Figure 1.2: Measured ground acceleration record from the Loma Prieta earthquake (top)
and a zoom of the central part of this record (bottom).

mechanical system, or a considerable part of the input excites the resonant frequencies. The
first event is not critical, whereas the latter calls for further investigation as unwanted large
deflections and internal forces in the mechanical system will occur.

The following chapter will bring focus on structures driven by broad banded stochastic process
that has its main power input around the resonant frequencies of the mechanical system. This
implies that with only small error the load process can be replaced by a process that has power
input at all frequencies. This is due to the frequency content of the response be almost insensi-
ble to the extra power input as the amplification declines rapidly outside the resonant domain.
White noise processes are such processes that on the average inputs equal power at all frequen-
cies. This is an idealization as it implies infinite average power input. The implications of the
idealization is discussed later. If the power input of the driving process is not homogeneously
spread over the resonant frequencies, a more realistic modeling of the input process is still
obtainable by application of white noise processes. One simply passes a properly scaled white
noise process through a filter that in some way amplifies those frequencies that are present in the
real input process. Since mechanical systems themselves amplify input at resonant frequencies,
they may be used for such filtering purposes.

Though load processes are generally non-stationary, there are often time intervals during which
the processes are almost stationary. Figure. 1.2 illustrates by plots such stationary parts of a
load process are typically present where the input is most powerful. The studies presented herein
therefore consider systems at a time when stationarity is reached. It is obvious from the figure
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1.2 The Equation of Motion for the SDOF EPO

that in the case of earthquakes the duration of the stationary load history part is rather short.
One may thus argue that it gives unrealistic modeling to consider stationarity. However, in other
cases, like fatigue loading, wind and ocean wave loads, the extent of the stationary intervals is
much longer. For the earthquake case the stationarity model is not useful for predicting the time
from the quake starts to the first excursion of the response outside the elasticity limits. It is still
useful, though, in modeling the response that follows. This is important too, as it is during this
phase that degradation of the structure takes place.

The above discussion motivates investigations of the stationary response of mechanical systems
with hysteresis excited by white noise processes and answers the question regarding the kind
of load applied to the mechanical systems. Thus time is due to return at the initial question of
what is meant by ’not dominating hysteresis’.

If hysteresis is not dominating it must be so that the response path only seldom reaches the
hysteresis branches of the restoring force diagrams. Now, since the resonant frequencies of the
system are excited, one must for a given structure and load relate the elasticity limits to the
response peaks which are due to resonance and depend on the intensity of the input. These
peaks are random, and for that reason some averaged value for the size of the peaks is required.
The stationary standard deviation,σ ALO, of the response of the ALO reflects the peaks in the
ALO’s frequency response function together with the intensity of the load. If hysteresis is
not dominatingσ ALO is a good average value for the EPO response peaks as well. Scaling the
response byσALO the scaled elasticity limits become meaningful relative measures of the degree
of hysteresis present. As it is discussed later the white noise process is assumed Gaussian. For
the ALO this implies that the response is Gaussian too. Hence, if the scaled limits are of
magnitude 1 one may, using the Gaussian distribution for guidance, state that with probability
approx. 30% of the response is outside the elasticity limits. This is dominating hysteresis. For
scaled limits of magnitude 2 the corresponding probability is approx. 5% which is little. The
conclusion is, that for scaled elasticity limits above 2 hysteresis is not dominating. For limits
between 1.5 and 2, hysteresis is moderate, and any limit below 1.5 means dominating hysteresis.
Since structural systems are very reliable, scaled elasticity limits below 2 seldom occurs, so the
assumption about non-denominating hysteresis is not unrealistic.

1.2 The Equation of Motion for the SDOF EPO

Having now clarified the basic assumptions about the driving load process and the dynamical
properties of the hysteretic systems the implications of these assumptions on the treatment of
the problem may be discussed. To that end, a good understanding of the stationary response
of the viscously damped single degree of freedom (SDOF) oscillator with weak hysteresis and
driven by white noise is useful. This is due to the experience reported in [18] of a multi degree
of freedom (MDOF) oscillator with localized hysteresis. This MDOF oscillator is an example
of a structure with added mechanical filtering of the white noise process as mentioned above.
It is in the MDOF case assumed too that hysteresis is weak, and therefore application of modal
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analysis to the ALO response gives good results. The SDOF oscillator is therefore the main
subject of this part of the thesis.

At this point some equations are now required to facilitate the further development of the con-
sidered problem. The mass normalized equation of motion for an SDOF oscillator with vis-
cous damping and a non-linear restoring force is (c = mass normalized coefficient of damping,
q�y� = mass normalized restoring force as function of the displacementy, F�t� = mass normal-
ized dynamical load as function of the unscaled timet)

Ÿ � cẎ � q�Y � � F�t� (1.1)

Another way of expressing the equation of motion, that will prove useful in the discussion of the
load process and the scaling of the response, is the so-called phase-space (or better state-space)
formulation. There exist several possible state vectors and the state formulation we need here is

d
dt

�
Y
Ẏ

�
�

�
Ẏ

�cẎ �q�Y �

�
�

�
0
F

�
(1.2)

in which the state vector�Y Ẏ �T directly reflects the second order nature of Newton’s second
law and the first term on the right-hand side gives the free response state change rate as function
of the system parameters.

1.2.1 The Gaussianity of the White Noise

Up till now it has been decided to model the load as process of white noise type. The actual
distribution of F�t� has not been discussed. The following discussion is partly taken from
[13][pp. 80-83]. From physics one knows that for non-idealized load process the responseY
and the velocityẎ develop continuously in time. We will demand that the same holds true
for the response to the idealized white noise load process. This requirement will induce the
distribution ofF�t�. The state space equation (1.2) clearly states that the load influences the
rate of the velocity change directly and the rate of the response change only indirectly. Taking
the last equation of Eq. (1.2) one has

Ẏ �t� �
� t

t0

�� cẎ �q�Y �
�

ds �
� t

t0

Fds (1.3)

It is, as q�Y � is always at least continuous, apparent from this equation that the continuity
demand is fulfilled only if the integralΨ�t� �

� t
t0

Fds of the white noise process is continuous.
It is easily realized thatΨ is a continuous Markov process, for what reason a Fokker-Planck
equation (FPE) forΨ exists. The white noise process is characterized by an average power input
that is the same at all frequencies. This implies infinitely rapidly fluctuating samples, which in
turn implies that the process has zero correlation length and infinite variance. Therefore it turns
out that, except for a constant factor dependent on the intensity of the power ofF, the FPE forΨ
is equal to the FPE for the Brownian motion process. Consequently the stationary distribution of
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1.2 The Equation of Motion for the SDOF EPO

Ψ is Gaussian with zero mean and variance proportional tot� t0. As dΨ� Fdt, it is concluded
thatF�t� must have Gaussian distribution of zero mean too.

As it is implicitly indicated above, the idealized white noise process may be obtained as the limit
of a sequence of processes with decreasing correlation length. Thereby the variance becomes
infinite, which changes the infinitesimal order of the terms in which the idealized process ap-
pears. Therefore one has to decide precisely how to integrate the stochastic differential equation
(SDE) of motion under these conditions. There are infinitely many different ways of doing so,
implying equally many different solutions. Two of those, however, stand out as especially use-
ful. One uses the Itˆo stochastic integral, the other uses the Stratonovich stochastic integral. The
Itô integral is algebraically simple whereas the Stratonovich integral gives a physically mean-
ingful result. There is a way to transform the SDE such that applying the Itˆo integral gives the
same result as applying the Stratonovich integral to the original SDE. The Wong-Zakai Limit
Theorem gives a statement about this. If the idealized process is multiplied by a factor de-
pending non-linearly on the response process the equation has to be corrected – otherwise not.
Hence, the equations considered herein give the same result whether they are interpreted in the
Itô or the Stratonovich sense. The Itˆo formula leading to the Fokker-Planck equation and the
moment equations which give physically meaningful results is thus (see Eq. (1.2))

df �

�
∂f
∂ t

� Ẏ
∂f
∂y

� ��cẎ �q�Y ��
∂f
∂ ẏ

� 1
2 σ2

F

∂ 2 f
∂ 2ẏ

�
dt � σF

∂f
∂ ẏ

dB (1.4)

In which the constantσ F is
�

2πSF anddB is the increment of the Brownian motion.

The Gaussian distribution ofF�t� was derived from a continuity requirement for the response
caused by the idealized white noise excitation. The Gaussianity ofF�t� also has its algebraic
advantages which are extensively exploited in the sequel. For the ALO, the property of the set
of Gaussian distributions as being closed with respect to linear operations, yields the convenient
result that the ALO response process becomes Gaussian too. Therefore all joint distributions of
the ALO response are known and of simple type – a considerable advantage. How it is utilized
is revealed later on.

Had one not assumed the white noise property of the input the continuity requirement would
itself had been insufficient to ensure Gaussianity ofF�t�. One may ask if the idealization has too
big impact on the response distribution, by bringing it too far away from the real distribution.
Consider the ALO again. The intuitive result, connected to the Central Limit Theorem, that
the stationary response of linear systems with light damping excited by weakly correlated non-
Gaussian processes is approximately Gaussian indicates that the assumption does not lead to
results that are completely off.

Turning the above discussion up-side-down one may from an engineering point of view sim-
ply state that substituting the real non-Gaussian broad banded load process by Gaussian white
noise is an obvious model choice. The choice is obvious because it makes the ALO response
process become algebraically tractable at the same time as having the nice implication that the
response and velocity processes become continuous. No matter which line of attack one prefers,
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it clearly relevant to investigate the response due to Gaussian white noise. The author prefers
the approach of the derivation in the previous sections as it shows clearly what assumptions are
made.

1.2.2 The Scaled Equation of Motion

The different terms of the governing equation has now been discussed, why the afore mentioned
scaling can be carried out. For convenience of notation the scaling is first carried out for the
ALO equation, then, afterwards the EPO equation is set up as a generalization of the scaled
ALO equation. The standard normalized equation of motion for the SDOF ALO corresponding
to Eq.(1.1) has the form (ω0 = undamped eigenfrequency,ζ = damping ratio,F�t� = mass
normalized load)

Ÿ � 2ζω0Ẏ � ω2
0Y � F�t� (1.5)

As explained the response is scaled by the stationary response standard deviationσ ALO. De-
noting bySF the constant double sided power spectrum density ofF the stationary variance
becomes

σ2
ALO �

πSF

2ζ ω3
0

(1.6)

In addition to the response scaling, a temporal scaling is carried out too. This is not because
different time scales are to be compared, as it has already been decided that the load predomi-
nantly excites the resonant frequency. It is for the purpose of ensuring generality of the results
by eliminating the frequencyω0. Time is scaled by the damped eigenfrequency of the ALO
yielding the time scale

τ � t
�

1� ζ 2 ω0 (1.7)

After some simple manipulations the following scaled equation of motion for the SDOF ALO,
in which X�τ� � Y �t��σALO is reached:

Ẍ � 2α Ẋ � �1�α 2�X � W �τ� (1.8)

Two new symbols have been introduced in the equation. One symbol is the scaled damping
ratioα given by

α � ζ �
�

1�ζ 2 (1.9)

The other is the load processW �τ� which equalsF�t��1�α 2��σALO ω2
0. Accounting for the

difference in time scale ofW �τ� andF�t� the spectral intensity ofW can be found as

SW � 2
πα �1�α 2� (1.10)
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Figure 1.3: Schematics of the non-linear restoring force diagram with scaled elasticity
limits u� and�u� of larger absolute value than 1.

This last result enables a discussion of the relative order of magnitude of the different terms
in the equation of motion. Noting that (1.10) implies that the load is of orderα 1�2, one sees
that the choice of scaling has made it explicit that for the considered resonant phenomenon
the load process is half an order of magnitude larger than the damping term and half an order
of magnitude smaller than the inertia and restoring force terms. This is usually termedweak
excitation. It does, however, not mean that the load is vanishing, it simply underlines the fact
that for weak damping, resonance amplifies the excitation considerably.

The statistical moments of the scaled SDOF ALO response are heavily used in the following.
These moments are computed using the relevant Itˆo formula. According to the earlier discussion
one finds that for the scaled SDOF ALO equation the Itˆo formula becomes

df �

�
∂f
∂ t

� Ẋ
∂f
∂x

�
��2α Ẋ � �1�α 2�X

�∂f
∂ ẋ

� α �1�α 2�
∂ 2f
∂ 2ẋ

�
dt

�
�

α �1�α 2�
∂f
∂ ẋ

dB

(1.11)

Finally, the equation of motion for the SDOF EPO is reached by simply replacing the displace-
mentX in the third term of Eq. (1.8) by a non-linear functionr�X� which is a scaled restoring
force function that is related to the mass-normalized restoring forceq�Y � in Eq. (1.1) by

r�X� �
q�σALO X�

ω2
0 σALO

(1.12)

In this way the scaled SDOF EPO equation writes

Ẍ � 2α Ẋ � �1�α 2�r�X� � W �τ� (1.13)

Schematics of the scaled hardening and softening restoring force diagrams are shown in Fig. 1.3.
As shown the absolute values of the upper and lower elasticity limits are denotedu� andu�
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Figure 1.4: The energy based envelope defining the amplitude process.

respectively. It is noted that they due to hardening/softening depend on time and further that
they are generally not of the same size, except when the plastic displacement is zero as is the
case in the figure.

1.2.3 The Amplitude Process

For the description of the time development of the response process it is useful to consider
also the mechanical energy process of the ALO. The mechanical energyE corresponding to the
scaled ALO equation is given by

E � 1
2�1�α 2�X2 � 1

2Ẋ2

� 1
2�1�α 2�

�
X2 �

� Ẋ�
1�α 2

�2
� (1.14)

The square root of the larger parenthesis defines yet another process which touches all extremes
of the response and hence is called the amplitude processA:

A �

�
X2 �

� Ẋ
ω̃0

�2
� ω̃2

0 � 1�α 2 (1.15)

As sketched in Fig. 1.4 the amplitude process defined by Eq. (1.15) gives a certain envelope of
the process. If the response process crosses out of the elasticity domain any envelope process
does so too. Though the opposite does not necessarily hold true the time development of the
amplitude process, or equivalently the energy process, can give valuable information about
the behaviour of the outcrossings of the response process. The mechanical energy does not
oscillate in time like the response does. It develops much slower reflecting the energy drain due
to damping and the energy input due to the driving force. To see how this quantitatively affects
the amplitude process another set of state variables than�X Ẋ �T is considered. If one chooses
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A as the one state variable and in accordance with the relationE � 1
2�1�α 2�A2 introduces the

transformation

X � A cos�ω̃0τ � Φ� (1.16)

Ẋ � �Aω̃0 sin�ω̃0τ � Φ� (1.17)

then the phase driftΦ is defined as the second state variable. Combining the state equations for
�X Ẋ �T and the transformation (1.16) the equations for this set of state variables become

Ȧ � 2α Asin2�ω̃0τ �Φ� �
�

2α V
ω̃0

sin�ω̃0τ �Φ� (1.18)

Φ̇ � 2α sin�ω̃0τ �Φ�cos�ω̃0τ �Φ� �
�

2α V
Aω̃0

cos�ω̃0τ �Φ� (1.19)

in which the load processW �τ � has been replaced by the process
�

2α V �τ� to make it explicit
that the load is of orderα 1�2 as the result of scaling. Since the scaled damping ratioα is
small compared to 1 and all other terms in the equations are of order 1, Eqs. (1.18) and (1.19)
show quantitatively that the amplitude process develops slowly in time. The slow variation of
A andΦ makes it possible to average the deterministic terms in Eqs. (1.18) and (1.19) over a
period of oscillation simplifying the equations considerably. Furthermore the zero correlation
length of the white noise processV �τ� allows averaging of the driving terms according to the
Stratonovich-Khasminski stochastic averaging technique. In addition to a simplification of the
equations the result of the averaging is that the amplitude becomes independent of the phase
drift as expressed by the following diffusion equations:

dA � α ��A�
1
A
�dτ �

�
2α dBA (1.20)

dΦ �

�
2α
A

dBΦ (1.21)

in which theB’s denote independent standard Brownian motion processes. Later Eq. (1.20)
will be referred to when discussing the time development of the mechanical energy and the
amplitude of the ALO response.

1.3 Historical Review

The above presented problem has been examined by many different researches in the field
of applied stochastic mechanics following different lines of attack. The problem is twofold:
the determination of the response process, and the isolation of the non-elastic part of the re-
sponse. One of the first to look into the problem was Caughey [1] who examined the response
of a bilinear hysteretic system to stationary Gaussian white noise. In his work he used the
Kryloff-Bogoliubov averaging method to obtain equations for the amplitude and phase drift,
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and he applied an equivalent linearization technique to these equations. Others have exercised
the equivalent linearization and ’non-linearization’ techniques, but the main drawback of these
methods is that only second order information about the response is obtained. Response dis-
tributions and especially stochastic information about the non-elastic displacements are not ob-
tainable. Employing the Stratonovich-Khasminski stochastic averaging technique leading to
diffusion equations, as seen above, calls for the application of the Fokker-Planck-Kolmogorov
equation. Hence Roberts does in [19] (among several papers) obtain distributions for the plastic
displacement increments.

In stead of averaging, Karnopp & Scharton in their pioneer work [16] go in the opposite di-
rection and make use of the fact that between the oscillations causing the plastic displacements
the hysteretic oscillator behaves as a linear oscillator. In this way the plastic displacements get
special attention. Based on the same idea, but avoiding some of the approximations introduced
by Karnopp & Scharton and others extending the work of Karnopp & Scharton, Ditlevsen has
applied the so-called Slepian model approach to the stationary Gaussian ALO response and
thereby reached very good results for the distribution of the plastic displacements of the ideal
EPO. A comprehensive presentation of these results is given in [6]. It is based on the success of
this approach that the work on non-ideal EPOs with hardening and softening presented in this
part of the thesis is developed.

None of the different classes of methods mentioned in this overview section are of simulation
type. When non-linearity becomes too complicated, one usually has to resort to direct simula-
tions of the response and then extract the plastic displacement process. This is where the work
presented here comes into the picture. In order to reduce simulation time a semi-analytical sim-
ulation scheme which uses the results known from [6] and which simulates directly the plastic
displacement process is derived. It is named theSlepian Model Simulation Method all though
it includes simulations from other distributions than those obtained from the Slepian model.

1.4 The Slepian Model Simulation Method for the SDOF EPO

It was mentioned early in this chapter that the important design issue is degradation of the
mechanical system. Hence, it is the plastic displacement process, denotedXP�τ�, which is of
interest as it is this process that monitors how degradation evolves in time. In Fig. 1.5 the bold
curve shows two sections of a possible sample path of the SDOF EPO response to white noise.
The dashed curves show how elasticity limits develop in time. First of all it is noted, that the
assumption about light damping and non-dominating hysteresis implies that the EPO response
process is narrow banded and very close to the response of a linear oscillator. Next it is seen,
that it is characterized by regions of one or several, in time closely positioned, consecutive
excursions of the response beyond the elasticity limits, and regions where the response stays
inside the limits (this is for typographical reason shown by curved cut lines). The first regions
are termedclumps. The others are calledinter-clump regions, and the time from one clump to
another is named theinter-clump waiting time.
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Figure 1.5: Two sections of a possible stationary sample path of the SDOF EPO excited
by white noise.

The aim of this first part of the thesis is to present a semi analytical simulation scheme that
can produce approximate sample curves of the plastic displacement process by an approximate
time integration scheme. Traditional numerical time integration evaluates the sample curves at
discrete points separated in time by about one tenth of the natural period of the ALO. Based
on the assumptions: light damping and non-dominating hysteresis, the samples are computed
at discrete points, separated by either half a period or several periods depending on the relevant
time scale at a given point of the sample.

The choice of relevant time scale depends on whether the response process is in a region where
the plastic displacement changes or not. The clumps are regions where the plastic displacement
changes. In these regions oscillations are essential why it is reasonable to use a fast time scale
of magnitude some few natural periods of oscillation. Between clumps the plastic displacement
process is constant and because such inter-clump regions for weak hysteresis can have consid-
erable duration, the relevant time scale in these regions is a slow time scale (reflecting damping)
of much larger magnitude than that used for the clumps. The conclusion is that it is a natural
thought to divide the simulation of a plastic displacement process sample into the simulation of
clumps and inter-clump waiting times.

The simulation of the clumps is based on the so-called Slepian model which models the re-
sponse process of the ALO after an outcrossing through the elasticity limits. Simulating the
ALO response extreme by use of the Slepian model and next transforming this extreme into an
extreme for the EPO response employing the so-called Karnopp-Scharton hypothesis (the more
justifiable the weaker the hysteresis) the change of the plastic displacement process is approxi-
mately simulated. This carries on until the clump is ended. Postponing details till later, it is here
only noted that in this way the real plastic displacement process during a clump is approximated
by a jump process with jumps separated in time precisely by half a period of the ALO.

Depending on the elasticity limit and the damping ratio, the inter-clump waiting time distribu-
tion FT �τ� will, due to transients, have significant jumps at the first few integer multiples of
half natural period of the ALO. In accordance with asymptotic results, the upper tail ofFT �τ�
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Figure 1.6: A typical inter-clump waiting time distribution for the scaled elasticity limit
equal 2 andζ � 0�01. Left plot: full waiting time distribution, middle plot:
zoom on transient tail, right plot: logarithmic plot showing exponential upper
tail.

is exponential. Figure 1.6 shows a plot of a typical waiting time distribution. Outcomes of the
waiting time belonging to the lower transient tail or the upper exponential tail ofFT �τ� is simu-
lated by simple means exploiting that until the next outcrossing the response is governed by the
ALO. It is the simulation of the waiting time that is the real strength of the simulation scheme.
For high elasticity limit levels the average duration of the inter-clump regions is very large com-
pared to the duration of the clumps. Thus a lot of simulation time is saved by simulating the
waiting time in only a few steps rather than in steps of one tenth of a period.

1.5 Outline of the Following Chapters

Chapter 2. presents the Slepian model for the clumps of excursions in the SDOF EPO re-
sponse as well as the simulation of those.

Chapter 3. deals with the related waiting time distribution and its simulation.

Chapter 4. explains the direct numerical time integration scheme employed as the tool of
verification of the Slepian model simulation method.

Chapter 5. presents simulation results for the SDOF EPO, with hardening and softening.

Chapter 6. presents the conclusions.

Appendix A. presents two restoring force diagrams
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1.6 Summary

1.6 Summary

It has been made clear that the investigation of the response of oscillators – especially single
degree of freedom oscillators – with light damping and weak hysteresis and excited by a white
noise process is a relevant problem. The applicability of the idealized white noise process is
justified by the presence of only light damping.

The relevant governing equations for different stochastic quantities of the response have been
set up – including the scaled equation of motion and a related envelope process defined as an
amplitude process based on the mechanical energy of the oscillator.

The main features of the approximate semi-analytical numerical simulation strategy, which is
the subject of this part of thesis, has been presented. The concept is quite simple. One observes
that in certain regions of time the response experiences several excursions beyond the elasticity
limits and in others it does not. The regions of excursions are calledclumps and the time be-
tween clumps is called theinter-clump waiting time. As degradation of the mechanical system,
which is the result of excursions, is considered the main design issue, the simulation scheme
divides the simulation procedure into simulation of the clumps and inter-clump waiting times.
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Chapter 2

Modeling and Simulating Clumps

The degradation of the white noise excited SDOF EPO is not a continuously ongoing process.
Degradation takes place only in limited intervals of time. In this chapter those parts of the re-
sponse path which contributes to the plastic displacement processXP�τ� are considered. Plastic
displacements are due to the excursion of the response outside the elasticity limits. Thus plastic
displacements occur when the energy level of the oscillator is sufficiently high for excursions
to take place. Due to the random loading and damping the energy level drifts and diffuses in
time. It builds up and decreases slowly compared to the fast time scale of the oscillations. Con-
sequently plastic displacements are most likely to arrive in clumps. How to model and simulate
these clumps in the SDOF case is the subject of the present chapter.

2.1 Clump Definition

The following discussion reflects the difficulties in introducing a precise and at the same time
universal definition of a clump. Defining a clump is, however, unavoidable as simulating a
plastic displacement increment depends on whether it is the first after an interval of oscillations
inside the elasticity limits, i.e. if it is the first in a clump, or it follows one or several closely
preceding plastic displacement increments. It is shown later that the first plastic displacement
increment is on the average smaller than the following increments. The question is simply: how
close do two plastic increments have to be in time as to be considered belonging to the same
clump?

Though it was ensured by the continuity requirement for the velocity (Sec. 1.2.1) that the re-
sponse is continuous and smooth, the continuity condition did not put any restrictions on how
wiggled the response path can possibly be. Thus, the response process is regular, meaning that
only finitely many outcrossings occur per unit time, but due to the white noise excitation a lot of
wiggles are, however, present in the response. Figure 2.1 shows how the response crosses out
of and in to the elasticity domain several times on its way to a crest maximum outside the elas-
ticity domain. Between each out- and incrossing a plastic displacement increment is generated.
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XP � u�

XP�τ 0� � u��τ 0�

τ 0

Figure 2.1: Zoom of the response path on its way to a crest maximum above the upper
elasticity limitXP�τ0� � u��τ0�.

Thus plastic increments can arrive very closely in time. The termscrest maximum andtrough
minimum are introduced to avoid confusion with the terms global maximum and minimum, re-
spectively. A crest maximum is the global maximum within a single crest of the response, and
a trough minimum is the global minimum within a single trough.

From an engineering point of view it is the crest/trough extremes outside the elasticity domain
that are important. Each of the small wiggles contributes to the plastic displacement process,
but it is sufficient to know the grand total of these plastic displacement increments generated
on the way to a crest/trough extreme, as this is a satisfactory measure of degradation. This is
a very important observation that we will return to over and over again because it simplifies
the modeling of the plastic displacement process considerably. The argument is supported by
the fact that wiggles may not be present in reality but simply be the result of the white noise
modeling of the real load. Consequently the above question should be rephrased: how close
must a crest and a trough, both outside the elasticity limits, be in time as if to be considered
belonging to the same clump?

Look at the schematics in Fig. 2.2. They show the response (neglecting the wiggles) in situa-
tions where the energy level is high and some plastic deformation has already taken place. I.e.
they show different possible clump candidates. The upper schematic shows that due to strain
hardening or softening the upper and lower elasticity limitsu� andu� are not of the same size
and dependent on time. The asymmetry of the elasticity limits makes it most likely that every
second crest/trough is outside the elasticity limits, whereas every other second is not. Hence it
is reasonable to argue that the clump is not terminated until at leasttwo consecutive crest/trough
extremes are inside the elasticity limits.

The lower schematic in Fig. 2.2 illustrates how the drifting of the amplitude process makes it
likely that the amplitude at high energy levels drifts forth and back around the elasticity limits,
until it finally fades away so much that several crests and troughs exclusively inside the elas-
ticity limits follow. During the drifting forth and back of the amplitude process consecutive
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Figure 2.2: Different clump candidates.

crest/trough extremes outside the elasticity limits are followed by consecutive crests/troughs in-
side the elasticity limits, which are then again followed by crests/troughs outside the elasticity
limits and so forth. Whether to regard the entire drifting phase as a single clump or an ensemble
of clumps is a somewhat open question. It has been custom in works like [16] and [6], to con-
sider the above described phenomenon an ensemble of clumps. Then each clump is terminated
at the moment when a crest or trough inside the elasticity limits is met. It is from a time scale
point of view (as discussed in Sec. 1.4) tempting to consider the entire drifting phase as one
single clump. It rises one problem, though: how many crests and troughs inside the elasticity
limits must follow the last crest/trough outside the elasticity limits before a clump is considered
ended and one shifts to the inter-clump waiting time simulation? There is not a simple rational
way to decide this. Guidelines are: the amplitude drifting is the more pronounced the lower
the yield levelsu�, u� and the weaker the damping. The reasons are as follows. Equation 1.20
shows that for low damping the rate of change of the amplitude is low. Hence, when a large
amplitude is first build up it takes long time for it to fade away. With lower yield limits, the
probability of being outside the elasticity limits increases, causing crossings out and in the elas-
ticity domain to become more frequent. Though guidelines are understandable, laying down
rules – as function ofu��u� and the damping ratioα – for the number of crests and troughs
inside the elasticity limits required to end the clump, is not straightforward. To be able to handle
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Figure 2.3: An example of an empty clump in the caseusym � u� � u� andXP � 0.

at least the asymmetry problem, one therefore resolves that, a clump is terminated when, after
a crest/trough inside the elasticity limits, two consecutive crests/troughs are inside the elasticity
limits. The consequence is that the inter-clump waiting time simulation will include simulations
of short waiting times as well as long waiting times. That is, the waiting time simulation will
have to operate on both the slowand the fast time scale. This will be the subject of the next
chapter.

In stead of defining a clump as terminated when two consecutive crests/troughs are inside the
elasticity limits, there is a way to introduce a single yield limit,usym that makes it possible to
define the clump as terminated, when the first crest/trough inside this yield limit is encountered.
The problem regarding the asymmetric yield limitsu� andu� is, that the one limit might be
so much smaller than the other, that crossings of the smallest is notably more likely than the
crossings of the largest. If one defines

usym � min�u��u�� (2.1)

then it is ensured that the crest/trough is inside the lowest, i.e. the most critical, yield limit if the
crest/trough is inside the so-called symmetrized yield limitusym. Thus the condition of having
two consecutive crests/troughs inside the elasticity limits to end a clump can be replaced by a
condition that a clump is ended when a crest/trough insideusym is met. Clearly the introduction
of usym simplifies the clump termination criterion. However, the real advantage of the notion of
a symmetrized yield level becomes apparent, when in Chapter 3 the inter-clump waiting time is
treated. The reason is that it is more simple to consider crossings of a process out of symmetric
domains, than crossing out of asymmetric domains. Therefore it becomes natural to useusym

not only for the clump termination criterion, but for the clump initiation criterion too. Summing
up, the clump definition becomes (this definition was first given in [12]):

Clump Definition
A clump is defined by: a crest/trough outside the symmetrized yield level
usym � min�u��u�� followed by crests and troughs until the moment when a
crest/trough inside the symmetrized limit is encountered.
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Figure 2.4: Schematic of a possible sample of the ALO response process.

It is noted that the consequence of the present clump definition is that clumps with no plastic
displacement increments at all may occur, i.e. an empty clump. Say, as shown in Fig. 2.3, that
usym � u� then the first excursion in a clump is, according to the definition, of course aboveusym,
but it may be belowu�. The following trough may be belowusym. Thus the clump is initiated
and ended without any yielding taking place. In the following excursions ofusym not causing any
yielding are termedempty excursions, whereas excursions causing yielding are termedgenuine
excursions.

2.2 Definition of The ALO Response Process

The next section deals with the modeling of the plastic displacement increment. To that end a
precise definition of how the ALO is associated to the EPO is required. The definition used in
this thesis is given in the present section. To keep the discussion in Sec. 1.1 simple, the ALO
was represented by the equation of motion

Ẍ � 2α Ẋ � �1�α 2�X � W �τ� (2.2)

What was not made clear was that the ALO response has some jumps. This is depicted in
Fig. 2.4. After a crest/trough outside the elasticity limits, the EPO behaves like a linear oscillator
with equilibrium positionXP�τ� and initial conditionsX � u�� Ẋ � 0 or X � �u�� Ẋ � 0. The
idea is that the ALO shall reproduce this response, because it is the EPO response relative
to XP that defines the time to the next excursion and the mechanical energy of the EPO at
this time. Consequently, after each crest/trough of the EPO response outside the elasticity
limits, the ALO is restarted with initial conditionsX � u�� Ẋ � 0 or X � �u�� Ẋ � 0. This
is what causes the jumps. Approximations to the crest/trough extremes of the ALO response
outside the elasticity limits will later prove useful in the computation of the plastic displacement
increments. Therefore the ALO response process includes these crest and trough extremes,
which appear right before each of the jumps.
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Figure 2.5: The response approximation according to the Karnopp-Scharton approxima-
tion (based on Fig. 2.1)

2.3 Modeling the Plastic Increments

It has already been pointed out that it is the sum of the plastic displacement increments generated
on the way to a crest/trough and not each of the increments that is of interest. For weakly
hysteretic systems an excursion of the elasticity limit is in the first place the result of a resonant
buildup of the amplitude. I.e. it is mainly the result of energy put into the system during
longer time and not the present forcing. As the driving forceW �τ� is of orderα 1�2 the effect
of this relatively small force in the short time interval during which the yielding takes place is
insignificant in comparison to the effect of the restoring force which at the same time near is its
maximum. Thus, neglectingW �τ� during yielding will introduce a very small error in assessing
the extreme and it will remove the wiggles, which by this argument are seen to be unimportant
– supporting the previously mentioned engineering point of view further. Figure 2.5 illustrates
this. Likewise the velocity proportional viscous damping force is negligible compared to the
restoring force, as velocity is close to zero and damping is of orderα . The approximations
suggested here were first presented by Karnopp and Scharton in their joint paper [16]. Hence,
in the following they are phrased the Karnopp-Scharton hypothesis. Clearly the error by the
Karnopp-Scharton hypothesis gets smaller the weaker the hysteresis, because the higher the
yield levels the shorter the duration of the yielding and the more dominating the restoring force.

