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Preface 

This thesis is submitted as a partial fulfilment of the requirements for a Danish PhD degree. The main supervisor 

is Professor Ida Lykke Fabricius at the Department of Civil Engineering of the Technical University of Denmark. 

The co-supervisor is Claus Kjøller, Head of the Core Laboratory of the Geological survey of Denmark and 

Greenland (GEUS). The project included a three-month external research stay at the University of Leeds, 

focussed on data mining, which was supervised by Professor Quentin Fisher from the School of Earth and 

Environmental Sciences. During a three-week stay at the Rheinisch-Westfälische Technische Hochschule 

(RWTH) Aachen data was acquired for image analysis based on electron microscopy and mineral mapping by 

using the QEMSCAN® system, in collaboration with Dr. Sven Sindern.  

This PhD project is part of the Heat Storage in Hot Aquifers project, which investigates the possibility of heat 

storage in Danish geothermal aquifers. The HeHo project is a research collaboration among DTU, GEUS, the 

University of Vilnius and Dansk Fjernvarmes Geotermiselskab. Funding is provided by the Danish Council for 

Strategic Research. This PhD project addresses mechanisms by which hot brine injection could affect sandstone 

permeability.  

This is a paper based thesis; manuscripts that are submitted for peer review and non-reviewed conference papers 

are included in Appendices B and C respectively. Different aspects of permeability in sandstones are addressed in 

one or more manuscripts. In order to present a coherent discussion of sandstone permeability in the thesis, a 

selection of content of the papers was re-grouped into five chapters addressing: sandstone permeability modelling 

by using Kozeny’s equation; gas slip modelling based on Klinkenberg’s procedure; the effect of immobile water 

on brine permeability; thermal expansion; and kaolinite fines migration. The thesis also contains supplementary 

material that was not used in the Manuscripts. A discussion of the application of Kozeny’s equation to sandstone 

(Chapter 2) was added in order to place the results from the different manuscripts in a broader context. 

Supplementary data analysis was included in chapters 3 and 4, based on calculations that are included in 

Appendix A; some of these data are to be included in a further study of permeability in Gassum sandstone in the 

‘Crossover project’, a collaboration between the HeHo project and the ‘The geothermal energy potential in 

Denmark - reservoir properties, temperature distribution and models for utilization’ project at GEUS.  Chapter 3.5 

is based on unfinished manuscript collaboration with Quentin Fisher, Carlos Grattoni and Nichola Eardley for 

which additional experiments are currently being performed at the University of Leeds.  

The focus of this thesis is on data interpretation; therefore a chapter is included that addresses the different 

methods that were applied in one or more manuscripts.  

Laboratory permeability data were measured by: Quentin Fisher and Carlos Grattoni as part of the PETGAS 

project at the University of Leeds; students of DTU: Christian Haugwitz, Peter Jacobsen, and Jacob Riis, in 

collaboration with Claus Kjøller at the GEUS Core Laboratory; Hanne Holmslykke, Marga Jørgensen, Hans 



Lorentzen, and Claus Kjøller at the GEUS Core laboratory. 

Unless otherwise indicated, images shown in this thesis were acquired by myself using a Quanta 200 (FEI) 

scanning electron microscope at DTU Civil engineering, or using a Quanta 650 (FEI) at the Leeds Electron 

Microscopy and Spectroscopy Centre, at the University of Leeds. Images in which mineralogy is mapped by the 

QEMSCAN® (FEI) system were acquired using a Quanta650 (FEI) scanning electron microscope and QemScan 

iDiscover (v.5.3) software at RWTH Aachen in collaboration with Sven Sindern and Roman Klinghardt.  

Thanks are due to: 

Ida Fabricius and Claus Kjøller for their guidance throughout the project; Quentin Fisher for good discussions 

during and following up on my stay in Leeds; Sven Sindern for pleasant collaboration during and after my visit to 

Aachen; and my other co-authors for good discussions and data collection: Carlos Grattoni, Christian Haugwitz, 

Peter Jacobsen, Frans Kets, Jacob Riis, and Hao Yuan. 

Collaborators on the Crossover project, people who helped me with microscopy or with laboratory tests, and 

people who shared laboratory data or numerical codes: Hector Diaz, Nichola Eardley, Morten Hjuler, Hanne 

Holmslykke, Marga Jørgensen, Roman Klinghardt, Hans Lorentzen, Bjørn Maribo-Møgensen, Sing Nguyen, 

Mette Olivarius, Ebba Schnell, Ida Shafagh, Richard Walshaw, and Rikke Weibel. 

All the colleagues in the long hallway of building 119 at DTU for a pleasant working environment these past 

three years. Reviewers from Geothermics for constructive reviews of submitted manuscripts. 

Astrid and Gerard Rosenbrand for supporting me in more ways than I can say.  
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Dansk sammenfatning 

Sæsonvarmelagring i forbindelse med geotermiske anlæg i dybtliggende sandsten er en mulighed i Danmark, 

men den derved forbundne temperaturstigning kan forårsage permeabilitetsreduktion og dermed fordyre 

metoden. Det er derfor nødvendigt at forstå mekanismen bag temperaturens indflydelse på permeabiliteten, 

og nærværende forskningsprojekt fokuserer således på sandstenspermeabilitet ud fra forskellige synsvinkler. 

Til det formål blev der analyseret data fra forskellige kilder: 1. En database med oplysninger om mere end 

120 lavpermeable sandsten; 2. Gennemstrømningseksperimenter på Bereasandsten, som ofte anvendes som 

reference for reservoirsandsten; 3. Gennemstrøningseksperimenter på sandsten fra Gassumformationen og 

Bunterformationen, der begge er danske geoterme reservoirer. Elektronmikroskopi af polerede tyndslib blev 

brugt til at kvantificere sammenhængen mellem sandstenstekstur og permeabilitet.     

Kozenys ligning fra 1927 sammenkæder permeabiliteten med porøsiteten og den specifikke overflade (som 

også kan udtrykke som den ækvivalente porestørrelse). Ligningen er baseret på en simpel fysisk model og 

gælder for et homogent porøst medium med ensartet porestørrelse, men da porestørrelsen i en sandsten kan 

variere fra nanometer til mikrometer, er det nødvendigt med flere antagelser for at kunne beskrive 

sandstenspermeabilitet ved hjælp af Kozenys ligning. Det kan gøres ved at definere en effektiv specifik 

overflade, og denne kan estimeres ved hjælp af billedanalyse elektronmikroskopibilleder eller ved hjælp af 

kernemagnetisk resonansspektrometri (NMR). Det viser sig, at i sandsten med lav porøsitet er det ofte de 

små porer, der betinger permeabiliteten. I disse sandsten er de store porer øjensynligt forbundet gennem de 

små, så at strømningshastigheden i de store porer begrænses. Her bliver den effektive specifikke overflade 

høj. I andre sandsten, hvor de store porer er direkte forbundet, er det disse porer der betinger permeabiliteten, 

mens de små porer bidrager meget lidt. Her bliver den effektive specifikke overflade lav.  

Det er også muligt at definere en ækvivalent porestørrelse ved hjælp af Klinkenbergs procedure fra 1941. 

Den indebærer måling af gaspermeabilitet ved en serie forskellige poretryk og hermed, hvor meget ekstra 

strømning der kommer fordi strømningshastigheden for gas er større en nul ved porevæggen. En 

sammenligning mellem ækvivalent porestørrelse estimeret ud fra Klinkenbergs procedure og ud fra Kozenys 

ligning viser den forventede korrelation, men forskellen kan være op til en størrelsesorden. En af grundene til 

dette er, at i lavpermeable sandsten er permeabiliteten afhængig af differensspændingen mellem 

omslutningstryk og poretryk, og denne ændres dermed, når poretrykket ændres. Det giver en ekstra effekt 

ved Klinkenbergs procedure, og derfor blev porevægseffekten og effekten af omslutningstryk kombineret til 

et nyt udtryk. 

Det ses ofte at permeabiliteten for saltvand er lavere end den Klinkenbergkorrigerede gaspermeabilitet, og 

det er muligt at en del af baggrunden er, at saltvandet interagerer med porevæggen, således at der opstår et 

immobilt væskelag på porevæggen. Denne effekt kan modelleres, bl.a. ved hjælp af NMR data, men det ser 



ud til, at sådan en antagelse ikke er nok og at andre faktorer, der muligvis er relateret til lermineralernes 

morfologi spiller ind.   

Temperaturstigning, og den dermed forbundne udvidelse af sandstenen, burde ud fra Kozenys ligning i sig 

selv kun have meget lille effekt på permeabiliteten, og i publicerede forsøg fandtes heller ingen målbar 

temperatureffekt, når porevæsken er inert. For kaolinholdige sandsten fandtes derimod, at hvis porevæsken 

er ferskvand eller saltvand, falder permeabiliteten, når temperaturen stiger. Dette kan skyldes at varmen 

betinger ændringer i mineralernes elektriske dobbeltlag, og dermed frastødning mellem lerpartikler og 

kvartskorn. Et permeabilitetsfald ses også ved reduktion af porevandssaliniteten. Der er tale om to forskellige 

effekter: Ved stigende temperatur stiger den absolutte værdi af mineralernes overfladeladning, mens ved 

faldende salinitet øges tykkelsen af det elektriske dobbeltlag.  

Gennemstrømningsforsøg på Bereasandsten illustrerer forskellen på effekten af temperatur og effekten af 

salinitet: Mens en permeabilitetesreduktion på grund af reduktion af porevandssaliniteten var irreversibel ved 

20
o
C, var en permeabilitetesreduktion på grund af temperaturøgning til 80

o
C reversibel. Ved 80

o
C var en 

permeabilitetsøgning ved stigende gennemstrømningshastighed reversibel, mens den ikke var ved 20
o
C. 

Dette tyder på at kaolinitpartikler mobiliseres ved forskellig mekanisme ved 20
o
C og ved 80

o
C. 

Mekanismerne blev diskuteres ved hælp af DLVO teori, der blev udviklet af Derjaguin and Landau i 1941 og 

Verwey and Overbeek i 1948. Det er således muligt at effekten ved 80
o
C kan beskrives som ændringer i 

porevæskens reologi, mens effekten ved 20
o
C indebærer omplacering kaolinitmineralerne.  

Opløsning og udfældning af mineraler blev også observeret. I løbet af et eksperiment hvor NaCl opløsning i 

150 døgn blev injiceret ved 80
o
C, opløstes således øjensynligt siderit, hvorved Fe-ioner frigjortes. Disse blev 

derefter oxideret og fældede ud som jernhydroxid. Observationerne blev kvantificeret ved hjælp af 

billedanalyse af polerede tyndslib i elektronmikroskop. Her blev intensiteten af backscatter electroner 

sammenholdt med røntgenfluorescenssignalet ved hjælp af QEMSCAN® programmet. Analysen tyder på at 

udfældningen af jernhydroxid sker i de finkornede og lavporøse lag og dermed fremhæver sandstenens 

laminering. Effekten var dog for lille til at have væsentlig indflydelse på hverken den modellerede eller den 

målte permeabilitet, der kun var 20% lavere end den oprindelige. 

Nærværende undersøgelse viser at sandstenens indhold af lermineraler og disses morfologi har betydelig 

indflydelse på: 1. Hvilken del af porøsiteten der kontrollerer permeabiliteten; 2. Forskellen på væske- og 

gaspermeabilitet; samt 3. I hvor høj grad temperaturen påvirker permeabiliteten. Injektion af varmt vand kan 

forårsage mobilisering af lerpartikler og opløsning af mineraler; men om det sker, afhænger af sandstenens 

mineralogi og porevæskens sammensætning. Man kan derfor ikke umiddelbart generalisere resultater fra én 

sandstensformation til en anden. 

 



English summary 

Hot water injection in geothermal sandstone aquifers is considered for seasonal energy storage in Denmark. 

However, an increase in the aquifer temperature might reduce permeability, and thereby increase production 

costs. An understanding of the factors that control permeability is required in order to address the effects of 

temperature on permeability. Therefore, different aspects of sandstone permeability are investigated in this 

research project. Data from a range of sources including: published literature; a database containing over 120 

tight gas sandstone samples; new flow-through experiments on Berea sandstone, which is often used as a 

reference material to reservoir sandstones; and flow-through experiments on Danish Gassum Formation 

sandstone and Bunter Formation sandstone, were analysed. Polished thin sections were studied by using the 

electron microscope in order to relate permeability to sandstone texture.  

The simple physically based Kozeny (1927) equation, relates permeability to porosity and specific surface 

per pore volume, or equivalent pore size, for a homogeneous porous medium with a uniform pore size. As 

pore sizes in sandstones can range from nanometres to micrometres, additional assumptions would be 

required in order to estimate sandstone permeability based on the Kozeny equation. An effective specific 

surface area per pore volume for permeability was estimated by using image analysis and pore size 

distributions as from nuclear magnetic resonance (NMR) transverse relaxation data. The smaller pores in the 

pore size distribution appear to control permeability in sandstones with a low clay-free intergranular 

porosity. Presumably in those sandstones larger intergranular pores are only connected through smaller 

pores, which therefore limit the flow rate in larger pores. In sandstones where larger intergranular pores do 

form a connected flow path, the higher permeability in these pores would have the dominant effect on the 

measured permeability, wherefore the effective specific surface reflects the specific surface of the framework 

grains.  

A characteristic equivalent pore size can also be determined based on the Klinkenberg (1941) procedure, 

which accounts for effects on permeability of gas slip on the fluid-solid interface by means of several 

permeability measurements with different pore pressures. A comparison between the equivalent pore sizes as 

estimated using the Kozeny equation and the Klinkenberg procedure showed the expected correlation 

between the two measures, however, differences could be around one order of magnitude.  

In tight gas sandstones, permeability is often sensitive to net stress, which might change due to the pore 

pressure change in the Klinkenberg procedure. Besides affecting the Klinkenberg procedure, the combined 

effect of slip and changes in permeability would affect production during pressure depletion in tight gas 

sandstone reservoirs; therefore effects of gas slip and net stress on permeability were combined in a model 

based on the Klinkenberg equation.  

A lower permeability to brine than to gas is often observed, which might be due to interaction between the 

mineral surface and the pore fluid. By modelling a layer of immobile fluid on the fluid-mineral interface 



permeability to brine was estimated, based on both the pore size distribution from NMR combined with the 

Kozeny equation and the Klinkenberg procedure. Both methods overestimated the measured brine 

permeability; this suggests that additional factors, possibly related to clay morphology, contributed to a 

lower brine permeability.  

Thermal expansion would have a negligible effect on permeability as estimated based on the Kozeny 

equation. Accordingly, a literature survey indicated no effect of heating on permeability in experiments with 

an inert pore fluid; in tests with distilled water or brine, heating reduced permeability in sandstones 

containing kaolinite clay minerals.  

Both heating and reduction of the salinity of the pore fluid can increase the electrical double layer repulsion 

between quartz grains and kaolinite particles in Berea sandstone, which could lead to kaolinite mobilisation 

and permeability reduction. Heating increases the magnitude of the mineral surface charge, whereas salinity 

reduction increases the range over which the surface charge acts. Flow-through experiments in Berea 

sandstone samples indicated differences between the effect of temperature and salinity on permeability. A 

permeability reduction at 20°C due to salinity reduction was not reversed by restoring the salinity; a 

permeability reduction due to heating to 80°C was reversible by restoring the temperature to 20°C. A 

reversible permeability increase with increasing flow rate was observed at 80°C, but not at 20°C. Therefore, 

it was suggested that mobilised kaolinite particles affect permeability by a different mechanism at 80°C than 

at 20°C; at 80°C the main effect might be due to an alteration of pore fluid rheology, whereas at 20°C 

particles might be filtered in pore constrictions. DLVO theory (Derjaguin and Landau (1941); Verwey and 

Overbeek (1948)) was used to compare effects of temperature and salinity on surface interaction forces. 

Quantitative analysis of images, in which mineralogy was mapped based on backscatter electron intensity in 

combination with energy dispersive X-ray analysis by using the QEMSCAN® system, was used to compare 

a tested sample to an untested Berea sandstone sample. During the experiment, in which an 80°C NaCl 

solution was injected for 150 days, apparently siderite dissolutions released iron, which was oxidised and 

precipitated as iron hydroxides. Lamination appears to be enhanced by precipitation of iron hydroxides 

predominantly in finer grained, lower porosity, lamina. The effect of enhanced lamination, as estimated 

based on the specific interface to the pore from image analysis, was negligible; accordingly, the 

experimentally measured permeability at the end of the test was only 20% lower than at the start of the test.  

This investigation indicates that clay morphology and abundance has a strong effect on: the fraction of the 

porosity that is effective for permeability, the difference between brine and gas permeability, and the effect 

of temperature. Hot water injection might induce clay particle mobilisation and mineral dissolution; 

however, these effects would depend on the mineralogy and pore fluid composition. Therefore, results from 

one formation cannot directly be generalised to other formations. 



Notation 

Latin Symbols 

a empirical constant in the SDR, or Mean T2, equation, L
2
/s

2
, m

2
/s

2 

bslip Klinkenberg (1941) slip factor, Lt
2
/m,  1/Pa 

c Kozeny constant, - 

c0 shape factor in Kozeny’s equation, - 

cslip proportionality factor in Klinkenberg’s equation, - 

ds,mean mean diameter of solids, L, m   

e elementary charge, q, C 

fNMR fraction of porosity in NMR T2 distribution, - 

fwNMR fraction of porosity in which water or brine is mobile in NMR T2 distribution, - 

fHg fraction of porosity filled in mercury injection, - 

h separation between mineral surfaces, L, m 

hRC height of a rectangular channel, L, m 

k permeability, L
2
, mD 

ka apparent permeability with gas slip, L
2
, mD 

kB Boltzmann constant, mL
2
/t

2
T, J/K 

kw permeability to water or brine, L
2
, mD 

l distance parallel to pressure gradient, L, m 

leff effective distance travelled by fluid (in Kozeny (1927)), L, m 

lpix pixel length for square pixels, L, m 

nk net stress parameter for permeability, - 

q specific discharge, flow rate, Q/A, L/t, m/s 

r characteristic length scale, L, m 

rH hydraulic radius, 1/Sp, L, m 

rp radius for cylindrical capillaries, or equivalent radius for pores (rp = 2/Sp), L, m 

rp,slip characteristic equivalent pore radius for gas slip, L, m 

rp,kozeny equivalent pore radius for permeability in the Kozeny equation, L, m 

rp,NMR,max maximum equivalent pore radius that is effective for permeability based on NMR, L, m 



rs equivalent radius of solids, L, m 

v average flow velocity in capillary, or interstitial velocity in pores, (q/ϕ = Q/Aϕ), L/t, m/s 

w width, L, m 

z valence of an ion, -,  

 

A cross sectional area, L
2
, m

2
 

EEDL electrical double layer interaction energy per square meter, L
2
/t

2
m, J/m

2
 

EvdW  van der Waals interaction energy per square meter,  L
2
/t

2
m, J/m

2
 

EDLVO net interaction energy per square meter, EDLVO = EEDL + EvdW, L
2
/t

2
m, J/m

2
 

  
Hamaker constant, mL

2
/t

2
, J 

C concentration, n/L
3
, mol/m

3
 

CB&K shape parameter in model by Beskok & Karniadakis (1999), - 

D density, m/L
3
, kg/m

3
 

Df fractal dimension, - 

  
ionic strength of electrolyte in mol per litre,  n/L

3
, mol/l 

Ip specific pore interface per unit pore area, 1/L, m/mm
2
 

Iqtz specific quartz interface, L, m 

K parameter relating 2D specific interface per pore area to 3D specific surface per pore volume, - 

K∞ permeability extrapolated to zero net stress, L
2
, mD 

M molar mass, m/n, g/mol  

NA Avogadro constant, 1/n, 1/mol 

 ̅ mean pore pressure, m/Lt
2
, Pa 

ΔP pressure gradient (one dimensional), m/L
2
t
2
, Pa/m 

Pc capillary pressure, m/Lt
2
, Pa 

Q volumetric flow rate, L
3
/t, m

3
/s 

QM molar flow rate, n/t, mol/s 

R ideal gas constant, L
2
m/(t

2
Tn), J/molK 

Rc correlation coefficient, (correlation between measurement and model), - 

SB&K shape parameter, 4 for cylinders and 6 for rectangles in unified slip flow model, - 

S specific internal surface area per bulk volume, 1/L, m
2
/cm

3
 



Sp specific surface area per pore volume, 1/L, m
2
/cm

3
 

Ss specific surface area per solids volume, 1/L, m
2
/cm

3
 

Swp specific surface area per pore volume for mobile water or brine, 1/L, m
2
/cm

3 

T absolute temperature, T, K 

T2 transverse relaxation time, t, s 

T2,gm  geometric mean transverse relaxation time, t, s 

T2,max  maximum transverse relaxation time that is considered effective for permeability, t, s 

Vs volume of solids, L
3
,m

3
 

Vb bulk (sample) volume , L
3
,m

3 

Vp volume of pores, L
3
,m

3
 

VHg volume of mercury, L
3
,m

3
 

Greek symbols 

α empirical parameter in model by Beskok & Karniadakis (1999), - 

αT one dimensional coefficient of thermal expansion, 1/T, 1/K 

α0B&K parameter characterizing free molecular flow in model by Beskok & Karniadakis (1999), - 

αB&K  function of Kn characterizing rarefaction in model by Beskok & Karniadakis (1999), - 

β  empirical parameter in model by Beskok & Karniadakis (1999), - 

γ stress exponent for permeability, - 

γHg surface tension, m/t
2
, N/m 

ε permittivity of vacuum, q
2
t
2
/mL

3
, F/m 

εr static relative dielectric permittivity, - 

ζ zeta potential, potential on the shear plane, mL
2
/qt

2
, V 

θ contact angle, ° 

κ
-1

 Debye length, 1/L, 1/m 

 ̅ mean free path length of gas molecules, L, m 

μ dynamic viscosity, m/tL, Pa.s 

ρ surface relaxivity, L/t, m/s 

σ0 surface charge, or net charge density on the Stern plane, q/L
2
, C/m

2 

σc confining stress, m/Lt
2
, Pa 

σk’ net stress for permeability (σk’ = σc - nk ̅), m/Lt
2
, Pa 



τ thickness of immobile water layer, L, m  

τStern thickness of Stern layer, L, m 

ϕ porosity, fraction, - 

ϕc porosity relating to critical percolation threshold, fraction, - 

ϕmobile mobile porosity, fraction, - 

ψ0 surface potential, or potential on Stern plane,  mL
2
/qt

2
, V 

 

Γ tortuosity 

Subscripts 

i counter 

mono monovalent ions 

ΔT after temperature increment by ΔT 

T,0 prior to temperature increment in thermal expansion calculations.  

Subscripts relating to measurement methods 

BET as measured by nitrogen gas adsorption 

kozeny as calculated based on Kozeny equation using porosity and permeability 

NMR,max maximum T2 or maximum equivalent pore size as estimated from NMR.  

slip as estimated from Klinkenberg procedure.  

Abbreviations 

AFM atomic force microscopy 

BSEM backscattered electron microscopy   

EDS energy dispersive X-ray analysis 

FIB focussed ion beam 

LSA linear superposition approximation 

μ-CT micro computed tomography 

MRA minimum representative area 

NMR nuclear magnetic resonance 

REV representative elementary volume (3D equivalent of MRA) 

SEM scanning electron microscopy 

XRD X-ray diffraction 
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1 0BIntroduction 

1.1 10BMotivation 

Geothermal energy is used for district heating in Copenhagen and in Thisted (Lund et al., 2011). Both expansion 

of the existing plants and new geothermal plants at other sites are being considered in order to increase the supply 

of geothermal energy (Lund et al., 2011). Heat from other sources, such as waste incineration, could also be used 

for district heating. Whereas this heat is produced all year long, heat demand heat peaks during the winter, which 

requires seasonal heat storage.  

The Heat Storage in Hot Aquifers project, HeHo, investigates the possibility of seasonally storing heat energy by 

means of heating geothermal brine prior to injection into the geothermal aquifer during the summer. This would 

increase the aquifer temperature above the natural temperature, which is approximately 44°C in Thisted and 74°C 

in Copenhagen (Lund et al., 2011), so that additional energy can be extracted during the winter.  

Energy is required for injection and extraction of geothermal brine, and the pumping energy depends on the 

aquifer permeability, i.e., the conductivity of the rock to fluid flow. Permeability reduction increases pumping 

costs; therefore energy storage would be effective only if permeability is not significantly reduced due to heating.  

1.2 11BProblem statement and scope 

Permeability, as defined in Darcy’s law, is a property of the rock; permeability would not depend on the 

properties of the fluid (Bear, 1972; Darcy, 1856). The physically based Kozeny (1927) equation relates 

permeability to porosity and specific surface area, or equivalent pore size, for a homogeneous rock with a uniform 

pore size. Sandstone permeability is often modelled by using the Kozeny equation (Berryman and Blair, 1987; 

Carman, 1937; Hossain et al., 2011; Pape et al., 2006; Walderhaug et al., 2012) [Manuscript I, II, III, IV]. 

However, due to the presence of clay minerals, sandstones can have a range of pore sizes; therefore additional 

assumptions are required to apply the Kozeny equation. Different methods of estimating the specific surface, or 

the equivalent pore size, that is effective for permeability are discussed in Chapter 2, based on literature and on 

Manuscripts II, III and IV.  

Gas flow can be used to measure permeability (API, 1998). However, permeability to brine is often lower than 

permeability to gas in sandstones (Heid et al., 1950; Jones and Owens, 1980; Wei et al., 1986) [Manuscripts 

I,II,IV]. Gas slip can increase the gas flow rate at low pore pressures, and increase the apparent permeability to 

gas (Klinkenberg, 1941). The effect of gas slip is modelled by Klinkenberg (1941), as a function of both the gas 

properties and a characteristic pore size. Klinkenberg shows that a characteristic equivalent pore size for gas slip 

can be determined by measuring permeability at three or more different pore pressures. This can be used in order 

to estimate the true permeability, and the apparent permeability to a different gas or at a different pore pressure. 

The equivalent pore size that is effective for permeability in the Kozeny equation would presumably relate to the 

characteristic equivalent pore size for gas slip, however, a scatter is often observed (Florence et al., 2007; Funk et 
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al., 1989; Heid et al., 1950; Jones and Owens, 1980). Gas slip has a greater effect on apparent permeability in 

sandstones with smaller pores, such as tight sandstones. Therefore, gas slip is investigated in Chapter 3 by using 

data from both the PETGAS database, which contains petrophysical measurements on tight gas sandstones, and 

from sandstones with a higher porosity and permeability, which would be relevant for geothermal energy. 

Permeability is often sensitive to net stress in tight gas sandstones (Jones and Owens, 1980; Osorio et al., 1997; 

Ostensen, 1983). The stress sensitivity of the true permeability might cause errors when Klinkenberg’s method is 

used. Furthermore, the effect of pore pressure on both true permeability and on gas slip would affect production 

from tight gas sandstone reservoirs; therefore the combined effect on apparent permeability is considered in 

Section 3.4.   

A lower brine permeability can be observed even after correcting for gas slip (Heid et al., 1950; Jones and Owens, 

1980; Wei et al., 1986) [Manuscripts I,II,IV] . Therefore, several authors suggest that a layer of immobile water 

on the mineral surface reduces the mobile pore volume (Andreassen and Fabricius, 2010; Faulkner and Rutter, 

2003; Heid et al., 1950; Jones and Owens, 1980). Effects of an immobile water layer on permeability are 

estimated, based on both the Kozeny model [Manuscript IV] and the Klinkenberg model in Chapter 4. Similar to 

gas slip, the effect of immobile water would be greater in sandstones with smaller pores, therefore both tight gas 

sandstones and more permeable sandstone samples are considered. 

Thermal expansion might affect permeability; this effect, as estimated based on the Kozeny equation in Chapter 5, 

can be considered negligible [Conference paper I; Manuscript I]. Accordingly, in an overview of published data, 

no effect of temperature on permeability is observed in tests with inert fluids, mineral oils or gas; however, some 

tests where hot distilled water or hot brine is injected show a significant permeability reduction due to heating 

[Conference paper I; Manuscript I]. This indicates that the effect of temperature on permeability relates to 

mineral-fluid interaction. Mechanisms by which hot water or brine injection might affect permeability include: 

alteration of the thickness of an immobile water layer on the mineral surface (Andreassen and Fabricius, 2010; 

Faulkner and Rutter, 2003); chemical reactions leading to dissolution and precipitation (Blair et al., 1984; 

Tenthorey et al., 1998); contamination of samples with particles that are generated by corrosion of the equipment 

(Milsch et al., 2009; Potter et al., 1981; Stottlemyre, 1981; Ungemach, 2003); and alteration of surface interaction 

forces among fine clay particles and sandstone quartz grains that could mobilise fines (Baudracco and 

Aoubouazza, 1995; Khilar and Fogler, 1984, 1987; Priisholm et al., 1987; Schembre and Kovscek, 2005) 

[Conference papers I, II, III; Manuscripts I, II, III].  

Permeability reduction due to fines mobilisation is observed in Berea sandstone when the concentration of NaCl 

in the pore fluid is reduced (Grey and Rex, 1966; Khilar and Fogler, 1984, 1987; Mungan, 1965; Ochi and 

Vernoux, 1998; Schembre and Kovscek, 2005). Kaolinite is the dominant clay mineral in the Berea sandstone 

(Churcher, 1991; Khilar and Fogler, 1984). Reducing the NaCl concentration increases the electrical double layer 

(EDL) repulsion force between similarly charged kaolinite particles and quartz grains, which might mobilise 
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kaolinite particles. The DLVO (Derjaguin and Landau, 1941; Verwey and Overbeek, 1948) Theory is used by 

some authors to model the effect of salinity on surface interaction forces in Berea sandstone (e.g., Khilar and 

Fogler, 1984, 1987; Ochi and Vernoux, 1998; Schembre and Kovscek, 2005) [Conference papers II and III; 

Manuscript II]. Mobilised particles might reduce permeability when these are filtered in pore constrictions, and 

this effect would be irreversible when the NaCl concentration is restored (Khilar and Fogler, 1984) [Manuscript 

II]. Heating would also increase the EDL repulsion and mobilise particles (Khilar and Fogler, 1984, 1987; 

Schembre and Kovscek, 2005) [Conference papers II, III; Manuscript II]. However, the effect of temperature is 

found to be reversible with cooling by several authors (e.g., Baudracco and Aoubouazza, 1995; Cassé and Ramey 

Jr, 1979) [Manuscript I; II]. Differences between effects of temperature and NaCl concentration on permeability 

are investigated in Chapter 6 [Manuscripts I and II; Conference papers I, II, and III]. 

Methods that were used for data analysis are discussed in Chapter 7. This includes applications of quantitative 

image analysis, both to compare among sandstone formations, and to compare between an untested sandstone 

sample and a sample after injection of 80°C NaCl solution [Manuscript IV]. Chapter 8 summarises the main 

conclusions, and Chapter 9 rounds off with recommendations for further research. 
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2 1BPermeability 

2.1 12BDefinitions 

2.1.1 40BPorosity 

Sandstones are porous media, which consist of solids and pores, i.e., voids among the solids (Figure 1). The 

bulk volume, Vb, is the volume of pores, Vp, plus the volume of solids, Vs, Eq.(1). Porosity, ϕ, is the ratio of 

Vp to Vb (Eq.(2)). For sandstones, the solids include larger grains and cement that compose the framework, 

and smaller clay particles that are often present in the intergranular pores, i.e. the pores among the 

framework grains. Small, micro-, pores are also observed among clay particles (Desbois et al., 2011; Landrot 

et al., 2012).  

 
b p sV V V    (1) 

 
p

b

V

V
    (2)  

a)  b)  

Figure 1: a) Schematic representation of sandstone consisting of framework grains (white) and pores (black). 

b) Schematic representation of sandstone containing clay particles (grey) in some intergranular pores (pores among 

framework grains). Smaller pores are also present among clay mineral particles.  

2.1.2 41BDarcy’s law 

Darcy (1856) investigated vertical flow through water saturated sand columns and found that the volumetric 

flow rate depends on the cross sectional area of the column, the pressure gradient across the column, and the 

properties of the sand column. Flow rate also depends on fluid viscosity; thus for a general fluid, flow can be 

expressed by Eq.(3), which is known as Darcy’s  Law for laminar incompressible flow (Bear, 1972; Hubbert, 

1957).  

 
Q k

q P
A 

     (3) 
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where, for one dimensional flow, ΔP is the pressure gradient, q is the specific discharge, henceforth referred 

to as the flow rate, Q is the volumetric flow rate, A is the cross-sectional area perpendicular to ΔP, μ is the 

dynamic viscosity of the fluid, and k is the permeability.  

Darcy’s law can be considered valid for a homogeneous incompressible fluid at flow rates where the 

Reynolds number for porous media (Eq.(4)) is less than one; inertia effects may cause additional energy 

dissipation at higher flow rates (Bear, 1972).  

 
,meansDqd

Re


   (4) 

where ds,mean is the mean diameter of the solids, and D is the fluid density.  

There might also be a lower limit to the validity of Darcy’s law (Bear, 1972). Some authors observed no flow 

of water or brine below a threshold ΔP, which might be due to mineral-fluid interaction (Bear, 1972; 

Byerlee, 1990; Swartzendruber, 1962). On the other hand, gas slip on the fluid-solid interface can result in an 

apparent permeability that  is higher than the true permeability, and that depends on gas properties and pore 

pressure (Klinkenberg, 1941). Permeability to gas slip and to brine or water are discussed in chapters 3 and 

4.  

2.2 1Cylindrical capillary model 

Darcy’s law can be derived by solving the Navier-Stokes equations for a geometrical model of the pore 

geometry (Bear, 1972). Possibly the simplest model is a collection of parallel cylindrical capillaries with a 

uniform radius rp (Figure 2a). 

a)  b)  

Figure 2: Model of a porous medium consisting of solids (white) and pores (grey). a) Pores are parallel cylindrical 

capillaries with equal radii. b) Pores are parallel capillaries with a general shape but equal size. Capillaries have a 

constant size in the third dimension.  

The flow rate through a cube with a unit length containing n parallel cylindrical capillaries is given by Eq.(5) 

based on the Hagen-Poiseuille equation. 
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4
1

8

pn rQ
q P

A




     (5) 

The porosity is the volume of the cylindrical capillaries normalised by Vb, i.e., normalised by one for a unit 

length cube: 

 

2

2p

p

b

n r
n r

V


     (6) 

Permeability can therefore be expressed in terms of pore size and porosity by Eq.(7) (cf. Eq.(3), (5), and (6)). 

 21

8
pk r    (7) 

2.3 14BKozeny equation 

Rather than assuming cylindrical capillaries, Kozeny (1927) solved the Navier-Stokes equations for parallel 

equal sized, smooth walled capillaries, with a general shape but a constant cross section (Figure 2b), yielding 

Eq.(8) (Kozeny, 1927).  

 

3

0

2

1Q c
q P

A S




      (8) 

where S is the specific surface, i.e., the solid-pore interface area normalised by Vb, and co is a shape 

parameter, which is 1/2 for cylindrical capillaries, and 2/3 for rectangular channels (Kozeny, 1927). The 

shape parameter c0 is often replaced by a factor, c, which is referred to as the Kozeny constant (Bear, 1972; 

Mortensen et al., 1998). The Kozeny constant characterises not only the channel shape, but also pore 

geometry as discussed in Subsection 2.3.1. 

The ratio of S to ϕ, Sp, (Eq.(9)), is inversely related to equivalent pore size, rp, for smooth walled pores. For 

cylindrical capillaries, Sp is the inverse of the hydraulic radius, rH, and half of the geometric radius, Eq.(10). 

 
p

S
S


   (9) 

 
1 2

p

H p

S
r r

    (10) 

Permeability is expressed in terms of porosity, c, and Sp
2
 in Eq.(11) (cf. Eq.(3), (8), and (9)), which is one 

form of the Kozeny equation. Both Eq.(7) and the Kozeny equation characterise permeability in terms of 

porosity and equivalent pore size squared. 
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2

p

c
k

S


   (11) 

Permeability can also be expressed in terms of solids size rs (Kozeny, 1927). For a unit cube consisting of n 

equal sized spheres, Vs is expressed by Eq.(12), and S by Eq.(13). The surface area per volume of solids, Ss, 

is related to S by Eq.(14) (cf. Eq.(1) and Eq.(2)), therefore Sp is related to rs by Eq.(15) (Kozeny, 1927). 

 34

3
s sV n r   (12) 

 24 sS n r   (13) 

 
(1 )
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S
S





  (14) 

 
 13

p

s

S
r






   (15) 

Permeability can therefore be expressed in terms of rs by Eq.(16) (Kozeny, 1927). 

 

3
2

29(1 )
sk c r







  (16) 

2.3.1 42BThe Kozeny constant 

Kozeny (1927) suggests that fluid flow paths would not be straight when fluid flows around solids. The 

effective distance travelled by the fluid in a tortuous, i.e. a winding, flow path, leff, would be greater than the 

distance l parallel to ΔP; therefore a reduced pressure gradient (cf. Eq.(17)) might be used to express flow as 

Eq.(18), whereby c = c0l/leff (Kozeny, 1927). 

 
e f

red

f

l

l
P P     (17) 

 
 
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l
q c r P

l




 


  (18) 

Carman (1937) points out that besides a lower flow velocity due to ΔPred, the cross sectional area 

perpendicular to ΔP is also reduced by l/leff; therefore the flow rate parallel to ΔP would be reduced by 

(l/leff)
2
. This parameter can be referred to as tortuosity, Γ, and forms of the Kozeny equation in which c = c0Γ 

are often referred to as Kozeny-Carman equations (e.g., Bear, 1972; Berryman and Blair, 1987; Mavko and 
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Nur, 1997). By fitting Γ to laboratory measurements Carman (1937) suggests Γ = 0.4, which, combined with 

c0 = 1/2 yields c = 0.2. Donaldson et al. (1975) model the permeability of glass bead packs and of crushed 

sand packs by using the Kozeny equation with c = 0.2 and S as measured by using nitrogen adsorption (the 

BET method, Brunauer et al. (1938).  

Other properties, such as electrical resistivity, gas slip, or diffusion, are used in order to estimate Γ by some 

authors (e.g., Berryman and Blair, 1987; Boving and Grathwohl, 2001; Civan, 2002, 2010; Cornell and Katz, 

1953; Dullien, 1975; Pape et al., 2006; Walsh and Brace, 1984). However, tortuosity for hydraulic flow, 

would not necessarily be the same as tortuosity for diffusion and electrical conduction (Bear, 1972; Pape et 

al., 2006). Whereas diffusion and electricity conduction have uniform velocity, i.e., piston-like displacement, 

fluid flow has a velocity profile with a zero velocity on the fluid-mineral interface. Therefore, if Γ is 

considered as purely a geometric length ratio, Γ would reflect tortuosity to diffusion or conduction. Due to 

local velocity differences, the average length that is travelled by a volume of fluid in a unit time might differ 

from the geometrical average length of the flow paths (Bear, 1972).  

Rather than invoking a tortuous flow path, Mortensen et al. (1998) suggest a model where only a fraction ϕ 

contributes to flow. For a set of orthogonal equal sized regularly spaced interpenetrating capillaries (Figure 

3a) pore pressure can be assumed to be equilibrated perpendicular to ΔP, so that the local pressure gradient 

in the cylindrical capillaries would equal the externally applied pressure gradient. Therefore flow would only 

be in the volume of the capillaries that is parallel to ΔP (Figure 3b) (Mortensen et al., 1998).  

a) b)  

Figure 3: Porous medium in which pores are interpenetrating orthogonal equal sized capillaries. a) Entire porosity is 

shaded grey. b) Only porosity that is parallel to ΔP is shaded grey. (Modified from Mortensen et al. (1998)). 

The Kozeny constant in the model by Mortensen et al. (1998) reflects the fraction of ϕ that conducts flow; 

accounting for the porosity in capillary intersections, c is expressed by Eq.(19) (Mortensen et al., 1998).  

 

1

3

1 64 4
4cos arccos 1 4

3 3
c  





   
      

   
  (19) 
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For ϕ tending towards zero, there are no intersections and c tends to 1/6, i.e., c0/3. For ϕ tending to one, the 

entire porosity is parallel to flow and c tends to 0.5 (cf. Eq.(7)) (Mortensen et al., 1998). The value of c is 

0.20 ± 0.02 for 2% < ϕ < 32%, comparable to the empirical c0Γ  used in e.g., Carman (1937) and Donaldson 

(1975). Permeability of two chalk formations is modelled by using Eq.(19) and the specific surface area S as 

measured by nitrogen adsorption by Mortensen et al. (1998). 

The Kozeny equation is simple and has a physical basis, and is therefore often used to model permeability in 

sandstones (e.g., Berryman and Blair, 1987; Carman, 1937; Hossain et al., 2011; Mortensen et al., 1998; 

Pape et al., 2006; Walderhaug et al., 2012). Pore geometry is simplified to express permeability in terms of c, 

ϕ, and Sp, and for homogeneous porous media with a uniform pore size, Sp can be determined by 

measurement of specific surface area or grain size (Kozeny, 1927). However, sandstones often have a pore 

size distribution; therefore different methods can be used to estimate the Sp that is effective for permeability.  

2.4 15BThe Kozeny equation in sandstone 

2.4.1 43BEffective Sp versus total surface area 

Permeability is underestimated by up to two orders of magnitude when S is measured by using nitrogen 

adsorption in samples of: Berea sandstone; sandstone from the Danish Gassum Formation; sandstone from 

Danish Bunter Formation; North Sea greensands; and sandstones from the onshore and offshore Rotliegend 

Formation (Donaldson et al., 1975; Solymar and Fabricius, 1999) [Manuscripts I;II; III and IV]. In these 

studies c is based on Eq.(19), or c = c0Γ = 0.2 (Donaldson et al., 1975). The higher Sp that is estimated from 

ϕ and S from nitrogen adsorption, Sp,BET, might be affected by roughness of quartz framework grains that 

increases S without significantly affecting equivalent pore size and permeability (Berryman and Blair, 1987; 

Mortensen et al., 1998; Pape et al., 2006). Furthermore the presence of clay minerals could increase S.  

Clay minerals have a high specific surface as compared to quartz grains and therefore make a 

disproportionately large contribution to Sp,BET [Manuscript II;III;IV]. Nanometre or micrometre sized pores 

can be observed among clay aggregates in sandstones  (Desbois et al., 2011; Landrot et al., 2012), however, 

the permeability in these micropores would be low due to the high Sp (cf. Eq.(11)). Therefore, when larger 

intergranular pores among framework grains form a connected flow path, these pores would make the 

dominant contribution to the total permeability (Solymar and Fabricius, 1999; Walderhaug et al., 2012) 

[Manuscript II, IV].  

Berea sandstone is often studied as an analogue for reservoir sandstones, as this sandstone is considered to be 

relatively homogeneous and readily available (Churcher, 1991); some authors even consider Berea sandstone 

as an isotropic clean sandstone (Glover et al., 2006). Nonetheless, Berea sandstone would contain 

approximately 6 wt.%–8 wt.% clay minerals, predominantly kaolinite, and small amounts of illite and 

chlorite (< 1% illite, and  < 1% chlorite (Baudracco and Aoubouazza, 1995; Churcher, 1991)). Figure 4a 
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shows an image of Berea sandstone where kaolinite particles can be observed concentrated in some pores 

and not in others (Schembre and Kovscek, 2005) [Manuscript II, III]. This suggests that intergranular pores 

would indeed form connected a flow path and control permeability. Accordingly the effective Sp of the Berea 

sandstone sample in Figure 4a is 1.5 m
2
/cm

3
, whereas the Sp,BET is 19 m

2
/cm

3
 [Manuscript II].  

By contrast Figure 4b shows a sample of kaolinite rich Rotliegend sandstone with an effective Sp of 

34 m
2
/cm

3
 and an Sp,BET of 37 m

2
/cm

3
 [PETGAS]. This suggests that the specific surface of kaolinite particles 

is effective for permeability. Only a small fraction of the intergranular porosity does not contain kaolinite 

particles, therefore larger clay-free pores might not form a connected flow path [Manuscript IV]. 

a)   b)   

Figure 4: Backscatter electron microscopy, BSEM, images. a) Kaolinite particles are concentrated in some intergranular 

pores in a Berea sandstone sample. Some illite and chlorite minerals are also observed [Manuscript II]. b) Kaolinite 

particles are distributed throughout the intergranular pore volume in a Rotliegend sandstone sample [modified; BSEM 

image from PETGAS, University of Leeds]. Pores are black and grains are grey. (kao = kaolinite; ill=illite; chl=chlorite; 

carb=carbonate) 

Redistribution of kaolinite particles due to fines mobilisation would increase the surface area of kaolinite that 

is effective to flow and reduce permeability in Berea sandstone. Fines migration in Berea sandstone is 

addressed in Chapter 6.  

2.4.2 44BEffective Sp from image analysis 

Image analysis can be used to estimate the effective Sp in sandstones where permeability is controlled by 

larger intergranular pores (Berryman and Blair, 1987; Blair et al., 1996; Borre et al., 1995; Solymar and 

Fabricius, 1999) [Manuscript III]. Those authors use a resolution that does not resolve surface roughness or 

micropores among clay minerals. The appropriate resolution depends on the effective Sp; some authors 

suggest a fixed ratio of pixel length, lpix, to effective Sp can be used (Berryman and Blair, 1987). This could 

be compared to flow in cylindrical pipes, where the effect of surface roughness depends on the scale of 

asperities relative to the pipe diameter. Accordingly, the resolution used to quantify the effective Sp in images 



13 
 

of samples of Gassum Formation sandstone and Bunter Formation sandstone is too low to quantify the 

effective Sp for samples of Berea sandstone [Manuscript III]. The effective Sp of the latter is approximately 

twice as large as that of the former two samples (Figure 5). However, increasing resolution by a factor two 

still underestimates the effective Sp of the Berea sandstone samples. This does not support the suggestion of a 

fixed ratio of lpix to effective Sp; hereby resolution might be considered as a fitting factor that can be used to 

compare among samples, rather than to predict permeability.  

