
 B
Y

G
  D

T
U

D A N M A R KS
T E K N I S K E
UNIVERSITET

Stefan Krüger Nielsen

Air travel, life-style, energy use
and environmental impact

Rapport
         BYG·DTU R-021

2001
ISSN 1601-2917

ISBN 87-7877-076-9





���������	
�	������	�
����������

����������������	�������

Stefan Krüger Nielsen

Financed by the Danish Energy Agency's
Energy Research Programme

Ph.D. Dissertation
September 2001

Energy Planning Group
Department of Civil Engineering (BYG•DTU)

Technical University of Denmark
Brovej, DK-2800 Kgs-Lyngby

Denmark
Website: www.byg.dtu.dk, e-mail: skn@byg.dtu.dk

Report BYG•DTU R-021 2001
ISSN 1601-2917

ISBN 87-7877-076-9





I

Executive summary

This summary describes the results of a Ph.D. study that was carried out in the Energy

Planning Group, Department for Civil Engineering, Technical University of Denmark, in

a three-year period starting in August 1998 and ending in September 2001. The project

was funded by a research grant from the Danish Energy Research Programme.

The overall aim of this project is to investigate the linkages between energy use, life

style and environmental impact. As a case of study, this report investigates the future

possibilities for reducing the growth in greenhouse gas emissions from commercial civil

air transport, that is passenger air travel and airfreight. The reason for this choice of

focus is that we found that commercial civil air transport may become a relatively large

energy consumer and greenhouse gas emitter in the future. For example, according to

different scenarios presented by Intergovernmental Panel on Climate Change (IPCC),

commercial civil air transport’s fuel burn may grow by between 0,8 percent a factor of

1,6 and 16 between 1990 and 2050. The actual growth in fuel consumption will depend

on the future growth in airborne passenger travel and freight and the improvement rate

for the specific fuel efficiency. As a central mid-term estimate the IPCC foresees that

the fuel consumption may grow by around 3 percent per year until 2015.

The average specific CO2 emissions per revenue passenger kilometre transported by

the World’s aircraft fleet is lower than the CO2 intensity of an average Danish

passenger car with one occupant. But because aircraft can travel over long distances

within a relatively short period of time, one air trip can contribute considerably to the

total yearly CO2 emissions of air travellers. For example, on a long haul return flight

(12400 kilometres) between Copenhagen and New York in a modern aircraft (for

example a B767-300ER), around 300-500 kilograms of jet fuel may be burned per

passenger emitting around 0,9-1,6 tonnes of CO2. The lower figure represents a

calculation where the fuel consumption that may be attributable to belly-hold freight is

subtracted on an equal weight basis. Note that this estimate may change between

types of aircraft and is dependent on the actual load factor. Furthermore, it should be

taken into consideration that aircraft engine emissions per amount of fuel burned at
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high altitude may contribute 2-4 times as much to climate change as emissions from

fuel burned in for example passenger cars at sea level. Note also that there is currently

relatively high uncertainty connected to this estimate. The relative importance of one

such long-haul return trip can be exemplified by comparing to the average emissions of

CO2 from combustion of fossil energy sources per capita. On average, the World’s

citizens emit around 4 tonnes of CO2 in a year, although the number is much higher in

many industrialised countries and much lower in many developing countries.

There are considerable differences between the energy intensity of different types of

aircraft and also between airlines. Old aircraft are generally less fuel-efficient than

newer types, and aircraft used at short-haul are generally more fuel intensive than

aircraft used at medium-haul and long haul. Therefore, airlines that operate new fuel-

efficient aircraft over relatively long distances and at relatively high load factors are the

most fuel-efficient.

European charter carriers that operate aircraft with a high-density seat-configuration at

close to the optimum passenger load factor while only carrying insignificant amounts of

freight are the most fuel-efficient passenger carriers in the airline industry. Conversely,

the most fuel-intensive airlines are to be found among the regional carriers that operate

relatively small aircraft at below average load factors at short-haul routes. Aircraft used

at long haul routes consume more fuel per available seat kilometre than the most fuel-

efficient aircraft operated at medium-haul. However, if taking into account that

passenger aircraft used at long haul routes by scheduled carriers generally transport

relatively high loads of belly-hold freight, the fuel intensity per revenue passenger

kilometre, or per revenue tonne kilometre, is also relatively low on these routes. The

division of the fuel consumed by passenger aircraft between passenger and freight

loads is not straightforward, and different methodologies can be used.

Air traffic growth by far overrides the efficiency gains attained in the specific fuel

consumption and emissions per revenue tonne kilometre performed by commercial civil

aircraft. For example, the number of revenue tonne kilometres transported by the

American air carriers grew by a factor of 3,8 between 1973 and 1997. In the same

period, the specific fuel consumption per revenue tonne kilometre was reduced by

55%, leading to an increase in the total fuel consumption by a factor of 1,7. The major

part of the reduction in the specific fuel consumption was achieved in the early part of
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the period while the yearly improvements have slowed down in the later part of the

period.

Even though the yearly growth rates in passenger air travel and freight have slowed

down in the last decades, as compared to the earlier decades, many scenario studies

expect that commercial civil air transport will continue growing faster than most other

energy services. Furthermore, the yearly reduction of the fuel intensity is expected to

slow down further in the future. Therefore, in a business as usual scenario, commercial

civil air transport is likely to become a bigger source of greenhouse gas emissions in

the future and its share of the total emissions is likely to rise.

The yearly improvement rate for the aircraft fleets’ fuel efficiency can to some extent be

speeded up by implementing new measures to promote development of new and more

fuel-efficient aircraft as well as the phasing out of older and more fuel intensive aircraft.

For example, a tax on jet fuel or emissions or voluntary agreements between

governments and the airline industry on future goals for the reduction of the fuel

intensity, may lead airlines to scrap some of the 5000 operating jets that are more than

23 years old earlier than what can otherwise be expected. Furthermore, on the longer

term, the aircraft producers may choose to develop radically more fuel-efficient types of

aircraft configurations, such as flying-wing aircraft, that are designed for cruising at

lower speed and altitude, thereby perhaps also being less greenhouse gas intensive

per amount of fuel burnt. Likewise, new fuel-efficient types of propulsion technologies,

such as propfan engines, could be further developed to substitute current turbofans

that seem to have reached a plateau in fuel-efficiency improvements. However, at the

current fuel price a rather high kerosene tax may be needed to make such radically

improved technologies economically attractive to airlines. And because the

development cycles in aeronautical engineering tend to be relatively long, it may take

several decades before such technologies can come into use in civil passenger aircraft.

Furthermore, a tax on jet fuel or emissions could potentially contribute by making

current plans for developing GHG intensive high-speed and high-altitude aircraft types,

such as sonic cruisers or a new generation of supersonics, less economically attractive

to airlines. Currently, the major American aircraft producer Boeing considers launching

the so-called sonic cruiser that will be able to cruise at higher speed and altitude than

current state-of-the-art subsonic aircraft.
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Alternative fuels, such as liquefied hydrogen or synthetic jet fuel produced from

biomass, could theoretically also be used in commercial civil air transport, but

development and implementation poses large technical and economical challenges.

Most aviation experts seem to consider that alternative fuels will not be technically or

economically viable in the next decades. Furthermore, the current knowledge about the

impact on climate change of burning hydrogen at high altitude is relatively poor and

highly uncertain.

There is also potential for using more efficient air traffic management systems and for

improving the load factors. However, technical and operational efforts to improve the

specific fuel consumption and the related emissions are not envisioned to be sufficient

to keep pace with the growth in the air traffic volume at current growth rates.

The strong growth in passenger air travel and airfreight is generated by social,

technical, political and economic changes. People living in industrialised countries have

become accustomed to travel by air and the building up of a large socio-technical

system surrounding commercial civil air transport facilitates air travel growth. Airport

and aircraft capacity is constantly enlarged, while the real cost of air travel is reduced.

The building up of commercial civil air transport’s socio-technical system is furthered by

government subsidies, which again contribute to reduce airfares.

National interests and geopolitics play important roles in the subsidisation of

commercial civil air transport’s socio-technical system. National governments support

local airports, airlines and aerospace industries to maintain and increase the relatively

large number of people employed in these industries. Further aspects are the prestige

and power connected to maintaining aeronautical and military leadership as well as the

prestige connected to operating national flag carriers. The commercial civil air transport

industry becomes increasingly important for global and local economies.

Market forces contribute to reduce the cost of air travel in that aircraft producers

compete to produce the most efficient aircraft at the lowest possible prices while airline

competition in an increasingly global and liberalised market reduces real airfares.
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Economic growth policy leads to increasing income in many countries thereby allowing

more and more people to travel by air. Today, most air travel is related to leisure,

holidays and visiting friends and family. Passenger air travel is an important social

status maker and current trends in social values and preferences leads people to travel

further away to discover new exotic cultures and resorts.

Globalisation of businesses and the economy in general are major drivers for

passenger air travel. As businesses, political forums and personal relations become

increasingly global the need to communicate over longer distances rises. Business

travel is a major driver for passenger air travel growth in that business fares are

substantially higher than normal economy fares and discount fares. Business travellers

thereby subsidise leisure travellers, by allowing airlines to sell leisure tickets at

artificially low fares. This structure is furthered by airline frequent flier programmes and

other marketing tools.

People are basically restricted from passenger air travel by financial and time

constraints as well as technology and geography. The financial constraints are mainly

connected to airfares and incomes. Technology is an important constraint in the sense

that aircraft speed, range and capacity limits the distance people are able to fly within

the time available. Geographical characteristics also play an important part in the

sense that the earth is a limited geographical area, and unless space-flight becomes

available for a broad part of the population, there seems to be upper limits as to how

far each person might want to travel in a year. Some current impeders to passenger air

travel growth are congested airports and airspace. Also in the future some new

environmental policies might emerge, such as kerosene taxes or personal emission

quotas. And on the longer term a saturation in economic development could come to

reduce air travel growth.

This report looks into the possibilities for reducing the growth in air traffic, as well as the

possibilities for reducing the specific fuel consumption, to achieve an environmentally

sustainable development. For commercial civil air transport the main challenge seems

to lie in the strong growth rates currently envisioned by the aeronautical industry for the

next decades.



VI

The complexity of determinants of commercial civil air transport’s environmental impact

explains the difficulties of posing adequate proposals. No single measure, such as

imposing a kerosene tax, is likely to come even near to reducing the growth in the air

traffic volume as well as reducing the fuel intensity of the aircraft fleet, to levels that

would lead to a saturation of energy use and emissions. For example, some studies of

the likely impact of a kerosene tax suggest that a ten-times increase of the current fuel

price may be needed to stabilise the emissions of CO2 from commercial civil air

transport activities. Such a level of tax is unlikely to be implemented in the current

political context. Therefore, a multitude of measures in combination seems to be

needed to achieve long-term environmentally sustainable commercial civil air transport.

The current political negotiations in United Nations’ International Civil Aviation

Organisation (ICAO) on which measures to introduce indicate that the World’s nations

are not likely to agree upon such a package of measures, at least not in the

foreseeable future.

Like it is the case with most other types of (fossil) energy intensive activities the bulk of

air traffic is currently performed in and between industrialised countries. In an

environmentally sustainable World countries should aim at distributing resources

evenly between the World’s citizens. Therefore, on the longer term, there are

tremendous challenges to be overcome. Achieving environmentally sustainable

commercial civil air transport will first of all require that people living in currently

industrialised countries stop travelling ever more by air each year. As it is shown in this

report, the current level of passenger air travel per capita in Europe may be considered

within environmentally sustainable limits by the middle of this century provided that the

current average greenhouse gas intensity of air travel is halved by then. Conversely,

for example, an average American citizen today travels almost three times as much by

air as an average European, thereby already exceeding the sustainability target for the

World’s citizens on average by the middle of this century that is proposed in this report.

Most importantly therefore, the search for environmentally sustainable development in

commercial civil air transport activities does not seem to only include technical fixes but

will also acquire some sort of changes in lifestyle development in industrialised

countries. One suggestion that is considered in this report is that governments could

stop planning mainly to achieve economic growth and instead look for alternative ways

of achieving and measuring progress and welfare than by increasing the gross national
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product. Such a solution could include that people living in currently industrialised

countries choose to work less, reducing the economic growth and the growth in

personal income and thereby also reducing the growth in consumption patterns, but

leaving them more time available for family relations, leisure and other social activities.
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1

Introduction

A growing concern over emissions of greenhouse gases into the atmosphere has led

governments to sign agreements on future reduction schemes [UNFCCC 1997].

Currently, the emissions from international air traffic are not included in these

international commitments, but an increasing political focus on the sector internationally

suggests that they might be in the future. In this respect it becomes relevant to assess

the possible role of commercial civil air transport in a future greenhouse gas (GHG)

reduction scheme.

Commercial civil air transport is currently estimated to emit approximately 2% of the

CO2 emissions associated with combustion of fossil fuels or about 12% of the CO2

emissions from all transportation sources globally [IPCC 1999b]. Recently, a special

report on “Aviation and the Global Atmosphere”, requested from the Intergovernmental

Panel on Climate Change (IPCC) by the International Civil Aviation Organisation

(ICAO) and the Parties to the Montreal Protocol on Substances that Deplete the Ozone

Layer, concluded that aircraft engine emissions at high altitudes are considered to

change the atmospheric composition by altering the “concentration of atmospheric

greenhouse gases, including carbon dioxide (CO2), oxone (O3) and methane (CH4);

trigger formation of condensation trails (contrails); and may increase cirrus cloudiness

– all of which contribute to climate change” [IPCC 1999, p. 3]. According to the IPCC,

the current knowledge about commercial civil air transport’s overall contribution to

climate change suggests that the total positive radiative forcing (warming) effect might

be 2-4 times higher than that of CO2 emissions from aircraft alone [IPCC 1999, pp 3-

10]. If taking this into account, air transport may account for almost 30% of the GHG

contribution from all transportation sources in the OECD countries [Nielsen 2000].

However, this estimate is highly uncertain.

A number of studies have examined the likely future development in commercial civil

air transport, and all of these foresee that greenhouse gas emissions will most likely

grow in the next decades. Even though a relatively large technical and operational fuel-

efficiency potential is identified, as a result of developing more fuel-efficient aircraft and



2

optimising operational procedures, such measures are still expected to be outpaced by

further growth in air transport volume1. For example, the Intergovernmental Panel on

Climate Change (IPCC) describes several long-term scenarios for global air traffic

demand and associated fuel use and emissions until the middle of this century. These

scenarios consider different combinations of developments in the demand for

passenger air travel and airfreight and the specific fuel consumption and associated

emissions of NOx and water vapour. In the scenarios the demand for air traffic is

assumed to grow by between 360 percent and 2140 percent by 2050 as compared to

1990 leading to increases in fuel consumption of between 160 and 1600 percent and

increases in NOx emissions of between 160 and 810 percent. A central IPCC estimate

for the next fifteen years projects air traffic and fuel use to grow by 5 percent and 3

percent per year respectively [IPCC 1999, p. 5 and p. 329].

The future contribution to climate change of commercial civil air transport thus seems

certain to grow, but the magnitude is highly uncertain. The impact will depend on a

range of factors such as the development in passenger air travel and freight volumes,

the geographical distribution of emissions (altitude and latitude) and the development in

the specific emissions per passenger kilometre and per freight tonne kilometre2. The

development of each of these factors will again depend on a number of other factors

such as the general economic development, the development in personal income, price

developments3 and the international co-operation and regulatory framework4. It is the

aim of this project to identify possible future developments and to examine the

likeliness and preconditions for their implementation in individual, social, political and

technical contexts in a way to achieve a development in commercial civil air transport

which can fit into an environmentally sustainable energy future.

                                               
1 See for instance the following studies for a further description of these issues: [Greene 1990
and 1997] [Grieß and Simon 1990] [Barrett 1991 and 1994] [Balashov and Smith 1992] [Archer
1993] [Bleijenberg and Moor 1993] [ETSU 1994] [Vedantham and Oppenheimer 1994 and
1998] [Olivier 1995] [Baughcum et. al. 1996] [Dings et. al. 1997 and 2000b] [Gardner et. al.
1998] [Kalivoda and Kudrna 1998] [Allen 1999] and [IPCC 1999].
2 The specific emissions per passenger kilometre and freight tonne kilometre are dependent on
a lot of factors such as aircraft size, aircraft weight per passenger and freight capacity unit,
engine fuel-efficiency, airframe design, airframe aerodynamic performance, aircraft speed, load
factor, flight altitude, flight distance, air traffic management, type of fuel and so on.
3 Air travel costs, fuel costs and costs of other related products and services.
4 Stricter technical standards for the specific emissions from aircraft as well as market-based
instruments or voluntary agreements, for improving the environmental performance of the
aviation sector, seem likely to emerge in the future [CEC 1999a] [T&E/ICSA 2001].
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Chapter 1

Purpose, methodological concepts and contents

This chapter describes the background for this study, and explains in broad terms the

context in which the findings of the project can be of interest. Section 1.1 describes the

purpose and the related overall research questions. Section 1.2 explains the focus on

commercial civil air transport’s energy consumption for passenger travel and freight

transport. Section 1.3 points out some potential strategies for reducing commercial civil

air transport’s fuel consumption and greenhouse gas (GHG) emissions. Section 1.4

describes the overall methodology of the project. Section 1.5 explains the structure of

the report and summarises in brief the contents and conclusions of each of the

chapters.

1.1 The purpose of the study and the overall research questions

The overall purpose of this study is as follows:

The overall purpose of this study is to investigate the

potentials for reducing commercial civil air transport’s

fuel consumption and associated greenhouse gas (GHG)

emissions through future technical and lifestyle changes

and to investigate possible future development paths

which could be consistent with an environmentally

sustainable development of the whole energy and

transport system.
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The overall research questions that are discussed in the report are:

1. STATUS OF COMMERCIAL CIVIL AIR TRANSPORT AND ITS ENVIRONMEN-

TAL IMPACT

-How much energy is used for commercial civil air transport (passenger travel

and freight transport)?

-What are the energy intensities of different airlines and different aircraft models?

-What is the size and pattern of commercial civil air transport?

-What is the current knowledge on the contribution of commercial civil air

transport to global warming?

-What are the criteria for an environmentally sustainable development in

commercial civil air transport activities?

These questions are mainly discussed in Chapters 2, 3 and 5.

2. DRIVERS AND IMPEDERS OF PASSENGER AIR TRAVEL DEVELOPMENT

-What are the economic, physical, social and political determinants of passenger

air travel development?

-Which factors seem to drive and to impede passenger air travel?

-What are the main dynamics in building up commercial civil air transport’s socio-

technical system?

These questions are mainly discussed in Chapter 2.

3. TECHNICAL AND OPERATIONAL POTENTIALS FOR MITIGATING THE ENVI-

RONMENTAL IMPACT OF COMMERCIAL CIVIL AIR TRANSPORT

-How much less GHG intensive might future types of aircraft become?

-What are the potentials for better operational procedures such as higher load

factors, more direct flight routings, bigger aircraft and reduction of stacking

above airports due to congestion and delays?

These questions are mainly discussed in Chapter 3.

4. GOVERNMENT OPTIONS FOR LIMITING AIR TRAVEL DEMAND

-Which government measures could be used to limit the growth in the demand for

passenger air travel and airfreight?

-What could be the impact of such government measures?

-Which barriers and conflicting interests block the introduction of such measures?

These questions are mainly discussed in Chapters 2 and 4.
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1.2 Focus of the study

As can be seen from Figure 1.1, the main focus of this study is on commercial civil air

transport greenhouse gas (GHG) emissions (inner circle). This means that only the fuel

consumption of scheduled and non-scheduled airlines, for transporting passengers and

freight, is included in this study. The fuel consumed by military aircraft and general

aviation1 is not included as well as the fuel consumed in helicopters, spacecraft and

rockets. The study compares commercial civil air transport’s GHG emissions to those

of other types of transportation modes, as well as to the overall global GHG emissions

from combustion of fossil fuels. The main reason for choosing to look at air transport is

that the sector has generally been overlooked by most energy and environment

studies.

Figure 1.1: Study focuses on commercial civil air transport

                                               
1 General aviation refers to all civil aviation operations other than scheduled air services and
non-scheduled air transport operations performed by scheduled and charter airlines. Examples
of general aviation activities are instructional flying, business and pleasure flying and aerial
work.

Energy use for transport

Energy for
commercial civil

air transport

Total energy use

Energy for air
transport
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1.3 Possibilities to reduce emissions of GHGs from air transport

A reduction of the growth in commercial civil air transport could be part of a strategy for

reducing the global emissions of greenhouse gases in the future. Such a strategy

would benefit from people adapting their lifestyles towards fewer holiday and business

trips and towards travelling less by air, for example by choosing less remote

destinations as well as by choosing to travel in transportation modes that are less GHG

intensive than aircraft. Furthermore, the aerospace industry could produce aircraft that

are less GHG intensive and the airlines could optimise operational procedures and

scrap or re-engine their oldest and most fuel intensive aircraft. Figure 1.2 exemplifies

some main principles by which GHG emissions of civil air traffic can be reduced.

Figure 1.2: Examples of options for reducing GHG emissions from
commercial civil air transport

1. A reduction of the transport work or volume (revenue freight tonne kilometres

(RFTKs)2 and revenue passenger kilometres (RPKs)3) leads directly to less aircraft

                                               
2 A revenue freight tonne kilometre is a term describing when one tonne of revenue freight is
transported one kilometre.
3 A passenger kilometre is a term describing when a passenger is transported one kilometre.
The term “revenue passenger kilometres” refers to the distance travelled by revenue
passengers. For some airlines only passengers that have paid a certain percentage of the

6.
Fuel type

(substitution potential)

4.
Energy and GHG intensity per ASK or ATK (capacity unit)

(efficiency potential)

3.
Load factor

(optimisation potential)

1.
Transport work

(reduction potential)

2.
Transport mode

(substitution potential)

Reducing GHG
emissions from
commercial civil

air transport

5.
Operational procedures
(optimisation potential)
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movements (if the load factor is kept constant) and hence to reduced GHG

emission. Generally, the transport work is growing rapidly, and therefore a

reduction of the current growth rates seems to be essential [IPCC 1999] [T&E/ICSA

2001].

2. A shift to transport modes with lower GHG intensity than aircraft will reduce the

emissions per amount of transport work performed, and can reduce the overall

GHG emission (if the transport work and the load factors are kept constant). An

example is a switch of passengers or goods from aircraft to railway, the latter being

generally less GHG intensive than aircraft [Roos et. al. 1997] [IPCC 1996b and

1999].

3. Increasing the load factor (the passenger load factor and the freight load factor)

involves better use of the aircraft capacity. This will reduce the necessary vehicle

kilometres and hence the GHG emissions per unit of transport work performed

[Daggett et. al 1999]. For example, the average passenger load factor of the

World’s scheduled airlines has been improved from around 50 percent in the early

1970s to around 70 percent in the late 1990s [Mortimer 1994a and 1994b] [ICAO

1998a].

4. A reduction of the energy intensity per seat or freight capacity unit of aircraft directly

reduces the emissions of CO2 (if the transport work, the fuel type and the load

factor are kept constant). This involves the development of more fuel-efficient types

of aircraft. Examples are the development of more fuel-efficient engine types [IPCC

1999] [Birch 2000] or new fuselage shapes offering larger capacity per weight unit

or lower air resistance [Cranfield College of Aeronautics 2000a]. However, there is

a trade-off between aircraft engine fuel-efficiency improvements and emissions of

NOx that act as a greenhouse gas precursor when emitted at high altitudes [IPCC

1999]. A strategy to reduce the greenhouse gas intensity therefore has to take this

into account. Another possibility for reducing the greenhouse gas intensity of

aircraft may be to design aircraft for cruising at lower speeds and altitude [Barrett

1994] [Dings et. al. 2000b].

                                                                                                                                         
normal fare are counted as revenue passengers. Examples of non-revenue passengers are the
pilots and crew onboard as well as other passengers travelling for free.
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5. By improving the operational procedures the flow of air traffic can be optimised,

thereby reducing the GHG emissions for a given trip. One example is that stacking

and queuing in and above airports could be reduced leading the aircraft to consume

less fuel for take-off and landing [Lufthansa 1999]. Another example is that aircraft

could be allowed to fly more direct routings. Many routes are today longer than the

shortest great circle distances because of restrictions in the use of airspace and

regulations on how far away from airports twin-engine aircraft are allowed to

operate when passing over the great oceans [Air International 2000]. A third

example is that the choice of routings could be optimised as to avoid flying at

altitudes and latitudes where aircraft emissions are considered to contribute most to

global warming [Lee 2000].

6. Choosing a fuel with lower GHG emissions per available energy unit than the fossil

jet fuel that is currently being used can reduce the emissions per distance travelled.

An example could be a switch from fossil kerosene fuel to jet fuel produced from

Biomass or liquid hydrogen produced on the basis of renewable energy sources

[Brewer 1991] [Pohl 1995a]. However, there is uncertainty as to whether for

example hydrogen is a less GHG intensive fuel than fossil kerosene when

combusted at high altitude [Marquart et. al. 2001].

It should be noted that the theoretical options for reducing the emissions of greenhouse

gases from commercial civil air transport described in figure 1.2 are to a large extent

interdependent, and therefore not fully separable and addable, and furthermore to

some extent counteractive. The possible benefits and drawbacks are discussed

throughout the report. Most emphasis in this study has been directed towards studying

possibilities for reducing the transport volume growth and for reducing the specific fuel

consumption of aircraft. The other areas exemplified in Figure 1.2 are dealt with to a

lesser extent.

1.4 Overall methodology and contents

The overall purpose of assessing the potential for reducing GHG emissions from

commercial civil aircraft activities in the future is analysed by considering some social

drivers and impeders of commercial civil air transport activities as well as some

technical and operational possibilities to reduce the specific greenhouse gas emissions
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of those activities. The body of the report (Chapters 2-5) is divided up into four main

parts as illustrated in Figure 1.3:

Figure 1.3: Illustration of how the report is build up

The first part of the report (Chapter 2) analyses and describes some overall driving

forces for the growth in passenger air travel:

•  Immediate – or short term – driving forces generating the present air transport

trends

•  Societal background for the driving forces

•  Attitudes and other social driving forces

•  Options for changing trends in transport demand

The aim of this part of the project is to analyse and describe some overall economic,

physical, social, and political determinants of passenger air travel development. The

section focuses on the main drivers and impeders of growth. The purpose is to point

out some potential strategies for impeding growth in the future.

Pa rt 4
Pro po sal for  a  lon g - te rm  n orm a tive s cen a rio  fo r en v iro n m en ta l ly

su st ain ab le com m er cial c iv il  a ir tran sp or t  ac tiv it ies
(C h ap te r 5 )

Pa rt 3
Ass ess m en t of th e p ossib le fu tu re  e n viron m e n ta l

 im p act  o f a  jet  fu el tax
(C h ap te r 4 )

Pa rt 2
E n erg y an d  g r ee n ho u se ga s in te n sity  o f a ir trave l an d  fre ig h t

-  p res en t an d  fu tu re
(C h ap te r 3 )

Pa rt 1
D et erm in an ts of p asse n ge r  air  t ra vel g row t h

- d escr ip tion  of dr ivers a n d  im p ed ers
(C h ap te r 2 )
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Few studies in this area give comprehensive insights as to how commercial civil air

transport volume can be reduced in the future. Focus is most often dedicated to

assessing possible technical and operational fixes to mitigate the environmental

problems connected to the increasing demand for passenger air travel and airfreight.

Most studies project that air traffic and the associated energy use and emissions will

grow far into the future.

In most of these studies little attention is turned towards non-economic drivers for

technical, social and life-style changes, such as changing work structures, changing

family relations, changing age distribution in the population and changes in social

norms, ethics and values and religious beliefs. Social sciences may be able to

contribute with more comprehensive approaches to these non-economic drivers.

Especially, they may give useful information to the questions of; a) the preconditions

(technical, psychological and social) for the demand for air travel and airfreight, and

what might change that demand; and b) the preconditions (possibilities and constraints)

for technological change in the commercial civil air transport sector, and what might

change these preconditions. This project studies some of these issues.

One aim is to study the determinants of passenger air travel growth. There seems to be

a need for reducing growth, and this is especially true for the commercial civil air

transport sector that generally grows faster than most other types of energy services

[IPCC 1999]. Therefore, it has become increasingly important to draw on the social

sciences to better understand the social implications of energy consumption, that is the

social determinants of energy service growth [Christensen and Nørgaard 1976]

[Schipper 1991] [Shove et. al. 1998] [Kuehn 1999]. Inspired by Rip and Kemp [1998] a

main starting point for this description is to look into how commercial civil air transport’s

socio-technical system has been built up.

Passenger air travel cost reductions in combination with rising incomes are found to be

some of the main drivers for passenger air travel growth. Passenger air travel growth

also, however, relies on the building up of airport infrastructures and the development

of ever-more efficient types of aircraft. The aerospace industry is a highly prestigious

venture being supported by governments for achieving national prestige, military

sovereignty and economic growth and for maintaining work places throughout the
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commercial civil air transport industry. Economic growth is a main political goal

furthering income rise. Other aspects such as market liberalisation, economic subsidies

and airline marketing strategies further the reduction of airfares. Passenger air travel

has become imbedded in modern culture and is a major symbol of status. Migration,

population growth and globalisation of businesses, trade and social relations are also

strong drivers. Conversely, environmental policies as well as planning initiatives to stop

airport capacity expansions while improving rail capacity and the motor highway

system impede passenger air travel growth.

Chapter 2 also identifies some possible future policies for reducing greenhouse gas

emissions from commercial civil air transport and discusses barriers to their

implementation. Short-term policies may be aimed at introducing standards for the

maximum allowable amount of GHG emissions from aircraft considering all phases of

flight and at introducing voluntary agreements with the aerospace industry on the

average fuel-efficiency of new aircraft and at introducing agreements with airlines on

aircraft scrapping schemes. Environmental NGOs may gain most by trying to push for

environmental taxes and for stopping government subsidies for airports, airlines and

aircraft producers as well as airport expansions and night flights. On a wider

perspective alternative policies may aim at de-emphasising economic growth as a

major political goal in the high-income regions of the world. Instead, policies may focus

at introducing alternative ways of measuring progress and welfare than gross domestic

product. This may help people in defining new less materialistic ways of life, for

example by working and earning less while having more free time available for social

relations.

The second part of the project (Chapter 3) gives a quantitative description of the

historic and present energy intensity of commercial civil air transport. The main

purpose is to discuss and establish an overview of the energy intensity of passenger air

travel and airfreight for trips of different lengths and to put aircraft fuel use into

perspective by comparing to other uses. Chapter 3 analyses and illustrates the

parameters and their relationships listed below:

•  Types of aircraft in use

•  Vehicle energy intensities

•  Load factors
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•  Emissions

•  Environmental impact

This part of the project also describes some future technical and operational GHG

abatement options. The aim is to estimate to which extent “technical and operational

fixes” can contribute to reduce the specific greenhouse gas emissions from commercial

civil air transport in the future. The section considers the five parameters listed below:

•  Improved vehicle efficiency options

•  Load factor optimisation potential

•  Alternative transport mode options

•  Improved operational procedures

•  Alternative fuel options

The fuel intensity of passenger air travel and airfreight is found to vary significantly

between airlines, mainly due to use of different types of aircraft and differences in route

structures and passenger- and freight load factors. For example, some European

charter carriers are found to be significantly less fuel intensive than scheduled airlines

because they operate relatively new aircraft in high-density seat-configuration at

relatively high passenger load factors.

New aircraft consume much less fuel than older types, and are at level or even better

than the present stock of passenger cars when considering fuel use per passenger

kilometre. However, due to the relatively long distance each person can potentially

travel within a relatively short period of time, passenger air travel greenhouse gas

emissions can contribute considerably to the yearly per capita emissions.

The fuel intensity of passenger air travel and airfreight has been reduced throughout

the last decades but the yearly improvements are slowing down. Airline preference for

increasing speed over fuel efficiency may lead to reduce the fuel efficiency

improvement rate further in the future. On the longer-term commercial civil air transport

is heading for becoming a major source of greenhouse gases because passenger air

travel and airfreight grow stronger than most other energy services.
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The third part of the project (Chapter 4) assesses the possible future environmental

impact of a jet fuel tax.

Mainstream energy and environment studies tend to focus on the price of energy as

the main determinant for society’s willingness to reduce energy consumption, either by

investing in more energy efficient end-use technologies or by substituting energy

intensive activities by less energy intensive types. For example, by implementing a jet

fuel tax, airline demand for more fuel-efficient aircraft may increase, while consumer

preferences for other modes of consumption over passenger air travel and airfreight

may grow4. Therefore, a discussion of the possible environmental impact of increasing

jet fuel costs by introducing a fuel tax is given in Chapter 4.

Chapter 4 discusses the level of fuel tax that may be needed to achieve

environmentally sustainable commercial civil air transport activities. The main

conclusion of the chapter is that a rather high level of jet fuel tax may be needed if air

traffic volume and the specific fuel intensity of aircraft are to be reduced enough to

secure that global commercial civil air transport activities become environmentally

sustainable in the future. That is, a tax that roughly increases the current jet fuel price

by a factor of up to 10 may be needed to stabilise fuel consumption at the current level.

If such a relatively high tax level cannot be agreed upon politically some other

supplementary measures may be needed to reduce the environmental impact of

commercial civil air travel.

The fourth part of the project (Chapter 5) discusses some of the major challenges

facing the development of an environmentally sustainable energy system. The primary

aim is to discuss the possible future role of commercial civil air transport within such a

system and to propose a sustainability target for passenger air travel.

What is argued here is that mainstream studies tend to forecast the past into the future

assuming that general mechanisms and structures will remain more or less unchanged.

Such a methodology seems to be most comprehensive for forecasting developments in

the near future. However, energy planning involves long-term planning, because

                                               
4 See for instance the following studies of the likely future impact of a jet fuel tax: [Barrett 1996]
[OECD 1997] [Resource Analysis 1998] [Bleijenberg and Wit 1998] [NSN 2000] [Wickrama
2001].
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infrastructures as well as some energy consuming technologies, such as houses and

aircraft, have relatively long lifetimes and production cycles. For example, the phase of

developing and testing new aircraft and engine designs may take decades, and the

production phase of a single aircraft type may well last for several decades.

Furthermore, aircraft may be in airline operation for more than forty years. The time

perspective in aircraft production and usage cycles is therefore relatively long.

Therefore, other instruments than forecasting may be more appropriate within long-

term energy and environmental planning for the commercial civil air transport sector.

“Backcasting” is a methodology proposed in other energy [Robinson 1982a, 1982b and

1990] [Dreborg 1996] and transport future studies [Steen et. al 1997] that can be used

when constructing normative scenarios for our energy system to be used in

discussions on how to shape our future. The aim of using a “backcasting” methodology

in this report is to construct a “desirable” picture of a future sustainable energy and

transport system. The idea of “backcasting” is that the use of a long time horizon

makes it possible to include major adjustments of present society. In a longer time

horizon existing vehicles and infrastructures will be replaced and present power

structures and lifestyles may be outdated. The “backcasting” approach allows the

planner to suggest new types of environmentally and human desirable societies with

consistent patterns of new norms, habits, life-styles, consumption levels, power

structures, infrastructures, vehicle fleets, energy systems, etc. The concrete aim of

creating scenarios in this study is to suggest new types of transport structures with

environmental impact reduced to a level fulfilling future goals for reduction of GHG’s.
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Chapter 2

Determinants of passenger air travel growth1

For environmental reasons it may be necessary to reduce the growth in passenger air

travel in the future. This chapter aims at giving an overview of some main determinants

of passenger2 air travel growth focusing on drivers and impeders. The intention is to

summon some economic, physical; social and political determinants, and thereby to

describe the background for the growth in the demand for passenger air travel in

broader terms than what is often the case. The purpose of this description is to point

out some potential strategies for impeding growth in the future.

2.1 Introduction – growth in civil air transport

Passenger air travel, measured in revenue passenger kilometres3 (RPKs), has grown

continuously from year to year since 1960 except for one year, namely 1991, see

Figure 2.1. In 1991, the war in the Persian Gulf pressed up the oil price4 leading to a

general downturn in the economy and to some extent scared travellers from flying

through fears of hijackings [Heppenheimer 1995] [Dings et. al. 2000b and 2000c]. From

                                               
1 Note that this chapter has also been published in a shorter version in the Journal “World
Transport Policy and Practice”, Issue 2, 2001 [Nielsen 2001].
2 It should be noted that, on a global scale, around one third of the revenue weight carried by
commercial civil aircraft can be attributed to freight transport whereas two thirds can be
attributed to passenger transport, see Figure 2.12 or Appendix D for a further description of the
distribution between passenger air travel and airfreight. Airfreight is growing faster than
passenger air travel. Airfreight is closely connected with passenger services because
passenger aircraft carry belly-hold freight. This chapter mainly focuses on describing
determinants of passenger air travel. Further studies into the drivers for growth in airfreight have
been excluded in this project due to time constraints.
3 A revenue passenger kilometre is a measure for the amount of passenger air travel that is
calculated by multiplying the number of revenue passengers (passengers that pay at least a
certain percentage of the normal fare) to the distance flown in kilometres.
4 For a description of the fluctuations in the jet fuel price over the last 30 years see Section 4.3
in Chapter 4.



16

1960 to 1998 the number of RPKs increased more than 20-fold from around 131

billions to around 2888 billions, corresponding around 44 RPKs per capita globally in

1960 and almost 500 RPKs per capita in 1998.

Figure 2.1: Passenger kilometres generated by the World’s
commercial airlines
Actual data 1960 – 1998 and Airbus’ 1999 industry forecast to 2020 (5%
yearly growth rate). Sources: RPKs are from [Boeing 1980] and [IATA 1994
and 1999], industry forecast is from [Airbus 1999 and 2000b].

The yearly growth rate in global passenger air travel has fallen since the early days of

commercial civil air transport, but passenger air travel is still envisioned by the

aeronautical industry to continue growing at around 5 percent per year in the next

decades [Airbus 1999 and 2000a]. In some markets growth seems to be levelling off

somewhat suggesting that these markets might be on their way towards maturity after

decades of strong growth. The best example of this is the United States, where the

average yearly growth in revenue passenger kilometres in the 1990s was around 3,5

percent. This is quite low compared to average yearly growth rates of around 22,2

percent in the 1960s and around 7,2 percent in the 1970s and around 5,5 percent in

the 1980s. As can be seen from Figure 2.2 the growth rate in airfreight, measured in

revenue freight tonne kilometres5 (RFTKs) is higher than the growth rate in passenger

air travel, and this resembles the general trend on a global scale [Boeing 2000c and

                                               
5 Revenue freight tonne kilometres is a measure for the amount of freight transported by air that
is calculated by multiplying the number of revenue freight tonnes transported to the distance
flown in kilometres.
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2000d]. In the 1990s passenger transport (RPKs) and airfreight (RFTKs) performed by

scheduled airlines situated in North America grew by around 42 percent and 83 percent

respectively [Air Transport Association 2000d]. It should be mentioned here that North

America is the largest single market for passenger air travel today, representing some

39 percent of the worlds RPKs in 1996, see Figures 2.12 and 5.9 and Appendix D.

Figure 2.2: Yearly growth in available seat kilometres (ASK), revenue
passenger kilometres (RPK) and revenue freight tonne kilometres (RFTK)
for scheduled American air carriers 1930-1999
Sources: [Air Transport Association 2000c and 2000d].

In the next decades, the fuel consumption related to commercial civil air transport is

expected by the Intergovernmental Panel on Climate Change (IPCC) to grow by

around 3 percent per year (see the Introduction for a further explanation of this issue) if

the aeronautical industry’s traffic forecast materialises (see the forecast in Figure 2.1)

[IPCC 1999]. For environmental reasons, it therefore seems necessary to discuss the

possibilities for reducing passenger air travel growth in the future. In this context, it

becomes relevant to investigate the forces promoting and sustaining passenger air

travel, as well as the impeding factors.

2.2 On lifestyles and social practices

Many countries throughout the world has set up schemes for reducing GHG emissions

to reduce the risk of global warming due to the so-called “greenhouse effect”. The main

challenge for reducing GHG emissions seems to be that energy service levels grow

faster than the technical reductions of the specific GHG emissions per unit of energy
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service rendered. Life-style research has therefore in recent years become more widely

used within energy studies because it is generally acknowledged that the current level

of growth in energy services is environmentally unsustainable and that technical fixes

will not be sufficient to match growth. There seems to be a need for reducing growth in

energy services, and this is especially true for transportation that generally grows faster

than most other types of energy services [IPCC 1996b]. Therefore, it has become

increasingly important to draw on social sciences to better understand social

implications of energy consumption, that is the social determinants of energy service

growth [Stern 1986] [Schipper 1991] [Shove et. al. 1998] [Kuehn 1999].

Mainstream energy and environment studies focus much on the price of energy as

main determinant for society’s willingness to reduce energy consumption, either by

investing in more energy efficient end-use technologies or by substituting energy

intensive activities by less energy intensive types. For example, by implementing a jet

fuel tax, airline demand for more efficient aircraft may increase, while consumer

preferences for other (perhaps more environmentally benign) modes of consumption

over air travel and freight may grow6.

Such mainstream studies are criticised by some social researchers who, often

grounded in social-psychological and sociological theories about human behaviour and

social systems, find that mainstream energy studies tend to separate the social from

the technical while often focussing on individual, technical and economical aspects

instead of social or cultural aspects of energy consumption [Shove et. al. 1998, pp.

300-301] [Kuehn 1999]. Some of the critics suggest that seeing people as mere

automata responding to pushes and pulls initiated by government, such as energy

taxes and information about alternatives, is not always relevant, because people do not

necessarily act according to cost-benefit projections or informative campaigns [Shove

et. al. 1998, p. 300]. Rather, social context, that is social norms and cultural practices,

has been found to also play a predominant role in the way people consume energy

[Læssøe 2000] [Wilhite 2000].

                                               
6 A review of such mainstream studies of the possible impact of a jet fuel tax is given in Chapter
4 [Barrett 1996] [OECD 1997] [NEI 1997] [CAEP 1997] [Brockhagen and Lienemeyer 1999]
[Resource Analysis 1998] [Bleijenberg et. al. 1998] [NSN 2000] [Wickrama 2001] [Olsthoorn
2001].
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First of all, some energy analysts study differences in social practices connected to

energy use in different countries and regions of the world. For example, a study

compares Norwegian and Japanese household energy consumption, showing that

Norwegians connect the use of energy intensive heating and lighting closely to creating

“cozyness” while in Japan especially energy intensive bathing routines are socially

significant [Wilhite et. al. 1996]. Another study compares determinants of automobile

use in OECD countries, showing socially significant differences. For example,

Americans tend to drive longer yearly distances and use larger cars than European and

Japanese citizens on average [Schipper 1995a]. These differences can in part be

explained by the low level of taxes on vehicles and fuels in the United States as

compared to many European countries, and also relate to differences in urban

planning, United States having much more urban sprawl and less public transport

options [Schipper 1995b] [Newman and Kenworthy 1991]. However, much of the

difference also relates to differences in the meaning of personal mobility, automobility

being a socially significant aspect of American culture [Sachs 1992]. Some studies also

emphasise that the car in itself can be seen as an artefact that has contributed to

shape city planning, culture and the way we live [CEC 1993] [Tengström 1992, 1995a

and 1995b] [Sørensen 1993a and 1993b].

Secondly, some studies focus on differences in energy consumption between

individuals or groups of people within countries, also showing that other factors than

technology and economy are important in the way we consume energy [Jensen 1997]

[Kuehn 1999] [Carlsson-Kanyama and Linden 1999] [Hallin 1992]. Some of these

studies tend to focus on differences between socio-economic groups, showing general

differences connected to income, age, gender etc. For example, in Sweden, older

generations generally travel less per capita than younger generations, leading

researchers to suggest that these younger generations have been born into a

“travelling culture” and may continue being on the move also when they get older. If

this theory holds true it will lead to higher travel patterns in the future than what is seen

today [Carlsson-Kanyama and Linden 1999] [Linden and Carlsson-Kanyama 1998].

Other studies tend to focus more on individual lifestyles or life-style groups, which are

not necessarily tied to more traditional socio-economic characteristics. Rather, these

studies focus on how individual wants, needs and desires are shaping energy

consumption, explaining how individuals seek to fulfil their basic needs while

positioning themselves in their social surroundings [Jensen 1997] [Kuehn 1999]
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[Douglas et. al. 1998]. Such studies, focusing on individual lifestyles, can oftentimes

point out the lifestyles that are less greenhouse gas intensive than the “average”

lifestyle, and thereby be used for proposing alternatives to lifestyles that are relatively

greenhouse gas intensive. However, these studies also often give insights into the

difficulties facing planners wanting to persuade people to change their habits, because

people’s ways of life are often “tied up” by their socio-technical surroundings.

Furthermore, as technologies spread, large-scale socio-technical systems are built up

around them, leading to promote the use of such technologies further. One example is

the building up of large transport infrastructures contributing to “gridlock” society into

sustaining and furthering flows of traffic. The passenger car made possible urban

sprawl while the emergence of airport capacity and jet powered aircraft made air travel

available and affordable to the broad public. The building up of infrastructures and

vehicle production industries contribute to shape society and creates “mobile cultures”

[Sørensen 1993a and 1993b] [Urry 1999] and facilitates and furthers globalisation of

the market and the social sphere [Tengström 1995a] [Sachs et. al 1998] [Sachs 2000].

Such developments are to a large extent chosen by governments and the general

public, that is technologies do not spread autonomously, but are shaped by and

constantly shaping the social structure [CEC 1993] [Rip and Kemp 1998] [Bijker et. al.

1987].

Some studies also emphasise that the passenger car is a good example of how

technological development can be “locked in”. For example, the image of what types of

performances a car should offer and what it should look like maintains car producers in

designing steel based cars powered by internal combustion engines using primarily

gasoline and diesel [Hård 1992] [Hård and Knie 1993] [Hård and Jamison 1997] [Elzen

et. al. 1993]. The social meaning of automobility is a barrier to development of less

GHG intensive alternative cars such as ultra-lightweight compact cars, as have for

example been envisaged by Lovins et. al. [1993 and 1995], based on carbon fibres and

fuel-cell or diesel hybrid-electrical drive systems and alternative fuels. Energy efficient

technologies are not always considered socially or economically attractive [Schot and

Elzen 1994]. A similar example from the commercial civil air transport industry is

propfan engines for aircraft propulsion that have never reached the market and the

preference for jet powered aircraft because they offer higher speed than propeller
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aircraft7 [DOT 1998] [IPCC 1999] [Dings et. al. 2000b]. That is, to some extent, lifestyle

choices hinder the development of more environmentally benign technologies.

By often overlooking social factors energy studies often tend to oversimplify the

determinants of energy consumption into merely a question of energy prices and

technological possibilities. The element of public choice for shaping policies, social

structures and social norms is thereby often not seriously considered.

Likewise, mainstream studies describing possibilities for reducing the GHG emissions

from commercial civil air transport often tend to focus on technical possibilities to

reduce the specific energy requirements and emissions per passenger kilometre. That

is, studies tend to focus mainly on increasing the “eco-efficiency” by developing more

fuel-efficient aircraft [Greene 1997] [Dings et. al. 1997 and 2000b] [IPCC 1999] or by

using less GHG intensive fuels than current fossil jet fuel [Pohl 1995a and 1995b] [Pohl

and Malychev 1997]. Such studies indicate that the technical GHG emission reduction

potentials are relatively large, but are anyway likely to be eaten up by the forecasted

growth in air travel. A study also looking into the possibility of reducing air travel – or at

least curbing growth – therefore seems relevant. Therefore, this chapter deals with the

question of what determines air travel growth, as to be able to point to a broader range

of solutions for what may contribute to reduce aviation greenhouse gas emission

growth than what is done in mainstream studies.

The enormous growth in global air travel over the recent decades is an expression of a

significant change in lifestyles in the Western part of the world, and it also illustrates a

large difference between the lifestyles in the Western world and the rest of the world. In

a number of recent studies of the connection between life-style and transport different

aspects and conceptualisations are presented and discussed [Carlsson-Kanyama and

Linden 1999] [Christiansen 1998] [Læssøe 1998] [Urry 1999] [Jensen 1997] [Schipper

1995a and 1995b]. And, indeed, there are different definitions of the term “lifestyle”, but

the importance of these differences should not be overrated, since it is to a large extent

a linguistic question. Rather, the main difference between the studies seems to be their

different choices of focus, as will be explained in the following.

                                               
7 See sections 3.10.2 and 3.10.4 in Chapter 3 for a further discussion of the speed issue.
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The diagram in Figure 2.3 is meant to give an aggregated overview of the relations

around lifestyles in a system approach [Christensen and Nørgaard 1976]. In this simple

model, the lifestyle is defined as people’s set of practices or behaviour as they are

manifested in physical, measurable actions. As indicated, the lifestyle is determined by

people’s individual attitudes, which again depend on their needs and values, but the

lifestyle is constrained and driven also by the social structures and the physical

environment. This definition of lifestyle implies that a certain pattern of behaviour, for

instance in air travel, is an expression of a certain lifestyle, no matter whether this

behaviour is shaped by people’s attitudes or by the outer options or constraints. In

other words, if someone only travels little by air, this behaviour illustrates the person’s

lifestyle no matter whether it is due to a low interest in flying (attitude) or it is caused by

a low income or a lack of air travel facilities (social structure).

The model in Figure 2.3 illustrates the dynamic development in lifestyle as part of a

large system, which includes feed backs, delays, etc. This demonstrates for instance

that a lifestyle of today is both shaped by the values of the past, as well as it shapes

the future values through the socialisation, artifacts, etc. The model can help to clarify

some of the various perceptions or definitions of the concept lifestyle. Læssøe [2000]

discusses this and distinguish between the view of two groups of researchers, namely

social researchers and environmental/energy researchers.

Social researchers are usually focussing on the links to the left of lifestyle in Figure 2.3,

that is the values, attitudes and other individual human background factors, and how

they affect the way people behave. They would usually define lifestyle as an integration

of the behavioural patterns and the human causes of the behaviour.

Energy planning researchers tend to focus on the impact people’s lifestyles have on

the environment and the social structure, that is the factors to the right of lifestyle in

Figure 2.3. This development in using the lifestyle concept in energy analysis seems to

originate in the recognition that energy demand is determined not only by technology,

but also by people’s behavioural pattern, termed lifestyles. This interpretation of the

term lifestyle has been used by various energy analysts [Schipper 1989, 1991 and

1995b]. Not much investigation has been conducted, however, of the individual human

factors, which actually gear people to the behaviour, and what could change it to

achieve energy savings.
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Figure 2.3: Influence diagram for lifestyle changes
Based on [Christensen and Nørgaard 1976, p. 413].