One is now in a position where one can relate the plastic increment∆XP to the response before
yielding starts. As shown to the right in Fig.2.6∆XP is a function of the crest/trough extreme
valueMEPO of the EPO response during yielding. Employing the Karnopp-Scharton approxi-
mation the approximate extreme value depends solely on the mechanical energy in the EPO the
moment yielding begins. Since damping and driving forces are neglected during yielding, the
mechanical energy present in the SDOF EPO when yielding begins, is at the time yielding stops
fully transferred into potential energy and plastic dissipation, as the velocity is zero at this time.

Applying the notion of the ALO, the above energy considerations may be rephrased in a way
that will turn out useful. Until yielding the ALO and the EPO response processes are identical
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XALOMALOu��τ 0�
X�XP�τ 0�
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Figure 2.6: The computation of the approximate crest maximumMEPO and the corre-
sponding plastic displacement increment∆XP. The excess potential energy
of the ALO is transferred into excess potential energy and plastic work of the
EPO. Note that the restoring force diagrams are scaled.τ 0 denotes the time
yielding begins.

except for a translation byXP. Therefore they posses the same mechanical energy at the timeτ 0

yielding commences. Neglecting damping and driving forces afterτ 0, an approximate extreme
valueMALO of the ALO is obtained. By this approximation the potential energy at the approxi-
mate extremeMALO equals the mechanical energy in the EPO when yielding begins. Therefore
the potential energy atMALO in excess of the potential energy at the yield level equals the poten-
tial excess energyplus the plastic work of the EPO. Figure 2.6 illustrates, in the case where the
extreme is a maximum that the excess potential energy of the ALO is transferred into excess of
the EPO. Referring to Fig. 2.6 the plastic displacement increment∆XP in the specific case of a
maximum is determined by the equations (note thatr�MEPO� equals the new elasticity limitu�

after yielding):

∆XP � MEPO � r �MEPO� (2.3)
� MEPO

u��τ0�
r�τ �x�dx � 1

2

�
M2

ALO � u�
2
�τ 0�

�
(2.4)

where theτ in r�τ �x� underlines that the restoring force diagram depends on time in the sense
that is depends the past displacement history,τ 0 is the time yielding begins andMEPO denotes
the maximum value of the EPO response relative to the plastic displacementXP�τ 0�. The corre-
sponding equations in the case of a minimum are:

∆XP ��MEPO � r ��MEPO� (2.5)
�
�MEPO

�u��τ 0�
r�τ �x�dx � 1

2

�
M2

ALO � u�
2
�τ 0�

�
(2.6)

in which, anticipating events,MEPO denotes the absolute value of the minimum of the EPO re-
sponse relative toXP�τ 0�. Therefore the lower elasticity limitu� after yielding equals�r��MEPO�.
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2.4 ALO Response Properties and Slepian Modeling

It follows from the previous section that the simulation of a plastic displacement increment∆XP

can be carried out by first simulating an approximate extremeMALO of the ALO response. Some
process theory for the ALO response is a prerequisite for the description of the simulation of
the approximate extremes. Since the ALO response is Gaussian the so-called Slepian Model
process, which is the subject of this section, proves useful.

The first observation one makes is that it is sufficient to consider upcrossings of the Gaussian
process through some positive levelu. Downcrossings of the ALO response through a negative
level�u is simply obtained by changing the sign of the ALO response and considering upcross-
ings of the corresponding positive levelu. This is permissible, as changing the sign of the ALO
response does not destroy Gaussianity. Thus, in the following we consider only upcrossings of
positive levelsu and the related approximate maxima which are denotedMALO.

Obviously the ALO response is non-stationary. However, by use of conditioning, one can trans-
form the results obtained from a stationary process into statements valid for the non-stationary
process. Therefore in the following we consider firstly level crossings of the stationary Gaus-
sian response process of the linear oscillator (LO) without the jumps of the ALO response. To
keep notation simpleX will throughout this section temporarily denote the LO response and not
the EPO response.

2.4.1 Upcrossings and Maxima of Stationary Gaussian Processes

Since we are interested in upcrossings and the matching maxima, it is natural to study the
non-stationary process that arises from the stationary process by conditioning on either the
occurrence of an upcrossing or a maximum. Conditioning on an upcrossing or a maximum
at time τ 0 can be fully expressed by conditioning onX and its derivatives atτ 0. Exploiting
that the stationary LO process is Gaussian its derivatives are Gaussian too, why the process
conditional onX�τ 0�� Ẋ�τ 0�� Ẍ�τ 0�� � � � is Gaussian and identical to the linear regression of the
process onX�τ 0�� Ẋ�τ 0�� Ẍ�τ 0�� � � � added with a zero mean non-stationary Gaussian residual
process. Since the linear regression for Gaussian variables coincides with the conditional mean,
the non-stationary conditioned process is written

Xcond�τ � τ 0� � E�X�τ��X�τ0�� Ẋ�τ 0�� Ẍ�τ 0�� � � � ��R�τ � τ 0� (2.7)

Due to the white noise excitation the derivatives of order higher than one does not exist. One
may show that for this reason all possible linear regressions appearing in 2.7 are identical to
E�X�τ��X�τ0�� Ẋ�τ 0��. This is in agreement with intuition. Since the governing equation rep-
resents a mechanical system, any state of this system is fully defined by position and velocity.
Adding to this that the load is independent of the past, it is always sufficient to condition on
X�τ0� andẊ�τ 0� in order to obtain full probabilistic information about the process conditional
on the process at timeτ 0. The point of this argument, we return to later when the approximate
simulation of the separate extremes in a clump is treated.

30



Modeling and Simulating Clumps

Before writing out the linear regression in full, its structure is easily realized. Since the linear
regression operator is linear in its arguments, taking the linear regressionE���X�τ 0�� Ẋ�τ 0�� on
each side of the LO’s equation of motion shows, that the linear regression of the stationary LO
response process onX�τ 0�� Ẋ�τ 0� satisfies the homogeneous equation of motion. The equation is
homogeneous because the load processW �τ� has zero mean and is independent of the response
processX . Stated in other words: the linear regressionE�X�τ��X�τ 0�� Ẋ�τ 0�� equals the free
damped response with initial conditionsX�τ 0�� Ẋ�τ 0�. It is therefore clear that the residual
processR represents the wiggles of the conditional response, thus accounting for the part of the
response due to the load. For a more detailed discussion refer to [10].

To write down the expression for the linear regression, the meansE�X�τ�� andE�Ẋ�τ�� and the
covariance functionc�τ� � Cov�X�0��X�τ�� of the stationary LO response are required. From
the equation of motion or from the Itˆo formula Eq.(1.11) one derives that the means are both
zero. Thus the linear regression becomes

E�X�τ��X�τ0�� Ẋ�τ 0�� � c�τ�τ 0�X�τ0� �
ċ�τ�τ0�

λ 2

Ẋ�τ 0� (2.8)

in which λ 2 denotes the second spectral moment ofX and equals Var�Ẋ�τ��. Since the linear
regression equals free response with initial conditionsX�τ 0�� Ẋ�τ 0� it follows thatc�τ � is iden-
tical to the free response with initial conditionsc�0� � 1 and ˙c�0� � 0, which complies with
normalization and stationarity. This is a standard problem giving:

c�τ� � e�ατ �cosτ � α sinτ �� τ � 0 (2.9)

Combining (2.7) and (2.8) one finds that the covariance function ofR which is needed later is
given by:

Cov�R�τ 1� τ 0��R�τ2� τ 0�� � c�τ1�τ 2� � c�τ 1� τ 0� c�τ2� τ 0� �
ċ�τ1� τ 0� ċ�τ2� τ 0�

λ 2
(2.10)

One can now turn to the question of choosing the proper conditioned processXcond�τ�. In the
linear regressionE�X�τ��X�τ 0�� Ẋ�τ 0�� the variablesX�τ0� and Ẋ�τ 0� are Gaussian, because
this is the distribution of these variables if sampled at all points in time. However, for the
upcrossings, the distribution ofX�τ 0� and Ẋ�τ 0� conditional onX�τ 0� � 0 andẊ�τ 0� � u is
much more relevant. For the maxima the distribution conditional onẊ�τ 0� � 0 is relevant. If
these conditional distributions are substituted into the expression for the linear regression in the
place ofX�τ0� andẊ�τ 0� a generally non-Gaussian distribution ofXcond�τ� is generated. In this
way a model for the process under the given conditions is obtained. This model is the so-called
Slepian model taking its name from the mathematician D. Slepian who was the first to work on
this kind of modeling.
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Consider first conditioning on a maximum. Then the model becomes

Xmax�τ�τ max� � c�τ�τmax�M � R�τ�τ max� (2.11)

in which M is distributed as the maxima ofX , andτ max is the time of the maximum. If one
samples all maxima of the stationary LO response process their distribution becomes standard
Gaussian, i.e. of mean zero. This is useless, as we seek a model that describes what happens
after an upcrossing of levelu. One should rather sample only the largest maxima aboveu.
In stead of doing this it turns out to be more fruitful to sample the normalized velocityZ �
Ẋ�τ 0��

�
λ 2 conditional on upcrossings and to evaluate the approximate maximum from the

following Slepian model

Xu�τ�τ 0� � c�τ�τ 0�u � ċ�τ�τ 0��
λ 2

Z � R�τ�τ 0� (2.12)

If Ẋ�τ 0� is sampled at time pointsτ 0 for which X�τ 0� � u andẊ�τ 0�� 0, then the normalized
velocityZ has standard Rayleigh distribution independent ofu (see e.g. [5]):

fZ�z� � ze�
1
2z2
� z � 0 (2.13)

Neglecting, in accordance with the discussion in Sec.2.3, the wiggles due to the driving force
and the damping a model for the approximate response after an outcrossing is obtained by:

Xu�τ�τ 0� � u cos�τ�τ 0� � Z sin�τ�τ 0�� τ � τ 0 (2.14)

Denoting the first maximum of this modelM one finds that this approximation to the maximum
of the stationary LO response process obeys the equation

M2 � u2 � Z2 (2.15)

which is simply a restatement of the energy equation

1
2�1�α 2�M2 � 1

2�1�α 2�u2 � 1
2Ẋ2�τ 0�X�τ0� � u� (2.16)

showing thatM, as wanted, represents the energy in the oscillator right before the outcrossing.
By use ofP�Z � z� � e�

1
2z2

, it follows from Eq.(2.15) that the approximate maximum has
truncated standard Rayleigh distribution

P�M � m�M � u� �
e�

1
2m2

e�
1
2u2 � m � u (2.17)

2.4.2 The ALO Maxima

Next step is to find the distribution of the approximate maximaMALO overu of the ALO response
by use of the distribution of the approximate maximaM overu of the stationary LO response.
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There are two different kinds of such maxima. Those that corresponds to the first extreme in a
clump and those corresponding to the following extremes in the clump. In the case of the first
kind of maxima, all one knows is that, according to the clump definition, the response before
the outcrossing lies inside the symmetric limits�u andu. In the second case one knows, due to
the narrow banded response, that approximately half a period before the maxima the response is
at the opposite elasticity limit. Comparing the two cases it is clear that the mechanical energy of
the oscillator before an outcrossing is smaller in the first case than in the second case. Therefore
the first kind of maxima are on the average smaller than in the second case, which must be
reflected by their distributions. Thus we seek the distribution of the maxima conditioned on
the response being inside��u�u� in the time up to the outcrossing and the distribution of the
maxima conditioned on the response being at a fixed value approximately half a period before.
These distributions are obtained by long run sampling in the stationary LO response the first
upcrossings that follow after time points at whichX � �u and Ẋ � 0 (in accordance with
Fig.2.4). In stead of reconsidering the sampling process, which led to the distribution ofZ and
M, an alternative simple approach giving approximations to these two distributions by use of
Bayes’ formula and the already established distributionfM�m� is employed.

2.4.3 First Maximum in a Clump

If the response is inside��u�u� in the time up to the outcrossing, then the minimum before the
maximum is of course inside this interval. The opposite is not true. However, as the minimum
equals the energy in the oscillator it may for practical purposes be expected that it is sufficiently
accurate to condition on the minimum. Furthermore, as the response is narrow banded the
minimum occurs approximately half a period before the maximum. Therefore, conditioning on
the response half a period before the maximum being inside��u�u�, rather than conditioning
on the entire process up till the upcrossing may be expected to work fine. This has in [4]
been proven to hold true. It is this line of reasoning which shows why it is useful to consider
the approximate maxima of the ALO response rather than the energy at the time of outcrossing.
Due to the narrow band characteristic of the response the time distance between two consecutive
extremes scatters only little around half a period. The time distance from a minimum preceding
an upcrossing is, however, less well-defined rendering the conditioning on a minimum before
an upcrossing more complicated than conditioning on a minimum before a maximum.

Setting the time of the maximum to 0 one can write the density that is sought

fM

�
m �X��π� 	 ��u�u�

�
(2.18)

By Bayes’ formula this is rewritten into

fM

�
m �X��π� 	 ��u�u�

�
∝ P

�
X��π� 	 ��u�u� �M � m

�
fM�m�� m � u (2.19)

The unconditional density of the approximate maximum follows from Eq. (2.17):

fM�m� �
me�

1
2m2

e�
1
2u2 � m � u (2.20)
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Assuming, as an approximation, that renormalization of the process has taken place, the dis-
placement conditional on a maximum half a period before is approximated using the linear
regression (2.8) rendering

P
�
X��π� 	 ��u�u� �M � m

� � P
�
X��π� 	 ��u�u� �X�0� � m� Ẋ�0� � 0

�
� P

�
c��π�m � R��π� 	 ��u�u�

�
� Φ

	
u� µm

σ



� Φ

	�u� µm
σ




� Φ
	

u� µm
σ



(2.21)

in which

µ � �c��π� � e�απ (2.22)

σ2 � Var�R��π�� � 1� e�2απ (2.23)

The varianceσ2 is obtained from Eq. (2.10). Substituting Eq. (2.20) and Eq. (2.21) into Eq.
(2.19) then gives conditional density

fM

�
m �X��π� 	 ��u�u�

�
∝ Φ

	
u� µm

σ



me�

1
2m2

� m � u (2.24)

and the corresponding complementary distribution function

1�FM

�
m �X��π� 	 ��u�u�

�
�

� ∞
m Φ

�u�µz
σ

�
ze�

1
2z2

dz� ∞
u Φ

�u�µz
σ

�
ze�

1
2z2 dz

�
ϕ�m�Φ

�u�µm
σ

� � µϕ�u�Φ
�µu�m

σ

�
ϕ�u�Φ

�u�µu
σ

� � µϕ�u�Φ
�µu�u

σ

� � m � u

(2.25)

2.4.4 Second and Following Maxima in a Clump

After the first extreme in a clump the ALO starts at rest at a fixed value equal to one of the yield
limits. Therefore the distribution of an approximate maximum after a fixed minimum is sought.
Due to the narrow banded response the maximum is encountered very close to half a period
after the minimum. Consequently an approximate conditional distribution fit for the simulation
of an approximate ALO maximum following a fixed minimum is derived from

fM

�
m �X��π� ��ξ

�
(2.26)

in which ξ � 0 denotes the absolute value of the fixed minimum at which the ALO starts.
Similarly to the derivation in the previous section one obtains

fM

�
m �X��π� ��ξ

�
∝ ϕ

	
ξ � µm

σ



me�

1
2m2

∝ mϕ
	

m� µξ
σ



� m � u (2.27)
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Figure 2.7: Comparison of the distribution of the first approximate ALO maximum in a
clump (thick curves) and the distribution of the second and following approx-
imate ALO maxima in a clump (thin curves). See discussion in the text.

and thereby the corresponding complementary distribution function

1�FM

�
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�
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�
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�
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u zϕ
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�
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�
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�
� µξ

σ Φ
�
�u�µξ
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(2.28)

The plots in Fig. 2.7 compare the distributions (2.25) and (2.28) to each other forζ � 0�05,
different values ofu, andξ � u in (2.28). The conditioning is seen to have the wanted effect
and it is observed that the higher the levelu the smaller the standard deviation. This conforms to
intuition, as the distribution of the velocity and consequently the kinetic energy is independent
of u, whereas the potential energy is quadratic inu.
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Figure 2.8: Non-ideal kinematic hardening. To the left: uploading, unloading and reload-
ing paths. In the middle: the Bauschinger effect for reversed loading. To the
right: Partial reversed loading followed by uploading.

2.5 From ALO to EPO Response

Having simulated an approximate maximumMALO from one of the conditional distributions
(2.25) and (2.28) an approximate extreme of the EPO is obtained by substitutionMALO in one
of the energy equations (2.4) or (2.6) and solving with respect toMEPO. Depending on the
complexity of the restoring force functionr�τ �x� the equations forMEPO are solved analyti-
cally or numerically. The more complex the more time consuming the computation ofMEPO

becomes. In order to minimize the complexity in computingMEPO a simplified model for non-
ideal plasticity with strain hardening/softening is presented in this first study of how to deal
with non-ideal plasticity combined with hardening/softening in Slepian Model simulations. In
[8] and [12], respectively, non-ideal plasticity without hardening/softening and ideal plasticity
with hardening/softening have been treated in the context of Slepian Model Simulations, but
never joined.

In Appendix A some of the phrases defined in the theory of plasticity and used in the following,
are shortly reviewed. In modeling the restoring force diagram there are two effects to take
into consideration: unloading/reloading and reversed loading (the so-called Bauschinger effect).
The diagram to the left in Fig. 2.8 shows unloading/reloading effect. As indicated byX0 this
effect is easily accounted for by a zero point variable, i.e.X0, the current plastic displacement
XP and some functiong for the curve describing the non-ideal behaviour above the yield limit
(defined by the dotted line). In the diagram in the middle of Fig. 2.8 the Bauschinger effect
is shown. In the case of kinematic strain hardening yielding starts at a lower level than that
indicated by the dotted line. This dotted line corresponds to the dotted line in the left diagram.
Thus, if strain hardening is assumed kinematic, the curved part on the reversing path is not
identical to the one given byg on the uploading path. Furthermore the shape of the curve
depends on how far the uploading reaches on the branch defined byg. Finally the diagram to
the right in Fig. 2.8 shows partial reversed loading followed by uploading. Assuming kinematic
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Figure 2.9: A simplified model for non-ideal strain hardening. To the left: uploading,
unloading and reloading paths. In the middle: the Bauschinger effect for re-
versed loading. To the right: Partial reversed loading followed by uploading.

strain hardening, yielding during the second uploading starts above the dotted line which is
identical to the one in the left diagram. Thus the curved part on the second uploading path
is also different from the one defined byg. Clearly carrying on like this will complicate the
hole matter even more. Thus one will need several different functionsg to describe the many
different curved parts of the restoring force diagram. This again implies that several different
implementations for the solution of the energy equations may be needed. To avoid this the
following approach is suggested.

One fixes some functiong as shown in the uploading/unloading/reloading diagram to the left
in Fig. 2.9 which is identical to the left diagram in Fig. 2.8. This function is then used in the
case of reversed loading too. As is shown in the diagram in the middle of Fig. 2.9 this implies
that yielding in reversed loading begins at the dotted line. Thus hardening is not kinematic
nor isotropic, but independent. However, for curved parts of smaller and smaller extend the
simplified diagram approaches ideal plastic hardening with kinematic hardening. Since for
bending in slender frames made out of metal the curved parts of the restoring force diagram
are usually small, the simplification is, from an engineering point of view, acceptable. To the
right in Fig. 2.9 the case of partial reversed loading followed by an uploading is reconsidered.
As shown, it is suggested that the onset of yielding during the second uploading is defined by
the same dotted line as in the left diagram, such thatg is used for the curved part in this case
too. This simplification is based on the assumption that if the material experiences reversed
yielding, even if it is only partial, the material has recovered sufficiently to exhibit full non-
ideal plasticity during the following uploading. Again this assumption gets less problematic the
closer one is to ideal plasticity. The zero point is introduced for the purpose of handling the
unloading/reloading situation as shown to the left in Fig. 2.9. This means that whenever the
load is reversed, the zero point is set equal to the current plastic displacementXP. Then the zero
point stays unchanged during succeeding unloadings/reloadings until the next reversed loading
appears and so forth. It is noted that the definition given here applies to strain softening as well.
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Figure 2.10: The characterization of the simplified restoring force diagram.

Having decided on the simplified model it is time to set up expressions for the evaluation of the
plastic increments∆XP, and the updating of the yield limitsu� andu�. Figure 2.10 shows the
case of strain hardening. The force diagram of the simplified model is defined by the inclined
dotted line defining the yield limit at which the curved parts begin, the functiong�s� for the
curved part and the zero pointX0. In turn the inclined lines are defined by their inclinationγ
and the initial yield levelsu� � u. In addition to the actual yield levelsu� two assisting levels
v� connected to the zero pointX0 are introduced. The levelv� is shown in the figure too. The
levels are given by the formulas

v� � u �
γ

1�γ
X0 � v� � u � γ

1�γ
X0 (2.29)

It is noted that strain softening is obtained forγ � 0, which does not change the validity of the
formulas for the assisting levelsv�.

Say we consider thei’th excursion of the elasticity limits. Furthermore say this is a maximum.
Then the situation is as shown to the left in Fig. 2.11. The plastic displacement and the yield
levels before the yielding is denotedXP� i andu�i , respectively. After the yielding the new plastic
displacement and the yield levels are denotedXP� i�1 andu�i�1, respectively. The plastic increment
∆XP� i is in the following denotedDi and equals

Di � XP� i�1 � XP� i (2.30)

It follows from the figure that the energy equation which transforms the simulated approximate
MALO into MEPO becomes

v� �MEPO � u�i � �
� �XP�i�MEPO� � �X0� v��

�XP�i�u�i � � �X0�v��
g�s�ds �

1
2
�M2

ALO � u�i
2
� (2.31)

From this equation it is observed that the functiong defining the non-ideal part of the force
diagram must be of simple form, such that the integral is easily evaluated by analytical means.
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Figure 2.11:The computation ofMEPO and updating of the plastic displacement and the
yield levels using the simplified restoring force diagram.

Otherwise, the integral is numerically evaluated and it becomes too time consuming to numeri-
cally solve the non-linear energy equation with respect toMEPO, and some of the advantage of
the Slepian Simulation Method is lost. AfterMEPO is computed the yield limits and the plastic
displacement are computed by

u�i�1 � v� � g
�
�XP� i �MEPO�� �X0� v��

�
(2.32a)

XP� i�1 � XP� i � MEPO � u�i�1 (2.32b)

u�i�1 � u � γ
1�γ

XP� i�1 (2.32c)

Where the last equation follows from Eq. (2.29) as this is the yield limit met in reversed loading
whereX0 � XP� i�1. Finally the plastic displacement increment becomes

Di � MEPO � u�i�1 (2.33)

If the i’th excursion of the elasticity limits is a minimum then the situation is as shown to the
right in Fig. 2.11. The energy equation becomes:

v� �MEPO � u�i � �
� �X0� v�� � �XP�i�MEPO�

�X0�v�� � �XP�i�u�i �
g�s�ds �

1
2
�M2

ALO � u�i
2
� (2.34)

and the updating formulas become

u�i�1 � v� � g
�
�X0� v��� �XP� i�MEPO�

�
(2.35a)

XP� i�1 � XP� i � MEPO � u�i�1 (2.35b)

u�i�1 � u �
γ

1�γ
XP� i�1 (2.35c)
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Figure 2.12: Simulating the two first extremes in a clump.

and the plastic displacement increment is computed by

Di � �MEPO � u�i�1 (2.36)

It is noted that the above equations are valid for strain softening also, i.e. forγ� 0. The only dif-
ference is that, because of the softening, the restoring force is actually no longer restoring when
the displacement exceeds certain bounds. Beyond these bounds inertia and restoring forces act
in the same direction, why the displacement grows to infinity and the oscillator collapses when
these bounds are passed. These bounds are, however, seldom met in reality but for the sake of
completeness their approximate assessment is presented. Due to the symmetry of the restoring
force diagram the positive and negative collapse bounds are of the same size. Denoting the
positive collapse boundXcollap one has the following equation:

u�g�Xcollap�u� � 0 (2.37)

2.6 Simulation Scheme

The elements of the clump simulation is now at hand. All that is needed is to link them together.
The linking is quite easy. Having simulated the first extreme in a clump the next extreme is sim-
ulated independently of that first extreme, and so forth. Simulating the extremes independently
is possible for two reasons. An extreme depends on the initial conditions after the previous
extreme in the clump and on the load process. The initial conditions are accounted for by the
conditioning in the distributionFM

�
m �X��π� � �ξ

�
for MALO, and the load process, which is

the source of the randomness described by this distribution, is white noise and thus indepen-
dent of the past. Since the clumps are not of infinite duration one must after each simulation
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IF simulating first clump

Simulate first extreme according to Table 2.2.
ELSE

Simulate first extreme according to Table 2.3.

ENDIF

DO

Simulate extreme according to Table 2.4.

UNTIL clump terminated.

Table 2.1: Simulation of a clump by the Slepian model.

of an extreme decide, by simulation, whether the clump continues or it terminates. In [6] it is
shown that if one generates an outcomeM of FM

�
m �X��π� ��ξ

�
for u� 0, then the condition

M � usym is a good clump termination criterion. Finally it is noted, that in going through the
simulation one must keep track of whether the EPO is experiencing a reloading or a reversed
loading, and in the case of strain softening if the oscillator collapses.

After this outline, an example of the simulation of a single clump is given. To keep it simple only
the ALO response is considered. The EPO response is obtained by the energy transformation.
Assume that the first extremeMALO�1 is a maximum (see Fig. 2.12). It is simulated from
FM

�
m �X��π� 	 ��usym�usym�

�
. EitherMALO�1 � u�1 or not. If MALO�1 � u�1 there is no plastic

deformation and one putsξ � MALO�1, otherwise there is a plastic deformation and one puts
ξ � u�2 , the updated yield limit. Next simulateM from FM

�
m �X��π� � �ξ

�
, settingu � 0 in

formula (2.28). IfM � usym the clump ends. Otherwise the clump continues and the following
minimum�MALO�2 is obtained by simulatingMALO�2 from FM

�
m �X��π���ξ

�
, settingu� usym

in formula (2.28). IfMALO�2 � u�2 the excursion is empty and one putsξ � MALO�2. Else one sets
ξ � u�3 . Then, again, simulateM from FM

�
m �X��π� ��ξ

�
, settingu � 0 in formula (2.28). If

M � usym the clump ends. Otherwise one carries on simulating the next maximumMALO�3 like
one simulatedMALO�2 except for the appropriate changes of sign and indices. This goes on till
the clump terminates. If the first extreme is a minimum, the simulation is similar to the above,
except for changes of sign.

The time development of the simulated plastic displacement process has not been explicitly
discussed. In the true plastic displacement process each phase of yielding has small but finite
duration. In the Slepian Model simulation, the plastic increment is computed in a single step
localized at a single time point. The result is that plastic displacement process is discretized.
Thus, during a clump, the plastic displacement process is discretized as a step-process of con-
secutive localized plastic displacement increments separated in time by a half period. It isnoted
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X0 � XP�0 � 0.

u� � u� � u.
Decide by uniform simulation if the first extreme is a maximum or minimum.

SimulateMALO from FM

�
m �X��π� 	 ��u�u�

�
.

IF simulating maximum

ComputeMEPO, XP�1, u�1 andu�1 from MALO and Eqs. (2.31) and (2.32).
ξ � u�1 .

D1 � XP�1.
ELSE simulating minimum

ComputeMEPO, XP�1, u�1 andu�1 from MALO and Eqs. (2.34) and (2.35).

ξ � u�1 .
D1 � XP�1.

ENDIF

Increment time by half a period.

Table 2.2: Simulation of the first extreme in the first clump.

that in the real process phase drift is present. This is too neglected in the Slepian clump simu-
lation. Thus it is a requirement that simulation of the inter-clump waiting time shall introduce
phase drift.

To give a more explicit formulation of the simulation algorithm a recapitulation in terms of
pseudo code is given in tables 2.2, 2.3 and 2.4. One table for each of the three special cases of
extreme simulations. The first case concerns the first extreme in the first clump. This extreme
always causes a plastic displacement and the EPO experiences its first uploading. This is treated
in Tab. 2.2. The second case concerns the first extreme in the second and following clumps.
This extreme does not necessarily cause a plastic increment, i.e. an empty excursion may be
encountered (see note after the clump definition on page 26). Furthermore, if the extreme does
cause a plastic displacement, whether the EPO experiences a reloading or a reversed loading
then depends on the past displacement history. Therefore this case is different from the case
of the first clump treated in Tab. 2.2. The simulation of the first extreme in the second and
following clumps is given in Tab. 2.3. The third case concerns the simulation of the possible
second and following extremes in a clump. This simulation includes the test of whether the
clump terminates or not, and the simulation distribution is not the same as for the first extreme
in the clump. Therefore this is a case different from the two others. See Tab. 2.4. Finally Table
2.1 gives the overall outline of the simulation of a clump.
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usym � min�u�i �u
�

i �.

Dependent on the waiting time simulation (Tab. 3.2 p. 73) simulate a max. or a min.
SimulateMALO from FM

�
m �X��π� 	 ��usym�usym�

�
.

IF simulating maximum
IF an empty excursion – i.e.MALO � u�i

ξ � MALO.
Di � 0.

ELSE a genuine excursion
If load reversed setX0 � XP.
ComputeMEPO, XP� i�1, u�i�1 andu�i�1 from Eqs. (2.31) and (2.32).

ξ � u�i�1.
Di � XP� i�1 � XP� i.

ENDIF

ELSE simulating minimum

IF an empty excursion – i.e.MALO � u�i
ξ � MALO.

Di � 0.
ELSE a genuine excursion

If load reversed setX0 � XP.

ComputeMEPO, XP� i�1, u�i�1 andu�i�1 from Eqs. (2.34) and (2.35).
ξ � u�i�1.

Di � XP� i�1 � XP� i.
ENDIF

ENDIF

Increment time by half a period.

Table 2.3: Simulation of the first extreme in the second and following clumps.

2.6.1 Computational Aspects

Finally some comments on the computational aspects of the Slepian Model clump simulation
scheme are relevant. Simulating firstMALO and then next computingMEPO involves solving two
equations numerically. In the present implementation first an interval bracketing the solution is
found and next bisection is used. This is quite simple and avoids the divergence problem that
may appear when using Newton-Raphson – especially so when computingMALO because of
the small slopes in the tails of the distribution functionsFM�m � � � ��. The time consumption of
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usym � min�u�i �u
�

i �.
Whether to simulate a maximum or a minimum depends on the previous extreme.

SimulateM from FM

�
m �X��π� ��ξ

�
settingu � 0 in (2.28).

IF clump ended – i.e.M � usym

StoreM in Mterm for later use in waiting time simulation (Tab. 3.2 p. 73).
STOP clump simulation.

ELSE IF simulating maximum
IF an empty excursion – i.e.M � u�i

ξ � M.
Di � 0.

Increment time by half a period.
ELSE a genuine excursion

SimulateMALO from FM

�
m �X��π� ��ξ

�
settingu � u�i in (2.28).

If load reversed setX0 � XP.

ComputeMEPO, XP� i�1, u�i�1 andu�i�1 from Eqs. (2.31) and (2.32).
ξ � u�i�1.

Di � XP� i�1 � XP� i.
Increment time by half a period.

ENDIF

ELSE simulating minimum
IF an empty excursion – i.e.M � u�i

ξ � M.
Di � 0.

Increment time by half a period.
ELSE a genuine excursion

SimulateMALO from FM

�
m �X��π� ��ξ

�
settingu � u�i in (2.28).

If load reversed setX0 � XP.

ComputeMEPO, XP� i�1, u�i�1 andu�i�1 from Eqs. (2.34) and (2.35).
ξ � u�i�1.

Di � XP� i�1 � XP� i.
Increment time by half a period.

ENDIF

ENDIF

Table 2.4: Simulation of the second and following extremes in a clump.
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this approach is to be compared with the time consumption of a direct time-stepping procedure
which usually spends (see Chap. 4) five time-steps to reach from one extreme to the next, and
ten, twenty or thirty small time-steps during yielding to obtain a refined computation of the
plastic displacement increment.