The Sp as determined by using image analysis is higher for the Gassum sandstone sample than for the Bunter 

sandstone sample in Figure 5, in accordance with the effective Sp of the respective samples. By contrast, 

Sp,BET is higher in the Bunter sample, in accordance with a higher clay mineral content in this sample 

[Manuscript III]. The higher effective Sp of the Gassum sample is probably due to the smaller size of 

framework grains (Figure 5a) as compared to the size of the framework grains of the Bunter sandstone, 

(Figure 5b). Presumably, intergranular pores control permeability in both samples; therefore the effective Sp 

would relate to the specific surface of the framework grains. Image analysis resolves differences in grain size 

of the framework grains, rather than the specific surface of clay minerals, and thereby gives a better estimate 

of the effective Sp than Sp,BET does.   
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a)  b)  

c)   

Figure 5: Backscatter electron microscopy, BSEM, images of: a) A Gassum Formation sandstone sample. b) A Bunter 

Formation sandstone sample. c) A Berea sandstone sample. Porosity is black, minerals are grey. [Porosity and 

permeability data are from Manuscript III]. 

Possibly, Sp can be characterised by a fractal relation; thereby Sp,R1, as measured at resolution R1 is related to 

Sp,R2 as measured at resolution R2 by Eq.(20) (Pape et al., 1999, 2006). 
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  (20) 

where Df  is the fractal dimension. The empirical parameter Df  depends on texture and mineralogy (Giménez 

et al., 1997). Image analysis at different resolutions is applied to estimate Df, in order to relate Sp,BET to the 

effective Sp, by Pape et al. (1999, 2006). However, clay minerals would increase S to a greater extent at 

higher resolutions, i.e., Df would depend on the range in which this is measured (Pape et al., 2006). 

Therefore, Df  as determined by using image analysis with a resolution range of the order of micrometres 

might differ from Df when the resolution is approximately the size of one adsorbed nitrogen molecule for 

BET measurements, i.e. approximately 0.162 nm
2
 (Sing, 2001). 

 porosity 

 

 

 

% 

effective Sp for 

permeability 

 

m
2
/cm

3 

a: Gassum 28.6 0.69 (2) 

b: Bunter 30.6 0.51 (2) 

c: Berea 17.4 1.37 (7) 
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An average grain size, rs, of the framework grains is estimated by using image analysis by Walderhaug et al.  

(2012). Those authors use the Kozeny equation, with a constant c that is fit to data, to model permeability 

within a factor four for over 75% of 415 sandstone samples with clay contents less than 3 vol.%. from the 

Norwegian continental shelf. This method tends to overestimate permeability in samples with a higher clay 

content (Walderhaug et al., 2012). Presumably that is because rs of the framework grains underestimates the 

effective Sp in samples where permeability is controlled by the smaller pores. 

In order to relate the 2D specific pore interface per unit pore area, Ip, to the 3D Sp, or to estimate rs, a 

conversion factor is required in Eq. (21)(Peters, 2009; Solymar and Fabricius, 1999; Weibel, 1989):  

 
p pS KI   (21) 

where K is a constant. For perfect spheres K = 4/π, which is also used for sandstone by several authors 

(Peters, 2009; Solymar and Fabricius, 1999; Weibel, 1989). Crandell et al. (2012) compare pore sizes from 

2D backscatter electron microscopy, BSEM, images to pore sizes that were estimated from 3D micro-

computed tomography, μ-CT, and suggest, K = 2.11 for a sediment packed column. When K is considered to 

depend on pore geometry, this parameter might be considered as a fitting parameter.      

Image based quantification of parameters that are relevant to experiments on core plugs requires that a 

minimum representative area, MRA, is analysed (Bear, 1972; Landrot et al., 2012; Solymar and Fabricius, 

1999). An MRA can be estimated by quantifying an average property, such as ϕ or Sp, in an increasingly 

large interrogation area until the value stabilises (Bear, 1972). Figure 6a shows that the MRA of ϕ for a 

sample of Bunter sandstone would be between 20 mm
2
 and 25 mm

2
 [Manuscript III]. Lamination results in 

an apparent REV within a lamina, which changes as the area is increased to include multiple laminae; as 

observed in a sample of Berea sandstone in Figure 6b.  This sample was altered by injection of 80°C NaCl 

solution [Manuscript II], however, lamination on a scale of millimetres is also observed in untested Berea 

sandstone samples by Knackstedt et al. (2001).  
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a)  b)  

Figure 6: Porosity as a function of interrogation area in images of polished thin sections of sandstone samples; the 

minimum representative area, MRA, is the minimum size where porosity becomes constant as a function of 

interrogation area. a) The MRA of porosity for a sandstone sample from Bunter Formation is between 20 mm
2 
and 

25 mm
2
. b) The MRA of porosity in a sample of Berea sandstone shows a plateau around 8 mm

2
 due to lamination; 

whereas the MRA appears to stabilise at 100 mm
2
, lamination on the plug scale might result in a higher MRA. 

[Manuscript III]. 

2.4.3 45BEffective Sp and percolation 

Permeability of effectively clay-free samples of Fontainebleau sandstone is overestimated by using the 

Kozeny equation based on rs and a constant c in samples where ϕ is less than 5%–10%; by contrast in 

Fontainebleau samples with 10% < ϕ < 30% permeability is modelled well by using this method (Bourbie 

and Zinszner, 1985; Mavko and Nur, 1997; Walderhaug et al., 2012). Authors of those studies suggest that 

percolation effects might play a role at low ϕ (Bourbie and Zinszner, 1985; Mavko and Nur, 1997; 

Walderhaug et al., 2012) .  

Percolation theory relates to the probability of spatial connectivity among objects (Kirkpatrick, 1973). 

Porosity could be considered as a network of pores, where each pore is connected to one or to several other 

pores, so that a connected path exists. When pores are randomly removed, a point is reached at which there is 

no longer a path across the network, i.e., the network is no longer percolating (Hunt, 2009; Sahimi, 2011). 

The minimum porosity that is required in order to have a percolating network is the percolation threshold. 

Permeability of a network can be related to the porosity that exceeds the percolation threshold by a power 

law (Hunt, 2009). Therefore Mavko and Nur (1997) suggest a modification of the Kozeny equation, cf. 

Eq.(22). 
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where ϕc is an empirical parameter that relates to the percolation threshold (Mavko and Nur, 1997). Values in 

the range 2.5% to 5% are fit to data of Fontainebleau sandstone, and to samples from different sandstone 

formations of the Norwegian continental shelf (Mavko and Nur, 1997; Walderhaug et al., 2012).  

In samples with a low porosity, permeability might be controlled by flow in microfractures along grain 

boundaries, rather than by intergranular pores (Brower and Morrow, 1985; Morrow et al., 1983; Ostensen, 

1983). Whereas the Kozeny equation is not restricted with regard to pore shape, rs would relate to the Sp of 

intergranular pores rather than the Sp of microfractures. Figure 7 shows a Rotliegend sandstone sample where 

ϕ = 4.0%; both intergranular pores and fractures can be observed. When intergranular pores are only 

connected by microfractures the flow rate, and accordingly the effective Sp, would not reflect the Sp of the 

intergranular pores. Whereas Eq.(22) reflects that part of the porosity does not control permeability, this 

expression does not reflect that the effective Sp would not be characterised by rs. Furthermore, introducing ϕc 

was found to only improve permeability fitting in samples with a low porosity by Walderhaug et al. (2012). 

 

Figure 7: Backscatter electron microscopy, BSEM, image of a Rotliegend tight gas sandstone sample with 4.0% 

porosity. Porosity is black, minerals are grey. [PETGAS, University of Leeds]. 

Permeability is sometimes modelled by using pore network models, which are based on the analogy between 

permeability to fluid flow and resistance to electrical current (Dullien, 1975; Fatt, 1956; Sahimi, 2011). The 

porosity is represented as a pore network, consisting of pore bodies that are connected by pore throats. Each 

pore body is connected to two or more other pore bodies through a pore throat, and each pore throat is 

assigned a permeability. By solving a system of equations for the pressure distribution, the flow through the 

network, and the network permeability,  can be calculated (Dullien, 1975; Sahimi, 1993). This method can be 

used to account for a pore size distribution, and for percolation effects. Characterisation of the network 

requires a number of parameters including: the number, the orientation, and the permeability of pore throats 

(Blunt et al., 2013; Rahmanian et al., 2013; Sahimi, 1993; Walderhaug et al., 2012). Image based methods, 

including 2D BSEM images and 3D μ-CT scans can be used to estimate these (Beckingham et al., 2013; 
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Blunt, 2001; Blunt et al., 2013). However, as the definition of pore bodies and pore throats can be 

ambiguous, network characterisation methods require verification. (Blunt et al., 2013; Kim et al., 2013; 

Lindquist et al., 2000; Walderhaug et al., 2012). Furthermore, image based characterisation depends on 

resolution; Beckingham et al. (2013) characterise the network properties by using images with lpix = 1.8 μm 

and with lpix = 3 μm–4 μm. At the higher resolution more smaller pore throats are identified, and more pore 

throats are assigned a smaller size, resulting in a network permeability of approximately 7 mD; at a lower 

resolution the permeability is approximately 450 mD (Beckingham et al., 2013). 

Rather than simplifying pore geometry, permeability can also be calculated by using numerical methods, 

such as Lattice Boltzmann simulations, on a 3D representation of the porosity acquired directly from μ-CT 

(Blunt et al., 2013; Mostaghimi et al., 2013; Prodanović et al., 2007). This method would also be sensitive to 

the resolution used. For sandstones in which permeability is controlled by small pores (e.g., Figure 4a and 

Figure 7) a small voxel, volume element, size would be required in order to resolve the connecting pores. 

Indeed in a Rotliegend sample with ϕ = 9%, the volume of connected pores is only 1% when a voxel size of  

approximately 1 μm
3
 is used by Landrot et al. (2012); the majority of the pores appear to be disconnected. 

Focussed ion beam, FIB, sectioning in combination with BSEM allows a characterisation of the porosity 

among clay minerals of the order of nanometres, which indicates that larger pores would be connected 

through micropores in a tight gas sandstone sample examined by Landrot et al. (2012). However, whereas in 

the image plane a nanometre scale resolution is achieved, due to the finite thickness of the FIB sections, the 

resolution in the third dimension would be lower. Furthermore, calculating the permeability in a 

representative elementary volume, REV the 3D equivalent of an MRA, at a high resolution increases 

computational costs. Currently 8000 voxels may be considered as a large volume (Blunt et al., 2013). With a 

voxel side of 10 nm, an 8000 voxel cube has a length of 20 μm; this is comparable to the framework grain 

size in some sandstones (e.g. Figure 7), which is presumably smaller than the REV.   

2.4.4 46BEffective Sp from nuclear magnetic resonance  

Nuclear magnetic resonance, NMR, transverse relaxation time can also be used to characterise Sp (Coates et 

al., 1999; Dastidar et al., 2006; Hossain et al., 2011; Kleinberg, 1996; Pape et al., 2006; Sen et al., 1990). In 

NMR, hydrogen nuclei in water saturated samples are aligned in a permanent magnetic field and flipped in a 

temporary magnetic field, and the consequent rate of decay of magnetisation is measured and converted to a 

transverse relaxation time, T2, distribution (Coates et al., 1999; Kleinberg, 1996; Sen et al., 1990). The decay 

rate of magnetisation is higher near the water-solid interface than in the bulk water. So in the fast diffusion 

regime, in which the majority of hydrogen nuclei are relaxed at the fluid-solid interface by surface 

relaxation, the T2, time reflects Sp as in Eq.(23) (Coates et al., 1999; Kleinberg, 1996; Sen et al., 1990). 
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where ρ is the surface relaxivity, which depends on the minerals present (Alam et al., 2014; Keating and 

Knight, 2007, 2010). If ρ is assumed uniform, ρ can be estimated by combining pore size  distributions from 

mercury injection with the T2 distribution from NMR (Coates et al., 1999; Dastidar et al., 2006; Mbia et al., 

2014) [Section 7.8.2].  

The SDR equation, or as the Mean T2 equation, Eq.(24), can be used to estimate permeability from NMR 

logs (Coates et al., 1999).   
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2,gmk aT    (24) 

where a is an empirical constant, T2,gm is the geometrically weighted mean T2. This equation reflects the same 

proportionality between permeability and 1/Sp
2 
as the Kozeny equation (Hossain et al., 2011), but a different 

proportionality between k and ϕ.  

NMR is also used to estimate Sp for the Kozeny equation by different authors. Whereas Pape et al. (2006) 

estimate and average Sp from T2,gm; Hossain et al. (2011) account for the pore size distribution by calculating 

the permeability of each increment of the T2 distribution (cf. Eq.(23), (11), and (19)): 

 
2 2
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where fNMR,i is the fraction of the total porosity that has a specific T2,i, and ki is the permeability of ϕ fNMR,i.   

The sample permeability would be obtained by summation of the individual permeabilities (Hossain et al., 

2011): 

 
i

i
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This can be considered as a physically based approach to extend the Kozeny equation to model permeability 

of porous media with different pore sizes. By summing ki rather than by summing ϕSp,i the contribution of 

pores is weighted by their contribution to flow, rather than by their contribution to the pore volume. 

Therefore larger pores with a higher ki make a proportionally larger contribution to permeability than the 

same pore volume of smaller pores does.  

Summation over all pores would model k in samples where all pores contribute to permeability. In samples 

of North Sea greensand, where clay minerals are concentrated in glauconite grains and intergranular porosity 

exceeds 15%, summation over the full T2 range estimates the measured permeability (Hossain et al., 2011). 

By contrast, in samples where larger pores are only connected through smaller pores, the permeability of the 
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larger pores as estimated from the T2 might not be effective for flow, as the flow rate would be limited by the 

smaller connecting pores. Therefore, the fraction of the pores that can be considered effective for 

permeability, is estimated by summation of ki starting from the smallest T2,i,  i.e., the smallest equivalent pore 

size, up to the T2 where the cumulative permeability equals the measured gas permeability in Manuscript IV. 

Figure 8 shows the T2 distribution and ki of the fraction of pores that are considered effective for 

permeability for two samples of Rotliegend sandstone. Nearly the full pore volume would be effective in 

Sample 5B, which suggests that larger pores form a connected flow path. By contrast, in Sample 1A only the 

smaller pores appear to contribute to the measured permeability.  

a)  b)  

 

Figure 8: The dashed grey line shows the T2 distribution from NMR; the height of the curve shows the porosity in the 

increment, ϕfNMR,i. Permeability for each increment, ki, (black line) is shown for increments that can be considered 

effective to permeability for a surface relaxivity, ρ = 10 μm/s. The fraction of porosity that is effective to permeability 

would be larger if ρ were smaller; vertical dashed lines shown the maximum T2 that is effective for permeability, T2,max, 

for ρ = 6 μm/s and for ρ = 14 μm/s. a) Most of the pore volume contributes to permeability in Rotliegend sandstone 

Sample 5B; total porosity, ϕ, ϕ = 17.9%. b) Only smaller pores contribute to permeability in Rotliegend sandstone 

Sample 1A, ϕ = 12.2%. [Manuscript IV]. 

The clay-free porosity from image analysis indicates in which samples larger pores would be effective for 

permeability; Sample 5B has a clay-free porosity of 13%, whereas sample 1A only has 1.0% clay-free 

porosity (Figure 9). [Manuscript IV].  

A similar effect of clay minerals on permeability is modelled by using a simulated pore network model by 

Mehmani and Prodanović (2014). A network of larger, macropore bodies and macropore throats is generated 

based on a packing of spherical grains. Subsequently, some macropore throats are replaced by a second 
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network of smaller micropore bodies and micropore throats. Permeability decreases gradually as more 

macropore throats are replaced by micropore throats, and a sharp permeability reduction is observed when 

the macropores are no longer percolating, i.e., when macropores are only connected through micropores 

(Mehmani and Prodanović, 2014).  

a)  b)  

Figure 9: Segmented backscatter electron microscopy, BSEM, images, white pixels are grains, grey pixels contain clay 

minerals and porosity, and black pixels are clay-free porosity. Pixel length 3 μm/pixel. [Manuscript IV].  

The maximum rp that would be effective to permeability, rp,NMR,max, is larger than the rp estimated from the 

Kozeny equation rp,kozeny (cf. Eq.(27)). For 63 Rotliegend sandstone samples, which are analysed in 

Manuscript IV, rp,NMR,max is two to four times larger than rp,kozeny (Figure 10). This difference would be 

expected; Figure 8 shows that only a fraction of the total porosity makes a significant contribution to k (cf. 

Eq.(25) and Eq.(26)); by contrast, the full porosity is included in Eq.(27). 
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Figure 10: The maximum effective equivalent pore size based on permeability of each T2 increment, rp,NMR,max, is 

between two and four times larger than the effective equivalent pore size as estimated from the total porosity and the 

measured permeability by using the Kozeny equation, rp,kozeny. [Data from PETGAS, University of Leeds]. 
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3 2BPermeability to gas 

3.1 16BGas flow regime 

The zero velocity boundary condition that is used to solve the Navier-Stokes equations in Chapter 2 would 

not necessarily apply for gas flow. During gas flow, driven by ΔP, gas molecules that have collided with the 

fluid-solid interface may lose their momentum parallel to ΔP, however, gas molecules close to the interface 

that have not collided with the interface would still have their momentum; therefore the average velocity 

parallel to ΔP of all molecules near the fluid-solid interface would be greater than zero (Cao et al., 2009; 

Klinkenberg, 1941). 

The mean free path length,  ̅, characterises the average distance that a gas molecule in the bulk gas travels 

before colliding with another gas molecule;  ̅, depends on the nature of the gas, the temperature, T, and the 

mean pore pressure,  ̅, cf. Eq.(28) (Loeb, 1927).   
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RT

MP

 
     (28) 

where M is the molar mass of the gas and R is the gas constant. 

Within distances of the order of  ̅ from the fluid-solid interface, collisions between gas molecules and the 

interface are more frequent than collisions among gas molecules. This layer is known as the Knudsen layer, 

and the gas flow regime in a capillary can be characterised by the Knudsen number, Kn (Cao et al., 2009; 

Karniadakis et al., 2005): 

 Kn
r


   (29) 

where r is a characteristic length scale, which would be the radius, rp, for cylindrical capillaries.  

When Kn < 0.001, the effect of the Knudsen layer on the volumetric flow rate is insignificant; flow is in the 

continuum regime and can be characterised by the Navier-Stokes equations with a zero slip wall velocity. 

When 0.001 < Kn < 0.1, flow is in the slip regime; the Navier-Stokes equations are valid in the bulk flow, 

however, the volumetric flow rate is increased due to a non-zero wall velocity. When 0.1 < Kn < 10, flow is 

in the transition regime where the Navier-Stokes equations are no longer valid due to rarefaction effects (Cao 

et al., 2009). The gas can no longer be considered as a continuum and  ̅ depends on Kn (Karniadakis et al., 

2005). When Kn > 10, flow is in the free molecular regime (Cao et al., 2009).  
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3.2 17BKlinkenberg equation for gas slip 

The effect of slip flow on permeability is modelled by Klinkenberg (1941) based on a slip flow model for 

cylindrical capillaries by Kundt and Warburg (1875). Half the gas molecules in the Knudsen layer are 

assumed to have lost all momentum parallel to ΔP due to collision with the fluid-solid interface, i.e. diffuse 

collisions as opposed to spectral collisions; the other half of the gas molecules in the Knudsen layer have the 

velocity of their last collision in the bulk flow. Therefore the average velocity in the Knudsen layer is half 

the velocity that molecules have at the location of the last collision with other gas molecules (Klinkenberg, 

1941). By assuming that velocity increases linearly with distance from the interface, and that a 

proportionality factor cslip characterises the average ratio between  ̅ and the distance from the interface where 

the last collision among gas molecules occurs, the velocity on the wall is expressed by Eq.(30) (Klinkenberg, 

1941; Kundt and Warburg, 1875). 

 
wall slip

dv
v c

dy
   (30) 

where v is velocity in the cylindrical capillary, vwall is the velocity on the wall, and y is the distance 

perpendicular to the wall. This is a first order slip condition,  where v wall depends linearly on the velocity 

gradient (Cao et al., 2009); this is an estimate, as the velocity gradient would probably decrease with 

increasing distance from the wall (Klinkenberg, 1941). Klinkenberg (1941) suggests that cslip might be 

approximately one, but the parameter would depend on pore geometry and surface roughness. 

As the volume of a given amount of gas depends on pressure, cf. the ideal gas law  ̅V = nRT, Klinkenberg 

(1941) derives the expressions for slip flow in terms of the mole flow rate, QM, rather than the volumetric 

flow rate, Q. Solving the Navier-Stokes equations for flow in a straight cylindrical capillary with a wall 

velocity cf. Eq.(30) yields Eq.(31) for QM (Klinkenberg, 1941).  

 

4 4
1

8

slip

M

p

cr
Q P P

r





 
   

 
 

  (31) 

Klinkenberg (1941) models porosity as a network of straight orthogonal cylindrical capillaries, similar to 

Figure 3, however, without interpenetration of the capillaries. For an incompressible fluid and no slip, i.e. 

when Darcy’s Law applies, flow would only be through 1/3
rd

 of the capillaries; therefore the flow rate in a 

cube with unit length would be expressed by Eq.(32): 
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Thus permeability cf. Darcy’s Law is expressed by Eq.(33) (Klinkenberg, 1941). 
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By substitution of Eq.(33) in Eq.(31), the molar gas flow rate is expressed as Eq.(34) (Klinkenberg, 1941). 
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where k is cf. Eq.(33). Eq.(34) can be rewritten in a form similar to the Darcy law by introducing an apparent 

permeability, ka (Klinkenberg, 1941):  
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where ka is given by Eq.(36) (Klinkenberg, 1941).  
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Considering that  ̅ is inversely proportional to  ̅ (cf. Eq.(28)), Eq.(36) can be expressed in terms of a slip 

factor bslip, which is constant as a function of  ̅ if μ is assumed constant with  ̅ (Klinkenberg, 1941):  
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where bslip is expressed by Eq.(38): 
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where rp,slip is the characteristic equivalent pore radius for slip flow.  

Permeability and bslip, can be determined by measuring ka at different  ̅, which is known as the Klinkenberg 

procedure (API, 1998). In a plot of ka versus 1/ ̅, a Klinkenberg plot, k is the y-intercept, and the gradient is 

bslipk (Figure 11). Whereas bslip depends on both the properties of the rock and on the properties of the gas 

(cf. Eq.(38) and Eq.(28)), rp,slip would relate only to the rock properties and can be used to estimate 

permeability to different gasses, at different  ̅, and at different T (Klinkenberg 1941).  
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3.2.1 47BExtension of the Klinkenberg equation 

For sandstones with a small rp, such as tight gas sandstones, flow might be in the transition regime, where 

alternative gas flow models are required (Ertekin et al., 1986; Florence et al., 2007; Rahmanian et al., 2013). 

A unified slip flow model is derived by Beskok and Karniadakis (1999), which these authors suggest is valid 

over the entire range of Kn. The model is based on a second order slip boundary condition; the velocity at the 

wall is dependent on the first and the second derivatives of velocity (Cao et al., 2009). As in the Klinkenberg 

model, collisions of gas molecules with the wall are diffuse. In order to account for rarefaction effects, a 

term, αB&K, is included, which is a function of Kn. The volumetric flow rate is given by Eq.(39) for 

cylindrical capillaries and by Eq.(40) for rectangular channels (Beskok and Karniadakis, 1999).  
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where CB&K is a constant that depends on the ratio of channel width, w, to channel height, hRC, and the 

rarefaction parameter αB&K, is expressed by Eq.(41) (Beskok and Karniadakis, 1999). 
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where α0,B&K characterises flow in the free molecular flow regime (α0,B&K  = 64/15π for cylindrical capillaries, 

α0,B&K = 1.527 for rectangular channels where w/hRC = 4), and α and β are empirical parameters (α  = 4 and β 

 = 0.4 for cylindrical capillaries; α  = 2.5 and β  = 0.5 for rectangular channels where w/hRC = 4) (Beskok and 

Karniadakis, 1999).   

Using the same derivation as Klinkenberg (1941), Florence et al. (2007) derive permeability  when the gas 

flow rate is expressed cf. Eq.(39) resulting in Eq.(42). Considering that flow in microfractures may be 

characterised by rectangular channels with a high ratio of w/hRC rather than by cylindrical capillaries, the 

same derivation is used here to express flow in rectangular channels in Eq.(43).  
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Therefore when the unified slip model is used, bslip would be expressed by Eq.(44) (cf. Eq.(42), (43), and 

Eq.(37)). 
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where SB&K is 4 for cylindrical capillaries and 6 for rectangular channels.  

3.2.2 48BKlinkenberg procedure to determine permeability and rp,slip 

The effect of using different gas flow models, and of using a model for cylindrical rather than for rectangular 

capillaries, is shown in the Klinkenberg plot (Figure 11a), and in a plot of bslip as a function of characteristic 

pore size (Figure 11b); Kn < 0.03 therefore both gas flow equations may be used. For thin rectangular 

channels, Kn =  ̅/hRC. For a specific hRC or rp,slip there would be more slip, a higher ka, for the rectangular 

channel model, which is also reflected by a larger bslip in Figure 11b. Presumably, this partly due to using hRC 

rather than hRC/2. The difference between the two gas flow models for cylindrical capillaries is smaller than 

the difference between cylindrical capillaries and rectangular capillaries, and the difference between models 

increases with increasing 1/ ̅, i.e., with increasing Kn. Several authors use the derivation by Florence et al. 

(2007), Eq.(42), to model flow in tight gas sandstones or in shale, as this model is expected to provide a 

better estimate of gas flow at high Kn ( e.g., Civan, 2010; Freeman et al., 2011; Xu and Yu, 2008; Ziarani 

and Aguilera, 2012).  

a)  b)  

Figure 11: a) Klinkenberg plot showing the apparent permeability normalised by permeability, ka/k, as a function of 

inverse mean pore pressure, 1/ ̅. At the y-intercept  ̅    so that k a = k; the gradient of the lines is kbslip. b) Slip 

factor, bslip as a function of characteristic equivalent pore radius for slip, rp,slip, or channel height, hRC as calculated for 

different gas flow models. Results are for helium gas at 25°C; rectangular channels have w/hRC = 4.   
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3.3 18BRelating effective rp,slip to effective Sp 

As equivalent pore size relates both to gas slip and to permeability, several authors suggest correlations 

between bslip or rp,slip and k, ϕ and k, or (k/ϕ)
1/2

 (Civan, 2010; Florence et al., 2007; Heid et al., 1950; Jones 

and Owens, 1980; Sampath and Keighin, 1982). Whereas those authors include fitting factors, if rp,kozeny is 

estimated by using Kozeny’s equation with c cf. Eq.(19), the same geometrical simplifications are made as in 

the Klinkenberg model, i.e., straight parallel capillaries with a uniform pore size. The Kozeny constant, c, is 

divided out in Eq.(37) as ka is expressed in terms of k. Therefore, no additional parameters would be required 

in order to relate rp,slip to rp,kozeny. 

In Appendix A-I: Gas Slip, rp,slip are calculated based data from Klinkenberg procedures for samples of 

Rotliegend sandstone, Berea sandstone, Gassum sandstone and Bunter sandstone. Flow was in the transition 

regime for both experiments on samples from Rotliegend Group 6, and for experiments on sample Gassum 

Aa. For the remaining samples, flow was in the slip regime. For the latter, rp,slip as estimated unified slip 

model is up to 20% larger than rp,slip estimated based on the Klinkenberg slip model.   

Figure 12 shows a correlation between rp,kozeny (Eq.(27)), and rp,slip, based on the unified slip model for 

cylindrical pores (Eq.(42)). The two equivalent pore sizes are within a factor five from each other for 

samples of: Rotliegend sandstones from three localities, Berea sandstone, and for Gassum Formation 

sandstone from three localities; for Bunter Formation sandstone from one locality 5rp,slip < rp,kozeny.  

 

Figure 12: The characteristic equivalent pore radius for slip, rp,slip, is calculated by using the unified flow model for 

cylindrical capillaries. The effective radius for permeability, rp,kozeny, is calculated from porosity and permeability by 

using the Kozeny equation. [Rotliegend sandstone samples are from PETGAS, University of Leeds; other samples are 

from the Geological Survey of Denmark and Greenland (GEUS) Core Laboratory. Refer to Appendix A-I for data and 

calculations]. 

Differences between rp as estimated from permeability and from gas slip might be partly due to model 

assumptions, i.e., the simplification of the pore geometry to smooth walled straight tubes. Effects of surface 

roughness on flow in the Kozeny model would depend on the scale of the roughness relative to the effective 
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Sp (Berryman and Blair, 1987; Pape et al., 2006); on the other hand, effects of surface roughness on slip 

would depend on the ratio of the scale of the roughness relative to  ̅ (Cao et al., 2006; Cao, 2007). 

Furthermore, the gas slip model is based on diffuse collisions between gas molecules and pore walls; if gas 

molecules retain some momentum, the velocity on the interface would be higher, i.e., there would be more 

slip for a specific rp,slip. Therefore, models based on diffuse collisions gives a lower bound estimate for rp,slip 

from a specific bslip. Nonetheless, the reasonable correlation in Figure 12, and the absence of a systematic 

difference between rp,slip and rp,kozeny, indicates that both models give a similar approximation of equivalent 

pore size that is effective to flow; without introducing additional fitting parameters.  

Experimental artefacts might also contribute to scatter in Figure 12 (Heid et al., 1950; McPhee and Arthur, 

1991). Heterogeneity on the plug scale might possibly cause the onset of inertial energy losses at lower flow 

velocities, when the Reynolds number would suggest that flow is laminar (Al-Rumhy and Kalam, 1996; 

Noman and Archer, 1987). Inertia effects would be greater at higher  ̅, which would result in a downward 

deviation from the straight line in the Klinkenberg plot at high   ̅ (McPhee and Arthur, 1991). A straight line 

that is fit to such data would have a higher gradient i.e. a higher bslip that indicates a smaller rp,slip. Indeed, 

Funk et al. (1989) observe a high bslip relative to ϕ and k in carbonate samples that have some distinctly larger 

pores. A patchy distribution of anhydrite or gypsum is observed in BSEM images of side trims of Bunter 

sandstone samples from the same locality as the samples in Figure 12 [Manuscript III]. Therefore, inertia 

might affect tests on the Bunter sandstone samples and contribute to the lower ratio of rp,slip to rp,kozeny. Only 

three measurements are made during the Klinkenberg procedures on those samples, therefore it is difficult to 

distinguish whether ka deviate from a straight line.  

Data on Klinkenberg plots containing four data points by Rushing et al. (2003)0F

1
, would suggest that ka at the 

highest  ̅ is less than estimated by a straight line in those tests. Those samples are tight gas sandstones where 

k could be sensitive to changes in stress; to avoid changing net stress during the Klinkenberg procedure, 

Rushing et al. (2003) increase confining stress by the same increments as  ̅. However, the increase in 

confining stress might possibly reduce k, and thereby ka, which could contribute to a downward deviation on 

the Klinkenberg plot at higher  ̅.  

3.4 19BKlinkenberg procedure and net stress change 

The permeability of tight sandstones is often sensitive to the stress and pore pressure at which measurements 

are made (Brower and Morrow, 1985; Byrnes, 1997; Jones and Owens, 1980; Keighin and Sampath, 1982; 

Rushing et al., 2003; Warpinski and Teufel, 1992). Permeability can be expressed as a function of the net 

stress for permeability i.e., k = F(σk’), where net stress for permeability, σk’, can be expressed by a linear 

                                                           
1
  Figures 5 and 6 of that publication for samples with 0% water saturation. 
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combination of mean pore pressure and confining stress, σc (Al-Wardy and Zimmerman, 2004; Li et al., 

2009; Warpinski and Teufel, 1992; Zoback and Byerlee, 1975):   

 'k c kn P     (45) 

where nk is the net stress parameter for permeability. In order to maintain a constant σk’ during the 

Klinkenberg tests, the change in  ̅ should be compensated by a change in σc (Keighin and Sampath, 1982; 

McPhee and Arthur, 1991; Rushing et al., 2003).  

The value of nk is often not known; Berryman (1992) derives ϕ < nk < 1 for a homogeneous, single mineral, 

porous medium. For tight sandstones, some authors report nk of approximately one (Warpinski and Teufel, 

1992), whereas other authors report nk  of four to six (Al-Wardy and Zimmerman, 2004; Zoback and Byerlee, 

1975). The latter authors suggested that changes in  ̅ might compact clay minerals in intergranular pores, 

whereas changes in σc only affect stiffer framework grains. However, samples in those investigations are 

allowed to equilibrate only from a few minutes up to two hours after changes in  ̅ or σc, therefore the high nk 

might reflect non-equilibration of the pressure in those experiments.  

Some authors suggest that a high stress sensitivity of k in tight sandstones indicates that k is controlled by 

microfractures along the grain boundaries, rather than by intergranular pores (Brower and Morrow, 1985; 

Ostensen, 1983). Closing of microfractures would reduce the stress sensitivity of k with increasing σk’, which 

is in accordance with laboratory measurements of the stress sensitivity of permeability in some sandstones 

(Osorio et al., 1997; Ostensen, 1983). Such a trend can be approximated by a simple power law relation 

(Keaney et al., 2004): 

  c kk K n P





    (46) 

where K∞ is the permeability extrapolated to zero net stress, and γ is the stress exponent for permeability. 

Figure 13 indicates that Eq.(46) approximates the stress sensitivity of a Rotliegend tight gas sandstone 

sample.  
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Figure 13: Permeability of Rotliegend sandstone Sample 3.4, as fit by a power law. The x-axis shows the net stress for 

permeability, σk’, as the difference between confining stress, σc, and pore pressure,  ̅, for a net stress parameter for 

permeability, nk  = 1. Parameters fit to the power law: permeability extrapolated to zero net stress, K∞ = 6.5 mD; stress 

exponent for permeability, γ = 0.23; correlation coefficient between data and model, Rc
 
= 0.997). [Data from PETGAS, 

University of Leeds].  

The effect of changing σk’ on ka during a Klinkenberg procedure is modelled by combining the expression 

for ka as a function of  ̅ (Eq.(42)) with the expression for k as a function of σk’ (Eq.(46)) to obtain Eq.(47). 

     &
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  
  (47) 

Some authors increase σc by the same amount as  ̅ during the Klinkenberg procedure (Rushing et al., 2003; 

Sampath and Keighin, 1982). However, Figure 14 shows that this would only result in a straight Klinkenberg 

plot if nk = 1. If nk < 1, k is reduced due to the increase in σk’; if nk > 1, k increases (Figure 14a). A change in 

σk’ has a greater effect on ka at high  ̅, when the effect of slip is small due to a small Kn, or at low σk’ when 

changes in σk’ have a larger effect on k due to the power law relation. 
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a)  b)  

Figure 14: Apparent permeability, ka, as a function of inverse mean pore pressure, 1/ ̅, in a Klinkenberg plot. 

a) Confining stress, σc, is increased by the same amount as  ̅. b) Constant σc. Parameters: permeability extrapolated to 

zero net stress, K∞ = 6.5 mD; stress exponent for permeability, γ = 0.23; characteristic equivalent pore radius for gas 

slip, rp,slip = 0.75 μm (based on Rotliegend sandstone Sample 3.4). 

The changes in σk’ during a Klinkenberg procedure can be reduced by using a limited range of  ̅; however, 

the range must be sufficient to observe a significant difference in ka. For the tests in Figure 12, σc is 

maintained constant; therefore a change in σk’ would cause an upward deviation of ka (Figure 14b); which 

might reduce bslip and overestimate rp,slip cf. Eq.(44). Therefore, changes in σk’ would not account for the 

small ratio of rp,slip to rp,kozeny that is observed in the Bunter sandstone samples (Figure 12). No upward 

deviations from the Klinkenberg plots are observed in the tests used for Figure 12, and the correlation 

coefficient between the straight line fit and the data, Rc, exceeds 0.96 for most samples [Refer to Appendix 

A-I for data and calculations].  

Changing  ̅ intentionally over a wide range (6 MPa to 30 MPa) at constant σc causes artefacts in the 

Klinkenberg procedure as shown in Figure 15a. At lower  ̅, increasing  ̅ reduces slip and thereby reduces ka 

in accordance with the Klinkenberg model; however, around  ̅ > 20 MPa the increase in k with increasing  ̅ 

offsets the reduction of gas slip with increasing  ̅ whereby ka increases.  

The combined effects of gas slip and changes in permeability are relevant for production forecasting in gas 

reservoirs. The data in Figure 15a are shown as a function of σk’ in Figure 15b, where the absolute 

permeability is estimated by using the rp,slip as determined from the straight portion of the Klinkenberg plot. 

During pressure depletion, the reduction in k due to increasing σk’ might be offset by an increase in flow rate 

due to gas slip, as observed in Figure 15b.  
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a)  b)  

Figure 15: a) At constant confining stress, σc, apparent permeability (white symbols) falls with increasing pore pressure, 

 ̅, at low  ̅ due to the reduction of gas slip; at high  ̅ the apparent permeability, ka, increases, presumably due to an 

increase in permeability, k, as the net stress for permeability, σk’, is reduced by increasing  ̅ at constant confining stress, 

σc. b) The same ka and k (black symbols) plotted as a function of σs’ where the effective stress parameter for 

permeability, nk  = 1. [Shown is Rotliegend sandstone Sample 6.23; PETGAS, University of Leeds]. 
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4 3BPermeability to water or brine 

4.1 20BImmobile water layer thickness 

The permeability that is measured by using flow with water or brine is often lower than the slip corrected gas 

permeability in sandstones (Heid et al., 1950; Jones and Owens, 1980; Solymar et al., 2003; Wei et al., 

1986). Different factors can contribute to this difference including clay mobilisation, clay swelling, and 

reduction of the mobile porosity by a layer of immobile fluid on the fluid-solid interface (Andreassen and 

Fabricius, 2010; Bear, 1972; Faulkner and Rutter, 2000, 2003; Heid et al., 1950; Jones and Owens, 1980; 

Rutter, 1983; Wei et al., 1986). The effect of a layer of immobile fluid on permeability may be estimated 

both based on an increase in the effective Sp (Andreassen and Fabricius, 2010), and based on a reduction in 

the characteristic equivalent pore size which can be found for gas slip (Jones and Owens, 1980), if the 

thickness of immobile fluid, τ, is known. However, as different mechanisms may contribute to an immobile 

fluid layer, τ is uncertain. 

The crystal lattice of clay minerals might induce a structuring of water molecules in layers adjacent to the 

water-clay mineral interface (Behnsen and Faulkner, 2011; Grim, 1953; Rutter, 1983). Different structures 

are suggested, with τ ranging from 0.8 nm to 4 nm (Grim, 1953, and references therein). The permeability of 

clay-rich fault rocks, and of different clay mineral powders, including kaolinite, illite, and chlorite is indeed 

lower when this is measured by using water than when this is measured by using gas (Behnsen and Faulkner, 

2011; Faulkner and Rutter, 2003). Thermal energy of water molecules would counteract the structuring 

effect of the surface and reduce τ (Grim, 1953). This might account for the increase in the permeability of 

clay-rich fault rock to water that is observed by Faulkner and Rutter (2003) when they heat samples from 

room temperature to 80°C.  

Adsorption of water on individual clay platelets might cause expansion of clay aggregates in the pores of 

sandstones and reduce the mobile intergranular pore volume, even for non-swelling clays like kaolinite 

(Behnsen and Faulkner, 2011). Expansion of dry kaolinite powders when these are moistened is observed by 

Rutter (1983), even in tests where kaolinite is compressed by a load 100 MPa. Rutter (1983) estimates that 

an adsorbed water layer with a thickness of 1nm–2 nm on the individual kaolinite particles could account for 

the measured expansion.  

An immobile water layer might also be present on other mineral surfaces, such as quartz. Interaction between 

broken bonds on the mineral surface and water molecules or ions results in a layer that can be considered 

bound to the surface (Elimelech, 2010; Grahame, 1953; Khilar and Fogler, 1984; Lorne et al., 1999; Stern, 

1924). The thickness of this bound layer, also referred to as the Stern layer in Chapter 6, can range from 

0.5 nm–2.5 nm as estimated based on the surface interaction forces that are measured between mica surfaces 
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(Israelachvili and Adams, 1978). Additionally, surface roughness may immobilise water up to some distance 

beyond the Stern plane; to distances of 0.2 nm–2 nm (Ishido and Mizutani, 1981; Lorne et al., 1999).  

Measurement of water and brine flow in cylindrical glass capillaries with radii up to 1 μm even suggest that τ 

might be as large as 8 nm (Zheleznyi et al., 1972). 

The forces that are exerted on the water layer may affect τ; a minimum ΔP or Q below which brine does not 

flow is observed by several authors in tests on clay-bearing sandstones or in clay-rich fault rocks (Bear, 

1972; Byerlee, 1990; Swartzendruber, 1962). This would suggest that measurement of surface forces, or of 

flow through capillaries, would not necessarily represent immobile water layer thicknesses in laboratory 

experiments on sandstones. Therefore, in order to estimate τ that would account for measured gas and brine 

permeabilities, the effect of τ on permeability is modelled based on rp,slip in Section 4.2, and based on 

rp,NMR,max in Manuscript IV and in Section 4.3.  

4.2 21BBrine permeability estimated from rp,slip 

As opposed to gas slip, where the velocity on the fluid-solid interface is greater than zero, τ reduces the 

effective equivalent pore size resulting in a water or brine permeability kw that is smaller than the true 

permeability k. The volumetric flow rate in a cylindrical capillary with an immobile layer of thickness, τ, can 

be expressed as: 

  
4

8
p PQ r





     (48) 

In a model of orthogonal equal sized cylindrical capillaries with 1/3
rd

 conducting fluid flow, the same model 

as used in Klinkenberg’s derivation, the volume flux with immobile fluid for a unit cube is expressed by 

Eq.(49). 
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So that kw is given by Eq.(50) (cf. Eq.(49) and Eq.(3)), and the ratio of kw to k can be expressed in terms of 

only rp and τ in Eq.(51) (cf. Eq.(50) and Eq.(33)):  
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Permeability data from PETGAS, University of Leeds, and from the GEUS Core Laboratory, are used to 

estimate τ that would account for measured k and kw in Appendix A-II.  

4.3 22BBrine permeability estimated from Sp 

A layer of immobile water on the fluid-solid interface would reduce the mobile porosity by a volume τS 

(Andreassen and Fabricius, 2010). For the Sp distribution from NMR, the mobile brine porosity, ϕfwnmr,i, in a 

T2 increment is given by the total porosity in the increment, ϕfnmr,i, minus the immobile water, τSi, on the 

fluid-solid interface cf. Eq.(52) [Manuscript IV]: 

 
, ,NMR i NMR i ifw f S      (52) 

where fwNMR,i is the fraction of the total porosity in which brine is mobile. Substitution of Eq.(23) and Eq.(9) 

yields Eq.(53). 

 , ,

2,

NMR iNMR i

i

ffw
T


 


    (53) 

The internal specific surface area, S, is not affected by τ; therefore the specific surface per volume of mobile 

water, Swp,i  is: 
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Whereby the permeability to brine of each pore size increment, kw,i, is expressed in Eq.(55) [Manuscript IV]: 
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The τ that would account for the measured kw is estimated by assuming that the same pore sizes that are 

effective for k are also effective for kw, so that the maximum effective equivalent pore size is rp,NMR,max (as 

found in Subsection 2.4.4). Figure 16 shows the total ϕ distribution, the distribution of ϕ that would be 

mobile to brine, and the k and kw distributions for two samples of Rotliegend sandstone (these are the same 

samples as in Figure 8 and in Figure 9 in Subsection 2.4.4).  
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a)  b)  

 

Figure 16: Permeability, ki,(grey solid line) and permeability as measured by using brine, kw,i, (black solid line) up to the 

maximum T2 that is effective for gas permeability, T2,max. The estimated immobile layer thickness, τ, is the thickness that 

would be required to account for the measured kw. The mobile brine porosity of each increment, ϕfwNMR,i (black dashed 

line) is the total porosity of the increment ϕfNMR,i (grey dashed line) reduced immobile water on the solid surface, τSp,i. 

Mobile porosity to brine is zero in pores that have an equivalent pore size smaller than τ/2 [Manuscript IV]. 

4.4 23BEstimated immobile water layer thickness 

Figure 17a shows the estimated τ as a function of rp,slip [data in Appendix A-II]; Figure 17b shows the 

estimated τ as a function of rp,NMR,max for 63 Rotliegend sandstone samples [Manuscript  IV]. With the 

exception of sample Gassum Aa, the τ estimated by using rp,slip fall on a higher trend than the τ estimated by 

using rp,NMR,max. This might simply be the result of plotting rp,slip and rpNMR,max on the x-axis, the former would 

represent an average characteristic pore size, whereas  latter represents a maximum characteristic pore size. 

Both NMR and Klinkenberg data are measured in only four samples for which  rp,NMR,max > rp,slip (Table C2.2); 

there is no consistent difference between τ estimated using the two methods for the same sample.  