A more sociological approach by Spaargaren [1997] is illustrated by a diagram in

Figure 2.4, modified to the present study of air travel. Spaargaren’s model does fit into

the overall pattern of the model in Figure 2.3, only with a slightly different use of the

term lifestyle, which he interprets as integrated with people’s personal attitudes, etc.

What Spaargaren terms social practices is very much the same as what is called

lifestyle in Figure 2.3, and like there it is determined by the individual’s personal drive

as well as by the physical environment and social structure.
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PRIMARY
SOCIALISATION

SOCIAL
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ENVIRONMENTBASIC NEEDS
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Figure 2.4: Connections between lifestyles, social practices
and collective socio-material systems.
Source: This figure is inspired by a similar model developed by
[Spaargaren 1997, p. 144] describing connections between human
action, social practices and collective socio-material systems within the
domestic mode of consumption.

In the present report on air travel, the lifestyle aspects is defined more or less as the

energy planners would normally do, namely as people’s air travel pattern. In this

context however, inspired by the works of the American and Danish physicists Lee

Schipper and Jørgen Nørgaard, life-style is defined as the ”activity pattern” of

individuals in society [Schipper 1989, 1991 and 1995b] or behaviour pattern

[Christensen and Nørgaard 1976]. The issue here is to quantify relations between

activities and energy. But in order to avoid misunderstanding as to the meaning of the

term “lifestyle” it has hardly been used in this report.

The models illustrated in Figures 2.3 and 2.4 are very broad, and can be adapted to

most types of (energy) consumption. However, each mode of energy consumption may

have very different characteristics connected to it, that is different perceptions and rules

are connected to each type of activity, and these change in both time and space.

Furthermore, one can choose to focus on various aspects of lifestyle developments.

This Chapter sets out to identify some main determinants shaping global air travel
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growth, as illustrated in Figure 2.5, some of the aspects being inspired by the studies

mentioned in this Section.

2.3 Determinants of passenger air travel growth

Inspired by Michaelis [2000] the explanations sought of life-style development aim at

describing technical, economical, political and social determinants of air travel in a

broad model (see Figure 2.5). According to Michaelis drivers of consumption patterns

can generally be seen to originate from economic and institutional development,

technological change, and cultural shifts; as well as changes in demography and social

structures and norms; and changes in individual needs, habits and motivations and

religious beliefs etc. But only some of these issues are dealt with in this report. Inspired

by Læssøe [1999 and 2000] the study focuses both on drivers and impeders because

the identification of these makes it possible to point out potential strategies for

impeding the current drivers as well as for strengthening impeders. Inspired by Doganis

[1985], Hanlon [1996] and O’Connor [1995] the empirical examples of the current

drivers and impeders primarily focus on economical aspects. Also inspired by

[Heppenheimer 1995], Grübler [1998] and Rip and Kemp [1998] a main starting point is

to look into how aviation’s socio-technical system has been built up. Some social and

cultural aspects of passenger air travel growth are also mentioned but because

relatively few studies have been conducted in these areas the empirical examples

mentioned in the following Sections are relatively scarce.

Some important economic, physical, social and political determinants of passenger air

travel growth are illustrated in the diagram in Figure 2.5. The circle in Figure 2.5

illustrates the size of passenger air travel demand. The arrows pointing out from the

circle represents elements that currently seems to drive passenger air travel growth,

while the arrows pointing towards the circle centre are meant to represent current and

potential impeders. Note that many of the current drivers could become impeders in the

future, i.e. the current drivers are not necessarily per se going to continue increasing

the demand for air travel in the future. One example is that one of the main current

aims in the development of new aircraft technologies is to reduce the direct operating

costs and increasing capacity, range and speed. However, it is possible that in the

future the aircraft producers may for example introduce new types of GHG intensive

supersonic passenger aircraft with focus on increasing the speed substantially. Another

possibility is the introduction of radically improved and more environmentally benign
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lower-speed subsonic aircraft that may for example feature blended wing body (BWB)

fuselage shapes and the use of propfan engines (see Chapter 4 for a further discussion

of these issues). Although these two typologies are radically different in their nature

both concepts may feature higher direct operating costs over comparable next-

generation conventional subsonic aircraft. The high-speed models may be more

expensive to develop [Heppenheimer 1995] and will be more fuel intensive [IPCC

1999] while the low speed models might reduce the overall productivity due to the

lower speed [Dings et. al. 2000b].

Figure 2.5: Determinants of passenger air travel growth

Some air travel is related specifically to leisure, to shopping, to visiting friends or to

business activities, but much relate to several or all categories. People are driven

towards travelling by personal desires to explore new territory and cultures and the

wish to create new professional and social relations. A precondition for passenger air

travel, however, is the availability of aircraft and airports and of the socio-technical

system surrounding and governing these. Passenger air travel growth is furthered by

constantly enlarging the physical capacity of commercial civil air transport’s socio-
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technical system and improving it’s productivity while cutting real costs. Improved

airline productivity brings reduced real airfares, and increasing income allows a higher

number of people to fly. Economic growth in general as well as globalisation of

economies, companies, markets, political systems and personal relations leads to the

drive for travelling more often and over longer distances. Increasing migration,

marriages across national borders and population growth are further aspects. Some of

these drivers are described further throughout Section 2.4.

People are basically restricted from air travel by financial and time constraints as well

as technology and geography. Financial constraints are mainly connected to airfares

and personal incomes. Technology is an important constraint in the sense that aircraft

speed, range and capacity limit the distance people are able to fly within the time

available. Geographical characteristics also play an important part in the sense that the

earth is a limited geographical area, and unless space-flight becomes available for a

broad part of the population, there seems to be upper limits as to how far each person

might want to travel in a year. Current impeders to passenger air travel growth are

congested airports and airspace. In the future new environmental policies might

emerge, and on the longer term a reduction or a saturation of world economic- and

population growth could reduce air travel growth. These impeders are described further

throughout Section 2.5.

2.4 Drivers of passenger air travel growth

First, we describe some of the drivers of passenger air travel growth that are illustrated

by Figure 2.5 in the previous section. Thereafter, the impeders are described in Section

2.5.

2.4.1 Building up commercial civil air transport’s “socio-technical system”

Global passenger air travel growth is accompanied and supported by the rise of a large

“socio-technical system” surrounding commercial civil air transport, made up of

aluminium, steel, plastic and fossil fuel (aircraft and jet fuel), concrete (roads, airports

and runways), telephones, computers and satellites (for navigation, control,

administration and ticket sales), law (traffic rules), and culture (the value and meaning

of personal mobility). A “seamless web” combining very different elements (artefacts,
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aircraft producers and suppliers, airlines, airports, travel agents, regulations, politicians,

users, etc.) is build up8.

Consumers have become accustomed to travel over ever-longer distances at ever-

increasing speed and at lower costs. Commercial civil air transport contributes directly

as well as indirectly to a relatively large share of global and local economies. Aircraft

and airport production, maintenance and operation as well as travel agents, suppliers

etc, comprise large amounts of work places, not to mention the importance of tourism

to local economies and the importance of business travel for global business. Each part

of the “seamless web” contributes to the shaping of commercial civil air transport’s

“socio-technical system”.

Thereby users, the aeronautical industry, politicians, environmental non-governmental

organisations (NGO’s) and other actors connected in some way or another to the

commercial civil air transport system contribute to promote, sustain and impede the rise

of passenger air travel and the “socio-technical system”. See Figure 2.6 for an

illustration of commercial civil air transport’s socio-technical system.

The building up of commercial civil air transport’s socio-technical system is to a large

extent supported by economic subsidies from governments seeing aerospace

industries, airlines and airports as job-creation programmes9 [Heppenheimer 1995]

[FoE 1998 and 1999].

                                               
8 For a description of technological change and the building up of “Socio-technical systems” and
“Seamless webs” see for instance [Rip and Kemp 1998], [CEC 1993] and [Bijker et. al. 1987].
9 A very recent example is the British government’s decision to back Airbus’ plans to develop a
new large-capacity aircraft, the A380, by offering cheap repayable loans for airframe and engine
launch investments. One of the main arguments for backing the A380 project is the generation
of an estimated 22000 jobs in the UK alone, 2000 at British Aerospace’s (BAE’s) factories and
some 20000 jobs among the engineering firm’s suppliers and subcontractors [The Times
2000a]. Airbus claims that the A380 will sustain some 145000 jobs in Europe [Aviation Week
and Space Technology 2001c].
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Figure 2.6: Commercial civil air transport’s socio-technical system
The theoretical background for making this Figure is inspired by [Rip and Kemp 1998],
[CEC 1993] and [Bijker et. al. 1987] and their ideas of how to describe “socio-technical
systems” and “seamless webs” as important aspects of technological and social
developments.

2.4.2 Technological change

Passenger air travel growth is furthered by constantly enlarging the physical capacity of

the aircraft fleet while improving its productivity and cutting the real costs of air travel.

By far the most important aspect in the historic improvement of airline productivity and

the subsequent reduction in airline costs and fares is technological change [Doganis

1985]. Since the invention of powered flight aeronautical engineering has brought ever-

improved aircraft offering higher productivity, that is higher payload, higher passenger

capacity, greater range and higher speed, at ever lower operating costs per seat and

freight capacity unit10  [Heppenheimer 1995] [Jackson 1998] [Donald 1999].

As exemplified by Figure 2.7, the passenger productivity of large subsonic civil

passenger aircraft, measured as the number of seats within an aircraft multiplied by the

                                               
10 Appendix H describes some historical developments in aircraft performance.
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average speed of that aircraft, has been increased substantially. In the early days of

commercial civil air transport the aircraft in use were using piston engines and

propellers. The piston engine was taken over by fuel-efficient gas turbine powered

turboprops in the early 1950s. The turboprop engine is still widely used for smaller

short-haul and medium-haul aircraft because of its superior fuel-efficiency over jet

engines. By the end of the 1950s11 the turboprops were supplemented by turbojets, the

latter evolving into low-bypass-ratio turbofans and later into high-bypass-ratio turbofans

that are used by most large aircraft types today. The jump from piston engines to

turboprops allowed for more fuel-efficient operation, whereas the introduction of jet

engines allowed for a radical increase in speed over earlier models. The emergence of

turbofan engines, featuring radically higher thrust ratios, also allowed for the

construction of aircraft of ever increasing sizes [Heppenheimer 1995].

By the end of the 1960s the American aircraft producer Boeing introduced the wide-

body B747-100 jumbo. The derivative B747-400 version introduced in 1989 still

remains the largest model in use for civil passenger transport [Jackson 1998] [Donald

1999]. The emergence of the B747 and other high-capacity wide-body jets introduced

by Douglas Aircraft Company (DC-10), Lockheed (L-1011) and Airbus (A-300) in the

early 1970s brought the basis for growth in cheap passenger air travel over longer

distances [Doganis 1985, p. 11-14] [Heppenheimer 1995]. Since the introduction of

these subsonic wide-body jets the aircraft producers have concentrated their efforts on

developing “families” of aircraft featuring a number of models of different sizes, each

fitting into a special segment of the market

Future generations of very large capacity subsonic jets promise to increase the

productivity further while also cutting the direct operating costs marginally [McMasters

and Kroo 1998] [Cranfield College of Aeronautics 2000a]. For example, the next-

generation A380-100 full double-deck jumbo-jet from Airbus will feature 555 seats in

three-class seat-configuration and more than 800 seats in all-economy class seat-

configuration and the following stretched A380-200 is envisaged to accommodate up to

1000 seats, see Picture A in Figure 2.8 [Airbus 2000a and Airbus 2001a]. For

                                               
11 It should be noted that the de Havilland Comet, which was introduced already in 1952, was
the first civil aircraft to be powered by turbojets. However, the aircraft was removed from the
market due to problems with fatigue. Therefore, the use of turbojets really took off by the end of
the 1950s when Boeing introduced the B707 and Douglas introduced the DC-8.
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comparison, the B747-400 accommodates around 580 seats in all-economy class seat-

configuration normally and below 400 seats in three-class version [Jackson 1998]. The

passenger productivity of the A380-100 is shown in the right part of Figure 2.7, together

with a more futuristic advanced design flying wing BWB (Blended Wing Body) aircraft

that is currently being studied by the aeronautical industry, see Picture B in Figure 2.8

[Cranfield College of Aeronautics 2000a]. The A380-100 will commence airline

operation in 2006 whereas flying wings are still only on the drawing board.

Figure 2.7: Passenger productivity of selected long-range aircraft
introduced from the 1920s and onwards
Note that the passenger productivity, measured as available seat kilometres
(ASK) per hour, is calculated by multiplying aircraft cruising speed to the seating
capacity. Examples here are for selected aircraft, primarily maximum (all-economy
class) seat-configuration models. Derivatives of the same aircraft type will typically
show lower passenger productivity in for example three-class seat-configuration.
The figure does not take the freight capacity into account. But in maximum seat
configuration the freight capacity would most often be relatively low.
Sources: Data for seat capacity and average speed are from [Doganis 1985],
[Jackson 1998] and [Donald 1999].

In the late 1960s the Anglo-French supersonic Concorde took first flight and remains

the only supersonic aircraft in use for civil air transport. When introduced, the Concorde

was faced by concerns over sonic boom noise and high-altitude emissions that

contribute to deplete the stratospheric ozone layer. Furthermore, the Concorde became

an economic failure because of the aircraft’s relatively high development costs,

combined with its relatively low passenger capacity and its excessively high fuel

consumption as compared to the relatively fuel-efficient wide-body jets that emerged in
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the early 1970s. The oil price rise following the 1973 oil crisis left the Concorde

economically unattractive to airlines. Eventually, only 14 Concorde aircraft came into

airline operation and were virtually given away for free to Air France and British

Airways [Owen 1997]. Thereby, the Concorde that was financed by British and French

tax payers, even though remaining an engineering triumph and a symbol of national

pride, became one of the biggest economic failures of commercial civil air transport

[Owen 1997] [Heppenheimer 1995]. Therefore, since the late 1960s the quest for

achieving higher speed12 has been stalled. However, through the last decades there

have been ongoing design studies both in Europe, the United States and Japan, for a

future generation of supersonic aircraft for passenger transport, see Picture G in Figure

2.8 for an illustration of such a design study from Airbus.

                                               
12 All current civil subsonic aircraft cruise at below around 910 km/h being the maximum cruising
speed of the B747 at 30.000 feet altitude [Donald 1999].
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Figure 2.8: Design concepts for future passenger aircraft.
A) A380 next-generation very large sub-sonic airliner from Airbus to be delivered to a
number of airlines from 2006. The A380-100 accommodates 555 seats in three-class
version and up to 850 seats in all-economy version. Later to be followed up by the
stretched A380-200 featuring 656 seats in three-class configuration and up to 1000
seats in all-economy configuration. Picture source: [http://www.airbus.com] B) Airbus
futuristic design illustrating a Blended-Wing-Body (BWB) subsonic flying-wing airliner
[Flug Revue 2001].  Picture source: [http://www.flug-revue.rotor.com/]. C) Design study
for a medium-sized airliner fuelled by liquid hydrogen stored in tanks inside the upper
part of the fuselage. Picture source: [Pohl 1995] D) Proposed subsonic delta wing sonic
cruiser from Boeing being able to cruise at speeds very close to the speed of sound.
May be launched within a few years and could be flying by 2006 or shortly thereafter.
Picture source: [http://www.boeing.com]. E) Antonov AN-70 prototype military aircraft
powered by counter-rotating propfan engines. Picture source: [http://www.russian.ee].
F) Prototype counter-rotating UDF engine presented by General Electric in the 1980s.
G) Design study for a next-generation supersonic passenger airliner from Airbus [Flug
Revue 2001]. Picture source: [http://www.flug-revue.rotor.com/].
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2.4.3 Competition among nations

Aircraft production is a highly prestigious venture, and nations compete to produce the

most efficient types and to gain market dominance [Lynn 1995] [McGuire 1997]. Some

famous historical examples are the competition between British and American

companies to introduce the first jet powered civil aircraft in the 1950s [Heppenheimer

1995] and the American, European and Russian competition to produce the first civil

aircraft cruising at supersonic speed. Today, similar types of competition exists

between nations aiming at developing the most efficient subsonic civil aircraft in all the

size segments ranging from relatively small regional turboprops and jets to wide-body

jumbo jets.

Currently, the production of large civil subsonic aircraft is divided between the

American and European aircraft producers Boeing and Airbus13 that compete to each

produce a family of aircraft of different sizes ranging from around 100 to above 400

seats14. In the market for regional jets and turboprops there are a range of producers

each offering families of aircraft of different sizes accommodating up to around 120

seats [DOT 1998] [DTI 1999] [Aircraft Economics 2000a]. One feature connected to

this competition among nations is that governments accuse each other of favouring

national manufacturers of aircraft and engines. For example by offering them economic

subsidies [Lipinski 2000] [The Times 2000 and 2000a] [Sochor 1991] and by

persuading airlines to buy certain models and makes [The Times 2001a] [Sochor

1991]. The competition among nations is also related to the prestige that is connected

to operating national flag carriers. Many countries therefore favour their flag carriers in

various ways [Hanlon 1996].

One of the latest examples of the competition between nations is the European Airbus

consortium’s successful launch of the A380 super jumbo-jet to compete with Boeing in

                                               
13 It should be noted that a number of aircraft producers in the Former Soviet Union have
produced a substantial number of large civil aircraft. But since the economic recession began in
the region in the early 1990s their production of large aircraft types has been reduced to rather
insignificant numbers [DTI 1999]. Furthermore, a number of countries are in some way or the
other involved in manufacturing parts for the aircraft produced by Boeing and Airbus.
14 Appendix E contains a detailed description the specifications for Airbus’ family of current and
next-generation aircraft. Appendix B contains a list of the types of civil passenger jets above 80

This footnote continues on the next page.
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the market for very large aircraft. The A380 has been ordered by a number of airlines

while Boeing has had to cancel its plans for developing a larger version of its 747-400

due to lack of airline orders. The A380 may enable Europe to gain market dominance

as well as the prestige connected to producing the largest passenger aircraft in the

world.

However, the A380 only makes sense in a market with rapidly growing demand for air

travel and Boeing seems to believe that Airbus’ expectation for a future market for

around 1500 very large jets until 2020 [Airbus 2000a] is an overestimate because the

market may develop towards less hubbing and more direct flights in smaller aircraft.

Boeing therefore only anticipates global sales of around 330 aircraft in the segment

above 500 seats until 2020 [Boeing 2000a].

Airbus’ success with the introduction of the A380 seems to have lead Boeing into

launching the 100-300-seat family of so-called “sonic cruisers” being able to cruise

around fifteen percent faster than current subsonic aircraft at a speed very near to the

speed of sound. Thereby, the travelling time can be cut by up to three hours on ultra

long-range Trans Pacific flights. The Sonic Cruiser is a delta wing aircraft that is

envisaged to cruise several kilometres higher than current subsonic aircraft, being

more fuel-intensive and polluting15 more [Flight International 2001a], see Picture D in

Figure 2.8 for an illustration of how the Sonic Cruiser may come to look like.

Thereby, the Europeans seem to continue the development of ever-larger and more

fuel-efficient aircraft offering higher productivity and lower operating costs per seat.

Boeing seems to have chosen a strategy focusing more on time savings in the belief

that high-yield business travellers and others who can afford it will be willing to pay a

premium for faster travel.

However, the point to be made here is that both the development of larger and faster

aircraft are drivers for growth in passenger air travel. First of all, the increases in speed

                                                                                                                                         
seats that are in use, in production, under development or planned. Appendix C contains a list
of all civil turbine-engined aircraft of the world.
15 Recently, the European Commissioner for Environment sent a letter to Boeing urging the
company not to develop an aircraft that consume more fuel than current subsonic aircraft [Flight
International 2001a].
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offered by the Sonic Cruiser will allow passengers to travel longer distances within a

given amount of time. Secondly, the use of ultra-large aircraft, such as the A380, will

reduce the direct operating costs connected to passenger air travel and will give

airlines increased incentive to sell a larger proportion of tickets at discounted prices to

fill up those larger planes.

2.4.4 Government subsidies

The development of for example new aircraft technologies as well as new airport

capacity (runways, terminals and air traffic management systems) and other

infrastructures are important preconditions for passenger air travel growth. By

developing more efficient aircraft and building new airport capacity air travel becomes

cheaper and more widely available and this is all supported with public funding by

governments [Heppenheimer 1995] [Kapur 1995] [Sochor]. Costs of technology and

infrastructure are thereby not fully reflected in airfares. Furthermore, many airlines are

national flag carriers owned partly or fully by national states. Most flag carriers have

seen periods with very low profitability and even losses, and have often received

government funding16 [Hanlon 1996]. The political decisions to subsidise the

commercial civil air transport industry leads to lower airfares than would have been

possible if the industry was fully commercialised and functioning in a liberalised market

without subsidies.

The subsidisation of commercial civil air transport’s socio-technical system has been

found to be appearing at many different levels and in many different ways, and it has

therefore not been possible to create a total picture of the level of subsidisation in this

report. However, some empirical examples can be given here to get an idea of the

magnitude.

Firstly, the financing of new aircraft projects is a geopolitical matter where governments

accuse each other of subsidising the development of all-new aircraft types [Lipinski

2000] [Sochor 1991]. Aircraft development is a risky business, since each new aircraft

                                               
16 Many of the World’s scheduled airlines reported financial losses in the first half of 2001. After
the terrorist hijackings in the US in September 2001 this situation is expected to worsen, and
many airlines in the United States and Europe have therefore asked their governments for
financial support [Financial Times 2001e and 2001f]. Although being a special situation of crisis
this is the latest example of the aid that is given to airlines from time to time.
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model has to be sold in relatively large quantities to repay investments. Historically,

only few aircraft models have actually sold in such substantial numbers and aircraft are

therefore often sold at artificially low prices to airlines [Aviation Week and Space

Technology 2000] [Heppenheimer 1995] [Sochor 1991] or governments offer cheap

loans to the airline customers17. Because of the substantial costs associated to the

development of new aircraft and because of the relatively long lead-times from initial

development to the point in time where the yields from aircraft sales break-even with

the development costs some governments choose to offer cheap loans to aircraft

producers [Heppenheimer 1995]. For example, according to the U.S. department of

Commerce, Airbus has been granted over 30 billion US$ in state aid and cheap

repayable state loans for their family of aircraft models. Airbus’ American competitors

therefore complain that if Airbus instead needed to raise capital in the private market

the interest rates would be higher. Furthermore, the Americans claim that if the

demand for Airbus’ aircraft is lacking the company may not have to repay the loans

[Lipinski 2000]. According to Airbus, the company’s first model introduced, the A300,

was granted 100% launch aid. Since then the aid for the later aircraft programmes has

gradually been reduced over 90% for the A310, 75% for the A320, 60% for the

A330/340 and less again for the estimated $11 billion18 that it may cost Airbus to

develop the A38019. Furthermore, Airbus claims that all the state aid plus interest will

be paid back to governments [Airbus 2001b]. Furthermore, the development costs are

also often indirectly subsidised because many aeronautical technologies are initially

developed in military aircraft programmes, being paid by government funding

[Heppenheimer 1995]. For example, according to Airbus, the B707 that enabled Boeing

                                               
17 For example, in the early 1990s, Airbus offered steep discounts to establish its A320 narrow-
body planes in the North American market. Airbus sold A320s to Air Canada, America West,
and Northwest, which received $500 million in soft loans as an inducement, raising the tensions
between the European and American companies [Europe Magazine 1999].
18 The initial development costs for the A380-100 has been estimated at roughly $9 billion and
another $2 billion may be needed for developing variants of the A380 [Dow Jones Newswires
2000].
19 It has not been possible for the author of this report to find the total figure for the state aid
provided to the A380 programme. But for example Rolls Royce’s engine division has received
around $363 million in repayable state loans for developing their Trent 900 engine that is to
power the A380 and BAE Systems is greeted around $770 million for their stake in the airframe
development [Financial Times 2001a]. Likewise, the German government invests $912 million
for the development costs of the A380 [Pethel 2000] while the French government is reported to
offer 8 billion French Francs [Dow Jones Newswires 2000].  According to U.S. Congressman
William Lipinski airbus’ suppliers also receive government aid.
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to enter the market for commercial civil jets in the late 1950s cost only around $180

million (in current US$) to develop because the military carried the burden of the

development costs (estimated at $2billion in current US$), for a tanker version, the KC

135. Also, again according to Airbus, since 1994 the U.S. aerospace industry has

received some $9 billion as non-repayable financial support from the U.S. government.

Furthermore, aircraft are often sold at artificially low prices to launch customers, for

example Airbus are reported to have sold the A380-100 at up to 40 percent below the

list price [Newsweek 2001] [Aviation Week and Space Technology 2000]. Boeing

officials therefore claim that Airbus does not make money on the launch orders [Perrett

2000]. Governments also accuse each other of offering cheap loans to airlines that

purchase aircraft of a certain brand [Financial Times 2001b and 2001c].

Secondly, some airlines receive direct state aid from their national governments. For

example, six European airlines (Sabena, Iberia, Aer Lingus, TAP, Air France and

Olympic) received around 8 billion ECUs in subsidies and around 1,2 billion ECUs in

state loans in the early 1990s [Hanlon 1996, p.26]. In the future, the Commission is set

for not allowing new State aids, except for “truly exceptional and unforeseeable

circumstances” [Van Miert 1998]. In the period between 1994-1996 average yearly

European direct state aid for air transport amounted to more than 2 billion EURO, but

fell to around EURO 1,1 billions per year in the period 1996-1999. The Commission

expects the figure to drop further in a transitional period in the future, before phasing

out state aid for air transport in the European Union entirely [CEC 2000c]. Furthermore,

airlines are given indirect subsidies by not paying jet fuel tax, and by not paying VAT on

tickets and jet fuel, and by being allowed duty-free sales. Environmental NGOs

furthermore claim that airlines ought to pay environmental taxes to cover the external

environmental costs associated to airline operation. For example, the environmental

NGO Friends of the Earth claims that these indirect subsidies add up to at least 45

billion EUROs20 per year in the European Union countries alone [FoE 1998].

Thirdly, according to a World Bank study [Kapur 1995], global investments for airport

infrastructure, that is modernisation of existing capacity and construction of new

capacity as well as new air traffic control (ATC) services and intermodal linkages, could
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exceed $500 billions in the period between 1995-2010. A large part of these

investments are likely to be financed by government funding. A study examining

sources of airport funding in more than 60 countries has shown that two thirds of all

airports receive some sort of government assistance. Recently, newly built major

airports are reported to cost around $7 billion on average, though some major projects

are excessively more expensive [Kapur 1995]. The environmental NGO Friends of the

Earth (FoE) give some recent examples of the subsidisation of airports. According to

FoE newly built airports in Malaysia and Hong Kong received in excess of fifty percent

of airport investments as government funding. Such government funding adds to build

up airport capacity cheaper than what would have been possible if only private

investors were involved.

2.4.5 Economic growth policy

Historically, new innovations in technologies and production methods have brought

forth ever-increasing improvements in productivity thereby allowing population and

consumption to grow. Grübler [1998] estimate that, since the 18th century, the labour

productivity in industry and agriculture has improved by at least factors of 200 and 20

respectively on a global scale. And economic growth of around three percent per year

in the period has brought about a factor 200 higher economic activity.

Probably the most important aspect of passenger air travel growth is the political focus

on economic growth, being a main political goal for most governments throughout the

world [Michaelis 2000]. Economic growth contributes to rising travel for both business

and leisure. Business travel is furthered by economic growth in the sense that

increasing flows of products and money generates the need to communicate more and

more. Rising disposable incomes, being a direct result of economic growth, further

leisure travel by allowing people to choose to buy more luxurious goods and services,

for instance passenger air travel. The propensity for leisure travel by air is highest for

people living in high-GDP countries, see Figure 2.9, and also among the richest people

within a country, see Table 2.1. Therefore, as long as economic growth is given top

priority and continues to generate increased communication needs for businesses as

well as real income rise, people seem likely to fly more.

                                                                                                                                         
20 Of these 45 billion EUROs FoE claims that some 17.5 billion EUROs are due to the
exemption from paying jet fuel tax and some 6,5 billion EUROs are due to exemption from

This footnote continues on the next page.
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Figure 2.9: Yearly per capita Gross Domestic Product (GDP) versus
passenger kilometres21 per capita for selected countries
Sources: RPKs are from [ICAO 1998a], GDP is from [United Nations 2000a] and
population is from [United Nations 2000b].

As shown in Table 2.1, in 1990, about 75% of people living in US households with

income above $100000 travelled by air. However, when moving down through lower

household income categories the use of air trips seems to decline [Pitt and Norsworthy

1999]. Similar tendencies are shown in surveys of Swedish, Danish and Norwegian

citizens’ use of air travel suggesting that high-income groups tend to fly more than low-

income groups22 [Carlsson-Kanyama 1999] [Transportrådet 2001]. Furthermore,

according to the Danish survey, the wealthiest sixth of the Danish population,

                                                                                                                                         
paying VAT on tickets.
21 Note that the distribution of passenger kilometres per capita between countries that are
shown in Figure 2.10 are based on airline reporting on passenger kilometres flown. These
passenger kilometres have been distributed (by the author of this report) between countries by
attributing them to the nations in which the airlines are based. There is a methodological
problem connected to this procedure of distribution because the airline industry is a truly
international business, and airlines of one country can transport passengers from another
country. Thereby the estimate for passenger kilometres flown per capita may be overestimates
for the countries in which the major hub airports are situated. The methodological problem
arises because of the lack of reliable data on the nationality of airline passengers in the airline
statistics published by ICAO and IATA.
22 This tendency is even more significant for business trips than for leisure trips.
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measured by personal income, performs around half of all air trips23 [Transportrådet

2001].

Number of households (000) Penetration Income category [000 $]
4085 75% 100+
5100 68% 75-100
8437 56% 60-75
13859 45% 40-60
31461 31% 20-40
17287 18% 10-20
14085 11% 10 or less

Table 2.1: Penetration of household air travel by income class
in the US, 1990 [Pitt and Norsworthy 1999].

2.4.6 Increasing income and reduced real airfares

The airlines’ airfares are constantly reduced, when measured in real terms. This is one

of the main reasons why the number of people who can afford travelling by air is rising,

leading to increasing passenger air travel. Indices of the reduction of the real airline

yield per revenue passenger kilometre (RPK) is shown in Figure 2.10 based on the

average yield per RPK of the World’s airlines and US scheduled airlines since 1960

and 1950 respectively. These data suggest that the real average airline yields have

been reduced by something like a factor of four in the 50-year period. US airline yield

per RPK only doubled in the period while personal disposable income per capita grew

by a factor of 17, both measured in current US$, see Figure 2.10.

                                               
23 Note that the Danish travel survey cited here only provide data on the number of trips, but not
their length. Therefore the distribution on income groups of the passenger kilometres and the
related fuel consumption may be otherwise than the distribution of trips.
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Figure 2.10: Development in average US airline yield per RPK
and average US disposable personal income 1950-1999 and
comparison to world average yield 1960-1997
Sources: Average US airline yield per RPK is from [Air Transport

Association 2000b]. World average yield per RPK is from [DTI 1999]. US

personal disposable income is from [US Economic Time Series 2001]. US

consumer price index is from [US Bureau of Labour Statistics 2000]

In the commercial civil air transport sector’s early days passenger air travel was an

expensive privilege for the rich and a rather time consuming adventure. For example,

when Pan American Airways opened the first passenger service from the US to the

Philippines in the mid-1930s, using four-engine flying boats, it took six days and five

intermediate stops on small islands along the way to get there. The 1936 round-trip

fare to Manila was $1438 (corresponding to around 18000 US$ in 2000 if measured in

real terms using the U.S. consumer price index), a years wage for a working man in

that period [Heppenheimer 1995, p. 71]. Today, the average fare on international

routes is around 8,2 US¢ per RPK but fares are much lower on intercontinental flights.

For example, on routes across the North Atlantic the average fare is around 5,5 US¢

per RPK, and the cheapest economy-class tickets as well as the fares on charter flights

are even lower24 [ICAO 2000d]. This is why, for example in the spring 2000 it was

possible to buy low-cost scheduled round-trip-tickets from London to the US at around

                                               
24 Note that these fares are for 1997.
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$300 (corresponding 3 US¢ per RPK)25. The emergence of low-cost scheduled airlines

has also made possible excessively cheaper flights26 (as compared to the normal

economy fares of scheduled flag carriers) on more local routes where there is

competition between airlines. For instance, in autumn 2000, the lowest round-trip fare

with British Airways’ subsidiary GO, when flying between London and Copenhagen

was as low as $59 (500Dkr), or around 3 US¢ per RPK27.

On many routes established flag carriers dump their cheapest fares to be able to

compete with the low-cost carriers, see Figure 2.13. These excessively cheap flights

can hardly cover the average costs connected to airline operation28, but are only

possible because airlines can sell the last tickets at almost any price. This is because

of the marginal increase in revenue that can be attained from filling up the seats that

would otherwise be empty [O’Connor 1995]. A further discussion on the average costs

and fares of airlines is given in Chapter 4.

2.4.7 Airline yield management systems

One important aspect in understanding the impact of fares on passenger air travel

growth is that the airlines optimise their fare structures as to attract as much yield per

flight as possible by using different yield management tools. Most notably, airlines often

offer a range of different fares at each flight, business travellers generally paying a

much higher fare than leisure travellers do. This is because business travellers are

generally willing to pay higher fares, making business traveller demand less price- and

income elastic than leisure travel [O’Connor 1995] [Hanlon 1996]. The last tickets sold

for a given flight can in principle be sold at very low prices, as to optimise the revenue

marginally. This is one important factor contributing to passenger air travel growth.

Passengers travelling at reduced (discount) economy fares are thereby indirectly

subsidised by business travellers and economy passengers travelling at full fare [Shaw

1983] [O’Connor 1995] [Hanlon 1996]. Furthermore business travel is in itself often

                                               
25 These prices were shown in adverts in the papers in the United Kingdom in the period in
question.
26 For an overview of the total operating costs per revenue tonne kilometre of low-cost
scheduled and charter carriers as compared to scheduled flag carriers see Chapter 4.
27 These prices were shown in adverts in the papers in Denmark in the period in question.
28 For example, in 1997 Ryanair’s (Ryanair being a no-frills low-cost carrier) average operating
cost per revenue passenger kilometre has been estimated at around 12 US¢ [Mason et. al.
2000].
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indirectly subsidised because companies can deduct travel expenses against taxes

[Shaw 1983, p. 18].

Another important aspect is “frequent flier programmes” aimed at generating customer

loyalty towards certain airlines, which are thereby able to sustain high-fare passengers.

Customers earn “airmiles” that can later be exchanged into free or discounted tickets.

Often “airmiles” are used for private leisure trips even though earned in business travel.

In this way business travel indirectly generates and subsidises additional leisure travel

[Shaw 1983] [Hanlon 1996].

Another aspect that is closely related to airline yield management is advertising

creating additional demand for air travel by influencing peoples’ preferences for air

travel and holiday destinations. Advertising is also an important tool for informing

people about discounted fares and last minute offers. Air travel advertising has become

an important part of the media picture. Most newspapers advertise for air travel, and

increasingly new media such as the Internet and Television Text is used. A special

feature of the Internet is that it has become possible to book and buy tickets directly

from personal computers at home or work, thereby to some extent substituting travel

agencies and reducing airline costs. Increasingly, tickets are sold cheaper through the

Internet than through travel agencies, as airlines seek the cost advantage.

2.4.8 Airline market competition

The competition between airlines leads to lower fares thereby generating more

passenger air travel. Historically, the airline market has grown up with national flag

carriers being dominating and enjoying more or less monopolistic status in many

countries. In recent decades the United States and Europe have liberalised their

domestic markets [Hanlon 1996]. Thereby new airlines have emerged, some of them

offering low-cost no-frills service competing with established flag carriers pressing

down fares on certain routes [Mason et. al. 2000] [Sull 1999] [Aircraft Economics

1999e].

For example, low-cost scheduled-only carriers have considerably lower operating costs

on busy short-range European routes than traditional flag carriers. A number of studies

estimate the operating costs of flag carriers at around two times the costs of their low-

cost competitors on comparable routes [Mason et. al. 2000] [Sull 1999] [CAA 1998].
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Therefore, on those routes where low-cost carriers have entered the market, fares

have been reduced significantly. This is not only a consequence of the low fares of low-

cost airlines, but also a consequence of flag carriers promoting cheap economy fares

at almost the same low level to keep the new entrants out of market [Sull 1999]. In

Europe, scheduled fares seem to mainly have been reduced on domestic markets on

routes with competition and on dense intra-European routes [CAA 1998]. One

consequence of the emergence of low-cost carriers has been a significant air traffic

growth on dense European routes. For example, the number of scheduled airline

passengers travelling between Dublin and London almost doubled from 1.7 million

passengers in 1991 to 3.3 million passengers in 1996, after Ryanair entered that route.

A demand increase said to have been dubbed the “Ryanair effect” by industry analysts

[Sull 1999, p. 27].

Currently, no-frills scheduled carriers hold about 4% of the intra-EU market, but this

share is envisaged to expand to between 12% and 15% over the next decade.

Because there is much charter traffic within Europe29 it is not expected that no-frills

scheduled carriers will reach the same high level of the intra-EU market, as is currently

the case in the US domestic market (40%) [Mason et. al. 2000, p. 91]. Costs and fares

of passenger air travel may be reduced further in the future as airlines introduce new

more efficient aircraft, thereby improving productivity, and cut labour- and other costs

further. However, there are counter-acting tendencies such as increasing airport

charges and limited airport capacity which lead to higher costs and lower productivity

due to delays [Mason et. al. 2000]. Furthermore the possibility of governments

introducing market-based measures to reduce the environmental problems connected

to air traffic become increasingly apparent [FoE 2000b] [Wickrama 2001]. Another

counteracting tendency may be the continuation of the increasing tendency of creating

                                               
29 Note that these European charter carriers operate at substantially lower costs than their low-
cost no-frills scheduled counterparts. In 1997, the operating costs per RPK for European low-
cost scheduled-only carriers was generally around 12 to 16 US¢ per RPK (Debonair 16
US¢/RPK, easyJet 15 US¢/RPK and Ryanair 12 US¢/RPK). Some European low-cost
scheduled carriers (Air Europa, Spanair and Virgin Express) also perform in the charter market
and therefore have operating costs per RPK in the order of 6 US¢. Charter-only carriers
generally have lower operating costs per RPK than their scheduled low-cost counterparts,
although there is considerable variation between carriers. The most efficient European charter
carriers (Caledonian, Monarch and Air 2000) have average operating costs per RPK around 3
US¢ [Mason et. al. 2000, p. 67-69].
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airline mergers and alliances that has been experienced in the last decade [Hanlon

1996].

Despite being a high growth sector, the global airline industry is generally not as

profitable as other industries. The airline industry’s yields are very close to costs and

with significant losses in several periods, most markedly the early 1980s and the early

1990s, see Figure 2.11. This leaves the impression that if also taking account of

government subsidies for commercial civil air transport’s socio-technical system as

such, the commercial civil air transport sector may not be profitable and therefore

operating at “artificially” low prices, which again helps to generate and maintain

passenger air travel growth.

Figure 2.11: Operating revenue and operating result of ICAO scheduled
airlines30 1947-1999
Sources: [ICAO 1998c] and [ICAO 2000b].

2.4.9 Globalisation

We live in a world that seems to be shrinking because jet powered aircraft makes it

possible to travel over ever-longer distances at ever-reduced real costs. Furthermore,

global communication networks facilitate real-time electronic communication over long

distances thereby for instance disseminating news from around the World faster than

                                               
30 Note that these data do only include airlines reporting to ICAO.
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ever. Also the financial market becomes increasingly global and governments seem to

be loosing some of their sovereignty. Giddens [2000] has dubbed this phenomenon of

globalisation “a runaway world” where for example global environmental problems and

risks that cannot be solved at the national state level become more apparent and

seems to call for more global collaboration between countries to regulate these global

issues. The increasing globalisation thereby reshapes our political, technological,

cultural and economical surroundings.

Increasingly, political forums and large business corporations become part of a global

system. Liberalisation of markets and the creation of multinational trade agreements

further globalisation of businesses. Alongside, political forums such as the World Trade

Organisation (WTO), the European Union (EU) and United Nations (UN) are built up.

The globalisation of businesses and political forums furthers the need for

communication across national borders, thereby spurring passenger air travel growth.

One further aspect of this is that an increasing amount of people are employed abroad

thereby generating additional leisure travel for visiting relatives and friends in their

home countries. Furthermore, networks of friends may become increasingly global, and

more people may meet their spouse abroad, generating migration and new family ties

across borders and over longer distances. Employees of business corporations as well

as politicians and civil servants are typically high-yield customers travelling on

business- and first class, thereby indirectly subsidising low-yield economy-class leisure

travellers [Hanlon 1996] [O’Connor 1995]. Globalisation of trade, business corporations

and political forums thereby become strong drivers for passenger air travel growth.

2.4.10 Population growth and distribution of wealth

The World’s population doubled from three billions to six billions in the forty-year period

between 1960 and 2000, and is projected to increase to nine billions by the middle of

this century. Clearly, population growth is an important aspect of passenger air travel

growth. Neither air travel or population growth is evenly distributed among countries.

People living in highly industrialised countries generate the bulk of passenger air travel

and airfreight (see Figure 2.12) [IATA 2000d] while the distribution of population growth

is generally reversed [World Bank 2001]. The effect of population growth as a driver for

passenger air travel growth is strongest when population is growing in industrialised

countries. However, countries that are currently less industrialised may achieve

stronger economic growth in the future, thereby generating passenger air travel growth.
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For example, if people currently living in China and India flew as much per capita each

year as Europeans currently do on average, they would alone generate almost as

much air traffic per year as is currently generated globally31. Another driver is

increasing migration leading to increased passenger air travel when immigrants visit

friends and families in their previous home countries.

31 Based on an estimate of the size of the populations in India and China of around 980 millions
and 1239 millions in 1998 [World Bank 2000] and an average passenger air travel per capita of
around 1200 kilometres per year in Europe in 1998, adding up to around 2700 billions of

This footnote continues on the next page.
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2.4.11 Other social factors

The modern western working culture can be seen as an important precondition for

passenger air travel in industrialised countries by allowing employees to take time off

for weekends and holidays. Before the industrialisation most people were, for several

reasons, more or less bound to their homes, but today people have to some extend

been disengaged from their homes and furthermore tend to have an increasing amount

of free time available [Frändberg 1998]. Furthermore, a stressful working culture

generates the need for people to take some time off, to escape the “cage of routine”

[Frändberg 1998] [Læssøe 1999] [Corrigan 1997]. Another aspect of our working

culture is that employees are typically encouraged to split up their yearly holidays into

several small entities. Thereby, for example a two-week summer holiday can be

supplemented by one-week holidays at other times of the year. For example, in

Denmark, it is relatively common to travel to Southern Europe on skiing holidays in the

wintertime or to go sunbathing in the Far East or in the Canary Islands. An almost

overwhelming example of how cheap such off-season trips can be is illustrated by the

ad to the right side of Figure 2.13 that has appeared in various versions in recent

years. In this ad the travel agency offer seven days of Christmas shopping in Beijing for

the price of 3995 Danish Kr including hotel accommodation and breakfast. This price

corresponds to around $47032. The emergence of weekend trips to far-away places is a

further development of this issue. For example, in Denmark, London has become a

major short-stay leisure destination after GO and Ryan Air entered the route with low

fares. The ad on the left-hand side in Figure 2.13 exemplifies that, to be able to

compete with these low-cost carriers, the Scandinavian flag carrier SAS promotes

cheap discount fares. Another example is that, in the spring 2000, British travel

agencies advertised in various British newspapers for one-day whale spotting trips to

Iceland. And at the other end of the scale we experience the emergence of an

increasing amount of for example young people being able to take a year off from their

work or educational occupation travelling around the globe with several stopovers.

The population is ageing in industrialised countries. Ageing populations may generate

more passenger air travel, especially if elderly people who are retired from work have

adequate resources for travelling by air. People on retirement generally have adequate

                                                                                                                                         
passenger kilometres as compared to the approximately 3000 billion passenger kilometres
transported by the World’s airlines in 1998.
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time for travelling, and many are also in a better economic situation than earlier

generations. Therefore, ageing population may generate additional leisure travel in the

future.

The demand for passenger air travel is generally not evenly distributed among age

groups within a population. Younger to middle aged generations tend to fly more trips

in a year than children and elderly people on retirement [Carlsson-Kanyama and

Linden 1999] [Transportrådet 2001]. However, the current trend shows that younger

generations tend to travel even more than what was the case for the previous

generation at the same age. Some sociologists assume that air travel will grow in the

future because each new generation tend to fly more than the previous generation, and

because each generation is assumed to sustain the travelling culture as they become

older [Carlsson-Kanyama and Linden 1999].

Figure 2.13: Examples of discount fares from Danish newspaper ads

Basically, holidays often fulfil many types of individual needs, wants and desires. Some

common types of holiday purposes are relaxation, adventure, personal relations,

education and so on. Some common types of activities performed through holidays are

sunbathing, eating, drinking, talking, sight spotting, shopping, walking, driving, hiking,

                                                                                                                                         
32 Based on an exchange rate of 856 Dkr per 100 US$ in December 2000.
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climbing, swimming, and so on. The list is endless. Travellers create new private or

professional relations to people in other countries, while exploring foreign geographical

sites and cultures. Another purpose is to visit family and friends and doing something

together with travel companions. For instance, daily life routines may not allow parents

to see their children much in everyday life. A holiday abroad gives the chance to be

together while creating common histories to be remembered. In the early days of

commercial civil air travel some 80 percent of passenger trips by air were business

related, while leisure and holidays only accounted for approximately 20 percent

[Hanlon 1996]. Today, this mix has been reversed and some 60-75% of the passenger

kilometres flown by air relates to leisure- and holiday activities [Frändberg 1998].

People are driven by personal desires to explore new territory and cultures and create

new professional and social relations. Individual needs, wants and desires are to a

large extent shaped by social values and norms [Douglas et. al. 1998] [Kuehn 1999].

For example, passenger air travel is a significant social status maker, and choice of

destination depends on what is fashionable and trendy. One such trend is a tendency

to travel further away, deeper into the jungle and higher up in the mountains. Nearby

holiday destinations that used to be popular are supplemented and to some extent

substituted by far away places. Air travel has become an important part of peoples’

identity creating “travelling cultures”. Young generations in industrialised countries are

born into a travelling culture finding it natural to travel by air [Urry 1999].

Studies into the sociology of consumption has shown that individuals seek to position

themselves in their social surroundings by consuming [Douglas et. al. 1998] as for

instance by choosing prestigious types of holidays and destinations [Corrigan 1997].

For example, backpackers often choose other types of travel and destinations than do

mainstream charter tourists. Backpackers often seek new territories that have not yet

been overtaken by charter travellers, and therefore considered more original.

Backpacker travel and accommodation is often basic and cheap, and often acquires

more available time for getting around than do mainstream charter travel. Likewise,

high-yield leisure travellers tend to prefer types of travel, destinations and hotels that

are more expensive and considered more luxurious or exotic than the cheaper

mainstream mass-tourism resorts. Expensive Caribbean Sea cruises and Concorde

flights between London and New York reigns among types of holiday travel that may be

considered extremely luxurious and prestigious. To some extent people choose the
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type of holiday that fits their general lifestyle and social class, some basic limitations

being available time and economic and social resources.

2.5 Impeders to passenger air travel growth

After having described some of the drivers in the model in Figure 2.5 of the

determinants of passenger air travel growth we now turn to describe some current as

well as some possible future impeders.

2.5.1 The role of infrastructure planning

Many of the world’s busiest airports are today congested. Long-term air travel growth

therefore depends on the enlargement of airport infrastructure and on the

implementation of new and more efficient air traffic management systems33. Especially

in the US and Europe, many airports are now operating at their maximum capacity

through peak-hours. Some airports wish to expand capacity, but find it increasingly

difficult to get approvals for new runways and terminals, mainly because of

environmental regulations or land-use constraints [Mulcahy 2001]. In Europe and the

United States, a number of NGOs, most often established by citizens living in the

vicinity of large airports, are opposing plans for enlarging the capacity [Mulcahy 2001]

[HACAN 2000] [FoE 2000a and 2000b]34. Planning initiatives to stop enlarging the

airport capacity as well as strategies aimed at favouring alternative modes of travel

such as rail, sea and road based transport may therefore in the future contribute to

reduce air travel growth.

2.5.2 Alternative lifestyles, alternative society modes and catastrophes

Social factors, such as changing values and norms, may reverse trends in passenger

air travel. The social acceptance of air travel may dampen if signs of climate change

become more present. Other major changes or catastrophes, such as wars and

economic downturns and oil supply crisis as well as for example an increase in the

amount of hijackings, may also contribute to reduce the growth in passenger travel.

Furthermore, as air travel reaches a higher penetration in the population, and more and

                                               
33 The use of bigger aircraft may also add to the capacity of airports.
34 Some examples of European environmental NGOs that oppose expansions of the capacity of
major airports are for example The Environmental Organisation of Copenhagen (Kastrup
Airport), HACAN Clear Skies (Hethrow Airport), Coalition Against Runway 2 (Manchester

This footnote continues on the next page.
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more people can afford travelling to remote parts of the globe, the social prestige

connected to air travel might well diminish. Long-term impeders to passenger air travel

may be the emergence of alternative lifestyles and alternative society modes. New

working structures, including fewer but perhaps longer-lasting holidays, might emerge

as a first step. On the longer term changing values and preferences might emerge.

People may choose more simple modes of living, implying for instance the choice of

less labour work, more free time and less increase in income (than what may otherwise

have happened). In such a scenario people may well reduce their travel patterns, for

instance by choosing nearby holiday destinations. The stride for economic growth, and

the current appraisal of market forces and globalisation may also be halted or slow

down.

2.5.3 Possible future environmental policies

The commercial civil air transport industry has until now not been subject to

international regulations aimed specifically at reducing aircraft greenhouse gas (GHG)

emissions. Rather, standards issued by ICAO set limits for aircraft noise and engine

emissions in and near airports [ICAO 1993 and 1998b]. However, the industry may

soon be facing new environmental policies that can to some extent contribute to reduce

the GHG intensity as well as the growth in passenger air travel. Some of the most

commonly suggested policies are listed below:

♦  Economic means that reduces the demand for passenger air travel and airfreight

and/or increases the airlines’ incentive to reduce their emissions, i.e. a jet fuel tax35,

a passenger tax, landing charges, an emission tax36 and/or emission trading

schemes37 for commercial civil air transport.