Each function evaluation of the distribution functionsFM�m � � � �� is quite expensive, and itera-
tions are required to obtainMALO. Thus the computation ofMALO may become expensive. On
top of this comes the iterations needed to computeMEPO from MALO. On the other hand, de-
pending on the complexity of the restoring force diagram the refined stepping during yielding
involves solving a non-linear equation in each time-step too. Clearly it is difficult to say which
approach is the most expensive. We will return to this issue in Sec. 5.5. At this stage it is, how-
ever, natural to answer a question that will rise under circumstances, where the Slepian Model
clump simulation is more expensive than the direct clump simulation: is the Slepian Model
Simulation Method really useful? Yes, it is. As it is shown in Chap. 3 the real time gain is due
to the inter-clump waiting time simulation. This simulation does, however, not provide suffi-
cient information to compute the first plastic displacement in a clump. Therefore, in order to
initiate the clump, one has to simulate fromFM

�
m �X��π� 	 ��usym�usym�

�
to obtainMALO and

therebyMEPO. Thus the time gain due to the waiting time simulation is not obtainable unless a
stand-alone simulation procedure for the clumps exists.

As a closing remark it is noted that though it does not appear so, it is simpler to code the
Slepian Model Simulation Method without making errors, than it is to code the direct simulation
method. For direct numerical time integration it is – in the author’s experience – difficult to
extract from the samples information about plastic displacement increments, clump lengths
etc.. This is because one has to be careful about the phase drift and the wiggles which are of
course present in these samples.

2.7 Simulations of Clumps for the Bilinear EPO

In this section different simulation results for the clumps of the idealized bilinear EPO is pre-
sented for the purpose of comparing results obtained by Slepian simulation and direct simula-
tion. The restoring force diagram of the bilinear EPO is reviewed in Appendix A. For easy
reference the diagram is depicted in Fig. 2.13. An example of a non-idealized restoring force
diagrams is given in Chapter 5. The simulations are conducted in the following way. Only the
first clump in samples which have initial displacement inside the symmetrized yield limits is
considered. For the direct simulation scheme this is obtained by generating a truncated Gaus-
sian initial displacement inside the symmetric yield limits and a Gaussian velocity independent
of the displacement. Then a sample with this set of initial conditions is simulated and traced
until the first clump ends. The Slepian clump simulations simply follow Tab. 2.1. The number
of simulations is 10000.
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Figure 2.13: The characterization of the ideal bilinear restoring force diagram.

A set of four parameters characterizes each simulation. Three of them are system parameters:
the initial yield levelu, the hardening/softening parameterγ and the damping ratioζ . As the
plastic displacements in a clump depend on the value of the plastic displacement before the
clump begins, a fourth parameterXP� initial is introduced. Choosing this last parameter a good
way from zero, considerable asymmetric yield levels are present. In this way it may be tested
how well the notion of symmetric yield limits works – for instance how well empty excursions
are captured. It is noted that in caseXP� initial 
� 0 one enters Tab. 2.1 as if one isnot simulating the
first clump and the probabilities that the first extreme in the clump be a maximum or minimum
are equal. It is noted that since it has become practice in papers [6], [19], [12] and others to
present results as function ofζ in stead of the scaled damping ratioα it has been decide to do
likewise herein (asα � ζ it is not very confusing).

For each parameter set four plots are shown. The left most plot shows the histogram of the
clump length measured by the number of extremesN in the clump. The two middle plots show
histograms of the first and the second plastic displacement in a clump. These histograms do
not include empty excursions. These are accounted for in the right most plot which shows the
probability of having an empty excursion at thei’th extreme in a clump,i � 1�2�3�4. Slepian
model results are shown with a thick line, while direct simulation results are shown with a thin
line.

In Fig. 2.14 (found at the end of the chapter, page 50) only the initial yield levelu varies. This
shows how well the Slepian Simulation Method performs at different levels of hysteresis. As
one should expect (in accordance with the discussion on page 12), clearly the moderately low
level u � 1�5 is the limit of the method. One sees that the variance of the (approximately) true
distributions ofD1 andD2 as obtained by direct time integration are larger than the variance of
those obtained by Slepian simulation. This is due to the Karnopp-Scharton hypothesis. Neglect-
ing the load process after outcrossing means neglecting a source of randomness. Therefore in
general the variance of the plastic displacements obtained by Slepian simulation is smaller than
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the true variance. The more so, the longer the duration of the yielding, i.e. the lower the yield
level. The errors in clump length estimation and the errors in the estimated number of empty
excursions show the same trend. Due to hardening there will be no empty excursions until the
third excursion in a clump. It is seen that the ratio of empty excursions is well approximated
for levels above 1.5. Thus for levelsu � 2�0 and higher the Slepian method produces very
good results. Let us, in continuation of this conclusion, turn to the simplified restoring force
diagram to give a short remark related to the performance of the Slepian Method demonstrated
here. In the definition of the simplified diagram it was implicitly assumed that a linear part is
always present. It is now seen clearly that this assumption is necessary for the Slepian Model
Simulation Method to give reliable results for non-linear plasticity. In the simplified non-linear
restoring force diagram there must always be a linear part of reasonable extend. Otherwise,
if the linear part, and thereby the yield limit, is too small the simulated plastic displacement
increments will be in error, even if the hardening/softening branch starts out all most linearly.
The error will simply be due to the approximations of the Karnopp-Scharton hypothesis and
not the non-linearity. Also another remark is appropriate. Anticipating the discussion of the
inter-clump waiting time distribution it is noted that the clump size decreases with increasing
yield level. This is in accordance with asymptotic results. It is, however, also noted that clump
sizes larger than 1 are very likely for realistic levels likeu � 2 andu � 3. Thus, it is already
here noted, that the convergence to the asymptotic limit is too slow for asymptotic results to be
valid for realistic yield levels. A similar experience is reported for the waiting time distribution.

In Fig. 2.15 (found also at the end of the chapter, page 51)u � 2 in all cases. In stead the
other parameters are varied such that the plots may be compared to the plots foru � 2 in Fig.
2.14. The top most plots show that even for higher damping the Slepian method gives good
results. As one should expect the clumps become shorter for higher damping as higher damping
implies less narrow banded response, i.e. a more rapidly varying amplitude process. Therefore
also the variance ofDi increases with increasing damping. The second row of plots treats
the case of strain softening. Good agreement between simulation results is apparent. Due to
the destabilizing effect of the softening, the variance ofDi is larger in the case of softening
than in the case of hardening. Furthermore softening implies that, contrary to hardening, empty
excursions may occur already at the second extreme in a clump. The Slepian simulation captures
this very well, too. In the last two rows the case of considerable asymmetric yield limits is
considered. Still there is a very good agreement between the results. The distributions are very
asymmetric due to the presence of asymmetric yield limits. Considering how very well the
asymmetry of the distributions is captured by the Slepian Simulation Method one can conclude,
that the notion of symmetrized yield limits is very successfully managed. It is noted that in the
second last and the last rows the initial symmetrized yield levels are 1�14 and 1�54, respectively.
This is quite low, why an error in terms of a too small variance like in the first row of Fig. 2.14
must be expected. The error is of course largest in the second last row.

Concluding on the basis of Figs. 2.14 and 2.15 one has that the Slepian clump simulation in
general provides results in very good agreement with the direct simulation results – as long as
the assumption about non-dominating hysteresis is not violated, of course. Especially it is noted
that the notion of the symmetrized yield level does not give rise to any problems.
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2.8 Summary

The Slepian modeling and simulation of the clumps of plastic displacement increments in the
response of SDOF EPOs has been presented. The Slepian model approach to the clump mod-
eling of the ideal EPO, as known from [6], is recapitulated and extended to non-ideal plasticity
with hardening or softening. In extending from ideal to non-ideal EPOs it becomes apparent that
some simplifications of the restoring force diagram are required, otherwise the Slepian Model
clump simulation will be too time costly. To that end a simplified, yet, from an engineering
point of view acceptable, model for the non-ideal restoring force diagram is introduced. The
corner stone of the simplification is the treatment of unloading/reloading and the Bauschinger
effect. A specific implication of the Slepian Model approach is that the simplified non-ideal
diagram must have a linear part of reasonable extend.

A detailed presentation of the Slepian Model clump simulation is given in terms of tables of
pseudo code. Though it may not appear so at a first glance, the algorithm is simpler to imple-
ment than direct numerical time integration algorithms.

The definition of clumps differs from what has been used in former works such as [16] and [6]
dealing with the ideal EPO. What is new here is that the problem of asymmetric yield levels
is considered. Due to this asymmetry it becomes convenient to define clumps such that they
include excursions above a so-called symmetrized yield level, even though these excursions
do necessarily not cause plastic displacements. The symmetrized yield level simply equals the
narrowest of the asymmetric yield levels. The notion of a symmetrized yield level is actually
motivated by the simplifications obtained in the inter-clump waiting time simulation described
in Chapter 3. Handling the excursions of a symmetric domain is considerably simpler than it is
for asymmetric domains.

Another important point about clumps is that they appear in groups of clumps, i.e. in clumps of
clumps. By the clump definition introduced here it is required that the inter-clump simulation
procedure be capable of simulating both the short waiting times between the clumps that appear
in the clumps of clumps as well as the much longer waiting times between the clumps of clumps.
Yet another aspect concerning the simulation of waiting times is that the simulation of the plastic
displacement process implies a discretization of the process into a discontinuous step process
with increments separated in time by half a period. Therefore it is left to the inter-clump waiting
time simulation procedure to account for the phase drift which is present in response, but is
neglected in the clump simulation.

Finally simulation results for the bilinear EPO verify how very well the Slepian model simulates
the development of the plastic increment process even for notably asymmetric yield levels.
These results prove that the introduction of the symmetrized yield level does not cause any
restrictions on the applicability of the Slepian Model Simulation Method.
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Figure 2.14:Comparison of clump simulation results obtained by Slepian simulation
(thick curves) and direct simulation (thin curves). See discussion at p. 45.
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Figure 2.15:Comparison of clump simulation results obtained by Slepian simulation
(thick curves) and direct simulation (thin curves). See discussion at p. 45.
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Chapter 3

Modeling and Simulation of Inter-clump
Waiting Times

As described in the previous chapter the degradation of the EPO takes place only in limited time
intervals which for short are termed clumps. In this chapter the remaining response outside the
clumps is in focus. Since no degradation takes place in these time intervals it is sufficient for the
description of the plastic process to establish a model for the duration of the response between
the clumps. It is the modeling and simulation of the inter-clump waiting times for the SDOF
EPO that is the subject of this chapter.

3.1 Main Characteristics of the Distribution

There does not exist analytical expressions for the inter-clump waiting time distribution. How-
ever, some considerations about the general features of the distribution may be given. Based
on these considerations a fast simulation scheme can be derived. Therefore this first section
provides a general discussion of the characteristics of the distribution.

3.1.1 Quantities on which the Distribution Depends and Symmetrization

Clearly the waiting time depends on all parameters of the system: driving force, damping and
the non-linear restoring force diagram, as they all appear in the governing equation. However,
due to the scaling of the equation of motion and the symmetrized yield limits introduced in
the previous chapter it is in the following shown, that it is possible to work with waiting time
distributions of rather general type, depending only on the scaled damping ratioα and the
symmetrized yield levelusym.
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3.1 Main Characteristics of the Distribution

Since the response in the time between clumps is inside the elasticity limitsu� andu� the inter-
clump response which is decisive for the waiting time fulfills the equation of motion for the
ALO:

Ẍ � 2α Ẋ � �1�α 2�X � W �τ�� (1.8)

Consequently the only way non-linearity influences the waiting time distribution is through the
asymmetric elasticity limits. Due to the scaling of the equation of motion the influence of the
load process is accounted for by the elasticity limits as well. Damping is simply described by
α .

The way in which the waiting time depends on the elasticity limits deserves some attention.
When yielding ends, the ALO is restarted with initial conditionsX � u�� Ẋ � 0 orX � u�� Ẋ �
0. Onset of yielding is then the next time at whichX � u� or X � u�. This means, since
generallyu� 
� u�, that there is essentially two different combinations of initial and stopping
conditions for the inter-clump sample paths: starting at one level and crossing out the same
level, or: starting at one level and crossing out the opposite level, which is generally of different
absolute value. Clearly both crossing problems are of non-stationary nature, why the first cannot
be considered a special case of the second. Without going into details, it is here mentioned that
one of the computations appearing later in this chapter becomes considerably simpler by use
of symmetric yield limits. Further more it eliminates the problem of assessing whether the
outcrossing is an outcrossing of the upper or lower yield limit. This is a task for the clump
simulation procedure to take care of. It is recalled that in the previous chapter it was shown
that symmetrized limits can successfully be included in the clump simulation. Thus it is not a
restriction to introduce symmetrized yield limits, merely a computational ease.

3.1.2 The Amplitude Process

If the response crosses out of the elasticity domain the amplitude process does so too. However,
the processes do not cross at the same time. Furthermore, since the amplitude process expresses
the energy, it may cross out without the response crossing out. The waiting time to the first
outcrossing of the amplitude process therefore is not identical to the waiting time to the first
outcrossing of the response. The two different waiting times do not differ much so the equation
for the amplitude process derived in Sec. 1.2.3 does provide useful information about the char-
acteristics of the waiting time distribution. For easy reference the amplitude diffusion equation
is repeated below:

dA � α ��A�
1
A
�dτ �

�
2α dBA (1.20)

A way to find an approximate waiting time distribution would be to find the amplitude distribu-
tion as function of time by solving the Fokker-Planck equation associated with Eq. (1.20) using
absorbing boundaries. Based on the amplitude distributionFA�τ �a� � P�A�τ� � a� the wait-
ing time distribution is given byFT �τ� � 1�FA�τ �u�. ComputingFA�τ �a� involves absorbing
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boundaries and initial densityfA�τ � 0�a� � δ�a�u��a 	 �0�u�. This is not easy and computa-
tionally expensive, so no attempts are made here to solve the amplitude diffusion equation.

How the waiting time distribution depends on the symmetrized yield levelusym and the damping
ratio α can, however, be discussed on the basis of Eq. (1.20). Clearly, the lower the damping
the lower the rate of change of the amplitude. As discussed in Sec. 2.1, dealing with the clump
definition, the fact that the amplitude drifts slowly causes the existence of short and long waiting
times of principally different character. For given damping the yield level influences the amount
of short waiting times relative to the amount of long waiting times. The drift coefficientα ��A�
1
A� shows that the amplitude fades away faster for higher yield levels than for lower levels,
making short waiting times become less likely. This is due to imbalance between energy input
and drain for oscillations with large amplitudes. The viscous energy drain per cycle increases
proportionally with the square of the amplitude, while the energy input due to the forcing is
directly proportional to the amplitude. This imbalance is expressed by the two terms�A and 1

A
appearing in the drift coefficient.

3.1.3 Transient Lower Tail

Right after the termination of a clump the amplitude is close to the symmetrized yield limit.
Since the amplitude process drifts and diffuses on slow time scales the amplitude stays close to
usym for a while. Thus short waiting times to the first outcrossing after clump termination are
quite likely. This issue was one of the key points in the discussion of the clump definition in
Chap. 2, where a distinction between separate clumps, and clumps of clumps was made. It was
at that time pointed out, that the simulation scheme for the waiting time should account for the
presence of clumps of clumps. Therefore the characteristics of the short waiting times giving
the time separation of the clumps inside the clumps of clumps is treated separately here.

The distribution of the short waiting times relates to the fast time scale of the oscillations as
described in the following. As it takes an extreme inside the symmetrized yield limit to ter-
minate the clump, the first crossing after a clump is determined from the second extreme after
the clump. Thus the first possible crossing time will, due to the narrow banded response, be
very close to the natural period of the ALO. The second possible crossing time is close to one
and a half period, and so on. This means that the lower tail of the waiting time distribution is
step-like. The larger the waiting time is, the less pronounced the steps are as the phase drift
causes the waiting time to scatter more and more about integer multiples of half a period. The
step shape suggests that short waiting times may be simulated by a stepping procedure which
uses steps of size half a period.

Since the lower tail of the waiting time distribution results from the ALO response shortly
after the clump termination, it is termed thetransient lower tail. This subsection is closed by
showing some typical transient lower tails. Figure 3.1 shows a few transient tails in which the
steps appear very clearly in the beginning, and where the smoothing effect of the phase drift
takes over after a while. As explained above the amplitude fades away faster for higher yield
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Figure 3.1: A few transient tails. See discussion in the text.

levels than for lower levels, making short waiting times more likely for low levels than for high
levels as shown in the left plot in Fig. 3.1. The amplitude also fades away faster for increasing
damping, so, as shown in the plot to the right in Fig. 3.1, this results in increasing probabilities
of having short waiting times as damping decreases.

3.1.4 Exponential Upper Tail

During transients, which causes the short waiting times, the crossing rate is strongly varying
with high peaks. The peaks are present because the phase drift has not yet set through, while
the considerable size of the peaks is due to the high level of energy. If the oscillator has passed
through transients without outcrossings the energy in the oscillator has become low relatively to
the yield level and the phase drift has become more pronounced. This implies that the crossing
rate is low and slowly varying. According to the slow time scale of the amplitude process it will
take some time before the energy builds up again and an outcrossing will occur. Thus the natural
time scale of the large waiting times which expresses the time between the clumps of clumps is
the slow scaleατ . This means that the time distance between the clumps of clumps is so large
that the response in two consecutive clumps of clumps are virtually independent. Therefore
all non-transient outcrossings are approximately independent. On the slow time scale where
the short waiting times vanish, outcrossings are therefore approximately independent events.
Consequently the outcrossings corresponding to the large waiting times fulfill approximately
the Poisson model, and hence the upper tail is approximately exponential. In other words, the
distribution of the waiting times beyond a certain valueτ transientsis most reasonably modeled by
an exponential distribution. Writing this in terms of a formula it becomes

FT �τ � �

�
G�τ� � for τ � τ transients

1 � �
1�G�τ transients�

�
e�λ �τ � τ transients� � for τ � τ transients

(3.1)
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Figure 3.2: A few distributions showing exponential upper tails. See discussion in the text.

in whichλ denotes the stationary mean crossing rate given thatτ � τ transients. As the distribution
of the large waiting times may be modeled by an exponential distribution the upper tail is called
theexponential upper tail.

Figure 3.2 shows plots of the waiting time distribution for different parameters. To make the ex-
ponential tail become apparent the plots show� log�1�FT �τ �� too. Clearly the plots verify that
modeling the upper tail as an exponential distribution works fine. The plots also demonstrate
the balance between the transient lower tail and the exponential upper tail in dependence of
damping ratio and yield level. The upper row shows, as mentioned in the previous section, that
for increasing yield levels short waiting times become less likely. This behaviour is a realization
of the asymptotic Poisson character of the stream of upcrossings when the crossing level tends
to infinity [2][Chap. 12]. In previous works like [6] and [8] transients were neglected and the
entire distribution assumed exponential in accordance with the asymptotic result by Cram´er and
Leadbetter. As supported by the plots, the Poisson model is asymptotically correct. It however
further appears from the plots that the convergence is slow, why the asymptotic result is not
very useful for realistic yield levels. In [12] the appreciation of this fact led to the first steps
in the direction of accounting for transients, but a systematic treatment like here was not given.
For high damping the amplitude fades fast why transients gets less important. The lower row in
Fig. 3.2 shows this in the caseζ � 0�05. Compared to the upper row it may be concluded that
transients is more dominant in the realistic case ofζ � 0�01. This supports further the above
statement that transients cannot be neglected.
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Figure 3.3: The simulation of the transient tail by use of a conditional distribution
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�
m �X��π� ��Mi�1

�
.

3.2 Simulating the Waiting Time

3.2.1 Simulating the Transient Lower Tail

As mentioned the step shape of the transient tail suggests that short waiting times are simulated
by a stepping procedure which uses steps of size half a period. The approach suggested here
consists in simply continuing the clump simulation until either an outcrossing is detected or a
certain timeτ transientsafter the clump end is elapsed. If an outcrossing is detected before the time
τ transientsafter the clump end, then a new clump simulation is initiated. Else the waiting time falls
outside the transient tail and a waiting time from the exponential tail is simulated as described
in the next section.

Each step is simulated as a maximumMi above zero conditional on the previously simulated
maximumMi�1. That is,Mi is simulated from some distributionFM

�
m �X��π� � �Mi�1

�
which is not necessarily identical to the Slepian model based distribution defined in formula
(2.28) in Sec. 2.4.4. In the first step after the clump,M1 is simulated conditional on the extreme
Mterm� usym which terminated the clump. Figure 3.3 illustrates this.

Slepian Modeling

Since a formula for the distribution of an approximate maximum of the ALO given the previ-
ous minimum is already derived in Sec. 2.4.4, it is natural to try to use this in simulating the
sequence of extremes trailing the clump. In the plot to the left in Fig. 3.4 the thick curve shows
an example of the result of the simulation of short waiting times as obtained by use of formula
(2.28) withu � 0, i.e. for zero-level crossings. In comparison to the waiting times obtained by
direct simulation, shown by a thin line, an underestimation is apparent. This error it detected
for all other combinations of the parametersu�ζ and it is due to the Karnopp-Scharton hypoth-

58



Modeling and Simulation of Inter-clump Waiting Times

0 5 10
0

0.2

0.4

0.6

0.8

1.0

Direct

F
T
(τ)

τ/2π

Slepian &
Karnopp−Scharton

0 5 10
0

0.2

0.4

0.6

0.8

1.0

Slepian &
Karnopp−Scharton

F
T
(τ)

τ/2π

Corrected

Figure 3.4: Simulation of transient waiting times by use of the Slepian model. Left:
Slepian model simulation (thick curve) and direct simulation (thin curve).
Right: Slepian model simulation (thick curve) and damping corrected Slepian
model simulations (thin curve). The curves are obtained from those waiting
times out of 5000 which are less than 20π. Parameters areu � 3�ζ � 0�01.

esis. In the derivation of the unconditional distributionFM of the approximate ALO maximum,
damping and driving forces were neglected. These approximations are acceptable if the dura-
tion of the response from the outcrossing to the extreme is small. Simulating extremes above
zero implies that the duration of the response from the crossing, i.e. the zero level-crossing,
to the extreme is approximately half a period, which is not small. Therefore modifications of
formula (2.28) are required. Regard damping first. In the derivation of the conditional distri-
butionFM

�
m �X��π� ��ξ

�
the conditional probabilityP

�
X��π� 	 ��ξ ��ξ �dξ � �M � m

�
is

used. The formula for this distribution already includes damping (see Eqs. (2.21–2.23)). Thus
it is only the unconditional distributionFM which has to be corrected with respect to damping.
Since we consider an extreme after a zero level crossing the reduction of the extreme caused
by damping is approximately accounted for by multiplying the unconditional maximumM by
e�

1
2απ. Denoting the inverse of this factorυ one finds analogously to Eqs. (2.27) and (2.28) that

fM

�
m �X��π� ��ξ

�
∝ ϕ

	
ξ � µm

σ



me�

1
2υ2m2

∝ mϕ
	

κ 2m� µξ
κσ



� m � 0 (3.2)

in which κ 2 � µ2 � υ2σ2 and that the corresponding complementary distribution function is
given by

1�FM

�
m �X��π� ��ξ

�
�

� ∞
m zϕ

�
κ 2z�µξ

κσ

�
dz

� ∞
0 zϕ

�
κ 2z�µξ

κσ

�
dz

�
ϕ
�

κ 2m�µξ
κσ

�
� µξ

κσ Φ
�
� κ 2m�µξ

κσ

�
ϕ
�

κ 2u�µξ
κσ

�
� µξ

κσ Φ
�
� κ 2u�µξ

κσ

� � m � 0

(3.3)
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The lower step curve to the right in Fig. 3.4 shows the simulated distribution obtained by use
of the damping corrected distribution. The upper curve shows the result obtained using non-
corrected distribution. Only a slight improvement is obtained. Clearly neglecting the driving
force, i.e. the source of randomness, causes the main error. Another modification of (2.28)
would thus be the inclusion of the forcing. This is not easy to carry out, why the idea is given
up in the favor of the approach presented below.

Amplitude Model

In the Slepian simulation approach a model for the response was obtained by substituting in the
conditional meanE�XLO�τ��XLO�τ 0�� ẊLO�τ 0�� for the random variableXLO�τ 0� a constant value
and forẊLO�τ 0� a non-Gaussian distribution established by long run sampling of upcrossings in
the stationary response (subscript LO = linear oscillator, see Sec. 2.4). One might instead try to
simulate directly from the Slepian model

Xmax�τ�τ 0� � E�XLO�τ� �XLO�τ 0� � �Mi�1� ẊLO�τ 0� � 0� � R�τ�τ 0�

� �c�τ�τ 0�Mi�1 � R�τ�τ 0�� τ � τ 0

(3.4)

Setting the time lagτ � τ 0 � π in this model, a model for the next extreme is obtained. An ex-
tremeMi is then easily simulated by first simulating a standard Gaussian variable independently
of Mi�1, then scaling this outcome by the standard deviation ofR�τ�τ 0� and finally adding
�c�τ�τ 0�Mi�1. For the same parameters as in Fig. 3.4 the left plot in Fig. 3.5 shows the
simulated distribution when using theXmax model. Though the residual term ensures that the
Xmax model includes the randomness due to the driving force, an overestimation of the waiting
times is now present. The reason is that the smoothing effect of the Karnopp-Scharton hypoth-
esis in combination with the energy/amplitude representation byZ in the Slepian model is lost.
Because of the phase drift an extreme may occur either earlier or later than one half period after
the previous extreme. Obviously theXmax model, simulating the conditional outcome of the re-
sponse process exactly half a period after the previous extreme, may miss the current extreme.
Therefore waiting times are overestimated.

The key to the problem is to find a better way to simulate the amplitude process, i.e. the
current mechanical energy of the EPO, than done by the Slepian model when combined with
the Karnopp-Scharton hypothesis. A very simple approach would be to discretize the amplitude
diffusion equation (1.20) into steps of half a period, integrate the drift by the Runge-Kutta
method and simulate the diffusion by a standard Gaussian variable scaled by

�
2απ. As the

amplitude drifts on a slow time scale this might work. It does for small damping ratios, but
not in general. Especially the non-linearity of the drift coefficientα ��A� 1

A� causes trouble.
Alternatively Slepian modeling of the amplitude process may be an option. However, it is not
simple asA is a non-Gaussian process.
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Figure 3.5: To the left: simulation of transient waiting times by use of theXmax model
(thick step curve) and by direct simulation (thin curve). To the right: sim-
ulation of transient waiting times by use of the amplitude model (thick step
curve) and by direct simulation (thin curve) – note that the curves collapse.
For both plots: the curves are obtained from those waiting times out of 5000
which are less than 20π. Parameters areu � 2�ζ � 0�01. See discussion in
the text.

Still the amplitude process may be simulated by simple means, if in addition to theXmax model
for the response, a Slepian modelẊmax for the velocity is introduced. ThenA defined by

A2 � X2
max �

Ẋ2
max

λ 2

(3.5)

is a model for the amplitude process in which the problem about the drift in theXmax model is
avoided. ClearlyA is not a Slepian model, but one is still in the context of Slepian modeling, as
A is derived from the Slepian model pair�Xmax� Ẋmax�. TheẊmax model is completely analogous
to theXmax model. It uses the conditional mean

E�ẊLO�τ� �XLO�τ 0�� ẊLO�τ 0�� � ċ�τ�τ 0�XLO�τ 0� �
c̈�τ�τ 0�

λ 2

ẊLO�τ 0� (3.6)

which leads to the model

Ẋmax�τ�τ 0� � E�ẊLO�τ� �XLO�τ 0� � �Mi�1� ẊLO�τ 0� � 0� � Q�τ�τ 0�

� �ċ�τ�τ0�Mi�1 � Q�τ�τ 0�� τ� τ 0

(3.7)

whereQ denotes the Gaussian velocity residual process of mean zero and covariance

Cov�Q�τ 1��Q�τ 2�� �

� c̈�τ 1�τ 2� � ċ�τ1�τ 0�ċ�τ 2�τ 0� �
c̈�τ1�τ 0�c̈�τ2�τ 0�

λ 2

� τ 1 � τ 2 � τ 0 (3.8)
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Figure 3.6: Simulation of short and long waiting times by use of the amplitude model
(thick curves) and by direct simulation (thin curves) using time step of size
one hundredth of the natural period. For all plots: 5000 samples. Parameters
are given at the plots.

When generating an outcome of the amplitude modelA, outcomes of the residual processesR
andQ must be generated. Therefore their cross covariance function must be known too. It turns
out that it suffices to know:

Cov�R�τ1��Q�τ1�� � �ċ�τ1�τ 0�
�

c�τ1�τ 0� �
1
λ 2

c̈�τ1�τ 0�


� τ 1 � τ 0 (3.9)

In order to make steps of half a period, one considers as usual the models at time lagτ � τ 0 � π.
One easily finds that

A2 � �µMi�1�σΨX�
2 � �σΨẊ�

2 (3.10)

in whichµ � e�απ andσ2 � 1�e�2απ and theΨ’s are independent standard Gaussian variables.
Note the convenient fact that the conditional response and velocity are uncorrelated at time
lags equal integer multiples ofπ. Since the amplitude measures the mechanical energy in the
oscillator, the value ofA half a period after the extremeMi�1, will be very close to the next
extreme of the response,Mi. The difference is small because the extremeMi occurs close to
half a period afterMi�1. Therefore, when using the amplitude model (3.10) the next extremeMi

is simply computed by

Mi �
�

�µMi�1�σΨX�
2 � �σΨ

Ẋ
�2 (3.11)
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Figure 3.7: Simulation of short and long waiting times by use of the amplitude model
(thick curves) and by direct simulation (thin curves) using time step of size
one tenth of the natural period. For all plots: 5000 samples. Parameters are
given at the plots.

It has not been explicitly stated yet, but clearly the amplitude model possesses, for the same
reasons as for the conditional distributionFM

�
m �X��π� ��Mi�1

�
(Eq. (2.28)), the feature that

two consecutive extremes may be simulated independently, i.e.ΨX andΨ
Ẋ

are independent of
Mi�1. Furthermore it is faster to simulate an outcome ofA, than an outcome ofFM

�
m �X��π� �

�Mi�1

�
given by (2.28). To the right in Fig. 3.5 the simulated transient tail of the waiting time

distribution is shown together with the result obtained by direct simulation. Clearly a good
agreement is obtained. To demonstrate the strength of the amplitude model Fig. 3.6 shows
several plots of waiting time simulations of both shortand long waiting times using only the
amplitude model, that is, without exploiting the exponential tail property. It is interesting to
note, that the inclination of the exponential tail in the logarithmic plot equals the inclination
obtained by direct simulation. This indicates that the amplitude model may be useful in the
computation of the crossing rateλ in (3.1). In Sec. 3.2.2 it is shown how this may be used.

The amplitude process model does not exploit any smoothing like the Karnopp-Scharton hy-
pothesis. Therefore wiggles are present in the amplitude model which can cause errors similar
to those experienced forXmax model. When the amplitude process is close to the yield level the
wiggles may cause the process to cross in and out of the elastic domain several times during
half a period. There is no guarantee that any of these outcrossings will cause the amplitude to
be above the yield level exactly half a period after the previously simulated outcome of the am-
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3.2 Simulating the Waiting Time

plitude process. Therefore the amplitude model may miss outcrossings too, which should lead
to an overestimation of waiting times. However, the plots in Fig. 3.6 show that in general the
amplitude model does not lead to such an overestimation of waiting times. To explain this one
has to consider the method used to obtain the direct simulation results. As explained in Chap. 4
Sec. 4.4.1 the direct simulation method may overlook excursions too. This is why it seems as if
no overestimation of waiting times is obtained by the amplitude model. All plots of direct simu-
lation results shown in the graphs in this chapter are obtained using small time steps of size one
hundredth of the natural period. In Sec. 4.4.1 it is shown that almost equally good results may
be obtained by simulations using time steps of size one tenth of the natural period. However,
more excursions are lost. Figure 3.7 illustrates that using time steps of one tenth of the natural
period causes gaps to arise between the graphs obtained using direct simulations and using the
amplitude model. An investigation with smaller time steps has not been carried out as it would
be rather time costly and because it is judged from Figs. 3.6 and 3.7 that it would not alter
the results shown if Fig. 3.6 much. Returning to Fig. 3.6 the conclusion is that the amplitude
model gives satisfactorily good results. It is, however, noted that an alternative to the amplitude
process considered here that might improve the amplitude simulation but is analytically more
difficult to apply, and which is left for future work, is the Cram´er-Leadbetter envelope. This is
a process more smooth than the amplitude process, because the artificial velocity process used
is obtained by a time shift of the response process, why it has the same correlation structure as
the response process.

Realizing that the amplitude model performs better for the waiting time simulations than the
Slepian model based distribution (2.28) does, one may ask: why not apply the amplitude model
to the extremes of the clumps? The answer is the same as given before: the distribution of the
plastic displacement which initiates the clumps after an inter-clump interval is needed, and a
simple result similar to (2.25) for the distribution of the ALO maximum, conditional on the
response being inside the elasticity limits half a period before outcrossing, cannot be derived
by means of the amplitude model. Furthermore, when simulating the plastic increments, Eqs.
(2.25) and (2.28) are not used for zero-level crossings, so the error due to the Karnopp-Scharton
hypothesis is not severe.