38 
 

a)   b)  

                               

Figure 17: Thickness of immobile water, τ, that would account for the difference between the permeability and the 

permeability as measured by using brine. a) Based on the characteristic equivalent pore radius to gas slip, rp,slip. b) Based 

on the pore size distribution from NMR, where the maximum radius that is effective to gas flow, rp,NMR,max, is also the 

maximum radius effective to brine flow. [Data for Rotliegend sandstone samples are from PETGAS, University of 

Leeds; data for other samples are from the Geological Survey of Denmark and Greenland (GEUS) Core Laboratory. 

Refer to Appendices A-I and A-II for data and calculations]. 

The estimated τ range from 4 nm–1200 nm; this is up to two orders of magnitude larger than the τ suggested 

in Section 4.1, which range from 0.2 nm–8 nm. Whereas τ might depend on the shear stress, layers of 

1200 nm thickness appear unlikely.  

The permeability reduction due to immobile water for τ < 10 nm would be insignificant for the samples in 

Figure 17a; as the measured kw would equal k. This is observed in sample Gassum Aa, which has the smallest 

rp,slip in Figure 17a. With a 10% uncertainty in the permeability measurements kw is within the error margin 

of k, and τ = 4 nm ± 4 nm. For samples with larger rp,slip the effect of τ on kw would be smaller. Accordingly 

tests on a synthetic opal A plug, with an effective Sp of 0.3 m
2
/cm

3
, showed no significant difference between 

k and kw (GEUS Core Laboratory). 

When kw is modelled based on the Sp distribution by using Eq.(55), the ratio of kw to k would be smallest in 

samples where permeability is controlled by smaller pores, as shown in Figure 18a. However a wide scatter 

can be observed for the measured kw/k of the Rotliegend sandstone samples as a function of rp,NMR,max (Figure 

18b). By using τ = 10 nm, kw/k is underestimated in some samples (Figure 18c), which would indicate that 

τ < 10 nm, in accordance with values of the order of ångströms to nanometres that are suggested in Section 

4.1. However, for the majority of the samples kw/k is overestimated; τ would be in the range of 100 nm–

1200 nm (Figure 17b). This suggests that additional factors contribute to a lower kw in those samples. 
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a)  b)  

              c)                                                             

Figure 18: An immobile water layer thickness, τ = 10 nm is used to model brine permeability, kw. a) Ratio of modelled 

kw over permeability to gas, k, as a function of the maximum pore size, rp,NMR,max, that is effective to gas permeability. 

b) Ratio measured kw/k as a function of rp,NMR,max. c) The modelled kw/k over predicts kw in the majority of the sandstone 

samples. Error bars for τ = 5 nm and τ = 40 nm; error bars tending towards zero in a) indicate that with a 40 nm 

immobile layer kw = 0 mD. [data PETGAS, University of Leeds].  

4.5 24BEffect of clay minerals on brine permeability 

Illite minerals in sandstone can often be observed: as delicate fibres that protrude perpendicular to the grain 

surface into the pore space; as irregularly shaped flakes that line framework grains; in mixed layers with 

smectite (Desbois et al., 2011; Luffel et al., 1993; Wilson et al., 2014; Wilson and Pittman, 1977). Illite 

fibres can partially collapse on the grain surface during sample drying (Luffel et al., 1993). Accordingly, in 

air dried sandstone samples, several authors observe both fibrous illite protruding into the pore bodies and 

tangential illite, which might be collapsed fibres (Desbois et al., 2011; Wilson et al., 2014). Figure 19 shows 

these two forms of illite in a Rotliegend sandstone sample [PETGAS data].  
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b  

Figure 19: Scanning electron microscopy, SEM, image of illite in a sample from Rotliegend sandstone (Group 3 in 

Manuscript IV). Both tangential illite on the grain surface and illite fibres perpendicular to grains are observed. 

[Manuscript IV]. 

Luffel et al. (1993) suggest that the collapse of illite fibres onto the grain surface would be partially 

reversible when samples are subsequently saturated again. Therefore collapse of illite fibres could decrease 

the effective Sp in gas saturated samples as compared to brine saturated samples.  

All 63 Rotliegend sandstone samples in Manuscript IV, and the additional Rotliegend samples that are used 

for Klinkenberg tests, contain more than 3 wt.% illite or mica according to X-ray diffraction, XRD. Samples 

of Gassum sandstone, Bunter sandstone and Berea sandstone also contain illite or mica according to image 

analysis in combination with energy dispersive X-ray analysis, EDS [Manuscript III]. However, for the 

Rotliegend samples, the ratio of kw to k does not correlate to the illite/mica content per unit pore volume. 

Presumably the effect of drying depends on the morphology of illite or mica, as well as on the amount of 

illite or mica present.   

Kaolinite minerals in sandstones are often observed as stacks of flat particles, known as kaolinite booklets 

(Wilson and Pittman, 1977). Expansion of kaolinite booklets due to adsorbed water might possibly reduce  

mobile intergranular porosity (Behnsen and Faulkner, 2011; Rutter, 1983). In Section 4.3 (and Manuscript 

IV), the effect of τ is estimated by assuming that pores with rp = 2/Sp < 2τ would be filled with immobile 

water and therefore have zero mobile porosity. The immobilised volume of water is therefore limited by Sp, 

i.e., expansion of smaller pores at the expense of larger pores would cause a greater permeability reduction 

than estimated in Figure 18a.  

Kaolinite booklets are observed in Rotliegend samples of groups 1 and 3 (Figure 20), and in samples of 

Gassum sandstone and Berea sandstone (Figure 21). Whereas a high kaolinite content is observed in sample 

Gassum Aa (Figure 21a), this is the only sample where the measured kw is approximately equal to k. The 
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effect of expanding kaolinite booklets on permeability appears negligible in that sample. Presumably, this is 

not due to a lack of space for kaolinite to expand, as kaolinite booklets do not completely fill the 

intergranular pores (Figure 21). Therefore it is uncertain whether this mechanism has a significant effect on 

kw. 

a)  b)  

Figure 20: Scanning electron microscopy (SEM) images of kaolinite stacks in the pores of Rotliegend sandstone 

samples from the same locality. Both thin illite fibres a), and illite flakes b) are observed.  

a)  b)  

Figure 21: Backscatter electron microscopy (BSEM) images of kaolinite in sandstone samples. a) Kaolinite booklets do 

not fill intergranular pores in sample Gassum Aa. [BSEM image by R. Weibel, Geological Survey of Denmark and 

Greenland, GEUS]. b) Kaolinite can be observed in some intergranular pores in a Berea sandstone sample.  
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5 4BPermeability reduction due to thermal expansion 

Heating may affect permeability by causing thermal expansion (Baudracco and Aoubouazza, 1995; 

Somerton, 1992) [Manuscript I]. The effect of thermal expansion on porosity depends on the expansion of 

the solids and of the bulk volume. Expansion of the solids depends on the specific mineral thermal expansion 

coefficient, whereas expansion of the bulk volume also depends on the level of confining stress.  

A first approximation of the effect of temperature on porosity is made in Manuscript I. Assuming a 

homogeneous sandstone and isotropic expansion, so that volumetric expansion is three times the linear 

expansion, the bulk volume after changing temperature by ΔT, Vb,ΔT,   is given by Eq.(56), and the solids 

volume after ΔT, Vs,ΔT, is given by Eq.(57):  

 
b, b,T0 ,(1 3 )T T bV V T      (56) 

 
s, s,T0 ,s(1 3 )T TV V T      (57) 

where αT is the one-dimensional thermal expansion coefficient, Vb,T0 is the original bulk volume, and Vs,T0 is 

the original solid volume. In terms of the original porosity ϕT0 and the original bulk volume, Vb,T0 the solid 

volume after ΔT is given by Eq.(58): 
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The porosity after ΔT, ϕΔT, is given by Eq.(59): 
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where Vp,ΔT is the pore volume after ΔT ; Eq.(59) simplifies to Eq.(60): 
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The effect of thermal expansion on permeability is estimated by using the effective Sp for permeability from 

the Kozeny equation (cf. Eq.(11) and Eq.(19)). The effective specific surface of the solids Ss  is related to the 

effective Sp by Eq.(61): 
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In a confined sample, i.e., αT,b = 0, thermal expansion of the solids would reduce porosity cf. Eq.(60); the 

effect of a change in porosity on Sp is estimated by using Eq.(62) 
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Isotropic expansion of spheres would reduce Ss, which would partly offset the effect of a porosity reduction 

on Sp in Eq.(62). Grain shape and anisotropic expansion would affect changes in Ss, therefore assuming a 

constant Ss would estimate the maximum permeability reduction that could be attributed to thermal 

expansion.  

A compilation of published data, where permeability is measured at two or more different temperatures, is 

analysed in Manuscript I. The temperatures at which permeability is measured range from 15°C–180°C. Data 

are normalised to effective Sp for comparison among samples, and to estimate effects of thermal expansion 

and bound water. Tests with an inert fluid show no significant effect of temperature on the effective Sp 

(Figure 22a). This indicates that porosity reduction due to thermal expansion has a negligible effect on 

permeability, in these tests where the confining stress levels are below 14 MPa. This is in accordance with 

the maximum change in Sp estimated Cf. Eq.(62), also shown in Figure 22.  

a)  b)  

Figure 22: Effect of temperature on effective specific surface per unit pore volume, Sp, of sandstone samples. Dotted 

lines indicated modelled maximum increase in Sp that might be due to thermal expansion for samples with 10% porosity 

and different permeability, k, i.e. different effective Sp. a) Tests in which mineral oil (circles) or nitrogen gas (squares) 

are used to measure k indicate no change in Sp, or a change that is less than the estimated maximum effect of thermal 

expansion. b) Tests where the change in Sp exceeds the estimated maximum effect of thermal expansion are tests where 

permeability is measured by using distilled water (dots) or brine (triangles). Tests where the temperature is restored 

show a partial or complete reversibility of the effect of temperature on effective Sp [Modified from Manuscript I]. 

With aqueous solutions the effective Sp is increased by heating in some tests, but not in other tests (Figure 

22). There is no reduction in effective Sp that would reflect a reduction in the immobile water layer thickness 

due to heating. Heating increases the effective Sp in six sandstone formations (Figure 22b); these formations 
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all contain kaolinite. Sandstone formations that do not contain kaolinite show no effect of temperature. 

Furthermore, no effect of temperature is observed in samples of kaolinite-bearing Berea sandstone that are 

pre-treated by heating above the temperature where kaolinite starts to dehydrate, between 400°C and 800°C 

(Grim, 1953); whereas heating does increase the effective Sp in untreated Berea sandstone samples in 

investigations by the same authors (Cassé and Ramey Jr, 1979; Schembre and Kovscek, 2004).  

This suggests that kaolinite mobilisation causes the observed reduction in the effective Sp. Samples are 

heated and subsequently cooled to the original temperature in 12 tests, which shows that the change in Sp is 

partially or entirely reversible with cooling (Figure 22b). 

Both increasing the temperature, and reducing the NaCl concentration of the pore fluid, could mobilise 

kaolinite particles in Berea sandstone; as these changes increase electrostatic repulsion forces between the 

like charged kaolinite and quartz surfaces (Khilar and Fogler, 1984, 1987; Schembre and Kovscek, 2005). 

However, the reversibility of the temperature effect observed in Figure 22b contrasts with permeability 

reduction that is observed in tests where the NaCl concentration is reduced and restored. As the reversibility 

of permeability changes would be relevant for geothermal energy storage, when temperature varies 

seasonally, effects of temperature and salinity on fines migration are investigated in Chapter 6 [Manuscript II 

and Conference papers II and III]. 
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6 5BPermeability reduction due to kaolinite mobilisation 

This Chapter addresses the effect of kaolinite mobilisation on permeability in Berea sandstone. Kaolinite-

bearing Berea sandstone is  often used as a reference for reservoir rocks; and, accordingly several authors use 

Berea sandstone samples to study effects of temperature, flow rate, and NaCl concentration on fines 

migration (e.g. Baudracco and Aoubouazza, 1995; Gray and Rex, 1966; Khilar and Fogler, 1984, 1987; Kia 

et al., 1987; Mungan, 1965; Ochi and Vernoux, 1998; Schembre and Kovscek, 2005).  

6.1 25BKaolinite in Berea sandstone 

Kaolinite is the dominant clay mineral in the Berea sandstone (Churcher, 1991; Khilar and Fogler, 1987). 

Kaolinite particles are typically flat pseudo-hexagonal particles with diameters ranging from 0.5 μm to 

20 μm and thicknesses ranging from 0.1 μm to 1 μm (Grim, 1953; Gupta and Miller, 2010; Wilson and 

Pittman, 1977). Kaolinite belongs to the kaolin mineral group, which also contains dickite; dickite tends to 

form thicker particles (Grim, 1953; Wilson and Pittman, 1977). The term kaolinite is often used to refer to 

both kaolinite and dickite, as both minerals may be present in the same sample and they can be interlayered 

(Wilson and Pittman, 1977). Within the same intergranular pores of Berea sandstone, kaolinite particles can 

be observed with a range of sizes, and they can be present both as kaolinite booklets and as individual 

platelets (Figure 23).  

a)  b)  

Figure 23: Backscatter electron microscopy, BSEM, images of kaolinite booklets and kaolinite plates in the pores of one 

Berea sandstone sample. A range of particle sizes can be observed even within the same pore.  [Figure b) is from 

Manuscript II] (kao = kaolinite; ill/chl? = illite or chlorite; ti= titanium minerals; sid = siderite). 

6.2 26BPermeability reduction mechanisms 

The effect of mobile particles on permeability in porous media can be investigated by using filtration 

experiments (Bedrikovetsky et al., 2011; McDowell-Boyer et al., 1986; Pandya et al., 1998; Sen and Khilar, 

2006; Wong and Mettananda, 2010; Yuan and Shapiro, 2011). Hereby, a homogeneous particle suspension is 

injected into a sample, and the permeability reduction is related to the amount of particles that are retained, 
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or filtered, in the sample. Conceptual models for particle retention include: deposition of particles on the 

framework grains; straining of larger particles in pore constrictions; and bridge formation, whereby multiple 

small particles obstruct, or jam, pore constrictions (Bedrikovetsky et al., 2011; McDowell-Boyer et al., 1986; 

Sen and Khilar, 2006).  

Deposition of particles on framework grains would occur when retaining forces exceed mobilising forces 

(Bedrikovetsky et al., 2011). Hydrodynamic forces are mobilising, the gravitational force is retaining, and 

electrostatic surface interaction forces may be mobilising or retaining, depending on whether there is a net 

attraction or repulsion between charged surfaces of the particles and the framework grains (Bedrikovetsky et 

al., 2011; Sen and Khilar, 2006). Particle retention by deposition is presumably negligible when kaolinite 

particles are mobilised within the sample; as mobilisation would occur only when mobilising forces exceed 

retaining forces. Therefore, the permeability reduction due to kaolinite mobilisation might be attributed to 

straining or to bridging as suggested by e.g., Khilar and Fogler (1984) and by Kia et al. (1987). However, 

whereas these mechanisms may account for the permeability reduction when the NaCl concentration is 

reduced, which is not reversible when the NaCl concentration is restored, the reversible permeability 

reductions due to heating and cooling as observed in Chapter 5 suggest that particles might not be filtered in 

the heated samples. This suggests that other mechanisms might contribute to the effect of temperature on 

permeability [Manuscript II]. Particle mobilisation within sandstone samples differs from injection of a 

particle suspension in several ways, which might affect the permeability changes.   

The viscosity of the injected particle suspension is known in filtration experiments. By contrast, fines that are 

mobilised within the pores would affect the viscosity of the pore fluid. This is not accounted for when 

permeability is calculated by using Darcy’s law (Eq.(3)) and the viscosity of the injection fluid. An increase 

in fluid viscosity would therefore appear as a permeability reduction.  

A stable homogeneous particle suspension is injected in filtration experiments; by contrast, kaolinite is 

distributed heterogeneously in the pores of Berea sandstone (Figure 4) (Schembre and Kovscek, 2005). 

Mobilisation presumably results in higher concentrations of suspended kaolinite particles in some pores than 

in other pores; therefore electrostatic interaction forces among kaolinite particles would play a larger role 

than in filtration experiments with the same average concentration of suspended particles. Furthermore, 

kaolinite particles have a heterogeneous surface charge density, which affects electrostatic interaction forces 

among particles (Gupta and Miller, 2010; Gupta et al., 2011; Schofield and Samson, 1954; Wang and Siu, 

2006; Zbik and Frost, 2009). Microporous kaolinite aggregates, could form due to interaction among 

differently charged sides of kaolinite particles (Schofield and Samson, 1952). 
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Porous networks of kaolinite particles that are suspended in low salinity solutions 1F

2
 are observed in cryo-SEM 

images (Gupta et al., 2011; Zbik and Frost, 2009). Those images are acquired by vitrifying a suspension of 

kaolinite, and performing scanning electron microscopy, SEM, at -90°C on a fresh fracture surface. (Gupta et 

al., 2011). Interactions among kaolinite particles might also prevent particles or aggregates from settling. 

Zbik and Frost (2009) observe a gel, i.e., a 3D porous network of particles (Olphen, 1977), that remains 

suspended at the bottom of a container of a kaolinite suspension that is allowed to settle in 0.01 M NaCl 

solution at pH 9. If such a gel, or microporous kaolinite aggregates, were to form in kaolinite-bearing pores, 

this would reduce the mobile porosity. On a macroscopic scale, interactions among kaolinite particles in low 

salinity suspensions results in a yield stress below which the suspensions do not flow (Johnson et al., 1998; 

Mpofu et al., 2003; Olphen, 1977). Indeed, Wong and Mettananda (2010) could not inject a kaolinite 

suspension for filtration tests, therefore they used a suspension of colloids with a homogeneous surface 

charge density instead.  

Figure 24 illustrates different mechanisms by which kaolinite might affect permeability. Prior to 

mobilisation, kaolinite booklets presumably reside on the quartz grain surface due to gravitational forces 

(Figure 24a). If electrostatic repulsion forces are increased by heating, or by reducing the concentration of 

NaCl solution, kaolinite particles may be mobilised (Figure 24b); and presumably suspended particles affect 

the viscosity of the pore fluid and thereby the apparent permeability. If the pressure gradient is sufficient to 

transport kaolinite particles, particles might be transported to a pore constriction that is smaller than the 

particle size, where they are retained by straining (Figure 24c). If the concentration of transported particles is 

high, particles arriving simultaneously at a larger pore constriction might be filtered by bridging (Figure 

24d). On the other hand, the electrostatic repulsion force between quartz and kaolinite, which presumably 

mobilised the kaolinite particles, might limit filtration. If suspended particles form microporous kaolinite 

aggregates or a kaolinite gel, the pressure gradient may be too low to shear this. Kaolinite aggregates might 

increase the effective Sp or reduce the mobile porosity and thereby reduce permeability (Figure 24e). These 

mechanisms would not be mutually exclusive; due to the range of kaolinite particle sizes, the heterogeneous 

distribution of kaolinite in the pores, and pore scale variation of the flow rate, different mechanisms might 

prevail in different pores.   

  

                                                           
2
  Solutions: 0.001 M KCl at pH 9 in (Gupta et al., 2011); 0.01 M NaCl at pH 8 (Zbik and Frost, 2009). 
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a)  b)  c)  

d)  e)  

Figure 24: Schematic representation of kaolinite particles (dark grey) in intergranular pores (black) among quartz 

framework grains (light grey). a) Kaolinite particles concentrated in stacks on the grain surface prior to mobilisation. 

b) After an increase in electrostatic repulsive forces mobilises kaolinite particles, particles are suspended in the pore 

fluid. c) Kaolinite particles, which are filtered by straining in pore constrictions that are smaller than the kaolinite 

particles. d) Kaolinite particles, which are filtered by bridging, i.e., a high concentration of kaolinite particles arriving at 

a larger pore constriction simultaneously. e) A microporous kaolinite aggregate, gel, that reduces the intergranular pore 

volume. Not to scale. 

According to the DLVO (Derjaguin and Landau, 1941; Verwey and Overbeek, 1948) theory, the net 

interaction energy is the sum of the electrical double layer (EDL) interaction energy and the van der Waals 

interaction energy. The DLVO theory is used to model: interactions between colloids and pore walls, in 

order to model colloid filtration (Bedrikovetsky and Caruso, 2014; Bedrikovetsky et al., 2011, 2012; Hahn 

and O’Melia, 2004; Sen and Khilar, 2006; Yuan and Shapiro, 2011); interactions among suspended kaolinite 

particles, in order to model rheological properties of kaolinite suspensions (Gupta et al., 2011; Johnson et al., 

1998; Mpofu et al., 2003); and interactions between kaolinite and quartz grains, in order to model kaolinite 

mobilisation in sandstones (Khilar and Fogler, 1984; Kia et al., 1987; Schembre and Kovscek, 2005). In 

order to investigate effects of temperature and salinity on permeability reduction by mobilised kaolinite, 

interaction both among kaolinite particles and between kaolinite particles and quartz grains are estimated by 

using DLVO theory in this Chapter [based on Manuscript II and Conference papers II and III]. The surface 

charge density of the minerals affects the interaction forces. However, published surface charge density data 

for kaolinite show a range of values. Furthermore, there is only limited data regarding the effect of 

temperature on the surface charge of kaolinite and quartz. Therefore the nature of the surface charge density 

is discussed in Section 6.3; and the effect of this parameter on the results of DLVO calculations is addressed 

in Section 6.7 [Conference paper III]. 



49 
 

6.3 27BSurface charge on kaolinite and quartz 

The net surface charge density on quartz and on kaolinite depends on interaction between water molecules 

and broken bonds on the fluid-mineral interface (Grim, 1953; Lorne et al., 1999; Schofield and Samson, 

1954). Possibly isomorphic substitution in the kaolinite lattice also contributes to the kaolinite surface charge 

(Huertas et al., 1998; Lorne et al., 1999; Schofield and Samson, 1954; Wang and Siu, 2006; Wilson et al., 

2014).  

Quartz (SiO2) consists of silica tetrahedra that consist of one silicium atom bonded to four oxygen
 
atoms 

(Figure 25a). Each oxygen
 
atom is shared between two tetrahedra forming a 3D lattice (Gautier et al., 2001). 

Tetrahedra on the surface of quartz grains have broken bonds, which interact with water forming silanol 

groups that can gain or lose protons, H
+
 (Eq.(63)) (Lorne et al., 1999).  

2

Si OH Si O H

Si OH H Si OH

 

 

  

  
           (63) 

The net surface charge of quartz grains results from charges on the individual silanol groups. With a pH 

greater than 3, the net charge is negative; the net charge becomes more negative when pH increases, as more 

silanol groups dissociate, i.e., lose H
+
 (Lorne et al., 1999). Increasing the temperature in the range from 

20°C–80°C also makes the net surface charge of quartz more negative (Brady, 1992; House and Orr, 1992; 

Rodríguez and Araujo, 2006).  

Kaolinite particles have a different charge on the two faces and on the edges, due to the mineral lattice 

(Grim, 1953; Gupta and Miller, 2010; Gupta et al., 2011). The kaolinite mineral (Al2Si2O5(OH)4) consists of 

a series of layers; each layer is made up of a silica tetrahedral sheet bonded to an alumina octahedral sheet 

(Figure 25). Silica tetrahedra are arranged in a hexagonal pattern in the silica sheet (Figure 25b); three 

oxygens of each tetrahedron are shared with three other tetrahedra, and the fourth oxygen is shared with two 

alumina octahedra in the alumina sheet (Figure 25c). In the alumina sheet, an aluminium atom is bonded to 

four hydroxyl (OH) groups and to two oxygens from the tetrahedral sheet. Layers are joined by hydrogen 

bonds between adjacent silica and alumina sheets (Grim, 1953). Kaolinite particles would therefore only 

have broken bonds on the particle edges, and not on the faces. The charge on the silanol and aluminol groups 

on the particle edges depends on protonation, and thereby on temperature and on pH, similar to the silanol 

groups on the quartz surface (Brady et al., 1996; Gupta and Miller, 2010; Huertas et al., 1999; Rand and 

Melton, 1977; Wang and Siu, 2006).  
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a)  b) c)  

Figure 25: a) Silicon tetrahedron, a silicium atom is bonded to four oxygen atoms. b) Top view of kaolinite silica 

tetrahedral face; silica tetrahedra are arranged in a hexagonal pattern. Each tetrahedron shares three oxygen atoms with 

other tetrahedra, and the fourth oxygen atom is shared with two alumina octahedra in the alumina sheet. Broken bonds, 

i.e., silanol sites, are only present on the edges of a kaolinite particle. c) Side view of a kaolinite layer consisting of an 

alumina octahedral sheet (lower half ) bonded to a silica tetrahedral sheet (upper half); Broken bonds, i.e., silanol and 

aluminol sites, are only present on the edges of a kaolinite particle. Not to scale. [Modified from Conference paper II; 

kaolinite structure kaolinite after Grim (1953)]. 

There exists some uncertainty regarding the magnitude and the reactivity of the charge on the kaolinite faces, 

as these do not contain broken bonds (Brady et al., 1996; Huertas et al., 1998; Wang and Siu, 2006). Some 

authors suggest that the surface charge on both faces is negative due to isomorphic substitution of silicium 

and aluminium by trivalent and divalent ions (Rand and Melton, 1977; Schofield and Samson, 1954). This 

charge would be independent of temperature and of pH. Other authors suggest that hydroxyl groups on the 

alumina face do react with water (Huertas et al., 1999; Wang and Siu, 2006). Steps can be observed on 

kaolinite faces of kaolinite particles (Figure 26); thereby faces might also have broken bonds (Brady et al., 

1996; Zbik and Frost, 2009).  

 

Figure 26: Scanning electron microscopy (SEM) image of the face of a kaolinite particle in a sample of Rotliegend 

sandstone. Lines indicate that stacked layers do not have the same size, which results in steps on the particle face.   
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Potentiometric titration can be used in order to quantify the average charge on kaolinite particles; however, 

distinction among the charge on the two faces and on the edges based on this method can be considered 

uncertain (Brady et al., 1996). Therefore, Gupta and Miller (2010) use atomic force microscopy, AFM, to 

determine the surface charge on the silica and alumina faces separately. They find that the charge on both 

faces depends on pH, which suggests that groups on the faces do react with water whereby their charge 

presumably also depends on temperature; Gupta and Miller (2010) do not observe steps on the faces.  

Berea sandstone saturated with water or with NaCl solution has a pH 8–9, due to buffering by carbonate 

minerals (Kia et al., 1987). At this pH the surface charge on both faces and on the edges of kaolinite would 

be negative, with a higher charge density on the edges than on the faces (Gupta and Miller, 2010; Gupta et 

al., 2011).  

Due to the different charge densities on different sides of kaolinite particles, the average charge density on a 

kaolinite particle, and the effect of temperature on the average charge density, would depend on the particle 

shape and size. With a higher charge density on the edges than on the faces, thicker particles would have a 

more negative average charge density than thinner particles (Figure 27).  

 

Figure 27: Average surface charge density of a kaolinite particle as a function of aspect ratio at pH 8. Surface charge 

densities are based on data from Gupta et al. (2011) at pH 8: alumina face -11 mC/m
2
; silica face -11 mC/m

2
; edges -

134 mC/m
2
.  

6.4 28BElectrical double layer 

The surface charge attracts oppositely charged ions and repels like charged ions, resulting in an electrical 

double layer (EDL) (Israelachvili, 2011; Lyklema et al., 1995). A simple Stern model (1924), consisting of a 

Stern layer and a diffuse layer, can be used to characterise the EDL interactions between charged surfaces 

(Israelachvili, 2011). The Stern layer contains ions and water molecules that are bound to the surface groups. 

This layer would have a finite thickness, and the surface charge can be considered to act from the Stern 

plane, which separates the Stern layer and the diffuse layer (Grahame, 1947, 1953; Lyklema et al., 1995). 
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The charge in the diffuse layer is equal and opposite to the surface charge on the Stern plane. The potential 

distribution in the diffuse layer is described by Gouy-Chapman theory which treats ions in as point charges 

(Chapman, (1913); Gouy, (1909) in Lyklema et al. (1995)). The Debye length, κ
-1

, characterises the distance 

over which the potential in the diffuse layer falls by a factor 1/e (e is the natural logarithm) Eq.(64).  
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where ε0 is the permittivity of a vacuum, ε is the static relative permittivity of the bulk solution, which is a 

function of temperature and salinity 2F

3
 (Maribo-Mogensen et al., 2013; Michelsen and Mollerup, 2004), kB is 

the Boltzmann constant, NA is the Avogadro constant, e is the elementary charge, and I is the ionic strength 

of the solution given by: 
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where Ci is the concentration of the i
th
 species of ions, and zi is the valence of the ions, and the summation is 

over all ion species in the solution.  

The Grahame equation (Grahame, 1947, 1953) relates the net surface charge density on the Stern plane, σ0, 

to the surface potential at the Stern plane, ψ0, by Eq.(66) (Israelachvili, 2011): 
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where Cmono is the concentration of monovalent ions in the bulk solution.  

The zeta potential, ζ, is the potential on the shear plane, the interface between mobile and immobile ions 

when the bulk solution moves relative to the mineral surface. Some authors suggest that the shear plane 

would be at a greater distance from the surface than the Stern plane, whereby |ζ| < |ψ0| (e.g., Ishido and 

Mizutani, 1981; Lorne et al., 1999). Nonetheless, as ζ can be measured by using electrophoresis, ζ is 

considered equivalent to ψ0 in order to estimate DLVO interactions by several authors (e.g., Johnson et al., 

1998; Khilar and Fogler, 1984, 1987; Mpofu et al., 2003; Schembre and Kovscek, 2005).  

The concentration of monovalent, K
+
 and Na

+
,
 
ions appears not to significantly affect σ0 for kaolinite 

(Huertas et al., 1998; Tertre et al., 2006). The effect of salinity and temperature on ψ0 for a constant σ0 is 

                                                           
3
 In this thesis and the appended manuscripts εr is calculated as a function of salinity and temperature using Matlab 

2012b (the MathWorks) code provided by Bjørn Maribo-Mogensen (Maribo-Mogensen et al., 2013).  
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estimated by inverting Eq.(66), to illustrate the effects of temperature and salinity in Figure 28. A reduction 

of the NaCl concentration from 0.2 M to 0.02 M is observed to reduce permeability in tests on Berea 

sandstone at 20°C [Manuscript II]. This salinity reduction would have a larger effect on both ψ0 (cf. Eq.(66)) 

and on κ
-1

 (cf. Eq.(64)) than heating from 20°C to 80°C would.  

a)  b)  c)  

Figure 28: a) Debye length, κ
-1

, as a function of NaCl concentration at 293 K and at 353 K. b) κ
-1

 as a function of 

temperature in 0.1 M and 0.2 M NaCl solutions. c) Surface potential, ψ0, as a function of NaCl concentration at 293 K 

and at 353 K for a constant average surface charge density, σ0 = -12 mC/m
2
. [a and c from Conference paper III]. 

As the effect of temperature on the average σ0 of kaolinite depends on particle size and shape, the effect of 

temperature on σ0 is investigated by combining observed permeability changes with DLVO modelling in 

Section 6.7.  

6.5 29BElectrical double layer interaction energy 

Interaction between similarly charged double layers causes a repulsive EDL interaction energy. The 

interaction energy due to the overlapping double layers can be calculated by solving the Poisson-Boltzmann 

equations (Gregory, 1975; Israelachvili, 2011). This requires numerical methods, however, analytical 

solutions based on simplifications can give results that closely approximate the exact solution (Gregory, 

1975).  

Boundary conditions must be assumed for both numerical and analytical solutions. A constant σ0 might apply 

when σ0 is due isomorphic substitution; however, a σ0 due to protonation would be affected by an 

approaching EDL (Elimelech, 2010). Therefore a constant ψ0 is used to interpret AFM measurements in 

order to determine the kaolinite surface charge by Gupta and Miller (2010). A constant ψ0 would apply when 

the surface charges are in equilibrium with the overlapping double layers. Whereas equilibrium might 

establish during AFM measurements, collisions among particles would involve more rapidly approaching 

surfaces; in which case an intermediate between a constant σ0 and a constant ψ0 condition might apply (Frens 

and Overbeek, 1972; Gregory, 1975). The linear superposition approximation, LSA, estimates an 

intermediate condition; the potential halfway between two approaching surfaces is the summation of the 

potential that would be observed at this distance from each individual surface (Elimelech, 2010; Gregory, 

1975). An analytical solution, based on the LSA, for the EDL interaction energy per square meter, EEDL, 

between parallel plates is derived by Gregory (1975): 
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where the two surfaces can have different charges i.e., ψ0,1   ψ0,2, h is the separation between mineral 

surfaces, and τStern is the thickness of the Stern layer, which accounts for ψ0 acting from the Stern plane rather 

than from the mineral surface.  

Figure 29 shows EEDL as a function of separation between negatively charged parallel plates cf. Eq.(67). A 

positive EEDL indicates repulsion; heating from 20°C to 80°C would increase EEDL less than reducing salinity 

from 0.2 M NaCl to 0.02 M NaCl would, if σ0 is not affected by heating.  

a)  b)  c)  

Figure 29: Electrical double layer interaction energy, EEDL, between parallel plates with equal surface charge densities, 

σ0, as a function of separation between mineral surfaces for an interacting area of 4 μm
2
. a) At 293 K and 0.2 M NaCl 

solution. b) At 353 K and 0.2 M NaCl solution. c) At 293 K and 0.02 M NaCl solution.    

6.6 30BVan der Waals interaction 

The van der Waals interaction energy, EvdW, between atoms arises from interaction between their electron 

clouds, which can result in a temporary polarisation and an attractive force (Israelachvili, 2011). On the scale 

of particles and surfaces, EvdW is characterised by the geometry of the interacting particles and by the 

Hamaker constant, H, which depends on the material of the surfaces and the medium across which they 

interact (Israelachvili, 2011; Visser, 1972). The interaction energy between parallel plates energy per square 

meter can be expressed by Eq.(68) (Israelachvili, 2011). 
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The value of H  can be calculated from the dynamic dielectric constants of the interacting by media using the 

Lifshitz Theory, or from measured interaction forces; the latter is based on interpretation by using the DLVO 

theory (Israelachvili, 2011; Visser, 1972). Several authors use H values in the range from 1.6 10
-20

 J to 

4.4 10
-20 

J, for interaction in aqueous solutions both between kaolinite and quartz and among kaolinite 

particles (Gupta et al., 2011; Khilar and Fogler, 1984; Kia et al., 1987; Schembre and Kovscek, 2005). 

Limited experimental data do not show a clear effect of temperature on H (Visser, 1972); and several authors 



55 
 

suggest that H would not be affected by salinity (Israelachvili and Adams, 1978; Israelachvili, 2011; Khilar 

and Fogler, 1984; Schembre and Kovscek, 2005).  

The Born repulsion term is sometimes added to the DLVO terms, EEDL and EvdW, in order to account for 

repulsion on the atomic scale (Elimelech, 2010; Khilar and Fogler, 1987; Schembre and Kovscek, 2005). If 

EvdW exceeds EEDL, the net interaction energy tends towards minus infinity as separation tends to zero. The 

high repulsion at sub-nanometre separations in the Born term results in a net energy minimum at a finite 

separation where particles can be considered bound (Elimelech, 2010; Schembre and Kovscek, 2005). 

However, the closest approach between mineral surfaces would also be limited by the finite size of ions 

adsorbed to the surface (Elimelech, 2010; Israelachvili, 2011; Khilar and Fogler, 1984). Furthermore, the 

LSA assumption in Eq.(67) would not be valid for separations of h-τStern smaller than κ
-1

, whereby net 

interaction energies estimated for separations less than one or two nanometres would already be uncertain 

(Elimelech, 2010; Israelachvili, 2011). Therefore, in Section 6.7 only EEDL and EvdW are considered, and the 

net interaction energy, EDLVO = EEDL + EvdW, is only evaluated up to a minimum separation of 2τStern, where 

the distance between Stern planes is zero.  

6.7 31BEffects of temperature and salinity on DLVO interaction and on permeability 

This Section combines permeability test data on Berea sandstone3F

4
 [Manuscript I and II] with estimates of 

surface interaction forces based on the DLVO theory, to investigate effects of temperature and NaCl 

concentration on permeability reduction by kaolinite mobilisation [Conference paper III, Manuscript II]. As 

kaolinite particles typically occur as flat platelets, the interaction energy both between kaolinite and quartz 

and among kaolinite particles is estimated based on the expressions for planar surfaces in the previous 

Sections. 

Stern layer thicknesses in the order of 0.3 nm–2.5 nm are suggested in literature (Elimelech, 2010; 

Israelachvili and Adams, 1978; Khilar and Fogler, 1984); as a first approximation, τStern = 0.5 nm.  

The ψ0,i in Eq.(67) are calculated from σ0,i by inverting Eq.(66), in order to account for effects of salinity and 

temperature as in Section 6.4. The van der Waals forces are assumed to be constant with temperature and 

salinity.  

6.7.1 49BPermeability prior to particle mobilisation 

In Berea sandstone samples saturated with 0.5 M–2.0 M NaCl solution at room temperature, kaolinite might 

be located on the quartz grain surface (Figure 24a) (Khilar and Fogler, 1984, 1987; Ochi and Vernoux, 1998; 

Schembre and Kovscek, 2005). Thereby the specific surface of kaolinite would have a small effect on 

permeability. As discussed in Section 2.4.1 when intergranular pores form a connected flow path the 

effective Sp would reflect the specific surface of the framework grains [Manuscript II, IV].   

                                                           
4
 Test data from literature and from new experiments performed by Christian Haugwitz, Peter Jacobsen and Jacob Riis 

(DTU students) in collaboration with Claus Kjøller (GEUS).  
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6.7.2 50BEffect of salinity 

At room temperature, reduction of the concentration of NaCl solution below a threshold value, or the switch 

from flow with NaCl solution to flow with distilled water can reduce permeability in samples of Berea 

sandstone by over 90% (Grey and Rex, 1966; Khilar and Fogler, 1984; Mungan, 1965; Ochi and Vernoux, 

1998) [Manuscript II]. This reduction is irreversible in tests where the salinity is subsequently restored, 

however, reversing the flow direction can partially restore permeability (Khilar and Fogler, 1984), 

[Manuscript II] (Figure 30).  

 

Figure 30: At 20°C the permeability of a sample of Berea sandstone falls sharply when the NaCl concentration is 

reduced below 0.2 M and the effect is largely irreversible when NaCl concentration is subsequently restored. Reversing 

the flow direction partially restores permeability. [Modified from Manuscript II]. 

Reducing the NaCl concentration increases both κ
-1

 and the magnitude of ψ0, and consequently the repulsive 

EEDL between kaolinite and quartz increases (Figure 28a and c; Figure 29). Figure 31 shows EDVLO as a 

function of separation between surfaces that have average σ0,1 and σ0,2 representing kaolinite and quartz. With 

2.0 M NaCl solution, EDLVO tends towards negative infinity as h tends to zero, indicating attraction between 

kaolinite particles and quartz grains. The maximum EDLVO appears to switch from attraction (negative 

interaction energy) to repulsion (positive interaction energy) between 0.2 M NaCl solution and 0.02 M NaCl 

solution. A net repulsion energy might cause kaolinite mobilisation, accounting for observed permeability 

reductions as shown in Figure 30.  
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Figure 31: Net interaction energy as a function of the separation between parallel planar kaolinite and quartz surfaces. 

Negative interaction energy indicates attraction. Interaction energy is scaled by an interaction area of 4 μm
2
; surface 

charge densities are: 11 mC/m
2
 for kaolinite, 27 mC/ m

2 
for quartz. The Stern layer thickness, τStern = 0.5 nm. Vertical 

dashed line indicates a separation equal to the Debye length between Stern planes, i.e., h = 2τ+κ
-1

, in 0.2 M NaCl 

solution. Below this separation, expressions for the electrical double layer interaction energy are more 

uncertain[Modified from Conference Paper III]. 

Several authors attribute permeability reduction due to salinity reduction to filtration of mobilised particles, 

by means of straining of larger particles or bridging by multiple particles (Figure 24c and d) (Khilar and 

Fogler, 1984, 1987; Kia et al., 1987; Mungan, 1965; Ochi and Vernoux, 1998). As the size of kaolinite 

particles varies (Figure 23b), both mechanisms might occur in the same sample if all particles are mobilised. 

Some authors suggest that due to their greater mass larger particles would not be mobilised (Bedrikovetsky 

et al., 2011; Khilar and Fogler, 1987). This would be due to a proportionally higher gravitational retaining 

force on larger particles; the gravitational force increases with volume, proportional to r
3
 for spherical 

particles, whereas the DLVO forces are scaled by surface area, r
2
 for spheres. For kaolinite particles the 

effect of size on the net DLVO forces, would depend on whether size affects the particle aspect ratio, which 

affects the average σ0 (Figure 27).  

Kaolinite filtration could increase the effective Sp if flow paths through larger intergranular pores are only 

connected through smaller pores among filtered kaolinite particles. Thereby, the specific surface area of 

kaolinite would be effective to permeability. Accordingly, the effective Sp after reducing the NaCl 

concentration from 2.0 M to 0.002 M at 20°C reduced permeability (Figure 30), is approximately equal to 

Sp,BET  [Manuscript II].  

Particles that are filtered by straining or bridging would not be remobilised by restoring salinity, which 

reduces EEDL; straining could be considered irreversible, even when the flow direction is reversed (Khilar and 

Fogler, 1984; Mohan et al., 1999). However, reversing the flow direction after the NaCl concentration is 

restored could remove bridged particles, which might possibly re-aggregate in booklets or re-attach to the 
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quartz grains as EDLVO is attractive (Figure 31) (Khilar and Fogler, 1984). Therefore the permeability changes 

observed in Figure 30 might reflect kaolinite mobilisation and filtration by bridging as suggested by Khilar 

and Fogler (1984).  

6.7.2.1 63BSensitivity to surface charge density 

As the average ψ0, or ζ, depends on kaolinite particle shape and size (Figure 27), the effect of ψ0 on EDLVO is 

investigated in this Subsection [Conference paper III]. The ζ data at pH 8–9 from several publications are 

used to estimate σ0 of kaolinite particles by using Eq.(66); this indicates a range from 11 mC/m
2
 to 22 mC/m

2
 

(Johnson et al., 1998; Rodríguez and Araujo, 2006; Zbik and Frost, 2009). The edge σ0 is suggested to be 

approximately three times higher than σ0 on the faces by Brady et al. (1996); whereas data by Gupta et al. 

(2011) indicate that the edge σo would be a factor five to ten times higher than the face σ0 at pH 8. 

Differences may be due to assumptions made regarding the size and shape of the kaolinite particles in the 

interpretation of potentiometric titration data by Brady et al (1996); and to assumptions regarding the 

boundary conditions and the magnitude of EvdW in interpretation of AFM data by Gupta et al. (2011). Quartz 

σ0 are likewise estimated from ζ data; values indicate a range from 22 mC/m
2
 to 32 mC/m

2
 at pH 8 (House 

and Orr, 1992; Rodríguez and Araujo, 2006). Thus the average σ0 on kaolinite particles appears to be less 

negative than the σ0 of quartz. 

The EDLVO for a specific h is calculated for a range of ψ0. Interaction energies for σ0 that could represent 

kaolinite faces or the average σ0 on a kaolinite particle are scaled by an interaction area of 4 nm
2
, whereas 

interactions for σ0 that represent kaolinite edges are scaled by 0.2 nm
2
,
 
to account for the smaller edge area.  

Figure 32 shows an attractive EDLVO between kaolinite and quartz in 0.2 M NaCl solution and a net repulsion 

in 0.02 M NaCl solution, for the range of σ0 that could characterise the faces or the average charge on 

kaolinite particles. The EDLVO is repulsive between quartz and kaolinite edges even in 0.2 M NaCl solution. 

This suggests that in order to estimate kaolinite mobilisation, the average σ0 on the kaolinite particle would 

be relevant; and indeed ζ  is used to model kaolinite mobilisation by several authors (e.g., Khilar and Fogler, 

1984; Kia et al., 1987; Ochi and Vernoux, 1998; Schembre and Kovscek, 2005).  

Due to the smaller surface area of the edges, the interaction energy for the interactions between the edges of 

kaolinite and quartz is smaller in magnitude than the interaction energy between kaolinite faces and quartz. 

This difference is comparable to the difference between pressure and force. 
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a)  b)  

Figure 32: a) In 0.2 M NaCl solution, the net interaction energy at 2 nm separation between Stern planes is attractive 

(negative) for a range of surface charge densities, σo, that might represent the charge kaolinite faces or on an the average 

kaolinite particle; whereas the net interaction energy between surfaces with a σ0, which could represent kaolinite edges, 

and quartz is repulsive (positive). b) In 0.02 M NaCl solution there is a net repulsion between quartz and kaolinite for 

the range of surface charge densities for kaolinite faces as well as for kaolinite edges. Interaction areas are scaled by 

4 μm
2
 for faces of kaolinite particles or for the average kaolinite particle and by 0.2 μm

2
 for edges of kaolinite particles. 

[Modified from Conference paper III]. 

6.7.2.2 64BIon Exchange 

The permeability is not reduced in tests where the concentration of CaCl2 is reduced (Grey and Rex, 1966; 

Khilar and Fogler, 1987). This may be due to the adsorption of divalent Ca
2+

 ions to the kaolinite surface, 

yielding a positive ζ (Chassagne et al., 2009; Khilar and Fogler, 1987; Kia et al., 1987) [Manuscript II and 

III]. With opposite charges on kaolinite and quartz, EEDL is attractive; therefore mobilisation would not occur 

when salinity is reduced. In samples that are initially saturated with distilled water, the measured 

permeability is comparable to the permeability with a high salinity solution (Khilar and Fogler, 1984; 

Mungan, 1965) [Manuscript I]. Divalent ions that are naturally present in carbonate cement in the Berea 

sandstone could be adsorbed to the kaolinite surface so that EEDL is attractive; saturating the sample with 

NaCl solution would replace divalent ions by Na
+
 and reverse the sign of the kaolinite ζ (Grey and Rex, 

1966; Khilar and Fogler, 1984; Mungan, 1965). Therefore the effect of salt concentration that is observed in 

laboratory tests with NaCl solution might not be representative for effects that occur in a geothermal 

reservoir, where the brine would presumably contain different ions.   