                                                                                                                                         
Airport), Notgemeinschaft der Flughafen-anlieger (Hamburg Airport) and Erzhäuser Bürgerinnen
und Bürger gegen Fluglärm (Frankfurt Airport).
35 See for instance Chapter 4 that describes the possible future effects of a kerosene tax.
36 See for instance Bleijenberg et. al. [1998] for a discussion of the environmental effects of
taxes on tickets, landings and emissions.
37  E.g. the possibility for the commercial civil air transport industry to trade emission quotas
either in a “closed” system within the industry or in an “open” system including trade with other
industries. See for instance Wickrama [2001] and Hewitt and Foley [2000] for a discussion of
how an emission trading system could function and what the possible effects may be for
commercial civil air transport. See also Ott and Sachs [2000] for a discussion of the ethical
aspects related to emissions trading.
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♦  Voluntary agreements38 with the aviation industry, i.e. certain reduction targets to

be met by the commercial civil air transport industry such as targets for the future

improvement of airlines’ average fuel efficiency and targets for the future

improvement of the fuel-efficiency of next-generation aircraft.

♦  Regulatory means for improving aircraft technologies and operational procedures,

i.e. in-flight emission standards for new aircraft, speed limits, “old for new” aircraft

scrapping schemes39 and/or banning operation with the oldest aircraft40.

♦  Regulatory means for reducing the demand for commercial civil air transport, i.e.

personal passenger air travel emission quotas limiting individual mobility patterns41

as well as promotion of railway infrastructure and restrictions to expanding airport

capacity42.

♦  Cancelling direct and indirect subsidies for the commercial civil air transport sector.

That is, direct subsidies for producers of aircraft and engines and for airlines and

airports as well as indirect subsidies such as the commercial civil air transport

industry’s exemption from paying VAT and kerosene tax and its allowance to

maintain duty free sales43.

                                               
38 A voluntary agreement on average aircraft fuel-efficiency may be one part of a solution in line
with what has been agreed between the European Community and the car industry [CEC
1997b], see for instance CEC [1999a].
39 “Old for new” scrapping schemes is a measure that has been suggested by representatives of
British Airways. The suggestion is to let airframe producers buy back and scrap old fuel
intensive aircraft each time they sell a new aircraft. Such a scheme could potentially secure
earlier scrapping of old aircraft than what would else happen [Muddle et. al. 2000] [Cooper
2000].
40 Such bans exist, but are primarily aimed at prohibiting the use of the noisiest aircraft [ICAO
2001d]. So-called Chapter 2 aircraft can be hush-kitted to apply to the Chapter 3 noise standard
but in some cases this even increases the fuel intensity [IPCC 1999].
41 A proposal for a sustainability target for GHG emissions from commercial civil air travel as
well as a corresponding yearly budget for passenger air travel are suggested in Chapter 5 of
this report.
42 NGOs seem to mainly to focus on three aspects of the need to reduce the expansion of
airport capacity namely on reducing the total number of flights and reducing the use of the
oldest and most noisy aircraft and on banning night flights [FoE 2000b] [Mulcahy 2001].
43 See for instance FoE [1998] and Lipinski [2000] for a discussion of the magnitude of
government subsidies to commercial civil air transport.
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♦  Cancelling indirect subsidies to business travellers, i.e. the ability of companies to

deduct their travel expenses against taxes and the ability of frequent business fliers

to use airmiles earned through frequent flier programmes for private trips.

♦  Support for research into and development of more environmentally benign aircraft

technologies and new improved air traffic management systems.

♦  Institutional measures, e.g. the necessity of creating new institutions that can

promote lifestyle changes or the need of creating a supranational organisation that

can implement and police for example global agreements on GHG reductions or

economic measures such as a global jet fuel tax44.

♦  Behavioural measures, e.g. information campaigns that aim at enlightening the

public on commercial civil air transport’s possible impact on climate change as well

as on giving information on possibilities for changing lifestyle in more appropriate

directions45.

♦  Other policies aimed at changing the driving forces behind transport growth through

adapting policies in economics, labour, etc. towards transport patterns in

appropriate directions. Some examples could be to aim policies at impeding

globalisation or at reducing economic growth rates46.

For example, a tax on kerosene or emissions will increase the price of passenger air

travel, thereby reducing air travel growth, while also increasing airlines’ incentive to

operate more fuel-efficient aircraft and to optimise load factors and other operational

features. The possible effect of a tax will obviously depend much on the level of tax

applied. Most studies expect that the reduction of passenger air travel demand will be

                                               
44 See for instance Sandler [1997] for a discussion of the need for a supranational infrastructure
for policing GHG reduction targets and for collecting and distributing global taxes.
45 See for instance Christensen and Nørgaard [1976] and Linden and Carlsson-Kanyama [1998]
for a discussion of the limitations of information and education and the importance of the
primary socialisation, that is experiences from the pre-school age.
46 See for instance Christensen and Nørgaard [1976], [Meadows et. al. 1972], Sachs [1998 and
2000], Bossel [1998] and Durning [1991] for a discussion of the need to shift focus from
measuring wealth by economic GDP growth and material well-having towards focusing on
material sufficiency and well-being.
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rather insignificant because ticket prices will not rise much unless a rather high tax

level is implemented47. This is discussed further in Chapter 4 that gives a review of a

number of studies that have assessed the likely future environmental impact of a jet

fuel tax. On the longer term however, some definite cap for the total allowable

greenhouse gas emissions from commercial civil air transport might be needed, leading

for instance to certain emission quotas per capita48. This is discussed further in

Chapter 5 that discusses some of the main challenges facing an environmentally

sustainable commercial civil air transport system and proposes some limits for the

amount of air travel performed per capita within certain sustainability targets.

The implementation of any of these policies may likely slow down passenger air travel

growth. However, no single policy seems to be appropriate for creating an

environmentally sustainable commercial civil air transport system. Rather, a mix of

some of the policies above seems to be needed. In section 2.6 the current status on

the discussion of the possible future introduction of some of these policies is presented.

2.6 The current political setting

This Section explains in brief the positions of some of the actors on the political scene

towards the environmental impacts of commercial civil air transport.

2.6.1 The position of the environmental NGOs

Around the World, a number of environmental NGOs and protest groups that are

concerned specifically about the environmental problems connected to commercial civil

air transport have emerged. Initially, citizens living in the vicinity of major airports

founded most of these NGOs. Although many of these local NGOs are mainly focusing

on the noise issue their campaigns have in the last few years been directed towards

also focusing on other environmental problems such as climate change.

In Europe, the local NGOs co-operate in a network that has been organised by some

European umbrella-NGOs such as the European Federation for Transport and

                                               
47 See for instance the following kerosene tax studies: [Barrett 1996] [OECD 1997] [Resource
Analysis 1998] [Bleijenberg et. al. 1998] [NSN 2000] [Wickrama 2001] [NEI 1997] and
[Brockhagen and Lienemeyer 1999].
48 See for instance Spangenberg et. al.  [1994] or [Wackernagel 2000] for a discussion of the
limited consumption levels that would be appropriate within a “sustainable space”.
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Environment (T&E) [T&E 1998a and 1999], Friends of the Earth (FoE) [FoE 1996, 1998

and 1999], the Netherlands’ Society for Nature and Environment [NSN 2000] and the

Aviation Environment Federation (AEF) [AEF 1999a and 1999b]. This network have in

the last five years intensified their pressure on governments to reduce the

environmental impacts associated to commercial civil air transport [FoE 2000b].

In their various campaigns the NGOs pledge for European governments and the

European Community to adopt stricter standards for noise and emissions, to ban night

flights, to stop airport expansion, to ban hush-kitted aircraft49, to introduce

environmental taxes and charges and to stop direct as well as indirect economic

subsidies to the sector, i.e. direct subsidies for aircraft and engine manufacturers,

airports and airlines as well as indirect subsidies through exemptions from VAT,

kerosene tax and duty free sales [FoE 2000b].

The European NGOs run campaigns at all the levels ranging from local communities

and airports over national governments and authorities to political forums on the

international level. On the local and national levels the NGOs for example arrange

demonstrations and happenings at airports and send petitions and complaints to the

local authorities50. At the international level the umbrella NGO’s have run a series of

campaigns focusing on national governments and the European Community51 as well

as the international climate negotiations in Kyoto and the further work in the United

                                               
49 A hush-kitted aircraft has been equipped with a noise muffler to apply to the current noise

standard. However, hush-kitted aircraft are still considerably more noisy than the most modern

aircraft. In some cases the muffler also increases the fuel intensity of the aircraft.
50 For example, the Heathrow Association for the Control of Aircraft Noise (HACAN) has set up
a so-called SkyWatch initiative where people suffering from aircraft noise can complain. This is
intended to raise the number of complaints posted to British Airport Authorities [HACAN 2000].
Another type of local initiative has been initiated in the Netherlands where the organisation
Vliegtax-strohalm request companies and air travellers to voluntarily pay jet fuel tax. The
income is used by Vliegtax-strohalm to invest in environment-friendly energy supplies etc
[Vliegtax-strohalm 2001].
51 For example, Friends of the Earth Netherlands has published reports on the need for jet fuel
taxes [FoE 1996] and on the need to abolish subsidies [FoE 1998] and on the need to stop the
expansion of the capacity of airports [FoE 1999]. And the European Federation for Transport
and Environment has published reports on the need for jet fuel taxes [T&E 1998a] and on the
environmental impacts of commercial civil air transport [T&E 1999]. Furthermore, the network
has arranged a series of campaigns such as “The right price for air travel” [The 'Right Price for
Air Travel' Campaign 1999a] and the “Dialogue on aviation and the environment” [C&E 2000]
and “Clear Skies” [FoE 2000b].
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Nation’s Framework Convention on Climate Change (UNFCCC) and in the

Intergovernmental Panel on Climate Change (IPCC). Logos used for some of the

campaigns run by NGOs is shown in Figure 2.1452. In recent years the NGOs have

also stepped up their efforts to start up a dialogue between the green organisations,

the decision-makers and the commercial civil air transport industry and a series of

conferences have put air transport’s environmental impact on the agenda [ECAC 1997]

[Immelmann 2000] [SCAN-UK 2000] [C&E 2000].

Recently, the European environmental umbrella NGOs, in co-operation with NGOs

from around the World, formed the International Coalition for Sustainable Aviation

(ICSA)53 to step up the international pressure for global initiatives. ICSA has been

granted the role of observer in the International Civil Aviation Organisation’s (ICAOs)

Committee on Aviation Environmental Protection (CAEP) [T&E/ICSA 2001].

The campaigns run by European NGOs seem to have been quite effective in getting

the subject of environmental impacts of commercial civil air transport on the agenda in

the European countries [Vavrik 2000]. As explained in Section 2.6.3 many of the ideas

of the NGOs have become part of some recent policy documents from European

Governments [NMH 1995] [Luftfartsverket 1997] [DETR 2000] and the European

Commission [CEC 1999a, 2000a, 2000f and 2001b].

                                               
52 For example, the 45 billion EURO cheque shown in Figure 2.14 was sent to European
politicians as part of Friends of the Earth’s (FoEs) campaign to stop subsidies. FoE calculated
that European airports and airlines receive some 45 billion EUROs each year in direct and
indirect subsidies [FoE 1998].
53 As of January 2000 the membership of ICSA consists of the Aviation Environment
Federation, the Centre for Clean Air Policy, the Coalition for Clean Air, the Dutch Society for
Nature and Environment, Friends of the Earth Europe, the German League for Nature and
Environment (DNR), Germanwatch, European Federation for Transport and Environment (T&E)
and World wildlife Fund (WWF). Greenpeace International is in the process of joining.
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Figure 2.14: Environmental campaigns run by NGOs
Pictures are downloaded from the Internet at: Aviation Environment Federation
[http://www.aef.org.uk] and The Right Price for Air Travel Campaign
[http://www.milieudefensie.nl/airtravel/] and Aviation Conspiracy Newsletter
[http://pages.prodigy.net/rockaway/newsletter128.htm].
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2.6.2 The position of the commercial civil air transport industry

The commercial civil air transport industry hopes to avoid taxes, and proposes instead

the adoption of voluntary agreements for future emission reductions. Such proposals

are brought forward by for example, the Association of European Airlines54 [AEA

2000b] and the European Association of Aerospace Industries55 [AEA and AECMA

1999], the British Air Transport Association [British Air Transport Association 2000] and

the International Air Transport Association [ATAG 2000] [Dobbie 1999 and 2001] [IATA

2000a, 2000b and 2000c]. Some airlines have similarly adopted future efficiency

targets, which are to be met mainly by continually buying new and more efficient

aircraft [Lufthansa 1999] [All Nippon Airways 1999].

For example, the European commercial civil air transport industry has on several

occasions demonstrated the view that voluntary agreements are preferable from

economic measures such as jet fuel taxes. A 2000-proposal from the European

Commission stated that Europe should aim at introducing a European jet fuel tax on

domestic flights and bilaterally on international routes [CEC 2000a]. The Association of

European Airlines (AEA) criticised the European Commission’s proposal. “Apart from

the obvious anachronism of introducing bilateral agreements into the single market, the

proposals give no suggestion that a fuel tax will be anything other than deeply

damaging to the industry, while contributing next to nothing to the environment. For an

industry which has gone from regulation to liberalisation, the concept of managed

growth would be a backward step” [AEA 2000a, p. II - 8]

However, the industry acknowledges that voluntary agreements on fuel efficiency

improvements will not be sufficient to stabilise emissions from commercial civil air

transport activities. For example, a 1999-proposal from the European Commission

stated that a voluntary agreement with the European Aeronautical industry should aim

to achieve 4-5% annual reductions in carbon dioxide emissions per passenger

                                               
54 AEA is the Association of European Airlines. Its members are Adria Airways, Aer Lingus, Air
 France, Air Malta, Alitalia, Austrian Airlines, Balkan, British Airways, British Midland, Cargolux,
Croatia Airlines, CSA, Cyprus Airways, Finnair, Iberia, Icelandair, JAT, KLM, Lufthansa, Luxair,
Malev, Olympic Airways, Sabena, SAS, Swissair, TAP Air Portugal and Turkish Airlines.
55 AECMA is the European Association of Aerospace Industries. Its members are the national
aerospace associations of all 15 EU member states - Austria, Belgium, Denmark, Finland,
France, Germany, Greece, Ireland, Italy, Luxembourg, The Netherlands, Portugal, Spain,
Sweden and the United Kingdom - as well as the largest European aerospace companies.
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kilometre by 2012 [CEC 1999a]. This proposal was met by a joint proposal from the

European aviation industry stating that it will be more than a decade before the sector

can exceed annual 1,1% reductions in carbon dioxide emissions per passenger

kilometre performed on average. The proposal would lead to an improvement of the

average fuel efficiency of some 22,4% by 2012 as compared to the 1990-level [AEA

and AECMA 1999]. Some 14% of this reduction had already been achieved between

1990 and 1998 as the consequence of a considerable aircraft renewal programme

carried out in recent years by AEA member airlines [British Air Transport Association

2000]. Furthermore, AECMA proposes to develop the technology needed to provide

better fuel efficiency for the next generation of civil aircraft. The Aeronautics

Programme under the 5th Framework Programme of the European Commission aims to

develop technology that will allow 15-20% cut in CO2-emissions per passenger

kilometre by 2015 [AEA and AECMA 1999].

Parts of the airline industry is realising that the sector may in some way have to

contribute more to reducing greenhouse gas emissions than what is proposed by for

example AEA and AECMA. Increasingly, this part of the industry fear that if they do not

come up with proposals for voluntary agreements or emission trading schemes,

politicians will move on to implement measures such as kerosene taxes [Somerville

2000] [Muddle et. al. 2000]. A British Airways Chief Economist expresses it in this way:

“If airlines are to avoid taxes on aviation fuel, we need to come forward with

constructive and workable proposals for voluntary agreements and emissions trading.

That is British Airways’ approach – and we are leading by example with our own

efficiency target” [Muddle et. al. 2000].

One example of a more radical scheme (than for example the one proposed by AEA

and AECMA) for improving the fuel efficiency of the aircraft fleet is a trading scheme,

dubbed “old for new aircraft”, that has been suggested by British Airways. This

proposal aim at making airframe producers buy back and scrap an old fuel intensive

aircraft each time they sell a new and more fuel-efficient aircraft. Such a scheme could

potentially secure earlier scrapping of old aircraft, leading to improved fleet efficiency

and possible also to less excess capacity within the commercial civil air transport

sector. The proposal is described as the “most workable and least painful option on

offer to the industry” by British Airways representatives but has initially been received

with less enthusiasm from aircraft producers who see the proposal as a constraint to
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their growth. For example, Boeing acknowledges that emissions trading can produce

optimal benefits for the environment at minimal economic cost, but only if it is

implemented across various industry sectors, i.e. as an open trading system between

sectors [Muddle et. al. 2000] [Cooper 2000]. For the longer time perspective British

Airways representatives even call for more radical solutions such as a substitution of

fossil kerosene by kerosene produced from biomass or the use of liquid hydrogen as

fuel [Somerville 2000].

To sum up, the position of the commercial civil air transport industry is that technical

measures to mitigate the emissions of greenhouse gases would be preferable from

measures that are aimed at reducing demand.

2.6.3 The international framework and the role of the European Commission

The commercial civil air transport sector has until now not been subject to international

regulations aimed specifically at reducing greenhouse gas (GHG) emissions from

aircraft engines56. Rather, standards issued by the International Civil Aviation

Organisation (ICAO) set limits for aircraft noise and engine emissions in and near

airports throughout the so-called landing and take-off (LTO) cycle [ICAO 1993 and

1998b]. The ICAO standards will be subject to further negotiations and probably also

gradual improvements. For example, the current standards are criticised by the

European Commission [CEC 1998a, 1998b, 1999a] and European environmental

NGOs [T&E 1998a, 1998b and 1999] [The 'Right Price for Air Travel' Campaign 1999a

and 1999b], for not being strict enough and for not setting a standard for the specific

fuel consumption of aircraft and the associated in-flight GHG emissions.

Following recent international commitments to reduce global GHG emissions, the

aviation sector has come under increasing pressure to reduce energy use and GHGs57.

                                               
56 Furthermore, national emission inventories currently only include domestic transportation
sources. However, there are ongoing discussions within the IPCC and the United Nations’
Framework Convention on Climate Change’s (UNFCCC) Subsidiary Body for Scientific and
Technological Advice (SBSTA) on how to allocate emissions from international air traffic
between countries in national emission inventories [WIT 1996] [UNFCCC 1999a and 1999b]
[ICAO 2000a] [IPCC 2000a] [DNV 1999].
57 The international nature of commercial civil air transport has lead most governments to
exempt international air traffic from national environmental and energy policy planning and
related GHG reduction goals. However, a few countries, such as Sweden and the Netherlands,

This footnote continues on the next page.
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In the 1997 “Kyoto Protocol to the United Nations Framework Convention on Climate

Change”, it is stated that “The Parties included in Annex I shall pursue limitation or

reduction of emissions of greenhouse gases not controlled by the Montreal Protocol

from aviation and marine bunker fuels, working through the International Civil Aviation

Organization and the International Maritime Organization, respectively” [UNFCCC

1997, article 2b]. This reflects that UNFCCC see ICAO as an intergovernmental

organisation that may be an appropriate forum for negotiating possible global targets

and measures to be implemented in the future.

In recent years, several European governments and the European Commission have

expressed their interest in reducing the GHG emissions from commercial civil air

transport, for example by implementing a tax on jet fuel or aircraft emissions58. One of

the Commission’s main strategies seems to be to commit ICAO to implement global

measures. At the 32nd ICAO Assembly held in 1998, the European Commission aimed

at committing ICAO to commission a working programme to assess technical and

economical possibilities for implementing stricter standards for aircraft noise and

emissions of nitrogen oxides as well as to investigate the possibilities to reduce GHG

emissions [CEC 1998a]. At the Assembly, ICAO asked countries not to adopt any

unilateral measures that might be harmful for the development of the global commercial

civil air transport sector. However, ICAO did commit to a working programme for

aircraft noise and emissions and on developing guidelines (to be ready by its fall 2001

33rd Assembly) for the introduction of emission charges by individual governments

                                                                                                                                         
have published official policy plans for environmental sustainability [NMH 1995] [Luftfartsverket
1997] which are to be followed soon by a plan in the United Kingdom [DETR 2000].
58 Several European governments has for some years been interested in levying taxes on
aviation kerosene [T&E Bulletin March 1997 and November 1997], but international and bilateral
air services agreements negotiated between countries prohibits countries to levy kerosene tax
on international flights [Bleijenberg et. al. 1998]. European Union member countries are
restricted from levying kerosene tax on domestic flights as well [CEC 1997]. Some countries
and airports have introduced other types of environmental taxes and charges [Zurich Airport
Authority 2000] [Luftfartsverket 1997] [Durand 2000]. In Sweden the airlines paid environmental
taxes between 1989 and 1996, but these payments have been stopped [T&E Bulletin March
1999]. In 1999 the Norwegian Government promptly introduced a tax on kerosene. However,
leading European airlines pressured the Norwegians to back down by refusing to pay the tax.
The refusal was founded on bilateral air services agreements negotiated between countries.
After two days the Norwegian Government agreed to exempt international airlines from the tax,
making it in effect only a tax on flights within Norway. The Norwegian tax was set at NKr 0,25
per litre and was designed to be fiscally neutral as the government reduced its environmental
levy on tickets [T&E Bulletin February 1999].
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[CEC 1998b]. But ICAO wants all countries to avoid emission charges before these

guidelines have been agreed upon [T&E Bulletin November 1998].

Since then, ICAOs Committee on Aviation Environmental Protection (CAEP)59 has set

down working groups which are assessing a range of possibilities for reducing noise

and emissions. Among other things the groups consider market based measures to

enhance development of more environmentally “sustainable” aircraft and to improve

operational procedures as well as contributing to demand side management [Crayston

2000] [Rossell 2000].

In recent years, the European Commission has stepped up its efforts to put pressure

on the other ICAO members for agreeing on measures to reduce the environmental

impact of commercial civil air transport. Most notably, in a December 1999

Communication, the European Commission describes a list of measures that might be

taken into consideration. The Commission proposes more stringent international

standards and rules to reduce aircraft engine emissions and noise and for improving air

traffic management efficiency. These should be accompanied by market incentives

such as aviation charges, emission trading, voluntary agreements and research and

development into new and more efficient aircraft technologies [CEC 1999a]. This

Communication has since then been approved by the European Parliament and the

European Council of Ministers [CEC 2000f]. Furthermore, in a Communication issued

March 2000, the Commission states that the European Union member states, in co-

operation with the Commission, should intensify their work within the ICAO framework

for the introduction of taxation on aviation fuel and other instruments with similar effects

[CEC 2000a].

                                               
59 ICAOs Committee on Aviation Environmental Protection is composed of experts who are
nominated by States, major sectors of the commercial civil air transport industry and an
environmental NGO umbrella group. Current members were nominated by Austria, Brazil,
Canada, Egypt, France, Germany, Greece, Italy, Japan, the Netherlands, Norway, Poland,
Russian Federation, Singapore, South Africa, Spain, Sweden, Switzerland, Tunisia, United
Kingdom, United States, Arab Civil Aviation Commission (ACAC), Airports Council International
(ACI), the European Commission, the International Air Transport Association (IATA), the
International Business Aviation Council (IBAC), the International Co-ordinating Council of
Aerospace Industries Associations (ICCAIA), the International Federation of Air Line Pilots’
Associations (IFALPA), the European Federation for Transport and Environment (T&E), the
United Nations Framework Convention on Climate Change (UNFCCC) and the World
Meteorological Organisation (WMO) [Hupe 2001].
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Besides focusing on a global jet fuel tax, some European countries as well as the

European Commission and the European Parliament60 are discussing the possibility of

introducing a tax in Europe. In a 2000 Communication the European Commission

pushes for the idea of a not yet adopted Commission proposal61 to allow member

countries to tax domestic and intra-EU flights [CEC 2000a]. The proposal is strongly

backed by Germany, but opposition led by Spain has so far been enough to block the

tax measures, which under EU rules require unanimity [Reuters 2000a]. By March

2000 the proposal was presented to European Union Finance Ministers that agreed

only to tax jet fuel if there was an agreement at the international level [Reuters 2000b].

Therefore, the initiative to introduce measures for reducing greenhouse gas emissions

from Commercial Civil Air Transport currently seems to be in the hands of ICAO.

2.6.4 The current work in ICAO

ICAOs Committee on Aviation Environmental Protection (CAEP) has been given the

task to review a number of options for reducing noise and emissions. In January 2001

CAEP met to take decisions on which environmental rules and standards to

recommend to the ICAO Council. These recommendations were introduced to those

member states of ICAO that are not directly involved in the CAEP process at an

international colloquium in April 2001. Since then, the ICAO Council has decided upon

standards and proposals for resolutions to be considered by ICAOs 33rd Assembly in

September/October 2001. Since this Assembly is to be held after the deadline for this

report the final agreements unfortunately can not be described here.

At the January 2001 meeting CAEP agreed upon a more stringent new noise

standard62 to be applied to all new aircraft introduced after 2006 [Hupe 2001]. CAEP

                                               
60 In its treatment of the European Commission’s December 1999 Communication on “Air
Transport and the Environment - Towards meeting the Challenges of Sustainable Development”
[CEC 1999a] the European Parliament added that, in the absence of international agreement on
taxation of kerosene it would propose a community-wide charge. It further proposed that the
revenue be invested in reducing the environmental damage caused by aviation [CEC 2000f]
[Lucas 2000].
61 The proposal was voted against by European Governments in 1997 [Airwise 2000a].
62 The proposed Chapter 4-noise standard has been criticised by environmental NGOs and by
the European Commission and the Airports Council International for not being strict enough.

This footnote continues on the next page.
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also reviewed how greenhouse gas emissions might be reduced through optimising

operational measures and through laying down voluntary agreements on fuel efficiency

improvements as well as through implementing market-based measures such as a

global tax on kerosene or emissions and emission trading schemes. Concerning the

market-based measures, CAEP concluded in its assessment report that an “open

emission trading scheme” allowing the commercial civil air transport industry to buy

emission quotas in other energy consuming sectors would be a better and cheaper

solution (than a tax on emissions or fuel) [Wickrama 2001] [CAEP 2000a and 2000b].

“This is because it appears that less costly reductions are possible in other sectors (the

aviation sector faces higher abatement costs), and hence the potential savings from

trading with other sectors would be substantial...compliance costs would be reduced by

over 95 percent (compared to other options) if the aviation sector could participate in

an “open” emissions trading regime with other sectors” [Seidel and Rossell 2001].

The written comments posted by CAEPs members to the session at the January 2001

meeting dealing with market-based measures exemplifies that there is not common

agreement on which strategies to propose to ICAO [CAEP 2000c and CAEP 2000d]

[T&E/ICSA 2001] [IATA/ICCAIA 2001]. Some of the differences in views can be seen

from the Boxes below describing the positions of the environmental NGOs (Box 2.1)

and of the commercial civil air transport industry (Box 2.2).

                                                                                                                                         
One critique is that almost all existing production aircraft already today comply with the new
noise standard. Another critique is that new noise standard does not consider the phasing out of
some of the older and more noisy Chapter 3 aircraft [Airports Council International 2001] [CEC
2000f] [T&E Bulletin August/September 2001] [ICAO 2001d]. (Chapter 3 is the current noise
standard that will function until 2006). On this background, the European Civil Aviation
Conference states that “...the new standard will not encourage the introduction of more
advanced noise reduction technology and nor will it lead to a significant improvement in noise
exposure as traffic grows in the longer term. The proposed new standard can only be a first
step” [ICAO 2001d, p. 2]. The United States, Russia and Brazil as well as some African States
oppose the plans to impose operating restrictions on Chapter 2 aircraft that are hush-kitted to
apply to the Chapter 3 standard [ICAO 2001e].
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One main disagreement between the NGOs and the industry is whether the total

emissions of CO2 from the commercial civil air transport sector should be allowed to

grow or if they should be reduced in accordance to the goals set up in the Kyoto

Protocol, as suggested by the NGOs. The industry seems to prefer voluntary

agreements for improving the fuel efficiency and an open CO2 emission-trading

scheme that will allow the industry to buy emission permits in other sectors

[IATA/ICCAIA 2001]. NGOs seem to prefer a tax that considers all types of emissions

in all phases of flight. If no agreement can be reached the NGOs furthermore urge the

UNFCCC to take over the obligation to introduce measures that can contribute to

reduce emissions from commercial civil air transport [T&E/ICSA 2001].

Box 2.1: The position of the International Coalition for Sustainable Aviation
(ICSA) towards market-based options to limit or reduce emissions.

♦  CAEP has mainly been focusing on possibilities to reduce emissions of CO2. ICSA
therefore suggests that ICAO and CAEP should urgently develop a strategy that
addresses all greenhouse gas emissions.

♦  Voluntary agreements are not considered sufficient to respond to the provisions
laid out for commercial civil air transport in the Kyoto Protocol and ICAO is
therefore urged not to develop this concept further.

♦  ICAO is furthermore urged to establish a CO2 target that is consistent with the
Kyoto Protocol and aiming at a reduction of 5% in the period 2008-2012 as
compared to 1990 levels.

♦  ICAO should introduce an emission charge (on both the LTO and the cruise cycle)
by its 34th Assembly at the latest. If the charge is not adequate for achieving the
5% reduction target, it should be supplemented by an emission-trading scheme
that would begin no later than 2008.

♦  ICAO should establish a NOx cruise standard and a market-based mechanism to
control all emissions during the cruise phase, including potentially weighing CO2

emissions to fully reflect the total radiative forcing.

♦  If no appropriate solutions are decided by at the next ICAO Assembly, COP7 of
the UNFCCC should decide on a workplan and immediate implementation plan, by
COP8 at the latest.

Source: [T&E/ICSA 2001].
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At its January 2001 meeting CAEP recommended the continued development63 of

market based measures and the ICAO Council will report the further work to the 33rd

ICAO Assembly in the fall 2001. It is therefore up to the ICAO Council and the ICAO

Assembly to assess whether they can reach an agreement on a resolution calling for

additional work with, for example, voluntary agreements and market based measures.

Currently, voluntary agreements and an open emissions trading system seems to have

more support from CAEP members than do for example a global CO2 tax [Seidel and

Rossell 2001]. In a September 2001 White Paper on the European transport policy the

European Commission assesses that ICAOs 33rd Assembly will not agree upon a jet

fuel tax [CEC 2001b]. 38 European countries, that are all members of the European

Civil Aviation Conference (ECAC), now seem to accept that ICAO maintains its existing

policy on charges and taxes [ICAO 2001b] but hopes for ICAOs acceptance of the

implementation of stringent operating restrictions in Europe for the noisiest aircraft

[ICAO 2001d]. However, the Europeans still encourage ICAO to investigate further

                                               
63 An important part of the additional analysis will consider the impact of market-based
measures on developing countries and examine ways to ensure that their concerns are taken
into account [Seidel and Rossell 2001]

Box 2.2: The position of the International Air Transport Association (IATA) and
the International Coordinating Council of Aerospace Industries Associations

(ICCAIA) towards market-based options to limit or reduce emissions.

♦  Compared to environmental charges or taxes the combined use of open emissions
trading and voluntary mechanisms is likely to be more conducive to the
development of a sustainable commercial civil air transport sector. A CO2-related
charge is likely to be less economically efficient than an open emission trading
scheme and the industry would have to carry an unacceptable cost burden and
severe demand reductions, for relatively little environmental benefit.

♦  Emissions trading is likely to provide the most promising and cost-effective option
for maximising the contribution of commercial civil air transport to the reduction of
global CO2 emissions. ICAO should therefore investigate further the key issues
concerning the design and implementation of an open emissions trading system,
such as the reporting of emissions, the establishment and distribution of emissions
caps and permits and the monitoring, verification and enforcement of the system.

♦  Voluntary mechanisms could help to establish the basis for future emission
abatement at lower costs than market-based options. IATA member airlines have
adopted a fuel efficiency goal that aim at improving the fuel efficiency by 10
percent over the next ten years. This goal could serve as a basis for a voluntary
mechanism. IATA is also prepared to agree upon fuel efficiency goals to be
delivered from improvements in CNS/ATM systems.

Source: [IATA/ICCAIA 2001]
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(after the 33rd Assembly) the development of a trading system for aircraft emissions as

well as the establishment of long-term technology goals [ICAO 2001c]. The ICAO

Council notes that the establishment of a framework for setting up a scheme for

emissions trading is a long-term process [ICAO 2001b], and no immediate actions are

therefore to be expected.

Therefore, at least until the next ICAO Assembly in 2004, it seems unlikely that the 187

countries that are represented in ICAO will agree upon any global market based

measures to reduce the GHG emissions from civil air transport. The focus seems to be

directed towards agreeing upon a new noise standard as well as at studying further the

possibility of setting up a regime for emissions trading. Furthermore, ICAO seems to be

focusing on the necessity to improve operational practices. Both the reduction of noise

and the improvement of operational procedures seem to be strategies that will allow air

traffic to grow further. As will be discussed in Chapters 3 and 5, better operational

procedures offer some reduction of the specific GHG emissions, but are likely by far to

be overridden by growth in demand in a business as usual scenario.

Even the long-term emissions trading solution may most likely be constructed in a way

that will allow passenger air travel to grow further, if emissions reductions are traded in

an open system64 between sectors with air transport as a net buyer. Some critics argue

that a regime for emissions trading would have to consider not only the emissions of

CO2 from air transport, but also the emissions of water vapour and NOx, because these

gases contribute to climate change at high altitudes [Lee 2000]. Furthermore, the

settlement on a cap for emissions and the distribution of quotas or emission permits

between countries and airlines will pose challenges to CAEP [Wickrama 2001] [Hewitt

and Foley 2000]. The possible impact of emissions trading is not discussed further in

this report. Rather, Chapter 4 looks into the possible impact of a jet fuel tax. The

reason for this choice of focus is that the aim of this project is to assess the possibilities

for reducing the emissions from commercial civil air transport.

Since CAEPs January meeting, the European environmental NGO’s have expressed

disappointment with the ICAO process. Their hope for ICAO to agree upon a global tax

                                               
64 The opposite, a closed system, would only allow internal trading within the commercial civil air
transport sector, see Hewitt and Foley [2000] for a further discussion of these issues.
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on emissions or jet fuel does not seem to be realistically feasible in the near future.

They therefore urge the European countries to go it alone by implementing measures

to reduce the environmental impact of commercial civil air transport [T&E Bulletin

August/September 2001].

2.7 The position of consumers and the need for common action

Besides focusing on the positions of NGOs, the industry and various governments

towards the emission of greenhouse gases from commercial civil air transport it also

seems relevant to focus on the role of the consumers of air transport. Consumer

choices are constrained by economic and other structural factors, and governments

and legislators can to a certain extent try to persuade individual consumers to adapt to,

for example, more environmentally benign transport patterns and technology choices.

However, ultimately, legislation decided upon by decision-makers in a democratic

society will to a large extent have to be reflecting individual and collective preferences

in that society. Thereby, the problem of individual preferences versus (the possible

need for) collective choice becomes apparent. The problem is described in this way by

Rayner and Malone [1998]:

“The problem of collective choice has usually been framed as one of aggregation or of

coercion:

•  How to aggregate individual preferences into a collective preference, or

•  How to persuade individuals to conform with normative requirements of

corporations and governments, as implemented by the decision makers who are

their officials.

Arrow (1951) has famously demonstrated the impossibility of aggregating individual

preferences into a collective one in a way that satisfies certain minimal conditions of

rationality or transitivity. For Arrow, the dictatorial social welfare function is the only one

possible. However, dictatorship is incompatible with democracy. We seem to be caught

in a bind. But Arrow’s analysis assumes that preferences are inherently individual. If we

use another set of assumptions – for example, that preferences are inherently rational

(that is, expressions of social solidarity) – we change the nature of the problem from

being one of aggregating individuals to discerning the structure and dynamics of social

solidarity, which in turn may open up a new solution space for the problem of collective

action” [Rayner and Malone 1998, p. XVii].
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To a certain extent, the above citation seems to express the core of the problem.

Namely that agreeing upon certain potentially more environmentally benign life-styles,

technology choices and consumption patterns would acquire collective choices that

may differ from current individual preferences (which again have social and cultural

dimensions) [Douglas et. al. 1998]. Individual consumers can be seen as actors

performing a range of social practices driven by individual needs, wants and desires

which are constantly shaped by and shaping (vice-versa) constraints opposed by the

social material system [Spaargaren 1997]. Individuals do not necessarily behave as

“rational” energy consumers in a social (economical or environmental) sense, but are

motivated by individual needs, wants and desires, which are in turn shaped by social

norms, ethics etc [Christensen and Nørgaard 1976] [Douglas et. al. 1998] [Michaelis

2000]. Therefore, an important precondition for achieving environmental sustainability

seems to be to change those peoples’ preferences towards mobility changes. The point

to be made here is that such lifestyle changes seem to acquire changes in a number of

the preconditions for common action, that is, the social norms and the rules and

resources that make up the socio-material structures of our surroundings, see Figures

2.3 and 2.4.

2.8 Concluding remarks on determinants

If air transport continues growing at the current rate it may become a major source of

greenhouse gas emissions within the next few decades. The availability of airports and

aircraft are important preconditions for passenger air travel growth, and further

enlargements of airport infrastructures seems to be needed to sustain long-term

growth. Policies aimed at reducing air travel growth may therefore be directed towards

not increasing airport capacity further as well as discarding subsidies for development

of larger and faster types of aircraft. Therefore, governments could stop subsidising the

largest and fastest aircraft, for example by discarding all plans for future supersonic

aircraft, sonic cruisers and next-generation ultra-large super-jumbo jets. Furthermore,

there is the possibility of promoting alternative modes of transport, for instance by

enlarging rail capacity and by using fast train systems.

Some major drivers for passenger air travel growth seems to be the reduction of real

fares as well as the tendency to sell leisure tickets at discounted prices. Air travel is

currently not taxed to the same degree as other transport modes, not to mention other

consumption. Furthermore, aircraft producers, airlines and airports are often subsidised
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directly or indirectly by governments. Therefore environmental policies could be aimed

at increasing prices by not subsidising the commercial civil air transport industry and by

applying taxes to air travel. Other possibilities are to cancel the ability of companies to

deduct their travel expenses from taxes as well as to stop frequent flier programmes.

Governments may also try to alter some of the structural determinants driving air travel

growth. Much air travel relates to globalisation, changing geography, migration and

population growth. Therefore any policy aimed at counteracting these factors may help

in reducing air travel growth. Another way to reduce the demand for air travel is to

promote alternative lifestyles and ways of life. If the social status connected to

travelling far away diminishes people might choose nearby holiday destinations.

Similarly, if people choose a less materialistic approach to life by working less, having

more free time available as well as earning less, there is clearly potential for change.

On the longer term, governments may seek to find alternative ways of measuring

progress and growth than Gross Domestic Product, allowing nations to develop in more

sustainable directions than when planning mainly to achieve economic growth.
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Chapter 3

Energy intensity of passenger air travel and freight

This chapter analyses the energy intensity1 of air transport. The main purpose is to

discuss and establish an overview of the energy intensity of passenger air travel and

airfreight for trips of different lengths and in different types of aircraft and to put the

aircraft fuel use into perspective by comparing to other uses. The energy intensity of

passenger air travel and freight is found to be typically higher than for other modes of

passenger and freight transport when used over comparable distances. However, the

comparison between modes is found to be relatively complicated because the energy

intensity depends strongly on a lot of factors such as the type of vehicle in use and the

load factor and the usage cycle on the route in question. For the passenger aircraft that

carry belly-hold freight there is an additional methodological problem connected to the

distribution of the fuel consumed between passenger travel and freight transport.

Furthermore, because the emissions from aircraft engines per amount of fuel burnt at

high altitude may contribute considerably more to climate change than emissions at

sea level, the greenhouse gas intensity of air transport may be considerably higher

than what is the case for other modes of transportation. The energy intensity of

passenger air travel and freight is found to vary significantly between different airlines,

mainly because they use different types of aircraft and due to differences in their route

structures as well as differences in passenger load factors and in freight load factors2.

Due to the relatively long distance each person can potentially travel by air within a

relatively short period of time the greenhouse gas emissions associated to passenger

air travel can contribute considerably to the yearly per capita emissions. The fuel

intensity has been reduced throughout the last decades but the yearly improvements

                                               
1 By energy intensity of passenger air travel and airfreight is meant fuel use per revenue
passenger kilometre (RPK) and per revenue freight tonne kilometre (RFTK).
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are slowing down. Airlines’ preference for increasing the speed over their preferences

for improving the fuel efficiency may lead to reduce the fuel efficiency improvement rate

further in the future. On the longer term, commercial civil air transport is likely to

become a major source of greenhouse gases because passenger air travel and

airfreight grow stronger than most other energy services.

3.1 Introduction - the CO2 emissions from all transport

According to the Intergovernmental Panel on Climate Change (IPCC), the transport

sector, including passenger travel and freight movements by road, rail, air and water,

consumed about 25% of the World’s primary energy use in 1990 and emitted about

22% of the CO2 emissions that are related to the combustion of fossil fuels. Globally,

transportation’s fuel consumption is growing rapidly and is forecast by the IPCC to

grow by between 50% and 200% between 1990 and 2025 [IPCC 1996b, p. 681].

The industrialised countries generate the bulk of the World’s motorised transport

activities, but motorised mobility is currently spreading to developing countries. There

are distinct differences between countries in the amount of passenger travel and freight

transport that is generated as well as there are differences in the modal split. For

example, in most industrialised countries the main part of the motorised passenger

travel is carried in private passenger cars whereas in some developing countries the

public transportation modes are the most significant [Schafer 1998] [Schafer and Victor

1999]. In 1990, North American and European citizens travelled about 22400

kilometres and 10500 kilometres per capita per year respectively in motorised transport

modes whereas people living in for example Sub Saharan Africa only travelled around

1600 kilometres per capita on average [Schafer 1998].

The amount of transport as well as the modal split is changing over time. For

passenger travel the trend in most industrialised countries seems to be that passenger

cars and aircraft increase their market share over other public modes of transportation

[Schafer 1998] [Grübler 1998] [EEA 2001].

                                                                                                                                         
2 The passenger load factor is calculated as the ratio of revenue passenger kilometres to the
available seat kilometres. The freight load factor is calculated as the ratio of revenue tonne
kilometres transported to the available tonne-kilometres offered.



75

Air transport, being the fastest growing transportation mode, is currently a much

smaller energy consumer than road transport, but may become a relatively large

source in the future if the sector continues to grow at current rates [IPCC 1999]. In

1990, road transport emitted around 75% of the CO2 emissions from transport

activities, while around 12% was attributable to commercial civil air transport and 7% to

international shipping and around 6% to rail and inland waterways [IPCC 1999].

In general, passenger transport typically accounts for some 60-70% of the energy use

and the related emissions of CO2 from transportation in the OECD countries. However,

there are wide variations in the amount of CO2 emitted per capita from transport in

different countries. For example, United States citizens emitted approximately 3,8

tonnes of CO2 per capita for passenger travel on a yearly basis in 1995, while for

example Danish and Dutch citizens emitted around 1,3 tonnes and 1 tonne per capita

respectively in that year. Likewise, for freight transport there are wide variations

between countries. For example, in the United States, freight transport accounted for

around 1,7 tonnes of CO2 per capita in 1995. In West Germany this figure was only

around 0,5 tonnes of CO2 per capita while Danish citizens emitted some 0,8 tonnes on

average (also in 1995) [Schipper and Marie-Lilliu 1999]. We note that these estimates

do not consider the CO2 emissions from international air transport and international

marine traffic because such emissions are normally not allocated to specific countries

due to the difficulties connected to agreeing upon how to allocate emissions3. However,

the CO2 emissions from domestic air transport is included, and in large countries like

the United States and Australia the CO2 emissions from domestic air transport

represents around 11-13% of the total domestic transport emissions.

The differences between countries in the CO2 emissions from passenger travel and

freight transport can be explained by differences in a number of factors. First of all, the

patterns of passenger travel and freight varies between regions and countries of the

world. Secondly, there are distinct differences between countries and regions in the

modal split [Schafer 1998]. Thirdly, the CO2 intensity of the various modes varies

between countries [EEA 2001] [Schipper and Marie-Lilliu 1999].

                                               
3 For example, the emissions could be allocated to the country in which the fuel is rendered, to
the country in which airline is situated or to the home countries of the passengers. At present,
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The CO2 intensity of the different vehicles depends on a number of factors. The energy

intensity per capacity unit varies between the different types of vehicles as well as

between different types of usage cycles and the fuel consumption per passenger

kilometre or per tonne kilometre is dependent on the actual load factors. For example,

the average load factors in passenger cars is estimated to range from around 1,5 to 2,5

in various EU countries [EEA 2001, p. 43]. Furthermore, the CO2 intensity depends on

the mix of vehicles in the fleet that are powered by diesel, petrol, natural gas or

electricity. For the electrical vehicles the CO2 intensity depends on the types of primary

energy, such as fossil fuels (oil, coal and gas) and nuclear and renewable (solar, hydro

and wind) sources of primary energy that are used in the power production [Schipper

and Marie-Lilliu 1999] [IPCC 1996b, pp. 689-691] [IPCC 1999, pp. 284-287] [Roos et.

al. 1997].

The fuel intensity and the related CO2 emissions of air transport are in focus throughout

this chapter. The reason why this subject is found to be of interest is that an important

aspect in reducing the growth in the CO2 emissions from air transport may be to reduce

the specific fuel intensity in the future (See Figure 1.2, chapter 1).

3.2 Purpose of this chapter

The main purpose of this chapter is to discuss and establish an overview of the fuel

intensity of passenger air travel and airfreight. The specific fuel consumption per

passenger kilometre4 and per freight tonne-kilometre5 of selected airlines and of

different types of aircraft as well as of the world aircraft fleet6 is quantified and some

main determinants of aircraft fuel consumption are identified.

                                                                                                                                         
no methodology has been agreed upon on how to allocate the emissions between countries
[UNFCCC 1999a and 1999b] [DNV 1999].
4 A passenger kilometre is a term describing when a passenger is transported one kilometre.
The term “revenue passenger kilometres” refers to the distance travelled by revenue
passengers. For some airlines only passengers that have paid a certain percentage of the
normal fare are counted as revenue passengers. Examples of non-revenue passengers are the
pilots and crew onboard as well as other passengers travelling for free.
5 A freight tonne kilometre is a term describing when one tonne of freight is transported one
kilometre.
6 By the world aircraft fleet is meant all civil aircraft used for commercial purposes, that is
scheduled and non-scheduled and charter airline traffic, excluding aircraft produced and
operated in the former Soviet Union of which data are generally not available. Thereby aircraft
used for military purposes as well as general civil aviation has been excluded from this study.
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Section 3.4 describes the historical development in the patterns of air travel and the

fuel intensity improvements since the early 1970s.

Sections 3.5 and 3.6 analyse and compare the specific fuel consumption of different

types of aircraft that are in use on short-haul, medium-haul and long haul routes. Most

studies in this area seem to focus on a few aircraft models and often neglect the

relatively large differences between different types of aircraft. Therefore, this analyses

includes a relatively large number of models and discusses some of the main reasons

for the differences as to exemplify the potential for reducing the fuel consumption that

are offered by choosing to use the most fuel-efficient types of aircraft. The section

furthermore looks into some of the main determinants of aircraft fuel intensity, that is

airframe size and engine, passenger and freight load factors and seat configuration,

and flight distance.

Section 3.7 compares the average fuel intensity of a number of airlines and assesses

the main reasons for the differences between these airlines. This part of the analysis

focuses on the differences between low-cost charter airlines and scheduled flag

carriers and also makes comparisons between regional carriers that mainly operate at

short haul routes, and truly international carriers operating mainly at intercontinental

long-haul routes.

Section 3.8 gives a detailed analysis and discussion of the distribution of the fuel

consumption of aircraft and airlines on passenger air travel and airfreight. Most studies

analysing the fuel intensity of aircraft and airlines seem to neglect such an analysis.

Rather, the total fuel consumption of the airlines is most often attributed to the transport

of passengers even though all passenger aircraft carries both revenue passengers and

revenue belly-hold freight. Therefore, one aim of this analysis is to estimate the fuel

consumption that is attributable to freight in passenger aircraft, see Section 3.8.

Another part of the analysis focuses on the fuel consumption of all-cargo carriers that

operate dedicated freighter aircraft, see sections 3.6.2 and 3.7. Thereby, it also

becomes possible to compare the fuel that is consumed for freight transport in

passenger aircraft to that of all-cargo freighters.

The chapter also gives a brief comparison of the fuel intensity of aircraft and other

alternative transport modes that may potentially substitute aircraft (see Section 3.9).
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This part of the chapter focuses on the fuel intensity of modes that are used for

transporting passengers over short distances, as this is one area where a substitution

of air transport by more fuel-efficient modes seems feasible.

Finally, in section 3.10, the chapter gives a brief description of the future prospects for

reducing the fuel intensity of the aircraft fleet through phasing out the oldest aircraft

models as well as by introducing more fuel-efficient next-generation aircraft and by

improving the operational procedures. Furthermore, a brief discussion of the longer-

term prospects for reducing the fuel intensity of future aircraft models is given. The aim

is to discuss the potential of “technological fixes” for reducing emissions in the next

decades.

3.3 Description of the main sources of information

The main sources of information that are used in this chapter are airline operational

statistics that typically contain information on the yearly average fuel intensity of

different airlines and of the different aircraft in their fleets. The information on the

specific fuel consumption is typically given as the fuel consumed per aircraft kilometre7

or per available seat kilometre (ASK)8 produced and per revenue passenger kilometre

(RPK) transported or per available tonne kilometre (ATK) offered and per revenue

tonne kilometre (RTK) transported or per revenue freight tonne kilometre transported

(RFTK). The data material covers a broad range of scheduled airlines and charter

carriers that are situated in Europe, in Asia and in the United States.

Most of the data for the European and Asian airlines are taken from their yearly

environmental statements9 and from some overall operating statistics that are

                                               
7 The data for the number of aircraft kilometres flown are typically for the shortest great circle
distance between the airports in question. That is, the aircraft actually often fly longer routings.
Therefore, there is a potential for reducing the specific fuel consumption per ASK and RPK by
flying more direct routings.
8 The term available seat kilometre is a measure for transporting one seat one kilometre. The
number of available seat kilometres produced by an aircraft is calculated by multiplying the
number of seats available in that aircraft by the number of kilometres flown. Available seat
kilometres is thereby a measure for the passenger capacity (i.e. the number of passenger
kilometres that could be produced at the maximum passenger load factor) of a given flight.
9 Most notably, such yearly environmental statements are published by airlines such as British
Airways, Lufthansa, Lufthansa Cargo, Lufthansa Condor, Lufthansa City Line, SAS, Swissair,
Balair, Premiair, Air France, Finnair, Braathens, All Nippon Airways, Japan Airlines and Cathay
Pacific Airways.
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published by the Association of European Airlines (AEA)10 but much additional material

have been requested directly from the airlines. Most notably, Lufthansa, All Nippon

Airways and British Airways as well as the European charter carriers Premiair and Air

2000 have kindly assisted the author in getting access to detailed information on the

specific fuel consumption of the aircraft in their fleets as well as the passenger load

factors and the freight load factors and other operating statistics. Furthermore, some

older studies of the fuel intensity of Lufthansa in 1989 and 1990 [Reichow 1990 and

1992] and of all the British Airlines in the 1980s [Martin and Shock 1989] are included

to be able to compare today’s average operating statistics to those of earlier years.