Drift, τ transients and Initiation of a Clump Following a Short Waiting Time

A few matters need attention before closing the discussion about the simulation of the transient
waiting times. Phase drift is present in the response but it is omitted during clump simulations
and short waiting time simulations. In case the waiting time becomes larger thanτ transients,
the waiting time is simulated from the exponential tail which is continuous. In that way a
continuously distributed waiting time is generated. If, on the other hand, the waiting time
is less thanτ transientsthen one can include phase drift approximately by adding to the already
simulated waiting time a number simulated uniformly from the interval�� π

2 �
π
2�. In the waiting

time simulations shown in this chapter the phase drift correction is omitted so that the steps in
the distributions simulated by the procedure described in this chapter can be directly compared
to the steps in the distributions obtained by direct time integration.
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The timeτ transients, which defines the length of the maximal short waiting time, must be assessed.
The quantityτ transientsdepends on the levelu as well as the damping ratioα . The timeτ transients

is smaller the higher the levelu and bigger the smaller the damping ratioα . A rough estimate
neglects the dependence onu and assumes that transients is passed when the influence of initial
values is negligible. Usually the duration of transients is determined by assuming that the
amplitude damping factor in free responsee�ατ is small. Settinge�ατ transients� 0�1 may be a
reasonable choice. Below (Sec. 3.2.2 p. 69) it is, however, shown that it is sufficient to set
e�ατ transients� 0�3, i.e.,

τ transients�� log�0�3�
α

(3.12)

Initiating a clump following a short waiting time is carried out as follows. First a remark on
technicalities: because the simulation of the first plastic increment in a clump includes a time
incrementπ (see Tabs. 2.2 and 2.3) one must subtractπ from the simulated waiting time. During
the waiting time simulation one keeps in each step track of whether a minimum or a maximum
is simulated. Thus, when entering a clump after a short waiting time it is known whether the
load is reversed or reloading is taking place. To understand why this is done regard first long
waiting times. After a long waiting time stationarity is reached and the phase has drifted so
much that outcrossings occur uniformly spread in time – regardless of whether the outcrossing
is an up- or downcrossing. Thus it is equally probable that the outcrossing (of a symmetric
domain) is due to a maximum or a minimum. On the other hand, for short waiting times the
phase drift has not yet had a significant effect why crossings happen at almost discrete points in
time. Therefore, for a given short waiting time the outcrossing is either with probability 1 due
to a maximum or with probability 1 due to a minimum. In table 3.2 the waiting time simulation
procedure is recapitulated in pseudo code.

3.2.2 Simulating the Exponential Upper Tail

Simulating outcomes of the exponential upper tail is very easy when one knows the stationary
crossing rateλ � λ �u�α�. Even though the waiting time distribution is only partially exponen-
tial the well-known lack of memory property of the exponential distribution is still valid for
waiting times beyondτ transients. This follows from the computation below in whichτ � τ transients:

P�T � τ �T � τ transients� �
P�T � τ � T � τ transients�

P�T � τ transients�

�
P�T � τ � τ � τ transients�

P�T � τ transients�

�

�
1�G�τ transients�

�
e�λ �τ � τ transients�

1� G�τ transients�

� e�λ �τ � τ transients�� τ � τ transients

(3.13)
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So, if the simulation of the transient tail shows that a waiting time beyondτ transientsshould be
simulated, then one simulates an additional waiting timeδτ from the exponential distribution
with parameterλ and adds it toτ transients. Thus the purpose of the simulation of the short waiting
times is twofold: approximate the step-like distribution of the short waiting times and ensure
that the fraction of long waiting times simulated is correct.

For the mean crossing rateλ one cannot use the mean crossing rate of the Cram´er-Leadbetter
envelope corrected with respect to the fraction of empty envelope upcrossings (see e.g. [6]).
This crossing rate is too high because it is the mean crossing rate of all outcrossings including
those that appear during transients. As argued above it is only the outcrossings corresponding
to the long waiting times between clumps of clumps that are approximately independent and it
is the mean rate of these crossings that is needed. Or in other words: it is the intensity of the
arrivals of clumps of clumps that is the parameter to use in the exponential distribution which
approximates the upper tail. This intensity is computed as the mean crossing rate conditional
on the event that the waiting time is larger thanτ transients, i.e., the event that no outcrossings have
appeared in the time interval of lengthτ transientsbefore the outcrossing. By this conditioning
the appropriate thinning of the arrivals of outcrossings is obtained as it is ensured that the
distance to the previous crossing is at leastτ transients. The intensityλ may be evaluated for
different values ofτ transients. It is the lowest value ofτ transientsfor which λ becomes stationary
that definesτ transients. Clearly a stationary value ofλ does not exist in a strict sense as increasing
τ transientsalways makes the conditional crossings become less and less dependent on each other,
so for increasing values ofτ transientsthe intensityλ decreases. However, after a certain point,
λ becomes practically stationary as it decreases only slowly after this point. It is so, because
in the correlation structure of the response, and consequently in the correlation structure of the
amplitude, the dominating factor ise�ατ which goes to zero relatively fast.

Computing the Conditional Mean Crossing Rate

The computation ofλ as the conditional mean crossing rate is not a small, simple task. The
amplitude model (3.10), used for the simulation of the transient tail, was seen in Fig. 3.6
to perform well for large waiting times too. Therefore a numerical approach based on the
amplitude model is proposed here. This implies that waiting times are discretized to integer
multiples ofπ and therefore some care has to be taken when computing the conditional crossing
rate. To understand this consider� log�1�FT �τ��. Define the quantitiesτ i � iπ� i � 0�1�2� � �
andPi � P
T � τ i�� FT �τ i�. Then

λ i �
� log�1�Pi�1� � log�1�Pi�

π
(3.14)

is an approximation toλ . Rearranging terms and introducing∆Pi � Pi�1�Pi leads to

λ i � �1
π

log

	
1� ∆Pi

1�Pi



(3.15)
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Since∆Pi is the probability of having an outcrossing in the interval�τ i� τ i�1� and no outcrossings
in the interval�0� τ i�, and 1�Pi is the probability of having no outcrossings in the interval�0� τ i�

the ratio
∆Pi

1�Pi
is the conditional probability of an outcrossing in the interval�τ i� τ i�1� given no

outcrossings before that interval. In the limit, when this ratio goes to zero, one finds

λ i �
1
π

∆Pi

1�Pi

(3.16)

as an approximation to the conditional crossing rate. So, except for the presence of the logarithm
in Eq. (3.15), the computation ofλ i is basically a computation of the conditional crossing rate of
the amplitude model. The logarithm is necessary in order to compensate for the discretization.

Denoting byfA�a�A�π � a0� the conditional density ofA given the amplitudeA
�π half a period

before, the probabilityPi is given by the convolution

1 � Pi �

� u
0

�
� � �� u

0

�� u
0 fA�ai�A�π � ai�1�dai



fA�ai�1�A�π � ai�2�dai�1 � � �

�
fA�a1�A�π � u�da1� u

0 fA�a1�A�π � u�da1
(3.17)

The denominator is a normalization constant which gives the probability of not having an out-
crossing at timeπ. The outcrossing at timeπ is excluded since waiting times equal 2π�3π� � � � .
It follows from (3.10) that the conditional distributionFA�a�A�π � a0� is given by

FA�a�A�π � a0� � P
�
�a0µ �σΨX�

2 � �σΨẊ�
2 � a2

�
� P

�
σ2Ψ2

Ẋ � a2 � �a0µ �σΨX�
2
�

�
� �a�a0µ��σ

��a�a0µ��σ

�
1 � 2Φ

�
� 1

σ

�
a2� �a0µ �σΨX�

2
��

ϕ �ψX�dψX

� Φ
	

a�a0µ
σ



� Φ

	�a�a0µ
σ




� 2
� �a�a0µ��σ

��a�a0µ��σ
Φ
�
� 1

σ

�
a2� �a0µ �σΨX�

2
�

ϕ �ψX�dψX

(3.18)

From formulas (3.17) and (3.18) it is clear that the probabilityPi cannot be computed analyt-
ically. Some numerical approach is required. The convolutions in Eq. (3.17) follow from the
Markov property of the amplitude model. So, instead of conducting numerical integration, an
approximate propagation in time of the distribution of the amplitude is applied. It is done in the
following way. The amplitude is given a discrete representation. Since one needs the distribu-
tion of the amplitude only over the interval�0�u�, the amplitude is discretized in terms ofn states
zi � ih� i � 1� � � � �n whereh � u�n. Therefore, in order to propagate the amplitude distribution
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in time, only a finite number of transition probabilities are needed. Using the continuous condi-
tional distribution functionFA�a�A�π � a0� the transition probabilitypi j of going from statez j

to statezi is approximated by

pi j �

����
���

FA�
3
2h �A

�π � z j � for i � 1

FA��i�
1
2�h �A�π � z j � � FA��i� 1

2�h �A�π � z j � for 1� i � n

FA�nh �A
�π � z j � � FA��n� 1

2�h �A�π � z j � for i � n

(3.19)

To initiate the computation of the propagation of the density, the initial distribution of the am-
plitude is needed. Since the oscillator starts at rest at the yield limit, the initial distribution
is �

����
p1�τ 0�
...
pn�1�τ 0�
pn�τ 0�

�
���� �

�
����

0
...
0
1

�
���� (3.20)

Recalling that in Eq. (3.17) a normalization is included to compensate for those outcrossings
that occur before timeτ 2, it is clear that the first step in the propagation of the density leads to
the following amplitude distribution�

��
p1�τ 1�
...
pn�τ 1�

�
�� �

1

∑n�1
i � 1 pin � pnn

�
��

p1n
...

pnn

�
�� (3.21)

After this first step the distributionpi�τ k� in stepk is obtained by

pi�τ k� �
n

∑
j � 1

pi j p j�τ k�1� (3.22)

Knowing the approximate density of the amplitude, an approximation to the probability∆Pk

of having an outcrossing in the interval�τ k� τ k�1� and no outcrossing in the interval�0� τ k� is
computed by

∆Pk �
n

∑
j � 1

ε j p j�τ k� � ε j � 1�
n

∑
i �1

pi j (3.23)

and the probability 1�Pk of no outcrossings in the interval�0� τ k� is computed by

1� Pk �
n

∑
i � 1

pi�τ k� (3.24)

It is finally noted that the above numerical scheme corresponds to solving the Fokker-Planck
equation for the amplitude process with an absorbing boundary atA � u. Clearly non-symme-
trized yield levels would lead to a non-stationary absorbing boundary complicating the picture
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Figure 3.8: A transient lower tail and the corresponding approximate conditional mean
crossing rate obtained by propagation of the amplitude distribution (thick
curves). The left plot also shows the distribution obtained by direct simu-
lation (thin curve). Parameters are:u � 2 andζ � 0�05

considerably. This is the main reason why the notion of the symmetrized yield level is so
advantageous.

As an illustration of the results obtained by the propagation of the discretized amplitude density
Fig. 3.8, shows the transient lower tail and the corresponding approximate intensityλ i for the
caseu� 2 andζ � 0�05. In the left plot the distribution obtained by direct simulation is depicted
for comparison. The good performance of the amplitude model is observed again. The time
τ transients�� log�0�3�

α is shown in the right plot, and it is clear that this is a good approximation to
the time when stationarity is reached. Investigating other combinations ofu andζ shows that
τ transients�� log�0�3�

α is generally a good approximation to the time when transients end.

The computation of the conditional mean crossing rate by the propagation of the discretized
amplitude density is quite expensive for low damping ratios and high yield levels as in those
cases a rather dense discretizationzi is required. Therefore, computing the mean crossing rate
for each simulation of long waiting times is not a reasonable way to go if one wants to save
time. In stead one may resort to interpolation between the mean crossing rates shown in Table
3.1 (p. 70) and obtained by the above described numerical method. Before conducting the
interpolating it is fruitful to plot logλ againstu for given ζ . One then obtains the left plot
in Fig. 3.9 (p. 71) showing almost straight lines. If next one plots logλ against logζ the
plot to the right is obtained. This plot also exhibits almost straight lines. Thus, conducting
linear interpolation in these plots is much more reasonable than conducting linear interpolating
directly between the values in Table 3.1. Findingλ �u�ζ � may be done in many different ways.
In the implementation used here one first interpolates logλ with respect to logζ in the right plot
and then, according to the left plot, one interpolates with respect tou.
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ζ
0.001 0.005 0.01 0.02 0.05

0.5 1�75�10�2 7�52�10�2 1�27�10�1 2�08�10�1 3�55�10�1

1.0 4�35�10�3 1�91�10�2 3�47�10�2 6�07�10�2 1�17�10�1

1.5 1�55�10�3 6�94�10�3 1�28�10�2 2�28�10�2 4�54�10�2

2.0 6�05�10�4 2�71�10�3 4�99�10�3 8�89�10�3 1�76�10�2

2.5 2�26�10�4 1�00�10�3 1�83�10�3 3�21�10�3 6�17�10�3

3.0 7�36�10�5 3�19�10�4 5�74�10�4 9�85�10�4 1�81�10�3

3.5 1�94�10�5 8�19�10�5 1�44�10�4 2�40�10�4 4�18�10�4

u

4.0 3�96�10�6 1�61�10�5 2�77�10�5 4�48�10�5 7�33�10�5

Table 3.1: Conditional mean crossing rates.

Two comments to the above are appropriate. First it is noted, that the very simple shape of the
plots in Fig. 3.9 indicates that there might be a simple relation betweenλ andu�ζ . According
to the right plot one may conjecture that

λ �u�ζ � � ζ a eb�u� (3.25)

and from the left plot one may conjecture that

b�u� � �cu�d (3.26)

all together leading to the possible approximation

λ �u�ζ � � kζ a e�cu (3.27)

However, though the curves in Fig. 3.9 are almost straight, they are too curved to allow such
an approximation to be used as an alternative to linear interpolation in Fig. 3.9. The second
comment concerns the computation ofλ . It was mentioned that a satisfactory value ofτ transients

is� log�0�3�
α . This is true as long as one considers the simulation of the long waiting times. When

evaluating the conditional mean crossing rates for high yield levels and low damping ratios one
has to propagate the amplitude distribution longer in time than� log�0�3�

α , as it takes longer time
before satisfactory stationary values ofλ are obtained. E.g. foru � 4�ζ � 0�01 propagation
was continued until� log�0�001�

α (which was plentifully). The timeτ transients� � log�0�3�
α is, how-

ever, applicable for the simulations as the deviation of the waiting time distribution from the
exponential distribution is sufficiently small for waiting times larger than� log�0�3�

α .
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Figure 3.9: To the left: semi-log plot ofλ againstu for given ζ ’s. To the right: log-log
plot of λ plotted againstζ for givenu’s.

Some Simulation Results

At the end of this section a few simulation results obtained by merging the two simulation
procedures for the transient lower tail and the exponential upper tail are shown in Fig. 3.10
(p. 72). There is not much to add to what has already been said, except that the combination
of the simulation of the lower and the upper tail works fine together. The figure shows other
combinations of parameters than those that appear in the previous figures. Especially attention
is drawn to the plot foru � 1�ζ � 0�05 andu � 0�5�ζ � 0�01. Unlike the Slepian Model
simulations used for the clumps giving errors for such low levels, there are no errors in the
waiting time simulations (except for the discretization error in the transient tail). In accordance
with the discussion in connection to Figs. 3.6 and 3.7 a slight underestimation is observed in
the plots in the lower row.

Initiation of a Clump Following a Long Waiting Time

As explained at the end of Sec. 3.2.1 an outcrossing after a long waiting time is with equal
probability due to a maximum or a minimum. Therefore the simulation of a long waiting time
is ended by deciding uniformly randomly whether the first extreme of the following clump is a
maximum or a minimum.

Closing Remark

Due to the definition of the symmetrized yield limit the last excursion in a clump may not give
a plastic displacement increment, i.e., it is an empty excursion (see page 26). If so, the last
extreme in the clump is aboveusym, and therefore the EPO possesses more mechanical energy
when it leaves the clump than if the last extreme had been a genuine excursion. On the average
larger mechanical energy implies shorter waiting times than those obtained by the algorithm
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Figure 3.10:Simulation of the waiting time distribution according to table 3.2 (thick
curves) and by direct simulation (thin curves). 5000 samples were con-
ducted. Parameters are given at the plots.

described in this chapter. However, the extreme corresponding to the empty excursion cannot
be much aboveusym, because otherwise it is unlikely that the clump would end after that extreme.
Thus the energy in the EPO after an empty excursion is on the average not much higher than
if the excursion had been genuine. Consequently it is reasonable to the use the waiting time
simulation procedure presented here also in case the clump ends with an empty excursion. A
compensation for the error is obtained by settingM0 � Mterm (see Fig. 3.3), whereMterm is
the ALO extreme which terminates the clump simulation. The full waiting time simulation
algorithm is in Table 3.2 recapitulated in pseudo code.

3.3 Summary

In continuation of the previous chapter the present chapter deals with the waiting time between
clumps of plastic displacements. As the clumps arrive in groups, that is, as clumps of clumps,
it is natural to distinguish between, on the one hand the short waiting times from one clump to
the next clump inside a clump of clumps, and on the other hand the long waiting times from
one clump of clumps to the next. The short waiting times are due to the transient response
right after clump termination. Therefore the lower tail of the waiting time distribution is named
the transient lower tail. The long waiting times are so large that the arrivals of the clumps
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PutM0 � Mterm (see Tab. 2.4 p. 44) and increment time by half a period.

DO simulation of short waiting time
SimulateMi from Mi�1 by use of the amplitude model (3.11).

Increment timeτ by half a period.
IF Mi � usym

Introduce phase drift by addingU simulated uniformly from�� π
2�

π
2 �.

Subtractπ (in accordance with Tabs. 2.2 and 2.3 pp. 42 and 43).
STOP simulation.

ENDIF

WHILE τ � τ transients

IF simulation of long waiting time

Assess conditional mean crossing rateλ by interpolation in Fig. 3.9.

Simulate additional waiting timeδτ with distribution 1� e�λ δτ .
Add δτ to τ transientsexploiting the lack of memory property.

Decide uniformly randomly whether first extreme in next clump is a min. or a max.
Subtractπ (in accordance with Tabs. 2.2 and 2.3 pp. 42 and 43).

ENDIF

Table 3.2: Simulation of waiting times.

of clumps are approximately independent. Consequently they obey approximately the Poisson
model, and therefore the long waiting times become approximately exponentially distributed.
For that reason the upper tail of the waiting time distribution is called the exponential upper tail.

An analytical expression for the transient lower tail does not exist. In stead the amplitude
process is simulated using time steps of half a natural period of the oscillator. If an outcrossing
of this discretized amplitude process is detected before a certain timeτ transients, a short waiting
time is simulated. Otherwise a long waiting time should be simulated as explained in the next
paragraph. The amplitude process defined byA2 � X2� Ẋ2�λ 2 is discretized by use of the linear
regression of�X � Ẋ� on the response state half a period before plus their corresponding residual
processes. This gives an amplitude model based on a pair of Slepian models forX and Ẋ . It
turns out that a very good agreement with simulation results obtained by direct time integration
is reached. An alternative to the simulation of the amplitude would be the simulation of the
extremes by use of the conditional distributionFM

�
m �X��π� � �Mi�1

�
(formula (2.28)) for

crossings of the zero-level. However, this gives a considerable underestimation of the waiting
times due to the neglected driving force after the zero-level crossing.
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3.3 Summary

As mentioned the long waiting times are approximately exponentially distributed. The assess-
ment of the parameter of this distribution is simplified if one considers symmetric yield levels.
The symmetrized yield level is defined byusym � min�u��u��. As shown in Chapter 2 this does
not induce any limitations to the simulation of the clumps and it is therefore an acceptable ap-
proach. Due to the exponential distribution of the long waiting times it is possible to show that
the lack of memory property, typical of the exponential distribution, carry over to the exponen-
tial upper tail. Thus a long waiting time is obtained by simulating an additional waiting timeδτ
from an exponential distribution with some parameterλ and adding it toτ transients. The parame-
ter λ gives the intensity of arrivals of clumps of clumps which is obtained by a thinning of the
arrivals of all crossings. Thusλ is not the mean crossing rate of the response out of��usym;usym�,
as that will include all crossings. The intensityλ is instead the mean crossing rate conditional
on the event that the waiting time is larger thanτ transients. Such a conditional crossing rate may
be computed using the discretized amplitude process. Since this is a computationally expensive
procedure a table of crossing rates are computed and the crossing rateλ is then obtained by
non-linear interpolation in this table.

Finally it is mentioned that the timeτ transientsis naturally linked to the correlation structure of the
response which in turn reflects the time change rate of amplitude fade in free damped response.
It turns out that satisfactory results are obtained ifτ transientsis determined from the formula

τ transients�� log�0�3�
α

� (3.12)
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Chapter 4

Simulation by Direct Numerical Time
Integration

Inevitably this chapter is somewhat technical. However, the subject of the chapter is too im-
portant to be expelled to an appendix. It provides the documentation of the verification method
used in testing the results of the Slepian Model Simulation Method with respect to accuracy
and time consumption. The Slepian Simulation Method is faster than those from the traditional
class of simulation methods to which the verification method belongs. A detailed discussion of
the verification method thus gives a firm basis for the judgement of the time gain obtained by
use of the Slepian simulation method.

Clearly only approximate means of verification of the semi analytical Slepian Model simula-
tion method can be found. As in so many other cases a fully numerical method is just such
an approximate tool which in principle can produce arbitrarily accurate results by letting cer-
tain parameters come close to given limit values. The Slepian Simulation Method itself is a
Monte Carlo Method. In general one sample is insufficient to obtain the stochastic properties
of the response. Likewise the validation method consists in simulating, over and over again,
outcomes of the response by the more accurate simulation method followed by an ensemble
average computation.

Details and approximations of the numerical method employed to obtain the individual response
samples are discussed here. Basically the method is an approximate direct time integration
method using finite time-steps. For that reason mainly two approximations occur in the algo-
rithm: band width approximation of the white noise process and time integration errors due
only to the discretized representation of the state variables. It turns out, however, that the latter
approximation may be significantly reduced.

For easy reference the scaled equation of motion of the SDOF oscillator is repeated here:

Ẍ � 2α Ẋ � �1�α 2�r�X� � W �τ�� (1.13)
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W �τ�

τ

Wn

∆τ

Figure 4.1: Schematic of the discretized sequence that simulates the white noise process.

4.1 White Noise Approximation

Due to the infinite variance characteristic of the white noise process, it is impossible to simulate
exact white noise. There exists, however, different ways of simulating approximations to white
noise. Common to all of these simulation schemes is that they cannot reproduce the constant
power spectrum which characterizes white noise. Often they give a power spectrum that is
almost flat in the lower frequency-range, the extent of which typically depends on the time-step
size used in the – in the one way or the other – discretized representation of the white noise.
It is not a big problem that the spectrum is only approximately constant in a finite frequency
range, because the white noise is a driving process that is filtered by the mechanical system
it drives. In engineering problems like those considered in the present work it is the response
of the mechanical system that is in focus – not the white noise process itself. The measure of
applicability of the white noise representation then becomes a question of how well the response
of the mechanical system is reproduced. Generally it may be stated that for reasonable time-
steps any simulation scheme produces an acceptable response of the mechanical system. Thus
the choice of simulation scheme is not very crucial, though not completely trivial. In any case
it should be proven that the chosen scheme implies a satisfactory response of the mechanical
system under consideration.

Here a simulation scheme which is inspired by one of the physical phenomena that led to the
introduction of white noise processes in physics is chosen. Brownian motion is the motion that
particles subjected to pulses occurring infinitely close in time experiences. This phenomenon
was the first that led to the definition of white noise. One cannot simulate pulses occurring
infinitely close in time. Instead the continuous white noise process is approximated by pulses
separated in time by∆τ . This clearly implies a scaling of the pulses so that the approximating
process feeds the same energy into the EPO as the real white noise process does. As it will be
shown in the following the two advantages of the chosen white noise approximation are: time
integration is exact for linear response and the error at the dominating resonant frequency is
almost vanishing.

76



Simulation by Direct Numerical Time Integration

Figure 4.1 shows a schematic of the discretized sequence of pulses. Denoting byWn the impulse
transferred by the pulse occurring at timeτ n � n∆τ , the load termW �τ� in Eq. (1.13) reads

W �τ� �
∞

∑
n � 0

Wn δ�τ � τ n� (4.1)

4.2 Time Integration

The choice of white noise approximation induces a straightforward numerical scheme by which
an approximate integral of the equation of motion is obtained. As the pulses are applied at time
distances∆τ the integral is computed using a time-stepping algorithm that steps ahead in time
using steps of length∆τ .

The following discussion distinguishes between time-stepping through linear states and through
non-linear states. The reason is that the linearity of the equation of motion at linear states may be
exploited so that the computational costs and approximations of the more generally applicable
time-stepping procedure used at non-linear states are avoided. It is worthwhile putting focus
on minimizing computational expenses and inaccuracies at linear states since these states in the
majority of the cases studied in this work dominate the response. Also this effort provides a fair
background for the comparison of the simulation time consumption of the Slepian Simulation
Method and the direct numerical time integration scheme presented here.

4.2.1 Linear States: Exact Time-Stepping

What we are after is a time-stepping formula that relates the state at timeτ n � n∆τ to the state
at timeτ n�1 a time-step∆τ earlier. Recalling that at linear states the oscillator behaves like a
linear oscillator with the current plastic displacementXP as equilibrium position, it follows that
the state of the dynamic system is fully defined by the relative displacementX � � X �XP, the
velocity Ẋ � � Ẋ andXP. The plastic displacement is constant why we are only in need of a
time-stepping formula describing the development of the random relative state vector

X� �

�
X �

Ẋ �

�
(4.2)

The wanted formula is derived from the linearized form of the governing equation (1.13) which
is restated in terms of the relative displacementX �. For the free response between two pulses
the equation of motion becomes

Ẍ � � 2α Ẋ � � �1�α 2�X � � 0 (4.3)
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τ n τ n�1 τ n τ n�1
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Figure 4.2: Schematic of displacement and velocity.

If Ẋ ��
n denotes the velocity right after then’th pulse whileẊ ��

n�1 denotes the velocity just before
then�1’th pulse (see Fig. 4.2) the exact definite integral of (4.3) is given by

X �

n�1 � X �

n e�α∆τ �cos∆τ �α sin∆τ � � Ẋ ��
n e�α∆τ sin∆τ (4.4)

Ẋ ��

n�1 � �X �

n �1�α 2� e�α∆τ sin∆τ � Ẋ ��
n e�α∆τ �cos∆τ �α sin∆τ� (4.5)

In order to have a compact notation for the time-stepping formula the random vectorY n and the
state transition matrixA are defined by

Yn �

�
X �

n

Ẋ ��
n

�
� A � e�α∆τ

�
cos∆τ �α sin∆τ sin∆τ
��1�α 2� sin∆τ cos∆τ �α sin∆τ

�
(4.6)

leading to the formula

Yn�1 � A Yn � Zn�1 (4.7)

where the matrixA accounts for the free response and

Zn �

�
0

Wn

�
(4.8)

is a random vector that gives the change in velocity due to the random pulse, of impulseWn, at
time τ n. By (4.7) the wanted formula is reached.

The time-stepping formula (4.7) obtained by exact time integration has two advantages in com-
parison to the procedure presented in the following subsection. The evaluation of the time-
stepping formula is fast once the matrixA is computed, that is, it is sufficiently simple to allow
direct implementation. Secondly the time-stepping does not introduce any further time dis-
cretization approximations in addition to that due to the white noise approximation. Hence the
nameexact time-stepping. The discussion of choice of time-step and the assessment of the
variance of the intensityWn of the pulses in dependence of the time-step is postponed till later.
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4.2.2 Non-Linear States: Approximate Time-Stepping

At non-linear states the equation of motion does not in general reduce to a simple form that is
solvable by analytical means. Therefore in contrast to the previous section we now put up a
time-stepprocedure rather than a time-step formula. Essentially two things are done. As state
variables are computed only at discrete instances in time, approximate formulas are used to
link the acceleration to the position and velocity at these time instances. Further the resulting
equation of motion is solved approximately numerically. The simple, yet effective, Newmark
algorithm commonly used in structural dynamics is applied here. In the light of the present
setting of a pulse load the implementation of the Newmark algorithm is shortly reviewed. The
Newmark rule approximates the integrals in the Taylor expansions of velocity and position over
a single time-step. The expansions are

Ẋ�τ n�1� � Ẋ�τ n� �
� τ n�1

τ n

Ẍ�τ�dτ (4.9)

X�τ n�1� � X�τ n� � ∆τ Ẋ�τ n� �
� τ n�1

τ n

�τ n�1� τ � Ẍ�τ�dτ (4.10)

The way of approximation is by use of appropriate weighted averages of the accelerations at the
interval end-points [14, pp. 374]. The notation introduced in the previous section using + and -
superscripts denoting states just before and right after a pulse is adopted here too (see Fig. 4.2).
Following [14] the approximation formulas read

Xn�1 � Xn � ∆τ Ẋ�
n � �1

2�β�∆τ2Ẍ�
n � β ∆τ2Ẍ�

n�1 (4.11)

Ẋ�

n�1 � Ẋ�
n � �1�γ�∆τ Ẍ�

n � γ∆τ Ẍ�

n�1 (4.12)

When the weight parametersγ andβ are assigned specific values the formulas give a discretized
relation between the positions, velocities and accelerations at the interval end-points. To com-
plete the time discretization scheme it lacks to choose a point in time at which the equation of
motion should be satisfied. In the straightforward implementation of the Newmark algorithm
employed herein this point is chosen identical to the interval end-pointτ n�1 – just before the
pulse. Substituting Eqs. (4.12) and (4.11) into the equation of motion gives

Ẍ�

n�1�2α
�
Ẋ�

n ��1�γ�∆τ Ẍ�
n � γ∆τ Ẍ�

n�1

�
��1�α 2�r

�
Xn �∆τ Ẋ�

n ��1
2�β�∆τ 2Ẍ�

n �β ∆τ 2 Ẍ�

n�1

�
� 0 (4.13)

This equation inẌ�

n�1 can be cast in a more compact and computational useful form in terms
of the acceleration increment∆Ẍn � Ẍ�

n�1� Ẍ�
n . If one introduces the so-called position and

velocity predictors

Xpre
n�1 � Xn � ∆τ Ẋ�

n � 1
2∆τ2Ẍ�

n (4.14)

Ẋpre
n�1 � Ẋ�

n � ∆τ Ẍ�
n (4.15)
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the equation for the acceleration increment reads

�1�2α γ∆τ �∆Ẍn � Ẍ�
n � 2α Ẋpre

n�1 � �1�α 2�r�Xpre
n�1�β ∆τ2∆Ẍn� � 0 (4.16)

Assuming that this equation is solved the next set of state variables are determined by the
so-called corrector step. This step accounts for the difference between the predictors and the
approximation formulas Eqs. (4.12) and (4.11). The pulse, that has not yet appeared in the
above equations, is included in the corrector step too. The corrections become

Xn�1 � Xpre
n�1�β ∆τ 2∆Ẍn (4.17)

Ẋ�
n�1 � Ẋpre

n�1� γ∆τ ∆Ẍn �Wn (4.18)

Ẍ�
n�1 � �2α Ẋ�

n�1� �1�α 2� r �Xn�1� (4.19)

To end the presentation of the implementation of the Newmark algorithm the choice of the
weight parametersβ andγ is discussed. They are set toγ � 1

2 andβ � 1
4 rendering the well-

known average acceleration scheme that is unconditionally stable for linear systems. The sys-
tem considered here is only moderately non-linear why it is assumed that one should not en-
counter stability problems. It is noted that stability problems have not been detected.

To avoid confusion in the survey given above on the Newmark implementation, the question
about solving equation (4.16) for the acceleration increment was skipped. The method of solu-
tion requires a few remarks. Since the equation is non-linear it is solved approximately itera-
tively by use of the modified Newton-Raphson scheme using the initial tangent slope

m̂ � 1�2α γ∆τ ��1�α 2� ṙ �Xpre
n�1�β∆τ 2 (4.20)

throughout the entire iteration. The stop-criterion used to terminate the iterations is based on a
relative measure of the change of the iterate. Iterations stop when change of the iterate relative
to the iterate itself is less than 10�4. This is adequate as the time-steps are so short that the
first iterate is generally quite close to the exact solution. Consequently only small successive
corrections are needed. This also explains why the modified Newton-Raphson scheme is pre-
ferred to the full scheme. The slope ˆm changes only little during the iteration. Therefore, saving
the unnecessary expense of recomputing ˆm in each iteration step fully compensates the slightly
lower convergence rate of the modified scheme in the present context.