6.7.3 51BEffect of temperature 

Permeability reduction due to increasing temperature from room temperature to 80°C–90°C is observed in 

Berea sandstone samples saturated with distilled water, with NaCl solution, and with CaCl2 solution 

(Baudracco and Aoubouazza, 1995; Cassé and Ramey Jr, 1979; Schembre and Kovscek, 2005). In contrast to 

the effect of NaCl concentration, the effect of temperature appears to be largely reversible with cooling 

(Baudracco and Aoubouazza, 1995; Cassé and Ramey Jr, 1979) [Manuscript I and II].  
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a)  b)  

Figure 33: a) Permeability, k, reduction due to heating from 20°C to 80°C is largely reversible when temperature is 

restored; the effect is observed in different tests, with distilled water and with different NaCl concentrations. Interstitial 

velocity, v, for the data in this Figure v =Q/Aϕ, v = 4 μm/s–7 μm/s. b) Reducing and increasing NaCl concentration at 

80°C has no effect on permeability and reversing the flow direction has an insignificant effect; in this Figure 

v = 70 μm/s–95 μm/s . [Data in a) from Manuscript I and Manuscript II; figures Modified from Manuscript II]. 

The effect of temperature on permeability might be due to kaolinite mobilisation, as heating can increase the 

repulsive EEDL between kaolinite and quartz (Khilar and Fogler, 1984; Schembre and Kovscek, 2005). 

Heating would only slightly increase the repulsive EEDL if σ0 of the minerals were constant with temperature 

(Figure 29b). In samples with a 0.2 M NaCl solution the increase might possibly be sufficient to yield a net 

repulsion energy (Figure 34a), however, heating also reduces permeability in tests with a 2.0 M NaCl 

solution (Figure 33a). Figure 34b indicates that even a doubling of σ0 would not cause a repulsive EDLVO; 

however, a fourfold increase of σ0 would result in a net repulsion for separations less than 2 nm.  

The ζ of kaolinite and of quartz from electrophoresis tests by Rodriguez and Araujo (2006) indicate that σ0 

becomes approximately twice as negative, when the temperature is increased from 20°C to 45°C. Based on 

potentiometric titration data, Brady et al. (1996) determined that the σ0 of kaolinite becomes approximately 

twice as negative when the temperature is increased from 25°C to 70°C. These results indicate that indeed 

heating can result in the σ0 of kaolinite and of quartz becoming substantially more negative, which might 

lead to kaolinite mobilisation.  
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a)  b)   

Figure 34: Interaction energy as a function of the separation, h, between parallel kaolinite and quartz surfaces. 

a) Heating with 0.2 M NaCl solution causes a small net repulsion (positive interaction energy) at short separations if σ0 

is constant (thick dotted line is 20°C, thick solid black line is 80°C with the same surface charge, σ0, as at 20°C). 

b) With 2.0 M NaCl solution heating only causes a net repulsion at short separations if σo increases by a factor four. An 

energy minimum at 2 nm–3 nm separation can be observed. Interaction energy is scaled by an interaction area of 4 μm
2
; 

surface charge densities at 20°C, σ0,20, are: 11 mC/m
2
 for kaolinite, and 27 mC/ m

2 
for quartz. Vertical dashed line 

indicates a separation equal to the Debye length between Stern planes, i.e., h = 2τ+κ
-1

, below which EDL expression is 

more uncertain. [Modified from Conference paper III]. 

At separations of 2 nm–5 nm EDLVO shows an attractive minimum for a twofold and for a fourfold increase of 

σ0,20 due to heating with 2.0 M NaCl solution (Figure 34b). This is referred to as the second energy 

minimum, to distinguish it from the first energy minimum that can be observed at smaller separations when 

EvdW  > EEDL and the Born term is included (Hahn and O’Melia, 2004). As the Born term is not included in 

Figure 34b, no first energy minimum is observed. 

Some authors suggest that particles could be attached in the second energy minimum, where they would be 

more susceptible to hydrodynamic forces than particles that are attached closer to the mineral surface (Hahn 

and O’Melia, 2004; Yuan and Shapiro, 2011). Salinity reduction at 80°C does not affect permeability during 

the test in Manuscript II (Figure 33b). This indicates that particles are not attached in a second energy 

minimum at 80°C, as the second energy minimum would be eliminated by reducing salinity (Figure 34a).  

The lack of an effect of reducing salinity at 80°C suggests that particles are already mobilised by heating, 

even in 2.0 M NaCl solution (Figure 33b). By contrast, Khilar and Fogler (1984) find that salinity reduction 

reduces permeability in samples of Berea sandstone at 60°C. However, they do not comment on permeability 

reduction due to heating, which indicates that kaolinite is not mobilised by heating to 60°C in that test. 

Indeed, Figure 33 indicates that that permeability falls more steeply between 50°C and 80°C than between 

20°C and 50°C with 0.34 M NaCl solution; and other authors also observe that the permeability reduction 

occurs only when a threshold temperature is exceeded (Baudracco and Aoubouazza, 1995)[Manuscript I]. 

The results by Khilar and Fogler (1984) suggest that if heating did not mobilise kaolinite particles, a 

subsequent salinity reduction would.  
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The reversibility of the heat-induced permeability reduction suggests that mobilised particles might not be 

filtered in pore constrictions. A higher repulsive EEDL between quartz and kaolinite at 80°C due to an 

increase in σ0 of both minerals might prevent filtration. Suspended kaolinite particles presumably would 

affect the rheology of the pore fluid; and possibly interaction among different sides of the particles results in 

microporous aggregates or in a gel that reduce the intergranular porosity as suggested in Section 6.2 (Figure 

24e). The effect of temperature on σ0 is presumably reversible, whereby cooling might cause kaolinite to re-

aggregate as compact booklets or to re-attach to the quartz surface, restoring permeability.  

Figure 35 indicates that an increase in the kaolinite σ0 by a factor four would also yield repulsion among all 

sides of kaolinite particles; this would suggest that particles remain dispersed in a suspension, rather than that 

they form aggregates. Nonetheless, the yield stress of kaolinite suspensions, the microporous kaolinite 

networks, and the kaolinite gel, that are discussed in Section 6.2, are also observed in suspensions with a 

pH 8–10.5 and monovalent salt concentrations of 0.01 M or less, i.e., when EDLVO is presumably repulsive 

(Gupta et al., 2011; Zbik and Frost, 2009). Some authors suggest that additional forces, e.g., attractive 

hydrophobic forces, might possibly affect kaolinite interactions at pH 8–9 (Gupta et al., 2011; Zbik and 

Horn, 2003; Zbik and Frost, 2009). Thereby, EDLVO would not predict interaction among suspended kaolinite 

particles in the pore fluid.  

 

Figure 35: Interaction energy between parallel kaolinite surfaces as a function of separation, h. Negative interaction 

energy indicates attraction. Interaction energy is scaled by an interaction area of 4 μm
2 
for interaction between kaolinite 

faces or for the average kaolinite particles, and by an interaction area of 0.2 μm
2
 for interaction between edges. Surface 

charge densities at 20°C, σ0,20, are: 7 mC/m
2
 for kaolinite faces; 12 mC/m

2
 for average on kaolinite particles; 37 mC/m

2
 

for kaolinite edges. Vertical dashed line indicates a separation equal to the Debye length between Stern planes, i.e., 

h = 2τ+κ
-1

, below which EDL expression is more uncertain. [Modified from Conference paper III]. 

6.7.4 52BEffect of flow rate 

At room temperature, hydrodynamic forces may also mobilise particles (Bedrikovetsky et al., 2011, 2012; 

Khilar and Fogler, 1987; Ochi and Vernoux, 1998; Sen and Khilar, 2006). Ochi and Vernoux observe a 
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threshold flow rate, below which permeability does not depend on flow rate and above which permeability is 

reduced, presumably by filtration of mobilised particles. The flow rates used in Manuscript II at 20°C are 

over one order of magnitude smaller than threshold flow rates for Berea sandstone samples found by Ochi 

and Vernoux (1998). Accordingly, flow rate has no effect on permeability prior to reducing the NaCl 

concentration (Figure 36a) indicating that particles are not mobilised by hydrodynamic forces. After 

permeability is reduced by reducing the NaCl concentration, flow rate also has no effect on permeability 

(Figure 36a). If mobilised particles are filtered, flow rate apparently does not remobilise filtered particles.  

a)  b)  

Figure 36: a) Increasing the interstitial velocity, v, has no significant effect on permeability, k, of a Berea sandstone 

sample at 20°C (black triangles). Salinity reduction reduces k, however, no effect of v is observed before or after the 

salinity reduction. At 80°C, in tests on a different Berea sandstone sample from the same block (white circles), k 

increases with increasing v. At 80°C, k is independent of salinity. b) At 80°C, the effect of v is reversible when the flow 

velocity was increased, reduced, and increased again. [Modified from Manuscript II]. 

By contrast, at 80°C after permeability reduction by heating, permeability increases with increasing flow 

rate, and no hysteresis is observed in cycles where the flow rate is increased and reduced (Figure 36b). Such 

an effect might be observed when a suspension of interacting kaolinite particles or kaolinite aggregates that 

only shear above a yield stress is present in some pores (Figure 24b and e). When below the yield stress, this 

would reduce the mobile pore volume and reduce permeability; above the yield stress, shearing of the 

suspension or suspended aggregates might increase the free pore volume and partially restore permeability. 

The magnitude of the shear forces during experiments in Manuscript II is of the order of magnitude of the 

yield stress of dense kaolinite suspensions that is observed at pH 10.5 in 0.001 M KNO3 solution by Mpofu 

et al. (2003). The reversibility of the effect of flow rate suggests that kaolinite is not removed from the pores. 

Accordingly, the kaolinite content of this tested sample after the test is not significantly lower than the 

kaolinite content of an untested sample of Berea sandstone from the same block, as determined from 

quantitative image analysis [Manuscript III].  
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Estimating the effect of temperature and salinity on the interaction forces using the DLVO theory involves a 

number of uncertainties including: the value of σ0 of the minerals, and in particular of kaolinite as the 

average σ0 depends on particle shape and size; the effect of temperature on σ0; the estimation of boundary 

conditions and interaction geometry for the DLVO equations; the effect of temperature on the Hamaker 

constant; the extent to which additional, non-DLVO forces characterise interaction among suspended 

kaolinite particles. Therefore, calculations in this Chapter are only considered as a qualitative estimate of 

effects of salinity and temperature on the DLVO interaction forces, EEDL and EvdW.  

Nonetheless, the effect of heating on surface charge density that would be required to account for particle 

mobilisation, is of the same order of magnitude as the effect of temperature that is observed in electrokinetic 

experiments and potentiometric titrations in literature. The effect of the higher surface charge density on the 

interaction between kaolinite and quartz might indeed limit filtration at elevated temperatures. Furthermore, 

interaction among kaolinite particles would be less repulsive than between kaolinite and quartz, due to the 

heterogeneous surface charge on kaolinite particles, and due to the lower average surface charge density on 

kaolinite than on quartz. Accordingly, literature on kaolinite suspensions indicates that interactions among 

kaolinite particles substantially affect the viscosity of the suspension.  

The mechanisms of permeability reduction that are discussed in this Chapter, filtration and effects of 

suspended particles on pore fluid rheology, would not be mutually exclusive. Indeed, when the concentration 

of mobilised kaolinite particles is high, particles would presumably have a significant effect on rheology and 

there would be more interactions among kaolinite particles; when the concentration of mobilised particles is 

lower, particles might be entrained by the pore fluid and transported. The effects of temperature and salinity 

that are observed in permeability experiments do indicate that different meachnisms dominate in the two 

situations. The reversibility of permeability changes due to heating, and the different effects of flow rate at 

20°C and at 80°C that are observed in laboratory experiments, could be relevant for geothermal energy 

production and seasonal heat storage in kaolinite-bearing sandstones. At 80°C, permeability might be 

increased by increasing the flow rate, and this would reduce pumping costs. Furthermore, a permeability 

increase due to cold water re-injection during winter might improve the acquifer permeability.  
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7 6BApproach to investigation 

The focus of the PhD project lies on data analysis and interpretation; this Chapter gives an overview of 

methods of data interpretation that were used. For details of experimental procedures that were performed by 

others, I refer to the appended manuscripts.  

7.1 32BLiterature analysis: effect of temperature on permeability 

To investigate the effects of temperature, data from 17 publications,  comprising 13 sandstone Formations, in 

which permeability is measured at two or more temperatures, using mineral oil, nitrogen gas or aqueous 

solutions, is systematically investigated [Conference paper I, Manuscript I]. In order to compare among 

formations with different porosity and permeability, the reported permeabilities are normalised to the 

effective Sp by using the Kozeny equation (Eq.(11), Eq.(19)). The Kozeny equation is also used to model 

effects of thermal expansion. Results are discussed in in Chapter 5.  

7.2 33BFlow-through experiments 

Flow-through experiments on Berea sandstone plugs were performed by DTU students4F

5
 and Claus Kjøller at 

the GEUS Core Laboratory in order to assess the practical aspects of permeability experiments at elevated 

temperature [Manuscript I]. Experiments using a synthetic opal plug were used to verify the absence of 

corrosion in the setup5F

6
. Effects of temperature, flow rate, and salinity on permeability in samples of Berea 

sandstone were investigated in additional tests, one of which lasted approximately 150 days 6F

7
 [Manuscript II]. 

This sample was subsequently used for quantitative image analysis [Section 7.5].  

7.3 34BSpecific surface area from nitrogen adsorption  

The specific surface area of samples of Gassum Formation sandstone, Bunter Formation sandstone and Berea 

sandstone is measured by using nitrogen adsorption (BET method, Brunauer et al. (1938)). Measurements 

are made using a Mircomeritics Gemini 2735 surface area analyser 7F

8
. In order to have a sufficient surface 

area, 2 g or more of coarsely ground samples are used, giving a total surface area > 2.5 m
2
. Samples are 

degassed in nitrogen at 70°C for four hours prior to measurement, as the presence of adsorbed water might 

interfere with gas adsorption (Clausen and Fabricius, 2000; Sing, 2001). Adsorption is measured at four 

relative pressures between 0.05 and 0.24 in order to remain below the pressure range where capillary 

condensation might occur (Sing, 2001).  

The specific surface area from nitrogen adsorption, in combination with grain density and helium porosity, is 

used to calculate Sp,BET, [Manuscript I, II, III, IV]. The effective Sp for permeability is compared with Sp,BET  

in chapters 2 and 6.  

                                                           
5
 Christian Haugwitz, Peter Sally Munch Jacobsen, and Jacob Fabricius Riis.  

6
 C. Haugwitz, P.S.M. Jacobsen, and C. Kjøller 

7
 J.F. Riis and C. Kjøller  

8
 Department of Environmental Engineering, DTU 



66 
 

7.4 35BQualitative electron microscopy analysis 

Electron microscopy is used throughout the investigation in order to relate mineralogy and texture to 

permeability. Polished thin sections of Berea sandstone samples, both prior to and after flow-through 

experiments, sandstone samples from the Gassum Formation, and sandstone samples from the Bunter 

formation are analysed by using a combination of BSEM and EDS, using a Quanta 200 (FEI) scanning 

electron microscope8F

9
. SEM is used to study kaolinite and illite morphology in selected samples of Rotliegend 

sandstone, by using a Quanta 650 (FEI) 9F

10
. 

Qualitative observations are used to support the discussion of permeability in Chapters 2, 3, 4, and 6. 

7.5 36BQuantitative image analysis combined with mineral mapping 

Chemical alteration may result from prolonged hot water injection or hot water storage (Milsch et al., 2009; 

Schepers and Milsch, 2013; Tenthorey et al., 1998) [Manuscript I, II, and III]. Therefore, applications of 

quantitative analysis of images in which mineralogy is mapped by using the QEMSCAN® system (FEI) are 

investigated in Manuscript III. The objective is quantification of: mineral content, reactive surface areas of 

different minerals, lamination of mineralogy and porosity, and chemical alteration resulting from hot water 

injection. An untested sample of Berea sandstone is compared to a sample in which 80°C NaCl solution is 

injected for 150 days [same sample as in Manuscript II 10F

11
]; and a comparison is made among untested 

sandstone samples from Gassum formation and Bunter formation and Berea sandstone [Manuscript III]. 

The methods used, and the results that demonstrate the relevance of these methods for geothermal energy 

storage, are discussed in the following Subsections.  

7.5.1 53BMineral identification   

The QEMSCAN® system (FEI) is used to map mineralogy by using BSE intensity in combination with 

EDS. This results in images with a large interrogation area, 100 mm
2
, and a resolution of lpix = 1.8 μm, in a 

reasonable time. A second mapping of the same area is made using only BSEM with lpix = 0.83 μm, a higher 

resolution is not used for mineral mapping, due to the interaction volume of the electron beam for the 

generation of fluorescence light in EDS.  

Pore space and solids are distinguished based on a BSE intensity threshold. With lpix = 1.8 μm, pixels 

containing both pores and minerals would have a lower BSE intensity than pixels containing only minerals 

(Peters, 2009). Reducing the intensity threshold increases the solids area at the cost of pore area; in particular 

the area of clay minerals that have small pores among clay particles, is sensitive to the BSE threshold. A low 

threshold is used to study the distribution of clay minerals; accordingly image porosity is lower than porosity 

as measured by using helium porosimetry [Manuscript III]. The difference between image porosity and the 

helium porosity can be accounted for by assuming an unresolved porosity among clay minerals of 

                                                           
9
 At the Department of Civil Engineering, DTU.  

10
 At the Leeds Electron Microscopy and Spectroscopy Centre, at the University of Leeds. 

11
 Tests performed by Jacob Riis (DTU) and Claus Kjøller (GEUS) 
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approximately 50%; this is comparable to estimates for porosity of clay mineral aggregates in sandstones 

ranging from 40%–70% by other authors  (e.g., Hurst and Nadeau, 1995; Vernik, 1994). 

Different minerals are identified based on EDS spectra; mineral compositions are defined in the species 

identification protocol (SIP) of the QEMSCAN® iDiscover (v.5.3) software (Ayling et al., 2012; Pirrie et al., 

2004). The oil and gas v3.7 SIP (by FEI) is used as a basis SIP for this study. Individual pixels may contain 

EDS spectra from a combination of minerals, e.g., for fine-grained clay minerals, or on the interface between 

different minerals. The original SIP contains some interface categories that account for commonly occurring 

interfaces in the formations that were used to define that SIP; additional interface categories are defined for 

interfaces that are common in the formations in this study. Furthermore, categories are included in order to 

account for iron oxide/hydroxide precipitates that formed in the tested Berea sandstone sample. 

The mineral definitions are arranged hierarchically in the SIP; accordingly, a pixel is assigned to the first 

definition that matches the EDS spectrum. Therefore, modifications are also made in the order of minerals in 

the SIP in order to improve classification. 

After a first identification of all pixels, some pixels are regrouped. Interface pixels are assigned to one 

mineral phase, i.e., a pixel that is identified as 25% kaolinite 75% quartz is assigned to the quartz phase. 

Several minerals are grouped for further analysis:  illite and muscovite (IM); chlorite group minerals, mixed 

layer chlorite-smectite and biotite (CMB); dolomite and ankerite (DA); gypsum and anhydrite (GA); iron 

oxide/hydroxide (Fe); and titanium oxides (Ti); and feldspar minerals (F).  

7.5.2 54BPre-processing 

Unidentified single pixels remain on interfaces between minerals for which no interface group is defined. 

These pixels are assigned to the phase that they border in a pre-processing step. No smoothing is applied, as 

with lpix = 1.8 μm isolated pixels could be due to small particles. Examples are mixtures of illite and kaolinite 

particles, and kaolinite particles that are located in between the cleavage planes of mica grains (Figure 37). 

Mineral identification based on the SIP is compared to manual analysis of BSEM images in combination 

with EDS, and to the bulk mineralogy from XRD for samples of Gassum and Bunter Formation sandstones 

(Weibel et al., 2010), and Berea sandstone (Baudracco and Aoubouazza, 1995; Churcher, 1991). 

The kaolinite content of the untested Berea sample is only 2.9 vol.%, i.e., 3.3 wt.%11F

12
, and the illite/mica 

content corresponds to 3.2 wt.%. By contrast, other authors observe 5 wt.%–6 wt.% kaolinite and only 

1 wt.% illite (Baudracco and Aoubouazza, 1995; Churcher, 1991).  Whereas variation among samples might 

contribute to this difference, qualitative analysis of BSEM images also indicates that the sample that 

kaolinite is more abundant than illite in the scanned samples. The amount of kaolinite might be 

underestimated in the QEMSCAN images when pixels contain a mixture of illite and kaolinite, or when 

                                                           
12

 Vkaolinite/Vb = 2.9 %; Vkaolinite/Vs = Vkaolinite/ (1-ϕ) Vb ; masskaolinite/masss = Vkaolinite/Vs densitykaolinite/densitysolids. 
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pixels are on an interface between kaolinite and mica (Figure 37). Such pixels are assigned to illite/mica due 

to the presence of potassium in illite.   

a)  b)  

Figure 37: Backscatter electron microscopy, BSEM, images of an untested Berea sandstone sample: a) Kaolinite (kao) 

particles are located in between the cleavage planes of a mica grain. b) A mixture of fine illite particles (ill) and 

kaolinite particles where some plates have a thickness less than 1.8 μm.  

Image analysis is performed on images that are exported from the QEMSCAN® software in which pores and 

different minerals or mineral groups have distinct, grey-scale, colours. Codes for image analysis are written 

in Matlab 2012b (MathWorks, USA).  

7.5.3 55BMinimum representative area 

The MRA of mineral phases and of porosity are quantified, as described in Subsection 2.4.2. The MRA 

exceeds the total interrogation area for gypsum/anhydrite in samples of Bunter sandstone. This is due to a 

patchy distribution of this phase, which is also observed by Weibel et al. (2010). This indicates that the G/A 

content of an untested side trim would not be representative for the G/A content in a corresponding plug 

sample; therefore effects of hot water injection cannot be quantified based on comparison of the G/A content 

in a side trim and in the tested plug. For other mineral phases and for porosity in the untested samples, the 

interrogation area does exceed the MRA. An error margin to account for variation on the millimetre scale is 

estimated from the standard deviation among the mineral content of four 25 mm
2 
subsections for each 

100 mm
2
 image. 

7.5.4 56BSpecific interface  

The specific interface of a phase is quantified by duplicating the image and shifting the duplicate by one 

pixel in a specified direction. Subtracting the shifted image from the original image results in an image 

where only interface pixels are nonzero. This is comparable to image differentiation; however, this is 

computationally more efficient, which is relevant for the large grey-scale images in this study (5760 pixels   

5760 pixels). Multiplication by a mask of the phase whose interface is to be determined results in an image 
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with only pixels that contain an interface of this phase in the direction that the image was shifted. This is 

done by shifting in all four directions to identify the four possible edges for each pixel. Pixels on a diagonal 

interface, are assigned a length lpix√  rather than 2lpix after Borre et al. (1995).  

The reactive surface area from images would require calibration in order to apply this in chemical models, as 

specific interface, mineral content, and porosity depend on the resolution and on the BSE threshold for 

porosity. Furthermore, due to micropores among clay particles, interfaces of other mineral phases to clay 

phases could also be considered as interfaces to the pore area, i.e., as reactive interfaces.  

For permeability estimation, the specific pore interface, Ip, is estimated at a constant ratio of lpix to effective 

Sp for permeability as in (Berryman and Blair, 1987)[Subsection 2.4.2]. The parameter K, to estimate 3D Sp 

from 2D Ip, (Eq.(21)), is fit to the data. The same K fits the Gassum and the Bunter sandstone samples; this K 

overestimates permeability in the Berea sandstone samples by approximately 50%. Nonetheless, the ranking 

of permeabilities as estimated from images with a constant K and ratio of lpix to Sp does correspond to the 

measured permeabilities of the three samples [Manuscript III].  

7.5.5 57BHeterogeneity: lamination and patches 

Heterogeneity is quantified by calculating mineral content of subsections of the images. Lamination is 

investigated in rectangular subsections parallel to the lamination, which have different widths and span the 

length of the image; widths are in the range 90 μm–630 μm. A patchy distribution of minerals is investigated 

by using square subsections with the same area as the rectangular subsections.   

The specific interface of quartz scaled by the quartz area is an estimate of the effective grain size. This 

estimate corresponds to a visible lamination in the quartz grain size, and a lamination in porosity in the tested 

sample of Berea sandstone (Figure 38b and Figure 39b). Lamination is less pronounced in images of the 

untested Berea sandstone plug from the same block (Figure 38a and Figure 39a). As grain size lamination 

would be a sedimentary feature, rather than due to hot water injection experiments, this indicates that the 

degree of lamination varies over a larger area than the 100 mm
2
 interrogation areas used. Nonetheless, the 

quartz content and porosity of the two samples are approximately equal, and the MRA of porosity and quartz 

in the untested sample are smaller than 100 mm
2
 [Manuscript III]. 
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a)  b)  

Figure 38: a) Porosity and quartz content of horizontal subsections (width 270 μm, length 10300 μm) are shown as a 

function of distance from the bottom of the image. b) Specific interface of quartz, Iqtz, scaled by quartz area, Q, for the 

same subsections. [Modified from Manuscript III]. 

a)  b)  

Figure 39: Segmented images showing quartz (white), pores (black), and other minerals (grey) in: a) The untested Berea 

sandstone sample; b) The Berea sandstone sample after 150 days of 80°C NaCl solution injection. Horizontal 

lamination of the quartz grain size can be observed in the tested sample. These images represent lamination in the first 3 

mm in Figure 38 and Figure 40. Pixel length lpix = 1.8 μm. [Modified from Manuscript III]. 

A lower siderite content and a higher iron oxide/hydroxide content in the tested Berea sandstone sample 

indicate that iron is released by dissolution of siderite, which oxidised and precipitated during the tests 

[Manuscript II, III]. Lamination of the iron oxide/hydroxide content indicates that iron oxide/hydroxide 

precipitates predominantly in the finer grained low porosity lamina (Figure 40a). In the untested sample, a 

lamination of siderite can be observed; however, this does not correspond to the grain size or porosity 

lamination (Figure 40b). This suggests that hot water injection enhanced the existing lamination.  
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a)  b)  

Figure 40: a) The fluctuations in the porosity and in the iron oxide/hydroxide content are shown as a function of 

distance from the bottom of the image for horizontal subsections (width 270 μm, length 10300 μm). b) Fluctuations in 

siderite (dashed lines) and iron oxide/hydroxide content (solid lines) for same lamina. In the untested sample the iron 

oxide/hydroxide content is smaller than the siderite content, whereas the opposite is observed in the sample after hot 

brine injection. [Modified from Manuscript III]. 

The effect of lamination on permeability is estimated by calculating permeability from Ip in subsections 

parallel to the lamination and comparing the harmonic, geometric and arithmetic averages. Permeability 

estimated by different means is not significantly different, and permeability in the tested Berea sample is 

similar to the permeability in the less laminated, untested, Berea sample. Measured permeability is only 20% 

lower at the end of the 150 day experiment than at the start; these results indicate that the enhancement of 

lamination did not significantly affect permeability in this sample [Manuscript II and III].   

7.5.6 58BMultivariate analysis 

Principal component analysis (PCA) is used to analyse correlations among minerals, to distinguish among 

the subsections of images from the different untested sandstone formations, and to distinguish among 

subsections from the tested and the untested Berea sandstone samples. The PCA is done by singular value 

decomposition of the data matrix. The data matrix consists of a row for each subsection, whose columns 

contain the content of the different mineral phases and porosity. Data are centred in order to reduce the 

square error (Miranda et al., 2008). The variation in volumetrically minor phases, such as clay minerals, 

carbonate minerals, and iron hydroxides, is accounted for by normalising the data. Subsections from different 

formations are distinct in a plot of the first and second principal components; subsections from the untested 

and the tested Berea sandstone samples can be reasonably distinguished (Figure 41).  



72 
 

a)  b)  

Figure 41: The first two principal components show the loading on the minerals scaled by 10 (white circles) and the 

principal component scores of horizontal subsections (dots) (width 270 μm, length 10300 μm). a) Subsections from the 

three formations plot in distinct groups. b) Subsections from a sample of untested Berea sandstone (grey) from a sample 

of Berea sandstone after injection of 80°C NaCl solution for 150 days (black) generally fall into separate groups. 

(P=porosity; Q=quartz; F=feldspar; K=kaolin; IM=illite/muscovite; CMB=chlorite/mixed layer illite-muscovite/biotite; 

C=calcite; S=siderite; DA=dolomite/ankerite; Fe= Fe2O3/FeOOH; Ti=Titanium oxides; GA=gypsum/anhydrite.) 

[Modified from Manuscript III]. 

7.5.7 59BClay minerals and potential fines mobilisation 

Kaolinite and also illite particles might reduce permeability by fines migration (Wilson et al., 2014). 

Kaolinite is only present in Berea and Gassum sandstone samples [Manuscript III]. Whereas this Gassum 

sandstone sample only contains 1.2 vol.% kaolinite, samples of Gassum formation from different localities 

can contain higher kaolinite contents (Weibel et al., 2010); therefore kaolinite mobilisation might affect 

permeability during hot water injection in this Formation. 

Samples from all three formations contain in excess of 2 vol.% illite or mica; however, no distinction is 

made between illite and mica based only on elemental analysis in QEMSCAN®. Whereas small illite or 

kaolinite particles in intergranular pores might be mobilised, larger mica grains can be observed in the 

Gassum and Bunter samples that are presumably not mobile (Figure 42). Due to the large pixel size 

lpix = 1.8 μm, the specific interface of the clay minerals scaled by clay mineral area does not characterise the 

size of clay particles, but rather the size of clay particle aggregates. Therefore, this could not be used to 

quantitatively distinguish between illite and mica, and chlorite and biotite, in Gassum and Bunter sandstone 

samples.  
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a)   b)  

Figure 42: Backscatter electron microscopy, BSEM, image showing mica grains. a) Gassum Formation sandstone. 

b) Bunter Formation sandstone.  

The difference between the kaolinite, and also the illite, contents of the untested Berea sample and of the 

tested Berea sample is below the estimated error margin, and there is no significant difference between the 

interfaces of kaolinite to other minerals in the two samples [Manuscript III]. This suggests that kaolinite was 

neither transported out of the sample nor permanently redistributed during hot water injection.  

Heating did reduce the permeability, which suggests that kaolinite particles were mobilised during the 

experiment. However, the effect of temperature was also largely reversible with cooling, which might 

indicate that particles re-aggregated, which might be the reason that there is no observable alteration in 

images of the tested sample.  

As lpix = 1.8 μm is larger than the smallest kaolinite particles, and changes in the distribution of smaller 

particles might not be observed in QEMSCAN® images. However, higher resolution BSEM images also 

indicate no qualitative alteration in the kaolinite distribution.   

7.6 37BKlinkenberg procedure 

Data from the Klinkenberg procedure on: Berea sandstone samples, sandstone samples from Gassum 

Formation from three localities, and sandstone samples from Bunter Formation from one locality, as 

measured at the GEUS Core Laboratory; and Klinkenberg test data for Rotliegend sandstone samples from 3 

localities from PETGAS, University of Leeds, is used to estimate characteristic equivalent pore size and the 

effects of immobile water on permeability. Results are discussed in chapters 3 and 4, experimental data and 

calculations are included in Appendix A.  

7.7 38BDLVO modelling 

DLVO theory is used in order to estimate effects of temperature and salinity on electrostatic interaction 

energy in relation to fines migration (Chapter 6) [Conference papers II, III, Manuscript II].   
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7.8 39BDatabase analysis 

The PETGAS database of the University of Leeds contains petrophysical measurements on tight gas 

sandstones; this data is used to discuss permeability in chapters 2, 3, and 4, and for a systematic database 

analysis in Manuscript IV. For the latter, samples for which: gas and brine permeability, NMR, mercury 

injection, helium porosity, grain density, mineralogy as quantified using XRD, and BSEM images with a 

lpix = 3 μm/pixel are available are used. Samples with an abnormally low grain density, as compared to their 

mineralogy, are discarded, as this might indicate disconnected porosity or poor sample cleaning. BSEM 

images are examined to verify the absence of drilling mud, and to qualitatively check mineralogy from XRD. 

Results from this investigation are discussed in chapters 2 and 4. 

In addition to the data used in Manuscript IV, specific surface area from nitrogen adsorption is available for 

43 out of the 63 samples. This data is referred to in subsections 2.4.1 and 7.8.2. Those measurements were 

made on samples that were oven-dried over night at 60°C, but not degassed.   

7.8.1 60BPrincipal component analysis of mineralogy 

Samples are grouped based on PCA of the mineralogy. In order to include porosity in the characterisation, 

the mass fraction of each mineral from XRD is converted to the volume fraction based on estimates of 

mineral density from literature [Manuscript IV]. The same PCA method as in Section 7.5.6 is used. 

7.8.2 61BEstimation surface relaxivity 

An average ρ is used to estimate the Sp distribution from the T2 distribution cf. Eq.(23). The value of ρ is 

estimated from S from mercury injection and S from NMR. The Washburn (1921) equation Eq.(69) relates 

capillary pressure Pc to equivalent pore radius: 
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where γHg is the surface tension, and θ is the contact angle. Surface area can be estimated by integration of 

the differential mercury injection curve cf. Eq.(70) (Giesche, 2006; Rootare and Prenzlow, 1967).  
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where VHg is the volume of mercury injected. Eq.(70) can be derived from Eq.(69) for cylindrical capillaries 

where Sp = 2/rp. For stepwise injection of mercury, where fHg,i is the fraction of the porosity that is filled by 

mercury for the i
th
 pore pressure increment Pc,i, S is expressed by Eq.(71). 
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Surface area is estimated from NMR by summation of Sp,i,NMR weighted by the fraction of porosity fNMR that 

has this Sp,i,NMR. Thus, when Sp,i,NMR, is estimated from T2,i cf. Eq.(23), for a uniform ρ, S is:  
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Assuming 100% mercury saturation,   is: 
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A mean value of ρ = 10 μm/s with a standard deviation of 4 μm/s is obtained for the 63 samples of 

Rotliegend sandstone [Manuscript IV]. Values of ρ reported for quartz and kaolinite are only 2 μm/s–5 μm/s 

in NaCl solution (Alam et al., 2014). However, iron-bearing minerals can increase ρ, and values of 

ρ > 18 μm/s are reported for quartz covered with goethite in a mixture containing only 1 wt.% iron, and for 

mixtures of siderite and quartz (Keating and Knight, 2007, 2010). Results in those studies indicate that ρ is 

affected by the mass of iron, and by the structural relation in which iron is present. All 63 samples contain 

iron-bearing minerals, which could account for the estimated values of ρ.  

Experimental artefacts might affect estimates of ρ based on S. Incomplete saturation with mercury would 

yield a lower S from mercury injection, resulting in an overestimation of ρ cf. Eq.(72). On the other hand, if 

larger pores are accessed only through smaller pores during mercury injection, this would yield a higher S, 

and accordingly an underestimation of ρ.  

Some authors estimate ρ by comparing the mode of the differential mercury injection curve with the mode of 

the NMR T2 distribution, and report values in a range 6 μm/s–50 μm/s (Coates et al., 1999; Dastidar et al., 

2006). This method yields values in a range of 1 μm/s–300 μm/s for the 63 Rotliegend samples. Other 

authors overlay the cumulative mercury injection curve and the cumulative NMR T2 curve to estimate ρ (e.g. 

Mbia et al., 2014). However, the shapes of these curves may differ, whereby only sections of the curves for 

some samples can be overlaid. If the sections corresponding to the smaller pores are overlaid, the results for 

the Rotliegend samples are comparable to estimates of ρ based on S. 

The specific surface area as measured by nitrogen adsorption, for 43 samples, is also used to estimate ρ cf. 

Eq.(72) yielding ρ = 18 μm/s ± 22 μm/s. A higher ρ could be due to a smaller surface area measured by 

nitrogen adsorption; values of ρ = 60 μm/s–40 μm/s are obtained for some samples. These values suggest 

that S is underestimated by nitrogen adsorption. This could be due to interference of water films on the 

mineral surface, as samples were only oven-dried, and not degassed, prior to measurements. Discarding three 
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outliers with ρ > 35 μm/s yields ρ = 13 μm/s ± 6 μm/s for the remaining 60 samples, which is comparable to 

ρ = 10 μm/s ± 4 μm/s.  

The value of ρ affects ki (cf. Eq.(25)), and thereby the fraction of the porosity that is required for the sum of 

ki to equal the measured permeability, which is considered as the fraction of porosity that is effective for 

permeability [Subsection 2.4.4; sections 4.3 and 4.4; Manuscript IV], and the maximum T2 time that 

contributes to permeability, T2,max. The effect of ρ on the maximum equivalent pore size that is effective for 

permeability, rp,NMR,max, is offset by the effect of ρ on the Sp calculated from T2,max cf. Eq.(23).  

Figure 43 shows the effect of ρ on the estimated effective fraction of porosity and on rp,NMR,max for the two 

samples shown in Chapter 2 and Chapter 4 (Figure 8, Figure 9, and Figure 12). For ρ < 6 μm/s summation of 

ki over the entire pore volume underestimates the measured permeability for some samples, including Sample 

5B (Figure 43a). The stepwise decline of fraction of effective porosity (Figure 43a), and the saw tooth trend 

of rp,NMR,max in Figure 43b reflect the discretisation of the T2 bins, i.e., for several values of ρ the maximum T2 

is constant.   

a) b)  

Figure 43: a) The fraction of porosity effective for permeability is the fraction of porosity that is required for the 

modelled permeability, k, to match the measured k. The effective porosity decreases as a function of surface relaxivity, 

ρ, because the modelled permeability of each pore size increment is larger with a higher ρ; thus fewer pore size 

increments are required to match the measured k. b) The maximum equivalent pore size that is effective for 

permeability, rp,NMR,max, as estimated from the maximum T2 time that is effective for permeability, T2,max, is relatively 

constant with ρ as the smaller T2,max with higher ρ is partly offset by a higher r estimated from T2 with higher ρ. In 

Sample 5B the measured permeability exceeds the modelled permeability for the entire pore volume for ρ < 6 μm/s.  

7.8.3 62BTexture analysis 

BSEM images with lpix = 3 μm are used to estimate the distribution of clay minerals in the intergranular pore 

volume. This resolution is too low to resolve pores among clay minerals, therefore pixels that contain both 

clay particles and porosity have a lower BSE intensity, and accordingly a lower grey level, than pixels that 

contain only clay minerals, and a higher grey level than pixels with only porosity. By using a double 

threshold, the images can therefore be segmented into: grains, pores and clay minerals, and pores without 
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clay minerals (resulting in Figure 9 in Section 2.4.4). Sample-specific thresholds are estimated based on a 

histogram of pixel grey levels; histograms are not equalised, as the histograms shape depends on mineralogy 

(Figure 44).  

a)  b)  

Figure 44: Histograms of grey level, where grey level reflects the backscattered electron, BSE, intensity. Threshold 1 

separates solid grains, with a higher intensity, from clay minerals and pore volume. Threshold 2 separates pixels that 

contain both minerals and porosity from clay-free porosity. a) The distinct peak smaller than Threshold 2 indicates the 

presence of clay-free porosity. b) The distinct peak for high grey levels is due to the presence of minerals with a 

relatively high density. [Figure a is from Manuscript IV]. 
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8 7BConclusions 

Both the physical basis and the simplicity of the Kozeny equation contribute to the continued application of 

this equation to model permeability (e.g., Berryman and Blair, 1987; Carman, 1937; Hossain et al., 2011; 

Mortensen et al., 1998; Pape et al., 2006; Walderhaug et al., 2012). However, the Kozeny equation relates 

permeability to porosity and specific surface area per pore volume, Sp, for materials with a uniform 

equivalent pore size. Therefore, in sandstones that have a pore size distribution, additional assumptions or 

empirical fitting parameters are required in order to estimate the Sp that can be considered effective for 

permeability, i.e., the Sp that, in combination with porosity, would estimate permeability.   

When permeability is controlled by intergranular pores, the effective Sp may be estimated from the specific 

interface length per pore area, Ip, from images that are acquired at an appropriate resolution (Berryman and 

Blair, 1987; Solymar and Fabricius, 1999) [Manuscript II and III]. As Ip depends on resolution and on 

porosity threshold, and furthermore, as a parameter, K, is required in order to convert from 2D Ip to 3D Sp, 

calibration to data would be required. Image-based estimates of Sp were used for comparison of permeability 

among samples; for sandstones from three formations, Berea sandstone, Gassum Formation, and Bunter 

Formation, permeability was estimated within a 50% margin, by using one value of K and a constant ratio of 

resolution to effective Sp for samples from the three formations [Manuscript III]. 

By summation of permeability in increments of the pore size distribution Hossain et al. (2011), apply the 

Kozeny equation to model permeability in samples with a range of pore sizes. The NMR T2 time distribution 

can be converted to an Sp distribution if the surface relaxivity, ρ, of the sample is known; the permeability in 

each Sp increment is then estimated by using Kozeny’s equation. Additional data, from mercury injection, 

and the specific surface area from nitrogen adsorption, were used to estimate ρ [Manuscript IV and Chapter 

7]. Summation of permeability increments up to the measured permeability was used to estimate which pores 

are effective for permeability in 63 samples of Rotliegend sandstone [Manuscript IV]. 

In samples where summation over the entire pore volume yielded the measured permeability, the fraction of 

porosity containing the largest pores controlled the total permeability, i.e., the permeability in the smaller 

pore sizes was negligible as compared to the total permeability. This was observed in samples with a high 

clay-free porosity. On the other hand, in samples with a low porosity, and in samples where clay particles 

were distributed throughout the intergranular pores yielding a low clay-free porosity, permeability was 

estimated by summation over only a fraction of porosity which contained the smaller pores. This suggests 

that larger pores were only connected through smaller pores in those samples; whereby smaller pores would 

limit the flow rate in larger pores. As the range of pores that contribute to permeability was sample 

dependent, image analysis was used to indicate samples in which larger pores would control permeability 

[Manuscript IV].   

The Klinkenberg (1941) equation for gas slip is based on similar geometrical assumptions as the Kozeny 

equation, when the Kozeny constant is calculated as in Mortensen et al. (1998), i.e., for a 3D network of 
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straight, orthogonal, equal spaced, intersecting, equal sized capillaries. Accordingly, a positive correlation 

was observed between the effective equivalent pore size for permeability and the characteristic equivalent 

pore size for gas slip. Whereas no systematic difference was observed, there was an order of magnitude 

difference between the two measures for some samples. Factors that might contribute to this difference 

include: a different effect of heterogeneity on permeability than on gas slip; a different effect of surface 

roughness on permeability than on gas slip; and experimental error during the Klinkenberg procedure.  

A reduction in pore pressure can increase gas slip, and simultaneously reduce the permeability by increasing 

the net stress. The net effect on the apparent permeability to gas would be relevant to both the Klinkenberg 

procedure and to production from tight gas sandstone reservoirs; this was modelled by combining 

expressions for slip flow and for the stress sensitivity of permeability.  

Permeability to brine was modelled by including a layer of immobile water in permeability modelling by 

using the Kozeny model with the Sp distribution from NMR [Manuscript IV], and by using Klinkenberg 

model and the characteristic equivalent pore size for gas slip. However, the measured brine permeability 

could not be estimated by assuming the same thickness of immobile water in different samples. The 

thickness of immobile water as estimated from the measured brine permeability by using these methods 

ranged from 4 nm–1200 nm. This large range indicates that other factors, possibly the presence of illite and 

kaolinite minerals, contributed to a lower permeability to gas than to brine in some samples [Manuscript IV]. 

This introduces uncertainty when the permeability of a geothermal aquifer to brine is estimation based on gas 

permeametry.  

Thermal expansion as modelled based on the Kozeny equation would have a negligible effect on 

permeability; and accordingly, results from a literature survey indicated no effect of temperature in flow-

through experiments with inert fluids at confining stress levels below 14 MPa and temperatures ranging from 

20°C–150°C [Manuscript I]. Heating was found to reduce permeability in tests with distilled water or brine 

in kaolinite-bearing sandstones, which suggests that heating might mobilise kaolinite particles [Manuscripts I 

and II].  

Permeability reduction was observed when the NaCl concentration was reduced at 20°C in a sample of Berea 

sandstone [Manuscript II]; permeability reduction due to reduction of the NaCl concentration is often 

attributed to kaolinite mobilisation and filtration (Khilar and Fogler, 1984; Kia et al., 1987). Heating to 80°C 

also reduced permeability in other tests on comparable Berea sandstone samples; subsequent reduction of the 

NaCl concentration did not affect permeability, which indicates that kaolinite was indeed mobilised by 

heating. Both heating and salinity reduction increase the electrostatic repulsion forces between quartz and 

kaolinite, which might and mobilise kaolinite particles (Schembre and Kovscek, 2005). 

Whereas restoring the NaCl concentration did not significantly improve permeability in the test at 20°C, the 

permeability reduction due to heating was largely reversible with cooling. At 80°C, permeability depended 
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on the flow rate, increasing the flow rate increased permeability reversibly; by contrast, no flow rate 

dependency was observed in the test where the NaCl concentration was reduced at 20°C [Manuscript II]. 