Most of the data used for describing the fuel-intensity of the American air carriers have

been requested from the United States Department of Transportation (DOT) that

maintains a detailed statistical database describing the operating characteristics of

American air carriers. For decades, the air carriers situated in the United States have

reported their operating statistics to the DOT in the so-called “form 41” arrangement.

These data cover most aspects that are interesting for an analysis of the fuel

consumption of the different aircraft and airlines. Most of the operating statistics for the

American air carriers that are used here have been kindly provided in Excel

spreadsheets11 from the DOT. These data describe the average overall fuel intensity of

a number of American air carriers in selected years from 1982 to 1999. Furthermore,

quite detailed data have been provided on the airlines’ operating statistics in 1999. The

1999-data contains specific information on the fuel burn, the aircraft kilometres, the

available seats, the average stage distances and the average passenger load factors

by type of aircraft for all the aircraft types that are operated by the US air carriers.

Furthermore, some additional form 41 data that describe the fuel consumption of the

aircraft that were operated by the Major12 US air carriers in 1998 are taken from some

                                               
10 Most notably, some information from the Statistical Appendixes to Association of European
Airlines’ (AEA) Yearbooks [AEA 1998, 1999, 2000c and 2001] are included. These statistics
include operating statistics on the amount of cargo carried in the passenger aircraft that are
operated by AEA member airlines.
11 These data are referred to in the text as [DOT 2001] describing the fuel cost and consumption
and other operating statistics of the American Majors, Nationals and Regional airlines in
selected years from 1982 to the present.
12 In 1999 there were 13 Major US scheduled airlines with annual revenues of over $1 billion.
Three of these, DHL, FedEx and United Parcel Service, are all-cargo carriers. The ten
passenger carriers are Alaska, America West, American, Continental, Delta, Northwest,
Southwest, Trans World, United and U.S. Airways. By January 2000 American Eagle and
American Trans Air also became Majors [Air Transport Association 2000a].
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recent articles published in the Journal “Aircraft Economics”. The data for 1998

describe the fuel intensity and the productivity of all-cargo aircraft [Aircraft Economics

1999d] and of narrow-body passenger aircraft [Aircraft Economics 1999c] and of wide-

body passenger aircraft [Aircraft Economics 1999f]. These data are furthermore

supplemented by some statistical sources from the American Air Transport Association

(ATA)13 and by some overall statistics from the United States Department of

Transport14 [DOT 1999 and 2000] and the United States Department of Energy15 [Davis

1995 and 1999]. Additionally, an older analysis of the “form 41” fuel consumption data

that describes the impact of the 1973 and 1979 oil crisis’ on the operating economics of

the Major American air carriers is included [Sarames 1984] as to be able to compare

today’s fuel intensity by type of aircraft to that of the early 1970s.

It is likely, that there are some inconsistencies in the data material that describes the

specific fuel consumption of different aircraft and airlines. For example, the airlines may

use different methodologies for calculating the weight of the passengers and the freight

that they are transporting. Furthermore, the information on the amount of freight that is

carried in passenger aircraft is most often relatively scarce or non-existent in some of

the statistical sources used here. It has therefore been necessary to use different types

of estimates to be able to distribute the fuel consumption of passenger aircraft between

the passengers and the belly-hold freight that they are transporting. There are also

inconsistencies in the way the airlines attribute their fuel consumption to passenger and

freight transport. Furthermore, there are differences in the way the airlines report their

amount of revenue passengers transported. Some airlines may count all passengers

whereas others exclude the passengers that are paying below a certain percentage of

the normal fare. These inconsistencies are likely to be greater in cross-comparisons

between the operating statistics of the European, the Asian and the American airlines

                                               
13 The operational statistics published in Air Transport Association’s yearbook [Air Transport
Association 1999, 2000e and 2001] are used to derive information on the amount of freight that
is carried in passenger aircraft.
14 Information on the overall yearly traffic performance (aircraft kilometres, average seats,
available seat kilometres and revenue passenger kilometres) and the total fuel consumption,
divided on domestic and international operations, of the American air carriers since 1973 are
taken from the National Transportation Statistics that are published by the US Department of
Transport [DOT 1999 and 2000].
15 Information on the overall yearly traffic performance (aircraft kilometres, average seats,
available seat kilometres, revenue passenger kilometres and revenue freight tonne kilometres)
and the total fuel consumption of the American air carriers since 1973 has been taken from the
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than what is the case when only comparing the data for the American air carriers that

are reported to the US Department of Transportation in the same format. The data for

the US air carriers are therefore internally consistent. Because the operating statistics

of the American air carriers cover a large number of aircraft and airlines these data are

used for most of the analysis’ that makes cross-comparisons between a number of

airlines. Some of the data inconsistencies are discussed further throughout this

chapter.

The airline information is supplemented by various other sources, such as material

from the aircraft producers and data from two modelling studies that gives information

on the average fuel consumption according to the stage distance flown for a number of

generic aircraft types [Gardner et. al. 1998] [Falk 1999]. Another modelling study that is

mentioned briefly describes the increase in the specific fuel consumption per aircraft

kilometre when the load factor increases [Daggett et. al. 1999]. These studies are

drawn in because the data for the average yearly fuel consumption by type of aircraft

does most often not offer insights to the fuel consumption connected to single trips of a

specific length or with a specific load factor. Rather, the main part of the data reported

by the airlines are average yearly data, that is, for example, averages for an airline or a

number of airlines that are operating on a number of routes in a certain year.

Additionally, a rather large amount of new regional jets and turboprops are currently

emerging at the market. Some data for their specific fuel consumption at short-haul

trips are drawn in as to be able to assess their likely impact on the specific fuel intensity

of short-haul passenger air travel in the future [Aircraft Economics 2000a, 2001a and

2001c]. Most of these regional aircraft have only recently been introduced into airline

operation or are planned to be introduced within the next few years, and are therefore

generally not yet included in the airline reporting for the recent years.

The section that describes the future prospects for improving the fuel efficiency of next-

generation aircraft is based on estimates found in the literature as well as information

from the aircraft producers [Vincendon and Wrede 1999] [Airbus 2000a] [ATR 2001].

The section on the long-term possibilities to improve the fuel efficiency of aircraft as

well as the brief discussion of alternative fuels draws extensively on other sources such

as the recent report from the Intergovernmental Panel on Climate Change “Aviation

                                                                                                                                         
Transportation Energy Data Book that is published by the US Department of Energy [Davis
1995 and 1999].
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and the Global Atmosphere” [IPCC 1999]. The brief mentioning of the possible

contribution of aircraft engine emissions to climate change is also primarily drawing on

the conclusions of this recent report.

Finally, the section that compares the fuel intensity of passenger air travel to that of

other transportation modes draws on a number of studies of the fuel intensity of

passenger cars [Færdselsstyrelsen 1999] [Schipper and Marie-Lilliu 1999] [EEA 2001]

and trains and buses [IPCC 1996b] [Roos et. al. 1997] [DSB 1998] [Jørgensen 1999].

3.4 Evolution of the fuel intensity of passenger air travel

The fuel intensity per passenger kilometre of commercial civil air transport has been

reduced by approximately 50% since the early 1970s. The use of more fuel-efficient jet

engines and the introduction of bigger aircraft accommodating more seats per aircraft

in combination with an increase in the average stage distances has reduced the fuel

use per available seat kilometre (ASK). The improvement in the specific fuel

consumption has furthermore reduced the necessary amount of fuel that has to be

carried on flights of comparable distances leading to additional fuel savings.

Furthermore, the operation at higher passenger load factors have contributed to reduce

the fuel use per revenue passenger kilometre (RPK)16. The trend in the average

specific fuel consumption per revenue passenger kilometre in commercial civil air

transport is illustrated in Figure 3.1 that plots a number of different estimates that are

given in the literature for all the US airlines [Davis 1999], for British Airways [British

Airways 1999a], for all the UK airlines [Martin and Shock 1989] for the World’s

scheduled fleet [Greene 1990] [Balashov and Smith 1992] [Gardner et. al. 1998] and

for the IATA fleet [Dobbie 2001]. We note that the estimates that are shown here

include the total amount of fuel consumed by the airlines in question. The major part of

this fuel is attributable to the carriage of passengers, but some is related to freight

transport. Thus, the estimates for the average fuel consumption per passenger

kilometre that are shown in figure 3.1 can be said to be somewhat overrated. Sections

3.7.1 and 3.8 of this chapter discusses the relative importance of freight in passenger

airline activities and analyses how the fuel consumption can be distributed between

passenger and freight transport weights respectively.

                                               
16 For a further description of these improvements see for instance [Sarames 1984] [Martin and
shock 1989] [Grieb and Simon 1990] [Balashov and Smith 1992] [ETSU 1994] [Greene 1997]
[Dings et. al. 1997] or [IPCC 1999].
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Figure 3.1: Fuel intensity per revenue passenger kilometre (RPK) of
passenger air travel according to various sources
Note that these estimates are biased because the total fuel consumed for
passenger and freight transport is included. The impact of freight is explained
further throughout this chapter. The estimates are furthermore for various groups
of airlines that operate at different routes at varying passenger load factors and
freight load factors using fleets of various aircraft mixes.
Sources: [Davis 1999], [Martin and shock 1989], [Balashov and Smith 1992],
[Greene 1990], [Gardner et. al. 1998], [British Airways 1999a] and [Dobbie 2001].

A major part of the reductions in the fuel intensity per revenue passenger kilometre is

due to the introduction of new and ever-more efficient aircraft that contributes to

constantly enlarge the aircraft fleet. The seat capacity, measured in available seat

kilometres offered, of the world’s fleet of commercial jets and turboprops that are used

for civil airline services tripled between 1978 and 1998 (see Figure 3.2). The lifetime of

commercial civil aircraft is relatively long and many of the aircraft introduced in the

1960s and 1970s are still operating, although the rate of utilisation is typically highest

for the newest aircraft in the fleet [AEA 1998] [DOT 2001]. Today, some 5000 operating

jets are more than 23 years old, representing around 40% of the world’s jet fleet [DTI

1999].
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Figure 3.2: Seat capacity of the world’s scheduled airlines
(excluding the former Soviet Union)
Source for data: ICAO Statistics that are taken from [DTI 1999].

The growth in the volumes of passenger air travel and airfreight makes possible the

enlargement of the fleet. But on the other hand the volume growth is speeded up as a

consequence of the growing fleet capacity because the use of more efficient aircraft

reduces the direct operating costs (DOC) per available seat kilometre (ASK) and per

available tonne kilometre (ATK) offered [Aircraft Economics 1999a, 1999b, 1999c,

1999f, 2000a, 2001b and 2001c]. Furthermore, the airlines introduce cheap fares to fill

up better their planes [Heppenheimer 1995] [Doganis 1985]. The efficiency gains

attained are thereby to a large extent dependent on and furthering the growth in the

transport volume. The reduction of the aircraft fleet’s fuel intensity has not reduced the

total fuel use because the efficiency gains are overridden by volume growth. For

example, the fuel consumption of the American air carriers grew by a factor of 1,7

between 1973 and 1997 while the amount of revenue passenger kilometres (RPKs)

and revenue freight tonne kilometres (RFTKs) grew by factors of 3,6 and 4,6

respectively, leading to an increase in the total amount of revenue tonne kilometres

(RTKs) by a factor of 3,8. Freight transport and passenger transport have grown at

average yearly rates of around 6,5% and 5,4% since 1973. While the yearly growth

rate in passenger air travel has slowed down in the second half of the period freight

transport has grown faster in these later years than in the first half, see Figure 3.3

[Davis 1999].
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index 1973=100%

Figure 3.3: Some main developments for the US air carriers 1973-1997
Note that the fuel consumption indexes per available seat kilometre (ASK), per
revenue passenger kilometre (RPK) and per revenue tonne kilometre (RTK) should be
read at the left y-axis. The indexes for the fuel consumption, for the available seat
kilometres (ASKs), for the revenue passenger kilometres (RPKs), for the revenue
tonne kilometres (RTKs) and for the revenue freight tonne kilometres (RFTKs) should
be read at the right y-axis. The number of RTKs have been calculated by using an
average weight factor of 100 kilograms per revenue passenger inclusive baggage.
Source: [Davis 1995 and 1999].

The reduction of the specific fuel intensity of the American air carriers is attributable to

technical changes as well as to operational changes. Between 1973 and 1997, the

average passenger load factor of the American air carriers increased from around 54

percent to around 70 percent, thereby contributing to reduce the specific fuel

consumption per revenue passenger kilometre (RPK) by some 15 percent. The specific

energy intensity per available seat kilometre (ASK) was reduced by some 37% due to

the introduction of larger and more fuel-efficient aircraft that operate over longer

average distances17. However, the specific fuel intensity per revenue tonne kilometre

(RTK), that is the total weight of the passengers and the freight transported, was

reduced more (55%) than the specific fuel intensity per RPK because the amount of

freight transported grew faster than the amount of RPKs. This exemplifies, that the

                                               
17 It should be noted that the specific fuel consumption of aircraft is also affected by a number of
operational factors such as the actual usage cycles etc.
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specific fuel consumption per ASK and per RPK has been greater than what is

suggested by Figures 3.1 and 3.3 when the fuel consumption that is attributable to

freight transport is taken into account. In 1973, freight accounted for 26% of the total

revenue weight. The freight weight share was gradually reduced to around 20% in

1980 and has increased since then to around 31% in 1997. This subject is discussed

further in Sections 3.7.1 and 3.8.

As can be seen from Figure 3.3, a major part of the reduction of the specific fuel

intensity of the US air carriers was achieved between 1973 and 1983. In this ten-year

period the fuel consumption per revenue tonne kilometre (RTK) was reduced by 38%.

In the same period, the specific fuel consumption per available seat kilometre (ASK)

and per revenue passenger kilometre (RPK) was reduced by 33% and 41%

respectively. The main explanation for these reductions is that new fuel-efficient wide-

body jets, such as B747s, DC10s and L1011s were introduced into the fleet offering a

substantial increase in the seat capacity (but also a reduction in the average passenger

load factor as compared to the 1960s) as compared to the earlier narrow-body jets.

The average number of seats per aircraft increased by approximately 43% in the

period18. Since 1983, the yearly reduction in the fuel intensity has been lower. The

specific consumption per RTK, per RPK and per ASK was reduced by 38%, 20% and

6% respectively in the fourteen-year period between 1983 and 1997. The major part of

the reduction of the specific fuel consumption per revenue passenger kilometre

between 1983 and 1997 has emerged due to the increase in the average passenger

load factor from around 60% in 1984 to around 70% in 1997. Some explanations for

the lower yearly reduction of the specific fuel consumption in the second part of the

period is that the yearly fuel-efficiency improvements of the new types of aircraft that

were introduced decreased over the period and that these new aircraft perform an

ever-decreasing share of the total traffic because the old aircraft are kept in operation

[IPCC 1999]. Furthermore, the average number of seats per aircraft declined by 11% in

the second period and the average passenger trip length increased less (7%) than in

the first period (11%). It should be noted that a number of other factors that are not

mentioned here may have influenced the fuel-intensity improvement rates.

                                               
18 This estimate is calculated as the ratio of available seat kilometres to the revenue aircraft
kilometres [Davis 1995 and 1999].
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3.5 Fuel intensity of different types of aircraft

This section analyses the specific fuel intensity of different types of aircraft, based on

recent information from some European and Asian airlines’ yearly environmental

audits19 as well as some recent operating statistics for the American air carriers that

are submitted to the US Department of Transport and some information from a number

of academic studies that analyse the fuel intensity of aircraft in some earlier years (see

section 3.3 for a description of the sources of information used).

Figure 3.4 plots the average specific fuel consumption per available seat kilometre

(ASK) and per revenue passenger kilometre (RPK) for a range of different aircraft types

for the average stage lengths at which they are used. Most of the data refer to the use

in recent years, but a few older data are included as well (see the notes to Tables 3.1

and 3.2 for a further description of the data that are included in Figure 3.4. The data

includes subsonic jets and turboprops in operation in various years from the beginning

of the 1970s and onwards. The data for the fuel consumption per ASK and per RPK for

each aircraft type refers to the usage cycle for a specific airline, or a number of airlines,

in a specific year, including the specific load factor and the average stage distance

flown by type of aircraft in that year.

Some data for the older aircraft types are derived from academic studies analysing

1970s and 1980s fuel intensity of a number of American and British airlines by aircraft

type and are summarised in Table 3.2. The data for the aircraft types that are currently

in use are summarised in Table 3.1 and represents data for use in the period between

1998-2000 of airlines that are situated in the United States, in Europe and in the

Asia/Pacific region20. It should be noted that the different airlines may use different

                                               
19 For some of the European airlines (SAS and Lufthansa) that do not report their average stage
distances in their yearly environmental reports these data are taken from the operating statistics
that they are reporting to the Association of European Airlines [AEA 1999].
20 The airlines included in this study are: European - Air 2000, AirBaltic, Balair, Condor,
Lufthansa, Lufthansa City Line, Norwegian Air Shuttle, Premiair, SAS, Swissair. Asia/Pacific -
All Nippon, Cathay Pacific, Japan Airlines. American - Air Wisconsin, Airtran / Frontier, Alaska
Airlines, Aloha Airlines, America West Airlines, American Airlines, American Eagle/Simmons,
American Trans Air, Atlantic Southeast Airlines, Champion Air, Continental Airlines, Continental
Express, Continental Micronesia, Delta Air Lines, Eastwind, Emery Worldwide, Executive
Airlines, Express. One Intl/Jet East, Federal Express, Frontier Airlines, Hawaiian Airlines,
Horizon Air, Laker Airways, Mesaba Aviation, Miami Air Int'l, Midway Airlines (New), Midwest
Express Airlines, National Airlines, North American Airlines, Northwest Airlines, Omni Air
Express, Pro Air, Reno Air, Ryan Int'l Airlines, Southwest Airlines, Spirit Air Lines, Sun Country
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methodologies for calculating the specific fuel consumption per passenger kilometre.

For example, Lufthansa subtracts the fuel which is attributable to lifting the belly-hold

freight in the company’s passenger aircraft. Therefore, the further analysis’ in the

following sections primarily concentrate on comparisons of data between airlines or

groups of airlines for which the data are consistent, unless otherwise is mentioned.

Figure 3.4: Specific fuel consumption per ASK and RPK versus stage
distance for different types of aircraft
For an explanation of the data included see the explanations for Tables 3.1 and 3.2.
Data sources: [Premiair 2001] [All Nippon Airways 1999, 2000a and 2000b] [Lufthansa
1999 and 2000] [Lufthansa City Line 1999] [Swissair 1999] [SAS 1999b and 2000]
[Sarames 1984] [Air Baltic 2001] [DOT 2001] [Norwegian Air Shuttle 2001] [AEA 1999]

The fuel use per revenue passenger kilometre (RPK) is higher than the fuel

consumption per available seat kilometre (ASK), due to non-optimal passenger load

factors. Aircraft that are used for short-haul regional flights are typically operating at

load factors below average and are typically quite fuel intensive, as compared to

aircraft that are used at medium-haul and long-haul, using normally around 50-90g per

RPK (see Table 3.1 and Figure 3.2). The most fuel-intensive subsonic passenger

aircraft that are currently in use (among the airlines studied here) are low-capacity

regional turboprops and jets using up to 119g per RPK21.

                                                                                                                                         
Airlines, Sun Pacific, Tower Air, Trans States Airlines, Transmeridian Airlines, United Air Lines,
USAir, USAir Shuttle, Vanguard Air Express, World Airways.
21 Note that these data only include jets and turboprops in airline operation. Aircraft dedicated
for business- and general aviation are not included, and these may use more fuel per
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Aircraft type Average stage

distance

[km]

Fuel

[g/ASK]

Fuel

[g/RPK]

Seats No. of Airlines

Bae jet stream 31** 231-245 60-66 119* 19 2

Bae jet stream 41** 390 52 96 30 1

Embraer 120** 359-411 45-52 86* 30 2

Dornier 328** 385 43 65 32 1

Saab 340B** 304-338 46-52 84* 34 2

Embraer 135 567-613 37-64 83* 37 2

De Havilland DHC 8-100** 259-272 45 76* 37-39 2

ATR 42** 235-365 39-47 70* 46-48 5

Saab 2000** 456 41 66 47 1

Fokker 50** 278-368 30 48-76 46-50 4

Embraer 145 513-796 40-47 72* 50 3

ATR 72** 295-399 30-36 56* 64-68 6

Fokker 28 512-585 50-59 81-94 65-75 2

De Havilland DHC 8-Q400** 500 36 58 72 1

AVRO RJ 85 532-661 63* 89L-112 69-80 2

Canadair jet 100/145 621-1107 32 –63 46-87 48-50 4

DC-9-10 640-1040 65-68 107* 60-78 3

Bae 146-300 513 39 60 89 1

Fokker 100 494-961 41-54 66* 97-98 3

DC-9-30 552-1181 33-58 77* 83-117 8

B737-100/200 229-1250 28-64 62* 95-123 13

DC-9-40 782-1390 38-54 69* 100-127 3

B737-500 604-1274 37-39 57*-72L 103-122 4

MD-87 741-852 38-44 61-64* 110-125 3

B717-200 759 23 33 119 1

DC-9-50 203-743 48-61 80* 115-134 3

A319 808-2131 28-32 42-53L 120-126 5

B737-300/700 685-2525 24C-36 46*-59L 120-155 12

B727-100 2062 37 79 170 1

B727-200 319-1887 36-83 66* 95-179 15

MD-80 & DC-9-80 855-1790 31-40 51* 114-160 10

A320-100/200 696-2700 16C-38 18C -52 110-183C 14

MD-90-30/50 645-1340 29-40 48*-53 141-150 4

B737-400 630-2257 24-33 46* 140-170 6

B737-800 1126-3848 26-36 38*-58 146-179 4

A321 763-787 16C-24 18C -40 182-220C 3

Table 3.1: Recent airline reporting on specific aircraft fuel consumption 1998-
2000
(Table 3.1 continues on the next page…)

                                                                                                                                         
passenger kilometre because they are generally designed for accommodating fewer
passengers than similar sized aircraft in scheduled airline operation.



90

B757-200 1600-3617 17C -29 19C -38* 158-233C 14

A310-300 994-3401 27 37-52L 222 2

B757-300 NR NR 25CL 252 1

B767-200/200ER 941-5746 23-37 46* 168-264 6

A300-600 1333-2705 30* 40-47L 228-270 2

A300B4-120 2794 27C 27C 298C 1

B767-300/300ER 796-5387 19C -32 21C -52 188-322C 9

L-1011-500 1776 42 56 244 1

DC-10-10 2073-3702 21-42 48* 267-379 7

A330-200/300 3081-3169 19C-21C 20C-28 196-409C 3

A340-200/300 7393 NR 29 –36L 212-291 2

DC-10-30 4085-6023 29C -45 34CL-46* 229-370CL 7

MD-11 4384-7150 23-41 31-60* 232-376 5

L-1011-100/200 2021-2998 30-37 43* 299-361 2

B777-200/300 870-7888 18D -36 27D -56 202-477D 7

B747-200/300 589-6817 23-52 32-108 310-389 5

B747-100/100SR 921-5735 28D-33 40-46 447-536D 4

B747-400 970-7883 24D -34 37L -53 343-569D 6

Table 3.1 continued…
* US airline average
** Turboprops
NR Not reported by any of the airlines
C In charter all-economy class configuration
D In domestic all-economy class configuration
L lufthansa
Note that the data that are shown here are generally for the total fuel consumption in
passenger aircraft, including the fuel used for lifting belly-hold freight. However, for the
aircraft that are operated by Lufthansa the fuel consumption related to freight transport in
passenger aircraft has been subtracted and the figures for the fuel consumption per RPK
are therefore lower than for similar aircraft that are operated by other airlines. Lufthansa’s
figures are marked with an L. In the case of the B747-400 Lufthansa reports the lowest
fuel consumption per RPK because this type of aircraft carry much belly-hold freight.
Lufthansa and Cathay Pacific Airways do not report their fuel consumption per ASK. For
the aircraft operated by Lufthansa Condor, Japan Airlines, Cathay Pacific and Air 2000 it
has not been possible to get data for the average stage distances, and their aircraft are
therefore not included in Figure 3.4. For the American air carriers, the specific fuel
consumption per ASK and RPK of each type of aircraft that is operated is shown as the
average for all carriers.
Data sources: [Condor 2000] [Premiair 2001] [Air 2000 2001] [Cathay Pacific Airways
Limited 2000] [All Nippon Airways 1999 and 2000] [Japan Airlines 2000] [Lufthansa 1999,
2000a and 2000b] [Lufthansa City Line 1999] [Swissair 1999] [SAS 1999b and 2000] [Air
Baltic 2001] [DOT 2001] [Norwegian Air Shuttle 2001] [AEA 1999]
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Aircraft type Average

stage

distance

[km]

Fuel

[g/ASK]

Fuel

[g/RPK]

Seats Year Airline

Shorts 360** - 51 87 36 1986 British airline's average

Fokker 27** - 46 85 44 1986 British airline's average

Vickers Viscount** - 80 94 60 1986 British airline's average

BAC 1-11 - 57 78 65-99 1986 British airline's average

B707 (all) 1587 62 119 129 1973 US airline average

DC-9-30 538 64 123 90 1973 US airline average

DC-9 - 41 67 85-110 1986 British airline's average

B737 (all) 496 59 114 94 1973 US airline average

B737 (all) - 32 34 106-149 1986 British airline's average

DC-8-10/50 1416 73 141 127 1973 US airline average

DC-8-60/70 1580 54 103 169 1973 US airline average

B757-200 - 30 37 189-225 1986 British airline's average

B767-200 - 23 23 273 1986 British airline's average

L-1011 1907 49 95 222 1973 US airline average

L-1011 - 46 55 226-234 1986 British airline's average

DC-10 1577 44 85 233 1973 US airline average

DC-10 - 39 52 233-379 1986 British airline's average

B747 (all) 2799 43 84 332 1973 US airline average

B747 (all) - 39 55 370-475 1986 British airline's average

Concorde - 175 313 100 1986 British airline's average

Table 3.2: Examples of 1970s and 1980s airline reporting on specific aircraft fuel
use
**Turboprops

Note that the figures for British airlines in 1986 do not give information on the average stage

distances and are therefore not included in Figure 3.4.

Sources: [Martin and shock 1989] [Sarames 1984].

The aircraft used at medium-haul typically use around 30-50g/RPK, but the most fuel-

efficient types consume less than 20g/RPK. However, the old DC9s operating in the

medium-capacity market use up to around 111g per RPK on average when operated

on short-haul routes at below average load factors.

Aircraft that are used for long-range flights normally consume around 40-50g/RPK. The

most fuel-efficient long-range aircraft consume below 30g/RPK whereas the least
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efficient types consume up to 60g/RPK22. The supersonic Concorde, that has not been

included in Figure 3.4, is in a class of its own among the long-range aircraft, using

175g/ASK and 313g/RPK. That is, the Concorde use about ten times as much fuel per

revenue passenger kilometre as do the most efficient subsonic long-range jets.

Furthermore, the Concorde cruise at much higher altitude (18 kilometres) than

subsonic aircraft (typically around 10-12 kilometres), leading potentially to a more

severe environmental impact per kilo of fuel burned than aircraft cruising at lower

altitudes23.

3.6 A further look into the specific fuel intensity of aircraft

This section identifies some of the main determinants of aircraft specific fuel

consumption, that is airframe characteristics and engine technology, passenger and

freight load factors, stage distances and seat-configuration. Other factors, such as the

choice of speed and altitude, flying indirect routings, stacking above congested

airports, weather conditions, engine deterioration, fuel tankering, weight of aircraft

seats and other interiors, and additional weight of in-flight meals etc., are not

considered here, but are also determinants in aircraft fuel use.

3.6.1 Airframe size and engine

The main part of the reduction in the specific fuel consumption per available seat

kilometre that has been achieved over the past decades are due to the use of more

fuel-efficient engines and the use of bigger aircraft on average.

As for engine technology, turboprops are the most fuel-efficient (see Section 3.6.3 and

Figure 3.14), but are mainly used for small- to medium-sized regional aircraft. The main

reasons for not using turboprops for larger aircraft is that they cannot generate the

same level of thrust and speed as can turbojets and turbofans. In recent years, regional

jets have seen strong sales whereas turboprops have to some extent become out of

fashion, partly due to consumer preferences for jets over turboprops24.

                                               
22 We note that the fuel consumption per ASK and RPK of long-range aircraft will typically be
much lower than this if taking account of the fact that these aircraft carry much belly-hold freight.
This is explained further in Section 3.8.
23 For an introduction to the possible impact of aircraft engine emissions on the global
atmosphere see [IPCC 1999].
24 For a further introduction into the emerging role of regional jets in the US see [DOT 1998].
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Jet engines have seen large improvements since the first civil turbojets were

introduced in the early 1950s. The introduction of low-bypass turbofans in the 1960s

and later high-bypass turbofans in the 1970s and third-generation turbofans in the

1980s reduced the specific fuel consumption per amount of thrust produced as

compared to the early turbojets [IPCC 1999] [Birch 2000]. Basically, the reduction in

the specific fuel consumption has been achieved by improving the thermal efficiency of

the combustion chamber while increasing the propulsive efficiency of the fan. The

thermal efficiency improves as the temperature and the pressure in the engine’s

combustion chamber increase while the propulsive efficiency improves as the engine’s

bypass-ratio increases25. However, counteracting tendencies have to some extent

reduced the overall environmental improvements. One example is that when the

bypass ratio of turbofan engines increases the engine’s weight and drag increases.

Another example is that when the combustion temperature increases the emissions of

NOX per amount of fuel burnt also increases. NOx is a GHG precursor when emitted at

cruise altitude. However, new types of low-emission combustion chamber technologies

can to some extent reduce the NOx emissions while also reducing the specific fuel

consumption [IPCC 1999].

It should also be mentioned here that the newest high-bypass turbofan engines are

less noisy than the earlier versions [IPCC 1999]. Although there are no government

standards for the specific fuel consumption and gaseous emissions at cruise altitude

from aircraft engines, some ICAO regulations put out standards for the maximum

allowable engine noise and gaseous emissions (soot, unburned hydrocarbons, carbon

monoxide and nitrogen oxides) through the so-called landing and take off (LTO) cycle.

A part of these regulations requires the airlines to phase out or re-engine or hushkit the

oldest aircraft models, the so-called chapter 2 certificate aircraft, to apply to the current

chapter 3 standard that is applicable to all aircraft in operation from 2002. Re-engine

schemes may make the old aircraft more fuel efficient whereas hushkits may increase

their specific fuel consumption while a phasing out may allow for the introduction of

newer and more fuel-efficient aircraft types [IPCC 1999].

                                               
25 The term bypass-ratio is a measure for the amount of air surpassing the combustion chamber
through the duct surrounding the engine core over the amount of air passing through the
combustion chamber.
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As for airframe technology the main part of the reductions in the specific aircraft fuel

consumption is attributable to increases in the aircraft size and thereby the seat and

freight capacity. However, some other main features are the improvements in the lift

and drag performance as well as the use of advanced lighter and stronger airframe

materials (aluminium alloys and composite materials) leading to weight reductions

[IPCC 1999].

A look at the data presented in Tables 3.1 and 3.2 reveals the impact of the

technological improvements to some main aircraft models that were operated by the

American air carriers in 1973 and 1998 respectively. For example, in 1973 the B737s

consumed around 59g of fuel per ASK on average and had 94 seats on average. For

comparison, the B737-500s that are operated by American major airlines in 1998 use

37g of fuel per ASK and have 110 seats on average. A second example for comparison

is the long-range B747. In 1973 the B747s used 43g per ASK and had 332 seats on

average. In 1998 the B747-400s use 32g per ASK and have 383 seats on average. A

third example for comparison is that the 233-seat DC-10 tri-jet introduced in the early

1970s used around 44g per ASK while the 290-seat B777-200 twinjet introduced in the

mid-1990s consume around 28g per ASK [Sarames 1984] [Aircraft Economics 1999f

and 1999c]. Many airlines are today replacing their current aircraft by bigger types and

this makes it possible to operate at lower specific fuel consumption. For example, SAS

estimates that by replacing their current 169-seat B767-300ERs that were introduced

on SAS’ intercontinental routes in 1989 by 261-seat A330-300s and A340-300s the fuel

consumption per ASK is reduced by 10-20% [SAS 2001].

It should be noted however, that even though the fuel efficiency increases when using

large aircraft, the total fuel consumption from aircraft operations also increases. That is,

large aircraft still consume more fuel per aircraft kilometre even though they consume

less fuel per seat offered (when comparing aircraft of the same generation). Thereby,

the introduction of new and ever-larger aircraft adds to the rebound effect26. That is, by

introducing large-capacity fuel-efficient jets airlines can operate at lower direct

operating costs per seat kilometre offered making it possible to reduce the airfares and

thereby spurring additional demand. Airlines may furthermore have an increased

                                               
26 The term “rebound effect” is often used within energy studies for describing to which extent
fuel efficiency gains makes energy services cheaper, thereby allowing users to acquire even
more energy services, and thereby driving energy consumption upwards.
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incentive to sell a certain proportion of the tickets at discounted prices to fill up those

larger aircraft.

3.6.2 Passenger and freight load factors and seat configuration

Generally, the average yearly passenger load factors of commercial air carriers have

been improved through the last decades from around 50 percent in the early 1970s to

around 70 percent currently [ICAO 1999a]. The low load factors in the early 1970s was

a direct result of the over-capacity resulting from the introduction of very large wide-

body aircraft. Today, the passenger load factors on domestic scheduled services are

slightly lower than on international scheduled services [ICAO 1998a].

There are considerable differences among airlines concerning load factors. Passenger

load factors are reported from around 50% to above 75% by scheduled airlines,

although most major airlines operate above 65% [ICAO 1998a] [AEA 1998]. European

charter carriers generally operate at above average passenger load factors, some of

them close to the optimum, one example being Premiair reporting a passenger load

factor of 98% in 1999 [Premiair 2001].

The weight load factors, that is the weight of passengers and their baggage plus the

weight of the freight transported as belly-hold over the available capacity (measured as

available tonne kilometres, are generally lower than the passenger load factors. The

share of freight in total scheduled traffic range from less than 10% to above 40% for

some airlines [Cranfield College of Aeronautics 2000b].  Freight’s share of the total

weight transported is generally higher on long-haul routes than on medium-haul while

being almost insignificant on short-haul, see Section 3.8 for a further discussion of this

issue  [AEA 1999] [DOT 2001].

The fuel use per revenue passenger kilometre and per freight tonne kilometre is

generally reduced at higher load factors. However, the total aircraft fuel use increases

as the load factor increases, because of the weight that is added to the aircraft when

carrying additional passengers and freight and this is also reinforced by the aircraft

carrying more fuel. The connection between load factors and the fuel-burn per seat

vary according to the aircraft type and the distance flown. A recent study proposes, that

for modern medium- to large-capacity aircraft such as B747-400, B777-200, B757-200

and B737-700, the additional fuel burn at high load factors is rather small. For example,
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an increase in the passenger load factor from 70% to 100% is suggested to generally

lead to an increase of less than 5% in the total fuel use on trips of average lengths for

those aircraft [Daggett et. al. 1999]. For smaller short-haul aircraft as well as for some

older medium-capacity jets the fuel consumption increase considerably more than what

is suggested for modern medium-haul and long-haul jets [IPCC 1999, p. 280].

An example of the importance of the freight load factors for the fuel consumption per

revenue freight tonne kilometre transported by all-cargo carriers is illustrated in Figure

3.5. In 1998, the main types of aircraft used by the three major US all-cargo carriers

(UPS, DHL and FedEx) operated at weight load factors of between 47% and 67%. The

fuel consumption per revenue freight tonne kilometre is therefore around 1,5 to 2 times

as high as the fuel consumed per available tonne kilometre, that is the available

capacity27. The aircraft shown to the left in Figure 3.5 are operating at short distances

with average revenue loads of between 10-30 tonnes and those to the right are long-

haul aircraft with revenue loads of up to 65 tonnes.

                                               
27 These all-cargo carriers use old jets for some of their short haul and medium-haul operations.
Because the utilisation rate is often low in such operations it may be relatively expensive to use
new aircraft with high capital costs even though these would have lower fuel costs. For
example, some 40% of the freighter fleet that is operated by the three largest US all-cargo
carriers (UPS, FedEx and DHL Airways) consists of relatively old DC8s, DC9s, B727s and
DC10s, some of them dating back to the 1960s and the 1970s [Aircraft Economics 1999d].
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Figure 3.5: The specific fuel consumption of the main aircraft models
operated by the three major US all-cargo carriers in 1998
Source: [Aircraft Economics 1999d]

An example of the link between the passenger load factors and the fuel use is given in

Figure 3.6 that illustrates the specific fuel consumption per available seat kilometre

(ASK) and per revenue passenger kilometre (RPK) of the aircraft in All Nippon Airways’

fleet in 1998. All Nippon Airways’ fuel use for different aircraft operated at domestic

routes is generally between 35-46g per RPK, when excluding the 108g/RPK used by

the B747-200LR long-range low-density seat-configuration28 aircraft29. On international

long-range operations All Nippon Airways’ aircraft consume 46-61g/RPK on average.

The fuel use per RPK is generally 1,4-1,8 times higher than for ASK because of

average yearly specific load factors by aircraft type of some 55% to 73%.

                                               
28 Medium- and long-range aircraft types are produced in a range of versions offering different
seat configurations. Three-class seat-configuration offers seats in first class, business class and
tourist class. Two-class seat-configuration offers seats in business class and tourist class. One-
class seat-configuration features tourist class only. Seats at first class and business class are
the most spacious while tourist class seats acquire much less space. What is here referred to,
as high-density seat-configuration aircraft are those equipped mainly with tourist class seats
whereas three class seat-configured aircraft are referred to as low-density seat-configuration
aircraft.
29 It should be noted that All Nippon only used the B747-200LR on a total flight distance of
23560 kilometres in domestic operations in 1998, almost negligible as compared to the total
flight distance of around 270 million aircraft kilometres performed by the carrier in that year.
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Figure 3.6: The specific fuel use by aircraft type for All Nippon Airways’
passenger fleet in 1998
Data source: [All Nippon Airways 2000]

Figure 3.6 also indicates that All Nippon’s fuel use is generally higher on international

routes than in domestic mode. A part of this difference is due to the higher freight load

factors on international routes. Around one third of All Nippon’s revenue weight

transported in passenger aircraft on international routes is freight while passengers and

baggage weigh around two thirds. In domestic passenger operations the freight weight

only accounts for around 13% of the total revenue weight. However, the main

explanation for the differences between the specific fuel consumption in domestic and

international operations is that all-economy class high-density seat-configuration

aircraft are used on domestic routes while three-class low-density seat-configuration

aircraft are used on international flights. For instance, All Nippon’s B777-200s

accommodates 376 passengers in all-economy seat-configuration but only 250 in the

three-class international version, while the B747-400 accommodates 569 passengers

in the all-economy seat-configuration and only 337 in three-class mode.

Similarly, European charter carriers and many low-cost scheduled carriers generally

use high-density seat-configuration aircraft, thereby operating at lower fuel

consumption per available seat kilometre than scheduled flag carriers. Many examples

can be drawn from the data shown in Table 3.1, showing considerable differences in

the seat-configurations, especially in the segment for long-haul aircraft. For example,
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the European charter carrier Premiair operates A330-200s and A330-300s

accommodating 30% and 50% more seats respectively than similar aircraft types

operated by Swissair and Cathay Pacific respectively. A similar comparison in the

medium-range segment shows that the European charter carrier Air 2000 operates

A320s and A321s with 20-25 percent more seats than Lufthansa’s aircraft. The

operation at above average passenger load factors and the negligible amounts of

freight loads30 combined with the use of new-generation aircraft in high-density seat-

configuration, explain why the fuel intensity of Premiair and Air 2000 is around half of

the global average for the world fleet.

However, another not yet mentioned major feature of the specific fuel consumption of

aircraft is revealed in Figure 3.6, showing the B747-200LR to have considerably lower

specific fuel consumption per seat kilometre on international routes than on domestic

routes. This is mainly due to the fact that the specific fuel consumption depends on the

actual flight distance, as will be explained in the next section.

3.6.3 Flight distance

A European modelling study, “Abatement of Nuisances Caused by Air Transport”, gives

further insights into the effect of flight distances for the fuel consumption per aircraft

kilometre, as exemplified in Figure 3.7 [Gardner et. al. 1998] [Falk 1999]. The aircraft

fuel use per kilometre is generally reduced the longer the stage length, because a

rather large amount of fuel is consumed during the takeoff and climb to the cruising

height, whereas less fuel is consumed per time unit in high altitude cruising mode.

However, for the long-range aircraft the fuel use per kilometre begin increasing slightly

around 5000 to 8000 kilometres, depending on the aircraft in question [Falk 1999]. This

increase mainly occurs because the weight of the additional fuel load needed for

extended range outweighs the gains from extended cruising distance. The graphs in

Figure 3.7 illustrate the fuel use per aircraft kilometre for some selected aircraft types.

The examples shown are for generic aircraft models that are supposed to represent the

most used types of aircraft. Each generic model represents an average over a range of

models, with differences in the fuselage length, the seat configuration, the types of

engines fitted and the maximum take-off weight and range etc. The curves in Figure

                                               
30 On charter flights the amount of freight carried is normally negligible. According to Roos et. al.
[1997, p. 25] there is often too little time to load and unload cargo in charter operations and the
relatively high amount of passengers and baggage leaves only a little residual room available.
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3.5 should therefore merely be used to illustrate the tendency towards lower fuel use

per aircraft kilometre and ASK at increasing stage length, and the increase after a

certain point for long-range aircraft.

Figure 3.7: Generic aircraft fuel use versus stage distance
Data source: [Falk 1999]

The fuel consumption per aircraft kilometre and ASK rise sharply at low sector lengths

for all aircraft types. In the case of the Boeing 747-400, the point at which the fuel use

per ASK starts to rise sharply is at distances below about 1400 kilometres, with the fuel

consumption per ASK at 500 kilometres being about double that at 2000 kilometres.

For smaller jets, such as B737s and A320s the fuel consumption per ASK seems to
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start increasing at sector lengths of less than 800 kilometres with the doubling in fuel

consumption per ASK occurring at around 200 kilometres.

In most cases, turboprop aircraft (not shown in Figure 3.7) are more fuel-efficient than

similarly sized jets for short-haul air transport, the specific fuel consumption being less

than one third higher at sector distances of 185 kilometres as compared to sector

distances of around 700 kilometres31 [Norwegian Air Shuttle 2001]. This is one reason

why turboprops are likely to remain dominant for use at flight distances shorter than

approximately 400 kilometres. At the other end of the market, in the segment for long-

haul aircraft, the fuel consumption per revenue load increases more than the increase

in the fuel consumption per aircraft kilometre that is shown in Figure 3.7 at flight lengths

that are longer than the maximum payload range32, because payload is removed to

accommodate the extra fuel, and this effect becomes extreme once full-tank range33 is

reached [Aircraft Economics 1999a].

The data reported to the US Department of Transportation for the average fuel burn per

ASK and per RPK by aircraft type of American air carriers in 1999 are shown in Figure

3.8. Figure 3.8 indicates that the fuel use per ASK is generally highest on short-haul,

while being lowest on medium-haul and on long haul. However, when also considering

that the load factors are below the average on short-haul, the fuel consumption per

RPK on those distances is considerably higher than on medium-haul and long haul.

The 65-seat ATR-72 turboprop is the least fuel intensive aircraft that is used on

average stage distances of around 365 kilometres using about 33g per ASK on

average. According to information from the manufacturer the newest derivative, the 68-

seat ATR 72-500 should be even more fuel-efficient than the older –200 version [ATR

2001]. At average stage distances of about 750 kilometres, the 119-seat B717-20034 jet

                                               
31 This estimate is based on data for the specific fuel consumption of Fokker 50s according to
stage distance at various load factors, speeds and cruising heights that has been kindly
provided by a Norwegian regional airline [Norwegian Air Shuttle 2001].
32 The maximum payload range is a term that expresses the range of an aircraft flying with the
maximum allowable payload weight.
33 The full-tank range is a term that expresses the range of an aircraft that takes off with filled-up
fuel tanks.
34 The brand-new B717-200 was only in use by one single American air carrier in 1999, making
this estimate less statistically certain than for most of the other models. The B747-400 was only
operated by two airlines. The B737-800 was operated by three airlines, the B777 by four
airlines, the ATR 72 by six airlines, the A320 by eight airlines and the B757-200 by twelve
airlines.
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is the least fuel-intensive aircraft using about 23g per ASK. At stage distances of

around 2000-3000 kilometres the 148-seat A320, the 186-seat B757-200 and the 149-

seat B737-800 jets are the least fuel-intensive aircraft using around 26-27g per

available seat kilometre. At average stage distances of over 5000 kilometres the 274-

seat B777 and the 376-seat B747-400 are the least fuel intensive using about 30g and

33g per ASK respectively. That is, if comparing the most efficient types described here,

the fuel intensity per ASK is slightly lower on medium-haul than on long-haul (but this

difference is smoothed out if also taking into account that long-range aircraft typically

transport more freight than medium-haul aircraft, see Section 3.8).
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   Aircraft used at average stage distance below 1000 kilometres

Aircraft used at average stage distance above 1000 kilometres

Figure 3.8: US major airlines' average specific fuel use and the
average stage distances for different types of passenger aircraft 1999
Note that these data are for the total fuel consumption in passenger aircraft. That is,
these data also include the fuel consumed for lifting belly-hold freight. Large-
capacity long-range passenger aircraft generally carry a relatively high proportion of
freight. Therefore, it could be argued that the fuel consumption figures for
passenger transport in long-haul aircraft are somewhat overrated in the Figure (see
Section 3.8).
Data source: [DOT 2001].
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3.7 A comparison of the average fuel intensity of airlines

Some airlines publish environmental reports giving estimates for their fleets’ average

yearly fuel intensity. Such data are compared in Tables 3.3 and 3.4 for a number of

airlines.

The airlines represented in Table 3.3 report average fuel-burns of between 24-

46g/ASK, and between 26-81g/RPK. European charter airlines are generally the most

fuel-efficient. Scheduled airlines that are operating relatively old aircraft mainly at short-

and medium-haul routes, such as SAS35 in 1998, are more than twice as fuel intensive

as the most efficient charter airlines. Commuter- and regional airlines, like Lufthansa

City Line, which often operate at below average load factor at short-range routes,

generally use around twice as much fuel per passenger kilometre than do the major

scheduled airlines.

                                               
35 It should be noted that SAS has embarked upon a major fleet renewal scheme by introducing
the newest types of B737s to substitute its DC9s and Fokker F-28s, and A330/340s will replace
SAS’ B767-300Ers. Furthermore, A321s will supplement SAS’ MD90s. SAS’ specific fuel
consumption is therefore likely to be reduced in the coming years [SAS 2001].
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Fuel

[g/ASK]

Fuel

[g/RPK]

Fuel

[g/ATK]

Fuel

[g/RTK]

Passenger

Load

factor

%

Freight

weight

share in

passeng

er

aircraft

Lufthansa average**** 30 39 - - 75 -

Lufthansa Scheduled - (37)* 42 - - - 17%

Lufthansa City Line 46 81 - - 57 -

Lufthansa Condor*** - 28 - - 81 -

KLM - - 227 298 77 -

SAS 40 62 285 479 66 -

British Airways 35 (35)* 49 248 370 67 30%

Braathens 38 70 - - - -

Finnair 1997 30 44 - 377 72 -

Swissair - 35 390 - - -

SairLines** - 38 - - - -

Air France - (42)* 49 - - - -

All Nippon Airways 30 47 - - 64 22%

Japan Airlines - - 246 - 69 -

Cathay Pacific - 35 - - - -

Delta Airlines 1999 - 47 - - - -

American Airlines 1999 34 - - - - -

American Eagle 1999 43 - - - - -

Premiair*** 1999 24 26 - - 98 -

Table 3.3: The average specific fuel consumption of passenger airlines36

All data are for 1998 except when anything else noted.
*The figures in brackets represent airline estimates where fuel used for lifting belly-
hold freight in passenger aircraft is subtracted. Note that the three airlines that give
such estimates for the fuel which is attributable to belly-hold freight all use different
methodologies in the calculation
**(Swiss Air, Crossair, Balair/(CTA) altogether).
***European charter carriers.
****Average for Lufthansa Scheduled, Lufthansa City Line and Lufhansa Condor.
Sources: [Lufthansa 1999 and 2000a] [Lufthansa City Line 1999] [Condor 2000] [KLM
1999] [SAS 1999a and 1999b] [British Airways 1999a and 1999b] [Braathens 1998]
[Finnair 1998] [Swissair 1999] [Air France 2000] [All Nippon Airways 1999] [Japan
Airlines 2000] [Cathay Pacific Airways Limited 2000] [Delta Airlines 2000] [American
airlines 2000] [Premiair 2001].

                                               
36 It should be noted that these yearly averages are constantly changing. For example, British
Airways nearly halved its specific fuel intensity in the period between 1974 and 1999, see
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Similarly, Air France and Lufthansa Cargo report their average fuel use per revenue

freight tonne-kilometre (RFTK) performed. These are averages over the fuel consumed

for freight transport in their all-cargo freighters and the fuel that is attributable to lifting

the belly-hold freight in their passenger aircraft. According to these estimates from Air

France and Lufthansa Cargo around five times as much fuel is consumed for

transporting one tonne of freight one kilometre as is used per passenger kilometre on

average. However, this is an average over a number of different aircraft models that

operate at different stage lengths. The specific fuel consumption of airfreight on short

haul in passenger aircraft can be more than twice as high as the average. Furthermore,

the fuel consumption per RFTK in some of the all-cargo aircraft that are operated by Air

France, Lufthansa Cargo, KLM, UPS, FedEx and DHL are shown in Table 3.4. These

data show that the specific fuel consumption in all-cargo freighters range from around

165g per RFTK to around 644g per RFTK. The lowest figures reported are for long-

haul MD11s that operate at average loads of above 60 tonnes while the highest figures

represents old B727s that operate at average stage distances of around 500-1300

kilometres carrying average loads of around 10-20 tonnes, see Figure 3.5. The

average specific fuel consumption of the operations performed by the three Major US

all-cargo carriers in 1998 can be estimated from the data described earlier in Figure 3.5

at around 237g per revenue freight tonne kilometre (RFTK) transported and some 138g

per available tonne kilometre (ATK). Note that these data do only cover the most used

types of aircraft by the carriers in question [Aircraft Economics 1999d].