The main features of the described time-stepping procedure may be summarized as follows. On
top of the white noise approximation error it introduces mainly an error because of the position
and velocity approximations that prevent exact time integration. Minor errors are introduced
by the approximate solution of the non-linear incremental equation of motion. Hence the term
approximate time-stepping. The latter error is minimized by time costly iterations. For these
reasons exact time-stepping is preferable to approximate time-stepping whenever applicable.
Table 4.1 summarizes the steps of the implemented Newmark algorithm.
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1) Prediction step:

Xpre
n�1

� Xn � ∆τ Ẋ�
n � 1

2∆τ2Ẍ�
n

Ẋpre
n�1

� Ẋ�
n � ∆τ Ẍ�

n

2) Compute acceleration increment∆Ẍn by solving

�1�2α γ∆τ�∆Ẍn � Ẍ�
n � 2α Ẋpre

n�1
� �1�α 2�r�Xpre

n�1
�β ∆τ 2∆Ẍn� � 0

Apply modified Newton-Raphson with the tangent slope

m̂ � 1�2α γ∆τ ��1�α 2� ṙ �Xpre
n�1

�β∆τ 2

3) Correction step:

Xn�1 � Xpre
n�1

�β ∆τ 2∆Ẍn

Ẋ�
n�1 � Ẋpre

n�1
� γ∆τ ∆Ẍn �Wn

Ẍ�
n�1 � �2α Ẋ�

n�1� �1�α 2� r �Xn�1�

4) Return to 1) or stop.

Table 4.1: The present implementation of the Newmark algorithm.

4.3 Stochastic Properties of the Time-Stepping Process

Two aspects of the time-stepping procedure still need to be addressed. The one concerns the
question of choosing the time-step size, and the other concerns the distribution of the load
pulses. Both issues are important because the step size, as well as the pulse distribution, influ-
ence the stochastic properties of the response process simulated by the time-stepping algorithm.
Due to the discretization this process is not identical to the real response process. The aim is to
choose a suitably big time-step that will at the same time give reasonable simulation times and
keep the difference, i.e. the error, between these two processes at an acceptably low level.

The comparison of the simulated process with the real response process must show how well
the white noise process is approximated in a sense that reflects important features of the consid-
ered problem. There are two such features of which one is that white noise gives power input
at all frequencies, and the other feature is the oscillatory characteristic of the mechanical sys-
tem causing amplification of the power input at frequencies around the eigenfrequency. To test
whether these features are satisfactorily represented in the simulated response or not, the simu-
lation of alinear oscillator is considered. This is simply because, in the linear case analytical
results for the power spectrum of the real stationary response and the simulated response pro-
cess are obtainable. Reflecting the above mentioned features the spectrum of the real response
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is smooth with a peak around the eigenfrequency. If the simulation scheme works properly its
spectrum is smooth too and with an almost identical peak. If it is so, it is then assumed that
the response of the EPO is satisfactorily reproduced also. This assumption is reasonable as, in
consequence of the assumption about non-dominating hysteresis, the response of the EPO will
deviate only little from the ALO response. Especially simulation of waiting times depends only
on the simulation of linear response.

It is noted that, in recalling that the ALO response is Gaussian, it is clear that the spectrum,
being the Fourier transform of the stationary correlation function, does not only reflect important
features of the problem. It also becomes a direct measure of how close the distribution of the
simulated response process is to the real response process.

4.3.1 Pulse Distribution

Choosing the distribution type of the pulses is straightforward as the white noise excitation
is Gaussian resulting in a normally distributed response of the ALO. Thus the pulses must
have Gaussian distribution too. Otherwise, even the simulation of the linear oscillator response
would result in an only approximately normally distributed process. The mean of the pulses
must be zero as any other choice would cause a shift of the mean response away from zero.
Furthermore the pulses are uncorrelated. The only distribution parameter left is the variance
σ2

W of the pulses. It can be qualitatively understood howσ W must depend on the time-step
size. Each pulse gives a change in velocity and thereby a change in kinetic energy causing a
change in mechanical energy. Stationarity implies that the average energy input over time must
be constant. Consequently the average energy input of each pulse must be proportional to the
time-step length. As the average pulse energy input is proportional toσ 2

W one concludes that
σW ∝

�
∆τ . In other words:

σ2
W � Var�impulse� � Var�

� τ n�1

τ n

W �τ�dτ � � I ∆τ (4.21)

4.3.2 Power Spectrum

An approximate expression for the power spectrum of the simulated response process is ob-
tained by deriving first the stationary correlation function of the simulated response. The fol-
lowing derivation is an extended and more direct version of the derivation given in [3, pp.
374–377]. The time-stepping formula (4.7), which is valid for the linear case, defines an au-
toregressive vector process that is clearly discrete. On the basis of this process solely the cor-
relation between points separated in time by integer multiples of∆τ can be established. One
needs, however, the correlation between points that are separated arbitrarily in time in order to
compute the correlation function. Obtaining the simulated continuous process from the autore-
gressive process is easy, making the derivation of the correlation function from the correlation
structure of the autoregressive process – as it will appear below – a simple task.
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To see how the continuous response sample is related to the autoregressive process let, in ac-
cordance with the notation introduced above,Yn denote a state right after the application of a
pulse. Free response follows andAYn is then the response just before the next pulse. Defin-
ing the matrixAκ as the matrix obtained by replacing in the formula forA the time-step∆τ
by the scaled time-stepκ ∆τ , 0�κ �1, the development of the free response between any two
consecutive pulses, say from timeτ n till any point in time beforeτ n�1, is given by

Aκ Yn� 0� κ � 1� (4.22)

Before computing the correlation function some few results from the theory of stationary autore-
gressive processes are briefly repeated with emphasis on characteristics of the present problem.
First of all it is noted that sinceA represents the unforced development of the response of an
oscillator with damping, the eigenvaluesλ 1 andλ 2 of A have modulus less than 1 implying that
the process can actually reach stationarity. Due to the zero mean of the pulses the mean value
vector obey the relation

E�Yn� � AE�Yn� (4.23)

As �λ i� � 1 the mean value vectors becomeE�Yn� � 0. By recursion it follows that the cor-
relation matrixCk � Cov�Yn�Y

T
n� k�, k � 0�1� � � � between two states separated in time byk

time-steps is given by the equations

Ck � Ak C0 (4.24)

C0 � A C0 AH � CZ (4.25)

where

CZ � Cov�Zn�Zn� �

�
0 0
0 σ2

W

�
(4.26)

and the superscriptH means the Hermitian, i.e., the transpose complex conjugate matrix.
ThoughA is real, the introduction of the Hermitian is needed later because the eigenvalue
decomposition ofA is complex. Eq. (4.25) may be solved by replacingA by its eigenvalue
decompositionA � VLV�1. Doing so one then finds that the following relations hold

C0 � VĈ0VH �
�

ĉ0�nm

�
�
� ĉZ�nm

1� λ nλ̄ m

�
� ĈZ � V�1CZ

�
V�1
�H

(4.27)

where the overbar means complex conjugate andn�m � 1�2

After this short recapitulation of some basic results about stationary autoregressive processes it
is time to turn to the evaluation of the correlation function of the simulated response process.
First step is to relate the correlation structure of the simulated response process to the correlation
structureCk of the autoregressive process. Combining the transition formula Eq. (4.22) and the
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equation forCk Eq. (4.24), yields an expression for the correlationCk�κ between two points
separated in time by�k� κ�∆τ :

Ck�κ � Cov�Aκ Yn�Y
T
n� k� � Aκ AkC0� 0� κ � 1 (4.28)

The computation of the cumulative transition matrixAκ Ak is easily conducted by use of the
eigenvalue decompositions of the individual transition matrices. The eigenvalues ofAκ andA
areλ κ ; 1�2 � e��α � i�κ∆τ andλ 1�2 � e��α � i�∆τ respectively. As one should intuitively expect they
account for the development of the damped unforced response over a given time-step, why they
are identical except for the step length. On the other hand the eigenvectors of the two matrices
are identical andindependent of the time-step. One finds

V � Vκ �

�
1 1

�α � i �α � i

�
(4.29)

The fact thatV � Vκ is very useful in the evaluation ofCk�κ . Denoting byθ the time lag
�k�κ�∆τ , and introducing the notationR�θ� for the correlation function matrix of the simulated
continuous state vector process one has

R�θ� � Ck�κ

� Aκ Ak C0

� Vκ Lκ V�1
κ �VLV�1 � � �VLV�1� C0

� VLκ LkV�1 C0

� V

�
e��α � i�θ 0

0 e��α � i�θ

�
V�1 C0

(4.30)

The above expression tells us that the dependence ofR on the step size is isolated inC0. Thus
the next step naturally becomes an investigation of howC0 depends on∆τ . Evaluating the
formulas in Eq. (4.27) yields

C0 �
�σW�

�
∆τ�2

8
V

�
� 2∆τ

1�e�2α ∆τ
�2∆τ

1�e�2�α � i�∆τ

�2∆τ
1�e�2�α � i�∆τ

2∆τ
1�e�2α ∆τ

�
�VH (4.31)

Note thatσW has been divided by
�

∆τ . According to the discussion in Sec. 4.3.1 about the
dependence ofσW on ∆τ , �σW�

�
∆τ �2 is a scalar independent of∆τ . All dependence on the

time-step is thus isolated to the matrix betweenV andVH in Eq. (4.31). Carrying on from now
by analytical means is not easy without approximations. A Taylor expansion in∆τ is therefore
considered. After some simple manipulations one obtains the below formulas in whicho�∆τ 2�
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denotes a matrix of little oh functionso�∆τ 2�.

C0 �
�σW�

�
∆τ�2

8
V

��
�
�
� 1

α
�i�α
1�α 2

i�α
1�α 2

1
α

�
��

�
1 �1

�1 1

�
∆τ

�
1
3

�
α �α � i

�α � i α

�
∆τ 2

�
VH � o�∆τ 2�

�
�σW�

�
∆τ�2

4α �1�α 2�

 �
1 0
0 1�α 2

�
�2α �1�α 2�

�
0 0
0 1

�
∆τ

�
α �1�α 2�

3

�
0 �1

�1 4α

�
∆τ 2

�
� o�∆τ 2�

(4.32)

The latter of the above two formulas shows that if one puts

σ2
W � 4α �1�α 2�∆τ (4.33)

then, as∆τ tends to zero, the stationary variance ofX�τ�, Ẋ�τ� and their zero covariance in the
case of a continuous white noise forcing is recovered. Hence the simulation scheme is in this
respect asymptotically correct.

The final step is to construct the power spectrum. By substitution of Eq. (4.32) into Eq. (4.30)
and definingσW by Eq. (4.33) the Taylor expansion of the correlation function matrixR�θ�
becomes

R�θ� � e�αθ
�

cosθ �α sinθ �1�α 2�sinθ
��1�α 2�sinθ �1�α 2��cosθ�α sinθ�

�

�2α �1�α 2� e�αθ
�

0 sinθ
0 cosθ�α sinθ

�
∆τ

�
α �1�α 2�

3
e�αθ

� �sinθ �cosθ �3α sinθ
�cosθ �α sinθ �1�3α 2�sinθ �4α cosθ

�
∆τ 2

� o�∆τ 2�

(4.34)

Again it is seen that asymptotically for∆τ � 0 the simulation procedure reproduces the station-
ary response correlation structure of a white noise excited SDOF oscillator. The only spectrum
that will be considered here is the displacement spectrumSX . It is computed as

SX�ω� �
1
π

� ∞

0
R11�θ�cos�ωθ� dθ

�
1
π

2α �1�α 2��
�1�α 2��ω2

�2
�4α 2ω2

�
1� 1

6�1�α 2�ω2�∆τ 2
�

� o�∆τ 2�

(4.35)
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The fraction in front of the parenthesis is the exact response spectrum. The second term in the
parenthesis gives an approximation to the error due to the discretization. One observes that the
error is of second order in the time-step∆τ and without noticeable influence from damping. The
ω2 in the inner-parenthesis shows that there will be some high frequent noise in the simulated
process and almost no error at the peak. Clearly there must be some high-frequency noise,
as the pulses give instant changes in velocity leading to non-differentiable displacement sample
curves. Predicting the precise kind of high-frequency noise appearing in the second order Taylor
series approximation is not easy, why no further discussion of the error term is given. The
importance of the result is, however, that an acceptable error is obtained – independent of the
damping ratio – by choosing∆τ equal one tenth of the period of oscillation.

Figures. 4.3 and 4.4 document the conclusions reached above. Figure 4.3 shows plots of the ex-
act spectrum and the second order Taylor expansion of the spectrum of the simulated response.
Both spectra are shown for different values of the damping ratioζ � 0�001�0�01�0�05 and for
∆τ � 2π�10, i.e., one tenth of the period. Figure 4.4 shows similar plots for the same damping
ratios but with∆τ � 2π�5. In both figures the left-hand plots show the logarithm of the spectrum
in the vicinity of the peak. From these plots it is clear that the error at the peak is negligible.
The right-hand plots show the scaled spectrumS�X�ω� in the domains next to the peak. This
spectrum is defined by

S�X�ω� �
�1�α 2�π

2α
SX�ω� (4.36)

which ensures that the plots always go through�0�1�. In this way the plots will show the relative
error. Note that not showing the peak makes the error appear more clearly than if the peak was
included. As concluded above the error appears virtually independent of the damping ratio.
As the variance and thus the energy content of the exact response and the simulated response
are equal the presence of high-frequency noise in the simulated response is compensated by a
reduced low-frequency content. The errors for a time-step of size one tenth of the natural period
are acceptable. On the other hand comparing Figs. 4.3 and 4.4 proves considerable errors for a
time-step of size one fifth of the natural period.

A time-step of size one tenth of the natural period as discussed above is not – as it may appear
– an arbitrary choice. This step size is one of the most commonly used in simulations of the
response of dynamically loaded structural systems. Therefore, in judging how fast the Slepian
simulation scheme is relatively to direct numerical time integration simulations, it seems most
relevant to use this time-step as this is usually the alternative. The conclusion of this section
is that the direct simulation strategy presented in this chapter provides a satisfactory frequency
content representation when a step size of one tenth of the natural period is used. Especially
the dominating resonant frequency, important for the time scaling, has virtually no error. Thus
it produces reliable results at the same time as it is fit for computation time comparisons.

86



Simulation by Direct Numerical Time Integration

0.5 1.0 1.5
−10

−5

0

5

10

ω

lo
g(

S X
(ω

))

ζ = 0.001,  ∆τ = 2π/10

0 1 2 3 4
0

0.5

1.0

1.5

2.0

ω

S X*
(ω

)

ζ = 0.001,  ∆τ = 2π/10

0.5 1.0 1.5
−6

−4

−2

0

2

4

ω

lo
g(

S X
(ω

))

ζ = 0.01,  ∆τ = 2π/10

0 1 2 3 4
0

0.5

1.0

1.5

2.0

ω

S X*
(ω

)

ζ = 0.01,  ∆τ = 2π/10

0.5 1.0 1.5
−4

−3

−2

−1

0

1

2

ω

lo
g(

S X
(ω

))

ζ = 0.05,  ∆τ = 2π/10

0 1 2 3 4
0

0.5

1.0

1.5

2.0

ω

S X*
(ω

)

ζ = 0.05,  ∆τ = 2π/10

Figure 4.3: Comparison of the power spectra of the exact response (dotted curves) and
the simulated response (full curves). See discussion in the text.
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Figure 4.4: Comparison of the power spectra of the exact response (dotted curves) and
the simulated response (full curves). See discussion in the text.
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Figure 4.5: Waiting time distribution simulations by direct time integration with step size
one tenth (thin curves) and one hundredth (thick curves) of the period. 5000
samples foru � 3 andζ � 0�01.

4.4 Algorithm – Discussion

In this section the complete algorithm is shortly recapitulated and enhanced a little. The en-
hancement follows from an additional discussion of the time-step size given below.

4.4.1 Time-Step Size – Again

When simulating waiting time distributions in the context of direct numerical time integration
the simulation proceeds until the first time one detects that the response exceeds the elasticity
limits. With probability one outcrossings occur between the pulses. Most likely an outcrossing
is not followed by an incrossing until after the next pulse. Thus detecting outcrossings by
detecting only outcrossings of the discrete autoregressive process will give a good estimate of
the waiting time distribution. However, there might be samples with outcrossings of duration
less then the step-size. Furthermore these outcrossings can take place between pulses. The
more likely the larger the time-step size, of course.

The discussion in Sec. 4.3.2 led to the conclusion that simulations with a time-step of length
one tenth of the natural period of the oscillator would give a satisfactory representation of the
frequency content of the exact response. Figure 4.5 shows two simulation results for a typical
waiting time distribution using the autoregressive process only. The one simulation conducted
with a time step of one hundredth of the natural period, the other with time-step one tenth of the
period. The results are within the same order of magnitude but not identical, implying a non-
negligible amount of outcrossings of short duration occur between pulses. A simple improve-
ment of the results obtained by the large time-step is possible without making the simulation
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Figure 4.6: Waiting time distribution simulations by improved direct time integration
with step size one tenth of the period (thin curves) compared with simple
direct time integration using step size one hundredth of the period (thick
curves). 5000 samples foru � 3 andζ � 0�01.

scheme become much more time costly. Whenever the response comes close to the elasticity
limits it is checked if an outcrossing has taken place even though two successive states of the
autoregressive process does not indicate an outcrossing.

The two issues: how one defines ’close to the elasticity limits’, and how one checks if an
outcrossing has occurred, require some remarks. The situation we are considering is when
X � � X�XP � �u� and the velocity is close to zero – otherwise there would be too much kinetic
energy in the oscillator for it to cross out and cross in within one time-step. A simple calculation
based on Eq.(4.4) shows that under the conditionsX � � u andẊ � � 0 the oscillator, during on
time-step, will at most displace approximately∆X � � �1�cos∆τ�u. So by close is meant

�X ��u� � δ � �1�cos∆τ�u (4.37)

The check of a possible outcrossing simply consists in shifting time-step to∆τ�10, without
changing the temporal density of the pulses. One steps ahead using the state transition matrix
Aκ � 0�1 and checks if this more dense, but still discrete process, experiences an outcrossing. If
it does not, simulation returns to the original step size∆τ and so on.

With ∆τ equal to one tenth of the period one findsδ � 0�19u. For the moderately low elasticity
level u � 2 this implies that about 10% of the response is computed with time-step∆τ�10. For
u � 3 it is less than 2%. Consequently the extra time consumption is little – especially so for
high levels which are the most relevant ones. Figure 4.6 compares, for the same waiting time
distribution as in Fig. 4.5, a simple simulation with time-step one hundredth of the period with
one using the improved simulation scheme with time-step one tenth of the period. A satisfactory
agreement is obtained.
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4.4.2 The Algorithm in Short

Up till now stepping through linear and non-linear states has been discussed separately. How to
shift from linear states to non-linear states and back again has not been discussed. The subjects
of this section are: discussion of shifting between states, and recapitulation of the algorithm.
The latter subject is given in the form of a table.

Sometimes a higher resolution of the time-stepping algorithm is required. Like it was discussed
above, it is needed when detecting outcrossings of less duration than one time-step. It is also
needed when, after an outcrossing, an extreme is detected. The outcrossing and the response
path from the outcrossing to the extreme have to be computed rather precisely, as they determine
the size of the plastic displacement increment due to that particular outcrossing. Because the
time from an outcrossing to the following extreme is typically less than one quarter of the
natural period, time-steps of size one tenth of the period are too crude for the simulation of the
response path after an outcrossing. So, when evaluating the plastic displacement increment, the
point of outcrossing must be precisely determined as well as time-steps of size∆τ�10 during
non-linear stepping are required. The coupling between linear and non-linear time-stepping
therefore becomes as follows. When an outcrossing is detected the step-size is either∆τ�10
(as described in Sec.4.4.1) or∆τ . In the latter case, go back one time-step∆τ , shift to time-
step∆τ�10 and re-detect the point of outcrossing more precisely. Then shift to the non-linear
time-stepping procedure and proceed stepping with step size∆τ�10. Continue until the extreme
is detected. Shift back to linear stepping, and carry on using time-step∆τ�10 until the next
pulse. Apply the pulse and continue with the original step size∆τ . Note, that during all this the
temporal density of the pulse application does not change. Table 4.2 (at the end of the chapter)
presents the algorithm as explained here. For convenience it is assumed in this table that the
initial conditions (which are not discussed in this chapter) are within or at the elasticity limits.

4.5 Summary

This chapter discusses an implementation of a direct numerical time integration scheme fit
for the evaluation of the performance of the Slepian Model Simulation Method when used to
simulate the response of an SDOF oscillator with hysteresis driven by white noise.

The numerical scheme implies a discretization of time and consequently a discretization of
the driving white noise process. The white noise process has been represented by discrete
pulses. The time discretization is characterized by the distance – the so-called time-step –
between the discrete points in time. It has been shown that for a linear oscillator the simulated
stationary response spectrum approximates the exact response spectrum very well. Especially
the dominating resonant frequency, being important for the time scaling, has virtually no error.

Another virtue of the direct scheme is that the white noise discretization implies that an ex-
act time-stepping formula exists as long as the oscillator is at elastic states. Due to the non-
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linearities approximate time-stepping is generally inevitable, however, the errors do not matter
much in the total picture as only relatively few time-steps take place in the non-linear domain.

Enhanced time-stepping improves waiting time and plastic displacement simulations but does
not affect simulation time much.

Thus it may be concluded that the direct time integration scheme produces reliable results for
a typical time-step that at the same time makes it a fair and realistic benchmark for the Slepian
Model Simulation Method with respect to computation time consumption and accuracy.
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Set initial conditions inside elasticity limits – deterministicly or randomly.

DO

DO

Simulate linear time-step.
IF close to elasticity limits (see Eq.(4.37)):

Set step size to∆τ�10.
DO

Simulate linear time-step.
UNTIL outcrossing or next pulse.

IF no outcrossing: Reset step size to∆τ .
ENDIF

UNTIL outcrossing.

IF step size equals∆τ :
Go back one step.

Set step size to∆τ�10.
DO

Simulate linear time-step.

UNTIL outcrossing.
ENDIF

Set step size to∆τ�10.

DO

Simulate non-linear time-step.

UNTIL extreme reached.
DO

Simulate linear time-step.
UNTIL next pulse
Reset step size to∆τ .

UNTIL end of sample

Table 4.2: The simulation algorithm in pseudo code.
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Chapter 5

Simulation Results

The previous chapters provide the background for the Slepian Model simulation method and
the testing of it. In the present chapter simulations of plastic displacement processes are given.
First examples with a bilinear EPO with hardening and softening are treated. Next a non-ideal
EPO is treated. In all cases the combination of the Slepian modeling of the clumps of plastic
deformations and the waiting time simulations for the inter-clump response gives good results.

5.1 The Plastic Displacement Process

Recapitulating definitions given in Chaps. 1 to 3, but also for use in the present chapter, Fig. 5.1
shows a sketch of the plastic displacement process as simulated by the Slepian model simulation
scheme. One observes that there are – at least – two ways of describing the distributions of the
plastic displacement process. One can consider the plastic displacement at a given time instant
the sum of all the previous plastic displacements, or one can consider it the sum of the net plastic

τ
D1

D2

D8D4 D6 D7

XP

π π π π π π π πT1
T2 T3 T4T0

D3

Figure 5.1: Sketch of the plastic displacement process for the Slepian simulation scheme.
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displacements of each clump:

XP � ∑
incrementi

Di � XP � ∑
clump i

Dnet� i (5.1)

By the latter description generally less dependence of the terms in the sum is obtained. This is
due to the time distance between the clumps being larger than the time distance between each
plastic displacement.

5.2 Initial Conditions

Strain hardening has a stabilizing effect on the plastic displacement process. Physically this
is easily understood, if one considers an ideal elastic-plastic beam subjected to a static ten-
sional normal force as shown in Fig. 5.2. Regarding the transverse end point displacement
it is clear that the tensional force will always attempt to straighten the beam, thus preventing
the end point from displacing arbitrarily much. The plastic displacement processes is conse-
quently continuously drawn back towards zero. The statistical moments of the plastic process
therefore become stationary independent of the initial conditions of the oscillator. Intuitively
this implies thatXP�τ� is, when stationarity is reached, an ergodic process. Generating just one
very long sample ofXP�τ� would suffice to obtain the stationary statistical moments. However,
in opposition to hardening, strain softening destabilizes the plastic displacement process why it
becomes unstable leading to collapse of the oscillator. Thus stationarity is clearly not obtainable
for strain softening and the statistical properties of the process must be obtained by simulating
the process over and over again using the identically distributed initial conditions, and finally
evaluating the ensemble average. The same holds true for ideal plasticity as the plastic displace-
ment process can drift due to lack of hardening. So, in general the statistical properties of the
plastic displacement process depend on the initial conditions of the oscillator, why this section
is devoted to this subject.

In the present examples the random initial conditions are chosen as follows. It is assumed
that the response at timeτ � 0 has reached approximate stationarity without any outcrossings.
ThereforeXP�0� � 0 and�X�0��� u, whereu denotes the absolute value of the initially symmet-
ric yield limits. Furthermore it is assumed that the oscillator at timeτ � 0 is at a crest/trough.

X

P

Figure 5.2: Column subjected to tensional static force.
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This assumption is introduced as it simplifies the simulation of the waiting time to the first out-
crossing when employing the amplitude model. As an approximation to the distribution of the
extreme under these assumptions the truncated standard Rayleigh density

xe�
1
2x2

1� e�
1
2u2 � 0� x � u (5.2)

is adopted. This approximation is used because the stationary distribution of the amplitude of
the normalized response of a linear oscillator subjected to white noise is standard Rayleigh.
The direct simulation is then initiated by generating an outcome from (5.2) and assigning it to
X�0� using, with equal probability, positive or negative sign. The velocityẊ�0� is set to zero.
The Slepian model simulations are initiated by generating an outcomeM0 from (5.2) also. The
time to the first outcrossing is then obtained by simulating the outcomes of the amplitude model
according to Eq. (3.11) usingM0 as the initial amplitude.

5.3 Strain Hardening and Softening for the Bilinear EPO

In this section simulation results for the bilinear EPO are presented (the definition of the bilinear
restoring force diagram is reviewed Appendix A.) As hardening and softening lead to different
types of plastic displacement developments the results are presented in separate sections.

5.3.1 Hardening

The aim is to obtain the development in time of the statistical moments up to and including
the fourth order. Due to the symmetry of the initial conditions and the restoring force diagram
the mean and skewness is zero at all times. Therefore the plots in Figs. 5.3, 5.4 and 5.5 show
only the time development of the standard deviation and the kurtosis for different values of
the system parameters. These are as follows:u, which is the initial symmetric yield level,γ,
which is the inclination of the hardening branch (see Fig. A.1 p. 119), andζ , which is the
damping ratio. The number of simulations performed is 5000, which is quite high. This was
done in order to obtain reliable estimates of the higher order moments. Especially problems
can arise for the time instances close to zero as only a few samples are non-zero close to zero.
Consequently the statistical uncertainty in the estimation of the kurtosis is high there. From the
plots in Figs. 5.3–5.5 it is seen how the uncertainty decreases with time. The clear step-shape
of the kurtosis plots for the Slepian model simulations is due to the simulation of the waiting
time to the first outcrossing by the discretized amplitude model. Therefore the Slepian model
simulations cannot catch the very beginning of the time development of the kurtosis very well.
However, the plateaus are generally well situated compared to the more smooth curves obtained
by the direct simulations.
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Before carrying on comparing direct and Slepian Model simulation results some remarks on
the time development of the kurtosis are given. As mentioned above the value of the plastic
displacement process at a certain time instant may be considered as either the sum of all the
previous plastic displacement increments or the sum of the net plastic displacements in each
clump. If the distributions of the terms in these sums are identical and independent the Cen-
tral Limit Theorem states that the distribution of the plastic process approaches the Gaussian
distribution as the number of terms tends to infinity, i.e. time tends to infinity. The terms are
in general not independent and nor equally distributed. The separate plastic increments are
dependent simply due to the clumping. When the yield limits are of similar size, i.e. almost
symmetric, it is most likely that a negative increment follows a positive increment, if they belong
to the same clump. When the limits are very asymmetric a positive increment usually precedes
a positive increment and a negative precedes a negative. This concerns the dependence of the
sign. Nor the magnitude of the plastic increments are in general independent. Regard first the
second and following plastic increments in a clump. The size of these increments clearly de-
pends on the yield limitsu� andu� which in turn depends on the foregoing plastic increment.
Consider now the first increment in a clump. Due to the inter-clump oscillations the first plastic
increment in a clump depends in a more complicated way on the last plastic increment of the
previous clump. However, it is clear that it is not independent on this plastic increment. So
much for dependence. Furthermore, since the plastic increment depends onu� andu� which
develop in time, the distribution of the increments are not identical. Some of the considerations
given for the separate increments hold true for the distribution of the net plastic displacement of
a clump as well. The net plastic displacements are however less dependent as the inter-clump
oscillations separates them in time. This is an ’on the average’ consideration, because inter-
clump waiting times can be rather short, as discussed previously, why net plastic displacements
in clumps closely positioned in time are highly dependent (a fact partially neglected in [12]).
Again it follows from the fact thatu� andu� develop in time that the distributions of the net
plastic displacements are not identical either. This is clearly illustrated by regarding the plots in
Figs. 2.14 and 2.15 (pp. 50 and 51). When the yield limits are almost symmetric the distribu-
tion of the single increments and the net displacements become symmetric. On the other hand,
when yield limits are asymmetric (for�XP� large) the corresponding distributions become very
asymmetric.

All the above points in the opposite direction of the requirements for the Central Limit Theorem
to be fulfilled. However, in the case of hardening and especially weak hardening approximate
Gaussianity is obtained. To explain this let us consider the ideal EPO. The dependence of the
sign of the separate plastic increments is of course the same as in the general case of hardening
or softening. The magnitude of the increments are, on the other hand, equally distributed and
independent for the following reason. Both limitsu� andu� have the same value independent
of the foregoing plastic displacement increment and they do not develop in time, i.e. they are
independent of the past history. Therefore the general features of the plastic process which led
to the inter-dependence of the magnitude of plastic increments vanish in the special case of the
ideal EPO. Likewise the net plastic displacement of the clumps are equally distributed (a thor-
ough investigation of this distribution is given in [6]). As the net plastic increment of a clump
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Figure 5.3: Comparison of plastic displacement process simulation results for the bilin-
ear EPO obtained by Slepian simulation (thick curves) and direct simulation
(thin curves). Parameters as defined in Chap. 2 are given at the plots. 5000
samples.

is obtained by adding the separate increments in a clump, much of the inter-dependence of the
sign of the increments is accounted for by the distribution of the net plastic displacement. Still
the net plastic displacements of the clumps is not independent either, as the sign of the first plas-
tic increment in a clump depends on the previous clump. This dependence of course reduces for
increasing inter-clump waiting time. In the long run a sufficiently large number of nearly inde-
pendent net plastic displacements are encountered, so that the plastic displacement process will
approach Gaussianity. Returning now to the case of a weakly hardening oscillator, it is clear
that the net plastic increments of the clumps become approximately independent. Furthermore,
in opposition to softening, the hardening ensures that extremely asymmetric distributions like
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Figure 5.4: See the caption of Fig. 5.3

in Fig. 2.15 do not occur. Therefore the net plastic increments of the clumps become almost
identically distributed too. It may therefore be concluded that in the case of hardening, stabi-
lization leads to an approximately Gaussian distribution ofXP�τ � as time goes to infinity. The
more so the weaker the hardening. All plots in Figs. 5.3 to 5.5 of the kurtosis show how a level
close to 3 (the level 3 is shown by a dotted horizontal line) is approached. Especially the plots
in Fig. 5.3 demonstrate the effect of increasing hardening causing larger and larger deviation
from Gaussianity.