These differences suggest that mobilised kaolinite had a different effect on permeability at 80°C than at 

20°C. A higher electrostatic repulsion between kaolinite and quartz surfaces at 80°C than at 20°C might 

possibly prevent filtration in heated samples. Interactions among mobilised particles might affect the pore 

fluid viscosity locally; this could appear as a permeability reduction when permeability is calculated by using 

Darcy’s law and the viscosity of the injection fluid.  

DLVO theory was used to compare the effects of salinity and temperature on the net interaction energy 

between kaolinite and quartz and among kaolinite particles [Conference papers II and III, Manuscript II]. An 

increase in surface charge density due to heating would be required in order obtain a net repulsive interaction 

that might mobilise kaolinite  and account for the observed permeability reduction. Published measurements 

of surface potential or surface charge, indeed indicate that heating increases the surface charge of kaolinite 

and quartz substantially (Brady et al., 1996; Rodríguez and Araujo, 2006). The higher surface charge 

densities might limit filtration of kaolinite particles. There would be less repulsion among kaolinite particles 

than between kaolinite and quartz, which presumably would favour interactions among kaolinite particles 

over filtration of kaolinite particles. 

Differences between the effects of temperature and salinity could be relevant for geothermal heat storage in 

kaolinite bearing aquifers, as these suggest that: cooling of the reservoir during winter might improve 

permeability; increasing the flow rate might offset permeability reduction due to heating; salinity changes 

might have less effect in hot aquifers than in laboratory tests at room temperature.  

Quantitative analysis of images in which mineralogy was mapped by using the QEMSCAN® system, was 

used to generate statistics on mineralogy, reactive surface area and millimetre scale heterogeneity 

[Manuscript III]. Minimum representative areas were different for different phases within the same sample. 

Patchy cementation in samples of Bunter Formation sandstone resulted in a representative area that exceeded 

the 100 mm
2
 interrogation area that was used in this study.   

Principal component analysis  of subsections of images could be used to distinguish among subsections of 

images from Gassum Formation sandstone, Bunter Formation sandstone and Berea sandstone; a reasonable 

distinction could also be made between subsections of an image of untested Berea sandstone and an image of 

tested Berea sandstone, after 150 days of injection of 80°C NaCl solution.  

Lamination, of mineral abundance, of porosity, and of pore-mineral specific interface, was more pronounced 

in the tested Berea sandstone sample than in the untested sample. A loss of siderite and a corresponding gain 

in iron oxide/hydroxide appears to have enhanced existing lamination in the tested sample, by precipitation 

of iron oxide/hydroxide predominantly in finer grained, lower porosity, lamina. Both experimentally 

measured permeability and estimates of permeability based on image analysis indicated that the enhanced 

lamination only caused a minor permeability reduction.    
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9 8BRecommendations for further investigation 

This investigation addressed temperature effects on sandstone permeability, based on laboratory flow-

through experiments that were conducted at low confining stress levels. Several authors suggest that heating 

could increase rock compressibility (e.g., Faulkner and Rutter, 2003; Stottlemyre, 1981); mechanical tests 

would be required in order to assess changes in compressibility and the effects of this on permeability.   

Kaolinite is observed in samples of Gassum Formation sandstone from different localities. To avoid 

permeability reduction by hot water injection, localities with a low kaolinite content would be preferred. If 

hot water injection is planned in localities with a high kaolinite content, effects of flow rate and temperature 

on permeability might be investigated by means of additional flow-through experiments tests, using the in 

situ pore fluid composition and the range of flow rates that would be expected in the aquifer.  

Quantitative image analysis was used to estimate mineralogy and reactive surface area; this data can be used 

for geochemical modelling of effects of hot water injection. Calibration is required, due to the effects of 

resolution and a porosity threshold on interface length in images; this could involve calibrating: image 

porosity with helium porosity; image mineralogy with mineralogy from quantitative X-ray diffraction; and 

specific interface length per pore area with specific surface area from nitrogen adsorption. Furthermore, 

interfaces of other minerals to clay minerals in images could be considered as reactive interfaces, due to 

porosity among clay particles.  

Interrogation areas larger than the 100 mm
2
 that were used in this study might be required for quantification 

of minerals with a patchy distribution, or for laminated samples. Nonetheless, the content of 

gypsum/anhydrite in Bunter sandstone samples that is observed in side trims could differ significantly from 

the content in adjacent plug samples. Non-destructive methods of quantifying the content of these minerals 

in the plugs prior to testing would be needed in order to quantify changes due to hot water storage. For other 

minerals, such as siderite in Berea sandstone, alteration could be estimated by comparing adjacent tested and 

untested plug samples.  
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A-I: Gas slip 

Data: 

The Klinkenberg procedure was performed on sandstone samples from Gassum Formation and from Bunter 

formation at the Geological Survey of Denmark and Greenland (GEUS) Core Laboratory. Apparent 

permeability, ka, was measured by using flow of nitrogen gas at three mean pore pressures,  ̅. Porosity was 

measured using helium porosimetry, and grain density was determined from a combination of Archimedes’ 

test using mercury and the helium porosity. Confining pressure was 2.8 MPa.  

The Klinkenberg procedure was also performed on Rotliegend sandstone samples from the PETGAS project. 

These tests were performed using helium gas flow at four or more  ̅. Samples from Group 6 were tested 

using a pulse-decay technique (Jones, 1997), whereas the other samples in Table C1.1 were tested using 

steady state permeametry.  

Apparent permeability measurements from the Klinkenberg tests were plotted as a function of 1/ ̅ in a 

Klinkenberg plot and fit using a straight line. The permeability, k, is the y-intercept and the slope is kbslip. 

The correlation coefficient, Rc, for the fit indicates the goodness of the fit; API (1998) recommends Rc  > 

0.997 for three data points and Rc > 0.95 for four data points. However, as Rc < 0.997 for all measurements 

on Bunter sandstone, Gassum sandstone and Berea sandstone, data with Rc > 0.96 for three data points were 

used. For samples from groups 1 and 3 the confining stress was 10.3 MPa; for samples in group 6 confining 

stress was 68 MPa.  

The pressure gradient across the samples was low during tests on some samples in the PETGAS dataset. 

Therefore the uncertainty on ka is high. As the difference among ka was small the uncertainty on the gradient 

of the Klinkenberg plot was high. Therefore these data were not included to estimate the characteristic 

equivalent pore size for gas slip, rp,slip, despite Rc > 0.95 for four data points.  

Calculations 

The mean free path length,  ̅, was estimated from the mean  ̅ applied during the Klinkenberg procedure, by 

assuming a constant gas viscosity, μ, in Eq.(A1) (Loeb, 1927).   

 
2

RT

MP

 
     (A1) 

where M is the molar mass of the gas, R is the gas constant, and T is the absolute temperature. 

The characteristic equivalent pore size for gas slip was calculated by using Eq (A2) (Klinkenberg, 1941) 
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where cslip = 1 (Klinkenberg, 1941).  

In order to calculate rp,slip  using the uniform slip model, the generalised reduced gradient solver was used 

(Fylstra et al., 1998) to solve Eq.(A3) for Kn, and rp,slip was calculated from Kn by using Eq.(A4). 
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α0,B&K = 1.358 for cylindrical capillaries, α1 = 4 and β = 0.4 (Beskok and Karniadakis, 1999).   

 Kn
r


   (A4) 

Knudsen numbers for tests on Rotliegend 6.01 and 6.23 were 1.3 and 2.5 indicating that gas flow was in the 

transition regime therefore the Klinkenberg slip model would not be valid. The tests on sample Gassum Aa 

had Kn =  0.13 indicating that flow was on the boundary of the slip and transition flow regime. For other 

samples flow was in the slip regime during the Klinkenberg tests, i.e., Kn < 0.1.  

Kozeny’s constant, c was calculated by using Eq.(A5)  (Mortensen et al., 1998) and rp,kozeny was calculated by 

using Eq.(A6) (Kozeny, 1927).  
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Results: 

Table A1.1: Porosity, ϕ, and data from Klinkenberg procedure: correlation coefficient of Klinkenberg plot, Rc; 

permeability corrected for gas slip k; slip factor, bslip. Calculated: Kozeny factor, c; effective equivalent pore size based 

on Kozeny’s Equation, rp,kozeny; characteristic equivalent pore size for gas slip rp,slip from Klinkenberg’s slip model; and 

rp,slip from the unified slip model.  

Sample ϕ
a 

 

 

 

% 

Rc
 b

 k
c 

 

 

 

 mD 

bslip
c 

 

 

 

 MPa 

c rp,kozeny 

 

 

 

μm 

rp,slip 

klink- 

enberg
d
 

 

μm 

rp,slip 

unified 

slip 

model
d
 

μm 

Gassum Fa 17.8 0.963 141 (6) 0.037 (2) 0.20 3.95 (9) 0.70 (3) 0.82 (2) 

Gassum Aa 11.6 0.975 1.61 (6) 0.256 (11) 0.19 0.536 (13) 0.101 (4) 0.127 (2) 

Berea A1 17.0 0.990 23.3 (9) 0.0201 (8) 0.20 1.64 (3) 1.29 (5) 1.48 (3) 

Rotliegend 3.3 10.9 0.997 0.105 (4) 0.296 (11) 0.19 0.141 (3) 0.259 (11) 0.285 (11) 

Rotliegend 3.4 13.2 0.992 3.61 (14) 0.106 (4) 0.20 0.75 (2) 0.72 (3) 0.77 (3) 

Rotliegend 3.9 12.7 0.999 
0.357 

(14) 
0.173 (7) 0.20 0.24 (6) 0.440 (18) 0.48 (2) 

Rotliegend 3.11 13.9 0.960 0.312 (12) 0.126 (5) 0.20 0.213 (5) 0.61 (3) 0.65 (3) 

Rotliegend 3.12 17.5 1.000 0.71 (2) 0.164 (7) 0.20 0.281 (6) 0.47 (2) 0.51 (2) 

Rotliegend 1.33 28.7 0.995 1.67 (7) 0.295 (11) 0.22 0.326 (7) 0.256 (8) 0.286 (11) 

Bunter 4001HC 30.4 0.986 320 (13) 0.0632 (3) 0.22 4.35 (9) 0.41 (2) 0.48 (2) 

Bunter 4002HC 28.1 0.980 220 (9) 0.124 (5) 0.22 3.79 (8) 0.209 (8) 0.249 (9) 

Bunter 4010VA 30.1 0.988 245.4 (9.8) 0.041 (1) 0.22 3.83 (8) 0.63 (3) 0.71 (3) 

Bunter 4012VC 30.2 0.989 300 (12) 0.0553 (2) 0.22 4.23 (9) 0.47 (2) 0.54 (2) 

Gassum St 6VB 28.1 0.984 154 (6) 0.0221 (9) 0.22 3.16 (7) 1.17 (5) 1.32 (5) 

Gassum St VB 28.1 0.988 127 (5) 0.0277 (11) 0.22 2.88 (6) 0.94 (4) 1.06 (4) 

Gassum St86Va 28.7 0.993 137 (5) 0.0297 (12) 0.22 2.94 (6) 0.88 (4) 1.00 (4) 

Rotliegend 6.01 14.0 0.981 0.0056 (8) 2.1 (0.3) 0.20 0.028 (2) 0.038 (7) 0.053 (7) 

Rotliegend 6.23 10.7 0.976 0.012 (2) 3.9 (0.6) 0.19 0.046 (4) 0.019 (3)  0.027 (4) 
a
 estimated error 0.1 porosity %. 

b
 nr data points: 3 in Gassum, Berea and Bunter sandstone samples; 4 Rotliegend 1 and 3 samples; 6 for Rotliegend 6 

samples. 
c
 percentage error on permeability for 68% level of confidence  was 4% for k > 1 mD; 10 % for 1 >k >0.1 mD (GEUS 

Core Laboratory). For k < 0.01 mD 15% error was estimated. The same percentage errors were used for bslip.  
d
 error is estimated by calculating rp,slip for the upper and lower limits of b,slip. 

Rotliegend data part of PETGAS database, University of Leeds, measured using helium gas flow. Other sandstone 

formations measured by Geological Survey of Denmark and Greenland GEUS using nitrogen gas flow. Except 

Rotliegend 6.01 and 6.23 all samples are measured using steady state permeametry, samples 6.01 and 6.23 were 

measured using a pulse decay technique. 



A-II: Immobile water layer thickness 

Data: 

Permeability to brine was measured on samples of sandstone from Gassum Formation and on samples of 

Berea sandstone at the GEUS Core Laboratory. Synthetic brine with a composition based on the expected 

composition of the pore fluid of the Gassum sandstone Formation was used in order to prevent fines 

migration or chemical reactions. The brine was composed of 4.4 M NaCl and minor contributions of Ca, Mg, 

K, Sr, Br, SO42- and HCO3- and had an ionic strength of 5.0 M. Saturation was verified using Archimedes’ 

test. A confining pressure of 2.8 MPa was applied, as in the gas permeability measurements.  

Despite de-airing the brine prior to injection, alteration of ankerite, iron bearing carbonate cement, resulted 

in precipitation of rims of iron oxides or iron hydroxides on the ankerite cement in Gassum sandstone 

samples.  

Permeability to brine of Rotliegend sandstone samples in the PETGAS project was measured with 3.45 M 

NaCl solution. Saturation was verified by using NMR. A confining pressure of 10.3 MPa was applied, as in 

the gas permeability measurements.  

Calculations: 

The immobile water thickness, τ, was calculated by using Eq.(A7) and data from the Klinkenberg procedure 

(Appendix A-I).  
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Results: 

Table CA.1: Measured permeability to brine, kw, and immobile water layer thickness, τ, as estimated cf. Eq.(A7). 

Sandstone 

sample 

kw
a
 

mD 

τ
b
 

nm 

Gassum Fa 22 (2) 300 (20) 

Gassum Aa 1.41 (14) 4 (4) 

Berea A1 7.6 (8) 360 (50) 

Rotliegend 3.3 0.0060 (12) 146 (13) 

Rotliegend 3.4 0.43 (9) 320 (40) 

Rotliegend 3.9 0.026 (5) 230 (20) 

Rotliegend 3.11 0.012 (2) 360 (30) 

Rotliegend 3.12 0.017 (3) 310 (20) 

Rotliegend 1.33 0.26 (5) 110 (20) 
a
 estimated error, 20% Rotliegend samples, 10% other sandstone samples.  

b
 error based on maximum and minimum τ calculated with error bounds for kw, rp,slip, and k.  

Gassum and Berea data are part of Crossover project measured at GEUS Core Laboratory using a brine with 5.0 M 

ionic strength. Rotliegend data part of PETGAS database measured using 3.45 M NaCl solution. 

Table A2.2: Characteristic equivalent pore size for gas slip, rp,slip, was estimated from bslip by using the unified gas slip 

model in Appendix A-I; maximum effective equivalent pore size, rp,NMR,max, was estimated from gas permeability and 

NMR [Manuscript IV]. Immobile water layer thickness, τ, was calculated based on measured permeability and rp,slip, and 

also by assuming that the pores smaller than or equal to rp,NMR,max also contribute to brine flow in Manuscript IV.  

Sample 

 

 

rp,slip
a  

from unified 

slip model 

 

μm 

τ
b 

from unified 

slip model 

 

nm 

rp,NMR,max 

from NMR  

pore size 

distribution 

μm  

τ
c
 

from NMR  

pore size 

distribution 

nm 

Rotliegend 3.4 0.77 (3) 320 (40) 2.2 (2) 420 (30) 

Rotliegend 3.9 0.48 (2) 230 (20) 0.61 (4) 130 (20) 

Rotliegend 3.12 0.51 (2) 310 (20) 0.81 (6) 210 (20) 

Rotliegend 1.33 0.286 (11) 110 (20) 0.93 (7) 160 (20) 
a
 error is estimated by calculating rp,slip for the upper and lower limits of bslip. 

b
 error based on maximum and minimum τ calculated with error bounds for kw, rp,slip and k. 

c
  error margins in brackets indicate result range for   6-14 μm/s. 

 

 

 



Appendix B: Journal Manuscripts 

 Manuscript I: The effect of hot water injection on sandstone permeability 

Co-authors: Haugwitz, C; Jacobsen, PSM; Kjøller, C; Fabricius, IL 

Geothermics, 50, 155-166, 2014 

 

 

 Manuscript II: Different effects of temperature and salinity on permeability reduction by fines 

migration in Berea sandstone 

Co-authors: Kjøller, C; Riis, JF; Kets, F; Fabricius, IL
 

Geothermics, 53, 225-235, 2015 

 

 Manuscript III: Quantitative image analysis of sandstone mineralogy with application to hot water 

storage in geothermal aquifers
 

Co-authors: Sindern, S;  Fabricius, IL 

Submitted to Geothermics on 17 April 2014;  

 

 

 Manuscript IV: Permeability in Rotliegend Gas Sandstones to gas and brine as predicted from NMR, 

mercury injection and image analysis 

Co-authors: Fabricius, IL; Fisher, QJ; Grattoni, CA 

Under review at Journal of Marine and Petroleum Geology 
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he effect of hot water injection on sandstone permeability
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a b s t r a c t

Seasonal energy storage can be achieved by hot water injection in geothermal sandstone aquifers. We
present an analysis of literature data in combination with new short-term flow through permeability
experiments in order to address physical and physico-chemical mechanisms that can alter permeability
vailable online 31 October 2013

eywords:
andstone
ermeability
emperature dependency

when sandstones are heated from 20 ◦C to 70–200 ◦C. The pore surface area per unit pore volume was
used to normalise permeability data, so that the temperature effect on samples with different pore size
could be compared. In sandstones containing the clay mineral kaolinite, heating reduced permeability,
suggesting that the observed permeability reduction was due to kaolinite mobilisation. The effect was
partly reversible.

© 2013 Elsevier Ltd. All rights reserved.
aolinite mobilisation

. Introduction

Geothermal sandstone aquifers with temperatures below 75 ◦C
rovide renewable energy for district heating in Denmark (Lund
t al., 2011); so in order to increase the thermal energy available
uring the winter, seasonal storage of surplus heat from renewable
ources is considered. This would involve that during summer,
roduced geothermal waters are heated prior to re-injection so
hat the temperature of the reservoir is increased. The advantage of
his kind of heat storage is that the combination of a relatively high
n situ temperature and a low aquifer flow rate will minimise heat
oss to the environment. A concern with regard to the feasibility
f this method is the effect of increasing the temperature on the
quifer permeability. At operating temperatures exceeding 100 ◦C,
orrosion of experimental equipment has been found to cause a
rogressive permeability decline by building up a filter cake at the

nlet of the sample (Potter et al., 1981; Milsch et al., 2009). How-
ver, increasing the temperature may reduce permeability by other
echanisms as well, including: thermal expansion (Somerton,
992), increased compressibility (Stottlemyre, 1981), mineral
issolution/precipitation (Tenthorey et al., 1998), changes of the
lectrical double layer (EDL) thickness that affect the effective
orosity (Andreassen and Fabricius, 2010), or particle mobilisation
ue to changes in the surface charge of the minerals (Schembre

∗ Corresponding author. Tel.: +45 4525 5085.
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375-6505/$ – see front matter © 2013 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.geothermics.2013.09.006
and Kovscek, 2005). Several authors suggest that released particles
reduce permeability by plugging pore throats (Mungan, 1965;
Stottlemyre, 1981; Blair et al., 1984; Khilar and Fogler, 1984;
Somerton, 1992; Ochi and Vernoux, 1998; Schembre and Kovscek,
2005).

Porosity reduction due to thermal expansion depends on the
level of confining stress. When the sample cannot expand, the
porosity is reduced by expansion of the grains into the pore space,
whereas in a sample that is free to expand, both the grains and the
sample expand. When the expansion of the sample equals that of
the solids, the porosity is not reduced.

Heating also affects the stability of mineral phases and chem-
ical reaction rates. This can lead to dissolution and precipitation
that alter the permeability. Dissolution of silica can also lead to
an apparent decrease in permeability if this increases the viscos-
ity of the pore fluid (Stottlemyre, 1981). The amount of mineral
dissolution and precipitation depend amongst other things on the
stress state, the nature of the pore fluid, the minerals present and
the duration of the experiment (Tenthorey et al., 1998). Investigat-
ing the effect of mineral dissolution and precipitation requires long
term tests in which pore fluid composition is monitored as well as
permeability (Tenthorey et al., 1998; Milsch et al., 2009). Immediate
effects of heating can be due to changes in the electric double layer
(EDL) at the mineral pore water interface. An electrical double layer
forms on the minerals due to interaction between charged sites on
the mineral surface and water molecules. The EDL is composed of a

net surface charge, and a diffuse ion-bearing layer, with a net equal
and opposite charge (Lorne et al., 1999). The thickness of the diffuse
layer depends on the concentration of ions in the pore fluid and is
characterised by the inverse Debye parameter, �−1 (Lyklema et al.,
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Nomenclature

e elementary charge (q, C)
I ionic strength of electrolyte (n/L3, mol/l)
k absolute permeability, L2, in text and figures: m2; in

tables: mD
kB Boltzmann’s constant (mL2/t2T, J/K)
NA Avogadro’s constant (n−1, mol−1)
S specific surface area (grain surface area to total rock

volume) (L2/L3, m2/cm3)
Ss specific surface area per unit solids volume (grain

surface area to solids volume) (L2/L3, m2/cm3)
Sp specific surface area per unit pore volume (grain

surface area to pore volume) (L2/L3, m2/cm3)
T absolute temperature (K)
Vs volume of solids (m3)
˛ linear thermal expansion coefficient (K−1)
εo permittivity of vacuum (q2t2/mL3, F/m)
εr relative dielectric permittivity

−1

1
a
e

c
c
b
k
F
a
c

s
r
t
t
s
o
i
w
h
e
d
e
r
h

2

2

v
k

k
T
h
p

c

� inverse Debye parameter (L, m)
� porosity

995). The ions and water molecules that are close to the surface
re immobilised, so an increased EDL thickness could reduce the
ffective pore volume (Andreassen and Fabricius, 2010).

Temperature induced changes in the EDL or the surface charge
an have another effect in kaolinite bearing sandstone. These
hanges can increase the repulsive electrical double layer force
etween similarly charged diffuse layers, which can mobilise
aolinite particles resulting in permeability reduction (Khilar and
ogler, 1984; Schembre and Kovscek, 2005). High flow rates can
lso mobilise particles and cause permeability reduction, when a
ritical flow rate is exceeded (Ochi and Vernoux, 1998).

An overview of existing data (Rosenbrand and Fabricius, 2012)
hows that in numerous laboratory investigations heating from
oom temperature to 70–200 ◦C reduces permeability; however,
here are also reported cases where heating has no effect. In 11 of
he 25 published investigations, the kaolinite bearing Berea sand-
tone was used. In the present paper, we include new experiments
n Berea sandstone that show a permeability reduction due to heat-
ng, as is also observed in the literature data. Short-term tests,

here the permeability is measured as soon as the temperature
as stabilised, allow comparison of physical and physico-chemical
ffects between samples. In order to normalise the permeability
ata representing highly variable pore size, we use Kozeny’s (1927)
quation to estimate the surface area per unit pore volume, Sp. We
ule out contamination for our tests, which thereby support the
ypothesis that heating affects kaolinite mobilisation.

. Theory

.1. Specific surface

The specific surface, S, is defined as the internal surface area/rock
olume ratio. According to Kozeny (1927), S relates permeability,
, to porosity, �, of a homogenous sedimentary rock:

= c�3

S2
(1)

he factor c accounts for the geometry of the porous medium. In a
omogeneous medium it can be expressed as a direct function of

orosity (Mortensen et al., 1998).

=
(

4 cos

(
1
3

arccos

(
�

82

�3
− 1

)
+ 4

3
�

)
+ 4

)−1

(2)
ics 50 (2014) 155–166

It should be noted that when S is measured by nitrogen adsorption
(BET, Brunauer et al., 1938) only chalk and artificial sand made from
glass beads have been found to be homogeneous enough to follow
Kozeny’s equation directly (Donaldson et al., 1975; Mortensen et al.,
1998). For most natural sandstones, specific surface from BET will
be higher than S calculated from porosity and permeability.

The ratio Sp (Eq. (3)), expresses the internal surface area per
unit of pore volume. This is inversely related to the pore radius and
thereby allows comparison of porosity and permeability changes
between lithologies with different pore size.

Sp = S

�
=

√
c�

k
(3)

Sp can be expressed as a function of the internal surface area per
unit volume of solids Ss (Eqs. (4) and (5)) (Fabricius et al., 2007).

Sp = (1 − �)Ss

�
(4)

Ss = S

1 − �
(5)

2.2. Porosity

From Eq. (1) it follows that permeability may be directly influ-
enced by porosity reduction. A porosity reduction due to heating
without a phase change of the minerals depends on the expansion
of the solid volume (i.e. the grains only) and of the sample bulk
volume (i.e. grains and pore volume). The volume expansion of the
solids depends on the specific mineral thermal expansion coeffi-
cient, whereas the expansion of the bulk volume also depends on
the level of the confining stress. Heating results in thermal strain,
which is characterised by the one-dimensional coefficient of ther-
mal expansion ˛. We estimated the porosity ��T after applying a
temperature change �T in terms of the original bulk volume VB,0
and the original porosity �0 from the expanded bulk, VB,�T, and
expanded solid, Vs,�T, volumes, assuming isotropic expansion so
that the volumetric expansion is three times the linear expansion.

VB,�T = VB,0(1 + 3˛bulk�T) (6)

Vs,�T = Vs,0(1 + 3˛solid�T) (7)

Expressing the original solid volume in terms of the original poros-
ity and the bulk volume, Eq. (7) becomes:

Vs,�T = (1 − �o)VB,0(1 + 3˛solid�T) (8)

The porosity after a temperature change, �T, is then given by Eq.
(9) where VP,�T is the pore volume after �T.

��T = VP,�T

VB,�T
= VB,�T − VS,�T

VB,�T

= VB,0(1 + 3˛bulk�T) − (1 − �0)VB,0(1 + 3˛solid�T)
VB,0(1 + 3˛bulk�T)

(9)

This simplifies to Eq. (10).

��T = 1 − (1 − �0)(1 + 3˛solid�T)
1 + 3˛bulk�T

(10)

2.3. Electrical double layer

The formation of an EDL on the mineral surface may reduce the

mobility of the fluid in the EDL, and reduce the effective pore vol-
ume in which water can flow (Andreassen and Fabricius, 2010). The
thickness of the diffuse layer is characterised by the inverse Debye
parameter, �−1 (Eq. (11)), which predicts the distance over which
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Table 1
Porosity and permeability measured prior to and after heating experiments. Samples PC1 and PC2 are heated and cooled first with pure Milli-QTM filtered water and
subsequently with 0.34 M aqueous NaCl solution. Specific surface area is measured using N2 adsorption (BET method) and reported in area per volume of solids.

Sample code � before test � after test Gas permeability
before test (mD)

Gas permeability after
test (mD)

Klinkenberg
permeability before
test (mD)

Klinkenberg
permeability after test
(mD)

Specific surface area,
Ss(m2/cm3)
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between 23 C and 80 C is included with the literature data in
Table A.1.
PC1 0.181 ± 0.001 0.185 ± 0.001 63 ± 3 42 ± 3
PC2 0.183 ± 0.001 0.184 ± 0.001 57 ± 3 43 ± 3

he surface potential is reduced by a factor 1/e (e is the base of the
atural logarithm) (Lyklema et al., 1995).

−1 =
√

ε0εrkBT

2e2NAI
(11)

here kB is the Boltzmann constant, ε0 is the vacuum permittivity,
r is the relative static permittivity of the solution, NA is Avogadro’s
onstant, e is the electron charge, I is the ionic strength of the solu-
ion and T is absolute temperature.

Eq. (11) suggests that heating increases �−1 and would there-
ore reduce the effective pore volume (Andreassen and Fabricius,
010). This applies only when εr is assumed constant, however,
ecause a temperature rise causes a more than proportional reduc-
ion in the relative static permittivity of water, �−1 is reduced as a
onsequence of heating.

A change in �−1 also affects kaolinite particle mobilisation
Khilar and Fogler, 1984; Schembre and Kovscek, 2005). The inter-
ction between double layers of two negatively charged surfaces
esults in a repulsive EDL force (Israelachvili, 2011). The EDL repul-
ion force is countered by the attractive van der Waals force, and the
et force can be calculated using the DLVO theory (Derjaguin and
andau, 1941, 1993; Verwey and Overbeek, 1948). Schembre and
ovscek (2005) suggest that the surface charge on both kaolinite
nd quartz becomes more negative with increasing temperature,
nd that this increases the EDL repulsion force. In line with this,
easurements of the zeta potential of the minerals show that

his is more negative at 70 ◦C than at 20 ◦C (Ramachandran and
omasundaran, 1986). The zeta potential is the potential at the
nterface between the immobile and the mobile fluid in the EDL,
nd can be used to estimate the surface charge (Elimelech et al.,
995). Heating may mobilise kaolinite if the effect of temperature
n the surface charge outweighs the reduction of the double layer
hickness.

. Materials and method

.1. Experiments

Duplicate tests were performed on Berea sandstone plugs, PC1
nd PC2, from the Cleveland Quarries (Amherst, OH). Both plugs
ad a 38 mm diameter and 63 mm length. He-porosity, N2-gas
ermeability and Klinkenberg permeability (American Petroleum

nstitute, 1998) were measured before and after the tests, and
pecific surface area by N2 adsorption (BET, Brunauer et al.,
938) was measured before the experiments (Table 1). Fluid
ermeability experiments were carried out using Milli-QTM fil-
ered water and 0.34 M NaCl brine. The brine was prepared from

illi-QTM filtered water and 99.5% pure NaCl. All solutions were
e-gassed in a vacuum chamber before application in the experi-
ents.
Fig. 1 shows a backscatter electron microscopy (BSEM) image of

he Berea sandstone used and elemental analysis was performed

sing energy dispersive X-ray spectroscopy (EDS). The samples
onsist predominantly of quartz grains with pore filling kaolinite
s the dominant clay mineral, as also reported by Somerton et al.
1974). We also observed the presence of feldspar grains, carbonate
58 ± 2 38 ± 2 3.05 ± 0.02
52 ± 2 39 ± 2 2.99 ± 0.02

cement and of other clay minerals that could be illite or chlo-
rite. The kaolinite clay particles are concentrated locally in some
pores and not in others as also noted by Schembre and Kovscek
(2005).

An illustration of the experimental apparatus is shown in Fig. 2.
The samples were placed in a Viton sleeve inside a Hassler type
core holder and a confining stress of 2.8 MPa was applied. The
temperature was controlled by placing the core holder inside an
oven. A constant fluid flow rate was ensured by a high preci-
sion Pharmacia P500 piston pump, and the inlet pressure was
measured using a Druck PDCR 910 transducer connected to a
Druck DPI 280 pressure indicator at the inlet of the sample.
The outlet pressure was atmospheric. Stainless steel tubing was
used, and corrosion tests with NaCl brine at 80 ◦C using sintered
glass beads in the core holder showed no corrosion in this set-
up.

The saturation state of the samples was verified using the
Archimedes test. The details of the test protocol are given in
Table 2. The samples were first tested with Milli-QTM filtered
water and subsequently with 0.34 M NaCl solution. The temper-
ature was increased in steps and allowed to stabilise for 24 h
prior to measurements. At each temperature step the permeabil-
ity was measured with two flow rates. Permeability was calculated
using viscosity corrections for temperature and salinity using the
CREWES Fluid Properties Calculator. The value of Sp was estimated
using He-porosity and Klinkenberg permeability (cf. Eqs. (2) and
(3)). Table 2 shows Sp for all flow rates. The permeability change

◦ ◦
Fig. 1. Backscatter electron microscope (BSEM) image of Berea sandstone. Black
areas constitute pore space, quartz (Qtz) grains make up the majority of the sample.
Kaolinite particles (Kao) are observed concentrated in some pores and not in others.
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Fig. 2. Experimental setup: the core is placed in the core holder inside the oven. Water is injected at constant flow rate and the inlet pressure is measured outside the oven.
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he outlet pressure is atmospheric.

.2. Literature data

Porosity and permeability data reported in tables or shown
n graphs in the cited publications are listed in Table A.1. Each
andstone sample was assigned a different Arabic number for pub-
ications addressing several sandstones. Firing, i.e. heating the dry
ample, causes loss of the structural water of kaolinite, which trans-
orms mineralogically between 400 ◦C and 800 ◦C (Grim, 1953), and

ay also alter the surface charge of the quartz grains (Sharma and
en, 1984). Sandstones that were fired prior to testing were there-

ore considered as different lithologies in this study. When multiple
uids were tested in the same sandstone, the tests for each fluid are

ndicated by Roman numerals, i.e., No. 1i, 1ii.
Not all investigators reported the mineralogy of the tested sam-

les (cf. Table A.1). Thus to support the information in Table A.1
ineralogical descriptions of the sandstones in question were

aken from other studies (cf. Table A.2). The duration of a test is
mportant in order to address chemical changes (Tenthorey et al.,
998); however, this was not reported by all investigators. The

nvestigations where the permeability is measured as soon as the

emperature and pressure in the samples have stabilised are indi-
ated as ‘short-term’ tests in the last column of Table A.1.

Data from tests where the permeability was reported both
t room temperature and at elevated temperature were used to

able 2
xperimental procedure for samples PC1 and PC2. Samples are saturated with pure Milli
hanging the temperature to the next temperature step. Specific surface with respect to p

Fluid Temperature (◦C) Flow rat

Milli-QTM filtered water 23 20; 40
40 20; 40
60 10; 20
80 10; 20
60 10; 20
40 10; 20
23 10; 20

0.34 M NaCl 23 10; 20
50 10; 20
80 10; 20
50 10; 20
23 10; 20
compute Sp for further analysis. These were all short-term tests.
Porosity was not reported in all studies. Hence, for tests on Berea
or Boise sandstones where the permeability was not reported, the
porosity values based on data from related investigations were
assumed. For less well studied sandstones or investigations where
only the relative change in permeability was reported, the qualita-
tive results were included in the discussion. Emphasis was placed
on data from the more thoroughly documented tests that can be
compared on a normalised basis using Sp.

3.3. Data processing

We estimated Sp from the porosity and permeability data in
Table A.1 by using Eqs. (2) and (3). In the majority of the experi-
ments, the porosity was only measured at room temperature. The
lower bound for the porosity at elevated temperature was esti-
mated by using Eq. (10) for a zero strain case, i.e., ˛bulk = 0 K−1, and
˛solid = 18 × 10−6 K−1, the linear thermal expansion coefficient of
quartz perpendicular to the c-axis (Fjaer et al., 2008). Equal expan-
sion of the grains and the bulk volume, i.e. constant porosity with

temperature, yields the upper bound for the porosity. We approx-
imated the maximal increase in Sp due to thermal expansion of
the solids by using Eq. (4). Ss was estimated for a given combi-
nation of porosity and permeability by using Eqs. (1), (2) and (5),

-QTM filtered water and permeability is measured at 23 ◦C at two flow rates before
ore volume, Sp , is calculated from helium porosity and the measured permeability.

es (mL/h) PC1 Sp (m2/cm3) PC2 Sp (m2/cm3)

1.9; 1.9 1.7; 1.7
2.4; 2.4 2.3; 1.9
4.3; 3.5 3.8; 3.3
5.1; 4.2 4.5; 3.8
3.5; 3.2 3.6; 2.9
3.8; 3.5 2.3; 1.9
2.6; 2.6 2.7; 2.0

2.4; 2.4 2.1; 2.0
2.5; 2.4 2.3; 2.2
4.7; 3.7 4.5; 3.6
3.1; 2.8 2.9; 2.8
2.7; 2.6 2.6; 1.9
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Fig. 3. In a confined sample, porosity declines as a function of temperature due to
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Fig. 5. Specific surface with respect to pore volume, Sp , as a function of temperature
for tests where permeability is reduced and Sp consequently increased at elevated
temperature. Dashed lines: predicted increase in Sp due to thermal expansion. Dots:
tests with distilled water; triangles: tests with NaCl brine with a concentration
greater than 0.3 M. No. E1 represents data from experiments in this study. Tests
where samples are heated and subsequently cooled (No. 1i, 2, 3, 6, 24, 25, E1) show
that the increase in Sp is largely reversible with cooling. Samples No. 2, 3 and E1
are also tested with brine (ref. Fig. 6a–c). Numbers correspond to tests in Table A.1.
hermal expansion. Dashed lines represent the predicted reduction for a quartzitic
ample, data points represent 85 wt% quartz samples from Jing et al. (1992). Num-
ers correspond to tests in Table A.1.

nd Ss was assumed to be constant with temperature, although
n principle thermal expansion can be expected to reduce Ss. This
s because isotropic expansion of a spherical grain with radius r
ncreases the surface area by a factor proportional to r2 whereas
olume increases proportional to r3, so that Ss = S/Vs is proportional
o 1/r. The effect of expansion on Ss for sandstone grains is affected
y grain shape, surface roughness, and anisotropy of the thermal
xpansion coefficient. By choosing a constant Ss we thus made a
onservative estimate and can interpret an increase in Sp exceed-
ng the estimate of the maximum porosity reduction due to thermal
xpansion as an indication that additional mechanisms contributed
o permeability reduction.

. Results

.1. Thermal expansion and change in Sp

Fig. 3 shows the estimated maximum effect on porosity due

o thermal expansion for a confined quartzitic sample (dashed
ines). Data for two sandstones with 85 wt% quartz (No. 9 and
0; Table A.1) at 14 MPa confining stress do not contradict the
stimated trends. The corresponding estimated effect of thermal

ig. 4. Specific surface with respect to pore volume, Sp , as a function of temperature
or tests where permeability is constant with temperature. Dashed lines: predicted
ncrease due to thermal expansion. Dots: tests with distilled water; triangles: tests

ith brine; squares: tests with inert fluid (mineral oil or N2 gas). Numbers cor-
espond to tests in Table A.1. Porosity-permeability ratio �/k is given in units of
/mD.
Porosity-permeability ratio �/k is given in units of %/mD.

expansion on Sp is shown by dashed lines in Figs. 4–6. Sample num-
bers in the figures and the following sections refer to the sample
numbers in Table A.1. We separated tests where Sp changed less
than predicted by the maximum porosity reduction (Fig. 4), and
tests where the Sp changed more than this (Fig. 5). Samples No. 2,
3, and E1, were tested successively with distilled water and with
brine, and the effect of temperature was different for the differ-
ent tests. For clarity only the tests with distilled water are shown
in Fig. 5, and for these three studies the tests with distilled water,
NaCl, and CaCl2 solution are shown in Fig. 6. Heating increased Sp in
15 tests on the Berea, Boise, Massillon, Millstone Grit, Vosges and
Upper Coal Measures samples. In 12 of these tests, on Berea, Boise,
Massillon, and Vosges samples, the samples were subsequently
cooled, which reduced Sp. In seven tests the effect of temperature
was found to be practically reversible (No 1, 2i and iii, 3ii, 24, 25,
E1ii).

4.2. Change in compressibility

Chemical and physico-chemical reactions can be neglected in
tests with inert fluids, so that porosity reduction due to thermal
expansion or an increase in compressibility of the minerals would
be the only permeability reducing mechanism. Tests with inert flu-
ids showed no change in permeability (Fig. 4).

4.3. Corrosion of the equipment

Corrosion produced colloid particles that reduced permeability
in tests No. 12i, 14i and 19i, as indicated by discoloration at the
inlet of the core (No. 12i and 14i), or observation of metal oxide
and hydroxide particles in the effluent (No. 19i). Modification of the
equipment prevented corrosion, suggesting the corrosion products
were not generated by fluid-mineral interaction. We verified the

absence of corrosion in our tests (No. E1) by a subsequent test with
a sintered glass sample.
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ig. 6. Specific surface with respect to pore volume, Sp , as a function of temperatur
triangles), and 0.4 M CaCl2 (squares). Tests on sample No. E1 (c) with distilled wate

.4. Dissolution

Silica was detected in the effluent in tests No. 4, 12, 18 and
9, for samples of Ironton-Galesville, Rotliegend, Berea and Mas-
illon sandstones. Permeability reduction at constant temperature,
s indicated by an increase in Sp, was observed in No. 4 (Ironton-
alesville) but not in No. 12ii (Rotliegend sandstone). Heating to
50 ◦C and subsequent cooling had no effect on Sp in No. 19ii (Mas-
illon sandstone). However, a permeability reduction was observed
hen the temperature was increased to 156 ◦C in No. 18 (Berea

andstone); the change was fully reversible with cooling at 3.5 MPa
onfining stress (No.18i), but only 75% of the original permeability
as recovered with 6.9 MPa confining stress (No.18ii) (Somerton,

992).

.5. Change in EDL thickness

Heating reduces �−1 (cf. Eq. (11)), which could increase porosity
nd decrease Sp cf. Eq. (3). A decrease in Sp with temperature was
ot observed in any test. In distilled water, �−1 is larger than in
rine, but we found no effect of this; Fig. 6a–c does not show a
onsistently larger Sp with distilled water than with brine for two
erea sandstone samples and one Vosges sandstone sample.

.6. Kaolinite mobilisation

The sandstones in which heating increased Sp (Figs. 5 and 6) all

ontain kaolinite. Kaolinite was not reported by Jing et al. (1992) for
he Millstone grit sandstone sample (No. 9); however, kaolinite was
bserved in this sandstone by Jerret and Hampson (2007). There are
nly two sandstones that were not reported to contain kaolinite:
ests on samples No. 2 (a) and No. 3 (b); with distilled water (tiny dots), 1.0 M NaCl
y dots) and 0.34 M NaCl (triangles).

Cige sandstone and Old Man Mountain sandstone (No. 22 and 23)
and these showed no effect of heating (Fig. 4).

No temperature effect was found in a Boise sandstone sample
(No. 7) that was fired above 600 ◦C, whereas heating did increase
Sp in Boise sandstone samples that were not fired above 600 ◦C (No.
6i and 25). Likewise Sp was increased when the temperature was
raised in Berea sandstone samples (No. 2, 16, 19, 24, E1), that were
not fired above 600 ◦C, but not in a Berea sandstone sample that had
been fired (No. 15). In two samples from sandstones that do con-
tain kaolinite (Berea sandstone No. 8 and Fontainebleau sandstone
No. 11) where temperature had no effect, kaolinite mobilisation
reduced permeability, i.e. increased Sp, at room temperature. In one
Massillon sandstone sample, kaolinite was observed in the effluent
(No. 19ii), but no permeability reduction was observed, whereas in
another investigation of the Massillon sandstone (No. 1i) heating
increased Sp.

Baudracco and Aoubouazza (1995) found that the effect of tem-
perature was different on Berea sandstone or Vosges sandstone
samples with distilled water, 1.0 M NaCl and with 0.4 M CaCl2
(Fig. 6a and b, No. 2 and 3). Both sandstones contain kaolinite
but illite is the dominant clay mineral in the Vosges sandstone,
which also contains smectite, a swelling clay mineral (Baudracco
and Aoubouazza, 1995). We found a comparable effect of temper-
ature in the Berea sandstone with 0.34 M NaCl and with distilled
water (Fig. 6c No. E1).

5. Discussion
5.1. Thermal expansion and change in Sp

Even without expansion of the bulk volume, heating from 20
to 150 ◦C should only reduce porosity from, e.g. 0.10 to 0.094 in a
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ow-porosity sandstone (Fig. 3). Thermal expansion has a greater
ffect at low porosity due to the larger volume of solids expand-
ng into the smaller pore volume, and samples in Table A.1 have
orosities greater than 0.10. Thermal expansion data of the Berea
nd Boise sandstones (70% and 40% quartz content respectively)
ndicate that the two sandstones have the same bulk thermal
xpansion coefficient, which is close to that of quartz perpendicular
o the c-axis, for temperatures below 200 ◦C (Somerton and Selim,
961;Somerton et al., 1981). Thus it is unlikely that thermal expan-
ion can explain the observed increases in Sp with temperature.

.2. Compressibility change

Compressibility changes cannot be assessed from the perme-
bility experiments, this requires rock mechanical testing, but it
hould be noted that samples with an inert fluid suffered no change
n permeability (Fig. 4). So if compressibility was reduced due to
eating, this had an insignificant effect for the confining stresses
sed for tests in Table A.1.

.3. Corrosion of the equipment

The contamination from the equipment in No. 19i was detected
y analysis of the effluent, although this was not apparent from a
iscoloration at the inlet of the sample (Stottlemyre, 1981). This
uggests that colloid contamination cannot be ruled out for the
ther tests, with the exception of No. E1 where we established
hat no contamination occurred by testing a sintered glass sample.
owever, contamination was less probable to cause the changes
bserved in tests No. 5i and 6i (Fig. 5) as there was no effect of tem-
erature in test No. 7 (Fig. 4) under the same conditions. The same
easoning applies to tests No. 15 and 16 (Table A.1).

.4. Dissolution

Chemical changes cannot be assessed from permeability
hanges. Silica was observed in the effluent without a concurrent
hange in Sp when the temperature was increased in one test on
he Massillon sandstone (No. 19ii). The increase in pore fluid vis-
osity due to silica dissolution was considered negligible for that
est (Stottlemyre, 1981). During 26 days of flow at 150 ◦C in a sam-
le of Rotliegend sandstone, silica was observed in the effluent, but
he permeability was reported to remain constant (No. 12, Milsch
t al., 2009).