                                                                                                                                         
Figure 3.1. This is representative for the general historic trend reported by most major
scheduled airlines.
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Average Medium-haul

passenger

aircraft

Long-haul

passenger

aircraft

Medium-haul

freighter

Long-haul

freighter

Fuel Fuel Fuel Fuel Fuel

g/RFTK g/RFTK g/RFTK g/RFTK g/RFTK

Air France 232 360a 215a 245

Lufthansa cargo 1999 210 160-550d 165-212d 165f-204e

KLM 1999 - - - 262c

UPS - 176-644d 224b

FedEx - 215-513d 158f

DHL - 250-721d

Table 3.4: The specific fuel consumption of airfreight
a) Average over a number of models, b) B747-F, c) B747-300F, d) various aircraft models,
e) B747-200F, f) MD-11.
Sources: [Air France 2000] [Lufthansa 2000b] [Lufthansa Cargo 2000] [KLM 2000]
[Aircraft Economics 1999d]

The fuel intensity estimates for the different airlines that are presented here are not

directly comparable between airlines because of the differences in reporting

methodologies. One example is that some airlines subtract a part of the fuel

consumption which is attributable to freight transport in passenger aircraft, whereas

others include this use in the estimate for the specific fuel use per revenue passenger

kilometre. All airlines carry both passengers and freight. Some freight is carried in

freight-only freighter aircraft, some in combi-aircraft where a freight section replaces a

part of the passenger section, while some is carried as belly-hold freight in standard

passenger aircraft.

For airlines that carry much freight in passenger aircraft the fuel used for lifting the

freight can contribute to a rather high proportion of the total fuel consumption. For

example, British Airways’37 average fuel consumption per RPK is 49g for the whole

passenger fleet on average, but if taking freight into account the efficiency improves to

35g per RPK (see the figure in brackets in Table 3.3) [British Airways 1999b, p. 21].

                                               
37 Freight amounted to around 30% of the revenue weight transported by British Airways in
1998.
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Similarly, Lufthansa’s38 and Air France’s Scheduled services uses 42g and 49g per

RPK respectively, but the numbers are reduced to around 37g and 42g when

subtracting the fuel used for lifting belly-hold freight. The fuel consumption figures for

scheduled airlines can be more realistically compared to charter carriers if using

estimates for the fuel consumption where the fuel use which is attributable to freight is

subtracted, because charter carriers generally transport negligible amounts of freight.

The division of fuel use between passengers and freight is not straightforward. For

example, British airways attributes 30% of their fuel use to freight because around 30%

of its revenue load is freight [British Airways 1999b, p. 21]. Other airlines argue, that

transporting one tonne of freight requires less fuel than transporting one tonne of

passengers and luggage. For example, Lufthansa attributes 1,7 times as much fuel to

passenger weight than to freight weight [Lufthansa 2000b, p. 51] while Air France uses

a factor of 1,4 for medium-haul aircraft and up to a factor of 2 for some long-haul jets

[Air France 2000, p. 9]. These ratios are supposed to account for the weight and space

within an aircraft that is acquired for in-flight passenger services such as seats, galleys,

flight crews, catering supplies etc. Only three of the airlines mentioned in Table 3.3

have reported specifically on both the passenger load factors and the freight loads in

their passenger aircraft.

Another example of the differences in reporting methodologies between airlines is the

use of different assumptions for the average weight of passengers and their baggage

when calculating the ratio between the weight that is attributable to passengers and

freight respectively.

Yet another example of the differences in airline reporting methodologies is that for

some scheduled airlines the passenger load factor refers to passengers that have paid

a certain percentage of the normal fare. Children oftentimes get discounts or travel for

free, as do frequent flyers having earned bonus points. The actual load factor is

therefore sometimes higher than seen from the statistics and the fuel use per

passenger may be somewhat lower.

                                               
38 Freight represented around 17% of the total weight carried by Lufthansa in passenger aircraft
in 1998 [Lufthansa 1999].
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3.7.1 A closer look at the American air carriers

This section takes a closer look at the specific fuel consumption of the American air

carriers. The data material shown here covers the overall traffic performance of all the

US carriers in the years 1982 and 1999. These data are not biased by the fuel

consumption of all-cargo carriers that was included in the overall data shown in Figures

3.1 and 3.3. However, the data still include the fuel consumption that is attributable to

belly-hold freight in passenger aircraft. The data describes the fuel consumption per

ASK on domestic routes (Table 3.5) and on routes to Latin America (Table 3.6) as well

as on Atlantic (Table 3.7) and Pacific routes (Table 3.8). Furthermore, the passenger

load factors are available for each airline in 1999. These data exemplify the differences

in the specific fuel consumption among the various airlines in the different markets.

Figures 3.9 and 3.10 exemplify the variations in the specific fuel consumption of a

number of US air carriers.

Figure 3.9: Illustration of the specific fuel consumption per ASK and RPK
of American air carriers in domestic operations in 1999
Source: [DOT 2001]

Figure 3.9 shows the average yearly specific fuel consumption per ASK and per RPK

of US air carriers on domestic routes in 1999. The specific consumption varies between

27g and 64g per ASK and between 36g and 102g per RPK, if excluding a single carrier

that uses some 74g per ASK and 160g per RPK. Among the Major US airlines that

performed around 90% of the domestic revenue passenger kilometres in the United

States in 1999 the specific consumption ranges between 30-37g per ASK and 44-53g
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per RPK. The large regional carriers, such as American Eagle and Continental

Express, typically use around 50% more fuel per ASK and per RPK than the Major air

carriers do. The overall average specific fuel consumption on domestic routes is

around 35g per ASK and 50g per RPK. In 1982 the average specific consumption per

ASK was about 43g suggesting a reduction of approximately 8g per ASK in the period

or about 19%.

Figure 3.10: Specific fuel consumption of US air carriers on Domestic,
Atlantic, Pacific and Latin America routes in 1982 and 1999
Source: [DOT 2001]

Figure 3.10 illustrates the specific fuel consumption per ASK on Domestic, Atlantic and

Pacific routes and on routes to Latin America in 1982 and 1999. On routes to Latin

America, the average  specific fuel consumption is about 32g, representing a reduction

of some 7g per ASK or about 17% as compared to 1982. In the Atlantic traffic the

average specific fuel consumption is about 33g per ASK, representing a reduction of

some 5g or some 13% in the period since 1982. In the Pacific traffic the specific

consumption is about 38g per ASK, representing a reduction of 4g or some 10% in the

period since 1982. That is, the fuel intensity per ASK is lowest on routes to Latin

America and on Atlantic routes and a little higher on domestic routes and highest on

pacific routes. These patterns fit with the trends illustrated in Figures 3.4 and 3.7 with

the highest specific fuel consumption on short-haul routes and slightly higher fuel

consumption on long haul than on medium-haul. The reductions since 1982 have been

greater in the medium haul segments than in the long-haul segments.
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 1999 1982

g/ASK g/RPK
Avr.
dist
[km]

% of
ASKs

g/ASK
Avr.
dist
[km]

% of
ASKs

Domestic Domestic
United Air Lines 33 47 1486 12,2 United Air Lines 39 1387 14,2
Delta Air Lines 36 50 1166 11,9 American Airlines 43 1417 10,2
American Airlines 34 50 1672 11,7 Delta Air Lines 44 868 10,1
Northwest Airlines 37 53 1182 6,4 Eastern Air Lines 44 917 9,5
Continental Airlines 35 48 1537 5,7 Trans World Airlines 43 1241 5,9
Southwest Airlines 33 48 747 5,6 Republic Airlines 48 546 3,8
US Airways, Inc 37 53 927 5,6 Northwest Airlines 47 985 3,5
Trans World Airlines 37 50 1241 3,3 Continental Airlines 43 1112 3,3
America West Airlines 30 44 1384 2,7 Western Air Lines 40 1008 3,2
Alaska Airlines 33 49 1199 1,7 Pan Am. World Airw. 42 1605 3,0
American Trans Air 32 41 1405 1,2 US Airways, Inc 52 549 2,5
Hawaiian Airlines 37 49 1741 0,6 Piedmont Aviation 49 511 1,6
Airtran / Frontier (Old) 40 - 843 0,6 Airtran / Frontier (Old) 42 626 1,3
American Eagle/Simm 44 72 368 0,5 Southwest Airlines 43 477 1,1
Continental Express 47 76 469 0,4 Pacific Southwest Airl. 39 565 1,1
Frontier Airl. (New) 30 50 1307 0,4 Ozark Air Lines 46 589 0,9
Sun Country Airl. 33 50 1686 0,4 Texas Intl. Airlines 43 736 0,7
Spirit Air Lines 36 48 1401 0,3 Braniff 44 636 0,7
Midwest Express Airl. 50 76 1239 0,3 Air California 40 566 0,6
Tower Air 27 36 2737 0,3 People Express Airl. 36 860 0,6
Reno Air 38 61 796 0,3 Alaska Airlines 52 884 0,5
Mesaba Aviation 54 95 348 0,3 Wien Air Alaska 57 332 0,3
Atlantic Southeast Airl 47 80 440 0,3 Midway Airlines (Old) 46 714 0,3
Horizon Air 54 87 365 0,2 New York Air 37 531 0,3
Air Wisconsin 39 59 502 0,2 Capitol Intl. Airways 31 2593 0,2
Midway Airlines (New) 57 86 760 0,2 Hawaiian Airlines 50 188 0,2
Champion Air 40 - 1877 0,2 TranStar Airline 38 477 0,1
Totals 35 50 1287 74,1 Totals 43 1102 80,4

Table 3.5: The fuel consumption per ASK of the American air carriers in 1982 and
per ASK and RPK in 1999 in domestic operations39

Source: [DOT 2001].

 1999 1982

g/ASK
Avr.
dist
[km]

% of
ASKs

g/ASK
Avr. dist

[km] % of
ASKs

Latin America Latin America
American Airlines 33 2280 2,7 Pan Am. World Airways 41 2539 1,4
Continental Airlines 37 2225 1,0 Eastern Air Lines 36 1158 1,0
United Air Lines 29 4192 1,0 American Airlines 38 1605 0,8
Delta Air Lines 28 2454 0,4 Western Air Lines 36 2230 0,3
Alaska Airlines 31 1830 0,2 Braniff 44 1401 0,2

Delta Air Lines 37 1535 0,2
Totals 32 2589 5,41 Totals 39 1856 3,9

Table 3.6: The fuel consumption per ASK of the American air carriers in 1982 and
1999 in traffic to Latin America40 Source: [DOT 2001].

                                               
39 Note that only those airlines performing more than 0,14% of the total ASKs (performed by all
American airlines on all routes in 1999) within each segment, that is Domestic, Atlantic, Pacific
and Latin America are shown in tables 3.5-3.8. This choice has been taken to limit the use of
space for the Tables.
40 See footnote above.
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 1999 1982

g/ASK
Avr.
dist
[km]

% of
ASKs

g/ASK
Avr. dist

[km] % of
ASKs

Atlantic Atlantic
Delta Air Lines 35 6618 2,4 Pan Am. World Airways 41 2401 4,1
United Air Lines 29 6394 2,3 Trans World Airlines 35 5177 3,4
American Airlines 34 6528 2,1 Northwest Airlines 41 3592 0,5
Continental Airlines 38 6117 1,5 Delta Air Lines 36 7087 0,3
Northwest Airlines 36 6359 1,3 American Airlines 31 7616 0,2
US Airways, Inc 22 6236 0,6 Capitol Intl. Airways 30 4979 0,1
Trans World Airlines 30 5903 0,5
Tower Air 40 5679 0,4
American Trans Air 29 3086 0,3
World Airways 28 4327 0,3
Totals 33 6236 11,8 Totals 38 3882 8,5

Table 3.7: The fuel consumption per ASK of the American air carriers in 1982 and
1999 in Atlantic traffic41

Source: [DOT 2001].

 1999 1982

g/ASK
Avr.
dist
[km]

% of
ASKs

g/ASK
Avr. dist

[km] % of
ASKs

Pacific Pacific
United Air Lines 36 7257 3,3 Pan Am. World Airways 41 5640 2,7
Northwest Airlines 42 5868 2,9 Northwest Airlines 43 4593 2,1
Delta Air Lines 35 8798 0,5 Continental Airlines 44 1793 0,3
American Airlines 37 9281 0,5
Continental Micronesia 35 2027 0,5
Continental Airlines 29 10731 0,3
Totals 38 6810 7,9 Totals 42 4957 5,1

Table 3.8: The fuel consumption per ASK of the American air carriers in 1982
and 1999 in pacific traffic42

Source: [DOT 2001].

As it was mentioned in Section 3.4, the overall fuel consumption figures coupled with

the overall figures for the amount of ASKs and RPKs transported in 1997 suggest that

the US air carriers consume around 39g per ASK and 56g per RPK (see Figures 3.1

and 3.3). However, the data provided by the US Department of transport on the

operating statistics of all the US air carriers makes it possible to deduct the fuel

consumed by the all-cargo carriers [DOT 2001]. The Grand totals that are shown in

Column 2 in Table 3.9 are estimates for the specific fuel consumption per ASK

including the all-cargo carriers, while the totals in Column 3 in Table 3.9 are estimates

                                               
41 See footnote above.
42 See footnote above.



113

that excludes the fuel consumed by the all-cargo carriers. The fourth column in Table

3.9 shows how much the Grand totals are reduced when subtracting the fuel that is

consumed by the all-cargo carriers. Column 5 in Figure 3.9 shows the passenger

airlines’ share of the total fuel consumption. Our calculations suggest that the specific

fuel consumption per ASK that is shown in Figure 3.3 is reduced by 3 percent in 1982

and this share increases over the years to 12 percent in 1999 because the all-cargo

carriers consume an increasing share of the total consumption. Thus, the specific fuel

consumption per ASK of all US passenger carriers is around 35g in 1999. If taking an

average load factor of around 71% [DOT 2000, p. 258] into account, the overall specific

fuel consumption per RPK is about 49g (as compared to the 56g when including the all-

cargo carriers).

The data used for these calculations do not allow for calculating the specific fuel

consumption of all the all-cargo carriers because the data used for these calculations

do not include information on the revenue freight tonne kilometres (RFTK) transported

[DOT 2001].

Grand totals

incl

all-cargo

Totals

excl

all-cargo

Difference

between Grand

totals and

Totals

% of fuel consumed

by these carriers

included in the

totals

[g/ASK] [g/ASK] [%] [%]

1982 43,2 41,8 -3 96,9

1985 41,1 39,3 -4 97,5

1990 41,2 38,3 -7 92,7

1995 39,6 35,5 -10 89,5

1999 39,8 35,0 -12 87,6

Table 3.9: Correction of the specific fuel consumption of
American carriers taking into consideration the amount of freight
that is carried by all-cargo operators43.
It should be noted that these data are calculated (by the author of this report)
on the basis of data provided by the US Department of Transport on the fuel
consumed and the ASKs produced by all American air carriers in a number
of years.
Source: [DOT 2001]

                                               
43 Note that the author of this report has revised the 1985 data because United Airlines’ fuel
consumption was not reported in the spreadsheet data received from the United States
Department of Transport. United Airlines carried some 12% of total ASKs in 1985. The fuel
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3.8 A closer look at the weight share of freight in passenger aircraft

This section quantifies how much freight that is transported as belly-hold in passenger

aircraft by different aircraft and airlines and discusses how much of the fuel that is

attributable to passenger and freight revenue weight respectively on different routes.

Currently, freight and passengers account for around 30% and 70% respectively of the

total number of revenue tonne kilometres that is performed by the World’s airlines44.

However, some of this freight is carried in all-cargo aircraft. In 1999, 29 billion revenue

freight tonne kilometres (RFTKs) were transported by the American air carriers [DOT

2000, p. 326]. Eight all-freight carriers alone carried more than half of this total45. That

is, less than 13 billion RFTKs were carried by the passenger airlines, representing

some 18% of the total amount of RTKs transported46. The average weight share of

freight is therefore less than 18% for the US passenger carriers. Similarly, in Europe,

around 44% of the freight that is carried by the scheduled airlines is transported in

passenger aircraft and the residual in all-cargo aircraft. The freight’s weight share in the

total scheduled passenger services is 23%. The share is 29% in international long-

                                                                                                                                         
efficiency of United Airlines in 1982 has been used (by the author of this report) to calculate
United Airlines’ approximate fuel consumption in 1985.
44 In 1999, the World’s airlines transported around 1,6 billion passengers over an average
passenger trip length of around 1792 kilometres thereby generating approximately 2834 billion
revenue passenger kilometres (RPKs). Similarly, the airlines also transported around 124
billions revenue freight tonne kilometres RFTKs [Air Transport World 2000]. The RPKs
corresponds to around 283 billions revenue tonne kilometres (RTKs) at an average weight of
100 kilograms per passenger inclusive baggage (see Appendix D for further details) [Air
Transport World 2000].
45 FedEx 6,9 million RFTKs, United Parcel Service 4,1 million RFTKs, Emery Worldwide 1,1
million RFTKs, Polar Air Cargo 0,8 million RFTKs, Evergreen Int'l 0,8 million RFTKs, Airborne
Express 0,6 million RFTKs, DHL Airways 0,4 million RFTKs and Atlas Air 0,6 million RFTKs [Air
Transport Association 2000e]. The statistical sources used here do not contain detailed
information on the amount of freight that is carried by the residual all-cargo carriers. However,
22,7 billions RFTKs are transported by the Major airlines [DOT 2000, pp. 325-326] and of these
the 11,4 billions RFTKs are carried by all-cargo carriers [Air Transport Association 2000e]. That
is, the Major passenger airlines carry some 11,3 billions RFTKs. The US National carriers carry
around 5 billions RFTKs and the large regional carriers carry around 0,9 billion RFTKs [DOT
2000]. At least 3,9 billions RFTKs of the 5 billions carried by the US Nationals is carried by all-
cargo carriers [Air Transport Association 2000e].
46 In these US statistics the weight of a passenger plus baggage is set at 100 kilograms [DOT
2000, p. 325].
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haul47 scheduled passenger services, 10% in international short/medium haul48

scheduled passenger services and around 4% in domestic scheduled passenger

services [AEA 2001]. In Japan, All Nippon Airways report the weight shares of freight in

their passenger aircraft at 13% on domestic routes and at 36% on international routes

[All Nippon Airways 2000b]. These data suggest that, as a general rule of thumb, Asian

carriers transport the highest shares of freight in their passenger aircraft while the US

passenger airlines transport a lower share of freight than the European passenger

airlines do. This is probably due to the large share of domestic traffic performed by the

US air carriers that accounts for around two-thirds of all the RTKs and about three

fourths of all the RPKs [DOT 2000, p. 323].

Generally, the overall statistics mentioned above suggest that the freight share is

higher in long-haul traffic than in medium-haul and short-haul. A look at some statistics

on the freight weight shares in individual aircraft confirms this picture, see Table 3.10.

As was touched upon briefly in Section 3.7 the airlines use different methodologies for

the allocation of their fuel consumption on passengers and freight. Most airlines

attribute all the fuel consumed to their passenger services. Some airlines attribute the

same amount of fuel to a tonne of freight as to one tonne of passenger weight

(including their baggage). Other airlines multiply the passenger weight with a factor of

between 1,4 and 2 to account for the weight that is attributable to a number of in-flight

passenger services (see Section 3.7 for a further description of this issue).

                                               
47 AEA longhaul is the sum of traffic between Europe and North Atlantic, Mid Atlantic, South
Atlantic, Sub-Saharan Africa, Far East/Australasia and other long haul routes [AEA 1999, 2000c
and 2001].
48 International short/medium haul is the sum of traffic between countries in Europe and
between Europe and North Africa and the Middle East [AEA 1999, 2000c and 2001].
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US air carriers
1998-1999-2000

All Nippon Airways
1999

Lufthansa
1990

Avr. Passenger
aircraft only

Passenger aircraft only Passenger aircraft
only

B747-100 11%
B747-400 25% 16% (domestic only) 38%
B747-200/300 22% 29%
B-777 36% 13% (domestic only)
DC-10-40 18%
DC-10-30 30% 38%
MD-11 39%
A310 29%
A300-600 19% 32%
B767-300ER 37% 12% (domestic only)
B767-200ER 26% 11% (domestic only)
B757-200 13%
B727-200 4% 11%
MD-80/90 4%
A320-100/200 6% 4% (domestic only) 9%
A321 6% (domestic only)
B737-300 4% 10%
B737-1/2/4/5/800 3% 8%
DC-9-30/40/50 4
F-100 2%

Table 3.10: Estimates of the freight weight as percentage of the total
revenue weight in passenger aircraft
It should be noted, that these freight weight percentages are calculated (by the
author of this report) on the basis of data for the cargo payload in tonnes as well as
the passenger load factor and the average number of seats in different passenger
aircraft for the United States air carriers 1998-2000 and for All Nippon Airways in
1998 and for Lufthansa in 1990. These factors may change from year to year and
are different from airline to airline. The estimates for the average over each model
for the US air carriers (Column 2) is for all aircraft, not only passenger models, and
may include some all-cargo models
Sources: [Air Transport Association 1999, 2000e and 2001], [All Nippon Airways
2000b] [Reichow 1990 and 1992].

The average revenue of the World’s airlines per tonne of freight is around 60% lower

than the average revenue for a tonne of passengers (see Table 4.3 in chapter 4) [ICAO

1996c and 2000d]. We argue that this factor should also be taken into account in a

discussion of which methodology that could potentially be used for the allocation.

Therefore, if the fuel is distributed between freight and passenger loads according to

their revenue shares, the weight of the passengers should be multiplied by a factor of

around 2,5.
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LONG HAUL B-747 Factor
pass:freight

Fuel per
RPK [g]

Fuel per
RFTK [g]

Total fuel per
aircraft km [kg]

All is allocated to passengers 1:0 46 (48) 0 (0) 12,6 (12,9)

Equal weight distribution 1:1 35 (31) 349 (315) 12,6 (12,9)

Correction for the weight of in-
flight passenger services

1,7:1 39 (37) 228 (216) 12,6 (12,9)

Distribution according to the
revenue per tonne

2,5:1 41 (40) 164 (159) 12,6 (12,9)

Table 3.11: Comparison of the fuel that is attributable to freight and
passengers in a B747-400 on a long-haul flight when using the four
different allocation methodologies
The figures outside the brackets are for an average B747-400 that is operated by the
US air carriers. The freight weight is 9 tonnes, the aircraft accommodates 376 seats,
the passenger load factor is 72%, 271 passengers are onboard and their weight
(inclusive baggage) is 27 tonnes. Thereby, the freight weight share is 25%.
The figures in brackets are for a B747-400 operated on long-haul routes by
Lufthansa in 1990. The freight weight is 14 tonnes, the aircraft accommodates 384
seats, the passenger load factor is 70%, 269 passengers are on-board and their
weight (inclusive baggage) is 27 tonnes, the freight weight share is 35%)
Sources: [DOT 2001], [Air Transport Association 1999, 2000e and 2001] and
[Reichow 1992].

The four different methodologies for distributing the fuel between freight and

passengers are illustrated in Tables 3.11 and 3.12 and Figure 3.11. Not surprisingly,

the most extreme difference in the estimate for the specific fuel consumption per

revenue passenger kilometre appears between the methodology where all the fuel is

attributed to passenger transport and the methodology where the fuel is distributed

evenly between passengers and freight on an equal weight basis. In the latter case the

specific fuel consumption per RPK is reduced by around 24-35% for long-haul trips in a

B747-400 and by around 5-13% on medium-haul trips with B757s and A320s. The

implication of this finding is that the figures for the specific fuel consumption of aircraft

and airline operations that includes the fuel which is attributable to freight (for example

those figures that are shown in Figures 3.6, 3.8, 3.9 and 3.10) would typically be

reduced by 5-13% on medium range and by 24-35% on long-haul. We note that these

are rough estimates and may differ between airlines and between different types of

aircraft (see Tables 3.11 and 3.12 and Figure 3.11)
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MEDIUM-HAUL
B-757 and A320

Factor
pass:freight

Fuel per
RPK [g]

Fuel per
RFTK [g]

Total fuel per
aircraft km [kg]

All is allocated to passengers 1:0 38 (38) 0 (0) 5,0 (3,8)

Equal weight distribution 1:1 33 (36) 329 (361) 5,0 (3,8)

Correction for the weight of in-
flight passenger services

1,7:1 35 (37) 204 (217) 5,0 (3,8)

Distribution according to the
revenue per tonne

2,5:1 36 (38) 143 (149) 5,0 (3,8)

Table 3.12: Comparison of the fuel that is attributable to freight and
passengers in B757-200s and A320s operated on medium-haul
distances when using the four different allocation methodologies
The figures outside the brackets are for an average B757-200 that is operated by the
US air carriers. The freight weight is 2 tonnes, the aircraft accommodates 186 seats,
the passenger load factor is 71%, 132 passengers are onboard and their weight
(inclusive baggage) is 13 tonnes. Thereby, the freight weight share is 13%.
The figures in brackets are for an average A320 that is operated on medium-haul
routes by the US air carriers. The freight weight is 0,6 tonnes, the aircraft
accommodates 148 seats, the passenger load factor is 68%, 101 passengers are on-
board and their weight (inclusive baggage) is 10 tonnes, the freight weight share is
6%)
Sources: [DOT 2001] and [Air Transport Association 1999, 2000e and 2001].

The selected aircraft shown in Figure 3.11 are arranged with the most fuel-efficient

aircraft, measured in fuel consumption per RTK, on the left hand side of the figure. The

B767-300/300ER is the most fuel efficient when considering the fuel consumption per

RTK and therefore also per RPK when distributing the fuel consumption on an equal

weight basis between passengers and freight (methodology 2). The relative difference

between the specific fuel consumption figures of methodology 1 and 2 is greatest for

the MD-11s, the B767s and the B777s. For these aircraft RPK2 is between 35-38%

smaller than RPK1. For the DC-10s, the 747s, the B767-200s and the A300-600s

RPK2 is between 18-30% smaller than RPK1. That is, if comparing the specific fuel

consumption figures of these long haul aircraft to the most fuel-efficient medium haul

aircraft (B757-200s, A320s and B737-800s) they are at level or even more fuel-efficient

if using methodology 2.
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Figure 3.11: The variation in the specific fuel consumption per RPK when
using four different methodologies for attributing fuel to freight
RPK1 represents the methodology where all the fuel is attributed to passenger transport.
RPK2 represents the methodology where the fuel is distributed equally between
passengers and freight on a weight basis. RPK3 represents the methodology where the
weight of the passengers is multiplied by a factor of 1,7 before distributing the fuel
consumption between the weight of passengers and freight. RPK4 represents the
methodology where the weight of the passengers is multiplied by 2.5. The examples here
are for selected aircraft operated by American air carriers in 1999. The average passenger
loads factors as well as the average freight weight may vary considerable between airlines
and may change from year to year.
Sources: Fuel consumption from [DOT 2001] and freight loads from [Air Transport
Association 1999, 2000e and 2001].

3.9 Comparison to other modes of transportation

Road, sea and rail transport can be viable alternatives to the transport of passengers

and freight by air over certain distances, and are oftentimes less energy intensive. Due

to the potentially relatively high contribution to climate change of aircraft emissions at

altitude alternative modes are generally also less GHG intensive than aircraft. But air

transport is by far the fastest transport mode, and a shift to other modes will most often

be more time consuming, at least when comparing transport over long distances. The

substitution potential for passenger and freight transport is therefore dependent on the

willingness of travellers and freight shippers to use slower modes of transport. Other

considerations are the availability of alternative transport modes and the associated

prices connected to those types of transport. For passenger transport there are many
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examples of intra-European and intra-American routes where air transport is relatively

cheap as compared to rail and bus. This section does not consider these economical

and infrastructure aspects but merely compares the fuel intensity of air transport to

other modes. The focus chosen is to study short-distance and medium-distance (up to

a few thousand kilometres) passenger travel in aircraft, passenger cars, buses and

trains.

First of all, it has to be mentioned that comparisons of the environmental impact of

different transport modes are problematic, as each mode of transport generates

different kinds of environmental problems. Additionally, the environmental impact is

often site specific. For instance car exhaust creates other problems in cities than it

does in rural areas, and it is difficult to compare health problems in cities created by

exhaust from cars, buses and trucks to high altitude aircraft emissions contributing to

climate change. Furthermore, a wide variety of vehicles with different characteristics

makes it difficult to establish average pollution indexes for each mode of transportation.

This has been exemplified in the earlier sections of this chapter that show the marked

differences in the fuel intensity of old and new aircraft as well as differences between

small short haul aircraft and larger medium-haul and long haul aircraft types. Another

problem in such comparisons is the variability in the fuel consumption and emissions

related to differences in the usage cycles for vehicles. For example, the fuel efficiency

of aircraft depends strongly on the actual stage distance. For trains, one important

factor to take into account is the number of stopovers at a given trip, while for

passenger cars the fuel efficiency varies strongly between city and highway driving.

Another factor is the level of traffic on roads and rails and in airports where congestion

is often a problem for the flow of traffic. Furthermore, the actual load factor of

passenger cars, buses, trucks, trains and aircraft plays an important role. A special

feature of aircraft is furthermore that they most often fly more direct routings than for

example road traffic. When comparing the fuel intensity per passenger kilometre this

factor also has to be taken into account. Therefore, the average estimates given here

should merely be taken as examples.

Most of the major scheduled airlines emit between 125-175g of CO2 per revenue

passenger kilometre (RPK). The most efficient European charter airlines emit around

109g of CO2 per RPK on medium-haul routes while the least efficient short-haul

regional scheduled carriers emit more than 250g of CO2 per RPK. That is, the 109g of
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CO2 per RPK represents the minimum emissions from holiday travel over distances of

at least 2000 kilometres whereas the 250g represents the maximum emissions from

scheduled flights over short distances.

Figure 3.12 illustrates the mileage of different car models available for sale in Denmark

in 1998 according to their energy labelling that is based on test data for an average

European standard driving cycle. In 1999 and 2000, some more fuel-efficient models

have been introduced, most notably the VW LUPO 3L TDI rated at 33 kilometres per

litre of diesel. We note that such test data may overestimate the mileage because the

actual driving cycle may be more fuel intensive [Schipper and Marie-Lilliu 1999]. The

fuel efficiency of passenger cars is very much dependent upon the weight of the car.

Light cars generally drive longer per litre of fuel than heavier cars [Færdselsstyrelsen

1999].

Figure 3.12: Fuel efficiency rating of passenger cars for sale in Denmark
1998
Source: [Færdselsstyrelsen 1999]

The average on the road CO2 intensity of passenger cars differs widely between

countries. For example the average United States passenger car emits around 272g

CO2 per vehicle kilometre whereas for example the average Dutch car emits around

193g49. These differences are largely due to differences in the fleet mix as well as

driving cycles [Schipper and Marie-Lilliu 1999]. The CO2 intensity per passenger
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kilometre of a given trip furthermore depends on the load factor. The average

passenger load factors are found to vary from country to country [Schipper and Marie-

Lilliu 1999] [IPCC 1996b, 693] [EEA 2000 and 2001] and tends to be higher in for

example European holiday traffic than in average everyday traffic [Roos et. al. 1997].

According to Roos et. al. [1997, p.26] the total fuel consumption per vehicle kilometre

of a small car with four occupants may be around 14% higher than for a similar car with

one occupant (larger cars are less sensitive in this respect). When used for long-

distance travel most passenger cars may drive longer on each litre of fuel than in an

average European driving cycle. Furthermore, if the car carries a caravan, the fuel

consumption per kilometre may increase by 50-100% [Roos et. al. 1997]. Additionally,

a comparison to aircraft should take into account that cars drive longer distances

between destinations than aircraft and that passenger cars may have to cross waters

by ferry to reach the destination. A study of the specific fuel consumption of passenger

cars and other modes on distances between eight European city-pairs takes these

factors into account. The study concludes that an average car with two occupants is

typically as fuel-efficient as modern turboprops (Fokker 50s) and jets (B737-400s) that

operate at these specific distances. This study thereby indicates that at passenger load

factors of three or more persons the passenger car is typically more fuel-efficient than

aircraft [Roos et. al 1997].

A number of studies from around the World have found that trains and coaches are

generally less fuel-intensive than passenger cars and aircraft [IPCC 1996b] [Roos et.

al. 1997] [IPCC 1999, p. 285]. For example, a long haul coach with a 70% occupancy

rate typically emits around 20-30g of CO2 per passenger kilometre or around 80% less

than an average two-occupant passenger car [Roos et. al. 1997, p. 82] [Jørgensen

1998]. The emission of CO2 per passenger kilometre of electrical trains depends on the

primary fuel used for the power production and on the overall efficiency of the

production and transmission system. High speed electrical trains, such as the German

ICE and the French TGV emit 41g and 7g of CO2 per passenger kilometre

respectively50. However, if the TGV train had used electricity produced by the electrical

system in for example Denmark (in 1996) where the fuel mix is based mainly on coal

                                                                                                                                         
49 These estimates are for 1995.

50 Based on an average consumption of 78,9Mje/km, 51% load factor and 159g CO2 emissions
per MJ electricity produced for the German ICE train. Based on an average consumption of
68,5Mje/km, 65% load factor and 31,3g CO2 emissions per MJ electricity produced for the
French TGV train [Roos et. al. 1997, p. 101].



123

and other fossil fuels, the CO2 emissions from the TGV train would be around 7 times

higher [Roos et. al 1997, p. 101]. Likewise, the Danish inter-city electrical and diesel

trains emit around 13-21g of CO2 per available seat kilometre or around 26-42g at a

load factor that is comparable to that of the German ICE train [DSB 2001].

3.10 Energy intensity of passenger air travel in the future

A number of airlines around the World have committed to certain goals for reducing

their fuel intensity in the future. Lufthansa’s passenger airline aims at reducing the

specific fuel consumption per revenue passenger kilometre by 35% in 2012 as

compared to 1991. This goal acquires that Lufthansa reduces its specific fuel

consumption by around 18 percent between 1999 and 201251 [Lufthansa 2000b].

British Airways has similarly committed to reduce the specific fuel consumption per

passenger kilometre by 30% in 2010 as compared to 1990, corresponding a reduction

of some 16% as compared to the 1999-level52 [British Airways 1999a and 1999b].

Likewise, in 1998, the Scheduled Airlines Association of Japan, that represents ten

Japanese airlines, has committed to the target of reducing the emissions of CO2 per

available seat kilometre (ASK) by 10% in 2010 as compared to 1990 [All Nippon

Airways 1999, p. 5]. The airlines that are members of the International Air Transport

Association (IATA) are planning to reduce their specific fuel consumption per RPK by

10% in 2010 as compared to 2000 [Dobbie 2001]. These targets may reflect the

magnitude of the fuel efficiency improvements that can be expected in the next decade.

In Europe, the reduction of the fuel intensity due to the introduction of new aircraft may

be relatively modest, because many airlines have already carried through some major

fleet renewal programmes. The current average age of the European aircraft fleet is

estimated at 9 years. The European aeronautical industry does not expect to exceed

annual reductions in the specific fuel consumption of more than 1.1% per RPK on the

average until 2012. Only a part of that reduction is expected due to introduction of new

aircraft, while some may come from improved load factors and operating procedures

[AEA and AECMA 1999]. In the US, airlines generally operate older fleets, suggesting

that the fuel-efficiency potential may be higher than in Europe.

                                               
51 Lufthansa has already achieved a reduction of 21.6 percent in 1999 as compared to 1991 due
to an extensive fleet renewal programme [Lufthansa 2000b].
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3.10.1 The potential effect of replacing the oldest aircraft

The aircraft fleet that was operated by American air carriers in 1998 consists of a wide

variety of aircraft models in a range of sizes that are used for passenger- and freight

transport at different distances ranging from short-range commuter traffic to long haul

intercontinental flights. Figure 3.13 illustrates the distribution on different types of

aircraft of the revenue passenger kilometres that were carried by the Major US airlines

in their total domestic and international traffic in 1998. Note that Figure 3.13 does only

include the most commonly used aircraft that performed some 90 percent of the total

amount of RPKs in 1998. The data in Table 3.13 contains all the aircraft types in

operation.

Figure 3.13: The distribution of the revenue passenger kilometres
transported by Major American air carriers on aircraft types in 1998
Source: [Aircraft Economics 1999c and 1999f]

As can be seen from Table 3.13, the relatively fuel-efficient B757-200s, B767-300s,

B747-400s, A320-200s, B777-200s, MD90s, B747-100s and B737-400s carry some

39% of all the ASKs and RPKs using about 32% of the fuel. Their average fuel

consumption is about 28g per ASK. Likewise, the relatively fuel-intensive DC-9s, B737-

200s, Fokker 100s, B727-200s, L1011-500s, DC10-40s, DC-10-30s and B747-200s

                                                                                                                                         
52 British Airways has already cut its specific fuel consumption per revenue passenger kilometre
by some 17% between 1990 and 1999 [British Airways 1999a, p. 18].
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carry about 23-24% of the ASKs and the RPKs and consume some 30% of the fuel.

Their average fuel consumption is about 38g per ASK. These figures give an idea

about the potential for reducing the average specific fuel consumption of the fleet that

is operated by the Majors if these last mentioned seven relatively fuel-intensive aircraft

types were replaced by the most fuel-efficient types in their classes. The average

specific fuel consumption of the Major airlines on all domestic and international routes

is about 35g per ASK and 48g per RPK in 1998 (see Table 3.9). A substitution of the

fuel intensive types mentioned above with more modern types (B717s, A320s and

B777s) could reduce the specific fuel consumption at these operations to about 26g per

ASK. This would reduce the average specific fuel consumption of the Majors from the

current 35g per ASK to about 31g, a reduction of approximately 3,9g per ASK or some

11%. This is based on the assumption that the DC9s, the Fokker 100s and the B737-

200s are replaced by B717s using 23g per ASK on average and that the B727-200s

are replaced by A320-200s using 26g per ASK and that the L1011-500s and the DC-

10s and the B747-200s are replaced by B777-200s using 28g per ASK. It should be

noted that these estimates are rough calculations made by the author to get an idea of

the potential of substituting the most fuel-intensive of the aircraft that are currently in

operation. The calculations are not based on any real-world plans for scrapping old

aircraft.
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Stage

dist

Seats Fuel RPKs Load factor Fuel per RPK Fuel per ASK

Diff
over
avr

Diff
over
avr

Diff
over
avr

[km] [%] [%] [%] [%] [g] [%] [g] [%]
DC-9-10 604 77 0,3 0,1 60 -16 111 +130 66 +93
DC-9-50 734 122 0,8 0,5 65 -8 74 +52 48 +40
DC-9-30 747 100 3,5 2,1 65 -9 79 +63 51 +49
DC-9-40 787 108 0,2 0,2 66 -7 75 +55 50 +44
B737-200 805 113 4,1 3,2 69 -3 62 +28 43 +24
Fokker 100 826 97 1,5 1,3 69 -3 59 +22 41 +18
B737-300 978 132 10,7 11,1 69 -3 47 -4 32 -7
B737-500 1038 110 2,7 2,4 66 -7 56 +15 37 +7
B737-400 1056 142 1,7 2,0 70 -2 42 -14 29 -16
B727-200 1128 148 10,4 7,6 71 0 67 +38 48 +38
MD-90 1241 150 0,3 0,4 67 -5 42 -12 29 -17
MD-80 1305 140 14,0 13,7 70 -1 50 +3 35 +2
A320-200 1917 147 3,1 3,9 69 -3 38 -22 26 -25
L-1011 2031 300 1,4 1,5 78 +9 46 -4 36 +4
B757-200 2070 186 12,4 15,9 70 -1 38 -22 26 -23
L-1011-500 2137 234 0,8 0,7 78 +10 55 +14 43 +25
A300-600 2342 245 1,4 1,5 72 +2 45 -7 33 -5
DC-10-10 2475 275 1,9 1,9 75 +6 48 -1 36 +5
DC-10-40 3399 285 1,2 1,2 78 +10 51 +4 39 +14
B767-200 3713 180 3,7 3,8 73 +3 48 -2 35 +1
B767-300 3932 214 7,1 8,1 73 +3 43 -12 31 -9
B747-100 4295 447 0,5 0,7 76 +8 40 -17 31 -10
B777-200 4826 290 2,4 3,0 73 +3 39 -20 28 -18
DC-10-30 5319 261 4,0 3,7 77 +9 53 +10 41 +19
B747-200 5578 366 3,0 2,9 77 +8 50 +4 39 +12
MD-11 6882 243 2,1 2,0 75 +6 51 +5 38 +11
B747-400 7889 383 4,5 4,9 72 +2 45 -8 32 -6
Average 71 48,4 34,5

Table 3.13: Domestic and international passenger traffic performed by the
Major US air carriers in 1998
Sources: [Aircraft Economics 1999f and 1999c].

3.10.2 The fuel intensity of next-generation aircraft types

The two major aircraft producers, Boeing and Airbus, are constantly developing new

derivatives of their existing aircraft types, while from time to time introducing new

models. The most recent derivatives of each model tend to offer better fuel-efficiency

than the earlier models. It is beyond the scope of this report to assess the fuel

efficiency improvements of each new model. Rather, some trends that may influence

the fuel efficiency such as increasing the size and the speed of the aircraft is

discussed, focusing on the market for long-haul wide-bodies and the market for short-

haul regional turboprops and jets.

Airbus currently devotes much effort to developing the next-generation double-deck

ultra-large long-range A380 (see Figure 2.8, picture A) to be introduced around 2006 to
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compete with Boeings somewhat smaller B747. Today, a B747-400 that is configured

for long-haul operations typically accommodates around 330-360 passengers. The

A380-100 and the A380-200 are planned to accommodate 555 and 656 passengers

respectively in long-haul three-class configurations and up to 1000 passengers in all-

economy configuration [Airbus 2000a]. The largest version, the A380-200, is envisaged

by Airbus to burn up to 20% less fuel per ASK than the 747-400 [Vincendon and Wrede

1999]. Also in the other segments Airbus is introducing a number of aircraft that

accommodates more passengers than the earlier versions that they are intended to

replace. Airbus thereby seems to follow the traditional path of developing larger aircraft

that burns less fuel per seat.

Boeing is also still following this path of introducing stretched derivatives of the different

models in its family of aircraft. Boeing has for some years tried to sell its concept of a

larger version of the B747-400 to the airlines, but currently seems to refrain from

developing that aircraft due to lack of airline demand. It seems, that Airbus’ A380 has

drawn the attention of the airlines and several airlines have already ordered that aircraft

[Aviation Week and Space Technology 2001a]. Instead, as also mentioned in chapter

2, Boeing has recently announced plans to develop a new family of delta-wing “sonic

cruisers” (see Figure 2.8, picture D) designed for Mach 0,95 cruising speed over ultra-

long range (above 16000 kilometres) seating 150 to 300 passengers. This type of

aircraft is envisioned to cut flying time by up to three hours on Trans-Pacific flights and

could enter the market before 2010. Even though reliable information on the specific

fuel-burn of the still on the drawing board “sonic cruiser” is not available at the time of

writing, this relatively low-capacity aircraft cruising at high speed is likely to have a

considerable fuel-burn penalty over current long-range subsonic aircraft. Therefore,

Boeing seems to be about to leave the tradition of continuing the incremental

improvements in aircraft design by increasing the size in favour of developing a

radically different type of aircraft.

Also in the segment for aircraft up to around 120 seats, the new next-generation

regional jets offer fuel-efficient operation compared to the older types. Airbus is about

to introduce the A318 and Boeing has already introduced the B717. In this segment

Airbus and Boeing are supplemented by a range of producers of turboprops and

regional jets, such as Bombardier, Embraer, Fairchild, British Aerospace and Aero

International. A substitution of the old DC9s, Bae 1-11s and B737s that are currently
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used mainly at regional distances by new relatively fuel-efficient regional jets could

bring fuel efficiency gains. However, in many cases, the fuel intensity of short-haul

passenger air travel could be improved further by choosing turboprops instead of

regional jets (see Figure 3.14). Even though the new regional jets that are shown in

Figure 3.14 are more fuel-efficient than their predecessor jets, they are not able to

compete with turboprop fuel-economy at short-haul distances [Aircraft Economics

2000a, 2001a and 2001c] [ATR 2001]. Speed has become a main point of competition

also in the short-range market. The travel time of the slowest modern turboprops is up

to 25 minutes longer on a 550-kilometre trip when comparing to the fastest regional

jets, but the fuel consumption is around 20-40 percent lower per available seat

kilometre (ASK) [Aircraft Economics 2001a and 2001c]. Therefore, the operation of

turboprops on short-haul routes is generally a little more time consuming, but more

fuel-efficient53. Furthermore, the direct operating costs per seat kilometre are lower for

turboprops than for similar sized jets on distances of around 400-900 kilometres

[Aircraft Economics 2001a and 2001b]. Only a few major producers, such as ATR and

Bombardier are still engaged in developing new types of turboprops. Other producers,

such as Saab, Fokker, Embraer, Fairchild/Dornier and British Aerospace, recently left

this market sector, the latter four concentrating mainly on developing new regional jets

[Avmark Aviation Economist 2000]. The future reduction in the fuel intensity in the

regional airline market will therefore depend on whether airlines choose turboprops or

jets, the latter being increasingly popular by regional operators [DOT 1998], and

whether the airlines will substitute some of the old fuel-intensive jets that are currently

used for short-haul air transport.

                                               
53 It should be noted that there are differences in the fuel-efficiency of the different turboprops
available. The 68-seat ATR72-500 is more fuel-efficient than the faster 74-seat De Havilland
Dash-Q8-400. Conversely, the 56-seat De Havilland Dash-Q8-300 is more fuel-efficient than the
faster 50-seat ATR42-500 [Aircraft Economics 2000a].
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Figure: 3.14 Regional Aircraft fuel Use on a 550-kilometre trip
These data are based on European operating conditions. Aircraft marked by * are
turboprops and the residual aircraft are jets. The figures in brackets are the number of
seats.
Source: [Aircraft Economics 2000a]

3.10.3 Operational possibilities to reduce the specific fuel intensity

Other factors that are connected to the operation of aircraft, such as the choice of

cruising speed and -altitude, the idling/taxiing in airports, delays, non-optimal choice of

flight corridors and “stacking” (queues) above airports, also influence the aircraft

energy use [British Airways 1999b] [Lufthansa 2000b]. Studies suggest that there is

some potential for reducing the fuel consumption of aircraft through improving the air

traffic management54 system and the operational procedures. Estimates for the

potential gains varies between sources. The Intergovernmental Panel on Climate

Change estimate that the overall fuel intensity could be reduced by around 6-12% from

the use of improved communications, navigation and surveillance (CNS) systems and

air traffic management (ATM) systems [IPCC 1999, p. 273]. A similar study from ICAO

suggests that the specific fuel burn of the World fleet could be reduced by 5% in 2015

                                               
54 Air traffic management plays a role in aircraft fuel consumption for several reasons. For
example, aircraft often fly longer distances than the shortest great circle distance, some reasons
being that twin-jets are not certified to fly directly over oceans and that some airspace is
restricted for military usage. Another example is that, due to congestion and delays at airports,
aircraft are “stacking” above airports waiting for permission to land while aircraft waiting for
permission to take-off keep engines running at idle condition.
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due to the introduction of CNS/ATM systems. Though, a recent IATA study concludes

that a faster introduction of such systems (than assumed in the ICAO study) could lead

to a reduction of around 9% by 2010 [Dobbie 2001]. Furthermore, there is still an

additional potential for improving the load factors, and thereby also for reducing the

specific fuel consumption per revenue passenger kilometre (RPK) [Daggett et. al.

1999]. Furthermore, a future growth in the market share of low-cost airlines that

operate high-density aircraft may also bring some fuel-efficiency gains.

3.10.4 Long-term possibilities for reducing the GHG intensity of aircraft

On the longer term, after 2015, there is still scope for technical improvement of aircraft

fuel efficiency and GHG reductions over currently envisaged next-generation aircraft.

Examples of incremental improvements are more efficient versions of existing turbofan-

or turboprop engines and stretched (longer, bigger aircraft, double-deck configurations)

versions of existing airframes, use of light weight materials to reduce the weight per

seat. Examples of more uncertain long-term, but potentially viable, radical

improvements are advanced techniques for improving the aerodynamic performance55

and a substitution of current fossil kerosene fuel by alternative fuels such as liquid

hydrogen56, liquid methane or synthetic kerosene produced from biomass. The

combustion of methane and hydrogen increases the emissions of water vapour, and

may therefore not be an environmentally viable solution [IPCC 1999] [Marquart et. al.

2001]. Other uncertain solutions is the substitution of current turbofan engines by

radically different types such as propfans57 or fuel cells (for use in the cruising phase)

or use of radically different airframe design (and sizes) such as blended wing body

aircraft58.

                                               
55 For example, Airbus currently investigates the possibility of using an active laminar flow
system where air is sucked through tiny holes that has to be drilled in wings, fuselage and
engine nacelles, improving the aerodynamic performance of the aircraft [Vincendon and Wrede
1999]. This is a feature that has been studied by various researchers for many years, but there
seems to be technical problems connected to the application [Greene 1997].
56 See Figure 2.8 picture C, for an example of how liquid hydrogen could be stored in fuel tanks
inside the fuselage [Pohl 1995b].
57 See Figure 2.8 picture F for an example of a prototype counter-rotating profan-type engine
presented by General Electric in the 1980s. General Electric name their engine UDF (un-ducted
fan). Picture E in Figure 2.8 furthermore illustrates a Russian military prototype aircraft powered
by counter-rotating propfan engines.
58 See Figure 2.8 picture B, for an example of a blended wing body flying-wing shaped aircraft.
For a further description of a blended wing body BWB aircraft proposal see [Cranfield College of
Aeronautics 2000a]. The idea of introducing BWB aircraft is for example supported by the
Society of British Aerospace Companies’ Foresight Action Office [AEG 2000].
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Some studies have proposed that aircraft should in the future be designed to operate at

lower speeds and lower altitudes [Barrett 1994] [Dings et. al. 2000a, 2000b, and

2000c]. Lowering the speed would reduce the aircraft’s fuel consumption and

furthermore allow for using advanced high-speed turboprops or propfan engines, while

cruising at lower altitude may reduce the overall contribution of aircraft engine

emissions to climate change. However, the current trend towards replacing turboprops

by regional jets, as well as Boeing’s plans to launch sonic cruisers, are examples

pointing towards flight at higher speeds and altitude in the future.