Results obtained by direct simulation and by Slepian model simulations are now compared.
Generally good agreement between the results for the wide spread of parameters used in the
plots is obtained. Anyway, for the initial yield levelu � 1 and hardening parameterγ � 0�6
(Fig. 5.3) there is a notable error in the computation of the kurtosis when using the Slepian
Simulation Method. The error is constant when first the kurtosis has reached a stationary level.
This means that the error is due to the clump simulation and not the waiting time simulation.
That errors may occur at such a low level is to be expected due to the assumptions behind
the Karnopp-Scharton hypothesis. As explained at the end of Chap. 2 the simulation of the
plastic displacement increment for low levels has errors, because the influence of the driving
load after outcrossing is neglected resulting in a too small spread of the distribution of the
plastic displacement obtained by the Slepian Model in combination with the Karnopp-Scharton
hypothesis. As it is shown in the first row of Fig. 2.14 the Slepian model distribution is more
steep than the true distribution, i.e. the kurtosis is smaller than the true kurtosis. This is exactly
what is observed in the last plot in Fig. 5.3. The plot shows also that, for the same reason, the
standard deviation is underestimated. The error is very pronounced because the high level of
the hardening parameter causes crossings of even lower levels than 1 to become quite likely.
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Figure 5.5: See the caption of Fig. 5.3

The error does not grow in time because the hardening causes the plastic displacement process
to return to zero so that the symmetrized yield level stays close to the initial value giving a time
independent error (this is not the case for softening as explained i the next section). For the other
plots in Fig. 5.3, in which the hardening is smaller, the error is hardly visible, as it vanishes
in statistical errors. However, a close look at the plots forγ � 0�1 andγ � 0�3 reveals that the
standard deviation is underestimated in those cases too. After all the conclusion evidently is
that the Slepian Simulation Model performs well even for low yield levels when the response
of a system with hardening is simulated.
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Further to these comments on errors, a few words regarding the time development of the stan-
dard deviation and the kurtosis in dependence of the parameters are given. As it has already been
explained how the distribution ofXP approaches approximate Gaussianity the comments given
here concerns the speed by which they do so. Because increasing hardening causes stronger
restoring the distribution will stabilize faster. It causes also smaller plastic increments and
therefore smaller standard deviation ofXP. Both effects appear clearly in Fig. 5.3. Contrary
to this, a higher yield level will slow down convergence to stationarity as the mean inter-clump
waiting time increases. Furthermore the spread of the plastic increments reduces too (as ex-
plained on page 35) resulting in a decreasing standard deviation with increasing yield level.
Fig. 5.4 shows plots supporting these arguments. Finally decreasing damping causes slower
convergence too, as it implies longer waiting times. The explanation for the influence of damp-
ing on the stationary level of the standard deviation is as follows. The higher the damping the
less narrow banded the response and the more rapidly varying the mechanical energy process.
Consequently, the higher the damping the larger the variance of the conditional distributions
of the ALO extremes and the plastic increments. Thus the stationary variance increases with
damping. The plots in Fig. 5.5 illustrate the dependence ofD�XP� andα 4�XP� on damping.

5.3.2 Softening

As softening destabilizes the response the variance ofXP grows in time and it does never assume
a stationary level as in the hardening case. So, from a practical point of view, it is of more inter-
est to have information about the first passage timesTp of plastic displacement levels than about
the development of the plastic process itself. For the purpose of illustrating the applicability
and limitations of the Slepian Model simulation method, Figs. 5.6 to 5.7 show plots of mean,
coefficient of variation, skewness and kurtosis of the first passage times for different values of
the system parametersu, γ andζ . These statistical moments are plotted against the absolute
value�xP� of the plastic displacement level as, due to symmetry, passingxP or �xP is equally
damaging to the oscillator. The number of simulations is 5000 in all plots.

Unlike the hardening case in which the stationary distribution depends on solely the distribution
of the plastic displacement increments the distribution of the first passage times depends on
both the distribution of the inter-clump waiting times and the distribution of the increments.
Giving general statements about the type of the first passage distribution is therefore difficult.
Statements about the dependence ofE�TP� on the plastic displacement level�xP� can, however,
be given. Due to destabilization the plastic displacement process develops as follows. In the
beginning, when yield limits are symmetric, positive and negative plastic increments are nearly
equally probable. Later, when the asymmetry of the yield limits becomes more pronounced,
plastic increments solely of the same sign become more and more likely. Eventually plastic
increments in only one direction appear and the plastic displacement begins growing faster and
faster. As seen in all plots the mean ofTP grows faster with�xP� for small levels than for higher
levels of�xP� where destabilization and asymmetry become dominant. Similarly, as seen from
the plots of the coefficient of variation, the standard deviationD�TP� exhibits slow growth for
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Figure 5.6: Statistics of the first passage times of plastic displacement levels for the bi-
linear EPO. Comparison of simulation results obtained by Slepian simula-
tion (thick curves) and direct simulation (thin curves). In the plots for the
coefficient of variationV and the skewness the lower curves are alwaysV .
Parameters as defined in Chap. 2 are given at the plots. 5000 samples.

high levels of the plastic displacement. The time development of the three relative statistics
are practically insensitive to the choice of parameters indicating some common features of the
first passage time distributions. As the upper tail of the inter-clump waiting time distribution
is exponential one may conjecture that this common feature – at least for small levels�x p�
– is related to the exponential distribution. From the plots it is observed that for the plastic
displacement level�xp� within a moderate range, i.e. around 1, the values of these relative
statistics areV � 0�9, α 3 � 1�7, andα 4 � 7. These values are close to those of a random
variableS0�9, whereS has an exponential distribution. That is,TP is a distribution of Weibull
type. A more general discussion of the first passage time distribution is not given herein.
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Figure 5.7: See the caption of Fig. 5.6

In opposition to the hardening case errors are present for all choices of parameters. These
errors are present in the plots ofE�TP� whereas the relative statistics show convincingly small
deviations between the two sets of results. The small errors of the relative statistics may relate
to the above observation that some general features of the first passage time distribution exist.
The error in the mean value estimation can be explained as follows. Firstly, it is noted that
errors are not due to the inter-clump waiting time simulation, as Fig. 3.10 (p. 72) shows that
even for low yield levels the waiting time simulation performs well. Thus errors stem from
the plastic increment simulations. Next it is seen that the error increases in time (opposite of
what was seen in the case of hardening). Clearly it is the errors due to the Karnopp-Scharton
hypothesis that give rise to the error in the computation ofE�TP�. As the asymmetry of the
yield levels increases with time the symmetrized yield limit decreases accordingly and the error
increases. Some rules for the dependence of the error on the system parameters can be deduced
from the above. It is the relative error ofE�TP�, and not the absolute error, which is the proper
measure of the error. It is so, because the inter-clump waiting time simulation does not give rise
to any errors, but solely changes the time-scale. The relative error is approximately read from
the plots because the ordinate axes are scaled such that the graphs fit in the plot area. For given
softening parameterγ, increasing the initial yield levelu implies that it takes longer time till
the error due to the asymmetry of the yield limits become important. Thus, as seen in Fig. 5.7,
the relative error in the estimation ofE�TP� decreases with increasing yield level. Likewise one
would expect that the relative error should increase with increasing softening. The first three
plots in Fig. 5.6 show, however, that the increase of the relative error withγ is only weak. As a
last comment on errors attention is drawn to Fig. 5.8 which shows plots for the low initial yield
level 1. Unlike observed in hardening, the results from the Slepian Simulation Method exhibit
notable errors for such a low level.
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Figure 5.8: See the caption of Fig. 5.6

Here a few remarks on the dependence of the first passage time on system parameters are given.
As the average inter-clump waiting time increases with decreasing damping the first passage
time does so too – see the right column in Fig. 5.6. Figure 5.6 shows also that for increasing
softening the average first passage times decrease. Clearly this is due to the increasing plastic
increments for increasing softening (which in turn is in accordance with the large standard
deviation appearing in the second row in Fig. 2.15 p. 51). Finally, increasing initial yield levels
causes increasing inter-clump waiting times and decreasing standard deviation of the plastic
increments leading to increasing average first passage times as verified by the plots in Fig. 5.7.

0 1 2
0

50

100

150

200

250

|x
P
|

E
[T

P
]/2

π

u = 2, γ = −0.1, ζ = 0.01

0 1 2
0

2

4

|x
P
|

V
[T

P
] ,

 α
3[T

P
]

5

10

15

0

α 4[T
P
]

Figure 5.9: First passage time distributions obtained by use of fully exponentially dis-
tributed inter-clump waiting times in the Slepian model simulations. Com-
pare with the first plot in Fig. 5.6
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As an illustration of the influence of approximating the inter-clump waiting time distribution
by an exponential distribution the plot shown in Fig. 5.9 is produced. The intensity used in the
exponential distribution is the mean crossing rate of the Cram´er-Leadbetter envelope corrected
by the ratio of qualified crossings (see e.g. [6]). Note that the parameters used are most realistic.
(It is noted that the waiting time to the first outcrossing has been simulated by the amplitude
model (3.11) why no errors appear for�xp�� 0.) Notable errors in the mean first passage time
compared to the plot in Fig. 5.6 are present. As discussed previously the error is due to the
neglected step-shape of the transient tail. Thus it is clear that the waiting time approximation
suggested herein accounts much better for the clumping of clumps than the purely exponential
distribution does. Or put in other words: The linkage of clump and waiting time simulation as
described by Tables. 2.2-2.4 and 3.2 ensures that the inter-clump waiting time and the inter-
clump dependence of plastic displacements in clumps of clumps is well modeled.

5.4 Non-Ideal EPO

The thorough treatment of the bilinear EPO in the previous section demonstrates and discusses
the errors of the Slepian Model Simulation Method when combining waiting time simulations
and clump simulations. As the waiting time simulation scheme is the same for all EPOs the
treatment here of the non-ideal EPO focuses on the clump simulation. As long as the simplified
non-ideal restoring force diagram suggested in Sec. 2.5 (see Fig. 2.10) is considered, no further
errors than those due to the Karnopp-Scharton hypothesis are present in the clump simulation.
Therefore the discussion here concentrates on the assumptions leading to the simplified restor-
ing force diagram. For this purpose a not very general, but for illustration purposes quite useful,
functiong�s� for the curved part of the restoring force diagram is used. The function considered
here of course fulfills the requirement that a closed form analytical expression for the integral
of the curved part exists. In addition to this it has convenient scaling and translation properties
which allows a restoring force diagram which is not simplified to be constructed fromg. Or,
from another point of view: the simplified diagram may be regarded as derived from a more
general diagram defined byg. Thus the considered simplified diagram is fit for comparisons
between Slepian Model simulations using the simplified diagram and direct simulations using
a diagram from which one can imagine that the simplified diagram is derived. In the following
the diagram used in the direct simulation is termed thenon-simplified restoring force diagram.

Figure 5.10 shows a schematic of the curved part of the simplified diagram (see Fig. 2.10)
including some of the parameters appearing in the definition

g�s� � γs � η � κρ
�s� sa�

1�κ (5.3)

As g�0� � 0 the abscissa�sa of the vertical asymptote is related to the other parameters through

sa � 1�κ
!

κρ
η

(5.4)
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Figure 5.10:Schematic of the curved part of the simplified restoring force diagram (refer
to Fig. 2.10 p. 38).

Recall that for the simplified restoring force diagram partial reloading is neglected and hard-
ening/softening is assumed independent. Both these assumptions are loosened in the non-
simplified model. In this model hardening is assumed kinematic and partial reversed loading is
included. Details of the construction of the non-simplified diagram fromg�s� are given in Ap-
pendix A. Clearly, asη�u tends to zero the simplified diagram will approach the ideal bilinear
diagram. Thus one will expect that for givenη and increasingu the distribution of the plastic
displacement incrementDi as obtained by the simplified model approaches the distribution ob-
tained by the non-simplified model. As explained below, Figs. 5.12 and 5.13 (pp. 112 and 113)
show that this really is the case. Forη � 1, κ � 0�8, ρ � 7�5 andγ � �0�3 the plots show the
same type of distributions as those presented in Fig. 2.14 and 2.15 in Sec. 2.7. (Fig. 5.11 shows
the simplified restoring force diagrams foru � 2). For the first plastic increment in the first
clump the yield limits are symmetric and no plastic loading has yet been experienced, why the
distribution ofD1 in the simplified and in the non-simplified model are, as seen in the figures,
identical. The distributions ofD2 are of course affected by the differences in modeling hard-
ening/softening and reloading. It is seen from the figures that asu increases the distributions
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Figure 5.11:Plots of the simplified restoring for diagram in the initial configuration for
u � 2, η � 1, κ � 0�8, ρ � 7�5 andγ ��0�3.
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for D2 obtained by the simplified model and the non-simplified model approaches one another.
Generally the agreement between the plots is good for levels larger thanu � 2. Also clump
length distributions and the number of empty excursions show good agreement. Mainly this is
due to the oscillatory nature of the response. The oscillations ensure, especially in hardening,
that neglecting partial reversed loading is not a very crude assumption. It is noted that the sim-
ilarity between the plots in the last two rows of Fig. 2.15 and the plots in the last row of Figs.
5.12 and 5.13 is not a coincidence. Due to the large initial plastic displacement the yield limits
are asymmetric and no reversed loading is experienced – only up-, un- and reloading. In that
case the simplified and the non-simplified diagrams behaves identically.

The conclusion is that using the simplified restoring force diagram, developed to make the
Slepian Model simulations of the clumps reasonably simple and fast, can give satisfactorily
accurate approximations to the plastic response process of a non-simplified EPO.

5.5 Time Gain Factor

There is no doubt that the Slepian Simulation Method is faster than direct simulations, mainly
due to the considerable computation time gain obtained by the inter-clump waiting time sim-
ulations. In Table 5.1 the time gain is quantified in terms of time gain factors denotedε and
defined as the average over a large number of simulations of the ratio of the time consumption
by direct simulations to the time consumption by Slepian Model simulations. Time gain factors
for the waiting time simulation and time gain factors for the clump simulation are regarded sep-
arately. Furthermore the time gain factor of a complete process simulation is regarded. Thereby
a comparison showing the relative contribution of the waiting time and the clump simulations
to the total time gain is possible.

All time gain factors shown in the table are computed for levelsu � 1�2�3. The time gain
factorsεwait, 0�01 andεwait, 0�05 for the waiting time simulation are computed for damping ratios
ζ � 0�01�0�05 and appear in the two first columns of the table. Clearly the time gain increases
considerably with increasing level. This is to be expected for the following reasons. The aver-
age long waiting time grows rapidly as function ofu causing a similarly rapidly growing time
consumption of the direct simulation method. On the other hand the time consumption of the
Slepian Model simulation of the long waiting times is constant independently of the average
waiting time. As it appears from the table, the time gain reduces with increasing damping ratio.
This is a consequence of the rule given by formula (3.12) (p. 65). For high damping it overes-
timates the extent of the transient lower tail, whereby too many steps for the simulation of the
transient tail are carried out making the waiting time simulation a little too time costly.

In Sec. 2.6.1 the time gain of the clump simulation was discussed. It was underlined that
possibly simulating the clumps by Slepian Model simulations would be more expensive than
simulating them by direct simulation. The results shown in the third to the fifth column in Table
5.1 show that this is not the case for any of the relatively simple hysteresis models applied
herein. The factorεbilinear gives the time gain when using the bilinear model withγ � 3. The
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u εwait, 0�01 εwait, 0�05 εbilinear εnon-ideal, 1 εnon-ideal, 2 εhard. proc.

1 3 2 5 6 6 6
2 7 5 4 5 5 6
3 43 33 3 3 4 15

Table 5.1:Gain factor for Inter-clump waiting time simulations, clump simulations and
plastic displacement process simulations.

factorεnon-ideal, 1gives the time gain for the simplified model (5.3) withγ� 3�η � 1�κ � 0�8�ρ �
7�5. Finally the factorεnon-ideal, 2gives the time gain when the Slepian model simulations use
the simplified model and the direct simulations follow the corresponding non-simplified model,
both with parametersγ � 3�η � 1�κ � 0�8�ρ � 7�5. As discussed in Sec. 2.6.1 there are
arguments pro and con that Slepian Model simulations for the simulation of clumps will be
less expensive than direct simulations. The results given here show that for the applied models
it turns out that the gain factors generally grows with the complexity of the hysteresis model,
implying that the cost of the direct time integration increases faster than cost of the Slepian
model. Furthermore all of the factorsεbilinear, εnon-ideal, 1andεnon-ideal, 2decreases with increasing
u because the duration of yielding decreases with increasingu causing the direct simulation to
spend less time on simulating an excursion. For the Slepian Model simulations, however, the
time cost of simulating an excursion is of course practically independent ofu.

The last column in the table gives the time gain factor when simulating the plastic displacement
process of a bilinear EPO with hardening. Parameters areγ � 0�3 andζ � 0�01. The gain factor
εhard. proc.is then a weighted mixture of the gain factorsεwait, 0�01 andεbilinear. The process was
run until stability was obtained. Stability occurs relatively early why fewer long waiting times
than used to obtainεwait, 0�01 are encountered and therefore the gain factorεhard. proc.for the high
levelu � 3 is smaller thanεwait, 0�01. It is however still considerably large.

The conclusions that may be drawn from the results presented in this section is as follows.
Recall that the time gain of the inter-clump simulation is not obtainable unless a stand-alone
simulation procedure for the clumps exists (Sec. 2.6.1). The results show that even though
the time gain during clump simulation for realistic levels is smaller than the time gain of the
inter-clump simulation it is still well above 1 why the clump simulation is not prohibitive for the
applicability of the Slepian Model Simulation Method. The process simulation, being a mixture
of waiting time and clump simulations, may not exhibit as high time gain factors as the time
gain factors obtained for the pure inter-clump simulation. The time gain is, however, still high
and rapidly increasing with the increasing yield level.

5.6 Summary

In this chapter several simulation results are presented for the purpose of evaluating the perfor-
mance of the Slepian Model Simulation Method with respect to accuracy and time consumption.
On the basis of discussions of the main trends of the time development of the plastic displace-
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ment process, in hardening as well as in softening, it is concluded that the results presented here
are correct and reliable. That is, except for the approximation errors inherent in the simulation
methods.

Simulation results for the bilinear EPO in hardening and softening are considered. The main
purpose of these simulations is the study of how well the combined simulation of clumps and
inter-clump waiting times reproduces the plastic displacement process. In the hardening case
the time development of the standard deviationD�XP� and the kurtosisα 4 are considered. It is
explained that the stationary distribution ofXP is close to Gaussian. Except for the low initial
yield level 1 the kurtosis as obtained by Slepian Model simulations and by direct simulations
approach the same value close to 3. FurthermoreD�XP� reaches the same stationary value. The
error at the levelu � 1 is due to the errors of the Slepian Model simulations of the plastic
displacement increments. Clearly the stationary values ofD�XP� andα 4 do not depend on time.
Therefore, except for the first short period until stationarity, the simulations with hardening do
not give much information about how well the merging of waiting time simulations and clump
simulations work. This is better revealed if one regards simulations with softening. However it
is noted that, except for the statistical uncertainty ofα 4, there is virtually no error in the Slepian
Model simulation results for the time development ofD�XP� andα 4 until stationarity.

For softening there does not exist a stationary distribution ofXP. Instead the distribution of
first passage times of plastic displacement levels are considered. Obviously these distributions
reflect the merging of waiting time simulations and clump simulations. Contrary to the hard-
ening case deviations between Slepian Model simulation results and direct simulation results
are present for all initial yield levels, damping ratios and softening levels. These errors increase
with the plastic displacement level and they are not due to the waiting time simulations but
the clump simulations. The good approximation to higher order moments of the first passage
time distribution underlines the strength of the Slepian Model Simulation Method. An exam-
ple shows that using an exponential waiting time distribution model gives notably bigger errors
than those obtained by the waiting time distribution model considered here.

A simplified non-linear restoring force diagram is considered too. It is shown that neglecting
partial restoring and kinematic hardening are reasonable assumptions for near bilinear plastic
hardening/softening.

Finally results show that the Slepian Model Simulation Method performs quite well with respect
to time gain. Depending on the specific simulation problem (e.g. purely waiting time, separate
clumps or the full response process), and depending on damping and the complexity of the
restoring force diagram, time gain factors in the range from 5 to 45 were encountered in the
examples given herein. In general the overall time gain of full process simulations is high and
rapidly increasing with increasing yield level.
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Figure 5.12:Comparison of clump simulation results obtained by Slepian simulation
(thick curves) and direct non-simplified simulation (thin curves) for hard-
ening. See p. 108.
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Figure 5.13:Comparison of clump simulation results obtained by Slepian simulation
(thick curves) and direct non-simplified simulation (thin curves) for soft-
ening. See p. 108.
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Chapter 6

Conclusions

In this first part of the thesis an effective scheme for the simulation of the time development
of the degradation of a single degree of freedom (SDOF) hysteretic oscillator driven by white
noise is developed. The presentation of the so-called Slepian Model Simulation Method, which
is basically a time integration algorithm, is based on elasto-plastic oscillators (EPOs) for which
the degradation in terms of the plastic displacement process is an important design issue. Such
a simulation algorithm is of special interest for bilinear and non-linear EPOs. That is EPOs with
hardening and softening, because, in opposition to the ideal EPO, only approximate analytical
results exist for such EPOs – if any at all. Though the results obtained herein are based on
EPOs, the results are valid for hysteretic systems in general.

The algorithm is based on three realistic assumptions about the loading and the constitution of
the EPO. The oscillator is assumed lightly damped and with non-dominating hysteresis, i.e.,
high elasticity limits. Furthermore the load is assumed broad banded implying that it may be
replaced by white noise. The consequences of these assumptions are that excursions of the
elasticity limits are rare and that the response has a dominating frequency which is very close
to the damped eigenfrequency of the associated linear oscillator (ALO) defined as the oscillator
obtained by linearizing the EPO at the zero-point.

The simulation strategy consists in an approximate semi-analytical simulation scheme. The
concept is quite simple. One observes that in certain regions of time the response experiences
several, in time closely spaced excursions beyond the elasticity limits and in other time regions
it does not. The regions of excursions are calledclumps and the time between clumps is called
the inter-clump waiting time. As degradation of the mechanical system is the result of the ex-
cursions, the simulation scheme divides the simulation procedure into the simulation of clumps
and inter-clump waiting times.

Since the response is dominated by the eigenfrequency of the ALO the clumps are simulated in
steps of half a natural period. One thus simulates one extreme after the other stepping directly
from one extreme to another. This is possible due to former works [6] on the application of
the so-called Slepian model to the ideal EPO. A plastic increment is obtained by simulating
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an outcome of the Slepian model for the ALO response giving an extreme value of the ALO
response conditional on an outcrossing. Each such outcome is termed a crest or a trough. The
outcome is then transformed into a plastic increment and an elastic displacement of the EPO.
The transformation uses an approximate energy consideration, regarding, during the excursion,
only plastic work and elastic strain energy, i.e., neglecting damping and driving forces – the
so-called Karnopp-Scharton hypothesis. In contrast to what is the case for an ideal EPO the
elasticity limits change in time. Therefore they are generally asymmetric with respect to the
equilibrium point of the oscillator and a new definition of clumps different from what is sug-
gested in [16] and [6] is considered herein and found fruitful.

The simulation of the inter-clump waiting times simplifies greatly if excursions of symmetrized
elasticity limits are considered. Therefore symmetrized elasticity limits defined by mirroring
the elasticity limit closest to the equilibrium point and using it for both up- and downcrossings
are introduced. Thus excursions of the symmetrized elasticity limits may or may not cause a
plastic displacement increment, i.e. an excursion may be genuine or empty. Traditionally a
clump is considered terminated when a crest/trough inside the real elasticity limits is encoun-
tered, that is, it contains only genuine excursions. In the present work it is necessary for the
simplification of the inter-clump simulation that a clump is considered terminated the first time
a crest/trough is inside thesymmetrized elasticity limits. This means that clumps may contain
empty excursions. Simulation results show that this new definition of the clump gives good
results for the distribution of the plastic displacement increments in a clump. It is therefore
concluded that introducing the new clump definition is not limiting to the applicability of the
Slepian Model Simulation Method.

In Chap. 3 a discussion of the inter-clump waiting time distribution leads to an improved wait-
ing time modeling better than the one presented in [6] and [12]. Outcrossings out of the (sym-
metrized) elasticity domain occur when the amplitude process, derived from the mechanical
energy process, is close to the elasticity limits. As the energy level of the response drifts slowly
in time the amplitude of the response builds up and fades away slowly too. This involves two
implications: the amplitude process may drift around the symmetrized elasticity limit giving
rise to short waiting times, or it may go far below the symmetrized elasticity limit giving rise
to long waiting times. Therefore clumps arrive in clumps and one may think of the plastic dis-
placement process in terms of clumps of clumps. This effect has not been properly accounted
for in previous works like [6] and [12]. In these works it has been neglected because the ten-
dency of clumping of clumps vanishes asymptotically as the elasticity limits tend to infinity. As
pointed out herein the convergence to the asymptotic result is slow, why the clumping of clumps
cannot be neglected for realistic elasticity limits and damping ratios.

In [6] the inter-clump waiting time was, in accordance with the asymptotic result, assumed
exponential. As mentioned this is not realistic. The assumption however still holds true for
the long waiting time between clumps of clumps which is approximately of exponential type
as the waiting times are so large that approximate independence of the arrivals of clumps of
clumps is obtained. Consequently the long waiting times are simulated by drawing from an
exponential distribution. The waiting times within clumps of clumps are on the other hand not
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governed by such a simple rule, why they cannot be simulated from a single distribution. In
stead it is simulated by discretizing the amplitude process using time steps of half the natural
period of the ALO. The discretization, giving rise to an amplitude model, involves the linear
regressions of the displacement and the velocity on the amplitude half a period before, i.e.
it involves Slepian models for the displacement and the velocity. Thus the amplitude model
itself is not a Slepian model, but it is based on a Slepian model pair. This discretization gives
results in very good agreement with results obtained by direct numerical time integration. The
discretized amplitude process proves useful also for the computation of the parameter used
in the exponential distribution of the long waiting times. This parameter is interpretable as
the conditional mean crossing rate of the amplitude process given that outcrossings have not
occurred for a time sufficiently large to obtain approximate independence between outcrossings.
A very close approximation to the conditional mean crossing rate is obtained by a proposed
numerical scheme resembling a numerical solution scheme for the Fokker-Planck equation of
the amplitude process employing absorbing boundaries. The examples in Chap. 5 show that
using an exponential distribution for the waiting time does not account as well for the clumping
of clumps as the herein suggested waiting time approximation does.

The motivation for the application of the Slepian Model Simulation Method is twofold. First of
all it provides a simulation scheme by which results concerning the response of systems with
hysteresis can be obtained. Such results are, however, obtainable by direct numerical time in-
tegration too. The second motivation therefore is to provide a scheme that is faster than direct
time integration. Clearly the time gain obtained by the inter-clump waiting time simulation is
considerable as many time-steps are avoided. Especially for the long waiting times the time
gain is large. The clump simulation involves a transformation of ALO displacements to EPO
displacements. The energy equation used for this transform cannot be too complicated. Other-
wise the time gain obtained by the waiting time simulation may be lost on time costly plastic
increment simulations. The usefulness of the simulation scheme to non-ideal EPOs therefore
depends on the complexity of the restoring force diagram. A simplified model for the restoring
force diagram is suggested in Chap. 2. The corner stone of the simplification is the treatment
of unloading/reloading and the Bauschinger effect. A specific implication of the Slepian Model
approach is that the simplified non-ideal diagram must have a linear part of reasonable extend.
In Chap. 5 it is verified that the simplifications introduced are acceptable. In general the results
presented in Chap. 5 show how very well the Slepian model simulation scheme (under the given
assumptions) reproduces the results obtained by direct time integration. Finally the results show
that the method performs quite well with respect to time gain. Depending on the specific sim-
ulation problem (e.g. purely waiting time, separate clumps or the full response process), and
depending on damping and the complexity of the restoring force diagram time gain factors in
the range from 5 to 45 were encountered in the examples given herein. In general the overall
time gain of full process simulations is high and rapidly increasing with increasing yield level.
Apart from the time gain the author experienced another benefit of the Slepian Model Simula-
tion Method. Though it does not appear so, it is simpler to code the Slepian Model Simulation
Method than the direct simulation method because it is more difficult to extract from the sam-
ples obtained by direct simulations information about plastic displacement increments, clump
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lengths etc. than it is from the samples obtained by Slepian simulations.

In closing, two remarks on possible future research in the field of application of the Slepian
Model Simulation Method to EPOs seem appropriate. In this thesis only the response of non-
ideal SDOF EPOs has been considered and fine time gain factors have been demonstrated. In
[18] the applicability of the Slepian model to the modeling of the plastic displacement process
in a multi storey frame by use of modal analysis has been considered. In that work the inter-
clump waiting time distribution was modeled by an exponential distribution too. Application
of amplitude model to inter-clump waiting times for an MDOF oscillator is an obvious subject
of research. Especially so because the decoupling of modal energies under the assumption
of modal damping makes is possible to add the mechanical energies of each of the modes.
Simulating the amplitude process for a given degree of freedom as a sum of amplitude processes
for each mode is then possible, provided eigenfrequencies, mode shapes and damping are so
that independence of the amplitude processes may be assumed. Furthermore it is required that
a mode dominating the response of the considered degree of freedom can be picked out. In this
thesis the time development of the plastic process during uploading is not treated. The amplitude
model applied here for the simulation of inter-clump waiting times is based on Gaussian white
noise input and stationary ALO response. Clearly an investigation of the waiting time to the first
excursion is a subject of interest. Regarding linear regressions of non-stationary ALO response
due to Gaussian white noise input and defining on the basis of these regressions a discretized
amplitude model could be a way to obtain a model for the first crossing time during uploading.
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Appendix A

Restoring Force Diagrams

In this appendix the restoring force of the bilinear EPO is reviewed and an example of a sim-
plified restoring force diagram for the representation of a non-idealized EPO is given. Further-
more, in the last section a few phrases from the theory of plasticity are reviewed.

A.1 The Bilinear EPO

For the purpose of verifying the clump simulation procedure described in Chap. 2 the bilinear
EPO is regarded. It is also used in Chap. 5. The advantage of the bilinear EPO model is that
the energy equations are solvable by analytical means. Following the same outline and using
the same definitions as in Sec. 2.5 the below results are obtained.

Compared to Fig. 2.10 the force diagram depicted in Fig. A.1 shows that some simplifications
are obtained due to the idealization. The zero pointX0 (see Fig. 2.10) always equals the current
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Figure A.1: The characterization of the ideal bilinear restoring force diagram.
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Figure A.2: The computation ofMEPO and updating of the plastic displacement and the
yield levels using the idealized restoring force diagram.

plastic displacement and the yield limitsu� equal the assisting limitsv� (see Eq. (2.29) and
Fig. 2.10). The force diagram of the bilinear EPO is so simple that the energy equations are
directly derivable from the diagrams in Fig. A.2. There is no need to use formulas (2.31) and
(2.34). After these few introductory remarks the relevant formulas are listed.

In the case of a maximum one derives the energy equation
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The associated updating formulas read

XP� i�1 � XP� i � �1�γ�
�
MEPO�u�i

�
(A.3a)

u�i�1 � u �
γ

1�γ
XP� i�1 (A.3b)

u�i�1 � u � γ
1�γ

XP� i�1 (A.3c)

and the plastic displacement increment becomes

Di � �1�γ�
�
MEPO�u�i

�
(A.4)
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For a minimum the energy equation correspondingly reads
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This energy equation leads to
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and the associated updating formulas read

XP� i�1 � XP� i � �1�γ�
�
MEPO�u�i

�
(A.7a)

u�i�1 � u �
γ

1�γ
XP� i�1 (A.7b)

u�i�1 � u � γ
1�γ

XP� i�1 (A.7c)

from which it follows that the plastic displacement increment is

Di � �1�γ�
�
u�i �MEPO

�
(A.8)

Finally it is noted that the above formulas are valid also for strain softening:γ � 0. The only
difference is that the oscillator may collapse. The exact bounds of collapse in this ideal bilinear
model are given by

�X �� γ�1
γ

u (A.9)

A.2 A Non-Idealized EPO

Figure A.3 taken from Sec. 2.5 shows the names used in characterizing the simplified restoring
force diagram. The functiong�s� considered in Sec. 5.4 of course fulfills the requirement that a
closed form analytical expression for the integral of the curved part exists. In addition to this it
has convenient scaling and translation properties which allows also a non-simplified restoring
force diagram to be constructed fromg. Or from another point of view: the simplified diagram
may be regarded as derived from a more general diagram defined byg. Here details of the
construction of the non-simplified diagram are given.
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Figure A.3: The characterization of the simplified restoring force diagram.

A.2.1 The Simplified Restoring Force Diagram

Figure A.4 shows a schematic of the curved part including some of the parameters appearing in
the definition

g�s� � γs � η � κρ
�s� sa�

1�κ (A.10)

As g�0� � 0 the abscissasa of the vertical asymptote is related to the other parameters through

sa � 1�κ

!
κρ
η

(A.11)

The expression for the integral ofg is easily obtained and has a simple form:
�

g�s�ds � 1
2γs2 � ηs �

ρ
�s� sa�

κ (A.12)

s

g�s�
1

η γ

�sa yield level

Figure A.4: Schematic of the curved part of the simplified restoring force diagram.
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Figure A.5: Scaling (in the middle) and translating (to the right) the curved part of the
non-simplified restoring force diagram. To the left the initial configuration.