It has been suggested that dissolution releases fines that sub-
equently block pore throats (Mungan, 1965; Stottlemyre, 1981;
lair et al., 1984; Somerton, 1992), and this may account for the
ermeability reduction observed in the friable Ironton-Galesville
andstone (No. 4, Blair et al., 1984). Both the silica concentra-
ion and the release of particles depend on the dissolution rate,
he reactive surface area, and the flow rate. Therefore, the effect
f chemical reactions observed in one sandstone for specific test
onditions cannot be extrapolated to other tests. Dissolution or
recipitation may cause progressive alteration of the sample min-
ralogy and pore geometry over time, and these effects may not be
pparent in the short-term experiments shown in Figs. 4–6. Results
rom study No. 18 suggest that silica dissolution may contribute to
he permeability reduction at higher confining stresses, causing a

arger permeability reduction and a lower permeability recovery
Somerton, 1992). The reversibility of the heating effect in seven
ests in Figs. 5 and 6 indicates that a different mechanism caused
he permeability reduction observed in those samples.
ics 50 (2014) 155–166 161

5.5. Change in the EDL thickness

We observed no changes in Sp that support the hypothesis that
changes in �−1 due to heating affect the volume of immobile water
in the EDL for the samples in Table A.1.

5.6. Kaolinite particle mobilisation

Heating makes the surface charge on kaolinite and quartz more
negative, which increases the EDL repulsion force between kaolin-
ite and quartz, which again may lead to kaolinite mobilisation
and supposed pore plugging (Schembre and Kovscek, 2005). The
EDL repulsion force is also increased by reducing the salinity of
the pore fluid, and this caused an irreversible permeability reduc-
tion at room temperature in tests by Khilar and Fogler (1984).
The reduction of Sp that was observed when the temperature
was reduced to the original value in tests No. 1–3, 6i, 18i, 24,
25 and E1 appears contradictory to the hypothesis of particles
plugging pores. Because the effect of temperature on the sur-
face charge can be presumed to be reversible, cooling reduces the
EDL repulsion force so that particles may re-attach to the grain
surface.

6. Conclusion

The use of specific surface of pores, Sp, to normalise data
permits comparison of temperature effects on permeability in
sandstones with different pore size. Sp was also used to distin-
guish between results where the permeability alteration can be
due to thermal expansion and those where other mechanisms can
have contributed to alter the permeability. Our analysis accounts
for short-term effects of temperature on (1) thermal expansion, (2)
electrical double layer (EDL) thickness, and (3) particle mobilisa-
tion due to physico-chemical interactions. (1) Tests with an inert
fluid show no significant effect of temperature. This indicates that
thermal expansion has a negligible effect. (2) We found no indi-
cation that a change in the volume of fluid immobilised by the
EDL has a significant effect on Sp. (3) With aqueous solutions Berea
sandstone showed permeability reduction due to heating, and per-
meability recovery due to cooling. This effect was also found for
Boise sandstone, Massillon sandstone, and Vosges sandstone, but
not for all studied sandstones. The sandstones where permeabil-
ity was reduced due to heating contain dispersed kaolinite, and
pre-treatment by heating above the temperature where kaolinite
starts to dehydrate was found to prevent permeability reduction.
This indicates that kaolinite mobilisation caused the observed per-
meability changes. It is noteworthy that the permeability reduction
due to proposed kaolinite mobilisation was reversible at least in the
short term.
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Table A.1
Overview of the literature data (adapted from Rosenbrand and Fabricius, 2012) and new experimental results. Error margins for permeability measurements are those
reported in the publication or estimated from scatter in the reported data. Where neither is available, an error margin of 10%, indicated in italic, is assumed. Short-term
tests are tests where permeability is measured as soon as temperature and pressure in the sample are stabilised. Refer to Table A.2 for the mineralogical composition for
studies where this is not reported (� is porosity; k is permeability).

No. Reference Stratigraphic
unit
Mineralogy

� Fluid k at room
temperature
(mD)

Maximum
temperature
(◦C)/permeability k
(mD)

k after
cooling
(mD)

Comments

1 Aruna (1976) Massillon
Sandstone
Fired 300 ◦C.
Grains: quartz
Clay minerals:
N.R.
Cement: iron
oxide; silica

0.22 i) Distilled water
ii) Mineral oil
iii) Nitrogen gas

i) 585
ii) 866
iii) 923
(±10%)

i) 149 ◦C/369 mD
ii) 120 ◦C/792 mD
ii) 121 ◦C/923 mD

i) 593
ii) 824
iii) N.R.

i) Confining
pressure 19.7 MPa
ii) Confining
pressure 13.7 MPa
iii) Klinkenberg
procedure.
Short-term.

2 Baudracco and
Aoubouazza (1995)

Berea
Sandstone
Grains: mainly
quartz;
feldspar;
plagioclase
Clay minerals:
total 8%: 6%
kaolinite, 1%
illite, 1%
chlorite
Cement: silica

0.20 i) Distilled water
ii) 1.0 M NaCl
iii) 0.4 M CaCl2

i) 3.9
ii) 1.6
iii) 3.6
(±10%)

i) 90 ◦C/2.9 mD
ii) 90 ◦C/0.5 mD
iii) 90 ◦C/2.5 mD

i) 3.7
ii) 2.5
iii) 4.1

Confining pressure
0.2 MPa
Tests were done on
the same sample
with water, CaCl2
and NaCl solution
Short-term

3 Baudracco and
Aoubouazza (1995)

Vosges
Sandstone
Grains: quartz;
feldspar
Clay minerals:
4%:
2% illite; 1%
kaolinite; 0.5%
chlorite; 0.5%
smectite

0.20 i) Distilled water
ii) 1.0 M NaCl
iii) 0.4 M CaCl2

i) 7.6
ii) 10.7
iii) 2.8
(±10%)

i) 90 ◦C/3.0 mD
ii) 90 ◦C/6.0 mD
iii) 90 ◦C/0.6 mD

i) 6.12
ii) 10.4
iii) 3.3

Confining pressure
0.2 MPa
Tests were done on
the same sample
with water, CaCl2
and NaCl solution
Short-term

4 Blair et al. (1984) Ironton-
Galesville
Sandstone
Grains: quartz
Cement:
dolomite

N.R. Synthetic brine N.R. 150 ◦C/gradual
permeability
reduction over
time to 20% of
original

N.R. Confining pressure
6.2 MPa
Sample loses
mechanical
strength
Silicium and
calcium in the
effluent
Sample was heated
incrementally and
flow is stopped for
2 days at
increments: 60 ◦C,
100 ◦C, 160 ◦C.
Duration approx. 7
days

5 Cassé and Ramey
(1979)

Berea
Sandstone
Fired 450 ◦C
N.R.

N.R.
0.19a

i) Distilled water
ii) Mineral oil
iii) N2 gas

i) 98
ii) 130
iii) 134
(±5%)

i) 148 ◦C/81 mD
ii) 148 ◦C/130 mD
iii) 163 ◦C/134 mD

N.R. Confining pressure
13.8 MPa
For water the effect
of temperature is
greater for higher
confining pressure
Short-term

6 Cassé and Ramey
(1979)

Boise
Sandstone
Fired 450 ◦C
N.R.

N.R.
0.28a

i) Distilled water
ii) Mineral oil

i) 2063
ii) 1930
(±5%)

i) 148 ◦C/1340 mD
ii) 149 ◦C/2240 mD

i) 1651
ii) N.R.

i) Confining
pressure 25.5 MPa
ii) Confining
pressure 3.4 MPa
Repeated cycles of
heating with
distilled water
cause hysteresis
Short-term

7 Cassé and Ramey
(1979)

Boise
Sandstone
Fired 760 ◦C
N.R.

N.R.
0.28a

Distilled water 1852
(±5%)

149 ◦C/1852 mD N.R. Confining
pressure13.8 MPa
Short-term
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Table A.1 (Continued)

No. Reference Stratigraphic
unit
Mineralogy

� Fluid k at room
temperature
(mD)

Maximum
temperature
(◦C)/permeability k
(mD)

k after
cooling
(mD)

Comments

8 Gobran et al.
(1987)

Berea
Sandstone
N.R.

N.R.
0.19a

Distilled water 138
(±5%)

149 ◦C/138 mD N.R. Confining pressure
13.8 MPa
Permeability is
reduced initially.
Heating has no
additional effect
Short-term

9 Jing (1990); Jing
et al. (1992)

Millstone Grit
Series
Sandstone
Grains: 85%
quartz; 10%
feldspar; 5%
mica

0.13 0.86 M NaCl. 5
(±5%)

93 ◦C/3.8 mD N.R. Confining pressure
13.8 MPa
Short-term

10 Jing (1990); Jing
et al. (1992)

Upper Coal
Measures
Sandstone
Grains: 85%
quartz; 5%
feldspar; 5%
mica
Clay minerals:
5% N.R.

0.17 0.86 M NaCl 8.2
(±5%)

93 ◦C/6.6 mD N.R. Confining pressure
13.8 MPa
Short-term

11 McKay and
Brigham (1984)

Fontainebleau
Sandstone
Grains: Quartz
Clay minerals:
kaolinite

0.11 Distilled water 260
(±5%)

149 ◦C/200 mD N.R. Confining pressure
13.8 MPa
Permeability
reduced during
flow at constant
temperature,
heating does not
cause significant
additional effect
Short-term

12 Milsch et al. (2009) Rotliegend
Sandstone
Grains: quartz
80%; feldspar
<10%; <10%
rock fragments
Clay minerals:
illite; chlorite
Cement: quartz
dominates;
rarely
carbonitic or
albitic

0.11 i) Synthetic
formation brine
with
contamination
ii) Synthetic
formation brine
without
contami-nation

N.R. i)150oC/0.33-0.01
mD
ii) 150 ◦C/2.00 mD
(±0.36)

N.R. Confining pressure
50 MPa
Permeability is
approximately
constant over 26
days of flow in ii
In an initial test (i)
corrosion occurred.
In subsequent tests
this was avoided
Long-term

13 Piwinskii and
Netherton (1977)

Kayenta
Sandstone
N.R.

N.R. Synthetic brine
containing
140 ppm silica
unfiltered.

N.R. 100 ◦C/50 mD
declines to
Approx. 1 mD

N.R. Permeability
decreases as
function of flow
volume.
Tests are
performed with
and without filters,
without filters a
filter cake builds up
on the sample inlet
Short-term

14 Potter et al. (1981) St. Peters
Sandstone
Grains: quartz.

N.R. i) Distilled water
with
contamination
ii) Distilled water.

i) N.R.
ii) N.R.

i) 100 ◦C/554 mD
initial.
Reduction at
constant
temperature
ii) No reduction

N.R. i) Contamination
from the
equipment causes
a gradual
permeability
reduction at 100 ◦C
ii) After preventing
contamination no
reduction.
Confining pressure
20 MPa
Short-term
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Table A.1 (Continued)

No. Reference Stratigraphic
unit
Mineralogy

� Fluid k at room
temperature
(mD)

Maximum
temperature
(◦C)/permeability k
(mD)

k after
cooling
(mD)

Comments

15 Schembre and
Kovscek (2005)

Berea
Sandstone
Fired
temperature
N.R.

0.20–0.23 0.05 M NaCl;
pH 10.

N.R. 180 ◦C
No permeability
reduction

N.R. Confining pressure
not reported,
between 1.7 MPa
and 2.8 MPa
Short-term

16 Schembre and
Kovscek (2005)

Berea
Sandstone
N.R.

0.20–0.23 i) 0.01 M NaCl;
pH 7
ii) 0.01 M NaCl;
pH 10
iii) 0.05 M NaCl;
pH 10.
iv) 0.2 M NaCl;
pH 10.

N.R. i) 180 ◦C/99%
reduction
ii) 180 ◦C/72%
reduction
iii) 180 ◦C/50%
reduction
*70%
iv) 180 ◦C/67%
reduction
*87%

N.R. Confining pressure
not reported,
between 1.7 and
2.8 MPa
Short-term

17 Somerton and
Mathur (1976)

Berea
Sandstone
N.R.

N.R.
0.19b

Distilled water 397
(±10%)

164 ◦C/235 mD N.R. Confining pressure
13.9 MPa Switching
to 0.42 M KCl at
elevated
temperature
reduces
permeability to
125 mD.
Cooling to 70 ◦C
with 0.42 M KCl
increases
permeability to
205 mD
Short-term

18 Somerton (1992)
(citing Wong,
1979)

Berea
Sandstone
N.R.

N.R.
0.19a

i) 0.08 M KCl
ii) 0.08 M KCl

N.R. i) 156 ◦C/24%
reduction
ii) 156 ◦C/45%
reduction

i) 1%
reduction
ii) 73%
reduction

i) Confining
pressure 3.5 MPa
ii) Confining
pressure 6.9 MPa
Short-term

19 Stottlemyre (1981) Massillon
Sandstone
N.R.

0.23 i) Distilled water w.
contamination
ii) Distilled water

i) 375
ii) 260
(±10%)

i) 25 ◦C/300 mD
150 ◦C/90 mD
iii) 150 ◦C/260 mD

Confining pressure
15 MPa
Contamination
caused
permeability
reduction at room
temperature, and
further reduction
with heating
After preventing
contamination no
significant
permeability
reduction occurred
with heating
Observe quartz,
kaolinite and metal
hydroxides and
oxides in effluent
Short-term

20 Sydansk (1980) Berea
Sandstone
Fired 450 ◦C
N.R.

N.R.
0.19a

(i) + (iii) Distilled
water
(ii) + (iv) 0.52 M
NaCl

N.R. i) 22 ◦C/26%
reduction
ii) 22 ◦C/4%
reduction
iii) 85 ◦C/81%
reduction
iv) 85 ◦C/8%
reduction

Confining pressure
not reported
Permeability
reduction given for
flow at constant
temperature
Short-term

21 Sydansk (1980) Berea
Sandstone
Fired 1000 ◦C
N.R.

0.19a (i) + (iii) Distilled
water
(ii) + (iv) 0.52 M
NaCl

N.R. i) 22 ◦C/21%
reduction
ii) 22 ◦C/6%
reduction
iii) 85 ◦C/40%
reduction
iv) 85 ◦C/2%
reduction

N.R. Confining pressure
not reported
Permeability
reduction given for
flow at constant
temperature
Short-term
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Table A.1 (Continued)

No. Reference Stratigraphic
unit
Mineralogy

� Fluid k at room
temperature
(mD)

Maximum
temperature
(◦C)/permeability k
(mD)

k after
cooling
(mD)

Comments

22 Wei et al. (1986);
Morrow et al.
(1983)

Old Man
Mountain
Sandstone
Grains: 50%
quartz; 36%
feldspar; 7%
chert and rock
fragments
Cement:
carbonate;
possibly quartz

0.14 i) 0.79 M KNO3

ii) N2 gas.
i) 2.9
ii) 4.8
(±5%)

i) 68 ◦C/2.9 mD
ii) 96 ◦C/4.8 mD

N.R. Confining pressure
6.9 MPa
Short-term

23 Wei et al. (1986);
Morrow et al.
(1983)

CIGE Sandstone
Grains: 43%
quartz; 23%
feldspar; 20%
chert and rock
fragments
Cement: 8%
carbonate.

0.12 i) 0.79 M KNO3

ii) N2 gas
i) 0.3
ii) 1.2
(±5%)

i) 68 ◦C/0.3 mD
ii) 96 ◦C/1.2 mD

N.R. Confining pressure
6.9 MPa
Short-term

24 Weinbrandt and
Ramey (1975)

Berea
Sandstone
Fired 450 ◦C
N.R.

0.19 Distilled water 106
(±5%)

149 ◦C/63 mD 110 ◦C/70 mD Confining pressure
13.9 MPa
Short-term

25 Weinbrandt and
Ramey (1975)

Boise
Sandstone
Fired 450 ◦C
N.R.

0.28 Distilled water 1970
(±5%)

79 ◦C/972 mD 27 ◦C/2080 mD Confining pressure
13.9 MPa
Short-term

E1 This study Berea
Sandstone
N.R.

0.18 i) Distilled water
ii) 0.34 M NaCl.

i) 9.8
13.7b

ii) 6.5
8.3b

(±10%)

i) 80 ◦C/1.4 mD
2.6b mD
i) 80 ◦C/2.6 mD
2.9b mD

i) 5.4
9.7b

ii) 5.4
9.8b

Confining pressure
2.8 MPa
is sample PC2
Short-term

N.R., data not reported.
a Porosity not reported for the sample but assumed from other sources.
b Duplicate tests.

Table A.2
Mineralogy of the Berea and the Boise sandstones (Somerton et al., 1974), the Fontainebleau sandstone (French and Worden, 2013), the Massillon sandstone (Gray, 1956),
and the St. Peter sandstone (Mungan, 1965).

Stratigraphic unit Grains (% solid mass) Clay minerals (% solid mass) Cement (% solid mass)

Berea (Somerton et al., 1974) Quartz: 68%
Feldspar: 2%

Kaolinite and matrix: 19% Calcite: 1%

Boise (Somerton et al., 1974) Quartz: 39%
Feldspar: 20%

Kaolinite and matrix: 35%
Muscovite 5%

–

Fontainebleau (French and Worden, 2013) Quartz Kaolinite: <1% Silica

R

A

A

A

B

B

B

Massillon (Gray, 1956) Quartz: 73–88%

St. Peter (Mungan, 1965) Quartz: >99%
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a  b  s  t  r  a  c  t

Hot  water  injection  into  geothermal  aquifers  is  considered  in order  to  store  energy  seasonally.  Berea
sandstone  is  often  used  as a reference  formation  to  study  mechanisms  that  affect  permeability  in  reservoir
sandstones.  Both  heating  of the pore  fluid  and  reduction  of the  pore  fluid  salinity  can  reduce  permeability
in  Berea  sandstone.  These  effects  could  be caused  by mobilisation  of  fines  by  increasing  the  repulsive
electrical  double  layer  forces  among  sandstone  grains  and  the  fines.  We  investigated  the reversibility  and
the dependence  on  flow  velocity  and  flow  direction  of  the permeability  change  by means  of  flow  through
experiments  and  examined  thin  sections  of samples  prior  to and  after  tests.  A  permeability  reduction  at
20 ◦C with  decreasing  salinity  was  not  reversed  by restoring  the  salinity,  whereas  a permeability  reduction
due  to heating  to 80 ◦C was  reversible  by  restoring  the temperature  to  20 ◦C. A reversible  permeability

◦ ◦
increase with  increasing  flow rate  was  observed  at 80 C but  not  at 20 C.  We observed  no  difference  in
the  distribution  of  kaolinite  clay minerals  in thin sections  of  untested  and  tested  samples.  Dissolution  of
iron  bearing  carbonates  and  precipitation  of  iron  hydroxides  was  observed  but  no  effect  on permeability
was  found.  The  experimental  results  suggest  that  different  mechanisms  are  responsible  for  permeability
reduction  depending  on temperature  and  salinity.

© 2014  Elsevier  Ltd. All  rights  reserved.
. Introduction

Seasonal storage of excess heat in warm geothermal aquifers
s considered in order to make optimal use of available renew-
ble energy resources. During the summer, geothermal water is
eated prior to reinjection, raising the aquifer temperature. Dur-

ng the winter, the additional heat can be used for district heating.
ne concern is that the permeability of the aquifer is reduced by

njection of heated brine, because permeability reduction may  ren-
er geothermal production uneconomical. A literature review of

he effect of heating on different sandstone formations indicates
hat heating causes permeability reduction in sandstone forma-
ions containing kaolinite clay particles (Rosenbrand et al., 2014).
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Several authors have suggested that mobilisation of colloidal par-
ticles, such as kaolinite causes permeability reduction, and that the
DLVO (Derjaguin and Landau, 1941; Verwey and Overbeek, 1948)
theory can be used to predict particle mobilisation resulting from an
increase in the electrical double layer (EDL) repulsion force among
particles and the pore walls (Khilar and Fogler, 1984, 1987; Kia
et al., 1987; Ochi and Vernoux, 1998; Schembre and Kovscek, 2005).
These authors studied Berea sandstone, which is often used as a ref-
erence sandstone sample for reservoir rocks because it is relatively
homogeneous and readily available (Churcher, 1991).

The permeability of a porous medium is controlled by porosity,
pore geometry and the specific surface of the solids that is in contact
with the fluid (Kozeny, 1927). An increase in the effective inter-
nal surface area is thus linked to a reduction in permeability. Fines
are assumed to be initially located on the surface of quartz grains
(Khilar and Fogler, 1984, 1987; Kia et al., 1987; Mungan, 1965; Ochi
and Vernoux, 1998; Schembre and Kovscek, 2005). Kaolinite parti-

cles are flat plates that are typically encountered in small stacks, or
booklets, in sandstones (Wilson and Pittman, 1977). When kaolinite
is present as booklets, only part of the total kaolinite surface area
contributes to the surface area that is effective for permeability.
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Notation

d grain, m
e elementary charge, C
k absolute permeability, mD
kB Boltzmann’s constant, J/K
q interstitial flow velocity (Q/A), m/s
t thickness of Stern layer, m
z valence, –
A cross sectional area, m2

C concentration of electrolyte, mol/l
EEDL electrical double layer energy, J
EvdW van der Waals energy, J
H Hamaker constant, J
I ionic strength of electrolyte, mol/l
Kaowt% mass fraction of kaolinite relative to total sample

mass, %
L  sample length, m
NA Avogadro’s constant, mol−1

P pressure, Pa
Q volumetric flow rate, m3/s
R radius, m
Sp specific surface area per unit pore volume (ratio of

grain surface area to pore volume), m2/cm3

Ss specific surface area per unit solids volume (ratio of
grain surface area to solids volume), m2/cm3

T absolute temperature, K
 ̨ threshold pressure gradient, Pa/m
εo permittivity of vacuum, F/m
εr relative dielectric permittivity of solution, –
�−1 Debye length, m
� dynamic viscosity, Pa s
� porosity, –
�f fluid density, kg/m3

�s grain density, kg/m3

� charge density, C/m2

T
o

p
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� shear yield stress, Pa
  surface potential, V

herefore fines mobilisation could increase the specific surface area
f solids in contact with the fluid and reduce permeability.

The surface charge on kaolinite and on quartz in contact with
ore water depends on temperature as well as on pH (Brady et al.,
996; Kia et al., 1987; Rodríguez and Araujo, 2006; Schembre and
ovscek, 2005). Due to the mineral structure, kaolinite particles
ave different charges on each of the faces and on the edges (Brady
t al., 1996; Gupta and Miller, 2010; Gupta et al., 2011; Schofield
nd Samson, 1954). Berea sandstone pore water obtains a high
H of 8.6–9.5 when saturated with distilled water or NaCl solu-
ions due, to buffering by carbonate cements (Kia et al., 1987). This
esults in a negative surface potential on quartz and on all sides of
aolinite particles (Gupta and Miller, 2010; Gupta et al., 2011; Kia
t al., 1987; Rodríguez and Araujo, 2006; Schembre and Kovscek,
005). The surface potential attracts oppositely charged ions; some
f these may  be bound to the surface whereas the others form a dif-
use layer, which shields the surface potential (Israelachvili, 2011).
ccording to the DLVO theory, the magnitude of the EDL repulsion
etween two negatively charged surfaces depends on the separa-
ion between the surfaces, the surface potentials, and the diffuse
ouble layer thickness, which can be characterised by the Debye
ength (Eq. (1)).

−1 =
√
ε0εrkbT

2NAe2I
(1)
ics 53 (2015) 225–235

where ε0 is the dielectric permittivity of a vacuum, εr is the relative
dielectric permittivity of the solution, kb is the Boltzmann constant,
T is temperature, NA is Avogadro’s constant, e is the charge on an
electron and I is the ionic strength of the solution, which is the
summation of the product of the concentration c and the valence z
of all the ions in the solution, i.e. I = 0.5

∑
ciz2
i
.

Reducing salinity reduces I and increases the Debye length (cf.
Eq. (1)), which can result in particle mobilisation (Khilar and Fogler,
1984, 1987; Ochi and Vernoux, 1998; Schembre and Kovscek,
2005). Heating on the other hand, reduces the dielectric permit-
tivity of water (Maribo-Mogensen et al., 2013; Michelsen and
Mollerup, 2004). This effect exceeds the effect of the increase in
T from 293 K to 352 K, and thereby the overall effect of heating
is a reduction of the Debye length (Rosenbrand et al., 2014). As a
consequence, heating would only increase the EDL repulsion if the
surface potential increases as well (Rosenbrand et al., 2014). Elec-
trophoresis measurements of kaolinite and quartz do show that
the zeta potentials of kaolinite and quartz becomes more negative
with heating (Rodríguez and Araujo, 2006; Schembre and Kovscek,
2005). The zeta potential is the potential on the interface between
the fixed and the mobile ions in the EDL, and is often used as an
estimate of the surface potential for homogeneously charged par-
ticles (Elimelech, 2010). Schembre and Kovscek (2005) modelled an
increase in the EDL repulsion between kaolinite and quartz in the
Berea sandstone with increasing temperature, and therefore sug-
gested that observed permeability reductions were due to kaolinite
mobilisation.

At 20 ◦C, the permeability reduction due to reducing the salinity
was found to be irreversible when the salinity was subsequently
restored (Khilar and Fogler, 1984). Therefore, some authors suggest
that mobilised fines are subsequently filtered in pore constrictions
(Bedrikovetsky and Caruso, 2014; Bedrikovetsky et al., 2011, 2012;
Khilar and Fogler, 1984). Contrarily, the permeability reduction due
to heating was  observed to be reversible when the temperature was
restored to room temperature in a number of tests (Baudracco and
Aoubouazza, 1995; Cassé and Ramey Jr, 1979; Rosenbrand et al.,
2014). This suggests that the particles were not attached in pore
constrictions.

Several authors modelled the effects of thermal expansion on
porosity and permeability, and found this insufficient to account for
observed changes (Baudracco and Aoubouazza, 1995; Rosenbrand
et al., 2014). Other authors suggested that heating affects the thick-
ness of the water layers bound to the mineral surface (Cassé and
Ramey Jr, 1979). If this, rather than particle mobilisation, caused a
permeability reduction with increasing temperature, then reduc-
ing the salinity in a heated sample would mobilise particles and
cause additional permeability reduction.

Dissolution of siderite (iron carbonate) and precipitation of
hematite (iron oxide) was  observed when an acid scale inhibitor
was injected into siderite bearing sandstones (Hill et al., 2000).
This did not affect the permeability in one sandstone formation,
and only caused a small permeability reduction in another sand-
stone formation. The Berea sandstone also contains siderite and
ankerite (iron bearing calcium magnesium carbonate), which can
dissolve and result in iron oxide or hydroxide precipitation. The
alteration of siderite to iron oxide or hydroxide would not be
reversed by restoring the temperature to 20 ◦C, and therefore the
effect of siderite dissolution and iron hydroxide precipitation on
permeability would not be reversible.

In this paper, we  investigate the difference between the effects
of pore water salinity and temperature on permeability by means
of flow-through experiments. In order to compare results to pub-

lished data, tests are performed on Berea sandstone samples. The
flow rate and salinity were systematically varied at 20 ◦C and at
80 ◦C and the reversibility of each effect was  tested. Thin sections
of the samples were examined before and after the tests to identify
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ossible changes in the kaolinite distribution and in the mineral
omposition of the sandstones. DLVO theory was  used to estimate
he relative effects of changing temperature and salinity on the
nteraction energy, both between kaolinite and quartz and among
aolinite particles.

. Materials and methods

Permeability tests were performed on two  Berea sandstone
lugs (J1 and J2). He-porosity and Klinkenberg permeability (Amer-

can Petroleum Institute, 1998) were measured prior to tests.
olished thin sections for transmitted light microscopy and for
ackscatter electron microscopy (BSEM) were made of an untested
erea sandstone sample from the same block and of both plugs after
he tests; plugs were sectioned parallel to the sample axis. The grain
ensity of three untested samples from the same block was deter-
ined from bulk volume from a combination of Archimedes’ test

sing mercury and He-porosimetry. The specific surface areas of
hree untested samples from the same block, and of the tested sam-
les, were measured using nitrogen adsorption (BET, Brunauer et al.
1938)). BET measurements were made using a Mircomeritics Gem-
ni 2735 surface area analyser on 2 g of coarsely ground samples.
amples were degassed in nitrogen at 70 ◦C for 4 h prior to mea-
urement, and adsorption was measured at four relative pressures
etween 0.05 and 0.24.

Permeability, k, is calculated from the total volumetric flow, Q,
sing Darcy’s law (Eq. (2)),

 = �
Q

A

L

(Pin − Pout)
(2)

here A, is the cross sectional area, Pin and Pout are the pressures
t the inlet and outlet respectively, and L is the sample length. We
alculated the viscosity, �, at the relevant temperature and NaCl
oncentration using the CREWES Fluid Properties Calculator (2007).
his does not reflect possible changes in the fluid composition due
o the suspension of fines. The interstitial flow velocity q that is
epresentative for the average flow rate inside the sandstone pores
s given by Eq. (3).

 = Q

�A
(3)

The plugs were tested using a standard liquid permeability set-
p as described in Rosenbrand et al. (2014). Each sample was
aturated with 2.0 M NaCl solution and mounted in a Viton sleeve
n a Hassler type core holder, which was placed inside an oven to
ontrol temperature. Full saturation was verified by an Archimedes’
est. A confining pressure of 2.8 MPa  was applied. Fluid was  injected
t a constant flow rate using a high precision Pharmacia P500 pis-
on pump. Pressure was  measured at the inlet of the sample using a
ruck PDCR 910 transducer connected to a Druck DPI 280 pressure

ndicator. The outlet pressure was atmospheric.
Fig. 1a shows the test conditions at which permeability was

easured. Sample J1 was maintained at 20 ◦C and the permeability
as measured at two or three flow rates for each salinity. Salin-

ty was reduced in the following steps: 2.0; 0.2; 0.02 and 0.002 M
aCl solution, and subsequently increased in corresponding steps.
fter the final 2.0 M NaCl step, the flow direction was reversed.
fter the first permeability measurements at 20 ◦C with 2.0 M NaCl
olution, sample J2 was heated to 80 ◦C with no flow for 48 h. Sub-
equently, the salinity was reduced and increased as in sample J1.
owever, as flow rate affected permeability in sample J2, we inves-

igated the hysteresis of the effect of flow rate by repeated cycles

n which flow rate was increased and reduced (q = 4–520 �m/s).
ig. 1b shows the maximum and minimum flow velocities in each
ycle. The range of flow rates that could be used in sample J1 was
imited by the low permeability of the sample after the salinity was
ics 53 (2015) 225–235 227

reduced (q = 1–58 �m/s). Apart from during the heating and cooling
in sample J2, flow was maintained continuously for the duration of
both experiments (21 and 153 days). Permeability was measured
after the pressure gradient had stabilised. In order to check for grad-
ual permeability changes, a constant flow rate was maintained for
23 days at 0.002 M NaCl concentration in sample J2. Tables listing
all permeability measurements and the time at which these were
made can be found in the supplementary files.

Darcy’s law can be assumed valid as long as the Reynolds num-
ber (Eq. (4)) based on mean grain size, d, does not exceed a value
between 1 and 10 (Bear, 1972). Using an average quartz grain size
of 100 �m for Berea sandstone (Churcher, 1991) the Reynolds num-
ber remained below 0.02 in all tests. This indicates that Darcy’s law
is valid.

Re = �f vDarcyd
�

(4)

where vdarcy is the Darcy flux (vdarcy = Q/A = q�), and �f is the fluid
density.

No fines were observed in the effluent of J1, while the effluent
of J2 was  cloudy and discoloured, orange/brown, after approxi-
mately 100 days. After the effluent had become discoloured, it was
discoloured for the remainder of the experiment. As a result of
the discolouring, samples of the effluent from tests with 0.02 M
NaCl, 0.2 M NaCl, and 2.0 M NaCl were collected at room tempera-
ture and stored for 2–5 days, prior to filtering through a 0.2 �m
cellulose acetate filter. The filter papers were examined using
BSEM and energy dispersive X-ray spectroscopy, EDS. There was
insufficient crystalline material hampering mineral identification
by X-ray diffraction. Contamination in the experimental set-up is
unlikely as initial corrosion tests with a glass bead sample at 80 ◦C
had negative results (Rosenbrand et al., 2014).

3. Results and discussion

3.1. Effective specific surface area

The average value of the BET specific surface area, SS,BET, for three
untested Berea sandstone samples from the same block is 1.4 m2/g
(Table 1). This is related to the specific surface of the pore space, Sp,
by Eq. (5),

SP = SS,BET ∗ �s
1 − �

�
(5)

where �s is the density of the solids. Inserting measured values
(Table 1) of an untested Berea sandstone sample in Eq. (5) results
in an Sp of 17 m2/cm3. The effective specific surface area that affects
fluid flow in a homogeneous porous medium can also be estimated
using the Kozeny (1927) equation (Eq. (6)):

Sp =
√
c�

k
(6)

where c is a parameter that can be related to porosity and pore
geometry and is calculated based on the sample porosity after
Mortensen et al. (1998), Eq. (7). For both samples J1 and J2 c is
0.20.

c =
(

4 cos
(

1
3

arccos
(
ϕ

8

3

− 1
)

+ 4
3


)

+ 4
)−1

(7)

At 20 ◦C and when saturated with 2.0 M NaCl, the effective Sp

of sample J1 as calculated from permeability (Table 1) cf. Eq. (6),

was only 1.5 m2/cm3. The effective Sp was  increased to 18 m2/cm3

by reducing salinity to 0.002 M NaCl. Considering that the BET of
the untested sandstone gave an Sp of 17 m2/cm3 (cf. Eq. (5)) this
would suggest that prior to fines mobilisation, the surface area of
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Fig. 1. Experimental procedure on sample J1 (a) and on sample J2 (b). The small boxes indicate interstitial flow velocities in �m/s and the large boxes indicate the temperature
and  salinity used. Arrows indicate the test sequence. Sample J1 was  maintained at 20 ◦C and salinity was  reduced in the following steps: 2.0; 0.2; 0.02 and 0.002 M NaCl
solution, and subsequently increased. At 2.0 M NaCl the flow direction was  reversed. After the first permeability measurement at 20 ◦C with 2.0 M NaCl solution, sample
J2  was  heated to 80 ◦C with no flow for 48 h. The flow rate was  increased and reduced in repeated cycles and only the maximum and minimum flow velocities in each
cycle  are shown. In between measurements the flow velocity was  maintained at the flow rate required for the next permeability measurement. The time interval between
m l.
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easurements for the full test procedure is provided in the supplementary materia

aolinite was not effective to flow, whereas after fines mobilisa-
ion permeability was controlled by the kaolinite surface area. The
ozeny equation (1927) (Eq. (6)) is derived for flow in a homoge-
eous porous medium with a uniform pore size, where the effective
p reflects the specific surface area of the grains normalised by
he porosity and characterises the effective pore dimension. There-
ore, artificial sands made from glass beads could be modelled by
sing their BET specific surface, but the method was found not to
ork for different natural sandstone formations including the Berea

andstone (Donaldson et al., 1975).
The Berea sandstone contains kaolinite clay particles that have

 high specific surface area compared to the specific surface area
f the quartz grains of the sandstone. The total surface area of
aolinite may  be estimated from the kaolinite content, Kaowt%, of
he Berea sandstone reported in literature, approximately 6–8 wt.%

Churcher, 1991), and the specific surface area of the kaolinite
olids, Ss,kao, which is reported as 5–30 m2/g (Santamarina et al.,
002). The Berea samples in this study have a porosity of 0.17, and
y assuming a kaolinite solids area of 15 m2/g (Aylmore, 1974), the

able 1
ermeability and helium porosity of cleaned samples prior to testing. Grain density an
ntested samples from the same block. Liquid permeability was measured at 20 ◦C with 

ested  after the test. Error in brackets is uncertainty on the last digit.

Klinkenberg gas
permeability (mD)

He-porositya (%) Grain density (g/cm3) BET a

J1 20.6 (8) 17.3
2.670 (3) 1.4 (2J2  15.6 (6) 16.6 

a Estimated uncertainty 0.1 porosity %.
b Error is standard deviation among BET areas on 3 samples from the same block.
c Estimated uncertainty 10%: by error propagation of estimated uncertainty on pressur
total kaolinite surface per pore volume, Sp,kao, is 14–19 m2/cm3 (cf.
Eq. (8)).

Sp,kao = Kaowt%

100
Ss,kao ∗ �s

(1 − �)
�

(8)

Therefore, the kaolinite area could account for the majority of
the surface area measured by BET. Kaolinite clay particles in the
untested Berea sandstone can be observed in stacks that are con-
centrated locally in some pores and not in others (Fig. 2). Small
pores have been observed among stacks of kaolinite particles in
sandstones (Desbois et al., 2011; Wilson et al., 2014), but when the
larger pores among quartz grains form a connected flow path, the
larger pores would account for the majority of the flow through
the sample. Therefore, at high salinity where kaolinite particles are
not mobilised, permeability and the effective specific surface area

calculated according to Eq. (6) reflects the specific surface area of
the quartz grains, rather than the combined surface area of kaolin-
ite and quartz. Kaolinite mobilisation could increase the surface
area of kaolinite that affects flow when kaolinite particles obstruct

d BET specific surface area using nitrogen adsorption were determined on three
2.0 M NaCl at the start of the tests. BET specific area was measured on the samples

rea untested (m2/g) Liquid permeabilityc (mD) BET area after test (m2/g)

)b 16 1.524 (3)
8.3 1.418 (3)

e drop, flow rate, and viscosity and measured uncertainty length and area.



E. Rosenbrand et al. / Geothermics 53 (2015) 225–235 229

Fig. 2. Backscatter electron microscope (BSEM) images of untested Berea sandstone. Black areas constitute pore space, the grains are mainly quartz with some lighter coloured
feldspar (fldspr) and there is lighter coloured carbonate cement (carb). Kaolinite (kao) is concentrated in some pores but not present in other pores (a and b). The flat kaolinite
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articles have diameters ranging from 1 �m to 30 �m,  and these are predominantl
hlorite  (chl), and white titanium oxide (Ti) particles are also observed (c).

he connected flow path among quartz grains. Thus, rather than
ypassing the pores among kaolinite particles flow would be con-
rolled by pores among kaolinite particles, so that the surface area
f kaolinite controls the effective Sp.

.2. Effects of salinity, temperature, and flow velocity on
ermeability

.2.1. Salinity
Reducing the NaCl concentration in sample J1 at 20 ◦C reduced

ermeability and this change was largely irreversible when the
aCl concentration was restored (Fig. 3a). Subsequently, reversing

he flow direction at 2.0 M NaCl did partially restore the permeabil-
ty. Permeability decline due to a salinity reduction, a negligible
ncrease of permeability after salinity restoration, and a partial
estoration of permeability with reversing the flow direction are
n accordance with results from Khilar and Fogler (1984) on Berea
andstone samples that were saturated with NaCl solution at room
emperature.

Several authors attributed the effect of salinity to fines

bstructing pore constrictions (Bedrikovetsky and Caruso, 2014;
edrikovetsky et al., 2011, 2012; Khilar and Fogler, 1984, 1987;
ia et al., 1987; Ochi and Vernoux, 1998). Mechanisms from fil-

ration theory include straining, by particles or particle aggregates
rved in stacks (b and c). Some thin needle like particles of other clays illite (ill) or

that are larger than the pore constrictions, and bridging, by indi-
vidual small particles that arrive at a pore throat simultaneously
(Bedrikovetsky et al., 2011, 2012; McDowell-Boyer et al., 1986).
Fig. 2 shows that the size of both pores and kaolinite particles varies.
Therefore, both mechanisms could occur. However, due to their
greater mass, larger particles may  not be mobilised or transported
(Bedrikovetsky et al., 2011). Filtered particles would not be remo-
bilised when the EDL repulsion is reduced, which could account for
the lack of effect of restoring salinity (Khilar and Fogler, 1984). On
the other hand, reversing the flow direction would remove particle
bridges from pore constrictions, and thereby restore the permeabil-
ity if the grains reattach to the pore walls in the pore bodies (Khilar
and Fogler, 1984). If the repulsion between kaolinite and quartz
prevents reattachment, particles could be filtered at another pore
constriction and permeability would not be restored.

Kaolinite has also been observed to form card-house aggre-
gates by interaction among the differently charged faces and edges
(Gupta et al., 2011; Schofield and Samson, 1954). In such an aggre-
gate, the total surface area of each plate would contribute to the
effective surface, rather than only the edges in a kaolinite stack, and

thereby this would reduce the permeability compared to kaolin-
ite booklets. A high effective specific surface area corresponds to
a low permeability, and the maximum effective specific surface
area was  18 m2/cm3 (cf. Eq. (6)) at 0.002 M NaCl at 20 ◦C, which is
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Fig. 3. (a) At 20 ◦C in sample J1 (black triangles) the permeability falls sharply when
the NaCl concentration is reduced below 0.2 M and the effect is largely irreversible
when NaCl concentration is subsequently restored. Reversing the flow direction
partially restores permeability. At 80 ◦C in sample J2 (black circles), neither NaCl
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oncentration nor flow direction affects the permeability. Interstitial flow velocity
 = 70–95 �m/s  for sample J2. (b) Heating caused a reversible permeability reduction
n  sample J2 with 2.0 M NaCl. Interstitial velocity q = 4–7 �m/s.

omparable to the estimated internal specific surface area of kaolin-
te (Section 3.1). However, acording to Gupta et al. (2011), above
H 8, both the particle faces and the edges would have a negative
urface potential at room temperature. Card-house aggregates are
ormally observed at a lower pH when the kaolinite edges have a
ositive surface potential and are attracted to kaolinite faces that
ave a negative surface potential (Gupta et al., 2011; Schofield and
amson, 1954).

At pH 8–9 in a solution with a low salinity the EDL repul-
ion among kaolinite particles would prevent aggregation as card
ouses and particles would be expected to remain in suspension
Gupta et al., 2011; Schofield and Samson, 1954). Nonetheless,
ome authors observed that kaolinite particles in suspension at pH
–9 form chains or porous networks in cryo-SEM images (Gupta
t al., 2011; Zbik and Frost, 2009). Interaction among kaolinite
articles is also reflected by a yield stress below which kaolinite
uspensions do not shear (Johnson et al., 1998; Mpofu et al., 2003;
lphen, 1977). In bench top experiments where a kaolinite suspen-
ion was allowed to settle in a low salinity solution at pH 8, Zbik
nd Frost (2009) observed the formation of a gel, i.e. a 3D porous
etwork of particles (Olphen, 1977), on the bottom of the vessel. If
uch a network were to form in the bottom of the pore bodies of
ics 53 (2015) 225–235

kaolinite bearing pores this would reduce the effective pore volume
and thereby reduce permeability. Increasing salinity would reduce
the repulsion between kaolinite and quartz, allowing particles to
reattach to the pore walls or re-aggregate as booklets and restore
permeability. Therefore, it appears less likely that the irreversible
salinity effect observed in sample J1 is due to a kaolinite suspension,
whereas particle filtration would account for the results.

3.2.2. Temperature
Fig. 3b shows that the permeability was reduced by heating in

sample J2 when saturated with 2.0 M NaCl solution. Reducing and
restoring the salinity at 80 ◦C had no effect on permeability (Fig. 3a),
but subsequent cooling to 20 ◦C restored the permeability to 80% of
the original permeability at 20 ◦C. A reversible effect of temperature
was also found in Berea sandstone samples that were heated to
80 ◦C or 90 ◦C with distilled water, solutions of 0.01–1.0 M NaCl
and solutions of 0.004–0.4 M CaCl2 (Baudracco and Aoubouazza,
1995; Rosenbrand et al., 2014). In those studies, 60–100% of the
permeability prior to heating was  recovered with cooling.

To investigate whether heating reduced permeability by mobil-
isation of particles or by a different mechanism, the salinity was
reduced from 2.0 M to 0.002 M NaCl at 80 ◦C in sample J2. We
observed no additional permeability reduction (Fig. 3a), which sug-
gests that particles were already mobilised as a result of the high
temperature. Other authors have reported that salinity reduction
reduced the permeability in a sample that was heated to 60 ◦C
(Khilar and Fogler, 1984). However, they did not report whether
heating had already reduced permeability, which suggests this
was not the case. In a study by Baudracco and Aoubouazza (1995)
where permeability was measured at 10 ◦C increments, the perme-
ability was  observed to decrease above a threshold temperature,
which varied between 50 ◦C and 70 ◦C in tests with distilled water,
CaCl2 solution and NaCl solution. Rosenbrand et al. (2014) also
observed that the permeability reduction between 50 ◦C and 80 ◦C
was greater than the reduction between 20 ◦C and 50 ◦C using 0.34
NaCl solution (Fig. 3b). This suggests that particles can be mobilised
by heating when a threshold temperature is exceeded. If the tem-
perature remained below the threshold temperature, a salinity
reduction could mobilise particles and reduce permeability pos-
sibly irreversibly.

The reversibility of the heat-induced permeability reduction
indicates that mobilised particles were not attached in pore con-
strictions. One possible cause for the permeability reduction is that
particles formed a suspension of interacting particles in kaolinite
bearing pores. Presumably the effect of temperature on the surface
potential is reversible, whereby cooling would allow the particles
to reattach to the pore walls or to re-aggregate in booklets restoring
the permeability.

3.2.3. Flow velocity
Ochi and Vernoux (1998) observed that the permeability was

reduced at room temperature when a critical flow velocity was
exceeded, which they attributed to particle mobilisation by hydro-
dynamic forces. The critical flow velocity for NaCl solutions in their
tests on Berea sandstone samples was  one order of magnitude
higher than the flow velocities used in the experiment on sample
J1 at 20 ◦C, so accordingly flow velocity did not affect permeabil-
ity in this experiment. Khilar and Fogler (1984) also found that a
flow rate below the critical flow velocity did not affect permeability
at room temperature. Ochi and Vernoux (1998) found that above
the critical flow velocity, subsequent increases in the flow veloc-
ity caused further permeability reduction, which they attributed to

mobilisation of additional fines, and the obstruction of additional
pore constrictions.