It should be mentioned that a new advanced generation of supersonic airliners has also

been suggested59, even though for the moment their possible emergence seem rather

uncertain due to uncertainty over their high operating costs and due to environmental

concerns over aircraft noise, climate change and ozone depletion. Such a new

generation of supersonic passenger aircraft would anyway be substantially more GHG

intensive than current modern subsonics [IPCC 1999]. Another uncertain but still

technically feasible technology is freighter airships cruising at slower speed and altitude

using less fuel than current jet freighters [Flight International 2000a] [Jensen 2000].

The Intergovernmental Panel on Climate Change (IPCC) estimates that on the medium

term (2015) new aircraft could be 20% less fuel intensive than current production

models. On the longer term (2050) new aircraft could be 40-50% less fuel intensive

than current production models, but if engines are designed with greater emphasis on

NOx reduction, the reduction in fuel intensity is envisaged to be more modest, around

30-40% [IPCC 1999, pp. 219-266]. These estimates reflect that the improvement rate

for the reduction of the fuel intensity of new aircraft types may slow down as compared

to the last three decades (see Figure 3.3). Furthermore, due to the relatively long

lifetimes of aircraft, typically around 30 years for passenger aircraft and up to 40 years

for freighters, the improvement rate for the whole fleets’ average fuel efficiency may

slow down even further. This is because a large share of the improvements rely on

fleet enlargement, unless new legislation emerges that forces the airlines to phase out

the oldest aircraft earlier than currently expected. Current aircraft types may well be in

                                               
59 See Figure 2.8 picture G for an illustration of design studies for a future advanced supersonic
transport from Airbus.
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production for decades, and next-generation aircraft, such as A380s, may well still be

operating by the middle of this century.

3.11 Data problems and areas that need further research

This chapter mainly focuses on the fuel intensity of passenger air travel and airfreight

for a number of American air carriers and for some selected European and Asian

airlines that have published environmental reports or made fuel consumption data

available to the author. However, currently most European and Asian airlines do not

publish such environmental audits, and among the airlines that do publish their

environmental data the methodologies used for establishing those data differ, making

comparisons rather difficult. Airlines in other parts of the World, such as Africa,

Australia, Russia, Eastern Europe, Latin America, South America, China and India, are

not included either. American carriers have for decades reported their operating

statistics to the United States Department of Transportation, and those data are

consistent in the reporting methodology and therefore have been used as a main basis

for some of the analysis in this chapter. Further studies may aim at including fuel

efficiency data of more airlines than what has been done here. Furthermore, a study of

the total World fleet would be interesting.

General aviation and business jets are not included in this study, the latter being rather

fuel intensive as compared to other passenger aircraft because the seat density and

the load factor is often low. Likewise, military aircraft are not included even though the

military consumes a rather large share of the world’s jet fuel. For example, Gardner et.

al. [1998] estimate that the military consumed around 11% of all jet fuel globally in

1992.

Of special interest is that civilian aircraft in the former Soviet Union are not included in

this study either. Around 3500 Russian built jets are still in service or store, but due to

low utilisation consume considerably less fuel per aircraft than Western built jets. The

main reason for the low utilisation rate is the sharp drop in Russian passenger air travel

following the collapse of the Russian economy in 1990. Domestic passenger air travel

in Russia dropped from around 225 billion RPKs in 1990 to around 40 billion in 1998,

while international Russian passenger air travel has been growing steadily to around
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28 billion RPKs60. Some sources expect that most of the Russian built jets that are

currently in use or store will be phased out of service soon because of their poor

operating economics leaving room for a possible substitution by Western built jets [DTI

1999].

Besides studying the fuel use and the related CO2 emissions it would be most

interesting to also include other engine emissions as well, such as H2O, NOx, sulphate

and soot, which are believed to act as GHG’s or GHG precursors when emitted at high

altitude in the aircraft’s cruising phase. Water vapour emissions are directly related to

the fuel consumption, but the emissions of NOx per kilogram of fuel burned differ

between engine types [Gardner et. al. 1998, p. 22] [IPCC 1999]. Some airlines already

report specific emissions of some of these gases and particulate matter per ASK

according to aircraft type, but data are too limited to include them here. If including

such emissions, it would also be beneficial to know at which altitude and latitude they

are emitted and the time of year to have a better idea of their possible impact on

climate change. Some European studies are currently conducting such measurements

of in-flight emissions from aircraft engines [Lufthansa 2000b]. Further comparisons of

all types of emissions to other modes of transportation would also be interesting. Such

comparisons are complicated by the lack of information on the actual aircraft engine

emissions through all phases of flight and the methodological problems of comparing

the different modes of transport and the different types of environmental problems

[Roos et. al. 1997] [COWI 1999].

Another subject that is not dealt with in much detail in this chapter is the importance of

the specific types of engines that are used by the aircraft. Because old aircraft can be

re-engined with more fuel efficient types it would have been interesting to also consider

this, but the limited time available for studying this issue has not allowed for including

such an analysis in this project. The main reason is that the information on the specific

engine types are not available in a rather significant share of the statistics that have

been used here and this information would therefore have to be requested from airlines

and the US DOT.

                                               
60 For comparison airlines situated outside Former Soviet Union performed around 3000 billions
RPKs in 1999.
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Further studies may also consider other types of energy use connected to the socio-

technical system that is built up around the commercial civil air transport sector. Such

studies could include the production of aircraft and fuel, as well as the construction,

operation and maintenance of infrastructure such as airports, feeder roads and rails,

and the energy spent by travel agents, advertising, regulatory authorities and so on. In

such a perspective, of course, the environmental impact of commercial civil air

transport could be quantified in a more comprehensive manner considering other

factors than the operation of aircraft.
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Chapter 4

Assessing the possible environmental impact of

a global jet fuel tax

- A review of existing studies in the area

This chapter discusses the possible impacts of a global jet fuel tax on airline operating

costs, airline fuel-efficiency, airfares and the demand for air travel and freight. A

literature review of a number of studies1 on the possible future impact of a global jet

fuel tax is presented. The review shows that most studies agree that a rather high tax

rate may be needed to stabilise the CO2 emissions from commercial civil air transport.

The studies use models derived from statistical analysis of historical trends for

forecasting the future demand reduction. Assumptions on the future economic (GDP)

growth and airlines’ reaction by increasing the fuel-efficiency as well as estimates of

the likely demand elasticity2 have marked impact on the findings of the studies.

4.1 Introduction

The background for this chapter is that the current growth in commercial civil air

transport activities does not seem to be compatible with an environmentally sustainable

development. Currently, there are discussions, especially in Europe, on the possibility

of introducing a global kerosene tax to reduce the growth in the environmental impact

                                               
1 Studies reviewed for this chapter: [Barrett, M. 1996], [OECD 1997], [NEI 1997], [CAEP 1997],
[Resource Analysis 1998], [Bleijenberg et. al 1998], [Brockhagen and Lienemeyer 1999], [DIW
1999], [Wickrama 2001] and [Olsthoorn 2001].
2 The demand elasticity is a term describing the connection between two variables. The issue
here is to discuss to which extent an increase in airfares causes a reduction in the demand for
air transport. The price elasticity describes the percentage change in the demand over the
percentage change in the price. The price elasticity is estimated from historical trends. The
studies reviewed here use historical data on airfare developments versus demand
developments to establish a price elasticity estimate. For example, if the price elasticity is –2,
the demand may be reduced by 2% (over a business as usual scenario) for each percent the
price increases. The assumption used in the kerosene tax studies is that consumers may react
to price increases in the same way as they have done in the past.
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of commercial civil air transport (see chapter 2 for a further discussion of the current

political setting).

A jet fuel tax will increase the airline’s costs and fares, thereby presumably contributing

to reduce air travel growth while giving airlines increased incentive to improve their

environmental performance. This chapter discusses what level of tax that may be

needed to achieve environmentally sustainable commercial civil air transport3. Note

that the discussion focuses on a global kerosene tax applied to all jet fuel sold to

commercial civil air carriers worldwide.

Section 4.2 explains the expected environmental impacts of a kerosene tax. Section

4.3 describes the historical development in the airlines’ fuel expenses showing the

impact of fuel-efficiency improvements and fuel cost fluctuations. Sections 4.4 and 4.5

assess the potential impact of a kerosene tax on the airline’s operating costs and fares.

Section 4.6 assesses the likely consequences of a kerosene tax for the demand for air

travel and freight and for the fuel-efficiency of airlines. Section 4.7 gives a concluding

discussion of the fuel tax studies that have been reviewed.

4.2 Consideration of the impact on airlines of a kerosene tax

Section 4.2 explains some expected environmental impacts of a kerosene tax. The

main purpose of this section is to set up a model describing some important

determinants and outcomes, as illustrated in Figure 4.1.

                                               
3 This chapter focuses solely on what may be an environmentally sustainable level of
greenhouse gas emissions from commercial civil air transport.
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Figure 4.1: Some possible environmental consequences of a kerosene tax

Figure 4.1 illustrates that, by raising the fuel price and adding to the overall airline

costs, a kerosene tax may give the airlines a higher incentive to improve their fuel-

efficiency. The airlines have the possibility to increase their load factors and to improve

their operational procedures and to speed up their scrapping- and re-engine schemes

for the oldest fuel-intensive types of aircraft. On the longer term, a kerosene tax may

increase the commercial civil air transport industry’s incentive to speed up the

development of new and more fuel-efficient aircraft types and engines. At a substantial

tax rate the development of radically new aircraft configurations4 and engine types5

might become economically attractive, as well as alternative fuels6 based on renewable

sources of primary energy, if they are made tax-free.

                                               
4 For example, the aircraft producers are studying so-called blended-wing-body (BWB) aircraft
featuring advanced fuselage configurations resembling a flying wing. Such fuselage shapes
may to offer savings in the specific fuel consumption per amount of revenue load carried as
compared to the current state of the art subsonic aircraft [Cranfield College of Aeronautics
2000a].
5 For example, the engine producers are studying new types of aircraft engines, so-called
propfans, that can substitute the current types of turbofan engines [IPCC 1999].
6 For example, the aircraft producers are studying possibilities for substituting fossil kerosene by
liquefied hydrogen [Pohl 1995a and 1995b].
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However, the operational and technical improvements that are on the horizon for the

foreseeable future do not promise to close the gap between the efficiency improvement

and the ever-rising air travel volume (see for example Figure 3.3 for an illustration of

this gap). Thus, the environmental impacts of commercial civil air transport are set to

increase. It is therefore an interesting question to which extent a kerosene tax will

contribute to increase airline costs and fares thereby slowing down air travel growth. In

general, people can be expected to travel less by air than they would have done in a

situation without a kerosene tax, because air travel and freight may then, to some

extent, be substituted by other modes of consumption. For example, some potential

leisure travellers may choose to do without low-fare charter holidays or choose more

nearby destinations. On commuter- and short-haul routes rising airfares might give

travellers an incentive to substitute air travel by alternative, and perhaps more

environmentally viable, modes of transportation, that is rail-, sea- and road traffic.

Additionally, it should be mentioned that a kerosene tax might have some

counteracting effects, as also illustrated in Figure 4.1. For example, the rate of

technological efficiency improvement may slow down when airlines improve their load

factors and operational procedures to improve the fuel-efficiency per passenger

kilometre because they will need fewer new aircraft. Also, in a situation where air travel

growth is reduced, the implementation rate of new fuel-efficient aircraft capacity is likely

to slow down. Likewise, all measures taken by airlines to reduce their specific fuel

consumption will, to some extent, counteract the airfare increases that are to be an

expected outcome of the fuel price increases, thereby eroding the demand reducing

effect of a kerosene tax.

4.3 The impact of a kerosene tax on the airlines’ fuel costs

As can be seen from Figure 4.2, jet fuel constitutes a major component in the airlines’

operating costs.  The actual fuel price is fluctuating, following crude oil spot prices. In

the period from the early 1970s, before the 1973 oil crisis, and until the second oil price

shock in 1979 the real jet fuel price rose by a factor of five. Following the second oil

crisis in 1979 the fuel costs peaked at around 30% of the total airline operating costs

[Jenkins 1999] and above 50% of the direct operating costs [Dings et. al. 2000b].

Throughout the 1980s the real fuel price plummeted (Except for a short peak in 1990

due to the Iraqi war in the Gulf) and fuel costs reached a historical low of 12% of the

total airline operating costs in 1998. This left the real kerosene price at 18 US¢ per
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kilogram, which is comparable to the pre-1973 level when measured in constant 2000$.

In 2000, the jet fuel price peaked again above 30 US¢ per kilogram7, see Figure 4.2.

Figure 4.2: Jet fuel price development 1967-2000 in current and
constant 2000$ and jet fuel costs as percent of total airline operating
expenses
Yearly averages have been used except for 2000 using the average for January to
August. Current price has been converted into constant 2000 US$ using the US
consumer price index.
Data sources: Fuel costs from [Jenkins 1999] except for jet fuel cost data for 1999
and 2000 which are taken from [Air Transport Association 2000a].

The fuel costs per revenue tonne kilometre (RTK) and per revenue passenger

kilometre (RPK) and per revenue freight tonne kilometre (RFTK) of air traffic depends

on other factors than the fuel price, namely those affecting the specific fuel

consumption (as described in detail in chapter 3). One such factor is the length of haul.

Medium-haul8 and long haul9 aircraft are generally more fuel-efficient than aircraft used

at short-range10. Therefore, the specific fuel consumption diminishes the longer the

                                               
7 Note that the jet fuel price varies between geographical regions, airports and airlines. The fuel
prices referred to in this text are global averages.
8 Some examples of medium-haul aircraft are Boeing’s B737s and B757s and Airbus’ A320s
that are typically operated at distances of between 800 and 3000 kilometres.
9 Some examples of long-haul aircraft are Boeing’s B747s and B777s and MD11s and Airbus’
A330s and A340s that are typically operated at distances above 4000 kilometres.
10 The airlines typically use turboprops at distances below 500 kilometres and tend to use
regional jets at distances below 1000 kilometres. Turboprops come from a number of producers
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stage distance. Another factor affecting the specific fuel consumption is of course the

fuel-efficiency of the aircraft types used. Finally, the load factor has a significant impact

on the specific fuel consumption and hence on the fuel costs. These matters are

exemplified further in the following.

Table 4.1 shows examples of the fuel costs per revenue passenger kilometre (RPK)

under different assumptions. The information in Table 4.1 exemplifies the average fuel

consumption (Column 3) and fuel cost (Columns 4 and 5) of different airlines and of

different types of aircraft. Furthermore, the fuel cost increases for three levels of

kerosene tax are exemplified in columns 6, 7 and 8, as discussed later.

Column no. ⇒

  1                 2 3 4 5         6           7                8

Row no.

⇓

Fuel use

[g/RPK]

Fuel cost ’98

[US¢/RPK]e
Fuel cost ’00

[US¢/RPK]e
Fuel cost increase at

fuel tax of (per kg)

30 US¢ 87 US¢ 126 US¢

1 Average for the US air carriers in 1999 - - - - -

2 Least fuel-efficient major scheduled airlines 1998 62 1,2 1,9 1,9 5,4 7,8

3 Most fuel-efficient major scheduled airlines 1998 35 0,7 1,1 1,1 3,0 4,4

4 Most fuel-efficient charter airlines 1999 21 0,4 0,6 0,6 1,8 2,6

5 Old long-haul aircraft 1998c 50 1 1,5 1,5 4,4 6,3

6 Modern long-haul aircraft 1998c 36 0,7 1,1 1,1 3,1 4,5

7 Old medium-haul aircraft 1998b 76 1,4 2,3 2,3 6,6 9,6

8 Modern medium-haul aircraft 1998b 30 0,6 0,9 0,9 2,6 3,8

9 Old short-haul aircraft 1998a 120 2,3 3,6 3,6 10,4 15,1

10 Modern short-haul aircraft 1998a 72 1,4 2,2 2,2 6,3 9,1

Table 4.1: Fuel use and fuel costs per revenue passenger kilometre (RPK) under
different assumptions
a load factor assumption 50%, b load factor assumption 60%, c load factor assumption 70%, d jet
fuel price 1998 19US¢ per kilo, e jet fuel price August 2000 30US¢ per kilo. Source for fuel use
per RPK is chapter 3 of this report, while source for jet fuel price 1998 is [Jenkins 1999] and
source for jet fuel price in August 2000 is [Air Transport Association 2000a].

                                                                                                                                         
such as Saab, Avions de Transport Régional (ATR) and Bombardier and examples of regional
jet producers are Bombardier and Embraer.
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The current differences in airline11 fuel-efficiency and thereby the fuel cost per RPK is

revealed by comparing Rows 1-4, showing the most fuel-efficient major scheduled

carriers to operate at around 44% lower fuel costs per RPK than the least fuel-efficient

scheduled carriers. Furthermore, the most fuel-efficient European charter carriers

operate at 40% lower fuel intensity and fuel cost than the most fuel-efficient scheduled

carriers. Rows 5-10 show the specific fuel use to be generally lowest for medium-range

and long-range aircraft and around twice as high for short-haul aircraft. As can be seen

from Table 4.1, new aircraft operate at lower fuel costs than the oldest models in

operation. The effect of variations in the jet fuel price is also significant. Table 4.1

compares the relatively low jet fuel price in 199812 to the higher price in August 200013

in Columns 4 and 5 showing a fuel cost rise of approximately 50% in the period.

Jet fuel consumed by international air traffic is not taxed unlike gasoline and diesel

used for domestic car- and truck transport in many industrialised countries. If, for

example, a kerosene tax is set to approach the tax level that is currently applied to road

based transport in Europe14 the airline fuel costs will increase significantly as discussed

in the following.

Three levels of fuel tax are considered here, namely 30, 87 and 126 US¢ per kilogram

of kerosene, see Table 4.1. The lowest tax level of 30 US¢ per kilogram corresponds to

the minimum tax level for road diesel fuel in European Union countries. At this level of

tax, the airline fuel costs would double if comparing to the relatively high fuel price in

August 2000. The medium tax of 87 US¢ per kilogram corresponds to the current road

diesel tax in the United Kingdom (having the highest diesel tax level among the

European Union countries) and would roughly quadruple the airlines’ fuel costs, again

                                               
11 Based on data for average fuel consumption per revenue passenger kilometre of the following
airlines: Lufthansa Scheduled, Lufthansa City Line, Lufthansa Condor, KLM, SAS, British
Airways, Braathens, Finnair, Swissair, Air France, All Nippon Airways, Japan Airlines, Cathay
Pacific and Premiair and all the American air carriers as discussed in chapter 3.
12 The yearly average jet fuel price in 1998 was 19US¢ per kilogram.
13 The jet fuel price in August 2000 was 30 US¢ per kilogram.
14 The tax levels on road fuels in European Union countries as of March 2000 amount to
between US$309 and US$649 per 1000 litres of gasoline, the lowest tax in Greece and the
highest in the UK. Similarly, diesel tax levels range from US$245 to US$691. EU minimum rate
fuel taxes are set at US$278 and US$237 for petrol and diesel respectively. These figures are
based on a petrol tax in Greece of 319 ECU and 670 ECU in the UK and a diesel tax of 253
ECU in Luxembourg and 713 ECU in the UK and EU minimum rate tax set at 287 ECU and 245
ECU for petrol and diesel respectively  [Kaageson 2000, p. 25]. Furthermore based on
Exchange currency as of 1 March 2000 at 0,9689 EURO per $.



142

as compared to the fuel price in August 2000. The highest tax of 126 US¢ per kilogram

may be justified because of aircraft’s relatively high impact on global warming per litre

of kerosene-burn at high altitude when comparing to fuel burned at sea level15. At this

relatively high tax level the airlines’ fuel costs would be roughly five times higher than in

August 2000.

4.4 The impact of a kerosene tax on airlines’ operating costs

In this section the impact on airlines’ operating costs of a kerosene tax is discussed.

The aim is to quantify how much the airlines’ costs may be raised by applying different

levels of tax.

The increases in the real fuel costs, that followed the two major oil crises in the 1970s,

were to some extent counteracted by technical and operational improvements. The

relatively large improvements in the airlines’ average fuel-efficiency and load factors as

well as the productivity increases that followed from the introduction of large-capacity

wide-body jets (see Figure 2.7) allowed the airlines to continue reducing the real

airfares throughout 1978. The average real airfares only rose for a short period of time

in the early 1980s (see Figure 2.10). Therefore, the fuel rises did not lead to such

substantial increases in the real airfares as to affect a decline in the amount of

passenger air travel16. In the future, the airlines will not to the same extent be able to

improve their fuel-efficiency and productivity. This is because the improvements of

next-generation aircraft are foreseen to be of a more incremental character than earlier

[IPCC 1999] and because the load factors are relatively high today as compared to the

early 1970s [ICAO 1998a]. Therefore, as a first order effect, future increases in the fuel

costs are likely to be passed on to the total airline operating costs. In this section this

first order effect is assessed.

Airlines’ operating costs can be subdivided into direct and indirect costs. The direct

operating costs (DOC) refer to expenses incurred directly in the operation of a

particular aircraft type and include a)flying expenses17, b)Maintenance and overhaul18

                                               
15 See [IPCC 1999] for an introduction to aviation’s impact on the global atmosphere.
16 Only in one of the last 30 years the amount of revenue passenger kilometres declined as compared to
the previous year, namely in 1991, due to the Iraqi war in the Persian Gulf region.
17 Flying expenses can be subdivided into flight crew salaries and expenses, fuel and oil, airport
and en-route charges, aircraft insurance, rental of flight equipment and crews.
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and c)aircraft depreciation (including cost of spares), see Figure 4.3. The indirect

operating costs (IOC) refer to expenses which are not directly related to operating a

particular type of aircraft and include a)station and ground costs, b)passenger services,
c)ticketing, sales and promotion and d)general administration [Cranfield College of

Aeronautics 2000b] [Mason et. al. 2000] [ICAO 2000d].

The rest of this section concentrates on assessing the impact of a kerosene tax on
a)aircraft direct operating costs (section 4.1) and on b)airlines’ total operating costs

per revenue tonne kilometre and per revenue passenger kilometre (section 4.2).

4.4.1 The impact of a kerosene tax on airlines’ direct operating costs

In 1997, the direct operating costs (DOC) accounted on average for around forty

percent of the total costs of the world’s scheduled carriers [ICAO 2000d, p. 14]19.

Figure 4.3 compares the major US air carriers’ fuel costs to their direct operating

costs (DOC) per available seat kilometre (ASK) in 1998 according to the average

stage distance flown for different aircraft types20. First of all, Figure 4.3 exemplifies that

the direct operating costs are lower on medium-haul and long haul than on short-range

flights. This is mainly due to the higher productivity of large aircraft and due to a better

utilisation rate for long-haul aircraft and its pilots and crew. Another reason is that the

fuel cost per revenue tonne kilometre is generally lower on medium and long haul than

on short haul flights [Aircraft Economics 1999a, 1999c and 1999f] [O’Connor 1995].

The two lower curves in Figure 4.3 compare the average fuel costs in 1998 to what

these would have been at the average kerosene price paid by the US air carriers in

August 2000. Furthermore, the three upper curves in Figure 4.3 suggest what the direct

operating costs would amount to if a kerosene tax of 30, 87 or 126 US¢ per kilogram

were put on top of the August 2000 fuel price. At these tax levels, the fuel cost would

increase from 28US¢/kg to 58, 115 and 153US¢/kg respectively. See section 4.3 for an

explanation why these levels of tax were chosen as examples. Note that the yellow

                                                                                                                                         
18 Maintenance and overhaul costs can be subdivided into labour costs, materials used and
maintenance overhead.
19 Note that wide variations in the ratio between direct and indirect operating costs are apparent
amongst airlines [Comité des Sages 1994, p. 51].
20 Figure 4.3 is based on data reported by the US Major air carriers to the US Department of
Transportation [Aircraft Economics 1999c and 1999f]. Note that Figure 4.3 does not include
regional jets and turboprops and that the average yearly kerosene price per kilogram varies by
aircraft type between 17-21 US¢/kg.
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curve in Figure 4.3 exemplifies the average stage distance at which the aircraft are

used.

At the lowest fuel tax level, the American air carriers’ direct operating costs connected

to operating different types of aircraft increase by some 1-3US¢ per available seat

kilometre as compared to the situation in 1998 at a fuel price of around 19US¢/kg on

average. This corresponds to increases of around 2-6US¢ per revenue passenger

kilometre at current load factors. At the highest fuel tax level, the direct operating costs

increase by some 3-6 US¢ per available seat kilometre and some 4-12 US¢ per

revenue passenger kilometre depending on the type of aircraft in question.

On average, the highest fuel tax that is suggested here would roughly increase the

direct operating costs (DOC) by a factor of around 2,5. The high kerosene tax would

totally change the distribution structure of DOC, fuel becoming the most dominant

single cost item. In 1998, fuel costs generally amounted to between one third and one

fourth of the direct operating costs for larger aircraft types operated by the major

American air carriers. The high kerosene tax would turn this around, with fuel

constituting generally from around half and up to four fifth of DOC.

For the fuel-efficient aircraft the increase in the direct operating costs would be less

than for the oldest models. For example, the high fuel tax would raise the direct

operating costs (DOC) of new fuel-efficient B777s by some 3,4 US¢ per available seat

kilometre, whereas the increase for older DC10-30s would be around 4,7 US¢. The

airlines would therefore have increased incentive to operate the newest and most fuel-

efficient aircraft and to scrap or re-engine the oldest relatively fuel-intensive types.

When acquiring new aircraft for the short-range market, turboprops may be favoured

from jets and in the long-haul market fuel-intensive supersonics and sonic cruisers

would be less economically attractive to airlines than at the current fuel price.

Furthermore, the incentive to improve the operational procedures and to achieve higher

load factors would be greater.



Figure 4.3: Impact of a fuel tax on the direct operating costs per available seat kilometre (ASK) by type of aircraft operated
by the US major airlines in 1998
Sources for US air carriers’ direct operating costs and stage distances flown by type of aircraft are [Aircraft Economics 1999c and 1999f].
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4.4.2 The impact of a kerosene tax on the airlines’ total operating costs

As can be seen from Figure 4.4 the effect of a kerosene tax on the airline’s total

operating costs will be different from airline to airline21. The total costs of major22

scheduled airlines situated in Asia, the United States and Europe ranged between 26-

99 US¢ per available tonne kilometre (ATK) and between 38-166 US¢ per revenue

tonne kilometre (RTK) in 1998. The average operating costs per revenue tonne

kilometre of major scheduled carriers is around 55 US¢ in Europe, 45 US¢ in North

America and 38 US¢ in Asia [Cranfield College of Aeronautics 2000b, p. 121-144].

Figure 4.4 also exemplifies that low-cost scheduled airlines and charter carriers

situated in Europe are operating at relatively low costs. Some of these airlines operate

at costs that are comparable to low-cost scheduled airlines in Asia. It should be noted

that the data in Figure 4.4 cover costs for all revenue load carried, that is both

passengers and freight. Therefore, Figure 4.4 underplays the cost advantage of

European low-cost scheduled airlines and charter carriers, because these typically

carry insignificant loads of low-yield freight whereas typically around 40% of the

revenue weight carried by the major scheduled carriers in Asia is freight [Cranfield

College of Aeronautics 2000b, p. 122]. That is, the operating costs per revenue

passenger kilometre (RPK) of European charter airlines are probable some of the

lowest in the global airline industry [Mason et. al. 2000] [Aircraft Economics 1999e].

The impact on the airlines’ operating costs of introducing a kerosene tax of 126 US¢

per kilogram can be seen from the horizontal lines in Figure 4.4. The lower lines

suggest the fuel cost increase for the most fuel-efficient scheduled airlines and charter

carriers today at around 38US¢ per RTK and 25US¢ per RTK respectively23. The higher

lines suggest the fuel price increase for the least fuel-efficient scheduled- and charter

                                               
21 The total airline operating costs per revenue tonne kilometre (RTK) vary considerably
between airlines (see Figure 4.4). The reason for the differences in cost structures lie in a
number of different parameters connected to airline operations. For example, large deviations
are seen in the passenger load factors and the freight load factors and in the in route- and
demand structures. There are also differences in the average length of haul and in the types
and sizes of aircraft used as well as there are differences in the aircraft utilisation rate. Further
aspects are differences in aircraft productivity and labour productivity as well as wage structures
and monetary exchange rates and fees and charges for take-off and landings etc.
22 The airlines referred to here as majors are the three groupings of Asian, American and
European scheduled airlines that are shown to the left in Figure 4.4.
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carriers at 63US¢ per RTK and 44US¢ per RTK respectively24. Kerosene tax levels of

87 US¢ and 30 US¢ would lead to lower cost base increases as indicated in Table 4.2.

kerosene tax per kg 30 US¢ 87 US¢ 126 US¢

Most fuel-efficient charter airlines 1999 6 US¢ 17 US¢ 25 US¢

Most fuel-efficient scheduled airlines 1998 9 US¢ 26 US¢ 38 US¢

Least fuel-efficient scheduled airlines 1998 15 US¢ 44 US¢ 63 US¢

Table 4.2: Cost base increases per RTK induced by fuel tax of 30, 87
and 126 US¢ per kg
Source for fuel use per RTK is chapter 3.

At a fuel tax of 126 US¢, the major scheduled airlines would see their cost base

increase by some 30-100%. For example, the 1998 cost base of SAS, being a

relatively fuel-intensive high-cost carrier, would be increased by around 60US¢ per

RTK corresponding to an increase of about 38 percent25. Conversely, a low-cost fuel-

efficient Asian carrier like Cathay Pacific would have to pay around 38 US¢ kerosene

tax per RTK, thereby almost doubling its total operating costs26. The fuel-efficient

European charter carriers would see their cost bases increase by 60-80 percent27.

                                                                                                                                         
23 Based on estimates for the specific fuel consumption for the most fuel-efficient scheduled
carriers of 300g per RTK and 200g per RTK for the most fuel-efficient charter carriers, see
chapter 3.
24 Based on fuel consumption of 500g per RTK for the least fuel-efficient scheduled carriers and
350g per RTK for the least fuel-efficient charter carriers, see chapter 3.
25 Based on SAS’ 1998 operating at costs of 166 US¢ per RTK [Cranfield College of
Aeronautics 2000b, p. 142] and average fuel consumption of 479g fuel per RTK (see chapter 3).
26 Based on Cathay Pacific’s operating costs of 43 US¢ per RTK [Cranfield College of
Aeronautics 2000b, p. 126] and an average fuel-intensity of 300g of fuel per RTK.
27 Based on Premiair’s operating costs of 55US¢ per RTK [Aircraft Economics 1999e], and an
average specific fuel consumption of around 260g of fuel per RTK (see chapter 3).
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4.5 Impact of a kerosene tax on airfares

The average airline fares are not much higher than the average costs. Therefore, the

average airline profits are relatively low (see Figure 2.11) leaving the average fares

almost comparable to the average costs [ICAO 1986, 1996c and 2000d]. This situation

is not a short-term problem for airlines, but has been evident throughout the last

decades where airlines have even seen losses in the early 1980s and early 1990s

following periods with economic recessions and high fuel costs. On this basis, as a first

order effect, the average fares are likely to increase when fuel costs rise, because the

airline industry is generally not likely to be able to reduce its profit margins. Some

scheduled airlines might choose to distribute the fuel cost increases unevenly among

high-yield business travellers and low-yield leisure travellers and freight. This is not

taken into consideration here.

Global statistics from the International Civil Aviation Organisation (ICAO) estimate the

over-all weighed world average28 revenue per revenue passenger kilometre (RPK) for

scheduled international passenger traffic, without distinction between class of travel or

fare type, at 8,20 US¢ in 199729 [ICAO 2000d]. At an average fuel use of about 49g30

per RPK the fares would increase by around 6 US¢ if implementing the high fuel tax of

126 US¢ per kilogram. The variation among route groups range from a low of 5,5 US¢

across the Mid-Atlantic to a high of 17.3 US¢ in local Europe31. On routes across the

                                               
28 It is generally difficult to get an overview over airline fares because these differ between
airlines, routes, and airport city-pairs, and vary by season, day of week and time of day. Fares
also vary substantially between passengers and freight, and passenger fares differ by class of
travel (for example first, business, economy, and discount). Furthermore, tickets on each class
deviate in price according to flexibility of the ticket (for example, duration of journey, ticket expiry
date, ability to change flight-date or flight-hour, ability to refund ticket and so on). Generally,
airline fare structures are composed as to optimise revenue by filling in as many passengers per
aircraft as possible, with emphasis on attracting as much high-yield passenger- and freight
volume as possible. Through yield management, airlines try to achieve the highest possible
revenue per flight while at the same time keeping the lowest fares down as to attract price-
sensitive leisure travellers and to stay competitive compared to other airlines [Doganis 1985]
[O’Connor 1995]. This highly complex fare structure makes it difficult to estimate the impact on
airfares of a kerosene tax.
29 However, there are large differences in the average revenue among airlines and between different
routes, see Table 4.3.
30 Represents the average for the American air carriers in 1999, excluding all-freight but including belly
hold freight, see chapter 3.
31 Similarly, the average revenue per revenue tonne kilometre varies between routes, from a low of 22.9
US¢ on routes across the North/Mid Pacific, to a high of 80 US¢ on routes within Europe.
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Atlantic the fares may increase by some 5,5 US¢32 (a doubling). The fare increases will

be less significant (relatively) on the more expensive routes.

Percentage of
the available

seat kilometres
in the world's
international

traffic

Revenue per
passenger
kilometre

Revenue per
freight tonne

kilometre

[%] [US cents] [US cents]

Between North America and Central America/Caribbean 1.9 8.4 23.9

Between and within Central America and Carribbean 0.1 - 42.8

Between Canada, Mexico and the United States 3.8 7.9 36.8

Between North and Central/South America/Carribbean 3.8 8.2 38.2

Local South America 0.7 12.2 48.9

Local Europe 11.3 17.3 80

Local Middle East 0.7 15.2 35

Local Africa 0.4 - 44.5

Between Europe and Middle East 3.1 9.7 34.4

Between Europe/Middle East and Africa 3.5 7.4 30

North Atlantic 18.5 6.6 23.9

Mid-Atlantic 3.4 5.5 23.5

South Atlantic 2.5 6.6 26.1

Local Asia/Pacific 14.2 8.7 31.8

Between Europe/Middle East/Africa and Asia Pacific 16.8 6.8 26

North and Mid-Pacific 12.9 5.8 22.9

South Pacific 2.4 5.9 23.2

Table 4.3: Average revenue per passenger kilometre and freight tonne kilometre
in international air traffic on geographical regions
Note that these data are for international traffic only. Source: [ICAO 2000d].

4.6 Impact of a kerosene tax on the demand for air travel and on fuel-efficiency

As can be seen from Figure 2.10 airfares rose from less than 5 US¢ per revenue

passenger kilometre in the 1950s to around 8 US¢ in the 1990s, when measured in

current US$. When measured in real terms, US airline revenue per RPK has been

reduced by a factor of almost four in the 50-year period, showing that air travel fares

have increased less than prices on other modes of consumption in general. The US

consumer price index rose 6,9 times between 1950 and 1999. In the same period

airfares per revenue passenger kilometre (RPK) only doubled, when measured in

                                               
32 Based on the average fuel consumption of the American air carriers of 33g per ASK on routes across
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current prices, while average yearly personal disposable income in the US rose by a

factor of 17 from around $1363 in 1950 to around $23946 in 1999, when also

measured in current prices. When taking account of inflation, US disposable personal

income increased threefold in the fifty-year period, while real airfares were reduced by

almost a factor of four (see Figure 2.10). These are probably some of the main

determinants of air travel growth.

As can be seen from Figures 2.1 and 3.3 air transport has grown at relatively high

growth rates although slowing down somewhat in the last decades. One question to be

addressed in this section is to which extent a kerosene tax will raise airfares thereby

reducing consumers’ access to air transport and changing their preferences towards

other modes of consumption. Another question is to which extent a jet fuel tax will give

the aircraft producers and airlines increased incentive to develop and introduce more

fuel-efficient aircraft in the future.

The future demand reduction due to introduction of a kerosene tax can by its nature not

be foreseen. The impact will to a large extent depend on economic growth, rise in real

income and improvements in airline productivity reducing real airfares as well as

consumer preferences for air travel over other modes of consumption. These

determinants therefore have to be forecasted to give a reasonable estimate of the

possible effect of a future kerosene tax. For that purpose a literature review has been

carried out to study assumptions used in other studies in this area.

Studies assessing the likely future demand impact of a kerosene tax generally use a

methodology based on projecting the future demand growth in a so called “business as

usual” (BAU) forecast.  BAU forecasts are most often based on assumptions on future

economic growth and income rise as well as increasing airline productivity reducing

real airfares. Studies furthermore use demand elasticity estimates indicating how

consumers might react to the airfare increases. Note that the studies base their

projections on statistical analysis of historical time-series data. The studies reviewed

have varying results because of different assumptions on key parameters, see Table

4.433.

                                                                                                                                         
the Atlantic (see chapter 3) an assumed passenger load factor of 75%.
33 Note that there are distinct differences between studies in the time frames and the
geographical regions under study as well as there are differences in the assumptions used. The
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As a rule of thumb, most studies conclude that the environmental effectiveness of a

kerosene tax will be rather small unless a quite substantial tax rate is applied. The main

reason for this is the that studies assume that, in a business as usual scenario,

economic growth and income rise will continue at current rates leading to a tripling of

global demand for air travel and freight within a twenty-year time period. Some studies

even forecast higher growth rates [Barrett 1996] [OECD 1997] (see indexes for

demand in Table 4.4)34.

Study Region Fuel tax

[US¢/kg]

Base
year

End
year

RPK

index
over
base
year

RFTK

index
over
base
year

RTK

index
over
base
year

Fuel
efficiency

Yearly
reduction of

fuel
intensity

Demand
elasticity
applied

Fuel
use

index
over
base
year

Barrett
1996

World BAU
15

1990 2030 8,8
8,2

OECD
1997

World BAU
10

1992 2020 3,7-7,5
3,2-6,5

3,8-5,3 1,1% p.a.
-0,66 to –2,1

2,8-4,1

NEI
1997

World BAU
10

2000 2010
-0,8

1,3
1,25

CAEP
1997

World BAU
30

1992 2005 2
1,8

1% p.a.
–0,1 to –1b

Ress. Anls
1998

EU BAU
33d

1998 2005 ?
-4%

?
-6%

1% p.a. ?
-2,4%

Bleijenberg
1998

EU BAU
20

80-130c

1992 2025 4,6
26%*

0,63(-37%)
73%a

-0,4 to –0,5

3
2,1
1

Bleijenberg
1998

World BAU
30

1992 2015 3,4
2,8

1,93
1,6

Brockhagen
1999

World BAU
43e

1999 2020 2,7
2,4-2,5

-0,8

DIW
1999

EU BAU
65f

231g

1995 2020 2,7
2,6
2,2

4
3,8
3

2,2
2

1,5
Wickrama
(CAEP)
2001

World BAU
23
50

180

1990 2010 2,8 4,3 3,4
3,1
2,9
2,3

New aircraft
1% p.a.

-0,6 to -0,9 1,6
1,42
1,28
0,95

Table 4.4: Results of kerosene tax studies and main assumptions used
a. 73% of reduction in CO2 emissions due to increased efficiency, 23% due to demand reduction.
b. Business  –0,1, leisure  –1, average passenger –0,83, freight –1.
c. Tax of 80-130 US¢/kg needed to stabilise CO2 emissions from commercial civil air transport at current
level if emissions are set to grow by 3% per year in a business as usual scenario. Tax of up to 286 US¢/kg
would be needed at 4% growth in CO2.
d. 0,245 EURO/l. Based on annual average exchange currency rate 1999 at 1,06 EURO per $.
e. 0,32 EURO/l. Based on annual average exchange currency rate 1999 at 1,06 EURO per $.
f. 1,2DEM per kg. Based on annual average exchange currency rate 1999 at 0,54DEM per $.
g. 4,25DEM per kg. Based on annual average exchange currency rate 1999 at 0,54DEM per $.

                                                                                                                                         
main differences are connected to the price elasticities used and the expectations for growth of
air travel and freight and for fuel-efficiency improvement rates.
34 Note that some studies indicate a demand index for the end-year in revenue tonne kilometres
whereas others use indexes for revenue passenger kilometres and revenue freight tonne
kilometres.
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In general, most of the studies expect that the demand growth will be reduced by little

less than one percent over the business as usual scenario for each percent the tax

raises airfares, while most studies expect new aircraft to become approximately 1%

more fuel-efficient per annum. At tax rates of around 20US¢/kg studies generally

expect growth in demand for air travel to be reduced by some 10% as compared to a

business as usual scenario, because such a tax level is expected to raise average

fares by around 10%. One study suggests that at current growth rate of 3% in CO2

emissions from commercial civil air transport a kerosene tax of some 80-130US¢/kg

may be needed to stabilise global emissions at current level [Bleijenberg et. al 1998].

Another study calculates that to reduce fuel use by 5% in 2010 as compared to 1990 a

tax rate of around 180 US¢/kg might be needed [Wickrama 2001]. A main explanation

for the difference between these two studies is that the latter study has lower

expectations for fuel-efficiency improvement. Another study [DIW 2000] anticipates that

even if implementing a 231US¢ per kg fuel tax in Europe the fuel consumption may

increase by 50% within 20 years, see Table 4.4. Yet another study [Olsthoorn, X.

2001], which has not been included in Table 4.4, estimates that to stabilise commercial

civil air transport CO2 emissions at the current level in 2050 a fuel tax of at least 150

US¢/kg would be needed. This is for a BAU scenario where CO2 emissions are only

forecast to increase by a factor of 2,9 within the next fifty years. Within this same study

it is concluded, that CO2 emissions may grow by between a factor of 2,9 and 6,1, and a

much higher kerosene tax than 150 US¢/kg may therefore be needed to stabilise CO2

emissions at current level.

4.7 Discussion of the fuel tax studies reviewed

The studies reviewed suggest that at current growth rates in air travel and freight a

relatively high level of kerosene tax would be needed to stabilise the CO2 emissions

from commercial civil air transport. Some studies suggest that a fuel tax of some 80-

180 US¢/kg may be adequate, whereas other studies indicate that tax may have to be

even higher. For comparison, EU minimum fuel tax for road diesel fuel is around 30

US¢/kg, but some countries levy higher taxes, up to 87 US¢/kg in the United Kingdom.

The potential environmental effects of a certain jet fuel tax are difficult to quantify.

Some main parameters of crucial importance are the future developments in the

economy (GDP), airline productivity and airfares as well as consumer income and

consumer preferences for air travel over other modes of consumption.



154

Most studies reviewed here anticipate as a basis quite high growth rates in air travel

and freight, mainly basing it on forecasting historical trends. Forecasts are based on

the assumptions that continuing economic growth and increasing income combined

with reductions in real airfares will allow such demand increases. Furthermore, studies

seem to assume that adequate airport infrastructure will be provided to meet the rising

demand. This is another crucial assumption considering that it is becoming increasingly

difficult for airports to get approvals for enlarging their capacity in many industrialised

countries. The studies reviewed tend to extrapolate historical trends in air travel and

freight volumes without taking into consideration that some factors like economic

satiation, environmental problems or resource scarcity, may on the longer term reduce

the business as usual growth. Sooner or later the commercial civil air transport industry

may reach a stage of maturity and therefore some sort of gradual reduction of the

growth rates may be a reasonable assumption. A lower growth rate assumption would

reduce the level of tax needed to reach a certain reduction target for demand. Chapter

5 discusses further the issue of growth versus environment. The key issue here seems

to be that current growth rates in commercial civil air transport are not compatible with

environmentally sustainable development.

The choice of demand elasticity assumption is another crucial parameter affecting the

calculations. The demand elasticity estimates, based on previous experiences, may not

adequately take into account that the real price of air travel and freight has never

before increased for a longer period of time. In fact, the average real fares have been

reduced almost continuously ever since the early days of commercial civil air transport,

see Figure 2.10. Therefore, the demand elasticity may be higher than expected if real

airfares rise substantially (as will be the case if a fuel tax of for example 126 US¢/kg is

promptly introduced).

The knowledge on the long-term effects of fuel price increases on the fuel intensity is

relatively poor. One reason is that the previous fuel price rises have lasted for a

relatively short period of time. Another reason is that other factors than the fuel price

have influenced the real airfares and the airlines’ fuel-efficiency, some main

parameters being the introduction of relatively fuel-efficient high-productivity wide-body

jets in the early 1970s and increasing load factors. Future gains in these parameters

are likely to be of a more incremental character.
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Concerning the possible development of radically more fuel-efficient aircraft and

engines and alternative fuels the lead-time can be relatively long because of the large

investments required and the time needed for research and development and because

of need for testing of new technologies due to concerns over safety and other issues

like noise and emissions. If looking at specific technologies, like for instance aircraft

fitted with propfan35 engines or high-speed turboprops cruising at slower speed and

altitude than turbofans, the kerosene price increase will have to outweigh the airline

cost increases induced by time losses due to lower speed. Such specific areas are

generally not discussed in detail in the studies reviewed. However, one study

[Bleijenberg et. al. 1998] has a higher expectation for the fuel efficiency improvements

than for example CAEP’s study [Wickrama 2001]. One of the main differences is that

Bleijenberg et. al. [1998] expect that propfan engines will be introduced throughout all

size categories of the fleet and that lower operating speeds will be deployed. This

assumption has been criticised by various sources for not taking adequately into

account the costs barriers connected to operating at lower speeds [Dings 2000b,

Annex VIII, pp.1-6]. Another critique raised is that the technological barriers to meeting

airworthiness and the potential problem of fan blade containment and the increased

cabin and ground level noise of propfan engines may disfavour the technology

compared to turbofan engines [Wickrama 2001, p. 57] [Dings 2000b, Annex VIII, pp.23-

31]. Thus, the lower estimates given by Bleijenberg et. al [1998] for the level of

kerosene tax needed to stabilise the CO2 emissions from commercial civil air transport

(80-130 US¢/kg) may be too low if such radically improved technologies do not

emerge.

                                               
35 A propfan engine is an advanced type of turboprop engine featuring highly swept blades than
can rotate at higher speeds than current turboprops. For example, General Electric presented
and tested a so-called UDF (un-ducted fan) prototype counter-rotating propfan engine in the
1980s.
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Chapter 5

The future role of commercial civil air transport in

a sustainable energy system

This chapter discusses the challenges confronting the global energy and transport

systems if these are to become environmentally sustainable1 in the future. The main

purpose is to discuss the possible role of commercial civil air transport in an

environmentally sustainable energy system. On the basis of this discussion a

sustainability target for commercial civil air transport is suggested. We note that this

chapter is not intended to predict what is going to happen, but rather to exemplify what

may be required for achieving environmentally sustainable commercial civil air

transport activities in the future.

Firstly, section 5.1 presents and discusses some of the main challenges confronting

the global energy system as such. The main focus areas are the expectation for future

population growth and the current uneven distribution of resources between regions of

the world as well as the expectation for growth in energy services and energy

consumption patterns and the related emissions of CO2 to the atmosphere. In this

perspective a sustainability target for the future energy system is proposed focusing

mainly on the need to reduce the greenhouse gas (GHG) intensity of energy services

through using more energy-efficient end-use technologies and less GHG intensive

sources of primary energy. On this basis a scenario for a possible future

environmentally sustainable European energy system is suggested. The aim of section

                                               
1 Note that the sustainability requirements discussed in this report merely focus on the need to
reduce global emissions of greenhouse gases from combustion of fossil fuels and the need to
redistribute the allocation of energy services equally between the world’s citizens. Other studies
focus on other types of environmental problems or other aspects of sustainability than
environmental ones such as economic sustainability or social sustainability (for a further
discussion of these issues see for instance [Gudmundsson 2000]).
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5.1 is to exemplify that an environmentally sustainable energy system may require a

substantial reduction of the world’s GHG emissions as well as a redistribution of the

current allocation of the world’s resources between developing and industrialised

nations.

Secondly, section 5.2 discusses the implications for commercial civil air transport of the

proposed requirements for a future sustainable energy system. Also here, the main

focus areas are the current uneven distribution of air traffic volume between regions

and countries of the world and the expectations for future growth in air traffic and the

expectations for the future GHG intensity of commercial civil air transport. The aim of

section 5.2 is to exemplify the main challenges posed to commercial civil air transport if

the sector is to become environmentally sustainable. The main challenges in the future

will be to reduce the growth in air traffic while at the same time reducing the specific

GHG intensity of the aircraft fleet. Some scenario calculations are used to exemplify

the importance of each of these factors.

Thirdly, section 5.3 proposes a sustainability target for passenger air travel being

based on the sustainability requirements that are discussed throughout chapter 5.

5.1 Challenges facing a future environmentally sustainable energy system

Before discussing specifically the greenhouse gas emissions from commercial civil air

transport in section 5.2, this section describes the global CO2 emissions from the

combustion of fossil fuels and the challenges facing an environmentally sustainable

global energy system. The reason for using this approach is that we emphasise that a

target for environmentally sustainable commercial civil air transport activities must

include considerations on the direction in which the whole energy system should be

heading.

As can be seen from Figure 5.1 the global consumption of primary energy has risen

ever since the beginning of the industrialisation. Primary energy use has risen from an

estimated 256 Mtoe2 in 1850 to around 8846 Mtoe in 1995. At the same time the world

population rose from around 1,3 billions to around 5,7 billions. Thereby, the yearly

                                               
2 Mtoe is an abbreviation for million tonnes of oil equivalent that is sometimes used to compare
the energy content of different types of energy.
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primary energy use per capita rose from around 0,2 toe3 to around 1,6 toe. Even

though the use of more or less CO2 neutral primary energy sources such as wood,

hydro dams4 and nuclear energy has risen in the period, the use of fossil fuels (coal, oil

and gas) have grown faster to become the main sources of primary energy. Arnulf

Grübler [1998] describes the cyclic nature by which wood, coal and oil have risen to

each become the main primary source for a period of time, to be later taken over by

other sources. However, the total use of each source has risen throughout the period.

The main challenges ahead seem to be fears over the possible impact of CO2

emissions on the global temperature and the exhaustion of fossil and nuclear reserves

on the longer term. Therefore, renewable and nuclear sources of primary energy may

take over as main sources in the longer term as fossil reserves are gradually nearing

exhaustion or if governments decide to substitute fossil fuels for environmental

reasons.

Figure 5.1: World yearly primary energy use from 1850 to present in
million tonnes of oil equivalent (Mtoe)
Source: [Grübler 1998].

The CO2 intensity of the energy services provided has been reduced throughout the

period, by improving the efficiency of end-use technologies while reducing the losses

                                               
3 Tonnes of oil equivalent, see footnote above.
4 We note that primary electricity based on renewable energy can not be compared to fossil
primary fuels directly, because the conversion of coal, oil and gas into usable heat- and
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connected to producing and distributing secondary energy and by increasing the share

of less CO2 intensive primary energy sources. Examples are the rise in use of oil, and

later gas, nuclear and renewables, being less GHG intensive than coal. However, the

demand for energy services has by far overridden these achievements leading to

increasing emissions of CO2 from the energy system. As can be seen from Figure 5.2,

the global yearly emissions of CO2 grew from around 6 giga-tonnes in 1950 to around

22 giga-tonnes in 1994. The yearly energy consumption growth rates have been

reduced at the end of the period, most markedly in the early 1980s and in the early

1990s, following some major oil supply crisis’ resulting in rising energy prices and

downturns in the global economy.