A.2.2 The Non-Simplified Restoring Force Diagram

Two assumptions are introduced in the definition of the simplified restoring force diagram:
hardening/softening is independent and partial reversed loading is neglected. Both these as-
sumptions are loosened here. Now hardening is assumed kinematic and partial reversed loading
is included in the model. Therefore, after a load reversal, yielding does not start at the inclined
dotted line as shown in Fig. A.3. Yielding may onset either below or above the dotted line.
This is shown in Fig. A.5 (showing the case of hardening). It is however still assumed that the
inclined asymptotes do not change (the solid inclined line in Fig. A.5). The construction of the
non-simplified diagram fromg is carried out as follows. Consider a maximum as depicted in
Fig. A.5. If the yield limit is below the inclined dotted line (the diagram in the middle) the dot-
ted line is shifted downwards so that it coincides with the yield level. Thus the reference yield
levelu�ref changes fromu�ref, i to u�ref, i�1. The curved part is scaled such that it fits in the space in
between the two inclined lines. This scaling is equal in horizontal and vertical direction, so that
the shape is not changed. Denoting the vertical extend of this space before and after shifting the
inclined line, respectively,η�

i andη�
i�1, then one simply has

η�
i�1 � η�

i � �u�ref, i�1�u�ref, i� (A.13a)

ρ�
i�1 � ρ�

i

�η�
i�1

η�
i

�2�κ
(A.13b)

s�a� i�1 � s�a� i

η�
i�1

η�
i

(A.13c)

where

u�ref, i�1 � u�i � γ
1� γ

XP� i (A.14)

Further one setsX0 � XP� i andv� � u�i . If, on the other hand, the onset of yielding is above
the inclined line (to the right in Fig. A.5) but not on the curved part, then the curved part is
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translated along the inclined line until the curved part includes the yield point. This corresponds
to changingX0. After translationX0 must fulfill the conditions:

v� � g�s� � u�i (A.15)

s � �XP� i �u�i � � �X0� v�� (A.16)

v� � u�ref, i �
γ

1� γ
X0 (A.17)

which, due to the simplicity ofg, can be solved analytically giving

X0 � �1� γ�

"
b� s�a� i� 1�κ

�
�κ ρ�

i

u�
i
�u�

ref, i
�η�

i
� γb

#
(A.18)

whereb � XP� i � u�i � u�ref, i. After translationu�ref, s�a , η� andρ� are all unchanged. Having
scaled or translated the curved part, the computation and updating of yield levels and plastic
displacement follow (2.32a-b) and (2.33). Due to kinematic hardening the lower yield limit
u�i�1 is given by

u�i�1 � 2u�u�i�1 (A.19)

whereu is the initial symmetric yield limit.

The above formulas were provided a maximum. For a minimum the formulas for scaling be-
come

X0 � XP� i (A.20)

v� � u�i (A.21)

u�ref, i�1 � u�i �
γ

1� γ
XP� i (A.22)

η�i�1 � η�i � �u�ref, i�1�u�ref, i� (A.23)

ρ�i�1 � ρ�i
�η�i�1

η�
i

�2�κ
(A.24)

s�a� i�1 � s�a� i

η�i�1

η�
i

(A.25)

And for translation the formula for the updating ofX0 reads

X0 � �1� γ�

"
�b� s�a� i �

1�κ

�
�κ ρ�

i

u�
i
�u�

ref, i
�η�

i
� γb

#
(A.26)
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whereb ��XP� i�u�i �u�ref, i. After translation or scaling the computation and updating of yield
levels and plastic displacement follow (2.35a-b) and (2.36). Due to kinematic hardening the
upper yield limitu�i�1 is given by (u is the initial symmetric yield limit)

u�i�1 � 2u�u�i�1 (A.27)

It remains only to note that though the formulas presented on the previous pages were derived
on the basis of hardening they are so general that they are also valid for softening.

A.3 A Few Phrases used in the Theory of Plasticity.

When subject to loads a plastic material experiences that its yield limits develop in time. If,
after an uploading resulting in the material exceeding the yield limits, the material is unloaded,
it generally behaves like a linear material. If the material is loaded up again its yield limit has
changed due to the previous uploading. This course of events is calleduploading, unloading
and reloading. If after an uploading the load is reversed, the material will, provided the load
is sufficiently strong, yield too at a yield level generally different from the one met during
uploading. In the restoring force diagram this will appear as a hysteresis loop. The name for
this phenomenon is theBaushinger effect.

There exist different models for how the yield limits develop in hardening/softening. In the
present work knowledge of kinematic, isotropic and independent hardening/softening is re-
quired. Kinematic hardening/softening means that the distance from the lower yield limit to the
upper yield limit is constant. That is, the sumu��u� is independent of time. This corresponds
to how the elasticity limits develop in time in bilinear hysteresis. Isotropic hardening means that
the upper and the lower elasticity limits are always of the same absolute value, i.e.u� � u�.
Hardening/softening is said to be independent if there is not a rule, as there is for kinematic and
isotropic hardening/softening, that relatesu� andu� to each other.
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Part II

Vibrations in Systems with Fuzzy
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Chapter 1

Introduction

The background of the work presented in this part of the thesis and the basic governing equa-
tions of the considered problem are given in the present chapter.

1.1 Background and Mechanical Modeling

The problem treated here originates in the field of acoustics of submerged ship hulls, e.g. a
submarine. One is typically interested in the acoustic field radiated from the submerged elas-
tic structure due to internal dynamical loads stemming from engines etc. The ship hulls are
equipped with numerous instruments and mechanical devices of small size compared to the
size of the ship hull. It is a well-known experience that all these devices are never fully rigidly
mounted on the hull structure, either because it is simply not the intention, or because vibrations
of the hull will gradually loosen the joints by which the devices are attached to the structure.
They may therefore affect the dynamical characteristics of the hull by more than a mere addi-
tion of mass. Accounting for the influence of the devices requires mechanical modeling of the
devices as small elastic sub-structures. The precise assessment of the number of devices, their
location within the hull, and their dynamical properties is a difficult task to carry out. This may
be so for many reasons, for example: 1) devices may be added, changed or moved elsewhere
after the design of the structure is completed, 2) the stiffness and damping characteristics of
gradually loosened joints is known to be difficult to assess. Furthermore there may be so many
devices that a detailed modeling of each device is too cumbersome a task. Appreciating all
this, it is clear that a less detailed overall modeling of the devices may be a reasonable way to
go. For this purpose the theory of the so-calledstructural fuzzy, initiated by Soize [20], has
been developed in the literature. In this theory, all the devices, termedfuzzy sub-structures, are
considered minor secondary mechanical structures attached to a primary major structure termed
themaster structure, e.g. the hull. In the remainder of this thesis the fuzzy sub-structures and
the master structure are for short termed thefuzzies and themaster, respectively.
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1.1 Background and Mechanical Modeling

Depending on the frequency content of the acoustic field relative to the eigenfrequencies of the
fuzzies, the fuzzies will influence the dynamical properties of the master in different ways. If
the frequency range of the acoustic field is situated below the eigenfrequencies of the fuzzies,
i.e. in the so-called low-frequency range, the fuzzies will mainly contribute an added-mass
effect to the hull as they experience essentially only static displacements relative to the master.
When, on the other hand, the frequency range of the acoustic field coincides with the range of
fuzzy eigenfrequencies, the fuzzies are excited and the interaction between the fuzzies and the
master becomes important for the predictions of the acoustic field radiated from the master. In
this medium-frequency range the effect of the fuzzies is that they absorb at lot of the vibratory
energy, an effect similar to the basic principle of mass tuned dampers. For sound frequencies in
the high-frequency range well above the fuzzy eigenfrequencies matters are simple like in the
low-frequency. The fuzzies contribute added stiffness as they exhibit virtually no oscillations
themselves.

The theory of structural fuzzy is relevant to other disciplines than that of acoustics. Damping
of mechanical and structural systems is a vast field with many branches. As pointed out by
Strasberg and Feit in [21], the source of the relatively large damping experienced in mechanical
and structural systems, inexplicable by the inherent dissipation due to internal material damp-
ing, is known to be due to minor elements non-rigidly attached to a main structure. This is a
situation similar to the devices inside the submerged ship hull. In their papers they treat the el-
ements as resonant sprung masses and prove how the masses greatly increase the damping over
a wide frequency range, that is, over the medium-frequency range. As implicitly noted earlier,
this behaviour is not surprising since it has long been known that individual sprung masses can
behave as dynamic vibration absorbers when tuned properly to the specific frequencies which
need damping.

In this thesis, the focus is put on the investigation of the interplay of the fuzzies and the master
when excitation is in the medium-frequency range where contributions to the damping of the
master is high. As explained in [20] this is a relevant subject of investigation, since, up till
now, the models used for the low- and high-frequency range analyses do not give satisfactory
results for the medium range because of the neglected resonance of the fuzzies. The relevance
is further supported by the applicability to structural and mechanical damping modeling in the
area of which the authors of [22] see potential use of the herein presented results mainly taken
from [22].

1.1.1 Modeling the Master and the Fuzzies

In [21] Strasberg and Feit investigates systems in which the fuzzies are discrete and determinis-
ticly given. They do so in order to focus on the demonstration of the influence of the fuzzies on
damping. This model choice for the fuzzies is however not realistic, since information about the
fuzzies in reality is uncertain. Soize suggests a probabilistic modeling of the fuzzies and a gen-
eral numerical approach to the computation of the effects of the fuzzies on the master. Here the
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Fuzzies

Master

F�t�

Figure 1.1: The model system of an SDOF master with SDOF fuzzies.

probabilistic approach is adapted too, as it is the most meaningful. Furthermore, as a case study,
two specific types of random fields, of interest in many practical applications, are employed in
modeling the distribution of the fuzzies over the master, namely, the homogeneous Poisson
square-wave and the homogeneous Poisson impulse point fields. Hereby specific approximate
results quantifying the effects of the fuzzies is obtained by application of the Winterstein ap-
proximation technique. The strength of these results is that, via the Winterstein approximation,
a mapping from standard Gaussian variables is obtained opening for possible application in
numerical reliability methods.

The specific simple model system investigated here is build out of single degree of freedom
(SDOF) oscillators as depicted in Fig. 1.1. The system consists of a viscously damped linear
SDOF master supporting an ensemble of likewise viscously damped linear SDOF oscillators. It
is in this study, as a further simplifying step, assumed that the fuzzies are located along a line
on the master such that line fields are sufficient to model the random properties of the fuzzies,
i.e. mass, damping ratio and eigenfrequency. The aim of this simplified study is to demonstrate
the validity of two different hypotheses about the influence on the damping effect of the specific
modeling of the fuzzies. The response characteristics used to explore the damping effect of the
fuzzies are related to the steady state response due to harmonic loading. As the driving point
impedance of the master provides essential information about the damping effect of the fuzzies
on forced response it is natural to consider the impedance. Whereas the impedance is much
used in acoustics the frequency response function, easily obtainable from the impedance, is
widely used in structural and mechanical engineering. Therefore the frequency response func-
tion, which will also reflect the damping effect of the fuzzies, is considered. Especially the
phase angle and the amplification factor are regarded. The hypotheses to investigate are the fol-
lowing: 1) the standard deviation of the change in impedance due to the fuzzies cannot always
be neglected, and 2) for this variance to be detected it is not a prerequisite that the fuzzies be
modeled by a discrete system, they may as well be modeled by a non-discrete continuous field,
provided it is not too rapidly fluctuating. These hypotheses relate to a paper by Lin [17] in which
he points out that in former research ([20] and [21]) only the mean and not the variance of the
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1.1 Background and Mechanical Modeling

change in impedance has been examined. This is a limitation which can give misleading results
in realistic cases where the standard deviation can easily be of the same order of magnitude as
the mean value. The second hypotheses is due to the following argument by Lin: In [21] the
sums resulting from the discrete fuzzy model are replaced by integrals. This being equivalent to
converting the number of fuzzies to uncountable infinity implies that the most important effect
of resonance when the excitation frequency coincides with the eigenfrequency of any single
fuzzy is accorded with probability zero. Based on this argument he claims that the application
of continuous fields give rise to errors. Here it is, however, argued that the dynamical damp-
ing effect of the fuzzies is also experienced if excitation frequencies within the eigenfrequency
range of a continuous field of fuzzies appear. Though not optimal, a single fuzzy still exhibits
a dynamical damping effect if it is excited at a near resonant frequency. Thus, if the field has
reasonable correlation length there will be sufficiently high probability that fuzzies of eigen-
frequencies close to a given excitation frequency is accorded, and consequently a non-zero and
non-negligible set of fuzzies is excited at a near-resonant frequency, why the damping effect is
still present.

1.1.2 Governing Equations, Impedance and Frequency Response

Driving Point Impedance of A single Sprung Mass

It is useful for the following derivations, and instructive for the understanding and discussion of
results, to regard first the driving point impedance of a single sprung mass subjected to support
motions. The situation is depicted in Fig. 1.2 in whichx is the support motion andy the motion
of the mass relative to the support. The impedanceZsupp is defined by the ratio of the force
applied at the driving point and the velocity of the driving point, where the driving point in this
case is the support:

Zsupp �
f

vx

(1.1)

wherevx � ẋ. Due to the reaction of the sprung mass on the support the forcef required in (1.1)
is given by:

f
m

� �ω2
0

�
vy dt � 2ζ 0ω0 vy (1.2)

where for convenience the expression is stated in terms of the relative velocityvy � ẏ. Combin-
ing this expression with the equation of motion (expressed in terms of the velocities too)

v̇y � 2ζ 0ω0 vy � ω2
0

�
vy dt � �v̇x (1.3)

an expression forZsupp can be derived. In all that follows henceforward the harmonic steady
state complex time dependenceeiωt, whereω is the driving frequency off �t�, is implicitly

132



Introduction

ζ 0ω0

f �t�

m

x

x� y

Figure 1.2: A single sprung mass subjected to support motions.

assumed. Denoting bŷf and v̂x the phasors off andvx, respectively, and exploiting that the
phasors of ˙vx and

�
vx areiωv̂x and�i v̂x�ω, respectively, one finds from (1.2) and (1.3) that

Zsupp �
f̂
v̂x

� imω
�

1 �
1

a2�1 � i 2ζ 0a

�
(1.4)

in which a � ω0�ω is the ratio of the eigenfrequency to the driving frequency. It is from Eq.
(1.4) that the damping effect of the fuzzies can be revealed. The power consumed by the sprung
mass is largest if the forcef and the velocityvx are in phase, that is, if the impedance is real. At
resonancea � 1 andZsupp�mω0�2ζ 0 (for low damping) which shows that dynamical damping
is most effective at resonance. Furthermore it shows that the driving force, due to resonance of
the mass, is many times larger than the driving point velocity ensuring effective damping. It is
noted that resonance means maximum velocity of the sprung mass, whereas it means minimum
velocity of the driving point. That is, the driving point experiences antiresonance as the result
of the dynamical damping. Finally it is noted that clearlyZsupp need not be purely real for
the sprung mass to receive considerable dynamical power. This implies that near resonance,
excitation still causes dynamic damping.

Frequency Response of Complete System

Using the above result, it is easy to derive expressions for the impedance and then also the
frequency response function of the discrete system in Fig. 1.1. In the followingM, ω0 andζ 0

denote the mass, the eigenfrequency and the damping ratio of the master, respectively, andF
denotes the force applied to the master. Let furtherf j denote the force acting on the support of
the j’th fuzzy, j � 1� � �N. The equation of motion of the master is then given by

ẍ � 2ζ 0ω0 ẋ � ω2
0 x �

N

∑
j � 1

f j

M
�

F
M

(1.5)
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1.1 Background and Mechanical Modeling

Rephrasing the equation of motion in terms of velocities one immediately sees that the impedance
of the master is given by

Z � M

�
2ζ 0ω0 � iω

�
1� �ω0

ω
�2
� �

�
N

∑
j � 1

Zsupp,j (1.6)

SubstitutingZsupp from (1.4) and rearranging terms gives

Z � M

�
2ζ 0ω0 � V �ω� � iω

�
1� �ω0

ω
�2�

� iR�ω�

�
(1.7)

in whichV �ω� andR�ω�, respectively, account for the real viscously resistive and the imaginary
reactive contributions to the impedance from the fuzzies. Letη j, Ω j andζ j denote for thej’th
fuzzy the ratio of its mass toM, its eigenfrequency and its damping ratio. Furthermore let
aj � Ω j�ω, thenV �ω� andR�ω� are given by

V �ω� � ω
N

∑
j � 1

χ�aj�ζ j�η j � R�ω� � ω
N

∑
j � 1

γ�aj�ζ j�η j (1.8)

The functionsχ�a�ζ � and γ�a�ζ � are intimately related to the driving point impedance of a
single sprung fuzzy, as

χ�a�ζ � � i γ�a�ζ � � i
�

1 �
1

a2�1 � i 2ζ a

�
(1.9)

giving

χ�a�ζ � �
2ζ a

�a2�1�2 � 4ζ 2a2
� γ�a�ζ � �

a2�a2�1�4ζ 2�

�a2�1�2 � 4ζ 2a2
(1.10)

As the impedance gives a relation between the forcing and the velocity response, the frequency
response functionH�ω� is of course closely related to theZ�ω�. SinceH gives the relation
x̂ � H F̂

M between the phasor̂F�M of the mass normalized forcing and the phasor ˆx of the
response, one has the relation

H�ω� �
M

iωZ
�

1

ω2
0�ω2�ωR�ω� � i

�
2ζ 0ω0ω�ωV �ω�

� (1.11)

The generalization of the above formulas to a continuous distribution of fuzzies is presented in
chapter 2.
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1.2 Outline of the Following Chapters

Chapter 2. discusses the modeling of the fuzzies by either a discrete or a continuous model.

Chapter 3. presents, for a specific example, results for the impedance and frequency re-
sponse using Winterstein approximations and compares them with simulation
results.

Chapter 4. presents the conclusions.

Appendix A. presents the derivation of the first four moments of integrals of Poisson fields as
used in the Winterstein approximations.

1.3 Summary

It is explained why the change in dynamical characteristics of a major main structure due to the
attachment of several minor elastic sub-structures is a relevant subject of research. Especially
it is argued that the problem is of random nature as the knowledge about the sub-structures is
uncertain, for what reason the sub-structures are termed structural fuzzy, or for short fuzzies.
The main structure is termed the master structure. Depending on the excitation of the master,
the fuzzies may have a damping effect on the response of the master. Here it is suggested
to investigate the changes in the impedance and the frequency response function of the main
structure due to the fuzzies. Both quantities, relevant to harmonic steady state response, will
reveal possible damping effects.

It is argued that the structural fuzzy may be modeled by both discrete models and continuous
field models, without loosing the resonant dynamical damping effect of the fuzzies. This is
provided that in the latter case the correlation length of the field is reasonable large. As a specific
case study a viscously damped linear SDOF master equipped with likewise viscously damped
linear SDOF fuzzies is suggested. In that case, deriving the statistical moments of the change
in impedance, allowing semi-analytical computations based on Winterstein approximations, is
practicable if the fuzzies are modeled by homogeneous Poisson fields.

Finally, formulas for the impedance and the frequency response function for a discrete fuzzy
model are derived, whereas the formulas for the continuous model are postponed till later.
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Chapter 2

Modeling the Fuzzies

Whether it is possible to obtain a dynamical damping effect when the field of fuzzies is modeled
by a continuous field or not is the subject of the present chapter. That it is in fact possible is
shown by demonstrating asymptotic equivalence between a specific discrete and a specific non-
discrete piecewise continuous fuzzy field model. Furthermore the distributional properties of
the reactive and resistive dissipative contributions of the fuzzies to the impedance, including
their Winterstein approximations, are discussed.

2.1 A Discrete Fuzzy Model

For the SDOF master regarded herein, the distribution of the fuzzies over the master has no
influence on the change in impedance due to the fuzzies. So, in the discrete fuzzy model no
assumptions are made about the spatial distribution of the fuzzies. Consequently it seem natural
to assume that there is no dependence between the dynamical characteristics of the fuzzies.
Furthermore it is natural to assume that the numberN of fuzzies is random. Following the
notation introduced in Sec. 1.1.2, each fuzzy is represented by a triplet of random variables
�η �Ω�ζ �. As two further simplifying assumptions all triplets are assumed equally distributed
and the variablesη , Ω, andζ are assumed mutually independent. It is conjectured that in most
cases this is realistic assumption. Finally it is for computational ease henceforth assumed that
ζ is deterministic and equal for all fuzzies.

Due to the independence of the fuzzy eigenfrequencies one can, without loss of generality,
imagine that for any realization of the discrete fuzzy field, the eigenfrequencies are sorted in
ascending order. Plotting the sorted eigenfrequencies on an axis, it is clear that one can consider
the eigenfrequencies as a realization of an inhomogeneous Poisson point field. Denote in the
following this frequency axis thev-axis, and let the Poisson counting process, counting the
number of eigenfrequencies belowv, be denotedN�v�. Naming further the inhomogeneous
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2.1 A Discrete Fuzzy Model

mean rate of the counting processλ �v� then

µN � E�N�∞�� �
� ∞

0
λ �v�dv � ∞ (2.1)

where the inequality sign expresses a restriction put onλ �v� ensuring similarity ofλ �v� to
a density function. Since an infinity of fuzzies never occur this restriction is clearly not a
limitation. Under the above assumption one finds thatR�ω� has the mean (suppressingζ in
χ�a�ζ � andγ�a�ζ � asζ is assumed deterministic)

E�R�ω�� � ωE�η �
� ∞

0
γ
� v

ω

�
λ �v�dv (2.2)

and the covariance

Cov�R�ω1��R�ω2�� � ω1ω2E�η 2�
� ∞

0
γ
� v

ω1

�
γ
� v

ω2

�
λ �v�dv (2.3)

Similar expressions may be written forV �ω�, the cross-covariance Cov�R�ω1��V �ω2��, etc.

The above results may be obtained using the following approach. The conditional probability
that the numberNu of fuzzy eigenfrequencies belowu is less thannu givenµN � n is

P
Nu � nu � µN � n� �
1
n

� u

0
λ �v�dv (2.4)

SinceR�ω� is given by the sum

R�ω� �
N�∞�

∑
j � 1

η jγ
�Ω j

ω

�
(2.5)

the mean and the covariance functions ofR�ω� may be computed by

E�R�ω�� � E
�

E�R�ω� � N�∞��



(2.6)

Cov�R�ω1��R�ω2�� � E
�

Cov�R�ω1��R�ω2� � N�∞��



� Cov
�

E�R�ω1� � N�∞�� � E�R�ω2� � N�∞��

 (2.7)

Due to independence and equality of distributions one gets

E�R�ω� � N�∞� � n� � nE�η �E�γ
�Ω

ω

�
� N�∞� � n� � nE�η �

� ∞

0
γ
� v

ω

�λ �v�
n

dv

(2.8)

and thereupon, by substitution into Eq. (2.6), Eq. (2.2) is obtained. Following the same ap-
proach Cov�R�ω1��R�ω2�� etc. are obtained by somewhat more involved, but simple, manipu-
lations.

This section is closed by stating that the correlation coefficient betweenR�ω� andV �ω� is (note
the change of integration variabel)

ρ�R�ω��V �ω�� �

� ∞
0 γ�a�χ�a�λ �ωa�da�� ∞

0 γ�a�2λ �ωa�da
� ∞

0 χ�a�2λ �ωa�da
(2.9)
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2.2 A Non-Discrete Field Fuzzy Model

For rigid bodies with more than one degree of freedom, or for flexible structures, e.g. a beam,
the spatial distribution of the fuzzies over the master is of course important for the evaluation
of the impedance of the whole system of master and fuzzies. Therefore field models for fuzzies
are of interest too.

A field description of the fuzzies allows for a more general modeling. Instead of being repre-
sented by random triplets�η j�Ω j�ζ j� the system of fuzzies is now be described by a triplet of
random fields�η�ξ ��Ω�ξ ��ζ �ξ ��, whereξ 	 I is the spatial coordinate. A discrete system of
fuzzies is just a special case in which the triplet of random fields corresponds to randomly po-
sitioned Dirac delta functions. Under this general setting the equation of motion for the master
is (suppressing in most terms the time argument)

ẍ � 2ζ 0ω0ẋ � ω2
0x �

�
I

�
2ζ �ξ �Ω�ξ �ẏ�ξ � � Ω�ξ �2y�ξ �

�
η�ξ �dξ �

1
M

f �t� (2.10)

in which y�ξ � t� is the displacement field of the fuzzies relative to the master. The difference
between (2.10) and (1.5) is that the finite sum is changed into an integral. The equation of
motion of the single fuzzy does not change why the expression (1.7) stay unchanged. Due to
the integral in (2.10) the formulas forR�ω� andV �ω� now read:

V �ω� � ω
�

I
χ
�Ω�ξ �

ω
�ζ �ξ �

�
η �ξ �dξ � R�ω� � ω

�
I
γ
�Ω�ξ �

ω
�ζ �ξ �

�
η�ξ �dξ

(2.11)

in which the functionsχ�a�ζ � andγ�a�ζ � have the same definition as in the discrete case (Eq.
(1.10)). Again formulas for the mean and covariance ofR�ω� andV �ω� are established. For the
purpose of conciseness define the functionΓ�ξ �ω� � γ

�
Ω�ξ ��ω�ζ �ξ �

�
. Then the well-known

formulas are

E�R�ω�� � ω
�

I
E�Γ�ξ �ω�η�ξ ��dξ (2.12)

and

Cov�R�ω1��R�ω2�� � ω1ω2

�
I� I

Cov�Γ�ξ 1�ω1�η�ξ 1��Γ�ξ 2�ω2�η �ξ 2��dξ 1dξ 2 (2.13)

Analogously expressions can be written forV �ω� and the cross-covariance ofR�ω� andV �ω�.

Before considering the non-discrete field to be defined herein, a discrete point field equivalent
to the discrete model presented in the previous section is consider. Assume that the fuzzies are
attached to the master along a line of lengthL and let the points of attachment be modeled by a
homogeneous Poisson field of mean rateκ per unit length. Furthermore assign density function
fΩ�v� � λ �v��µN to the random fuzzy eigenfrequenciesΩ, then, since theΩ’s are independent,
the number of realizations ofΩ in the interval�v�v�∆v� is Poisson distributed with mean

κL
� v�∆v

v
fΩ�w�dw �

κ L
µN

� v�∆v

v
λ �w�dw (2.14)
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Figure 2.1: The Poisson point pulse and square-wave fields.

By choosingκL � µN , this alternative representation is equivalent to the representation dis-
cussed in the previous section.

Inspired by this Poisson point field the non-discrete piecewise continuous Poisson square-wave
field is regarded (see Fig. 2.1.) One may picture that the square-waves as obtained from the
point field by ”smearing out” the discrete fuzzies over the intervals between the points. Essen-
tially this smearing corresponds to giving the fuzzies of the point field finite extend. Thus, not
surprisingly, asymptotic equivalence between the discrete fuzzy model from Sec. 2.1 and the
square-wave field is obtained by scaling the distribution ofη �ξ � by the mean distance between
two consecutive jumpsL�µN � κ�1. It is emphasized that this kind of ”smearing” is different
from the kind of ”smearing” applied in other works, e.g. [21] resembling that of the statisti-
cal theory of gases. By ”smearing” is in that reference indicated a passage to a continuum of
fuzzies similar to letting the occurrence rateκ tend towards∞ andE�η � tends to zero such that
κ E�η � tend to a positive constant. Then the variance Var�R�ω�� tends to zero. This approached
is questioned in [17] because it sweeps out the variance which in realistic situations can be
considerably larger than the mean. the example in Chapter 3 demonstrates this.

A homogeneous Poisson square-wave vector field�η �Ω�ζ ��ξ �, ξ 	 �0�L�, is considered. To
demonstrate the asymptotic equivalence with respect to second order moments the covariance
function ofR�ω� is considered. It shall be compared to Eq. (2.3). Using Eqs. (A.3) and (A.9)
from the appendix one finds that the covariance given by (2.13) becomes

Cov�R�ω1��R�ω2�� � 2L2ω1ω2

µN � e�µN �1
µ2

N

Cov�Γ�ξ �ω1�η�ξ ��Γ�ξ �ω2�η�ξ �� (2.15)

Using thatη�ξ � andΓ�ξ �ω� are assumed mutually independent for each fixedξ and thatζ �ξ �
is assumed deterministic provide

Cov�Γ�ξ �ω1�η�ξ ��Γ�ξ �ω2�η�ξ �� � E�Γ1Γ2�E�η 2��E�Γ1�E�Γ2�E�η �2 (2.16)

whereΓi � Γ�ξ �ωi�, i� 1�2. Combining Eqs. (2.15) and (2.16) and writing out in full the result
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one has

Cov�R�ω1��R�ω2�� � 2L2ω1ω2

µN � e�µN �1
µ2

N

�
�

E�η 2�
� ∞

0
γ
� v

ω1

�ζ
�
γ
� v

ω2

�ζ
�

fΩ�v�dv � E�η �2
� ∞

0
γ
� v

ω1

�ζ
�

fΩ�v�dv
� ∞

0
γ
� v

ω2

�ζ
�

fΩ�v�dv
�

(2.17)

As in the point field case, one setsfΩ�v� � λ �v��µN. Moreover, due to the scaling ofη , E�η 2�
in (2.3) corresponds to 2E��η�ξ �L�µN�

2� in the present. Therefore, asµN � ∞, (2.17) tends
asymptotically to (2.3) which proves the asymptotic equivalence of the discrete model and the
present non-discrete Poisson square-wave field. It is noted that in the other limitµ N � 0
the discrete model has no fuzzies whereas the square-wave field has no jumps but the field
is with probability 1 non-zero. Therefore, (2.3) gives Var�R�ω�� � 0 in the limit µ N � 0 but
Var�R�ω�� � ω2
E�γ�Ω

ω �ζ �
2�E�η 2��E�γ�Ω

ω �ζ ��
2E�η �2� showing that the fields are only asymp-

totic equivalent. The asymptotic second order moment equivalence prove that there exist non-
discrete fields which can model the dynamical effect of the fuzzies.

As already mentioned the smearing applied to obtain the square-wave field essentially corre-
sponds to giving the fuzzies of the point field finite extend. Thus it is essentially similar to
the discrete field. Therefore, one may claim that the piecewise continuous square-wave field
is not a very good counter example of the postulate by Lin based on continuous fields. Lin
claimed that the probability of the coincidence of the excitation frequency and any single fuzzy
eigenfrequency is zero, and therefore the most important effect of resonance is for continuous
fields accorded with zero probability. Since the square-waves always have finite extend, there is
always a non-zero probability that fuzzies of the same eigenfrequency exist, which is of course
not in general the case for continuous fields. The square-wave process does, however, point out
why continuous fields are nevertheless applicable as fuzzy models.

Also in the discrete model, the probability of hitting exactly the eigenfrequency of any fuzzy
is zero if the frequencies are continuously distributed, but a damping effect is nevertheless ex-
perienced. So, the point it is not that in continuous fields the fuzzies have infinitesimal extend.
The point is, as noted at the end of the first subsection of Sec. 1.1.2, that even near-resonant
excitation of a fuzzy is sufficient to give a dynamical damping effect. Such an effect is only
realizable if a fuzzy of non-vanishing mass is excited. Of course, in the discrete fuzzy model
each fuzzy has finite mass giving rise to a non-vanishing damping effect of each fuzzy. Con-
trary to this the single fuzzies of the continuous field model has infinitesimal mass, why they
cannot by themselves contribute to the dynamical damping effect. This is probably what is
Lin’s concern. Thus, the requirement that a field be a suitable fuzzy model is that a non-zero
set of sufficiently many fuzzies excited at near resonance exists. Clearly, as demonstrated by
the derivations given above, the square-wave field meets this requirement. A way that the re-
quirement be met for continuous fields is if the field has a sufficiently large correlation length.
Obviously this requirement is not unrealizable, proving that continuous field fuzzy models exist.
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Figure 2.2: The complex numberχ�a�ζ �� iγ�a�ζ � as function ofa 	 �0�∞� for different
damping ratios.

2.3 Distributional Properties of R andV and Winterstein Approximations

From a reliability point of view it is necessary to know, at least approximately, the distribu-
tions of the reactive and the resistive dissipative contributions,R�ω� andV �ω�, of the fuzzies.
Especially having a mapping from a correlated pair�U�ω��W�ω�� of zero mean unit variance
Gaussian variables to�R�ω��V �ω�� will be very convenient. The major problem one faces in
this is, that a general solution for the distribution of an integral of a random field is difficult to
obtain. However, some general considerations can be given.