By contrast, increasing the flow velocity increased the perme-
ability in sample J2 at 80 ◦C, after the permeability had been reduced
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Fig. 4. (a) Increasing the interstitial velocity, q, had no significant effect on perme-
ability at 20 ◦C in sample J1 neither before nor after the salinity reduction. At 80 ◦C,
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he  permeability increased with increasing flow velocity independent of salinity
n  sample J2. (b) At 80 ◦C, the effect of flow velocity was reversible when the flow
elocity is increased, reduced, and increased again.

y heating. No hysteresis was observed in cycles where the flow
elocity was increased and reduced (Fig. 4). This indicates that
ncreases in flow velocity did not result in additional obstruction of
ore throats, but possibly that a greater pore volume was  available
or flow at high flow velocities.

Bedrikovetsky et al. (2011, 2012) suggest that increasing the
ow velocity would indeed improve permeability as this would
educe particle filtration. They model reversible particle attach-
ent by using a critical retention function, which is based on a
echanical equilibrium of hydrodynamic forces, DLVO forces, and

ravitational forces on a particle (Bedrikovetsky et al., 2011, 2012).
n this model, an increase in the flow velocity would reduce the

aximum concentration of retained particles due to the higher
obilising hydrodynamic forces on particles that are on the grain

urface. An increase in the EDL repulsion would reduce the maxi-
um  concentration of retained particles, by reducing the net DLVO

ttraction between particles and the grain surface. This model can
redict the effect of flow velocity on permeability when a parti-
le suspension is injected into a rock sample (Bedrikovetsky et al.,

011). At high flow rates, no particle capture takes place, whereas at

ower flow rates particles are retained and permeability is reduced.
hereas this would account for the observed flow rate effect in

ur experiments, this would not account for the observed effect of
ics 53 (2015) 225–235 231

temperature in sample J2. The higher EDL repulsion due to heating
would reduce particle filtration, whereas cooling would increase
filtration and thereby reduce permeability. We  believe the reason
for the different effect of temperature in our experiments is that
Bedrikovetsky et al. (2011) model permeability as a function of the
concentration of particles that is retained in the sample when exter-
nal particles are injected, therefore the retained concentration can
increase. By contrast, in our tests kaolinite particles were already
present in the sandstone pores, the concentration of particles would
not increase, and the change in permeability would be due to an
alteration of the distribution of particles within the pores.

A kaolinite suspension of interacting particles with a yield stress
might account for the effects of temperature, salinity and of flow
rate observed at 80 ◦C. Due to the higher zeta potential at 80 ◦C
than at 20 ◦C, the higher EDL repulsion among quartz and kaolinite
might prevent particles from being filtered in pore constrictions.
High flow rates could cause shear, and thereby increase the fraction
of the pore volume that is free for fluid flow.

Rheological measurements of concentrated kaolinite suspen-
sions indicate that these have a yield stress that depends on the
concentration of kaolinite (Johnson et al., 1998). With 8% kaolin-
ite in a typical Berea sample (Churcher, 1991; Khilar and Fogler,
1987) and a porosity of 0.17 the concentration of kaolinite in the
pore volume would exceed 50 wt.% if all kaolinite were mobilised.
The heterogeneous distribution of kaolinite in the pore space would
result in a higher concentration of suspended particles locally. To
estimate whether the flow velocities used in the test on sample J2 at
80 ◦C could shear a kaolinite suspension, we  calculated the thresh-
old pressure gradient ˛, required to overcome the yield stress,�, of
a Bingham fluid in a cylinder with radius R using Eq. (9) after Pascal
(1981).

 ̨ = 2�
R

(9)

A yield stress of 200 Pa was  used, as reported by Mpofu et al.
(2003), for a 32 wt.% kaolinite suspension at room temperature
and pH 10.5 in 0.001 M KNO3 solution. Heating makes the surface
potential more negative (Rodríguez and Araujo, 2006; Schembre
and Kovscek, 2005), which would reduce the yield stress (Johnson
et al., 1998). However, this effect would be to some degree offset
by the lower pH of the pore fluid in the Berea sandstone, which
makes the surface potential less negative. For R we  used 8 �m,
the average pore radius of a Berea sandstone sample from mer-
cury injection by Baudracco and Aoubouazza (1995). This yields a
threshold pressure gradient of 1 MPa/m (cf. Eq. (9)). During tests on
J2 at 80 ◦C, the pressure differential over the sample varied between
0.01 MPa  to 0.4 MPa, corresponding to an average pressure gradient
of 0.2–7 MPa/m, indeed making shear possible. Due to the hetero-
geneous distribution of both particle concentration in the pores
and of the pore size, the yield stress would vary locally. There-
fore, successive increases in flow rate would cause shearing of the
kaolinite suspension in successively more pores, resulting in the
gradual increase in permeability with flow rate observed in Fig. 4.

The reversibility of the effect of flow rate would be observed
when shear does not result in removal of kaolinite from the pore
bodies. Accordingly no kaolinite was observed in the effluent, and
we observed no significant alteration in the distribution of kaolinite
in images of the tested sample. Shear might alter the orientation of
kaolinite particles within the suspension and thereby reduce the
suspension volume and increase the porosity that is effective to
flow.
3.3. Sample alteration

BSEM images of the tested samples after experiments did not
indicate a change in the distribution of kaolinite. Thus, after test
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ig. 5. BSEM images of samples after tests. Kaolinite (kao) is concentrated in some p
recipitates (Fe precip) are found rimming iron bearing carbonates (carb) (b) or in
ontained iron and silicon. We observed large particles, which also contained some

n both samples J1 and J2 (Fig. 5a and b) kaolinite particles were
till observed in some pores and not in others. However, in sam-
le J2 we observed a clear reduction in the amount of iron bearing
arbonate cement and the presence of iron hydroxide precipitates.
he precipitates were observed rimming, or adjacent to remaining
arbonate cement (Fig. 5b and c), suggesting that cement disso-
ution is the source of the iron. The iron hydroxide precipitation

as mainly concentrated in lamina perpendicular to the sample
xis, with a spacing of 1–4 mm,  and precipitates were observed
hroughout the sample length. In sample J1 we only observed thin
ron hydroxide rims on carbonate minerals in a few locations, most
f the carbonate cement appeared unaltered.

We found a permanent 20% permeability reduction in sample J2
fter heating and cooling, whereas heating reduced permeability
y 50–90% depending on the flow rate. The reversible part of the
ermeability change would not be due to chemical alteration, this
ight be due to fines mobilisation into suspension. The irreversible

0% reduction could possibly be due to chemical alteration, but
ight also be due to a change in effective specific surface area

ue to redistribution of fines after mobilisation. Hill et al. (2000)
eported that dissolution of siderite and precipitation of hematite
ims caused no permanent permeability change in one sandstone
ormation and only a 10–24% permeability reduction in another
andstone formation. Whereas Hill et al. (2000) report precipitation
f hematite, an iron oxide, the orange/brown colour of the precip-
tates observed using transmitted light microscopy in sample J2
uggests that these are goethite, an iron hydroxide. In solutions that

re supersaturated with both goethite and hematite at 70 ◦C, both
hases have been observed to precipitate (Hsu and Wang, 1980).

We observed particle aggregates in the remains after filtering
he effluent from the tests on J2 (Fig. 5d and e). The elemental
nd not in others in the tested samples J1 (a) and J2 (b). In sample J2 iron hydroxide
 adjacent to carbonates (c). The particle remains after filtering the effluent mainly
inium (d) as well as smaller particles that contain iron and silicon (e).

composition from EDX mainly reflects the carbon tape on which
particles were observed. Particles contained mainly iron and sili-
con, besides the carbon and oxygen from the carbon tape. Some
particles had a diameter larger than 50 �m (Fig. 5d), which sug-
gests these may  have aggregated or precipitated outside the sample
when the effluent cooled, as the effluent was stored for several days
at room temperature prior to filtration. The majority of the parti-
cles were smaller than 10 �m and these sometimes appeared in
small aggregates (Fig. 5e). With a mean pore throat radius in the
order of 8 �m as reported by Baudracco and Aoubouazza (1995)
it appears unlikely that 50 �m particles were transported through
the sample. We did not observe colloidal iron oxide or hydroxide
particles that could have contributed to permeability reduction as
mobile fines in the pores of the sandstone, in BSEM images of J2.
Small titanium oxide particles were observed, however, these were
also present in samples of untested Berea sandstone and in sample
J1 (Figs. 1c and 4a).

In order to reduce the oxygen content in the injected brine,
Milsch et al. (2009) flushed the brine with nitrogen gas in tests on
Rotliegend sandstone. The brine in our tests was  only degassed; the
sample alteration indicates that degassing alone is insufficient to
prevent oxidation of iron bearing carbonate minerals during exper-
iments.

Cooling restored the permeability in sample J2, but subsequent
salinity reduction at 20 ◦C from 2.0 M to 0.002 M NaCl reduced the
permeability only from 6.5 mD to 3.0 mD.  This effect was smaller
than the salinity effect at 20 ◦C in sample J1 that had not been

heated. The difference could be due to removal of kaolinite from
the sample by particle transport or dissolution during the test at
high temperature. Some authors have observed kaolinite fines in
the effluent concurrent with the permeability reduction in tests on
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Fig. 6. Interaction energy between kaolinite and quartz as a function of separation: (a) at 20 ◦C at different NaCl concentrations; (b) at 80 ◦C and 0.20 M NaCl for cases where
heating increases the surface charge of both minerals by a factor of 1, of 2, or of 4. (c) Interaction energy among kaolinite particles at 80 ◦C and 0.2 M NaCl where heating
i t 20 ◦C
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ncreases the surface charge by a factor of 2 and by a factor of 4. Surface charges a
caled by the interacting surface area (4 �m2). Dashed vertical line at 1 nm indicate

ome samples but not on other samples (Khilar and Fogler, 1984;
chembre and Kovscek, 2005). We  did not observe kaolinite parti-
les in the remains after filtering the effluent through 0.2 �m filters,
nd at 80 ◦C we observed no gradual change in permeability that
ould indicate removal of material. However, we only started to

ollect the effluent after a brown/orange discoloration of the efflu-
nt in sample J2 was observed. Therefore we cannot rule out the
ossibility that kaolinite was indeed removed from the sample. We
bserved no qualitative difference in the distribution of kaolinite
n BSEM images of an untested and a tested sample, which also
uggests that kaolinite was not transported out of the samples. The
ET surface area was not reduced due to testing, and rather slightly

ncreased (Table 1), however, this change is only slightly larger than
he difference between duplicate measurements, and therefore the
ifference may  not be significant.

The observed difference between the effect of a salinity reduc-
ion at 20 ◦C in sample J1 and in sample J2 after heating and cooling
uggests that a permanent change in kaolinite or pore properties
educes the degree of kaolinite mobilisation. The reason for less
ffect of salinity at 20 ◦C after the long term experiment is unclear.
ome authors suggest that dissolution of calcium bearing carbon-
te cements would release Ca2+ ions that can adsorb to the kaolinite

urface and make the zeta potential less negative; thereby reducing
he permeability reduction due to fines migration (Kia et al., 1987).
owever, it is unclear whether the quantity of dissolved carbonate
ement would be sufficient to cause this effect.
, �0,20: 12 mC/m2 for kaolinite; 20 mC/m2 for quartz. The interaction energies are
xpected minimum separation between surfaces due to the adsorbed Stern layer.

3.4. Effect of heating and salinity on DLVO forces

In order to evaluate whether filtration or a particle suspension
are probable at 20 ◦C and 80 ◦C, respectively, we  compared the
effects of temperature and salinity on the interaction energy pro-
files between quartz and kaolinite and among kaolinite particles
using DLVO theory.

We used the Stern (1924) model for the double layer, accounting
for the Stern layer of bound ions on the mineral surface, and the
diffuse layer of ions in solution (Lyklema, 1991). The potential,  ,
on the Stern plane separating bound from mobile ions depends on
the net charge density � at the Stern plane, and on the temperature
and salinity of the pore fluid according to Grahame’s (1947, 1953)
relation (Eq. (10)) (Israelachvili, 2011).

� =
√

8000NAε0εrkbTCsinh

(
e 

2kbT

)
(10)

where C is the concentration of NaCl in moles per litre divided by
the standard state (i.e. 1 mol/kg H2O), e is the charge on an electron,
and T is the absolute temperature, and other parameters are as in
Eq. (1). The relative dielectric permittivity of the solution was calcu-

lated as a function of temperature and salinity (Maribo-Mogensen
et al., 2013; Michelsen and Mollerup, 2004). Zeta potentials at room
temperature and pH 8 for kaolinite and quartz, by e.g. Johnson et al.
(2000), Rodríguez and Araujo (2006) and Zbik and Frost (2009),
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ere used to estimate a representative � for these minerals cf.
q. (10), and by rearranging Eq. (10),   was calculated from �
or a given T and C. The EDL interaction energy between parallel
lates was calculated using the linear superposition approximation
Gregory, 1975) (Eq. (11)).

EDL = 64,  000NAC
�

tanh

(
e 1

4kbT

)
tanh

(
e 2

4kbT

)
exp(−�(h − 2t))

(11)

here t is the distance between the Stern plane and the mineral
urface, and h is the separation between the surfaces, and 1/k  is
nown as the Debye length Eq. (1), which characterises the distance
ver which the potential is reduced by a factor 1/e  (e is the natu-
al logarithm) (Lyklema, 1991). Here Eq. (11) is used as this yields
n intermediate solution between assuming a constant potential
r a constant charge in the double layer. The potential would be
onstant if the surface potential immediately equilibrates during
article interactions, which is suggested to be unlikely on the time
cale of collisions among suspended particles (Frens and Overbeek,
972). By contrast constant charge would apply to a surface with a
ermanent surface charge, whereas the surface charge due to inter-
ction with the pore fluid would be affected by an approaching
ouble layer (Elimelech, 2010).

The van der Waals energy was calculated by Eq. (12)
Israelachvili, 2011):

vdW = H

12
h
(12)

here h is the separation between the plates and H is the Hamaker
onstant. We  assumed H = 2.26 × 10−20 J, and independent of tem-
erature and salinity as also done by Schembre and Kovscek (2005).
he Born repulsion term can be included to account for repulsion
t short separations (e.g. Schembre and Kovscek (2005)); however,
his term was neglected as the adsorbed water in the Stern plane
ould be expected to limit the closest separation between two
articles to approximately 1 nm (Khilar and Fogler, 1984).

The calculated interaction energy between quartz and kaolin-
te switches from attraction to repulsion between 0.2 M NaCl and
.02 M NaCl, as indicated by the positive energy barrier at 0.02 M
aCl (Fig. 6a). Accordingly, we observed a sharp permeability

eduction when the salinity was reduced from 0.2 to 0.02 M NaCl
uring tests on J1 (Fig. 3a). Without changing the surface charge
ensity, at 0.2 M NaCl heating would not cause repulsive interac-
ion energy; however, a two-fold increase in the surface charges
esults in an energy barrier and thereby could cause mobilisation
Fig. 6b). Brady et al. (1996) found an approximate doubling of the
verage surface charge of kaolinite between 25 ◦C and 80 ◦C at pH 8
y using potentiometric titration; for quartz an increase in the zeta
otential, by a factor two between 25 ◦C and 45 ◦C was  observed by
odríguez and Araujo (2006) at the same pH.

Despite the net DLVO repulsion that caused particle mobilisa-
ion, some authors suggest that the mobilised particles could be
ltered in pore constrictions (Khilar and Fogler, 1987). For parti-
les to attach in pore constrictions, the hydrodynamic forces that
ransport particles to the pore constrictions would need to exceed
he net DLVO repulsion. Fig. 6a and b show that doubling the sur-
ace potential increases the height of the energy barrier between
aolinite and quartz to a greater extent than increasing the EDL
hickness by reducing salinity from 0.2 to 0.02 M NaCl. The higher
epulsion between kaolinite and quartz would reduce the extent to
hich kaolinite can attach to quartz pore constrictions, and there-

ore make a kaolinite suspension more likely. Due to the lower

verage surface charge density of kaolinite as compared to quartz,
he energy barrier between kaolinite surfaces (Fig. 6c) is lower than
he energy barrier between kaolinite and quartz surfaces (Fig. 6b).
nteractions among suspended kaolinite particles might affect the
ics 53 (2015) 225–235

flow properties of the suspension and reduce the porosity that is
effective to flow in kaolinite bearing pores.

4. Conclusion

We  performed a sequence of flow through experiments on Berea
sandstone samples to investigate the differences between the effect
of heating and the effect of salinity change at 20 ◦C on kaolin-
ite mobilisation and permeability reduction. We  observed that (a)
a permeability reduction due to heating from 20 ◦C to 80 ◦C was
largely reversible with cooling; (b) reducing the NaCl concentration
from 2.0 M to 0.002 M at 20 ◦C caused a permeability reduction that
was not reversible when the salinity was  restored; (c) the NaCl con-
centration did not affect the permeability at 80 ◦C; (d) for interstitial
velocities between 1 �m/s  and 58 �m/s, increasing the flow veloc-
ity increased permeability reversibly in a heated sample, but had no
effect at 20 ◦C. Heating to 80 ◦C for 150 days resulted in dissolution
of iron bearing carbonates and precipitation of iron hydroxides;
however, this did not significantly affect the permeability.

The reversibility of the temperature effect and the different
effects of NaCl concentration and flow rate at 20 ◦C and at 80 ◦C
suggest that mobilised fines affect permeability by different mech-
anisms at 20 ◦C and at 80 ◦C. Filtration of particles, as suggested by
several authors (e.g. Bedrikovetsky and Caruso, 2014; Khilar and
Fogler, 1984, 1987), would account for the observations at 20 ◦C
but not at 80 ◦C. We  tentatively suggest that a higher repulsion
between kaolinite and quartz at 80 ◦C could limit filtration; kaolin-
ite particles might remain in suspension in the pore bodies and
reduce the pore volume that is effective for flow. The difference is
relevant to seasonal geothermal heat storage, because it indicates
that the permeability reduction due to injection of hot water during
the summer could be offset by increasing the injection flow rate.
Furthermore, the permeability of the aquifer may recover when
the temperature is reduced during the winter, and the permeabil-
ity reduction that is observed when salinity is reduced at room
temperature might not at 80 ◦C.
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Abstract 19 

Chemical reactions in geothermal aquifers can alter porosity and permeability depending on the mineralogy 20 

of the formation. We analysed polished thin sections of sandstones in the electron microscope by using 21 

energy dispersive X-ray spectrometry mapped by the QemScan system. By subsectioning images we 22 

quantified lamination and we studied spatial correlations among minerals using principal component 23 

analysis. In one sample hot NaCl solution had been injected for 150 days. Testing caused oxidation of 24 

siderite to iron hydroxides, and lamination on a mm scale became more pronounced in the tested sandstone 25 

sample. However, we found no significant effect on porosity and permeability.  26 
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1. Introduction 41 

Energy storage by injecting hot, 150°C, water into warm, 75°C, geothermal aquifers is an option to manage 42 

the seasonal imbalance between supply and demand for heat energy in Denmark. Two Triassic-Jurassic 43 

formations in the Norwegian-Danish Basin that are currently used for geothermal energy production are 44 

considered for hot water injection: the Gassum Formation sandstone and the Bunter Formation sandstone. 45 

Injection and storage of hot water into sandstone aquifers could alter the petrophysical properties, porosity 46 

and permeability, by mineral dissolution or precipitation (Milsch et al., 2008; Schepers and Milsch, 2013; 47 

Sydansk, 1982; Tenthorey et al., 1998). Additionally, studies of sandstones that contain kaolinite show that 48 

increasing the temperature reduces permeability, probably due to fines migration (Khilar and Fogler, 1987; 49 

Rosenbrand et al., 2014; Schembre and Kovscek, 2005).  50 

Image analysis can be used to investigate the effect of hot water injection on sandstone mineralogy and 51 

permeability, and several authors use backscatter electron microscopy (BSEM) images to model 52 

permeability, (Berryman and Blair, 1987; Blair et al., 1996; Borre et al., 1995; Solymar and Fabricius, 1999). 53 

Some authors combine BSEM with energy dispersive X-ray spectroscopy (EDS), in order to determine the 54 

mineralogy of the samples as well as the reactive surface areas of different minerals (Landrot et al., 2012; 55 

Peters, 2009). In order to quantify alterations in mineralogy and permeability and to relate these to the 56 

quantities measured during laboratory experiments on core samples the interrogation area used during image 57 

analysis must be sufficiently large.   58 

A minimum representative area (MRA) can be estimated by increasing the investigated area until a particular 59 

property, stabilises as a function of the investigation area (Bear, 1972; Landrot et al., 2012; Solymar and 60 

Fabricius, 1999). Some authors determine an MRA for quartz, the dominant mineral in sandstone, and use 61 

this area to quantify accessible surface areas of other minerals (Landrot et al., 2012) . However, 62 

heterogeneously distributed minerals, such as carbonate minerals and anhydrite would have a larger MRA 63 

than more homogeneously distributed minerals. Heterogeneity in the form of lamination on a scale of 64 

millimetres was observed in some sandstone formations including the Berea Formation (Knackstedt et al., 65 

2001). In order to model core scale permeability, image analysis would require an interrogation area that 66 

exceeds the size of individual lamina.  67 

The QemScan automatic scanning electron microscopy system was developed in order to analyse a large 68 

interrogation area within a limited time. Samples are scanned over a raster and pixels are identified as 69 

different minerals based on their BSEM intensity and EDS spectra (Ayling et al., 2012; Pirrie et al., 2004). 70 

This allows quantification of MRA for all minerals in a sample, and generates data for statistical image 71 

analysis.  72 



In this study, we used image analysis of QemScan data to compare mineralogy and permeability of three 73 

untested sandstone samples, and one tested sandstone sample. The untested samples include: 1) a sample 74 

from the Berea Formation sandstone; 2) a sample from the Gassum Formation sandstone; 3) a sample from 75 

the Bunter Formation sandstone. The fourth sample is a sample of Berea sandstone after hot water had been 76 

injected for 150 days (Rosenbrand et al., under review). We quantified: mineralogy, total pore-mineral 77 

interface length and reactive surface area for different minerals. We estimated MRA for different minerals 78 

and confidence intervals on mineralogy in order to compare mineralogy among images. Lamination was 79 

investigated by means of subsectioning images parallel to the lamination. Statistical image analysis including 80 

principal component analysis, PCA, was used to quantify correlations among minerals within lamina of each 81 

sample as well as to distinguish the mineralogy among different formations, and to distinguish between the 82 

tested and untested samples. The effect of lamination on permeability was estimated using Kozeny’s (1927) 83 

equation. 84 

2.1 Sandstone samples 85 

Four sandstone samples were included in this study, two samples (Gassum 7V and Bunter 2T) from the 86 

Norwegian-Danish Basin, and two samples of Berea sandstone from the Cleveland Quarries (Amherst, Ohio, 87 

USA). The sample from the Gassum Formation sandstone is dominated by quartz and has only a small 88 

amount of clay minerals. The samples from the Berea sandstone are dominated by quartz and contain 89 

kaolinite clay minerals as well as iron bearing carbonate minerals (Khilar and Fogler, 1987). The sample 90 

from the Bunter Formation sandstone has a relatively higher feldspar content as well as iron oxides or 91 

hydroxides, chlorite and illite clay minerals, carbonate minerals, and anhydrite. Plug samples of Gassum 92 

sandstone and Bunter sandstone were cut from reservoir cores with burial depths of 1560 m and 1655 m and 93 

cleaned by Soxhlet extraction with methanol and toluene prior to preparation. The Berea sandstone plugs 94 

were clean. Sample Berea A1 is one half of a plug that had been sectioned perpendicular to the sample axis. 95 

Sample Berea J2 is a full length plug, which had been tested by placing it in an oven at 80°C and injecting 96 

80°C NaCl solution for 150 days (Rosenbrand et al., under review).  97 

He-porosity and nitrogen gas permeability were measured on plug samples according to the Klinkenberg 98 

procedure (API, 1998; Klinkenberg, 1941). Subsequently, plug samples Berea A1 and Berea J2 were 99 

sectioned vertically, parallel to the plug axis, to prepare polished thin sections. Vertical side trims of plug 100 

samples from the Gassum and Bunter sandstone were used to prepare polished thin sections Gassum 7V and 101 

Bunter 2T. Specific surface area from nitrogen adsorption (BET, Brunauer et al. (1938)) was measured on 102 

2 g of the crushed samples, which were degassed for four hours at 70°C.  103 

  104 



2.2 Image acquisition 105 

Images were acquired using a Quanta650F (FEI) scanning electron microscope using a beam intensity of 106 

15kV and a working distance of 13mm. EDS spectra were detected with a Bruker Dual X-Flash5030 107 

Detector. On each sample a 100 mm
2 
area was scanned using BSEM and EDS in a raster with a pixel length, 108 

    , 1.8 μm acquiring 2000 EDS counts per pixel. Subsequently the same area was scanned with      0.8 μm 109 

using only BSEM. Due to the larger interaction volume of the electron beam for the generation of 110 

fluorescence light a pixel length      of 1.8 μm was chosen for EDS work, while the lower pixel length was 111 

appropriate for BSEM. Prior to scanning, calibration of the BSE detector was done using quartz, copper, and 112 

gold standards.  113 

2.3 Mineral classification 114 

The automatic identification of pore space and mineral phases is based on parameters, such as BSE intensity, 115 

X-ray count rate as well as X-ray energy and intensity derived from EDS spectra, which are defined in the 116 

species identification protocol (SIP) of the QemScan iDiscover (v.5.3) software (Ayling et al., 2012; Pirrie et 117 

al., 2004). The BSE intensity is an indication of the density of the specimen interacting with beam electrons; 118 

the density of the epoxy filling in the pore space is lower than the mineral density, therefore the pore space is 119 

black in BSEM images whereas minerals with a high density have a high grey level intensity. The software 120 

classifies pixels that fall below a user-defined threshold grey level intensity as pore pixels; subsequently 121 

mineral pixels are classified based on the elemental compositions from EDS spectra. For this study the SIP 122 

was prepared based on the oil and gas v3.7 SIP (by FEI) in which additional categories were defined in order 123 

to account for interfering element information along grain boundaries and fine-grained minerals in the range 124 

of the spatial resolution, e.g., some iron oxide/hydroxide precipitates that had formed during heating in Berea 125 

J2 apparently contained silicium, which could be due to interaction of the electron beam with the underlying 126 

quartz grains. Several minerals were grouped for further analysis: illite and muscovite (IM); chlorite group 127 

minerals, mixed layer chlorite-smectite and biotite (CMB); dolomite and ankerite (DA); gypsum and 128 

anhydrite (GA); iron oxide/hydroxide; and titanium oxides. Feldspar minerals were also considered as one 129 

group.  130 

Pixels may contain a combination of minerals when the pixel is on the boundary between two mineral grains. 131 

Therefore the SIP contains boundary categories, e.g. 25% quartz 75% kaolinite that were used for 132 

identification and subsequently these pixels were assigned to the mineral or group with the highest 133 

percentage contribution. However, not all possible interfaces were defined therefore some individual pixels 134 

remained unidentified. A pre-processing operation was performed whereby single unidentified pixels were 135 

assigned to the same mineral group as the neighbouring pixels. This was only applied to single unidentified 136 

pixels, pixels that were identified as a mineral or as porosity were unaffected.  137 



3. Image analysis  138 

Image analysis was performed on .tiff images exported from the QemScan software in which the pores and 139 

different minerals have distinct colours as classified by the SIP. Image analysis is done using Matlab 2012b 140 

(The MathWorks, USA).  141 

3.1 Mineral content 142 

Mineral content was determined by summing the number of pixels of a given colour. The fraction of an area 143 

occupied by a specific phase corresponds to the fraction of a volume occupied by this component, the 144 

Delesse principle. In order to estimate an error margin for variation within the sample, we used twice the 145 

standard deviation that was calculated from the mineral content in the four 25 mm
2
 quarters of the image. 146 

The MRA were found by plotting mineral content as a function of increasing interrogation area, based on the 147 

representative elementary volume concept in Bear (1972).  148 

3.2 Interface length  149 

The interface length between the pores and minerals in a unit area,   , was quantified based on the number of 150 

edges between porosity pixels and mineral pixels. Interface pixels were identified by subtracting the image 151 

that was shifted by one pixel from the original image; nonzero values indicate pixels that are on the interface 152 

between two phases. Multiplication by a mask of the porosity resulted in an image with only the interface 153 

between porosity pixels and minerals. This was done for four directions to identify four possible edges for 154 

each pixel. As in Borre et al. (1995) pixels on a diagonal interface, which have two connected edges that are 155 

part of the interface, were assigned a length     √  rather than      ; similarly pixels with three interface 156 

edges would correspond to two diagonal boundaries, (i.e., in the cleavage planes of mica grains) and these 157 

were assigned a length      √ . Pixels with one and with four interface edges were assigned      and      , 158 

and pixels with two interface edges on opposite sides of the pixel were assigned      . In some previous 159 

studies isolated pixels are neglected (Borre et al., 1995; Peters, 2009), however, with      1.8μm, single 160 

porosity pixels could contribute to flow and to reactive surface. Single pixels of minerals such as iron 161 

oxide/hydroxide pixels in the cleavage planes of micas would correspond to petrographic observations of the 162 

Bunter sandstone formation (Weibel et al., 2010). The interface length for different minerals was calculated 163 

in the same manner replacing the porosity mask with the mask of the desired mineral.   164 

3.3 Heterogeneity: lamination and patches 165 

Heterogeneity on the pore scale can be due to patchy distribution of minerals such as carbonates and 166 

anhydrite (Weibel et al., 2010), or to lamination (Knackstedt et al., 2001). Heterogeneity was quantified by 167 

calculating mineral content and   for subsections of the image. For lamination, the sample was divided into 168 



thirty eight, 270 μm wide subsections that span the length (10300 μm) of the scanned area. This was done in 169 

the vertical and in the horizontal direction. The width of 270 μm is slightly larger than the size of the largest 170 

pores that were observed in studies using micro computed tomography in Berea sandstone (Bera et al., 2011; 171 

Peng et al., 2012). For heterogeneity due to patchy mineral formation, square subsections of the same area as 172 

the vertical and horizontal subsections were used, giving thirty six squares with a length of 1700 μm.  173 

3.4 Multivariate analysis 174 

The mineral composition of the subsections was expressed by 12 variables, i.e. porosity and 11 mineral 175 

groups. For each sample we calculated the correlation coefficient matrix based on the mineralogy of the 176 

thirty eight horizontal and the thirty six square subsections. In order to analyse correlations among groups of 177 

minerals, and differences among different sandstone formations and differences between tested and untested 178 

sandstone samples we used PCA by singular value decomposition of the centred normalised data. Centring 179 

reduces the mean square error (Miranda et al., 2008) , and without normalisation the results would be 180 

dominated by the volumetrically abundant phases quartz, feldspar and porosity only. The original variables 181 

were scaled by the loadings from PCA to obtain the principal component scores. The first principal 182 

component contains most variance; the subsequent PC's are orthogonal and account for successively less 183 

variance.  184 

4. Permeability from images 185 

Permeability can be estimated from porosity, , and specific surface area between solids and pores 186 

normalised by the pore volume,   , according to the Kozeny (1927) equation: 187 

  
  

  
  

               Eq. (1) 188 

where   can be expressed as a function of porosity in Eq. (2) (Mortensen et al., 1998) .  189 
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 Eq. (2) 190 

In order to relate the 2D interface of a phase   to the 3D surface of this phase Eq. (3) is often used, where 191 

      (Peters, 2009; Solymar and Fabricius, 1999; Weibel, 1989). 192 
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            Eq. (3) 194 

Equation 3 is strictly valid only for perfect spheres (Solymar and Fabricius, 1999). Based on 2D pore sizes 195 

from BSEM images and 3D sizes from computed micro-tomography (CMT), Crandell et al.(2012)  found a 196 

value of        for a sediment packed column. Those authors corrected for the higher resolution of BSEM 197 

images by removing pores below the CMT resolution and adapting the porosity thresholds so that both 198 

methods gave the same porosity. We estimated permeability from images using Eq.(1-3) for different values 199 

of  .  200 

In order to investigate the effect of heterogeneity on permeability, permeability was calculated for vertical, 201 

horizontal and square subsections of the image, and the harmonic and arithmetic averages were used to 202 

determine minimum and maximum permeabilities for the sample. Permeability was calculated for images 203 

with      1.8 μm and for images with      0.8 μm.  204 

5. Results 205 

5.1 Mineral abundance 206 

Quartz is the dominant mineral in all four samples comprising over 60% of the area in the Berea samples and 207 

in Gassum 7V and over 34% in Bunter 2T. Pore area is the second most abundant in all samples followed by 208 

feldspars. These three phases contribute to over 90% of the sample area in the Berea samples and Gassum 209 

7V, whereas Bunter 2T contains a larger amount of carbonate and clay minerals. In the three untested 210 

samples, the estimated error relative to the total image area is highest for quartz, however, relative to the 211 

quartz content, the error on the quartz content is low (Table 1). By contrast the error for less abundant phases 212 

with a patchy occurrence, such as gypsum/anhydrite in Bunter 2T or Gassum 7V is larger than the amount of 213 

gypsum/anhydrite in the image.  214 

  215 



Table 1: Sample composition, error estimate is twice the standard deviation of four 25 mm
2  

square 216 

subsections of the samples.   217 

           
Gassum 7V 

% of total area 

(error) 

Bunter 2T 

% of total area 

(error) 

Berea A1 

% of total 

area (error) 

Berea J2 

% of total 

area (error) 

Difference 

Berea J2- 

Berea A1 

   Mineral/mineral group 

Pores 26.0 (2) 25.2 (5) 14.3 (3) 14.3 (1.4) 0.0 

Quartz 62.2 (6) 34.0 (11) 70.78 (10) 71.4 (6) 0.7 

Feldspar 7.1 (4) 24.38 (97) 6.0 (6) 5.3 (6) -0.7 

Calcite 0.015 (9) 4.9 (3) 0.008 (3) 0.0035 (8) -0.005 

Siderite 0.016 (7) 0.23 (3) 0.85 (13) 0.16 (2) -0.69 

Dolomite/Ankerite 0.00024 (14) 0.31 (8) 0.4 (2) 0.31 (14) -0.08 

Kaolin 1.2 (2) 0.0026 (10) 2.9 (4) 2.4 (4) -0.5 

Illite/Muscovite 2.1 (3) 3.7 (6) 2.7 (3) 2.4 (3) -0.3 

Chlorite/Mixed 

illite-chlorite/Biotite 
0.92 (11) 6.1 (4) 1.57 (4) 1.9 (2) 0.3 

Iron oxide/hydroxide 

(Fe2O3/FeOOH) 
0.09 (4) 0.68 (9) 0.12 (4) 1.13 (11) 1.01 

Titanium oxides 0.257 (9) 0.13 (2) 0.27 (10) 0.5 (2) 0.2 

Gypsum/Anhydrite  0.0012 (14) 0.3 (5) 0.00011 (32) 0 -0.00011 

 218 

 219 

5.2 Minimum representative area 220 

The MRA for porosity for the untested sandstone samples is shown in Figure 1. The MRA is approximately 221 

20-30 mm
 2
 for Bunter 2T and for Berea A1, and 10-15 mm

2 
for Gassum 7V. The smaller MRA of Gassum 222 

7V could be due to the smaller grain size in the Gassum sandstone. Figure 2a shows the MRA for porosity 223 

for the tested Berea J2, porosity appears to stabilise between 8 mm
2
 and 20 mm

2
 but subsequently increases 224 

as the interrogation size is increased. A lamination of the porosity in the sample can be observed in a binary 225 

image of the porosity (Figure 2b).  226 

227 



a b  228 

c  229 

Figure 1: Porosity as a function of interrogation area in a subsection of the untested sandstone samples. The 230 

minimum representative area (MRA) is less than half the total area of investigation (100 mm
2
). 231 

 232 

 233 

 a b  234 

Figure 2: a) Porosity as a function of interrogation area in subsection of the tested Berea sample J2. A 235 

plateau is reached at 8 mm
2
 but porosity then rises when the area is increased above 25 mm

2
 resulting in a 236 

minimum representative area, MRA, that is approximately the size of the total image (100 mm
2
). b) Binary 237 

image showing horizontal lamination at a scale of 2 mm in sample Berea J2, white is pores, black is 238 

minerals. 239 



The MRA for the rock-forming minerals quartz and feldspar approximately are only 10 mm
2
 for quartz and 240 

20 mm
2
 for feldspar in Gassum 7V, as compared to approximately 20 mm

2
 for quartz and 75 mm

2 
for 241 

feldspar in Berea A1, and approximately 60 mm
2
 for both quartz and feldspar Bunter 2T. Despite 242 

differences, these MRA are clearly less than 100 mm
2
. In contrast, elevated MRA values are observed for 243 

less abundant phases with a patchy occurrence (Figure 3a). The MRA for gypsum/anhydrite in Bunter 2T is 244 

larger than 100 mm
2
 (Figure 3b). Minerals with a large MRA relative to the mineral content include calcite 245 

and dolomite/ankerite in Gassum 7V and in Berea A1, the MRA of calcite in Berea A1 is in the order of 246 

75mm
2 
(Figure 3c). In Berea J2 the MRA for feldspar is similar to the value of feldspar in Berea A1, 75 247 

mm
2
, whereas the MRA for quartz is higher in Berea J2 than in Berea A1, approximately 60 mm

2
.  248 

 249 

a b  250 

c  251 

Figure 3:  a) Binary image showing gypsum/anhydrite distributed in patches in sample Bunter 2T, white is 252 

gypsum/anhydrite black is other minerals and pores b) The minimum representative area (MRA) of 253 

gypsum/anhydrite in sample Bunter 2T exceeds the image size (100 mm
2
), the error estimated from 25 mm

2
 254 

subsections yields error margins between 0 and 0.8% for anhydrite content c) The MRA of calcite in 255 

untested sample Berea A1is approximately 75 mm
2
. 256 

 257 

 258 



5.3 Lamination 259 

Figure 4 shows variations in the mineralogy for horizontal sections in the untested Berea A1 and the tested 260 

Berea J2. In Berea J2, porosity shows two peaks at 2 μm and 8 μm that coincide with peaks in the feldspar 261 

content and the kaolinite content and troughs in the iron oxide/hydroxide and the quartz content. Troughs in 262 

the porosity correspond with peaks in the quartz and the iron oxide/hydroxide content. The range of 263 

porosities in the sections of Berea A1 is smaller (e.g. 12%-17% for 270 μm wide and 10300 μm long 264 

sections) than for Berea J2 (10%-19%). The more pronounced variation of mineral abundance and porosity is 265 

considered to show a lamination that is optically visible in the distribution of pores (Fig. 2b). The interface 266 

length of the quartz phase scaled by the quartz area, which is an estimate of the quartz grain size, also shows 267 

a more pronounced lamination in Berea J2 than in Berea A1. Lamination of the mineral abundance is also 268 

reflected in a higher variance of the mineral content in the subsections of Berea J2 (Table S1). The variance 269 

of the iron oxide/hydroxide content is 140 times larger and the variance of porosity is six times larger in 270 

Berea J2 than in Berea A1. The variance of porosity in Gassum 7V and in Bunter 2T is smaller than in Berea 271 

J2, these samples show no indication of lamination. Variance for all minerals is included in Table S1 of the 272 

supplementary material. 273 
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a b  275 

c d  276 

e f  277 

Figure 4: The fluctuations in the mineral content as a function of distance from the bottom of the image for 278 

horizontal subsections (width 270 μm, length 10300 μm) of the untested sample Berea A1(a and c); and 279 

tested sample Berea J2 (b and d) show a greater variability in tested sample Berea J2. In particular porosity 280 

and iron oxide/hydroxide is laminated. The variation in the interface length of the quartz phase scaled by the 281 

quartz area (Iqtz/Q), which is an estimate of the quartz grain size is higher in sample J2 (f) than in sample 282 

Berea A1 (e). (P=porosity; Q=quartz; F=feldspar; K=kaolin; S=siderite; Fe= Fe2O3/FeOOH.) 283 



5.4 Multivariate analysis 284 

Table 2 shows correlations with a correlation coefficient larger than 0.65 between minerals in the 270 μm 285 

wide horizontal subsections for the four sandstones. For the untested Gassum 7V and Bunter 2T, correlation 286 

coefficients for square and for horizontal subsections are comparable, which indicates that there was no 287 

distinct lamination. In the tested Berea J2 there are higher correlation coefficients between minerals in 288 

horizontal subsections than in square subsections, indicating that there is horizontal lamination in this 289 

sample. All four samples have a negative correlation coefficient for feldspar and quartz. As there is a limited 290 

area, these variables are not independent, and a negative correlation between rock forming minerals would be 291 

expected. In the untested Berea A1, the negative correlation between porosity and quartz (0.76) exceeds that 292 

in the tested Berea J2 (0.66), in the latter there is a stronger negative correlation between porosity and CMB 293 

and between porosity and iron oxide/hydroxide. Furthermore, for horizontal subsections in Berea J2, strong 294 

positive correlations are observed between iron oxide/hydroxide and: CMB, titanium oxides and siderite, and 295 

between CMB and IM, siderite and titanium oxides. Full correlation matrices for square and horizontal 296 

subsections are included in Tables S2-S9 supplementary material. 297 

Table 2: Correlation coefficients exceeding 0.65 between minerals for horizontal subsections within each 298 

sandstone sample. Investigation areas are divided into thirty eight 270 μm wide subsections, 95% confidence 299 

interval in brackets. The full correlation coefficient matrices are in supplementary material. 300 

(IM=illite/muscovite; CMB=chlorite/mixed layer illite-muscovite/biotite; DA=dolomite/ankerite) 301 

      

  

  

 

  

  
Positive correlation coefficient>0.65 

(95% limits) 

 
Negative correlation coefficient>0.65 

(95% limits) 

Berea A1 DA - Calcite 

Siderite - FeO/FeOOH 

 

0.85 (0.7 - 0.9) 

0.74 (0.6 - 0.9) 

 

 Porosity – Quartz 

Quartz – Feldspar 

 

-0.76 (-0.6 -  -0.9) 

-0.75 (-0.6 -  -0.9) 

 

Berea J2 
CMB - IM 

CMB – Siderite 

CMB – Titanium minerals 

Fe2O3/FeOOH - CMB 

Fe2O3/FeOOH – Siderite 

Fe2O3/FeOOH - Titanium 

oxides 

Titanium oxides – Siderite 

0.69 (0.5 - 0.8) 

0.66 (0.4 - 0.8) 

0.72 (0.5 – 0.8) 

0.77 (0.6 - 0.9) 

0.88 (0.8 – 0.9) 

0.84 (0.7 – 0.9) 

0.66 (0.4 - 0.8) 

 Porosity – Quartz 

Porosity – CMB 

Porosity – 

Fe2O3/FeOOH 

Quartz – Feldspar 

 

 

 

 

-0.66 (-0.4 -  -0.8) 

-0.72 (-0.5 - -0.8) 

-0.69 (-0.5 - -0.8) 

-0.77 (-0.6 - -0.9) 

 

 

 

 

Gassum 

7V 

CMB – Siderite 

Fe2O3/FeOOH – Siderite 

 

0.68 (0.5 – 0.8) 

0.81 (0.7 – 0.9) 

 

 Quartz – Feldspar 

 

 

-0.82 (-0.7 - -0.9) 

 

 

Bunter 2T    Quartz - Feldspar -0.83 (-0.7 - -0.9) 
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Principal component analysis (PCA) was performed to investigate correlations among minerals within 303 

samples and between samples for horizontal subsections and for square subsections. The mineral loadings for 304 

the first six PC are shown for PCA on: square and horizontal subsections of the four individual samples; 305 

square and horizontal subsections from the three untested samples combined; square and horizontal 306 

subsections from tested and untested Berea samples combined, are in supplementary material Tables S10-307 

S13 308 

Figures 5a and 5b show the mineral loadings and the subsection scores for the first four PC resulting from 309 

PCA on horizontal subsections of the horizontally laminated sample Berea J2. PC1 accounts for 46% of the 310 

variance, whereas PC 2, PC3, and PC4 account for only 13%, 12%, and 8% (Table S11 b). Iron 311 

oxide/hydroxide, Ti oxides, CMB and siderite, have large negative loading on PC1, as opposed to porosity 312 

and kaolinite that have high positive loading on PC1. On PC2 quartz has a high positive loading and feldspar 313 

a high negative loading. PC3 has a high positive loading on calcite and dolomite/ankerite, whereas PC4 has a 314 

high negative loading on illite/mica. The first PC from PCA on the untested samples contain a variance of 315 

30% or lower, which reflects the low levels of correlation among minerals that were also shown in Table 2. 316 

PCA for the subsections from all three untested sandstones sample combined (Figure 5b) shows that 317 

subsections from different samples do form distinct clusters on the plot of the first two PC, which account for 318 

58 % and 20% of the variation. The PC1 has a negative loading on feldspar, iron oxide/hydroxide and CMB, 319 

which are most prevalent in Bunter 2T (Table 1), and positive loading for quartz and kaolinite which gives 320 

high scores for Gassum 7V and Berea A1. PC2 has a high loading on porosity, which gives high scores for 321 

Gassum 7V.  322 

The distinction between tested Berea J2 and untested Berea A1 is less pronounced than the distinction among 323 

different formations (Figure 5c). The negative loading on iron oxide/hydroxide, titanium minerals, and CMB 324 

in PC1 results in lower scores for subsections of Berea J2 than Berea A1. The negative loading on carbonate 325 

cements in PC2 results in lower scores for subsections of Berea A1 on PC2.  326 

  327 



a  328 

b  329 



c  330 

d  331 

 332 

Figure 5: Plots of the first two principal components showing the mineral loading scaled by 10 (crosses)  and 333 

principal component scores of  horizontal subsections (270 μm wide, 10300 μm long). (P=porosity; 334 