Figure 5.2: World yearly CO2 emissions 1950-2000 and three scenarios
for future development
Source for historical data for the global CO2 emissions 1950-1994 is [Marland and
Boden 2000].

Depending on what actions are taken by governments and producers and consumers

of energy the global emissions of CO2 may be allowed to continue growing. However, if

appropriate actions are taken to reduce the growth in energy services and to improve

the end-use energy efficiency while reducing the losses connected to producing

secondary energy and to increase the share of less CO2 intensive sources of primary

energy, the emissions of CO2 may decline. The scenario calculations shown in Figure

                                                                                                                                         

electrical energy imposes losses. Thereby, the renewable electricity’s share of the useable
energy for end-use purposes is higher than suggested by Figure 5.1.
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5.2 exemplifies that if the CO2 emissions are allowed to grow by two percent per year

on average the result will be a tripling of the yearly CO2 emissions in 2050 as

compared to 1994 (scenario 1). Similarly, if CO2 emissions are allowed to grow by one

percent per year on average the result will be almost a doubling (scenario 2). However,

what may be needed for the energy sector to develop in a more sustainable direction is

something like a 30 percent reduction in 2050 as compared to today, exemplified by

scenario 3 in Figure 5.2. And further reductions may be needed thereafter.

The sustainability target exemplified by scenario 3 in Figure 5.2 is inspired by a

reduction scenario for the global emissions of CO2 that is presented by the

Intergovernmental Panel on Climate Change (IPPC) in its second assessment report.

IPPC’s reduction scenario aims at stabilising the concentration of CO2 in the

atmosphere at 450 ppmv5 by 2075 [IPCC 1996a, pp. 13-26]6. According to the IPCC

the atmospheric concentration of CO2 would reach 500 ppmv by the end of the 21st

century if the global yearly emissions of CO2 were maintained at the 1994-level.

However, because the yearly emissions of CO2 are most likely to increase in a

business as usual scenario the concentration of CO2 in the atmosphere is heading for

much higher levels. The IPCC has presented a range of reduction scenarios for the

global emissions of CO2 leading to a stabilisation of the concentration of CO2 in the

atmosphere at between 450 ppmv and 1000 ppmv. For comparison, the pre-industrial

concentration is estimated at around 280 ppmv and the concentration level in 1994 is

estimated at around 358 ppmv. All the IPCC reduction scenarios imply that the yearly

CO2 emissions would have to be reduced substantially on the very long-term. The main

differences between the various IPCC reduction scenarios are:

•  the choice of a stabilisation target for the concentration of CO2 in the atmosphere

•  the future year in which the yearly emissions of CO2 is set to stop growing

•  the pace at which the yearly reductions are achieved thereafter

                                               
5 Parts per million by volume.
6 In the scenario presented by the IPCC that aims at stabilising the atmospheric CO2

concentration at around 450 ppmv the base year used is 1994. In this scenario the emissions of
CO2 should be reduced to around 75% of the 1994-level by 2050 and by around 60% by 2100.
Furthermore, the scenario anticipates CO2 emissions to increase by some 40% between 1994
and 2015 and thereafter to be reduced by some 43% over the 2015-level by 2050.
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The IPCC scenarios thereby exemplify that the pace at which we begin reducing

emissions of CO2 is of marked importance for the resulting future concentration levels.

For each year the yearly emissions continue rising the targets for needed reduction for

reaching a certain stabilisation level for the concentration of CO2 in the atmosphere

also rise. We note that the IPCC does not attempt to suggest what concentration level

governments should aim for. The reduction target that is suggested here is therefore

merely a normative choice made by the author of this report, being inspired by the most

drastic scenario for reduction of the yearly CO2 emissions that is presented by the

IPCC.

One major problem is how to agree upon national reduction goals for the nations of the

world because the global CO2 emissions are currently distributed unevenly between

countries. We argue that in an environmentally sustainable world such differences

would have to be smoothed out. As can be seen in Figure 5.3 the emissions of CO2 per

capita in the world on average increased from around 2,3 tonnes in 1950 to around 4

tonnes in 1970, and have remained fairly constant since then.

Figure 5.3: World average CO2 emissions per capita 1950-2000 and
scenarios for future development
Source for historical data for global CO2 emissions 1950-1994 is [Marland and
Boden 2000. Source for global population data is [US Census Bureau 2000].
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The world’s population is currently envisaged to grow from approximately 6 billions

today to around 9 billions in 2050 [US Census Bureau 2000]. If taking this population

growth into account the reduction goal of scenario 3 in Figure 5.2 seems even more

ambitious, as it requires a reduction of some 50 percent of the average current CO2

emissions per capita on a global scale, see Figure 5.3 (scenario 3). Similarly, a one-

percent yearly growth in the global CO2 emissions requires for a stabilisation of CO2

emissions per capita (scenario 2, Figure 5.3). A two-percent yearly growth in global

CO2 emissions would allow the average CO2 emissions per capita to increase to more

than seven tonnes in 2050, as compared to 4 tonnes currently (scenario 1, Figure 5.3).

Historically, the industrialised countries have contributed by emitting around 84 percent

of the total global accumulated emissions of CO2 from combustion of fossil sources of

energy while developing countries have emitted only 16 percent, see Figure 5.4. In the

future it may be that currently developing countries will seek to raise their energy

service levels trying to catch up with currently industrialised countries. The biggest

challenge seems to be for the industrialised countries to reduce their per capita

emissions more than the fifty percent required on average globally by 2050, to allow for

currently developing countries to raise their current yearly emissions per capita. Such a

development seems to pose radical technical and economical challenges for the

currently industrialised countries. For example, the United States, where the average

American citizen emits around twenty tonnes of CO2 per year, would have to cut

emissions by around 90 percent if that country is to reach the global average needed in

2050 of around 2 tonnes of CO2.
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Developing countries (16%)

World (100%)

Figure 5.4: Accumulated shares of CO2 emissions from combustion of
fossil sources of energy 1800-1988 for different regions of the world
Source: [Nakicenovic 1993].

A reduction of the CO2 emissions per capita in the industrialised countries in the order

of magnitude described above could be achieved in many ways, but acquires major

changes in the ways we produce and consume energy. First of all, the end-use

conversion of useable energy into energy services can be much more efficient than

what is currently the case, and would acquire for a substitution of the current electrical

appliances, houses, cars, trains, aircraft etc. by much more energy-efficient models.

Secondly, the energy losses in extraction and conversion of primary energy into

secondary energy could be reduced. Some main examples would be the substitution of

condensing power plants by combined heat and power (CHP) production plants and

the use of electrical engines for transportation purposes in stead of internal combustion

engines. Thirdly, less GHG intensive sources of primary energy, such as biomass,

renewables and nuclear energy, could substitute fossil fuels, or emissions of CO2 from

combustion of fossil fuels could be removed from the stack gases and pumped into

underground caverns or into the deep sea to avoid emissions into the atmosphere.

Fourthly, the industrialised countries could consider reducing their energy service

levels, or at least try to reduce the growth in the most energy intensive types of

activities. One such energy intensive activity being commercial civil air transport.
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5.1.1 Example of a sustainable energy system

A number of studies have shown that, at least technically, it may be feasible to reduce

the CO2 emissions of industrialised countries by more than 80 percent within the next

fifty years. A short summary of one such study for the European Union (current 15

countries) energy system is given in Figures 5.5 and 5.6.

Figure 5.5: Proposed energy system for the European Union (current 15
countries) in 2050 based mainly on renewable primary sources of energy and
use of advanced efficiency end-use technologies
Source: [Nielsen and Sørensen 1998].

Figure 5.5 illustrates the composition of a proposed future energy system for the fifteen

European Union countries that has been proposed by Nielsen and Sørensen [1998].

The future energy system combines a number of renewable energy production

technologies such as hydro dams, wind turbines, photovoltaics, solar thermal electric

plants and solar thermal heat collectors with electrical heat pumps utilising the

environmental heat of the surroundings and CHP stations fired mainly by residues,

traditional biomass residues and biomass from large-scale energy-crop plantations and

energy forests. Land based transportation is almost entirely based on electric motors,

either in battery-electric vehicles or in fuel-cell electric vehicles using hydrogen stored

on-board in pressurised fuel tanks or using methanol which is reformed into hydrogen

on-board. However, air and ship transport still utilises conventional fossil fuels. The

Fair market scenario for the energy system of the European Union (15 members) in 2050 (TWh/y)

Primary energy Biomass conversion Storage and Energy conversion Demand/ End use
and storage cycles transmission by CHP and energy quality
for electricity from losses heat pumps

Solar thermal heat 387 renewable energy Industry
District heat  pipeline Heat pumps 45        Electricity 384

Biogas 258 398 299 CHP  using hydrogen Add low temp 65        Fuels 924
Gasification/Bio- 418 335 Electricity 384

Biomass residues 384 mass to hydrogen Gas store/pipeline Heat 209 Hydrogen/gas 814
1877 939 258 219 E lectricity 125

Biomass from plantat ions 2117 Households
Hydrogen store/ Heat pumps Solar heat 241 Electricity 318

PV electricity 699 pipeline 90 359 Heat pumps 185 Space heating 485
2149 1827 Add. low-T heat 116 Water heating 57

On-shore wind electricity 573 Methanol p lant Electricity 342 Non-elec. cooking 24
623 274 Solar heat storage

Offshore wind electricity 610        space heat
325 196

Hydro power electricity 269 Service sector
Solar heat storage Electricity 293

Add. small hydro power el. 222         hot water Add low-T heat 117 Electricity 293
62 45 Heat pumps 129 Other uses 247

Solar thermal electricity 421 Reversible fuel cells 1TWh=1000GWh

hydrogen input Electric grid Transport sector
Oil for aircraft and ships 540 671 602 2137 2019 Electricity 511

Heat 189 Biogas 180 Road 911
Non-energy uses 1013 E lectricity 413 Methanol 274 Rail (electricity) 54

Aircraft  fuel 493 Air 493
Environmental heat 269 Car batteries Ship fuel 87 Waterways 87

Reversible fuel cells 911 455

Total primary 7762 electric ity input Total 4275 Total 4275
1397 1254

% fossil 20% Hydrogen import 1
Electricity import 204
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system also contains an advanced reversible fuel cell system delivering CHP that

utilises electricity overload from intermittent renewable sources (wind turbines,

photovoltaic panels, solar thermal electric plants) to produce hydrogen which is stored

in underground caverns and pressurised tanks.  Hydrogen is also stored in buildings,

passenger cars, trucks, buses and trains. At times when the electric load is low stored

hydrogen is used for CHP production. Other energy storage options in use are vehicle

batteries and pumped hydro. Biomass and biogas are used as back-up fuels, and are

also used to produce methanol for transportation purposes. Furthermore, the system is

based on large bulks of electricity and hydrogen being exported and imported internally

between the 15 countries. And Europe as a whole is dependent on some imports of

electricity and hydrogen that could be produced for example in sunny Northern Africa,

where vast quantities of land could be available for large-scale centralised photovoltaic

installations. Finally, the system is based on using advanced efficiency end-use

technologies. Examples of such technologies in use in the transport sector are carbon-

fibre ultra-light and aerodynamic fuel-cell battery-electric hybrid vehicles and ultra-large

low-drag lightweight flying-wing shaped airliners powered by advanced propfan

engines. Furthermore, the current electric appliances, motors etc. are considered fully

substituted by advanced efficiency versions, and buildings are much better insulated

offering substantially better thermal efficiency. The remaining part of the existing

building stock has been retrofitted with additional thermal insulation and efficient

glazing while new buildings have been built with emphasis on thermal efficiency and

passive solar.  Also industrial processes are assumed to be more efficient using less

raw materials and energy per unit produced.

The energy system described in Figures 5.5 and 5.6 seems technically feasible in a

long-term perspective, because the current energy system, as well as many

infrastructures and a major part of the end-use technologies will have to be replaced

within the next fifty years. But the implementation of such a system will depend much

on the willingness of Europe to invest in energy efficiency and renewable energy

technologies. The main arguments for building up such a system would be

environmental concerns over pollution and global warming and long-term resource

issues, such as exhaustion of fossil reserves. The main driver for implementing such a

system is anticipated by Nielsen and Sørensen [1998] to be that the price of fossil

energy is taxed to a substantial degree as compared to the current situation. This
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would allow the relatively expensive energy producing technologies that are based on

renewable types of primary energy to be introduced into the market.

Figure 5.6 shows, from left to right, the flow of energy from primary energy supplies

over conversion, storage and transmission to delivered energy and end-use conversion

in the proposed energy system. In 1990 the primary energy supply was based primarily

on fossil fuels, that is coal, oil and gas, and nuclear and hydro power (the latter two

being primary electricity). By 2050 nuclear is assumed to have been phased out in

Europe while the main part of the fossil sources have been substituted by renewable

sources, that is wind power, solar thermal, solar electric, biomass, hydro and

environmental heat (from electrical heat pumps).

Figure 5.6: Overview of European energy system in 1990 and comparison
to a scenario for 2050
Source: [Nielsen and Sørensen 1998].

Figure 5.6 illustrates in broad terms the differences between the European energy

system in 1990 and the proposed system for 2050. As can be seen from the illustration,

the total amount of energy delivered to the consumers has been cut by almost 60

percent even though the end-use energy service level is 44 percent higher than today,
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because much more energy efficient end-use technologies are in use. Similarly, the

amount of primary energy needed to fulfil those needs is only about 56 percent of what

is needed today, mainly because half of the primary electricity produced from

renewables is being transmitted directly to consumers without considerable losses. The

other part of this electric production is converted into hydrogen that is being stored for

later use and thereby incurring some energy losses. Furthermore, the use of renewable

sources of energy has allowed for phasing out most uses of fossil fuels.

In the proposed energy system commercial civil air transport still remains one of the

few users of fossil fuels, using about 12 percent of the final energy consumption in

Europe and 6 percent of the primary consumption, which equals 91 percent of the total

remaining fossil uses, excluding non-energy uses. Note that these figures are based on

the assumption that the specific fuel intensity of the global aircraft fleet has been

reduced by 50 percent as compared to today while Europeans are assumed to only

travel three times as much by air as in 1990. Three times more passenger air travel in

Europe in 2050 as compared to 1990 is a relatively low figure as compared to what is

currently envisaged by the commercial civil air transport industry itself. The latest

industry forecast suggests that global passenger air travel might triple already in 2020

as compared to 1999 [Airbus 1999]. If air traffic continues to grow at the current pace in

Europe the sector might well consume at least three to five times as much jet fuel in

2050 as what is envisaged in the European scenario suggested here for 2050.

Thereby, commercial civil air transport may be using up to more than 50 percent of the

total final energy use and up to around 30 percent of the total primary uses.

5.2 Challenges for commercial civil air transport

There seems to be two main challenges for a sustainable commercial civil air transport

system, see Figure 5.7. The first major challenge is that passenger air travel and

airfreight are growing strongly, when measured in passenger kilometres and freight

tonne kilometres performed. The second major challenge is that the improvements in

aircraft technology and operational measures that contribute by reducing the specific

emissions per passenger kilometre or freight tonne kilometre are not sufficient to

counteract the growth in commercial civil air transport activities. Each of these major

challenges will be explained in sections 5.2.1 and 5.2.2 respectively.
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Figure 5.7: The two major challenges for reaching a sustainable commercial
civil air transport system

5.2.1 Global air traffic growth versus environmental sustainability

A major challenge for developing a sustainable commercial civil air transport system is

the current growth in passenger air travel and airfreight. Figure 5.8 exemplifies the

challenges posed to the commercial civil air transport system by growth in passenger

air travel. From 1960 to 1998 total passenger air travel, measured in RPKs, increased

more than 20-fold from around 131 billions to around 2888 billions, corresponding

around 45 RPKs per capita in 1960 and around 490 RPKs per capita in 1996, that is,

an 11-fold increase per capita.

Figure 5.8: World passenger air travel 1970-1998 measured in revenue
passenger kilometres performed and scenarios for future development
Sources for global RPKs: 1960-1975: [Boeing 1980] and 1976-1998: [IATA 1994
and 1999]. Global population data are from [US Census Bureau 2000]. Industry air
travel forecast to 2020 from [Airbus 1999].

Scenarios four and five in Figure 5.8 are based on a recent aerospace industry forecast

predicting that the world’s RPKs will grow by 5 percent through the next two decades,

thereby leading to a tripling of passenger air travel in 2020. The differences between

scenarios four and five is that after 2020 growth is assumed to continue at 5 percent
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and 4 percent until 2050 in scenarios five and four respectively, the period after 2020

being shown by dotted lines. In scenarios four and five world passenger air travel has

grown nine-fold and twelve-fold in 2050 as compared to 1998. Scenario one illustrates

that even if the average per capita passenger air travel in 1996 of around 490 RPKs is

“frozen”, the anticipated population growth would anyway lead to around 50 percent

more passenger air travel. Scenarios two and three illustrate that passenger air travel

volume would triple or six-double by 2050, if the average global per capita passenger

air travel grows from 490 to 1000 or 2000 kilometres respectively. Even 2000

kilometres per capita, leading to a 6-fold increase in the global passenger air travel, is

less than the amount of air travel in some industrialised countries today (e.g. the United

States and Australia).

Currently, people living in industrialised countries perform the main share of the world’s

passenger air travel and airfreight. As indicated in Figure 5.9, airlines situated in North

America, Europe and the Asia-Pacific regions performed around 90 percent of the

world’s revenue passenger kilometres (RPKs) in 1996. Therefore, on the longer term,

the prospects for passenger air travel growth seem almost insatiable, if people living in

developing countries begin flying more.

Figure 5.9: World air travel by geographical region 1975 and 1996
Sources: [ICAO 1986 and 1996a].

Before being able to suggest what may be adequate goals for the future level of air

traffic volume in an environmentally sustainable commercial civil air transport system it
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will be necessary to evaluate to which extent the specific GHG emissions per

passenger- and freight-tonne kilometre can be reduced in the future.

5.2.2 Technical and operational fixes versus growth

A major challenge for the commercial civil air transport system is to try to de-couple the

growth in GHG emissions from the growth in air traffic volume by reducing the specific

greenhouse gas emissions per passenger kilometre and per freight tonne kilometre

performed. First of all, the specific GHG intensity per capacity unit of the aircraft fleet

can be reduced by introducing more efficient new aircraft and by scrapping the oldest

and most inefficient models. Secondly, improvements in operational procedures, such

as improving average load factors and reducing stacking above airports can reduce the

specific GHG intensity of the aircraft fleet. Finally, choosing fuel with lower GHG

emissions per available energy unit than current fossil jet fuel can reduce emissions

per distance travelled (see Figure 1.2). An example could be a switch from kerosene to

liquid hydrogen fuelled aircraft.

As shown in Figure 5.10 the global aircraft fleet’s specific CO2 emissions per

passenger kilometre performed has been reduced substantially since the 1970s.

However, the fuel efficiency gains have been levelling off in the last decades as

compared to earlier (see also Figure 3.3). The tendency for the fuel efficiency gains to

slow down is expected to continue in the future. As an example, the European

Aerospace Industry envisages that the yearly reductions in the European fleet’s

specific CO2 emissions will not exceed 1,1 percent throughout the next decade [AEA

and AECMA 1999].

Scenarios for the future specific CO2 emissions of the world fleet until 2050 are

illustrated in Figure 5.10. The scenarios are based on yearly reductions of the fuel

intensity of 1,1 percent throughout the period in specific fuel scenario 1 (SFSc1); and

starting at 2 percent and thereafter gradually levelling off to less than a half percent by

the end of the period in specific fuel scenario 2 (SFSc2); and 2 percent throughout the

period in specific fuel scenario 3 (SFSc3) respectively. The average fuel-burn per

passenger kilometre is reduced by 43 percent in scenario one (SFSc1), by 46 percent

in scenario two (SFSc2) and by 64 percent in scenario three (SFSc3). SFSc1 illustrates

a business as usual development in Europe but is probably rather conservative if

considering the global fleet. SFSc2 represents a more rapid introduction of new
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advanced technology aircraft and improved operational procedures in line with what is

anticipated by the IPCC in its central forecast for the global fleet for the next two

decades. SFSc3 probably represents a minimum for what is technologically achievable

concerning fuel intensity reduction.

Figure 5.10: Specific CO2 emissions per revenue passenger kilometre
(RPK) of the world civil passenger aircraft fleet and scenarios for the
future
Source for historic specific fuel burn is chapter 3.

Figure 5.11 illustrates some scenarios for the world’s civil aircraft fleet’s future CO2

emissions as compared to 1999. These scenarios combine the demand scenarios for

passenger air travel that are illustrated in Figure 5.9 with the scenarios for the specific

CO2 emissions that are shown in Figure 5.10 and exemplifies the dominant role

commercial civil air transport might possibly come to play in a future sustainable energy

system. The thick curves in Figure 5.11 illustrate demand scenario five (DSc5)

combined with specific CO2 scenarios one (SFSc1), two (SFSc2) and three (SFSc3).

This is meant to illustrate that if the air traffic volume grows by a factor of twelve, while

the specific CO2 emissions are reduced by 43 percent, 46 percent and 64 percent

respectively, the CO2 emissions from the world’s civil aircraft fleet will grow by factors

of 7.1, 6.8 and 4.5 respectively. Demand scenarios one (DSc1), two (DSc2), and four

(DSc4) are only shown in combination with specific CO2 emission scenario one

(SFSc1). Demand scenario three (DSc3) is combined with scenarios one (SFSc1) and

two (SFSc2) for specific CO2 emissions. Among the scenarios shown here only the
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combination DSc1 * SFSc1 allows for reduced yearly CO2 emissions from commercial

civil air transport in 2050 as compared to 1999. This is under the assumption that air

traffic volume per capita is kept constant at the 1996 level, while the specific CO2

emissions are reduced by some 43 percent.

Figure 5.11: Scenarios for future CO2 emissions from world civil aircraft
fleet until 2050 (index 1999=1)

5.3. Proposal for a long-term sustainability target for civil air transport

On the basis of the information presented on the fuel intensity of passenger air travel in

chapter 3 this section discusses the CO2 emissions and the total greenhouse gas

emissions from air traffic in relation to the total energy consumption and related

emissions of greenhouse gases on a per capita basis.

Figure 5.12 exemplifies the GHG emissions from passenger air travel, measured as

tonnes of CO2-equivalent, according to the distance travelled under the assumption

that the CO2 emissions from aircraft engines contribute with 37%7 of the overall positive

radiative forcing affected by all aircraft emissions8. The upper curve in Figure 5.12

                                               
7 Aircraft pollutants emitted at high altitudes may contribute 2-4 times as much to global
warming than CO2 alone, although there are considerable uncertainties connected to current
knowledge on global warming impacts [IPCC 1999].
8 Assumptions used in figure 5.12: Based on an estimated fuel use per revenue passenger
kilometre of 55g [Gardner et. al. 1998] corresponding 173g CO2 in 1992. This figure includes the
fuel that is attributable to freight. Furthermore, the figure is based on the assumption that CO2

only contributes with 37% [IPCC 1999] of the total positive radiative forcing affected by aircraft
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suggests the amount of GHG emissions when flying at airline operations at the average

GHG intensity in 1992 (including the fuel that is attributable to freight), and thereby

suggests how much GHGs would be emitted to the atmosphere if flying a certain

distance. The lower curve represents a scenario for how much GHGs may be emitted

in 2050, based on the assumption that the average GHG intensity of the global aircraft

fleet is halved as compared to 19929.

Figure 5.12: GHG emissions from passenger air travel by distance in
comparison to global per capita CO2 emissions and sustainability targets

The two curves for GHG emissions from passenger air travel according to the distance

flown in 1992 and 2050 shown in Figure 5.12 are compared to the average global per

capita CO2 emissions in 1998 of around 4 tonnes. Furthermore the curves are

compared to a world per capita sustainability target for CO2 emissions from combustion

of fossil fuels in 2050 of around 2 tonnes. This sustainability target is based on the

assumption that the current global CO2 emissions may have to be reduced by 30

percent by the middle of this century, and distributed evenly among an expected 9

billion inhabitants (see scenario 3, Figures 5.2 and 5.3). Finally, the two curves in

Figure 5.12 are compared to two suggestions for sustainability targets for passenger air

travel GHG emissions in 2050 of 180 kg and 500 kg of CO2-equivalent respectively.

                                                                                                                                         

emissions, leading to the assumption that the 1992 global aircraft fleet emit 468g CO2-
equivalent per revenue passenger kilometre on average. We note that there is considerable
uncertainty connected to current knowledge on the contribution of aircraft emissions to global
warming [IPCC 1999].
9 We note that there is considerable uncertainty connected to estimating the future greenhouse
gas intensity of air travel.
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These suggested sustainability targets for passenger air travel GHG emissions are

based on the simple assumptions that passenger air travels’ future contribution to the

total emissions of greenhouse gases (measured in CO2-equivalent) should not exceed

9% and 25% respectively of the global per capita CO2 sustainability target of 2 tonnes.

We note that these assumptions are made by the author of this report and are merely

suggested for use in a political discussion of how much greenhouse gases commercial

civil air transport may be allowed to emit in an environmentally sustainable energy

system. In principle, commercial civil air transport can be allowed to emit any share of

the GHG emissions from combustion of fossil fuels, but the higher the share the more

emphasis will have to be made to reduce GHG emissions elsewhere in the energy

system. Because aircraft emissions at high altitude may contribute considerable more

to global warming than emissions at ground level, any increase in aircraft fuel

consumption would have to be met by a comparatively higher reduction of the fuel

consumption at ground level.

Point 1 at the upper curve in Figure 5.12 illustrates that the current global per capita

passenger air travel at little less than 500 revenue passenger kilometres (RPKs) leads

to emissions of around 230 kilograms of CO2-equivalent per capita (85 kilograms of

CO2). This already exceeds the low sustainability target, but is well below the 500-kilo

high sustainability target for passenger air travel GHGs. Point 2 at the upper curve

illustrates that Europeans currently travelling on average around 120010 RPKs per

capita per year emit around 560 kilograms of CO2-equivalent (207 kilograms of CO2).

Point 3 at the upper curve illustrates that US citizens travel around 340011 RPKs per

capita per year emitting around 1,6 tonnes of CO2-equivalent (592 kilograms of CO2).

That is, the GHG emissions from passenger air travel of average Europeans and

Americans may already today exceed the high sustainability target suggested here for

GHG emissions from passenger air travel in 2050.

Figure 5.12 also suggests that even if the global aircraft fleets’ GHG intensity would be

cut in half within the next fifty years the average level of passenger air travel performed

                                               
10 Note that this figure is based on RPKs performed by airlines situated in Europe. These
airlines also transport passengers of other nationalities. Likewise Europeans can travel with
airlines situated in other parts of the world, and the figure is therefore a rough estimate.
11 Note that this figure is based on RPKs performed by airlines situated in the United States, and
the figure is therefore a rough estimate connected with a rather high uncertainty, see footnote
above.
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by American citizens today on a yearly basis would not be allowed within the high

sustainability target. Rather, the high sustainability target only allows each person to

travel around 2100 kilometres by air in 2050, while the low target allows each person to

fly around 800 kilometres per year. That is, the current average global level of

passenger air travel per capita may be within the low sustainability target for 2050,

whereas the current European level may be within the high sustainability target. We

note that these estimates are highly uncertain. One of the major uncertainties is

connected to the estimate of the greenhouse gas equivalents. First of all, there is

uncertainty about the impact of NOx and water vapour on climate change. Secondly, if

the climate impact of high-altitude emissions is considered severe, the aircraft could be

designed to cruise at lower altitude, thereby reducing the impact. Therefore, if the

sustainability targets were set to only consider the emissions of for example CO2, the

yearly allowable limits would be almost three times as high as what is being suggested

by Figure 5.12.
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Conclusions and recommendations

♦  How energy intensive and GHG intensive is air travel and freight?

The specific consumption of jet fuel per revenue passenger kilometre and per revenue

freight tonne kilometre has been found to vary much between different types of aircraft.

Old aircraft are typically more fuel intensive than newer types and aircraft used at

short-haul are generally significantly more energy intensive than those used on

medium-haul and long haul. For example, the energy consumption on short haul often

exceed 80g of jet fuel per passenger kilometre and 500g per revenue freight tonne

kilometre while on long haul these figures are most often below 50g and 270g

respectively. However, for long haul passenger aircraft the specific fuel consumption

per passenger kilometre and per revenue tonne kilometre depend much on the method

used for allocating the fuel consumption to passengers and cargo respectively. For

instance, the fuel consumption per aircraft kilometre flown by a B747-400 is typically

around 12,5-13 kilograms per kilometre. At typical passenger load factors and freight

loads the fuel consumption per revenue passenger kilometre is around 46-48g if all the

fuel is attributed to passenger transport. However, if distributing the fuel consumption

on an equal weight basis between the weight of passengers and freight respectively,

this figure is reduced to around 31-35g per revenue passenger kilometre, while the fuel

consumption per revenue freight tonne kilometre is around 315-349g. The most fuel-

efficient medium-haul and long haul passenger aircraft use less than 20g per revenue

passenger kilometre while the most fuel-efficient long-range all-freight aircraft use

around 160g per revenue freight tonne kilometre.

The airlines studied in this report estimate their average yearly fuel intensity per

revenue passenger kilometre and per freight tonne kilometre at around between 26-

81g and 210-237g of jet fuel respectively. The deviations in airlines’ average fuel

intensity can be explained mainly by differences in the types of aircraft used as well as

differences in route structures and passenger load factors and freight load factors as

well as differences in methodologies for calculating the specific fuel consumption

(especially the allocation of fuel between passengers and freight seems to be of

importance). Among the airlines studied in this report European charter carriers are the
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ones using the least amount of jet fuel per revenue passenger kilometre. Thus,

currently European charter air travel seems to be the most fuel-efficient way of

travelling by air. Conversely, commuter- and regional airlines are the most fuel-

intensive.

Our analysis of the American air carriers indicates that the average CO2 intensity of

passenger air travel in the US (including belly-hold freight but excluding all-cargo) in

1999 is around 154g of CO2 per revenue passenger kilometre. If also subtracting the

fuel used for transporting cargo (on an equal weight basis) this figure is reduced to

around 127g of CO2. For comparison, the average American passenger car emits

around 272g of CO2 per vehicle kilometre. The most fuel-efficient European charter

airlines emit less than 80g of CO2 per passenger kilometre, and are thereby more fuel-

efficient than an average Danish passenger car with two occupants emitting around

89g of CO2 per passenger kilometre. On the other hand the least fuel-intensive diesel

car currently available on the market (VW LUPO 3L) emits around 80g of CO2 per

vehicle kilometre and is therefore significantly more fuel-efficient than charter aircraft

when the car transport more than one person. However, a comparison between cars

and aircraft over short distances is more realistic if using the fuel-intensity of small

turboprop aircraft that are typically used on short-haul routes. Such aircraft typically

emit around 250g of CO2 per revenue passenger kilometre. It should be noted that

such comparisons between cars and aircraft are complicated by all the parameters

connected to calculations. Some main examples are the differences in actual distances

between destinations (aircraft fly more direct routings than cars), differences in

passenger load factors (for aircraft this is further complicated by freight load factors),

differences in the fuel-intensity of different types of vehicles (there are distinct

differences in the fuel-intensities of different vehicle models and there are operational

differences related to driving cycles of cars and air traffic management for aircraft), etc.

Furthermore, comparisons of greenhouse gas emissions from a trip will also have to

take into account that aircraft emissions at high altitudes contribute more to global

warming than emissions at ground level.
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♦  What role does commercial civil air transport currently play as an energy

consumer and a GHG emitter?

Within the transport sector road transport is by far the most important energy consumer

and source of greenhouse gas emissions, but air transport has grown to become the

second largest energy consumer with higher annual activity growth rates than road

transport. The Intergovernmental Panel on Climate Change (IPCC) estimates that

commercial civil air transport emitted approximately 12% of the CO2 emissions from the

transportation sector in 1992 [IPCC 1999, p. 284]. According to the IPCC, current

knowledge about commercial civil air transport’s overall contribution to climate change

suggests that the total positive radiative forcing (warming) effect might be 2-4 times

higher than that of CO2 emissions from aircraft alone [IPCC 1999, p. 7]. Note that a

rather large uncertainty is connected to this estimate. In this perspective commercial

civil air transport may already today account for not only the 12% of the transport

sector’s direct CO2 emissions, but also around 30% of the sectors’ total GHG budget.

Air traffic is heading for becoming a much bigger source of GHG emissions in the

future because air traffic volume currently grows stronger than the fuel-efficiency

improvements.

Air travel and freight are relatively fuel-intensive activities as compared to other types

of energy services because much fuel can be consumed within a relatively short period

of time. One air trip can contribute considerably to the yearly per capita CO2 emissions.

For example, almost half a tonne of jet fuel may be consumed per passenger on a

return trip between Copenhagen and New York emitting around one and a half tonnes

of CO2. If also taking account of emissions of NOx and water vapour the greenhouse

gas emission budget, measured in CO2-equivalent, may correspond to the emission of

some four and a half tonnes of CO2 from sources at sea level. This exceeds the yearly

per capita emission of CO2, related to the combustion of fossil fuels, on a global basis.

For comparison, Danes emit around 3 tonnes [Danish Energy Agency 2000] of CO2 per

capita per year from all domestic transportation sources and an average Danish car

would have to drive around 26000 kilometres to emit four and a half tonnes of CO2,

corresponding to the GHG budget of the roundtrip Copenhagen-New York.
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•  What is the scope for reducing the energy intensity and the GHG intensity of

passenger air travel in the future?

Modern aircraft are considerably more fuel-efficient than older types so if airlines

replace old aircraft by current generation and next-generation aircraft models much fuel

can be saved. Additional fuel can be saved if load factors are improved. Improvements

in operational procedures allowing aircraft to fly more direct routings and easing

congestion at airports can also save fuel.

Aircraft producers and airlines are likely to continue introducing more fuel-efficient

aircraft. Near-term developments are introduction of ultra-large long-range super-

jumbos and derivatives of existing models in the smaller segments. But also in the

market segment for regional jets seating from around 30 and up to 120 passengers a

number of new models are being introduced. These developments are likely to lead to

a further reduction of the average fuel intensity of air travel in the future.

The prospect for introducing ultra-large capacity aircraft is an important development

for the average fuel-intensity because large long-haul aircraft consume a rather large

share of all jet fuel (around 40% in 1992 [Gardner et. al. 1998]). Airbus’ A380-200 is

envisaged to burn up to 20 percent less fuel per revenue passenger kilometre than

Boeings’ B747-400. However, it should be noted that larger aircraft still consume more

fuel per aircraft kilometre even though they burn less fuel per seat kilometre.

Introduction of new more efficient aircraft adds to the rebound effect, that is by

introducing large-capacity fuel-efficient jets airlines can operate at lower operating

costs per seat kilometre offered, lowering airfares thereby spurring additional demand.

Airlines furthermore have the incentive to sell a larger proportion of tickets at discount

prices to fill up those larger aircraft.

On the longer term the Intergovernmental Panel on Climate Change estimates that new

aircraft may be 30-40 percent less fuel intensive by the middle of this century [IPCC

1999]. The fuel intensity of new aircraft could probably be reduced even further if

governments push for aircraft producers to develop radically new types of aircraft

shapes, such as blended wing body aircraft [Cranfield College of Aeronautics 2000a],

and radically more efficient types of engines, such as propfans [Dings et. al. 2000b].

Also on the longer term the reduction in GHG intensity could be reduced even further if

hydrogen or synthetic jet fuel produced from biomass or renewable sources of primary
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energy substitutes fossil kerosene and if aircraft are designed for cruising at lower

altitude. However, there is large uncertainty connected to current estimates of the

climate impact associated with water vapour emitted at high altitude when burning

hydrogen, and the environmental acceptability of hydrogen as an aviation fuel is

therefore uncertain at present [Marquart et. al. 2001]. Likewise, the introduction of

propfans may increase noise levels [Dings et. al. 2000b].

The future fuel intensity of air travel and freight is difficult to forecast. The yearly

reductions in fuel intensity will depend on the pace of introducing new aircraft and the

phasing out of old aircraft. The pace of introducing new aircraft depends much on air

travel growth and the pace of scrapping old aircraft. The pace of scrapping old aircraft

can be speeded up in the future by fuel price increases and the possible emergence of

environmental charges such as taxes on in-flight emissions or fuel tax. Furthermore,

other measures such as voluntary agreements with airlines on yearly fuel efficiency

improvements or scrapping schemes could come to play a role. However, none of

these measures have yet been implemented at a larger scale.

The future fuel intensity will to some extent depend on airline preferences for speed

over fuel efficiency. In the short-haul market turboprops are currently to some extent

being substituted by new regional jets that offer higher speed but are also more fuel-

intensive than turboprops. If regional airlines and aircraft producers favoured

development of new advanced types of turboprops instead of high-speed regional jets

the fuel-intensity could be reduced. Boeing’s suggestion to introduce a family of sonic

cruisers cruising at high altitude near the speed of sound is the latest development in

the quest for higher speed. If sonic cruisers or even a new generation of supersonic

airliners become widely used they will tend to impede the future reduction in the

average fuel intensity of air travel. However, it should be noted that actual fuel

consumption data for the still on the drawing board sonic cruiser has not been

published at the time of writing this report.

♦  What role may commercial civil air transport come to play in the future

energy system?

CO2 emissions from commercial civil air transport are likely to grow considerably in the

future. Air travel growth and technological innovation will be the main determinants of

the future development in the environmental impact. In a “business as usual” scenario
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for the development of the future energy system commercial civil air transport is likely

to become a much larger source of GHG emissions than today. But the sector may still

not become one of the biggest sources, if energy consumption and the related GHG

emissions continues rising also in the other sectors. However, if the rest of the energy

system develops in an environmentally sustainable direction the GHG emissions from

commercial civil air transport may become a relatively large source. Growth in

passenger air travel and airfreight can thereby become a major obstacle to the

development of a sustainable energy system, increasing the pressure on the other

sectors to reduce emissions.

•  What may be required for achieving sustainable commercial civil air

transport?

There is no common agreement as to what environmental sustainability means. This

project assesses possibilities to reduce GHG emissions from commercial civil air

transport. In this respect, inspired by scenarios for the future global CO2 emissions and

the resulting CO2 concentration in the atmosphere developed by the IPCC, a proposal

for an environmental sustainability target has been defined in this project. The target

aims at reducing global CO2 emissions from combustion of fossil fuels by 30 percent by

the middle of this century (as compared to 2000). Furthermore, inspired by the

Brundtland Commission, sustainable development is interpreted to mean that the

earth’s resources should be allocated more equally between the world’s population that

is anticipated to grow to around 9 billion inhabitants in the period. Therefore, the

sustainability target argued for in this report estimate that current global per capita CO2

emissions from combustion of fossil fuels of around 4 tonnes should be reduced to

around 2 tonnes in 2050. It should be noted that there is no common agreement on this

proposed sustainability target, and that the current international debate over the

agreement from Kyoto on reducing emissions of greenhouse gases does not indicate

that such radical targets can currently be agreed upon by the nations of the World.

The implications of the sustainability target for the whole energy system that is

proposed here for commercial civil air transport is not necessarily straightforward.

Politicians could decide upon that commercial civil air transport would have to reduce

emissions of greenhouse gases in line with the overall goal. It could also be argued

that the sector’s share of global emissions should be allowed to grow while other

sectors would have to reduce their shares, and this seems to be an important political
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discussion for the future. One argument for letting air transport increase it’s share of

global CO2 emissions in the future is that it may be technically more difficult and also

more expensive to substitute fossil jet fuel by less GHG intensive fuels than it will be to

change fuels in for instance domestic households and in the power generating sector.

Two suggestions for sustainability targets for air travel GHG emissions in 2050 of 180

kg and 500 kg of CO2-equivalent per capita respectively have been proposed in this

study. These targets are based on simple assumptions that air travels’ future

contribution to emissions of greenhouse gases (measured in CO2-equivalent) should

not exceed 9% and 25% respectively of the global per capita CO2 sustainability target

of 2 tonnes. For comparison, commercial civil air transport currently contributes by

around 2% of total CO2 emissions from combustion of fossil fuels, but the share of

GHG emissions may be 2-4 times higher because aircraft emissions at high altitude

may contribute more to global warming than gases emitted at ground level. It should be

noted that the sustainability targets are basically proposals for political discussion. No

scientific or political consensus exists in this area.

The current average level of air travel per capita on a global scale is within the high

sustainability limit proposed for 2050 in this report, but Europeans and Americans

already emit more GHGs than what may be allowable within such a budget. If air travel

GHG intensity is reduced by 50 percent by the middle of this century, current global

level of air travel per capita may be within the low sustainability target whereas current

European air travel volume may be within the limits of the high sustainability target. The

high sustainability target allows global air travel volume to grow by around a factor of

three within the next fifty years. However, air travel volume is currently growing fast,

prognoses from the aeronautical industry envisioning that air travel volume may triple

shortly after 2020, and therefore looks set to become a major source of GHGs in the

future. Therefore, if the emissions of GHGs are to be reduced according to the

sustainability targets proposed here, governments ought to implement measures aimed

at reducing air traffic growth and at increasing the incentive of the commercial civil air

transport industry to speed up its efforts to reduce the specific emissions of GHGs.
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♦  What drives development of environmentally friendly aircraft, and what could

be done to facilitate the introduction of aircraft that emit less GHGs?

In general, aircraft producers compete to produce the most efficient aircraft, focusing

on reducing direct operating costs and emissions and noise while improving

performance parameters such as reliability, safety,  range, speed, fuel-efficiency, and

passenger- and freight capacity. However, there are tradeoffs between these

parameters. These tradeoffs make it difficult to put out goals for the development of

more environmentally friendly aircraft.

Even though lower cruise speed would lead to higher fuel-efficiency while reducing

emissions, this option is not favourable to airlines because of productivity and revenue

losses. Likewise, new efficient aircraft technology reduces fuel costs, but are

disadvantaged by higher capital costs than mature technology because of the high

development costs connected to developing radically new concepts. Currently there is

limited incentive for aircraft manufacturers to move ahead to revolutionary designs.

Unless fuel price raises dramatically or a substantial tax is added to aircraft engine

emissions, there will most likely be more evolution than revolution in aircraft design,

because development of new aircraft types is an expensive and risky business. The

cost and risk connected to developing new aircraft technologies is a major impeder to

development of environmentally friendly aircraft.

Future policies may first of all aim at introducing tax on fuel and emissions to give the

airlines and the aircraft producers incentives to introduce more fuel-efficient

technologies. Secondly, policies may aim at committing the industry to initiating

research and development into long-term future technologies.

♦  What drives air travel growth?

The strong growth in air travel is generated by life-style changes. People living in

industrialised countries have become accustomed to travel by air. The building up of a

large socio-technical system surrounding commercial civil air transport facilitates air

travel growth. Airport and aircraft capacity is constantly being enlarged, while the real

cost of air travel is reduced. The building up of the socio-technical system is furthered

by government subsidies, which again contribute to reduce airfares.
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National interests and geopolitics play important roles in the subsidisation of

commercial civil air transport’s socio-technical system. National governments support

local airports, airlines and aerospace industries to maintain and increase the relatively

large number of people employed in these industries. Further aspects are the prestige

connected to maintaining aeronautical and military leadership as well as the prestige

connected to operating national flag carriers. The industry becomes increasingly

important for global and local economies.

Market forces contribute to reduce the cost of air travel in that aircraft producers

compete to produce the most efficient aircraft at the lowest possible prices while airline

competition in an increasingly global and liberalised market contributes to reduce real

airfares.

Economic growth policy leads to increasing income in many countries thereby allowing

more and more people to travel by air. Today, most air travel is related to leisure,

holidays and visiting friends and family. Air travel is an important social status maker

and current trends in social values and preferences leads people to travel more often

and further away to discover new exotic cultures and resorts.

Globalisation of businesses and the economy in general are major drivers for air travel

growth. As businesses, political forums and personal relations become increasingly

global the need to communicate over longer distances rises. Business travel is a major

driver for air travel growth in the sense that business fares are substantially higher

than normal economy fares and discount fares. Business travellers thereby subsidise

leisure travellers, by allowing airlines to sell leisure tickets at artificially low fares. This

structure is furthered by airline frequent flier programmes and other marketing tools.

•  What effect may a kerosene tax have on the environmental impact of

commercial civil air transport?

The potential environmental effects of a jet fuel tax are difficult to quantify. Some main

parameters of crucial importance are future developments in the general economy,

airline productivity and airfares, consumer income and consumer preferences for air

travel over other modes of consumption. Most fuel tax studies reviewed for this report

anticipate quite high growth rates in air travel and freight, mainly basing it on

forecasting historical trends. Forecasts are based on the assumptions that continuing
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economic growth and increasing income combined with reductions in real airfares will

allow such demand increases. Furthermore, studies seem to assume that adequate

airport infrastructure will be provided to meet rising demand, being another crucial

assumption, considering that it is becoming increasingly difficult for airports to get

approvals for enlarging their capacity in many industrialised countries.

The studies reviewed suggest that at current growth rates in air travel and freight a

relatively high level of kerosene tax would be needed to stabilise CO2 emissions from

commercial civil air transport. Some studies suggest that a fuel tax of some 80-180

US¢/kg may be adequate, whereas other studies indicate that the tax may have to be

even higher. For comparison, EU minimum fuel tax for road diesel fuel is around 30

US¢/kg, but many countries levy much higher tax, up to 87 US¢/kg in United Kingdom.

Because aircraft emissions at high altitude contribute more to global warming than

emissions at ground level one could argue for applying a higher tax on jet fuel.

A jet fuel tax of some 126 US¢/kg may raise average airline operating costs per

revenue passenger kilometre on international flights by some 75%. Fare increases will

be proportionally higher in Asia than in North America and Europe and fares will tend to

increase considerably more on long haul flights than on medium- and short haul.

As has been suggested in this report a sustainability target for commercial civil air

transport may aim at keeping the greenhouse gas emissions related to passenger air

travel within a limit of between 124 to 350kg of CO2-equivalent per capita in 2050. If the

average GHG intensity is reduced by some 50% in 2050 global air travel may be

allowed to increase by a factor of 3 until 2050 and still remain within the high

sustainability target. This would correspond to a yearly growth rate in air travel of some

2,25%, and current level of growth at around 5% per annum would have to be more

than halved. Assuming that the demand elasticity estimates used in the fuel tax studies

reviewed for this report are correct one would need a fuel tax that raises airfares by

some 75%, corresponding a tax level of some 126 US¢/kg. If a lower tax is chosen

emissions will most likely surpass the high sustainability target, unless other measures

are used to supplement the fuel tax. Note that there is a high level of uncertainty

connected to estimating the future impact on air traffic GHG emissions of introducing a

fuel tax.
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However, in the current political climate, a global kerosene tax seems unlikely to

emerge. Rather, ICAO seems to be heading for investigating further the possibility of

setting up a scheme for CO2 emissions trading. This seems to be a long-term solution.

Furthermore, such a system is likely to be designed to allow the commercial civil air

transport sector to buy emission quotas in other sectors. This will allow air transport to

rise further. The environmental NGOs argue that commercial civil air transport ought to

reduce its emissions [T&E/ICSA 2001] and that all types of greenhouse gases should

be controlled, not only CO2 [T&E/ICSA 2001] [Lee 2000].

♦  Which other policies may be used to impede air travel growth?

The commercial civil air transport sector has until now been exempted from

international agreements on GHG reduction. In the future, alternative policies may aim

at putting out GHG reduction schemes for the sector. For example, governments may

put out regulation on maximum GHG intensity of next-generation aircraft or they could

agree upon a definite cap for the amount of emissions that the commercial civil air

transport sector can be allowed. Similarly, governments could make agreements with

the airlines on reducing specific emissions by purchasing new aircraft and scrapping

older models. Adoption of measures, such as voluntary agreements with the industry

on energy efficiency, jet fuel tax, emission trading schemes etc., may play an important

role in implementing alternative policies. However, if focusing solely on market based

measures, such as a jet fuel tax, a rather high tax level would be needed to reduce

growth in the environmental impact. It is therefore important to look for other policies to

curb the growth in air transport.

Many government policies are today directly aimed at supporting air travel growth.

Obvious examples are authorities’ approval of expanding airport capacity and policies

aimed at subsidising airlines, aircraft production and airports. Such policies are often

directly spurred by the wish to maintain and expand the number of work places within

the industry. Alternative policies aimed at impeding air travel growth may therefore aim

at stopping airport capacity expansion and eliminating direct economic subsidies for the

commercial civil air transport sector. Furthermore, the sector is to a large extent

exempted from paying tax and VAT. For example, airlines are exempted from paying

jet fuel tax. Policies aiming at introducing taxes would impede air travel growth.
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Furthermore, many policies support air travel growth indirectly. Obvious examples are

policies aimed at maintaining economic growth in society and improving overall

productivity. Economic growth in conjunction with productivity improvements leads to

rising personal incomes, which again allows people to choose to fly more often.

Furthermore, the increasing tendency towards market liberalisation and globalisation of

economic, political, and personal relations tends to increase the need of

communicating across national borders. Policies aimed at a satiation economy and at

limiting globalisation are therefore likely to reduce growth in air travel.

On the shorter term, governments in industrialised countries could try to promote

longer lasting but fewer vacation trips. This would to some extent acquire some

restructuring of current work patterns. Promoting alternative lifestyles and ways of life

might on the longer term reduce air travel growth. If the social status connected to

travelling far away diminishes people might choose nearby holiday destinations.

Similarly, if people choose a less materialistic approach to life by working less, having

more free time available as well as earning less (than what may otherwise have

happened), there is clearly potential for change. Governments may also seek to find

alternative ways of measuring progress and growth than Gross Domestic Product. This

might allow nations to develop in more sustainable directions than when planning

mainly to achieve economic growth.