Under suitable mixing conditions, any spatially separated events in a random field become
asymptotically independent as the separating distance increases. If convergence towards in-
dependence is sufficiently fast when compared to the size of the integration domain, then a
generalization of the central limit theorem implies that the integral of this field becomes asymp-
totically Gaussian. Thus bothR�ω� andV �ω� can be asymptotically Gaussian. However obsta-
cles for the application of central limit theorem are present. If the coefficient of variationVV�ω�
of V �ω� is not suitably small, the normal distribution will be a bad approximation for the distri-
bution ofV �ω� becauseV �ω� is a positive variable. Furthermore it is a premise of the central
limit theorem that the distribution of the integrands in the expressions forR�ω� andV �ω� do no
change drastically withξ . Depending on the driving frequencyω the integrands may change
drastically withξ . If the driving frequency is such that practically none of the fuzzies are ex-
cited at near resonance they act either as purely mass or as purely stiffness contributors, why
the distribution of the integrands is dominated by the distribution ofη�ξ �, which is independent
of ξ , and therefore the central limit theorem applies. An illustration of this is given in Fig. 2.2
which shows plots of the complex numberχ�a�ζ �� iγ�a�ζ � as function ofa 	 �0�∞� for differ-
ent damping ratios. To indicate howχ�a�ζ �� iγ�a�ζ � develops as function ofa crosses are put
on the graphs in the range froma � 0�75 to a � 1�25 and in steps of 0.05. Due to resonance
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the rangea 	 �0�75�1�25� covers most of the graphs. Therefore, for non-resonant excitation
χ�a�ζ � andγ�a�ζ � concentrates in narrow regions of the graphs being in this way almost de-
terministic. If one in stead consider excitation in the range of the fuzzy eigenfrequencies, i.e.
medium-frequency range excitation, the absolute values ofχ�a�ζ � and γ�a�ζ � become large
and important to the distribution of the integrands inR�ω� andV �ω�. Thus, when the excitation
is in the extremities of the fuzzy eigenfrequency range, few fuzzies are excited but they will
dominate the distributions ofR�ω� andV �ω�, those being then in general far from Gaussian
distributed. On the other hand, when the excitation is well within the medium-frequency range
approximate Gaussianity ofR�ω� andV �ω� is regained and the range of values thatR�ω� and
V �ω� may take is considerably larger than the range of values thatR�ω� andV �ω� may take
when the excitation frequency is outside the medium-frequency range.

The plots in Fig. 2.2 may also be used to give statements about the joint distribution ofR�ω�
andV �ω�. Clearly, when the excitation is below the medium-frequency range there is an almost
constant positive correlation coefficient betweenR�ω� andV �ω�, independent ofω. Likewise,
when the excitation is above the medium-frequency range, the coefficient of correlation is al-
most constant negative. Due to the almost symmetric shape of the graphs in Fig. 2.2 the
correlation comes close zero when the excitation is in the medium-frequency range. When
passing from non-resonant excitation to medium range excitation the correlation coefficient
passes rapidly from the constant non-zero level to zero. This follows from the fast variation of
χ�a�ζ � andγ�a�ζ � with a whena is in the neighborhood of 1. On the premise that excitation
is in the medium-frequency range the following approximate line of reasoning can now be fol-
lowed. The marginal distributions ofR�ω� andV �ω� are nearly normal and one may conjecture
that Cov�R�ω��V �ω�� gives much information about the joint distribution ofR�ω� andV �ω�.
Thus it is conjectured the for medium frequency-range excitationR�ω� andV �ω� are virtually
uncorrelated why there is only little need of a precise account for their joint distribution.

Supported on the above considerations about the approximate Gaussianity and the specific ex-
amples given in Chapter 3,�R�ω��V�ω�� is approximated by�R̂�ω��V̂ �ω�� given by the mapping
(suppressing the argumentω)

R̂ � E�R� � D�R� �aU � b�U 2�1� � c�U3�U� � (2.18)

V̂ � f exp�gW � 1
2hW 2� (2.19)

The coefficientsa�b�c� f �g and h are determined such that�R̂�ω��V̂ �ω�� have the same first
four marginal moments as those of�R�ω�� I�ω��. This type of approximation as applied to
R�ω� has been successfully used in several different applications by Winterstein [23, 7]. There-
fore (2.18) is called a Winterstein approximation and (2.19) a log-Winterstein approximation.
The form of (2.18) is based on the conjecture thatR�ω� is asymptotically Gaussian no matter
what the distributions of the fuzzy eigenfrequencies and masses are. Thus the first term in the
square bracket contributes to Gaussianity whereas the other terms account for the deviations
from Gaussianity. For the distributions applied in the examples in the Chapter 3 this conjecture
proves useful. Similarly one might conjecture thatV �ω� be approximated by a polynomial of
a Gaussian variable. However,V �ω� is positive, and for the specific examples in Chapter 3 ap-
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proximately exponential distributions ofV �ω� are obtained. Adding to this, that the exponential
distribution approaches normality as the coefficient of variationVV �ω� decreases, an exponen-
tial transform of the second degree polynomial in (2.19) seems a reasonable choice. Having
assessed the coefficientsa�b�c� f �g andh, the covariance of�U�ω��W �ω�� is chosen such that
Cov�R̂�ω��V̂ �ω�� � Cov�R�ω��V �ω��. This is in accordance with the discussion of the joint
distribution of�R�ω��V �ω�� given in the previous paragraph. For brevity the approximations to
�R�ω��V �ω�� will in the following be called the (joint) Winterstein approximation.

The polynomial degree used in formulas (2.18) and (2.19) are not completely arbitrarily chosen.
There is no algebraic restrictions on the degree applicable in polynomials like (2.18). However
moments of higher order than four are seldom obtainable, so usually only third degree Winter-
stein polynomials are used. Furthermore, in the current applications satisfactory approximations
are obtained by (2.18). In formula (2.19) the random fieldW only appears up to the second de-
gree. This is due to algebraic limitations. SinceW is Gaussian the tail of its distribution is of
typee�

1
2w2

and therefore, if terms of the formkW m with m � 2 are present in the exponent, then
moments ofV̂ do not exist form odd and anyk, or for m even and positivek. It turns out that in
the present investigations (2.19) gives satisfactorily accurate approximations to the considered
distributions.

The requirement that the first four moments ofR�ω� andR̂�ω� be equal gives rise to the follow-
ing equations, [7, p. 119],

a2 � 2b2 � 6c2 � 1 (2.20)

2b�2 � a2 � 18ac�42c2� � α 3�R (2.21)

15 � 288ac � 936c2 � 12a4 � 264a3c � 864a2c2 � 432ac3 � 2808c4 � α 4�R

(2.22)

in whichα 3�R � E��R�E�R��3��D�R�3 is the skewness ofR�ω� andα 4�R � E��R�E�R��4��D�R�4

is the kurtosis ofR�ω�. SettingE�V q� � E�V̂ q� for q � 1�2�3 will give three equations to obtain
f �g, andh. Using the density function of the normal distribution thenth order moment of̂V �ω�
is derived. One finds

E�V̂ n� �
f n

�
1�nh

exp
� n2g2

2�1�nh�

�
(2.23)

for h � �1�n. The correlation of the Gaussian pair�U�ωi��W �ω j��� i� j � 1�2 defining com-
pletely the correlation of pair�R̂�ωi��V̂ �ω j�� i� j � 1�2� is obtained from one of the following
equations, [7, pp. 116,120], where for short subscripti denotes ”function ofωi”, e.g. Ui �
U�ωi�, ρ��� �� denotes the correlation coefficient, andϕ�u�v;ρ� is the standard two-dimensional
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normal density:

ρ�R1�R2� � a1a2ρ�U1�U2� � 2b1b2ρ�U1�U2�
2 � 6c1c2ρ�U1�U2�

3 (2.24)

E�V1V2� � f1 f2

� ∞

�∞

� ∞

�∞
eg1u�g2v��h1u2�h2v2��2 ϕ �u�v;ρ�W1�W2��dudv (2.25)

ρ�R1�V2�D�V2� �

f2

� ∞

�∞

� ∞

�∞
�a1u�b1�u

2�1�� c1�u
3�u�� eg2v�h2v2�2ϕ �u�v;ρ�U1�W2��dudv

(2.26)

subjected to constraint that of course�
Cov�U1�U2� Cov�U1�W2�

Cov�W1�U2� Cov�W1�W2�

�
(2.27)

is nonnegative definite.

The Winterstein approximation technique is obviously not of much use if not the first four
moments of the integralsR�ω� andV �ω� are known. Examples employing the Poisson square-
wave field and the Poisson point pulse field are given in Chap. 3. Formulas for the moments of
R�ω� andV �ω� for these fields are derived in Appendix A.

A solutiona�b�c to the Eqs. (2.20), (2.21) and (2.22), or a solutionf �g�h to the three equations
obtained from (2.23) may not exist, or there may be more than one solution. The existence
of solutionsρ�U1�U2�, ρ�W1�W2� andρ�U1�W2� to Eqs. (2.24), (2.25) and (2.26) such that the
requirement (2.27) is satisfied is also a complicated problem. Nonexistence of solutions can
occur when one or more of the correlation coefficientsρ�R1�R2�, ρ�R1�V2� andρ�V1�V2� approach
�1, in particular, atω values whereR�ω� andV �ω� deviate much from the normal and the
lognormal distributions, respectively. In Chap. 3 it is explained how these potential problems
are overcome.

2.4 Summary

Three different fuzzy models are considered. First a discrete model not giving any information
about the spatial distribution of the fuzzies is treated. Due to the assumed mutual statistical in-
dependence of the fuzzies in this model an equivalent one-dimensional Poisson point pulse field
is constructed and shortly treated. Inspired by this field a Poisson square-wave field is obtained
by smearing out the fuzzies of the Poisson point pulse field which essentially corresponds to
giving the fuzzies of the point field finite extend. The hereby obtained field is shown to be
asymptotically second order moment equivalent to the discrete model as it reproduces asymp-
totically the covariances Cov�R�ωi��R�ω j�� etc., and of course the means too. Based on this
result, showing that non-discrete and non-continuous fields may model the impedance contri-
butions due to the fuzzies, it is explained that continuous fields may as well be used in modeling
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fuzzies and still provide meaningful results. This is a contradiction to the consideration given
by Lin.

In the last half of this chapter a discussion of the marginal distributions and the joint distribution
of R�ω� andV �ω� is given. For medium-frequency range excitation the distributions are, as a
consequence of the central limit theorem, approximately Gaussian. Furthermore, it turns out
that the correlation coefficient is nearly zero in the medium-frequency range. It is based on these
observations and because it from a reliability point of view is convenient to have a mapping from
a pair of Gaussian variables to�R�ω��V �ω��, that the so-called joint Winterstein approximation
to the joint distribution of�R�ω��V�ω�� is introduced. The joint Winterstein approximation
consists of the well-known Winterstein approximation which is used here to approximateR�ω�,
and a so-called log-Winterstein approximation used to approximateV �ω�. The latter, which is
basically defined as the exponential of a conventional Winterstein approximation, is introduced
here because the resistive contributionV �ω� from the fuzzies is positive, why a Gaussian-like
approximation to its distribution may not be successful.
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Chapter 3

Quantification of Vibration Damping

Using the Winterstein approximations suggested in the previous chapter the main goal of this
chapter is to show the the quantitative assessment of the second order moments of some quan-
tities associated with the frequency response function is possible. In doing this, the dynamical
damping effect of the fuzzies as modeled by the piecewise continuous Poisson square wave field
is once again demonstrated.

3.1 Amplification Factor and Phase Angle

In structural engineering one usually considers the frequency response function rather than the
impedance. Therefore this chapter focuses on the frequency response function. In Sec. 1.1.2 it
was shown that the frequency response function is given by

H�ω� �
M

iωZ
�

1

ω2
0�ω2�ωR�ω� � i

�
2ζ 0ω0ω�ωV �ω�

� (3.1)

For many practical purposes it is of more use to know the amplification factorA and the phase
angleψ defined by

A�ω� �
�x̂�

�F̂�Mω2
0�

� �H�ω��ω2
0 and ψ�ω� � arg�H�ω�� (3.2)

One may want to know the mean and the standard deviation of these quantities. Especially the
mean and the standard deviation of the amplification factor may be of interest. Either simply
because they may be directly useful in a reliability assessment of the master, or because one
seeks the mean and the variance of quantities which depend onH�ω�. For instance the covari-
ance function of the stationary responseX�t� of the master structure to a stationary excitation
with spectral incrementdS�ω� is given by

Cov�X�s��X�t�� �
� ∞

�∞
eiω�s� t�E��H�ω��2�dS�ω� (3.3)
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It is noted that since the system of fuzzies on the master structure is some particular realization
of the field of fuzzies, this stationary responseX�t� is a random process which is non-ergodic
with respect to properties that concern the statistical nature of the fuzzy system. For example,
a time average estimation of the covariance function from a single realization ofX�t� will not
be an estimate of the covariance function as given by (3.3). It will rather be a realization of
the random covariance function obtained from (3.3) when replacingE��H�ω��2� by the random
function �H�ω��2. It therefore may be valuable to be able to compute Cov�X�s��X�t�� from
(3.3).

HereinA�ω� andψ�ω� are mainly regarded for the purpose of illustrating the damping effect of
the fuzzies by use of the frequency response function rather than by use of the impedance, less
used in structural engineering. FurthermoreA�ω� andψ�ω� are considered to demonstrate the
applicability of the Winterstein approximation suggested in Chapter 2. SinceA�ω� andψ�ω�
are complicated nonlinear functions ofR�ω� andV �ω�, computing the mean and the variance of
A�ω� andψ�ω� requires the joint distribution of�R�ω��V �ω��, and this is where the Winterstein
approximation comes into the picture.

3.2 The Example

The Poisson point pulse field and the Poisson square-wave fields are considered. In order to
show how different the variance ofR�ω� andV �ω� may be, the mean fuzzy massE�η�ξ ��
is kept constant while the mean number of fuzziesµ N varies. For the rest of the chapterµN

takes either one of the values 10 or 100, and the normalized fuzzy massesη �ξ � are assumed to
be Rayleigh distributed with mean 0.3. As mentioned in Chapter 2 the damping ratios of the
fuzzies are for simplicity assumed deterministic and set toζ �ξ � � 0�01. Furthermore the fuzzy
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Figure 3.1: Marginal distributions ofR̂�ω� andV̂ �ω� compared to simulated distributions
of R�ω� andV �ω� for the square-wave field model withµN = 100.
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Figure 3.2: Correlation functions (invariant with respect toµN) and, forµN � 100, skew-
ness and kurtosis ofR�ω� andV �ω� (thick curves) compared to the skewness
and kurtosis of normal and log-normal distributions with the same mean and
standard deviation asR�ω� andV �ω�, respectively (thin curves). All results
are for the square-wave field model.

eigenfrequenciesΩ�ξ � are assumed to be distributed with symmetric density

fΩ�ω� �

���
��

2
ωL�ωU

sin2

	
π

ω�ωL

ωU�ωL



� ω 	 �ωL�ωU �

0 otherwise

(3.4)

whereωL � 50 andωU � 250. All the above distributions and numerical values are chosen such
that they match those presented in [17]. Based on these distributional assumptions, the results
shown in Figs. 3.1 to 3.2 are obtained. Except for minor numerical inaccuracies, the results in
Figs. 3.3 and 3.2 are exact, as they are obtained by use of the formulas in Appendix A.

Figure 3.1 shows plots of the Winterstein approximation�R̂�ω��V̂ �ω�� together with simulations
of the marginal distributions of�R�ω��V �ω�� for µ N � 100. It is recalled that the approximations
are obtained independently of each other. The driving frequenciesω� 144�192�216 considered
in the plots vary from the center to the tail of the fuzzy eigenfrequency distribution, i.e. within
the medium-frequency range. Clearly the Winterstein and the log-Winterstein approximations
are good these conditions. The good agreement underlines the hypothesis brought forward in
Sec. 2.3 thatR�ω� andV �ω� are virtually independent under the given conditions. Supporting
this, the left plot in Fig. 3.2 shows the correlation coefficientρ�R�ω��V �ω�� as function ofω.
As explained earlier (with reference to Fig. 2.2)ρ is close to zero in the medium-frequency
range and with steep changes near the medium-frequency range endpointsωL andωU . As also
explained before, the center and the right plot in Fig. 3.2, respectively, show that the distribution
of R�ω� andV �ω� deviate the most from Gaussianity and the log-normality, respectively, in the
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for the square-wave field model for mean number of fuzziesµN � 10�100.
The curves forD�R� andD�V � for µN � 10 are marked.

neighborhood of the endpoints of the medium-frequency range. Thus, at the endpoints the
Winterstein approximation may give considerable errors, if existing at all. However, at the
endpoints the variance ofR�ω� andV �ω� are relatively small (see. Fig. 3.3), why the potential
errors of the Winterstein approximation will not have a dramatic influence on the final results
for A�ω� andψ�ω�.

Together all the above observations suggest that using the Winterstein approximation in the
medium-frequency range may provide good approximate results for the mean and the variance
of A�ω� andψ�ω�. Outside the medium-frequency -range, the small variation ofR�ω� andV �ω�
imply that their randomness may be sufficiently accurately accounted for by assuming them
normally and log-normally distributed, respectively, and independent. Since it is the medium-
frequency range which is of interest, it is not a severe drawback that the applicability of the
Winterstein approximation technique is limited to this frequency-range.

It is noted that some of the above conclusions are of empirical nature, why they may not be
valid given some other distribution assumptions. Furthermore the nice plots in Figs. 3.1 and
3.2 are obtained for a high mean number of fuzzies, i.e. forµN � 100. ForµN � 10 one must
expect that e.g.R�ω� deviates more from Gaussianity than whenµ N � 100. Later it is seen that,
even forµN � 10, reasonable results are obtainable by use of the Winterstein approximation.

Before discussing the frequency response function the impedance contributions of the fuzzies
are considered. Figure 3.3 depicts the mean and standard deviation ofR�ω� andV �ω�. The
meansE�R�ω�� andE�V �ω�� show that on the average considerable contributions are present in
the center of the medium-frequency range. On the other hand, the possible great variability of
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Figure 3.4: Simulated (crosses) and Winterstein approximated (solid lines) means (thick
line) and standard deviations (thin line) of the amplification factorA�ω� and
the phase angleψ�ω�, as obtained for the square-wave model and forµN �
10�100.

R�ω� andV �ω� indicates that the contributions may, or may not, be present. The plots show how
much bigger than the mean, the standard deviation can be. As expected and in analogy to the
theory of gases, increasing the number of fuzzies while keeping the mean mass constant reduces
the variation of the damping effect makes the realization of the dynamic damping effect caused
by the fuzzies less uncertain. It is noted that the dynamic damping effect is on the average
the largest when the meanE�R�ω�� of the reactive contribution is close to zero and the mean
E�V �ω�� of the resistive contribution is big. This is, due to the symmetry off Ω, not surprisingly
seen to be very close to the center of the distribution of the fuzzy eigenfrequencies. Finally it is
concluded that the plots give numerical proof that certainly the non-discrete square-wave model
can account for the damping effect of the fuzzies.

For the square-wave model, Fig. 3.4 shows, along with simulation results, the mean and the
standard deviation ofA�ω� andψ�ω� computed by use of the Winterstein approximation for
the joint distribution of�R�ω�� I�ω��. Both µ N � 100 andµN � 10 is considered. It is noted
that in the graphs ofD�ψ�ω��, as obtained by use of the Winterstein approximation, there
are some gaps close to the endpointsωL and ωU of the fuzzy eigenfrequency range. These
gaps are explained by the shift from the Winterstein approximation applied in the medium-
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Figure 3.5: Means (thick curves) and standard deviations (thin curves) of the amplifica-
tion factorA�ω� and the phase angleψ�ω� obtained by Winterstein approxi-
mation for the Poisson square-wave field model (solid curves) and the Poisson
point pulse field (dotted curves).

frequency range to the simplified distributional model applied outside this range. In order to
demonstrate the influence of the dynamical damping effect of the fuzzies, the eigenfrequency
of the master structure itself is chosen to be in the center of the fuzzy eigenfrequency range, i.e.
ω0 �

1
2�ΩL �ΩU� � 150 rad/s. It is seen that the determination of the main features of the de-

pendence of the mean and the standard deviation onω, as obtained from the Winterstein approx-
imation, is quite accurate, and the largest errors occur only when the mean number of fuzzies is
very small. It shows that accounting for the joint distributional characteristics of�R�ω��V �ω��
by only requiring the covariance of the pairs�R�ω��V �ω�� and�R̂�ω��V̂ �ω�� be equal gives satis-
factory results. As mentioned above, the dynamical damping effect of the fuzzies in the current
case has, on the average, the greatest effect at the center of the fuzzy eigenfrequencies. Since
ω0 equals the center point of the eigenfrequency distribution, it may be expected that on the
average the entire fuzzy system will behave essentially as a mass damper. This is confirmed by
the variation of the expectation of the amplification factorA�ω� as a function ofω with a local
minimum close toω0. However, it is again seen that the standard deviation of the amplitude is
quite large, indicating that this mass damper effect may, or may not, be present for a particular
realization of the fuzzy system.

In order to give a quantitative idea about the difference between results obtained by use of
the Poisson square-wave model and the Poisson point pulse model, Fig. 3.5 compares, for
µN � 100, the mean and the standard deviation ofA�ω� andψ�ω� for these two models. The
meansE�R�ω�� andE�V �ω�� are for the two models identical, but due to the only asymptotic
equivalence of the two models the standard deviationsD�R�ω�� and D�V �ω�� are not identi-
cal. Consequently the moments ofA�ω� andψ�ω� will deviate from each other. Due to the
asymptotic behavior the differences will, as it appears in the figure, be small forµ N � 100.
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Quantification of Vibration Damping

3.3 Summary

An example demonstrating the conclusions drawn in Chapter 2 is given. In this example the
mean and standard deviation of the amplification factor and the phase angle, both quantities
related to the frequency response function, has been obtained. The results demonstrate that
the possible dynamic damping effect of the fuzzies can be modeled by use of a non-discrete
field model. Furthermore they show that considerable standard deviations of the change-in-
impedance can be present. The computation of the amplification factor and the phase angle
required the joint distribution of the reactive and resistive contributions�R�ω��V �ω�� due to
the fuzzies. It was shown by comparison to results obtained by simulation that results coming
quite close to the simulation results may be obtained by use of the joint Winterstein approxi-
mation suggested in Chapter 2. The Winterstein approximation performs especially well when
excitation frequencies well within the eigenfrequency range of the fuzzies are considered.
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Chapter 4

Conclusions

The subject of this part of the thesis is vibrations of a deterministicly defined major main struc-
ture to which several minor stochasticly defined sub-structures are attached. This kind of prob-
lem originates in the field of acoustics in which the resonant excitation of the substructures, the
so-calledfuzzies, has to be taken into consideration because the resonating fuzzies will exert
a dynamical damping effect on the main structure, the so-calledmaster. In structural and me-
chanical engineering the dynamical damping effect of minor sub-structures on major structures
is also a relevant problem.

Information about the fuzzies is generally uncertain, why a stochastic modeling of the fuzzies
is the most reasonable choice of model. Herein two issues connected to the damping effect of
the fuzzies, as obtained by use of a the stochastic fuzzy model, are discussed. The damping
effect is investigated by considering the change in impedance of the master due to the fuzzies.
In computing the impedance, some authors choose to account for the fuzzies by letting the
number of fuzzies tend to infinity in such a way that the mean total mass of the fuzzies stay
constant and consequently the variation of the total mass tends to zero. Thereby a deterministic
model neglecting possibly large variations of the change in impedance is obtained. This is
not a reasonable result, and it is shown quantitatively by an example, that the variance can be
considerable. The passage from a finite number of discrete fuzzies to an infinity of fuzzies
may be considered a ”smearing” of the fuzzies. The second issue concerns an alternative way
of smearing. Instead of a discrete fuzzy model a continuous random field may be applied
as a model for the fuzzies. Such a continuous random field represents a smearing since it
consists of infinitely many infinitesimally small fuzzies. Because the fuzzies in such a model are
infinitesimally small, Lin [17] questions that the damping effect of the fuzzies may be accounted
for by continuous field models. Regarding a piecewise continuous field, obtained in a natural
way from a discrete field, and showing asymptotic second order moment equivalence between
the two fields it is herein argued that a damping effect may also be encountered when using a
continuous field model provided that the field has a reasonably high correlation length.

155



In a reliability assessment of the master, the distribution of the change in impedance due to the
fuzzies must somehow be assessed. Herein a simple tool for this purpose is developed. The sim-
plicity follows from the field models applied. The fields are the Poisson square-wave field and
the Poisson pulse point field which are of the often used Poisson field type. General statements
about the distribution of the change in impedance in dependence of the fuzzy field model and
the distribution of fuzzy eigenfrequencies, masses and damping ratios are quite weak. There-
fore approximations are sought. Especially having a mapping from standard Gaussian variables
to the random variables giving the change in impedance is convenient. From the general state-
ments it follows that approximate Gaussian distributions of the random variables giving the
change in impedance are to be expected. Therefore, and based on the specific example given in
the last chapter, Winterstein approximations are applied with success. Based on the Winterstein
approximations quite accurate evaluations of the statistics of the frequency response function is
obtained. These results demonstrate a quantification of the damping effect of the fuzzies when
these are modeled by a non-discrete field.

Under some simplifying assumptions this part of the thesis mainly gives a discussion of the
modeling of the fuzzies in terms of a discrete model versus a continuous model . Future research
must regard multiple degree of freedom masters such as beams. For such masters it is doubtful
whether a simple analysis as the one carried out here can be applied. Probably a Finite Element
approach is required. There is, however, no doubt that the considerations given in the present
work about the applicability of the continuous fuzzy field models carry over to multiple degree
of freedom masters.
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Appendix A

Statistical Moments of Integrals of Poisson
Fields

The first four central moments of integrals of homogeneous Poisson fields on a line are exces-
sively used in this part of the thesis. A detailed derivation of the formulas for these moments
has been postponed to this Appendix. Without loss of generality one can always scale the axis
along the line why we consider integrals of the type

Y �
� 1

0
Z�ξ �dξ � (A.1)

whereZ�ξ � is a homogeneous Poisson square-wave field or a Poisson point pulse process.

A.1 The Square-Wave Field

The square-wave field is shown in Fig. 2.1. Based on that figure the formulas presented here
are obtained. First of all the well-known results for the mean and variance are repeated:

E�Y � � E�Z� (A.2)

Var�Y � �
� 1

0

� 1

0
Cov�Z1�Z2�dξ 1dξ 2

� Var�Z�
� 1

0

� 1

0
P
ξ 1 andξ 2 inside the same square-wave�dξ 1dξ 2

� Var�Z�
� 1

0

� 1

0
exp��µN�ξ 1� ξ 2��dξ 1dξ 2

(A.3)

where for brevityZi denotesZ�ξ i�, µN is the mean number of jumps in the field and where
P
event� means the probability ofevent. Furthermore the coordinateξ is suppressed inE�Z�
and Var�Y � as the field is homogeneous. Henceforth the coordinate is suppressed when possible.
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A.1 The Square-Wave Field

For the computation of the skewness the third central moment is required. If one defines an
operator TriCov�S�T�U � similar to the covariance operator by

TriCov�S�T�U � � E��S� µS��T � µT ��U� µU�� (A.4)

the third central moment ofY becomes

E��Y � µY �
3� �

� 1

0

� 1

0

� 1

0
TriCov�Z1�Z2�Z3�dξ 1dξ 2dξ 3 (A.5)

As TriCov�Z1�Z2�Z3� is zero if just one of theZi’s is independent of the two others one has

TriCov�Z1�Z2�Z3� � E��Z� µZ�
3�P
ξ 1, ξ 2 andξ 3 inside the same wave�

� E��Z� µZ�
3�exp��µN max

i� j
��ξ i� ξ j��� (A.6)

Proceeding to the fourth central moment a multilinear operator QuaCov is defined analogously
to the multilinear operator TriCov providing

E��Y � µY �
4� �

� 1

0

� 1

0

� 1

0

� 1

0
QuaCov�Z1�Z2�Z3�Z4�dξ 1dξ 2dξ 3dξ 4 (A.7)

The evaluation of QuaCov is a bit more complicated than the evaluation of TriCov. Let-
ting 
i1� i2� i3� i4� denote a permutation of
1�2�3�4�, then of course QuaCov�Z1�Z2�Z3�Z4� �
QuaCov�Zi1

�Zi2
�Zi3

�Zi4
�. If the permutation
i1� i2� i3� i4� is chosen such that it satisfiesξ i1

�
ξ i2

� ξ i3
� ξ i4

then one can state that the QuaCov is only non-zero in the two cases:

1. All the Zi’s are inside the same wave, or

2. ξ i1
, ξ i2

are inside one wave andξ i3
, ξ i4

are inside another wave.

Using the permutation renders

QuaCov�Z1�Z2�Z3�Z4�

� E��Z� µZ�
4�exp��µN�ξ i4

� ξ i1
��

��Var�Z��2exp��µN�ξ i2
� ξ i1

��exp��µN�ξ i4
� ξ i3

��
�

1�exp��µN�ξ i3
� ξ i2

��
�

� E��Z� µZ�
4�exp��µN�ξ i4

� ξ i1
��

��Var�Z��2�exp��µN�ξ i2
� ξ i1

� ξ i4
� ξ i3

���exp��µN�ξ i4
� ξ i1

��
�

(A.8)
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Statistical Moments of Integrals of Poisson Fields

Though the integrands (A.6) and (A.8) look complicated, symmetry of these integrands over
the domain of integration in formulas (A.3), (A.5) and (A.7) leads the following results

� 1

0

� 1

0
exp��µN�ξ 2� ξ 1��dξ 1dξ 2

� 2!
� 1

0

� ξ 1

0
exp��µN�ξ 2� ξ 1��dξ 1dξ 2

�
2

µN
�

2
µ2

N

�
e�µN �1

�
(A.9)

� 1

0

� 1

0

� 1

0
exp��µN max

i� j
��ξ i� ξ j���dξ 1dξ 2dξ 3

� 3!
� 1

0

� ξ 1

0

� ξ 2

0
exp��µN�ξ 1� ξ 3��dξ 1dξ 2dξ 3

� 6
2�1� eµN �� µN�1� eµN �

µ3
NeµN

(A.10)

� 1

0

� 1

0

� 1

0

� 1

0
exp��µN�ξ i4

� ξ i1
��dξ 1dξ 2dξ 3dξ 4

� 4!
� 1

0

� ξ 1

0

� ξ 2

0

� ξ 3

0
exp��µN�ξ 1� ξ 4��dξ 1dξ 2dξ 3dξ 4

� 12
6�1� eµN�� µN�4�2eµN � µN�

µ4
NeµN

(A.11)

� 1

0

� 1

0

� 1

0

� 1

0
exp��µN�ξ i4

� ξ i3
� ξ i2

� ξ i1
��dξ 1dξ 2dξ 3dξ 4

� 4!
� 1

0

� ξ 1

0

� ξ 2

0

� ξ 3

0
exp��µN�ξ 1� ξ 2� ξ 3� ξ 4��dξ 1dξ 2dξ 3dξ 4

� 12
6�eµN �1�� µN�µNeµN �4eµN �2�

µ4
NeµN

(A.12)

The covariance of the integrals of two different Poisson square-wave fields with simultaneous
jumps but different, possibly correlated, amplitudes is needed too. Similarly to formula (A.3)
(and using formula (A.9)) one finds that

Cov�Ŷ �Ỹ � � Cov�Ẑ� Z̃�
� 2

µN
�

2
µ2

N

�e�µN �1�
�

(A.13)

where

Ŷ �
� 1

0
Ẑ�ξ �dξ � Ỹ �

� 1

0
Z̃�ξ �dξ (A.14)

are the integral of the processes.
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A.2 The Point Pulse Field

A.2 The Point Pulse Field

Deriving expressions for the skewness and kurtosis of the Poisson point pulse field is computa-
tionally much simpler than what was seen above. So, instead of computing the central moments
up to and including the fourth order, expressions for the skewness and kurtosis are presented.
As the process is a point pulse process the integral becomes a sum:

Y �
� 1

0
Z�ξ �dξ �

N

∑
i � 1

Zi (A.15)

where now the subscripti is simply a counter and not as before an indicator of the pointξ i. The
random variableN counts the random number of pulses in the interval�0;1�. As the process is
homogeneousN is Poisson distributed with parameterµ N. Since theZi’s are independent the
moments of the sum in (A.15) are easily obtained by use of the moment generating function
φ�u� of the pulses. Conditioned onN � n the moment generating functionψ�u� of the sum is
φn�u�. Now, unconditioning by the Poisson probabilities gives

ψ�u� �
∞

∑
n � 1

φn�u�e�µN
µn

N

n!

� exp
�
µN

�
φ�u��1

�
 (A.16)

As skewness and kurtosis are unaffected by changes of mean and variance, assume that the
pulses have zero mean and unit variance. Then the first four derivatives ofφ�u� for u � 0 are
0, 1, skewnessα 3�Z�, and kurtosisα 4�Z� of the pulses. Then, by taking the first four derivatives
at u � 0 of ψ�u� the first four moments 0,µ N, µNα 3�Z� and 3µ2

N � µNα 4�Z� of the integral are
obtained. Thus the skewness and kurtosis of the integral become

α 3�Y � �
α 3�Z��µN

(A.17)

α 4�Y � � 3�
α 4�Z�

µN

(A.18)

respectively (suppressing again the coordinate inZ�ξ �).

The covariance of the integrals of two Poisson point pulse fields with identically situated pulses
of different possibly correlated pulse magnitude is also required. One easily finds by condition-
ing on N � n and subsequent unconditioning by the Poisson probabilities that (compare with
(2.3))

Cov�Ŷ �Ỹ � � Cov�
N

∑
i � 1

Ẑi�
N

∑
j � 1

Z̃ j� � µN Cov�Ẑ� Z̃� � µN E�Ẑ�E�Z̃� � µN E�Ẑ� Z̃� (A.19)
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