Developing countries may seek in the future to approach the economic and material

wealth of industrialised countries, and this may imply economic growth. This, in

conjunction with expectations for strong population growth in these regions of the

world, may lead to strong growth in air travel. Any policy aimed at limiting population

growth may therefore help to reduce air travel growth. Likewise developing countries

may choose to implement policies aimed at achieving increasing welfare without

focusing on building up a socio-technical system resembling the one that has been built

up around commercial civil air transport in industrialised countries.
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Glossary - abbreviations and terms

A300 Airbus medium/long range twinjet wide-bodied airliner took
first flight in 1972. The A300B2 seating 250 went into airline
service in 1974 and was the world’s first wide-body twinjet.
A later improved version, the A300-600 went into airline
service in 1983

A310 Airbus medium/long range twinjet wide-bodied airliner first
delivered in 1982 seating 187-279 passengers

A318 Airbus short/medium-range twinjet narrow-body airliner,
shortened version of A320 seating 107-117 passengers.
Next-generation aircraft to enter service in 2002

A319 Airbus short/medium-range twinjet narrow-body airliner,
shortened version of A320 seating 124-145 passengers.
First delivered in 1996

A320 Airbus medium-range twinjet narrow-body airliner seating
150-179 passengers. First delivered in 1988

A321 Airbus medium-range twinjet narrow-body airliner, stretched
version of A320 seating 185-200 passengers. First delivered
in 1994

A330 Airbus medium/long range twinjet wide-body airliner seating
256-440 passengers. First delivered in 1993

A340 Airbus long-range four-engine wide-body airliner seating
263-440 passengers. First delivered in 1993

A3XX Next generation double-deck super-jumbo from Airbus later
re-named A380. Seating 555-1000 passengers and
expected first delivery in 2006

A380 Next generation double-deck super-jumbo from Airbus,
formerly known as the A3XX seating 555-1000 passengers
and expected first delivery in 2006

AEA Association of European Airlines. Its members are Adria
Airways, Aer Lingus, Air France, Air Malta, Alitalia, Austrian
Airlines, Balkan, British Airways, British Midland, Cargolux,
Croatia Airlines, CSA, Cyprus Airways, Finnair, Iberia,
Icelandair, JAT, KLM, Lufthansa, Luxair, Malev, Olympic
Airways, Sabena, SAS, Swissair, TAP Air Portugal and
Turkish Airlines.

AECMA European Association of Aerospace Industries. Its members
are the national aerospace associations of all 15 EU
member states - Austria, Belgium, Denmark, Finland,
France, Germany, Greece, Ireland, Italy, Luxembourg, The
Netherlands, Portugal, Spain, Sweden and the United
Kingdom - as well as the largest European aerospace
companies.

AIA Aerospace Industries Association of America
ACI Airports Council International
AEF Aviation Environment Federation is an environmental NGO

based in the UK which have been co-organising a range of
campaigns in Europe aimed at introducing kerosene tax and
restricting growth of the environmental impact of aviation
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Airbus The major European producer of large civil aircraft.
Produces a varied family of aircraft in the category above
100 seats. Main family consists of A300s, A310s, A320s,
A330/A340s and next-generation A380s. Each aircraft family
exists in a wide range of derivatives featuring differences in
capacity, length, engines, technology and seat-configuration

Aircraft-kilometres Amount of kilometres travelled by an aircraft
Aircraft movement An aircraft take-off or landing at an airport
Aircraft utilisation The average number of block hours an aircraft is in use per

time unit, e.g. block hours performed per day
ASK Available Seat Kilometres - is the number of seats made

available for sale in aircraft multiplied by the distance flown
by those aircraft

ATAG Air Transport Action Group
ATK Available Tonne Kilometres - is the number of tonnes of

capacity available for the carriage of revenue load
(passengers and cargo) multiplied by the distance flown

ATM Air traffic management
ATR European producer of the ATR-42 and ATR-72 turboprops
B707 Boeing’s first jet introduced in 1958. A four-engine narrow-

body airliner accommodating up to 181 passengers. No
longer in production

B717 Boeing short/medium range twinjet narrow-body airliner
seating 80-120 passengers. First delivery in 1999

B727 Boeing medium-range tri-engine narrow-body airliner
seating 163-189 passengers. First delivered in 1963. No
longer in production but still in service

B737 Boeing short/medium-range twinjet narrow-body airliner
seating 108-189 passengers. First delivered in 1967.
Upgraded several times since then, the newest versions
being 737-600s, 737-700s, 737-800s and 737-900s
introduced in the late 1990s

B747 Boeing long-range four-engine wide-body half double-deck
airliner seating 300-568 passengers. First delivered in 1969.
Upgraded several times since then, the newest version
being the 747-400 introduced in 1989

B757 Boeing medium-range twin-jet wide-body??? airliner seating
178-289 passengers. First delivered in 1982 in the 757-200
version. In 1999 introduced in the 757-300 version

B767 Boeing medium/long-range twin-jet wide-body airliner
seating 224-350 passengers. First delivered in 1981 in the
B767-200 version. In 1986 came the B767-300 version and
the next-generation B767-400 is expected soon

B777 Boeing long-range twin-jet wide-body airliner seating 305-
550 passengers. First delivered in 1994 in the B777-200
version. In 1997 came the B777-300 stretched version

BaE British Aerospace. The British aircraft manufacturer produce
a number of turboprops and regional jets as well as the
wings for Airbus’ aircraft

Boeing The major American producer of large civil aircraft.
Produces a varied family of aircraft in the category above
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100 seats. Main family consists of B717s, B727s, B737s,
B747s, B757s, B767s and B777s. B727s are out of
production. The other families exists in a wide range of
derivatives featuring differences in capacity, length, engines,
technology and seat-configuration

Block speed Average speed for each flight stage calculated from the
block time and stage distance

Block time Time for each flight stage between the switch on of engines
at departure and engine switch off at arrival

Business jets Smaller jets designed for a relatively low number of
passengers

Bypass ratio Term used to measure the amount of air passing through
the aircraft engine core to the amount surpassing the core.
High-bypass ratio turbofan engines are generally more fuel-
efficient than low-bypass versions

Cabin crew Refers to stewards and stewardesses
CAEP Committee on Aviation Environmental Protection (set down

by ICAO). Among other things, CAEP has recently reviewed
a number of market based measures for reducing the
environmental impact of commercial civil air transport.
CAEP is composed of experts who are nominated by States,
major sectors of the commercial civil air transport industry
and an environmental NGO umbrella group. Current
members were nominated by Austria, Brazil, Canada, Egypt,
France, Germany, Greece, Italy, Japan, the Netherlands,
Norway, Poland, Russian Federation, Singapore, South
Africa, Spain, Sweden, Switzerland, Tunisia, United
Kingdom, United States, Arab Civil Aviation Commission
(ACAC), Airports Council International (ACI), the European
Commission, the International Air Transport Association
(IATA), the International Business Aviation Council (IBAC),
the International Coordinating Council of Aerospace
Industries Associations (ICCAIA), the International
Federation of Air Line Pilots’ Associations (IFALPA), the
European Federation for Transport and Environment (T&E),
the United Nations Framework Convention on Climate
Change (UNFCCC) and the World Meteorological
Organisation (WMO).

CEC Commission of the European Communities
Chapter 3 aircraft Aircraft that meet today’s strictest noise certification levels.

The first noise certification standard was introduced by
ICAO in 1977 and have been tightened since then. All new
commercial civil aircraft have to meet the Chapter 3
standard. The permitted values depend on the aircraft’s
maximum take-off weight and the number of engines. Large
aircraft may emit more noise than smaller ones and four-
engine aircraft may be noisier than twinjets. In January 2001
CAEP agreed upon a new stricter Chapter 4-noise standard
to come into force from 2006.

BWB Blended Wing Body Aircraft, a proposed radically different
future airframe design for a very large civil subsonic airliner
with the same capacity as the A3XX double-deck super
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jumbo jet from Airbus. The BWB has the shape of a “flying
wing”

CH4 Methane
Commuter aircraft Small passenger aircraft used for commuting on short

distances.
Concorde Supersonic passenger aircraft
CO2 Carbon dioxide
DC-3 Douglas twin-piston-engine airliner introduced in the 1930s
DC-8 Douglas’ first passenger jet introduced in the late 1950s
DC-9 Douglas short/medium range twin-jet narrowbody airliner

introduced in the 1960s and later upgraded several times.
After Douglas’ merger with MacDonnell aircraft company the
DC-9 was re-named MD-80 and later MD-90 in a stretched
version

DC-10 Douglas medium/long range tri-jet wide-body airliner
introduced in 1971 and later upgraded several times. After
Douglas’ merger with MacDonnell aircraft company re-
named MD-11 in 1990

Embraer Brasilian producer of regional turboprops and jets
EBAA European Business Aviation Association
ECAC European Civil Aviation Conference
ERA European Regions Airline Association
Fairchild/Dornier European producer of a family of regional jets
Flight crew Refers to the pilot, co-pilot and flight engineer if any
FoE Friends of the Earth, is an NGO which have been co-

organising a range of campaigns in Europe aimed at
introducing kerosene tax and restricting growth of the
environmental impact of commercial civil air transport

Fokker Dutch producer of regional turboprops and jets
Freight tonne-kilometre A metric tonne of freight (or mail) carried one kilometre
Frequent flier programme A promotional device designed by airlines to encourage

customer loyalty whereby customers are given credits for
each flight flown with the specific airline who runs the
programme. Accumulated credits can for example be used
for obtaining free tickets or discounts

GDP Gross Domestic Product
GHG Greenhouse gas
HACAN Heathrow Association for the Control of Aircraft Noise is a

local NGO opposing the plans to expend the capacity of
Heathrow airport

deHavilland Canada Canadian producer of regional turboprops and jets
Hub-and-spoke A hub-and-spoke routing network has a structure resembling

the hub and spokes of a bicycle, in which a single airport is
the focus of an airline system, as opposed to a linear
network in which all airports are directly linked. In a hub-
and-spoke network passengers are fed by spoke routes into
the hub airport from which they take connecting flights to
their next or final destination

IACA International Air Carrier Association
IPCC Intergovernmental Panel on Climate Change
IATA International Air Transport Association is an airline industry

organisation and currently represents 275 member airlines.
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ICAO International Civil Aviation Organisation is an
intergovernmental organisation operating under the
auspices of the UN. Among other things ICAO is engaged in
setting environmental standards for aircraft. ICAO currently
represents 187 member states.

ICSA International Coalition for Sustainable Aviation. As of
January 2000 the membership of ICSA consists of the
Aviation Environment Federation, the Center for Clean Air
Policy, the Coalition for Clean Air, the Dutch Society for
Nature and Environment (SNM), Friends of the Earth
Europe, the German League for Nature and Environment
(DNR), Germanwatch, European Federation for Transport
and Environment (T&E) and World wildlife Fund (WWF).
Greenpeace International is in the process of joining

Jet aircraft Aircraft equipped with turbojet or turbofan engines
Jet fuel See kerosene
Kerosene Jet fuel that is used in jet and turboprop engines is

chemically similar to petroleum. When burning one kilogram
of kerosene 3,15 kg of CO2 is emitted as well as 1,24 kg of
water vapour. Emissions of NOx depends on the engine
type in use. One litre of kerosene weighs approximately 0,8
kg

kg Kilogram
km Kilometre
L-1011 Lockheed medium range wide-body tri-jet seating 256-400

passengers. First delivered in 1972
Lockheed Major American producer of large civil aircraft, which has

stopped producing civil aircraft. Some of Lockheed’s civil
jets are still in use, notably the tri-jet L1011 Tristar

Long-haul Long-distance flights
MacDonnell Douglas Major American producer of large civil aircraft which has

recently been acquired by Boeing. A range of aircraft from
Macdonnell Douglas are still in use for civil passenger
transportation, notably DC8s, DC9s, DC10s, MD80s, MD90s
and MD11s.

Mach Speed of sound
MD-80s MacDonnell Douglas short/medium range twin-jet

narrowbody airliner. An updated version of Douglas’ DC9.
The MD-81 first delivered in 1979. Later upgrades are MD-
82, MD-83, MD-87 and MD-88.

MD-90 MacDonnell Douglas Short/medium range twin-jet
narrowbody airliner, stretched MD-80 follow-on seating up to
172 passengers. First delivered in 1993

MD-11 MacDonnell Douglas medium/long-range three-engine wide-
body airliner, DC-10 follow-on, seating 250-410 passengers.
First delivered in 1990

Non-scheduled carrier Air transport operator that offers air transport service to the
public on a non-scheduled basis only

NOx Nitrogen oxides
Operating expenses A type of financial measure, typically given as operating

expenses per traffic unit, for instance as operating expenses
per ASK, ATK, RPK or RTK.
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Operating revenue A type of financial measure, typically given as operating
revenue per traffic unit, for instance as operating revenue
per ASK, ATK, RPK or RTK.

Passenger kilometre Unit measuring the amount of people transported multiplied
by the amount of kilometres travelled

Passenger load factor The passenger load factor is calculated as the ratio between
the number of passengers carried to the number of seats
made available for sale

Piston aircraft Aircraft powered by piston engine
Propfan Advanced type of turboprop engine that could substitute

current turbofan engines. Its tractor is more efficient than
blades on a turbofan due to it’s high bypass ratio. Due to
perceived safety problems combined with high noise levels
and probably also high maintenance costs the propfan
engine is not yet in use. Sometimes also named UDF
unducted fan engine

Regional jets Jet powered aircraft in the size categories below
approximately 100 seats

RPK Revenue Passenger Kilometres - is the number of
passengers (paying at least 25% of normal applicable fare)
multiplied by the distance flown in kilometres

RTK Revenue Tonne Kilometres - is the revenue load
(passengers and cargo) in tonnes multiplied by the distance
flown in kilometres

Saab 340 Regional twin-turboprop airliner from the mid-1980s
Saab 2000 Regional twin-turboprop airliner from the early 1990s
SBSTA United Nations Framework Convention on Climate Change’s

Subsidiary Body for Scientific and Technological Advice
Seat configuration There can be different seat configurations in an aircraft. The

number of seats per aircraft is dependent on configuration of
seats in classes. In all-economy class configuration there
are more seats than in configurations with business class
and first class seats that take up more space

Seat kilometre Unit measuring the amount of seats made available in a
vehicle multiplied by the amount of kilometres the vehicle
travels

Stratosphere Layer of air above the troposphere at altitudes of about 12
to 50 kilometres. The troposphere and the stratosphere are
separated by the so-called tropopause (transition area)

Subsonic Below the speed of sound
Super Jumbo Nickname for very large aircraft in the size category above

the B747-400
Super sonic Above the speed of sound
Tonne kilometres Unit measuring the amount of goods transported (in tonnes)

multiplied by the amount of kilometres the vehicle travels
Tri-jet Aircraft equipped with three jet engines, examples are L-

1011 and DC10
Troposphere The lowest layer of the Earth’s atmosphere. Depending on

the season, the upper boundaries of the troposphere reach
altitudes of 6-8 kilometres above the poles and 16-18
kilometres in tropical areas

Turbofan Type of engine currently used on all new large civil subsonic
aircraft. Current engines are of the high-pressure high-
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bypass ratio type. Turbofans have been constantly improved
since their introduction, mainly by improving pressure- and
bypass ratios

Turbojet Initial type of engine used in the first passenger jets
introduced in the 1950ties

Turboprop First type of gas turbine engine used in civil aircraft. Is
currently used in a range of small- to mid-sized civil aircraft

Twinjet Aircraft equipped with two jet engines, examples are A330
and B777

T&E European Federation for Transport and Environment is a
European NGO which have been co-organising a range of
campaigns in Europe aimed at introducing kerosene tax and
restricting growth of the environmental impact of aviation

UNFCCC United Nations Framework Convention on Climate Change
Water vapour For each kilogram of kerosene burnt aircraft engines emit

1,24 kilograms of water vapour. Under certain climatic
conditions, the water vapour can lead to the formation of
vapour trails. The knowledge of the possible climatic effect
of such vapour trails is currently weak

Weight load factor Tonne-kilometres performed divided by available tonne-
kilometres

Yield Fare per passenger
Yield management A technique used by airlines to maximise revenue from any

one flight. The capacity of a flight is determined, and the
demand by full fare passengers for the flight is forecast,
generally by using a historical database. The next step is
choosing a probability rate for seating all potential full fare
passengers and then reserving the appropriate number of
seats to be sold at full fare. A discount fare level is then
determined for the returning seats, and conditions are
attached to discounted tickets so that passengers who are
willing to pay full fare are unlikely to be able to take
advantage of the discount fares
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Units

1 litre of jet fuel 0,80 kg
1 kg jet fuel 1,25 litre

CO2 per kilogram jet fuel 3,15 kg

CO2 per litre petrol 2,34 kg
CO2 per kilogram petrol 3,20 kg

CO2 per litre diesel 2,71 kg
CO2 per kilogram diesel 3,15 kg

1 tonne of carbon 3,6667 tonnes of CO2
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Appendix A

The World's top 25 airlines in 1999

Passengers RPKs RFTKs Fleet size

[000] [000.000] [000]

Delta 105534 United 201873 FedEx 10312379 American 697

United 86580 American 177334 Lufthansa Cargo 7072000 FedEx 650

American 81507 Delta 168596 UPS 6019476 United 594

Southwest 57500 Northwest 119336 Korean 5962143 Delta 584

Northwest 56114 British Airways 117463 Singapore 5481708 Northwest 423

US Airways 55812 Continental 93367 Air France 4726604 US Airways 398

Continental 44012 Air France 83736 British Airways 4536000 Continental 370

All Nippon 42743 Japan Airlines 82904 Japan Airlines 4423157 Southwest 318

Lufthansa 38872 Lufthansa 81401 KLM 4149000 British Airways 283

Air France 37028 US Airways 66875 Cathay Pacific 3769616 Lufthansa 240

British Airways 36346 Singapore 64529 United 3580863 American Eagle 240

Japan Airlines 32933 KLM 58903 China Airlines 3381658 Air France 234

TWA 25854 Southwest 58695 Cargolux 3246555 UPS 231

Iberia 24274 Qantas 58134 EVA air 3152180 Iberia 172

Alitalia 24048 All Nippon 56725 Northwest 3016405 Air Canada 157

SAS 22225 TWA 41945 American 2511439 America West 153

Japan Air System 20597 Cathay Pacific 41503 Nippon Cargo 2215933 SAS 152

Korean 20537 Air Canada 39005 Martinair 2060400 Alitalia 152

America West 18704 Thai Int'l 38534 Delta 1984966 Continental Express 149

Qantas 16692 Alitalia 36689 Swissair 1948724 All Nippon 141

Thai Int'l 16593 Korean 36662 LanChile 1737300 TWA 138

Malaysia 15659 Iberia 35379 Thai Int'l 1672801 Japan Airlines 138

Air Canada 15200 Swissair 34670 Air China 1611287 Mesa Airlines 135

China Southern 15112 Malaysia 32238 Alitalia 1611287 Aeroflot Russian 121

Swissair 14501 America West 28497 Emery 1576229 Comair 109

Source: [Air Transport World 2000].





B-1

Appendix B

Types of civil passenger jets in use, in production, under
development or planned (only those above 80 seats)

80-124
seats

125-199
seats

200-314
seats

315+
seats

Airbus A318 Airbus 320 Airbus A300 Airbus A330-300
Airbus A319 Airbus 321 Airbus A310 Airbus A340-600
AVRO RJ85 Boeing 707 Airbus A330-200 Airbus A380-50

AVRO RJ100 Boeing 720 Airbus A340-200 Airbus A380-100
BAC 1-11 Boeing 727-200 Airbus A340-300 Airbus A380-200

Bae 146-200 Boeing 737-300 Airbus A340-500 Boeing 747-100
Bae 146-300 Boeing 737-400 Boeing 747SP Boeing 747-200

Boeing 717-200 Boeing 737-700 Boeing 767-200 Boeing 747-300
Boeing 727-100 Boeing 737-800 Boeing 767-300 Boeing 747-400
Boeing 737-100 Boeing 737-900 Boeing 767-400 Boeing 747-X
Boeing 737-200 Boeing 757-200 Boeing 777-200 Boeing 747-400X
Boeing 737-500 DC-8 DC-10 Boeing 777-300
Boeing 737-600 MD-81 Il-96 Il-86

Bombardier BRJ-X MD-82 Lockheed L-1011
Caravelle MD-83 MD-11

DC-9 MD-88
MD-87 MD-90

Embraer ERJ-190 Il-62
Fairchild 928JET Tu-154

Fokker 100 Tu-204 family
Trident
Tu-334
Yak 42

This Appendix lists the types of aircraft that are currently in use, in production, under
development or planned for the near future. For comparison purposes generic types of each
aircraft model are shown in four seat bands.

Aircraft currently in use but no longer in production are shown on white background.
Aircraft currently in use and still in production are shown on a light grey background.
Next-generation aircraft that are either planned or under development are shown on a dark grey
background.

Note that each aircraft type may exist in a range of configurations featuring different seat-
configurations, engines etc but it would be impossible to describe these differences within the
space available here. Therefore, the table below is only meant to give a rough idea of the
passenger capacity of different types of aircraft.

Source: [DTI 1999].
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Appendix C

Turbine-engined aircraft in the world airline fleet by model
1994-1998 (Excluding helicopters)

1994 1995 1996 1997 1998

1. Grand Total:

Turbojets 13994 14805 15421 16021 16619
Turboprops 7978 8452 8847 9069 9008
Total aircraft in service 21972 23257 24268 25090 25627

2. Turbojets:

Aerospatiale SE-210
Caravelle

28 27 20 12 12

Airbus A300 391 414 405 397 383
Airbus A310 217 218 222 224 227
Airbus A319 - - 18 66 118
Airbus A320 463 510 549 612 685
Airbus A321 17 35 52 72 109
Airbus A330 10 38 49 63 87
Airbus A340 44 60 86 119 138
Antonov 72/74 - 4 8 8 9
Antonov 124 13 11 16 16 18
Antonov 225 - - 1 1 1
AVRO RJ-70/85/100 30 51 77 100 120
Bae/Aerospatiale Concorde 13 13 13 13 13
Bae 146 196 204 206 208 206
Bae one-eleven 120 112 121 122 105
Bae Trident 9 - - - -
Bae (HS) 125 22 19 20 18 17
Beech 400 Beechjet 2 2 3 3 3
Boeing B707/720 151 123 122 112 98
Boeing B727 1373 1346 1363 1322 1263
Boeing B737 2476 2569 2623 2752 2968
Boeing B747 957 963 996 1040 1042
Boeing B757 629 697 718 770 818
Boeing B767 550 580 628 663 710
Boeing B777 - 13 45 111 174
Canadair CL-601
Challenger

2 2 2 2 2

Canadair Regional Jet 49 83 136 189 258
Cessna Citation I/II/II 36 44 45 41 35
Convair 880/990 1 - - - -
Dassault Falcon 10/20/50 60 66 65 60 61
Dassault Mercure 5 - - - -
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1994 1995 1996 1997 1998

Embraer RJ135/RJ145 - - - 34 91
Fokker F-28 fellowship 185 185 175 184 160
Fokker 70 - 23 34 36 42
Fokker 100 253 267 272 274 278
Gulfstream II/III/IV G-1159 16 15 16 16 14
Ilyushin IL-62 84 106 105 105 86
Ilyushin IL-76 154 209 238 227 215
Ilyushin IL-86 37 51 98 80 75
Ilyushin IL-96 5 5 7 7 7
Israel aircraft 1121/1124 13 13 11 11 18
Learjet 39 49 54 53 49
Lockheed L-1011 Tristar 208 190 190 169 156
Lockheed L-1329 Jetstar 4 3 3 1 1
MBB Hansa HFB-320 3 13 16 16 17
McDonnell Douglas DC-8 270 274 263 257 261
McDonnell Douglas DC-9 791 787 785 759 749
McDonnell Douglas DC-10 347 335 351 345 354
McDonnell Douglas MD-11 127 146 159 171 180
McDonnell Douglas MD-80 989 1115 1120 1142 1154
McDonnell Douglas MD-90 - 14 36 62 97
Tupolev TU-134 155 192 188 189 189
Tupolev TU-154 283 379 422 451 438
Tupolev TU-204 5 4 6 6 7
Yakolev Yak-40/42 168 231 267 313 303

Turbojet subtotal 13994 14805 15421 16021 16619

3. Turboprops:

Aerospatiale N.262/Mohawk
298

12 13 9 9 11

Aerospatiale/Aeritalia ATR
42

245 259 283 296 299

Aerospatiale/Aeritalia ATR
72

138 158 177 177 202

Airtech CN-235 24 25 24 24 24
Antonov An-8 - - - 2 -
Antonov An-12 23 46 68 71 83
Antonov An-22 2 2 5 3 3
Antonov An-24/26/28/30/32 307 400 484 530 499
Bae ATP 53 52 55 50 57
Bae Vanguard 2 1 - - -
Bae Viscount 25 24 20 18 12
Bae (HP-137) Jetstream 31 306 296 274 287 233
Bae Jetstream 41 30 66 74 91 92
Bae HS-748 122 126 126 125 124
Beech 18 Turbo 21 21 20 20 18
Beech 90 King Air 30 35 39 46 39
Beech 99 140 143 140 138 139
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1994 1995 1996 1997 1998

Beech 100 King Air 44 46 48 39 39
Beech 200/300 Super King
Air

101 121 126 122 111

Beech 1300 5 5 5 9 6
Beech 1900C/D 291 371 389 430 467
Bristol 175 Britannia 3 1 1 - -
Canadair CL-44 4 2 1 - -
CASA/Nurtanio C-212
Aviocar

107 114 111 113 105

Cessna 208 Caravan I 380 458 528 608 601
Cessna F406 Caravan II 21 35 28 30 31
Cessna 425/441 Conquest
I/II

7 4 5 14 19

Convair 580/600/640 110 111 114 107 107
DHC-2/3 Turbo
Beaver/Otter

9 17 22 20 20

DHC-5 Buffalo 1 1 1 1 1
DHC-6 Twin Otter 405 395 394 395 371
DHC-7 Dash 7 73 70 75 69 71
DHC-8 Dash 8 358 365 408 424 444
Dornier DO-228 126 106 112 114 118
Dornier DO-328 15 42 59 61 73
Douglas DC-3T Turbo
Express

2 2 1 1 1

Embraer EMB-110
Bandeirante

188 192 211 200 199

Embraer EMB-120 Brasilia 276 254 295 308 316
Embraer EMB-121 Xingu - - - 2 2
Fokker/Fairchild F-27/FH-
227 Friendship

348 315 312 318 278

Fokker 50 164 171 176 171 167
GAF Nomad 22 18 13 15 15
Grumman G-21 Turbo
Goose

1 1 - - -

Grumman G-73 Turbo
Mallard

5 5 5 5 5

Grumman G-159
Gulfstream I

41 39 34 30 27

Handley Page Herald 16 15 10 2 1
Harbin YU-12 II 40 41 42 42 48
IAI Arava 2 2 2 3 3
Ilyushin IL-18 33 33 38 34 32
Ilyushin IL-114 - 2 2 2 2
LET-410 25 61 87 115 118
Lockheed L-188 Electra 65 51 53 36 44
Lockheed L-100/L-382
Hercules

14 56 56 45 35

Mitsubishi MU-2B 7 14 15 15 16
Nihon AMC YS-11 85 81 78 63 49
Pilatus Britten-Norman BN-
2T Turbo Islander

2 2 5 6 6
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1994 1995 1996 1997 1998

Pilatus PC-6 Turbo Porter - 25 28 30 24
Pilatus PC-XII - - 2 2 14
Piper PA-31T/42 Cheyenne 17 16 18 20 20
Piper T-1040 10 12 13 14 13
PZL (Antonov) An-28 1 6 6 3 3
Rockwell Turbo
Commander

9 9 9 11 9

Saab SF-340A/B 347 355 379 396 432
Saab 2000 5 22 34 42 45
Shorts SC-5 Belfast 2 2 2 2 2
Shorts SC-7
Skyliner/Skyvan

31 35 35 32 30

Shorts 330 62 50 52 48 42
Shorts 360 108 106 104 103 93
Swearingen Merlin 49 38 45 53 55
Swearingen Metro 396 423 398 394 379
Transall C-160 6 6 - - -
Xian (Antonov) Y-7 65 66 66 66 66

Turboprop subtotal 7978 8452 8847 9069 9008

Source: [AIA 2000].
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Distribution of air traffic on carriers situated in different geographical regions 1999

Aircraft Passengers RPKs FTKs Avrg RPKs RTK* Weight shares
fleet size [000] share [000000] share [000] share  per pass [000] share Freight Pass.

Africa 155 1.0% 9852 0.6% 15321 0.5% 497520 0.4% 1555 2029620 0.5% 25% 75%
Asia/Pacific 2262 14.2% 337716 21.3% 678118 23.9% 41019060 33.1% 2008 108830860 26.7% 38% 62%
Canada 370 2.3% 28699 1.8% 69015 2.4% 1974165 1.6% 2405 8875665 2.2% 22% 78%
Europe 4197 26.4% 432852 27.4% 829301 29.3% 34692714 28.0% 1916 117622814 28.9% 29% 71%
Latin America/Carribb 705 4.4% 64568 4.1% 90752 3.2% 4084377 3.3% 1406 13159577 3.2% 31% 69%
Middle East 295 1.9% 30225 1.9% 60379 2.1% 3401938 2.7% 1998 9439838 2.3% 36% 64%
US Majors 4974 31.3% 563864 35.6% 997728 35.2% 29938202 24.1% 1769 129711002 31.8% 23% 77%
US Nationals 1182 7.4% 70670 4.5% 68890 2.4% 7566996 6.1% 975 14455996 3.5% 52% 48%
US Cargo 172 1.1% - - - 784131 0.6% - 784131 0.2% 100% -
US Regional 1589 10.0% 43368 2.7% 25199 0.9% 106133 0.1% 581 2626033 0.6% 4% 96%

Total World 15901 1581814 2834703 124065236 1792 407535536 30% 70%

*Calculated assuming that one RPK=100 kg

Source: [Air Transport World 2000]
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Current and next-generation Airbus family specifications

A318 A319 A320 A321 A310-300 A300-600 A330-200 A330-300
Typical seat capacity 107 124 150 185 220 266 253 335
First class seats 8 8 12 16 20 26 12 30
Business class seats - - - - - - 36 -
Economy class seats 99 116 138 169 200 240 205 305
Max. Seat capacity all-economy class 129 145 180 220 280 361 405 440
Range with typical passenger capacity [km] 2750-3700 4700-6800 4800-5500 4150-5500 8050-9600 7500-7700 12000 8900-10200

Cargo capacity (number of LD3 cargo containers) 4 7 10 14-15 22-23 26-27 32-33
First delivery 2002 1996 1988 1994 1985 1988 1998 1993
Number of engines 2 2 2 2 2 2 2 2
Engine power rating [kN] 98-107 98-120 111-118 133-146 230-260 249-270 303-325 285-325
Engine choices PW6000 CFM56-5A/B CFM56-5A/B V2500-A5 CF6-80C2 CF6-80C2 CF6-80E1 CF6-80E1
… V2500-A5 V2500-A5 CFM56-5B/P PW4000 PW4000 PW4000 PW4000
… Trent 700 Trent 700
Max. Take-off weight [tonnes] 61.5 68-70 75,5-77 85-93 153-164 174.6 230 217-230
Max. Load [tonnes] 14 17.9 19.1 23,4-25,6 31,4-32,2 32-39,7 36.4 43.5
Max. Fuel capacity [liter] 23860 23860-26760 23860 23700-29500 61070-75470 68150 139100 97170-97530

A340-200 A340-300 A340-500 A340-600 A380-100 A380-100R A380-200
Typical seat capacity 239 295 313 380 555 555 656
First class seats 16 12 12 12 22 n.a. n.a.
Business class seats 42 42 42 54 102 n.a. n.a.
Economy class seats 181 241 259 314 431 n.a. n.a.
Max. Seat capacity all-economy class 420 440 440 485 854 700 1000
Range with typical passenger capacity [km] 14800 12000-13500 15750 13900 14200 16200 14200
Cargo capacity (number of LD3 cargo containers) 18-19 32-33 30-31 42-43 30 30 44
First delivery 1993 1993 2002 2002 2005 2005 2005
Number of engines 4 4 4 4 4 4 4
Engine power rating [kN] 151 151 236 249 298 333 333
Engine choices CFM56-5C4 CFM56-5C4 Trent 553 Trent 556 Trent 700 Trent 700 Trent 700
… Trent 900 Trent 900 Trent 900
… GP7000 GP7000 GP7000
Max. Take-off weight [tonnes] 275 260-275 365 365 583 583 583
Max. Load [tonnes] 30.8 41-43,5 43.3 55.8 85 85 95
Max. Fuel capacity [liter] 155040 141500-148700 214800 194880 336250 383750 383750

Source: [Flug Revue 2000].





F-1

Appendix F

Aviation and environment related Web pages

Aviation fuel taxes
Global Policy Forum - http://www.globalpolicy.org/socecon/glotax/aviation/
Wuppertal Institute Information on environmental tax reform - http://www.wuppertal-
forum.de
Aktie Strohalm - http:\\www.vliegtax.nl/

Government agencies
Eurocontrol - http://www.eurocontrol.be/
European Commission - http://europa.eu.int/comm/index.htm
UK Department of the Environment, Transport and the Regions -
http://www.aviation.detr.gov.uk/
European Environmental Agency - http://www.eea.eu.int/
United States General Accounting Office -http://www.house.gov
Federal Aviation Administration (FAA) - http://www.faa.org

International organisations
International Civil Aviation Organisation – http://www.icao.org/
European Civil Aviation Conference - http://www.ecac-ceac.org/
Intergovernmental Panel on Climate Change - http://www.ipcc-nggip.iges.or.jp
OECD Organisation for Economic Co-operation and Development -
http://www.oecd.org/
United Nations Framework Convention on Climate Change (UNFCCC) -
http://www.unfccc.de
World Travel and Tourism Council (WTTC) - http://www.wttc.org

Statistical bureau’s
Eurostat - http://europa.eu.int/comm/eurostat/
Bureau of Transportation Statistics, U.S. Department of Transportation -
http://www.bts.gov
International Air Transport association - http://www.iata.org
Aerospace Industries Association of America - http://www.aia-
aerospace.org/departments/stats/
US Department of Transportation, Bureau of Transportation Statistics -
http://www.bts.gov/
US Department of Transportation, the Office of Airline Information -
http://www.bts.gov/oai/

Research
Centre for Energy Conservation and Environmental Technology – http://antenna.nl/ce.
Cranfield College of Aeronautics - http://www.cranfield.ac.uk/coa/
SCAN-UK The UK Sustainable Cities and Aviation Network - http://www.scan-
uk.mmu.ac.uk/
SENCO general information on air transport and the environment -
http://www.btinternet.com/~senco
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Aviation environmental impact
NASA The Atmospheric Effects of Aviation Project (AEAP) -
http://hyperion.gsfc.nasa.gov/AEAP/
POLINAT 2 Pollution from Aircraft Emissions in the North Atlantic Flight Corridor -
http://www.pa.op.dlr.de/polinat/
Contrail picture gallery - http://www.astro.ku.dk/~holger/IDA/notes.html
Contrail research results on the influence of contrails on the atmosphere -
http://www.could1.arc.nasa.gov/espo/success/index.html
Website for personal emissions - http://www.benjhm.free-online.co.uk/flying

Aviation and Environment NGO’s
Aviation Environment Federation - http://www.aef.org.uk
Airfields Environment Trust - http://www.gael.net/aet/
European Federation for Transport and Environment, Brussels, http://www.t-e.nu/
Friends of the Earth - http://www.milieudefensie.nl/airtravel/.
HACAN Heathrow Association for the Control of Aircraft Noise -
http://www.hacan.org.uk/
Netherlands Society for Nature and Environment - http://www.snm.nl/
Citizens Against Airport Pollution (CAAP) California - http://www.caap.org
No More Noise coalition California - http://www.wenet.net/~hpb
National Research Defense Council (NRDC) - http://www.nrdc.org
US-Citzens Aviation Watch (US-CAW) - http://www.nonoise.org/groups/us-caw/us-
caw.htm
Interessengemeinschaft zur Bekämpfung des Fluglärms - http://www.fluglaerm.de
Union Français Contre les Nuisances des Avions (UFCNA) -
http://altern.org//ufcnaforum
Miljøforeningen for bevarelse af miljøet omkring Københavns lufthavn -
http://hudson.idt.net/~beck/index-engelsk.htm
Sane aviation for everyone - http://pages.prodigy.net/rockaway/safe.htm

Airline Associations
Association of European Airlines - http://www.aea.be/
European regional airlines association - http://www.eraa.org/
Association of Asia Pacific Airlines – http://www.aapa.org.ph/
American Air Transport Association - http://www.air-transport.org

Aerospace industry
European Association of Aerospace Industries - http://www.aecma.org/
Society of British Aerospace Companies - http://www.sbac.co.uk
Airbus - http://www.airbus.com/
Boeing - http://www.boeing.com/
Rolls Royce - http://194.128.225.11/.
EADS European Aerospace and Defense Systems - http://www.eads-
nv.com/eads/en/index.htm

Airline alliances
Star alliance - http://www.star-alliance.com/
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Airlines
Air France - http://www.airfrance.com/
Air India - http://www.airindia.com/
Air China - http://www.airchina.com.cn/
Easy Jet - http://easyjet.com/uk/
Finnair - http://www.finnair.fi/
All Nippon Airways - http://svc.ana.co.jp/
British Airways - http://www.britishairways.com/
Condor - http://www.condor.de
KLM Royal Dutch Airline – http://www.klm.com/
SAS Scandinavian Airline Systems - http://www.scandinavian.net/
Premiair – http://www.premiair.dk/
Air 2000 - http://www.air2000.com/
United Airlines - http://www.ual.com/
GO - http://www.go-fly.com/

Airports
Zurich Airport Authority, Switzerland - http://www.zurich-airport.ch
Airport Council International (ACI) Airport branch organisation - http://www.airports.org

Aviation news agencies
Airwise Press Releases - http://news.airwise.com/
ENDS Daily European Environmental news - http://www.ends.co.uk/envdaily/
STAND BY the Scandinavian travel trade journal - http://www.standby.dk/
Flug Revue - http://www.flug-revue.rotor.com/
Cutter environmental news - http://www.cutter.com/envibusi/reports/index.html
Nordic baltic travel report - http://www.nordictravel.com/articl.htm
Air and Space Europe - http://www.airandspaceeurope.com/
Airconnex air travel news - http://www.airconnex.com/bulletin

Advanced aircraft concepts
Cranfield College of Aeronautics BWB design - http://www.cranfield.ac.uk/coa/wing/
NASA BWB design - http://oea.larc.nasa.gov/PAIS/BWB.html
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Appendix G

World international tourism development

Indices of world tourism development are given in the statistical yearbook from the

World Tourism Organisation. As shown in Figure G-1 total arrivals of tourists from

abroad have grown from around 25 million in 1950 to around 625 million in 1998.

These data indicate the number of international tourists that arrive in a country and stay

there for at least one night. Tourists travelling within their home countries are thereby

not included as well as tourists arriving in a country without staying over night. Tourists

travelling to several countries within the same year are counted each time, so these

data do not show the actual amount of travelling for each individual person within a

year. Likewise, these data do not indicate how long time each tourist is staying.

Anyway, the data do give an idea of the rise of international tourism.

Figure G-1: Total arrivals of tourists from abroad in the world 1950-98.
The data for tourist arrivals shown here includes both leisure/holidays and business,
but excludes same-day visitors (excursionists), i.e. visitors not spending the night in
the country. The data for arrivals only refer to arrivals and not to the actual number
of people travelling. One person visiting the same country several times during the
year is counted each time as a new arrival. Likewise, the same person visiting
several countries during the same trip is counted each time as a new arrival. Source:
[World Tourism Organisation 1999].
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International tourist arrivals in the world’s top ten tourism destinations in 1997 are

shown in Figure G-2. Figure G-2 also exemplifies the level of growth since 1980 at

each destination. France is the world’s biggest destination for international tourism, and

has remained its share of world international tourism arrivals at eleven percent since

1980. China, being the sixth biggest destination, increased its share from one percent

to four percent in the period.

Figure G-2: Tourist arrivals from abroad in the world’s top ten tourism
destinations in 1997 compared to 1980.
The data for tourist arrivals shown here includes both leisure/holidays and
business, but excludes same-day visitors (excursionists), i.e. visitors not spending
the night in the country. Data for arrivals only refer to arrivals and not to the actual
number of people travelling. One person visiting the same country several times
during the year is counted each time as a new arrival. Likewise, the same person
visiting several countries during the same trip is counted each time as a new
arrival. Data source: [World tourism Organisation 1999].

Figure G-3 exemplifies the growth in international tourism arrivals between 1980 and

1997 on world regions. Europe is by far the biggest destination for tourists arriving from

abroad receiving 59 percent of world arrivals in 1997. The Americas are second

biggest at 19 percent. However, East Asia/Pacific has increased it’s share from 8

percent in 1980 to 14 percent in 1997, and is catching up with Americas because of

higher yearly growth rates.
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Figure G-3: Arrivals of tourists from abroad by regions 1980 and 1997.
The data for tourist arrivals shown here includes both leisure/holidays and
business, but excludes same-day visitors (excursionists), i.e. visitors not spending
the night in the country. The data for arrivals only refer to arrivals and not to the
actual number of people travelling. One person visiting the same country several
times during the year is counted each time as a new arrival. Likewise, the same
person visiting several countries during the same trip is counted each time as a
new arrival. Data source: [World Tourism Organisation 1999].
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Appendix H

Developments in aircraft performance

In this appendix some selected performance parameters, number of seats, range and
cruising speed, of selected aircraft used for commercial civil aviation are presented to
demonstrate the historical development in aircraft performance. It should be noted that
only a few of the many airliners that emerged through the years have been picked out
to illustrate the level of development. Often, many competitors with slightly similar
performance characteristics could have been chosen.

Year Event

1919 After the First World War the first commercial airlines began transporting mail
and passengers in biplanes in Europe and the US, some of them using
leftover bombers rebuilt for passenger transport. These biplanes
accommodated between 2-14 seats and cruised at speeds of up to 140 km/h
[Heppenheimer 1995].

1928 The three-engine Ford Trimotor made possible twenty-seven hours US
coast-to-coast service, including fourteen refuelling stops. Engines were
rated at 420 horsepower. The aircraft accommodated 14 seats and cruised
at a speed of around 200 km/h [Heppenheimer 1995] [Donald 1999, p. 462].

1934 The twin-engine DC-2 cut US coast-to-coast flight time to eighteen hours
including only three refuelling stops [Heppenheimer 1995]. Powered by 875
horsepower engines. Max range 1609 kilometres, Accommodating 14 seats
and cruising at around 300 km/h [Donald 1999, p. 405]

1935 First Trans-Pacific four-engine long-range flying boat passenger service from
US to the Philippines in 7 days in a Martin M-130 [Heppenheimer 1995]
[Donald 1999, p. 8].

1937 The DC-3 cut US coast-to-coast flight time to sixteen hours. The DC 3 was a
twin- engine airliner with a maximum range of around 3400 kilometres.
Accommodating 21-24 seats and cruising at 315 km/h [Jane’s 1940].

This year was also the end of the airship-era when the Hindenburg airship
burned following a Trans-Atlantic flight to the US [Donald 1999, p. 7].

1939 Pan-Am introduced flying boat Trans-Atlantic flight with the Boeing 314
Clipper Flying boat with four 1500 horsepower Wright Cyclone engines,
cruising speed of around 260 km/h, max. Altitude 4,8 kilometres and range of
4960 kilometres with 40 passengers [Jane’s 1940].
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Year Event

1945 The four-engine Lockheed Constellation offered US coast-to-coast
scheduled service with one stopover in ten to eleven hours [Heppenheimer
1995]. The Constellation was equipped with 2200 hp engines and
accommodated 64 passengers. Cruising speed of around 450 km/h [Donald
1999, p. 572].

1950 In the early 1950s aircraft such as the Boeing Stratocruiser and the
Lockheed Constellation made possible non-stop flight between the US and
Europe.

The Boeing Stratocruiser, a four-engine airliner with four 3500 horsepower
Pratt & Whitney Double-Wasp engines, featured a two-deck fuselage
accommodating between 55 and 100 daytime passengers or 27 sleeping
passengers. Crusing speed of around 550 km/h at 7.6 kilometres altitude and
a range of 7300 kilometres [Jane’s 1951].

The four-engine Vickers Viscount turboprop becomes the first gas turbine-
powered passenger airliner in the world [Donald 1999, p. 786]. The initial
version accommodated 32 persons, but was later improved to seat 75
passengers  [Donald 1999, p. 9]. Between 1935 and 1965 this aircraft was
the only one serious competitor to the American aircraft in the commercial
aircraft market. Engine output 1400 shp, range 1510 kilometres with max
payload. Cruising speed around 500 km/h.

1952 The de Havilland Comet was the first commercial aircraft powered by turbojet
engines with its first flight in 1949 and introduction into service in 1952. It
introduced the use of four de Havilland Ghost turbojets of 5000lb thrust each.
It had a service ceiling of 12.2 kilometres altitude and a range of 3450
kilometres. The aircraft seated 36-48 passengers. In 1949 the Comet flew
2420 kilometres from England to Libya at an average speed of 708 km/h
[Jane’s 1951]. Unfortunately two aircraft crashed, and the production was
seized [Heppenheimer 1995].

In the same period four-engine medium-range gas turbine powered
turboprop aircraft such as the Bristol Britannia and the Lockheed Electra
were introduced. Accommodating up to 90 passengers and cruising at
around 550 km/h.

1958 The de Havilland Comet IV was an upgraded version of the Comet, produced
in different versions for medium- and long range (5200 kilometres). The
aircraft seated 60-81 passengers and could cruise at around 800 km/h. The
Comet IV never became popular because of its small size compared to the
Boeing B-707 and the McDonnell Douglas DC-8, which came out in 1958
and 1959 respectively [Jane’s 1961].

Boeing’s B707-120 with four Pratt & Whitney JT3C-6 turbojet engines each
rated at 13500lb accommodated up to 181 passengers and cruised at up to
880 km/h. The initial version was intended primarily for continental use, but
capable of operating at full load on many routes over oceans. Range 5177
kilometres. Later versions stretched range to 7800 kilometres [Jane’s 1970].
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Year Event
1959 McDonnell Douglas DC-8-10 with four Pratt & Whitney 13500lb JT3C-6

turbojet engines introduced [Jane’s 1970]. Seating up to 179 passengers and
cruising at around 870 km/h.

1961 Introduction of the 18000lb JT 3D-3 turbofan engine increased the range of
the Boeing 707 and the DC-8 to 6800 km, allowing non-stop flights from New
York to all the major European cities and from Seattle to Tokyo

1963 Introduction of the three-engine Boeing 727 for the medium-range market.
Range up to 4000 kilometres at max. Payload. Seating 163-189 passengers
[Donald 1999, p. 787].

1965 Introduction of twin-engine DC-9 designed for the short-haul market [Donald
1999, p. 787].

1968 USSR achieves the maiden flight of the World’s first supersonic airliner, the
Tupolev Tu-144, typically accommodating 140 passengers. A max. Cruising
speed of 2500 km/h and maximum range of 6500 kilometres with maximum
payload [Donald 1999, p. 791].

1969 Boeing delivers their first 747-100 to Pan American Airlines in late 1969.
Boeing thereby introduced the World’s first wide-body jumbo airliner. The
biggest aircraft for passenger transport. Initial versions seated up to 490
passengers, but a more typical load was 374, with 66 first-class and 308
tourist-class seats. The range of the 747-100 is around 9000 kilometres. The
aircraft is powered by four Pratt & Whitney JT9D-3 turbofan engines each
rated at 43500lb [Jane’s 1971]. Cruising speed of around 950 km/h.

1971-74 McDonnell Douglas and Lockheed introduced their three-engine wide-bodies
DC-10-10 and L-1011-100 in 1971 and 1972 respectively. Airbus introduced
the A-300 wide-body twinjet in 1974.

1976 First Concorde flight between the US and Europe. The Concorde introduced
cruising speed of up to Mach 2.2. Range of 6470 kilometres. Accommodating
around 100 passengers [Jane’s 1970].

1979 First flight of the MD-80, a modernised version of the DC-9 [Donald 1999, p.
787].

1982 The first flight of the twin-turbofan Boeing 757, the successor to the Boeing
727 three-turbofan type [Donald 1999, p. 788].

First flight of Airbus’ A310 twin-turbofan medium-range airliner [Donald 1999,
p. 788].

1983 First flight of the SAAB 340 twin-turboprop commuter airliner and the de
Havilland Canada DHC-8 Dash 8 twin turboprop short-range aircraft and the
Brasilian EMBRAER EMB-120 twin-turboprop airliner [Donald 1999, p. 788].

1984 First flight of the 48-seat ATR 42-300 twin-turboprop regional airliner [Donald
1999, p. 788].
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Year Event
1985 Boeing 767 the first twin-turbofan airliner to cross the Atlantic [Donald 1999,

p. 788].

1987 First flight of the Airbus A320 [Donald 1999, p. 788].

1988 First flight of the 64/74-seat ATR 72-200 regional twin-turboprop airliner, an
enlarged ATR 42 [Donald 1999, p. 788].

1991 First flight of the 50-seat Canadair Rgional jet [Flight International 2001b].

1992 First flight of the SAAB 2000, a larger and faster version of the SAAB 340
[Donald 1999, p. 788].

Bae introduces the RJ-family as follow-ups to the Bae 146 [Flight
International 2001b].

1993 First flight of the MD-90, a stretched version of the MD-80 with an updated
engine [Donald 1999, p. 788].

With the A-330-300 and the A340-200/300 Airbus introduced a single aircraft
built in two versions. The A-330 is a twinjet carrying 335 passengers. It fills
the need for wide-body twins larger than the B767 and A-300. The A-340 is a
four-engine long-range aircraft that can carry two thirds of the B747s
capacity. It aims at “long thin routes”, that cover world-spanning distances,
but attract to few passengers to fill up the B747. The two aircraft share the
same wing, and are the first to do so [Heppenheimer 1995].

1994 Boeing introduced the B777-200 long-range high-capacity twin turbofan
airliner in 1994. Was followed by the stretched 777-300 version in 1997.
Range of 7500 to 9000 kilometres with 375 passengers. New ultra-long
range versions B777-300X and B777-200X planned for introduction by end-
2002 and mid-2003 respectively. The B777-200X is expected to be able to
carry 298 passengers over 16260 kilometres non-stop. With this range it will
make possible non-stop connections between almost any two destination
airports in the world [Jane’s 1998].

1995-98 ATR introduces the improved ATR42-500 and ATR72-500 featuring six-blade
propellers offering a higher cruising speed than the earlier ATR42-300 [Flight
International 2001b]. First flight of the 107-seat B717-200.

2002 Airbus will introduce the 107-seat A318 regional aircraft [Flight International
2001b].

2006 The Airbus 380-100 will be introduced in 2006 seating 555 in three-class
version. Later to be followed by the stretched A380-200 seating up to 1000
passengers in one-class seat-configuration [Flight International 2001c].

200? Boeings Sonic cruiser may be introduced, offering higher speed and flying at
higher altitude than current subsonics.

Sources: [Jane’s 1940, 1951, 1961, 1970, 1971, 1979, 1998], [Heppenheimer 1995] and
[Donald 1999] [Flight International 2001b and 2001c].