Q=quartz; F=feldspar; K=kaolin; IM=illite/muscovite; CMB=chlorite/mixed layer illite-muscovite/biotite; 335 

C=calcite; S=siderite; DA=dolomite/ankerite; Fe= Fe2O3/FeOOH; Ti=Titanium oxides; 336 

GA=gypsum/anhydrite.) 337 

 338 
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5.5 Mineral pore interface length and surface area per pore volume 340 

The porosity from helium injection and    as calculated from BET surface area and helium porosity as well 341 

as the image porosity and pore mineral interface length,   , are shown in Table 3. The percentage of    that 342 

is made up by each mineral is shown together with composition on the solids in Figure 6. In all three 343 

sandstone formations, quartz grains contribute less to the pore mineral interface than to the total solids area; 344 

whereas the opposite holds for clay minerals, which predominantly formed as authigenic phases in the pore 345 

space. Due to the low clay content in sample Gassum 7V, quartz makes up more than 70% of    and clay 346 

minerals less than 20%. By contrast in Berea A1 and J2 and in Bunter 2T, clay minerals make up 32-39% of 347 

  . Lamination of    is shown in Figure 7. There is least variation in Gassum 7V, 0.36 <     < 0.41 m/mm
2
, 348 

and a large variation in the tested Berea J2, 0.28 <    < 0.54 m/mm
2
.  349 

 350 

 351 

Figure 6: Top: contribution of minerals to the total solids area ; bottom contribution of minerals to the pore-352 

mineral interface (bottom). (Q=quartz; F=feldspar; K=kaolin; IM=illite/muscovite; CMB=chlorite/mixed 353 

layer illite-muscovite/biotite; C=calcite; S=siderite; DA=dolomite/ankerite; Fe= Fe2O3/FeOOH; Ti=Ti-354 

oxides; GA=gypsum/anhydrite.) 355 
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Table 3: Porosity from core samples measured using helium; BET surface area normalised by He-porosity; 357 

pore perimeter length from images normalised by image porosity. Pixel length: 1.8μm. Both surface area per 358 

pore volume and pore interface length per pore area are given in units μm
-1 

= m
2
/cm

3 
= m/mm

2
. Error 359 

estimate on image porosity and image pore interface length per pore area is twice the standard deviation of 360 

four 25 mm
2 
square subsections of the samples. 361 

 He-porosity Image porosity Surface area per 

pore volume from  

BET
 
m

2
/cm

3 

Pore interface 

length per pore 

area from  

images m/mm
2
 

Berea  A1 0.174
a
 0.143 (3) 16 (0.3) 0.40 (2) 

Berea J2 0.166
b
 0.143 (14) 19 (0.4)

 b
 0.408 (13) 

Gassum 7V 0.286
 c
 0.260 (2) 14.2 (0.5)

d
 0.386 (9) 

Bunter 2T 0.306
 c
  0.252 (5) 21 (2)

 d
 0.292 (14) 

 362 

a
 Estimated uncertainty 0.1 porosity %.  363 

b 
From Rosenbrand et al. (under review). 364 

c 
Porosity was measured on plugs whereas image analysis was done on side trims. The uncertainty is 365 

estimated from difference among neighbouring plugs 0.2 porosity % 366 

d
 Error margin estimated from BET measurements on side trims of neighbouring plugs

 367 
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a b  369 

c d  370 

Figure 7: Pore-mineral interface length scaled by porosity (  ) for horizontal subsections (width 270μm, 371 

length 10300 μm). 372 

 373 

6. Discussion 374 

6.1 Mineralogy and minimum representative area 375 

The size of the MRA and the estimated error margin for the mineral content is different for different minerals 376 

and for different sandstone samples (Table 1, Figures 1-3). This suggests that assuming the MRA of quartz 377 

would not be adequate to characterise the fraction of other minerals. Some authors suggest that 100 grains 378 

would suffice as an MRA for porosity (Blair et al., 1996) . With an average grain size in the order of 100 μm 379 

for Berea sandstone (Churcher, 1991), the proposed MRA would be 0.98 mm
2
 for in a sample with 20% 380 

porosity. Figure 1c shows that the porosity content stabilises around 25 mm
2
 in the untested Berea A1. This 381 

is a substantially larger area, however, this is consistent with findings of other authors who observed 382 

heterogeneity on a mm scale in the Berea sandstone (Knackstedt et al., 2001; Peng et al., 2012). In sample 383 

Berea J2 porosity showed an apparent stable value, which was representative only for a thin segment of the 384 



image and the average porosity changed as the area was further increased. For this sample porosity appears 385 

to stabilize between 75 and 100 mm
2
, however, possibly there is a greater variation on the sample scale 386 

(Figures 2a and 2b). This sample shows a more pronounced lamination in porosity and in mineral abundance 387 

than sample Berea A1 (Figure 4), which would result in higher MRA.  388 

A higher error margin relative to the amount of a mineral present indicates a larger variation on the sample 389 

scale, which implies that large areas must be compared in order to distinguish between lithological 390 

characteristics that are due to deposition or diagenetic processes and test procedures. Petrographic analysis of 391 

Bunter sandstone samples from a different locality indicates that anhydrite is heterogeneously distributed on 392 

the scale of core samples (Weibel et al., 2010), suggesting that analysis of side trims is insufficient to 393 

quantify the gypsum/anhydrite content of specific plugs and changes in this during chemical reactions. This 394 

would require direct examination of the plugs before and after experiments by non-destructive methods, such 395 

as possibly micro CT scanning.  396 

6.1.1 Alteration due to hot water injection 397 

The difference between the areas of siderite and iron oxide/hydroxide in sample Berea J2 and sample Berea 398 

A1 is larger than the error margin for the variation of these minerals within Berea A1, suggesting the 399 

difference is due to chemical alteration. While iron oxide/hydroxide is also present in Berea A1, siderite is 400 

more abundant in that sample, as opposed to Berea J2 where iron oxide/hydroxide dominates. The reduction 401 

of siderite and increase in iron oxide/hydroxide indicates that siderite dissolution released the iron that 402 

formed the iron oxides/hydroxides. In siderite, iron is in the Fe
2+ 

state, which would be oxidised to Fe
3+

 in the 403 

pore fluid containing oxygen. Due to the low solubility of Fe
3+

 it would precipitate in oxides/hydroxides. The 404 

presence of such minerals rimming siderite in Berea A1 shows that this reaction also took place to a minor 405 

extent during the diagenetic evolution of the Berea sandstone. During testing, at the pH 8-9 prevalent in the 406 

Berea samples saturated with a NaCl solution (Kia et al., 1987) the oxidation of Fe
2+

 and precipitation of Fe
3+

 407 

may be enhanced. If iron oxide/hydroxide precipitated as goethite, dissolution would result in a comparable 408 

volumetric loss of siderite and gain of goethite in the sample. Accordingly the difference between siderite 409 

content in untested Berea A1 and tested Berea J2 is only 0.69% ± 0.15%, and the difference between the iron 410 

oxide/hydroxide content in the two samples is 1.01% ± 0.14%. The small difference could be due to sample 411 

heterogeneity and methodological bias. Indeed, BSEM images showed pores that are smaller than      in the 412 

iron oxides/hydroxides so that the iron oxide/hydroxide content would tend to be overestimated.  413 

Other minerals where the difference in content of Berea A1 and Berea J2 exceeds the error margin include 414 

titanium oxides, the group chlorite/mixed layer chlorite-smectite/biotite, feldspar, kaolinite, and 415 

illite/muscovite, whereby the first two are more and the remaining minerals are less abundant in the tested 416 

sample. Other authors have measured aluminium and silicium in the effluent during injection of NaOH 417 



solution at 85°C in Berea sandstone (Sydansk, 1982), which could have resulted from dissolution of 418 

feldspars and clay minerals such as illite and kaolinite. In that study, BSEM images also suggested that clay 419 

minerals had precipitated on the grain surface during the experiments, which would be in accordance with 420 

the increase in the group chlorite/mixed layer clays observed in sample Berea J2. However, we observed no 421 

evidence of clay mineral precipitation on the pore walls of sample Berea J2, and the difference between the 422 

content of these minerals in Berea A1 and Berea J2 is only slightly larger than the estimated error margin in 423 

Berea J2. Therefore these differences could well be due to variation among samples.  424 

6.1.2 Porosity  425 

The image porosity is lower than the helium porosity for all samples and the discrepancy is largest in the 426 

Bunter sandstone, which has the highest total clay mineral content (Tables 1 and 3). The image resolution is 427 

not sufficient to resolve pores in the clay mineral fraction; therefore pixels may contain both pore space and 428 

clay. These mixed pixels have a lower BSEM intensity than pixels containing only solids, and therefore 429 

increasing the threshold intensity for porosity increases the pore area at the cost of the clay area (Peters, 430 

2009).  The porosity of the clay minerals in the sandstone pores can vary depending on the formation and the 431 

type of clay mineral, however, a value in the order of 40-70% is typically found in sandstones bearing 432 

kaolinite, illite or chlorite (Hurst and Nadeau, 1995; Vernik, 1994). This would account for the difference 433 

between the helium porosity and the image porosity. Thus the sample porosity   is the sum of the image 434 

porosity    and the unresolved porosity. Small pores have been suggested to make a negligible contribution 435 

to fluid flow and permeability, due to the low flow velocity in these pores (Hossain et al., 2011), however, 436 

these pores would contribute to the reactive surface area of both the micro porous clay minerals and of 437 

minerals that are adjacent to clay minerals (Landrot et al., 2012). Thus the reactive interface of quartz might 438 

be better estimated by the sum of the quartz pore interface and some fraction of the quartz clay interface. 439 

This could increase the fraction of the reactive quartz interface length from 52% to 90% in Berea A1 if the 440 

entire quartz clay mineral interface were considered reactive (Table A2 Appendix).  Similarly accounting for 441 

unresolved porosity in the clay minerals and in the iron oxide/hydroxide precipitates would increase the 442 

reactive interface length of siderite from 23% to 88% in Berea J2 (Table A1 Appendix 1).  443 

6.2 Lamination 444 

We observed that lamination of porosity, mineral abundance, and of quartz specific interface length is more 445 

distinct in Berea J2 after injection of hot NaCl solution compared to an untested Berea A1 (Figure 4). The 446 

lamination of the mineral abundance is also shown by a larger variance for the composition of subsections, 447 

and by a higher correlation among minerals in the multivariate analysis in Berea J2 than in Berea A1 as 448 

discussed in Section 6.3. The variance and the correlation coefficients among minerals in subsections of  449 

Bunter 2T and of Gassum 7V are also smaller than in Berea J2. 450 



Lamination in the quartz specific interface length would be expected to be a sedimentary feature rather than 451 

due to experiments. The quartz specific interface length is only an estimate of the quartz grain size as the 452 

resolution is too low to distinguish interfaces between quartz grains or to distinguish between grains and 453 

quartz cement. However, areas with a higher quartz specific interface length and a higher porosity in Figure 454 

4 do correspond to apparently coarser grained areas in Figure 8. In Berea A1 the lamination of the quartz 455 

grain size and of the porosity is less distinct than in Berea J2 (Figure 4) and Figure 8 does not show a distinct 456 

lamination in quartz grain size for Berea A1. This suggests that there is variation between A1 and J2 in the 457 

degree of lamination of grain sorting over a larger scale than the 100 mm
2
 examined. By contrast the images 458 

do not show a significant difference in the mineral abundance, and the average specific interface of quartz is 459 

also similar, 0.33 m/mm
2
 in Berea A1 and 0.32 m/mm

2
 in Berea J2 (Table 1).  460 

a b  461 

Figure 8: Image of quartz (white), pores (black), and other minerals (gray) in Berea A1 (a) and in Berea J2 462 

(b). Horizontal lamination in the grain size of quartz grains can be observed in sample J2. The origin 463 

corresponds to the bottom left hand corner of the total image therefore this corresponds to the lamination in 464 

the bottom 3 mm of the samples in Figures 4 and 7.  465 

 466 

A lamination in siderite content of Berea A1 is observed, but peaks of siderite do not correspond to troughs 467 

in porosity and there is no correlation between siderite and porosity (Figure 4, Table 2). This suggests that 468 

siderite occurs both in finer grained and coarser grained areas. In Berea J2 peaks in iron oxide/hydroxide 469 

content do correspond to the finer grained lamina, which are observed in Figure 8. This would suggest that 470 

during testing with the hot NaCl solution iron oxides/hydroxide precipitates formed predominantly in the 471 

finer grained areas. It is uncertain to what extent this is due to initial lamination of the siderite.  472 

  473 



6.3 Mineral correlations 474 

A negative correlation between the quartz and feldspar is observed in all samples (Table 2), as would be 475 

expected because these minerals compose the loadbearing detrital grains of the sandstone. In untested 476 

samples, Gassum 7V and Berea A1, siderite is positively correlated to iron oxide/hydroxide, which suggests 477 

alteration of siderite to iron oxide/hydroxide during diagenesis. We found no correlation between siderite and 478 

iron oxide/hydroxide in sample Bunter 2T, where the distribution of iron oxide/hydroxide is related to the 479 

depositional environment and early diagenetic conditions according to Weibel et al. (2010).  480 

In the untested Berea A1 a negative correlation between porosity and quartz could be due to quartz 481 

cementation, or to poor sorting. Quartz cementation (Churcher, 1991; Lene and Owen, 1969), and lamination 482 

of the porosity on the scale of 3 mm is observed in untested Berea sandstone samples (Knackstedt et al., 483 

2001), which would correspond to laminations in porosity that are observed in Berea A1 in Figure 4a. In the 484 

tested Berea J2, a larger negative correlation between porosity and CMB and iron oxide/hydroxide than 485 

between porosity and quartz content suggests that these minerals could have a stronger effect on porosity 486 

than the quartz content. Thereby injection of hot NaCl solution appears to have enhanced existing lamination 487 

due to preferential precipitation of iron oxides/hydroxides in fine grained lamina.    488 

The first PC for horizontal subsections of Gassum 7V, Bunter 2T and Berea A1 accounts for only a relatively 489 

low portion of the variance as compared to the first PC of Berea J2. This is due to the low level of correlation 490 

among minerals in the subsections of the untested samples. The higher correlation among minerals in Berea 491 

J2 is due to lamination of the mineral abundance within the sample. Accordingly the first PC, has high 492 

loadings on iron oxide/hydroxide and CMB, which appear to have precipitated during hot water injection. 493 

The second and third PC account for only a small amount of the variation and probably reflect a natural 494 

variation: PC2 reflects the anti-correlation between quartz and feldspar, and PC3 has a high loading on 495 

calcite. The large MRA of calcite in untested Berea A1 indicates that calcite is heterogeneously distributed, 496 

which would result in variation among sections with and without calcite (Figure 3a). The effect of lamination 497 

on the results of PCA can be seen by comparing the results for square and for horizontal subsections for 498 

Berea J2. The first PC still has high loading on iron oxide/hydroxide and CMB, however, this accounts for 499 

only 37% of the variance, as opposed to 46% in horizontal subsections. These minerals are in horizontal 500 

lamina, as shown in Figure 4d, therefore horizontal subsections capture this variation and have a higher 501 

correlation among minerals.  502 

The principal component scores of the individual subsections in tested Berea J2 do not form distinct groups 503 

(Figures 5a and 5b), which indicates that the variations in mineralogy among lamina are gradual rather than 504 

distinct. By contrast, the different composition of the three untested sandstone samples allows a clear 505 

distinction between them using the first two PC (Figure 5c). The third PC has a high loading on 506 



gypsum/anhydrite, which is present in some subsections of Bunter 2T but not in others. Therefore only the 507 

first two PC are used to differentiate among subsections from different sandstone samples. 508 

The main variation among subsections of untested Berea A1 and tested Berea J2 is due to variation among 509 

lamina within J2, indicated by the similar loadings in PC1 for PCA on J2 alone and for PCA on Berea A1 510 

and Berea J2 combined (Figures 5a and 5d). Therefore on PC1 subsections of Berea A1 and Berea J2 are not 511 

distinct. However, subsections can be reasonably grouped based on PC2, with a high negative loading on 512 

carbonate cement, which is more prevalent in Berea A1 than in Berea J2 (Table 1).  PC3 has a high positive 513 

loading on quartz and a high negative loading on feldspars, which does not contribute to distinction between 514 

Berea A1 and Berea J2, but rather to distinctions within each sample, therefore only the first two PC, which 515 

account for 34% and 17% of the variance, can be used to distinguish between the tested and untested 516 

subsections.  517 

This discussion shows that PCA is suitable to differentiate among the untested sandstones from different 518 

sampling areas as well as to distinguish between untested and tested samples.  519 

6.4 Mineral-pore interface length and surface area per pore volume 520 

The mineral pore interface length that was found from images is lower than the BET surface area (Table 3). 521 

Correction from 2D   to 3D   (Eq.3) would not account for this difference even with         as in 522 

Crandell (2012). Typically, the surface area or interface length increases with the resolution of the 523 

measurement (Berryman and Blair, 1987; Landrot et al., 2012; Peters, 2009; Solymar and Fabricius, 1999). 524 

With BET the resolution is the area occupied by one adsorbed nitrogen molecule, 0.162 nm
2
 is often used 525 

(Sing, 2001), which is much less than the pixel size of 1.8 μm. The difference between the image surface 526 

area and the BET surface area is smallest in Gassum 7V, with the lowest clay content, and highest in Bunter 527 

2T with the highest clay content. This is in accordance with the larger specific surface area of clay minerals 528 

as compared to quartz grains. 529 

Whereas Bunter 2T has the highest    based on the BET surface area, the    from image analysis is the 530 

smallest of the four samples. This could be due to the type of clay minerals. The dominant clay group in the 531 

Bunter sandstone are the chlorite/mixed layer clays for which only 30% of the surface area forms an 532 

interface to porosity that is observable in images (Table A3 Appendix). By contrast, the Berea samples A1 533 

and J2 contain predominantly kaolinite, which has 50% of the interface to porosity in images. Accordingly, 534 

kaolinite clay minerals are often observed as pore filling clay minerals in sandstones, whereas illite clay 535 

minerals are often considered pore lining, and chlorite clay minerals can take on a range of habits that can be 536 

pore lining or filling (Wilson and Pittman, 1977). The actual pore-clay interface of clay minerals would be 537 

larger due presence of pores below the image resolution (Landrot et al., 2012).  538 



6.5 Permeability modelled from surface area 539 

Permeability calculated applying Eq.(1) using BET specific surface area underestimates the Klinkenberg 540 

permeability by approximately two orders of magnitude (Table 4), which is in accordance with other studies 541 

on sandstones (Donaldson et al., 1975; Hossain et al., 2011). Better estimates are obtained by using   , and 542 

Eq.(3) to estimate    for       as in Peters (2009) and Solymar and Fabricius (1999),        as in 543 

Crandell et al. (2012) , and an intermediate value      . The latter was found to match the Klinkenberg 544 

permeability for both Gassum 7V and for Bunter 2T (Table 4). The permeability calculated from image 545 

analysis for Bunter 2T is higher than for Gassum 7V, in accordance with the measured permeabilities, and in 546 

contrast to the permeabilities estimated from the BET specific surface area. As discussed in Section 6.3, the 547 

high BET surface area of Bunter 2T would be due to a high clay mineral content, which does not dominate 548 

permeability. 549 

Heterogeneity of    and   does not have a strong effect on the permeability that was calculated by averaging 550 

the permeability of long horizontal and vertical and square subsections (Figure 9). The maximum difference 551 

is found for the horizontally laminated Berea J2, where the maximum permeability is 77 mD, estimated 552 

using the arithmetic mean for horizontal sections, and the minimum permeability is 61 mD, estimated using 553 

the harmonic mean of horizontal sections, using  =1.6 as in Table 4. This would suggest that an enhanced 554 

degree of lamination would not affect permeability significantly, And indeed the permeability measured at 555 

the end of hot water injection was only 20% less than at the start of hot water injection (Rosenbrand et al., 556 

under review).  557 

The difference between measured and calculated permeability for the Berea samples A1 and J2 could be due 558 

to an insufficient resolution of the images. Some authors have found that the resolution required in order to 559 

calculate permeability from Eq.(1) is proportional to the effective   , and that using a lower resolution would 560 

overestimate permeability whereas a higher resolution would underestimate permeability (Blair et al., 1996). 561 

The effective specific surface of the Berea samples (1.2-1.5 m
2
/cm

3
) was approximately twice that of 562 

Gassum 7V (0.7 m
2
/cm

3
) and Bunter 2T (0.5 m

2
/cm

3
), which would suggest that doubling the resolution 563 

would result the same ratio of pixel length to effective surface ratio for which Eq.(1-3) in combination with 564 

      estimated permeability in the Gassum and Bunter samples. The estimated permeability for the Berea 565 

sandstone Berea A1 when scanned with      = 0.83 μm is 35 mD, which is closer to the measured 19-23 mD.   566 

  567 



a b  568 

c d  569 

 570 

Figure 9: Average sample permeability estimated from horizontal (hor), vertical (ver) and square subsections 571 

of the image. Rectangular sections have width 270 μm and length 10300 μm (spanning the image) and square 572 

subsections have length 1700 μm (the same area), see text for further explanation. 573 

Table 4: Measured Klinkenberg permeability, and permeability estimated from Kozeny’s equation (Eq. 1) 574 

and experimental data (BET), and from images with two resolutions (     1.8 μm,      0.83 μm) for different 575 

factors  . (Error margins from error propagation on pore interface length per pore volume and image 576 

porosity in Tables 1 and 2). 577 

         1.8 μm       0.83 μm 

 Klinkenberg 

k  

mD 

  from 

BET 

mD 

   from 

 image  

  
 

 
  

 mD 

  from 

image 

        

 mD
 

  from 

image  

       

 mD 

   from  

image 

       

mD  

Berea A1 21 (2)
a
 0.11-0.18  280 (35) 33 (5) 68 (8)  35 (5) 

Berea J2 15.6 (6)
 b
 0.07-0.12  270 (35) 32 (5) 65 (8)  - 

Gassum 7V 132 (5)
c
 0.28-0.35  600 (35) 71 (5) 144 (9)  136 (9) 

Bunter 2T 270 (70)
c
 0.13-0.22  1040 (100) 122 (11) 250 (23)  250 (25) 

a 
The sample was sectioned into two halves with permeabilities 19 mD and 23 mD.  578 

b 
From Rosenbrand et al. (submitted) 579 

c
 Thin sections were made from side trims and permeability was measured for neighbouring core plugs, error 580 

margin represents variation between adjacent plugs.  581 

  582 



6.6 Fines migration 583 

Several authors have suggested that kaolinite fines migration, caused by reducing the salinity of the injected 584 

NaCl solution, can reduce permeability by around 90% in Berea sandstone samples (Khilar and Fogler, 1984; 585 

Schembre and Kovscek, 2005). However, reducing salinity from 2.0 M NaCl to 0.002 M NaCl in sample 586 

Berea J2, after this sample had been maintained at 80
o
C during NaCl injection for 150 days, only reduced 587 

permeability by 50%, whereas in another sample of Berea sandstone from the same block that had not been 588 

heated, the same salinity reduction reduced permeability by over 90% (Rosenbrand et al., under review) . 589 

This indicates that alteration of the sample during hot water injection reduced the extent to which kaolinite 590 

fines migration affected permeability.  591 

The kaolinite content of sample Berea J2 is slightly lower than that of Berea A1, however, the difference 592 

between the two samples is approximately the same as the error margin of the kaolinite content (Table 1). 593 

The diameter of kaolinite particles in the sandstone spans a range of 1-30 μm, and the largest particles would 594 

not be expected to be mobilised by electrostatic forces due to their high mass (Rosenbrand et al., under 595 

review). Thus the potentially mobile kaolinite content is lower than the total kaolinite content. Possibly, 596 

dissolution of smaller particles that make up the mobile kaolinite content would reduce the sensitivity to 597 

fines migration without significantly altering the total kaolinite content. Less than 1% of the kaolinite 598 

interface was to iron oxide/hydroxide in sample Berea J2 (Table A4 appendix). This indicates that iron 599 

oxide/hydroxide was not precipitated on the kaolinite particles, which might otherwise prevent mobilisation. 600 

There were no significant differences in the interface length of kaolinite to pores or other minerals between 601 

the untested Berea A1 and the tested Berea J2. Furthermore, we also found no correlations exceeding 65% 602 

among kaolinite and other minerals in the horizontal subsections of the tested or the untested Berea A1 and 603 

J2. 604 

7. Conclusions 605 

We applied image analysis in order to generate statistics on mineralogy, reactive surface area, and 606 

heterogeneity on the sample scale. Lamination and relations among porosity and mineral groups were 607 

quantified and used to compare samples by means of subsectioning images and multivariate data analysis 608 

(PCA). We compared samples from Gassum sandstone, Bunter sandstone and Berea sandstone formations, 609 

and studied the effect of hot water injection by comparing an untested sandstone sample to a sample in which 610 

hot water had been injected for 150 days.  611 

We found significant differences among the minimum representative areas of different minerals for different 612 

formations. Heterogeneity, both in the form of patchy cementation and in the form of lamination of mineral 613 

abundance, porosity, and specific interface length, were observed over a mm scale, suggesting that in order 614 

to relate to core scale experiments in these sandstones, image analysis requires an interrogation area in the 615 



order of several mm to cm. In more coarse grained rocks this would be different. PCA could be used to 616 

distinguish among samples from different localities, and to some extent between tested and untested samples 617 

of Berea sandstone. Lamination of mineral abundance, porosity, and specific interface length were more 618 

pronounced in the Berea sandstone sample after hot water injection than in the untested sample. A loss of 619 

siderite and a corresponding gain in iron oxide/hydroxide appear to have enhanced existing lamination. 620 

Image derived specific surface area was used to estimate permeability using Kozeny’s equation. Using a 621 

constant ratio of pixel length to effective specific surface area, permeability was estimated within a 50% 622 

error margin for samples from the three formations.  623 
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Appendix  1 726 

Table A1: Siderite interface to other minerals and pores, pixel length: 1.8μm. 727 

  Berea A1 

% of total 

length 

Berea J2 

% of total 

length 

Gassum7V 

% of total 

length 

Bunter 2T 

% of total 

length   

Pores 19 23 37 36 

Quartz 21 8 7 14 

Feldspar 0.6 0.7 0.7 3 

Calcite 0 0 0 0 

Siderite 0 0 0 0 

Dolomite/Ankerite 2 0 0 0 

Kaolin 0 0 0.9 0 

Illite/Muscovite 1.5 2 4 1.4 

Chlorite/Mixed layer 

Chlorite-Smectite/Biotite 
10 11 28 31 

Iron oxide/ hydroxide 

(Fe2O3/FeOOH) 
44 54 22 14 

Titanium oxides 0 0 0 0 

Gypsum/Anhydrite  0 0 0 0 

 728 

Table A2: Quartz interface to other minerals and pores, pixel length: 1.8μm. 729 

  Berea A1 

% of total 

length 

Berea J2 

% of total 

length 

Gassum 7V 

% of total 

length 

Bunter 2T 

% of total 

length   

Pores 52 53 84 42 

Quartz 0 0 0 0 

Feldspar 5 4 3 16 

Calcite 0 0 0 3 

Siderite 1.0 0 0 1.0 

Dolomite/Ankerite 0 0 0 0 

Kaolin 7 5 3 0 

Illite/Muscovite 21 18 6 14 

Chlorite/Mixed layer 

Chlorite-Smectite/Biotite 
11 12 3 21 

Iron oxide/hydroxide 

(Fe2O3/FeOOH) 
0 2 0 1.5 

Titanium oxides 2 3 0.6 0 

Gypsum/Anhydrite  0 0 0 0 

 730 
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Table A3: Chlorite, mixed layer, biotite interface to other minerals and pores, pixel length: 1.8μm. 732 

  Berea A1 

% of total 

length 

Berea J2 

% of total 

length 

Gassum 7V 

% of total 

length 

Bunter 2T 

% of total 

length   

Pores 29 31 37 29 

Quartz 25 26 19 20 

Feldspar 4 4 5 20 

Calcite 0 0 0 2 

Siderite 1.1 0.7 0.7 2 

Dolomite/Ankerite 0 0 0 0.8 

Kaolin 15 13 15 0 

Illite/Muscovite 21 19 20 20 

Chlorite/Mixed layer 

Chlorite-Smectite/Biotite 
0 0 0 0 

Iron oxide/hydroxide 

(Fe2O3/FeOOH) 
0.5 2 2 4 

Titanium oxides 2 3 1.2 0.5 

Gypsum/Anhydrite  0 0 0 0 

 733 

Table A4: Kaolin interface to other minerals and pores, pixel length: 1.8μm. 734 

  Berea A1 

% of total 

length 

Berea J2 

% of total 

length 

Gassum 7V 

% of total 

length 

Bunter 2T 

% of total 

length   

Pores 56 57 50 12 

Quartz 17 16 25 26 

Feldspar 1.4 1.0 1.0 24 

Calcite 0 0 0 0 

Siderite 0 0 0 0 

Dolomite/Ankerite 0 0 0 0 

Kaolin 0 0 0 0 

Illite/Muscovite 9 7 9 21 

Chlorite/Mixed layer 

Chlorite-Smectite/Biotite 
16 17 14 13 

Iron oxide/hydroxide 

(Fe2O3/FeOOH) 
0 0 0 0 

Titanium oxides 0.6 0.9 0 0 

Gypsum/Anhydrite  0 0 0 0 

 735 
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Table A5: Iron oxide/hydroxide interface to other minerals and pores, pixel length: 1.8μm. 737 

  Berea A1 

% of total 

length 

Berea J2 

% of total 

length 

Gassum 7V 

% of total 

length 

Bunter 2T 

% of total 

length   

Pores 6 23 42 25 

Quartz 16 30 11 21 

Feldspar 1 1 1 4 

Calcite 0 0 0 1 

Siderite 62 24 11 11 

Dolomite/Ankerite 2 3 0 1 

Kaolin 0 0 1 0 

Illite/Muscovite 1 2 5 2 

Chlorite/Mixed layer 

Chlorite-Smectite/Biotite 
7 11 29 40 

Iron oxide/hydroxide 

(Fe2O3/FeOOH) 
0 0 0 0 

Titanium oxides 4 4 0 2 

Gypsum/Anhydrite  0 0 0 0 
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Permeability characterization of low permeability, clay-rich gas sandstones is part of production forecasting 25 

and reservoir management. The physically based Kozeny (1927) Equation linking permeability with porosity 26 

and pore size is derived for a porous medium with a homogeneous pore size, whereas the pore sizes between 27 

grains (sand and clay) in tight sandstones can range from nm to μm. We analysed the permeability of 63 28 

Rotliegend sandstone samples to gas and to brine. Samples are grouped based on principal component 29 

analysis. Gas permeability was calculated for each pore size increment based on pore size distributions from 30 

nuclear magnetic resonance (NMR) transverse relaxation data in combination with mercury injection data. 31 

The sandstone texture as defined from image analysis rather than total clay content indicates whether 32 

permeability is controlled by smaller pores or by larger pores. So we demonstrate how the use of image 33 

analysis can improve NMR based permeability modelling. Permeability to brine is modelled by assuming a 34 

bound water layer on the mineral pore interface. The measured brine permeabilities are lower than predicted 35 

based on bound water alone for these illite rich samples. Based on the fibrous textures of illite as visible in 36 

electron microscopy we speculate that these may contribute to a lower brine permeability.  37 

Keywords: permeability; tight sandstone; bound water; image analysis; NMR 38 
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  = temperature, T, K  63 
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        = maximum    time that controls permeability, t, s  65 
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  = bulk volume of sample, L
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3
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 68 

  = surface tension, m/t
2
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 = contact angle, ° 70 

  = mean free path length gas, L, m 71 

  = viscosity, m/tL, Pa.s 72 

  = surface relaxivity, L/t, m/s 73 

  = thickness of immobile water, L, m 74 

  = porosity, - 75 

     = porosity that controls permeability,       , - 76 
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1. Introduction 78 

The Permian Rotliegend sandstones remain a significant source of gas within Europe. Historically, 79 

production has been primarily from reservoirs with moderate to high permeability, 10 mD-1D, in fields such 80 

as the Groningen gas field in the north of the Netherlands, which has a high productivity. For future supply, 81 

exploration targets tight gas sandstone reservoirs that have less favourable properties (Gaupp and Okkerman, 82 

2011).  83 

Permeability is a critical parameter as it controls the production rate. Therefore a significant amount of effort 84 

has been invested in permeability modelling. For a homogeneous porous medium, Kozeny (1927) derived 85 

Eq. (1) 86 
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where   is permeability,   is porosity,    is the specific surface area, per unit pore volume        and   88 

is a parameter that accounts for pore geometry. Using the mean grain size to estimate   , and a constant 89 

value for  , Walderhaug et al. (2012) found that the Kozeny Equation predicts permeability in sandstone 90 

samples with less than 3% clay content and porosity higher than 6-14% within a factor four for most 91 

samples. An estimate of    based on the mean grain size would be too low in sandstones with a high clay 92 

mineral content, as the specific surface area of clay minerals is significantly higher than that of grains. For 93 

clay free samples with a porosity less than 6-14%, pores may not form a connected so that the permeability is 94 

lower than predicted by Eq. (1) (Mavko and Nur, 1997; Walderhaug et al., 2012). Mavko and Nur (1997) 95 

suggested accounted for this by reducing the porosity in the Kozeny Equation by a factor that is related to the 96 

percolation threshold porosity.  97 

Tight gas sandstones can have a high clay mineral content and a low porosity (Desbois et al., 2011). The clay 98 

minerals are present in the space between the grains that compose the sandstone framework, and a significant 99 

amount of the total porosity may indeed be pores between the clay particles (Desbois et al., 2011). The 100 



porosity and size of the pores among clay particles depends on the type, the abundance, and on the 101 

morphology of the clay minerals, so that pore sizes within sandstones range can from nanometres to 102 

micrometres (Desbois et al., 2011; Landrot et al., 2012). 103 

Hossain et al. (2011) used low field nuclear magnetic resonance (NMR) to find an    distribution, in order to 104 

model permeability using Eq. (1) for sandstones that contain different pore sizes. They calculated 105 

permeability for the fraction of the porosity that corresponds to each    interval and the total permeability is 106 

the sum of the permeability present in the entire pore volume. In NMR, hydrogen nuclei in water saturated 107 

samples are aligned in a permanent magnetic field and flipped in a temporary magnetic field, and the 108 

consequent rate of decay of magnetisation is measured and converted to a transverse relaxation time,   , 109 

distribution (Coates et al., 1999). The decay rate of magnetisation is higher near the water-mineral interface 110 

than in the bulk water. So in the fast diffusion regime, in which the majority of hydrogen nuclei are relaxed 111 

at the water mineral interface by surface relaxation, the    time reflects    Eq. (2) 112 
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where   is the surface relaxivity. This is a measure of the rate at which relaxation occurs at the surface. The 114 

surface relaxivity depends on the mineral-fluid interaction, and in particular on the presence of iron, in 115 

silicates, in iron oxides, iron hydroxides, and in iron carbonates where   is high (Keating and Knight, 2007, 116 

2010; Matteson and Tomanic, 2000). Several authors combined NMR with pore-throat distributions obtained 117 

from mercury injection to estimate an effective   (Coates et al., 1999; Dastidar et al., 2006; Mbia et al., 118 

2014). 119 

In sandstones where the larger pores do form a connected flow path, these pores would make the dominant 120 

contribution to flow. By contrast, when clay minerals are abundant larger pores may only be connected 121 

through smaller pores (Landrot et al., 2012). This would suggest that, analogous to an electrical system with 122 

resistors in series, the higher    of the smaller pores would control the total permeability. In this case only 123 



the smaller fraction of the pores is effective for permeability modelling; so that the larger pores contribute to 124 

the volume of gas that can be produced but not to the permeability.  125 

The permeability as measured using brine is in many cases lower than permeability measured using gas 126 

(Heid et al., 1950; Jones and Owens, 1980). One reason could be that the presence of a layer of bound water 127 

on the mineral pore interface reduces the mobile fluid volume for brine flow as compared to gas flow 128 

(Andreassen and Fabricius, 2010; Byerlee, 1990; Heid et al., 1950; Luffel et al., 1993; Solymar et al., 2003). 129 

This would have a greater effect in samples that are controlled by pores with a high   , as a higher fraction 130 

of the porosity is immobile. In samples containing delicate clay minerals, drying of samples can furthermore 131 

increase gas permeability as compared to brine permeability by alteration of the clay morphology (de Waal 132 

et al., 1988; Luffel et al., 1993). Thin illite clay fibres that grow perpendicular to the grain surface may 133 

collapse onto the grain surface due to capillary tension forces during drying, and the effect is found to be 134 

partially reversible when samples are saturated again (Luffel et al., 1993).  135 

The effect of clay minerals on permeability depends on the clay mineral type, the clay morphology, the clay 136 

content and distribution of clay minerals in the sandstone. Clay content and type can be quantified using X-137 

ray diffraction XRD (Hillier, 1999, 2000; Wilson and Pittman, 1977). The morphology and distribution of 138 

clay minerals in the pores can be analysed using backscatter electron microscopy, BSEM, and scanning 139 

electron microscopy, SEM, in combination with image analysis on BSEM images (Peters, 2009; Solymar et 140 

al., 2003; Solymar and Fabricius, 1999).  141 

In this study we analysed 63 Rotliegend sandstone samples to model permeability to gas and to brine. The 142 

samples were classified into five groups based on mineralogy by using principal component analysis, PCA. 143 

The mineralogy was determined using quantitative XRD. BSEM images were analysed to characterise clay 144 

morphology and clay distribution in the pores for the five groups. Pore size distributions were measured 145 

using mercury injection porosimetry and low field NMR. Surface relaxivity was estimated by combining 146 

specific surface area as found from mercury injection and from NMR data. Permeability was modelled by 147 

using the pore size distribution from NMR as in Hossain et al. (2011). The fraction of the pores that controls 148 



permeability was estimated by comparison to the measured gas permeability. The fraction of clay-free 149 

porosity as determined from image analysis indicated in which samples larger pores contribute to 150 

permeability. Brine permeability was modelled by reducing the porosity to brine by an immobilised layer on 151 

the mineral-fluid interface, but in several cases an unrealistically thick immobile water layer was predicted. 152 

This indicates that bound water is not the only cause of the lower brine permeability, which might also be 153 

due to the presence of fibrous illite.  154 

 155 

2. Geological setting 156 

The Rotliegend sandstones were deposited in the South Permian Basin (SPB), which is bounded by the Mid-157 

North Sea High and the Ringkøbing-Fyn High in the north and by the London-Brabant Massif and the 158 

Rhenish High in the South. In an East-West direction, the SPB ranges from the eastern UK to central Europe 159 

(Gaupp and Okkerman, 2011).  160 

Diagenetic processes in the Rotliegend sandstones were studied by several authors and Gaupp and Okkerman 161 

(2011) review how these processes affect reservoir quality. Authigenic minerals that are abundant throughout 162 

the SPB include quartz, carbonates, iron oxides, illite, chlorite and kaolin (Gaupp and Okkerman, 2011). The 163 

red colour of many samples is due to the presence of hematite (Torrent and Schwertmann, 1987). The 164 

sandstones are sometimes grey due to bleaching during diagenesis (Gaupp and Okkerman, 2011), however 165 

hematite may still be present in the form of small grains between clay particles (Desbois et al., 2011). 166 

Regional diagenetic processes were affected by the chemistry of ground waters, uplift, temperature history, 167 

and later fluid flow, resulting in variations in the clay mineral distribution (Gaupp and Okkerman, 2011).  168 

3. Experimental methods 169 

We studied 63 samples from six wells from sectors in the North Sea and from sectors in Poland. Samples 170 

have a current burial depth in the range of 2440-3961 m. Cylindrical plugs with ~3.8 cm diameter and 4-6 171 



cm length were cut from reservoir cores. Plugs were cleaned using a Soxhlet extractor using a mixture of 172 

methanol and dichloromethane.  173 

Polished thin sections for BSEM were produced from side trims. Polished thin sections and stubs of fractured 174 

samples were examined using a CAMSCAN CS44 high performance scanning electron microscope equipped 175 

with a secondary electron detector and a high resolution solid state four quadrant back scattered electron 176 

(BSE) detector. Representative images using BSE were taken for each sample and saved with 256 grey 177 

levels. 178 

Mineralogy was quantified using XRD, using a spray technique as described in Hillier (1999, 2000) in order 179 

to produce samples without significant preferred orientations. The samples were dried in an oven at 60
°
C for 180 

48 hours prior to measurements. 181 

Porosity was measured using a helium gas expansion porosimeter. Gas permeability was measured by flow 182 

of helium gas parallel to the plug axis. Samples were subjected to in situ confining stress in order to close 183 

fractures that resulted from unloading, and at 6.7 MPa pore pressure in order to minimise the effect of gas 184 

slip. For samples with permeability below 0.1 mD, permeability was measured using a pulse-decay technique 185 

(Jones, 1997) using a modified Corelabs PDP 200 pulse decay permeameter that has been adapted so that 186 

measurements can be made at up to 70 MPa confining pressure. Permeability was calculated using the 187 

software for the PDP 200 supplied by Corelabs as in Jones (1997). Samples with a higher permeability were 188 

measured using steady state permeametry (API, 1998). Brine permeability was measured using 200,000 ppm 189 

NaCl solution and full saturation was verified by using NMR.  190 

Mercury was injected into the evacuated core plugs by increasing the pressure stepwise up to 413.7 MPa (60 191 

000 psi). Capillary pressure can be related to pore radius,  , by the Washburn (1921) Equation (3): 192 
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where    is the capillary pressure, γ is the surface tension and θ is the contact angle. For mercury injection 194 

γ=0.48 N/m and θ=140°. Mercury measurements were performance corrected.   195 

NMR    relaxation time measurements were performed on brine saturated samples using a MARAN 196 

ULTRA from Oxford Instruments, which has a 51 mm probe and a 2 MHz operating frequency. The Carr-197 

Purcel-Meiboom-Gill (CPMG) pulse sequence was used to generate the magnetization decay with an echo 198 

spacing of 0.1 ms, and repeat delay of 10 s between successive scans. The decaying magnetization was 199 

mapped to a    distribution using the WinDXP programme software provided by Oxford Instruments. The 200 

signal amplitude was calibrated using standards with a known volume of doped water.  201 

4. Image Analysis 202 

Image analysis was performed on images with a pixel length of 3 μm using Matlab 2012b (The MathWorks). 203 

Pores between clay particles can be smaller than the pixel size. Pixels that contain both clay minerals and 204 

porosity have a lower brightness than pixels that contain only minerals (Peters, 2009). Therefore a first 205 

threshold was used to segment the image in to the darker porosity and clay mineral fraction and the lighter 206 

other minerals. A second lower threshold was used to segment clay-free porosity and the clay fraction, 207 

whereby the clay fraction consists of pixels containing both clay minerals and pores between clay particles. 208 

Thresholds were selected based on the histogram of pixel intensity (Figure 1). We did not equalise 209 

histograms for different samples as these have different shapes; e.g., some samples have a distinct peak of 210 

clay-free porosity and others do not. BSEM images with a pixel length of 0.6 μm, and SEM images were 211 

used in order to characterise clay morphology.  212 

 213 



Figure 1: Histogram of pixel intensity for a backscatter electron microscopy image of sample 1A. Threshold 214 

1 separates solid grains, with a higher intensity, from clay minerals and pore volume. Threshold 2 separates 215 

pixels that contain clay minerals and pore area, with a higher intensity, from pore area without clay minerals.  216 

 217 

5. Principal component analysis of mineralogy 218 

The samples were grouped based on PCA of the mineralogy from XRD. In order to include porosity in the 219 

characterisation, the mass fraction of each mineral was converted to the volume fraction relative to the solids 220 

volume by Eq. (4), and the volume fraction relative to the bulk volume, including porosity as given by Eq. 221 

(5) 222 

 (A) (A) s
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solidsvolume fraction solids mass fracti n
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   (4) 223 

where    is the density of mineral  , and    is the sample density.  224 

  (A) (A) 1bulk volume fraction solidsvolume fraction     (5)       225 

PCA was performed by singular value decomposition of the centred normalised data. Centring data reduces 226 

the mean square error (Miranda et al., 2008); normalisation of the variance was required in order to include 227 

the contribution of volumetrically less abundant phases, such as the clay minerals. The loadings on the 228 

orthonormal principal components, PC, were used to analyse correlations among mineral groups. In order to 229 

group samples, these were mapped onto axes spanned by the first four PC. This yielded three distinct groups, 230 

containing 9, 11, and 43 samples; including additional PC did not aid in subgrouping the 43 samples. A 231 

second PCA was therefore applied on only the set of 43 samples in order to subgroup these into three groups.  232 

6. Results 233 

6.1 Sample grouping based on mineralogy 234 



The average mineralogy from XRD for the five groups of samples is shown in Table 1. Samples are 235 

subarkoses or arkoses according to the classification of McBride (1963). Illite/mica is present in all samples, 236 

additionally some samples contain kaolin and other samples contain chlorite. Although distinction between 237 

chlorite and kaolin clay minerals based on XRD may be difficult for iron rich chlorite minerals (Grim, 1953), 238 

petrographical analysis did not indicate errors in the XRD analysis of these minerals. The sum of the clay 239 

mineral contents ranges from 6% to 16% of the solid mass. 240 

The standard deviation of the clay mineral content is small relative to the average clay content within a 241 

group, but the standard deviation of contents of feldspars, calcite, siderite, pyrite, and sulphate minerals is 242 

higher than the average content of these minerals. This indicates that samples within a group have similar 243 

clay mineralogy, whereas those minerals with a higher standard deviation are present in some samples and 244 

not in others.  245 

Table 1: Average mineral content for the five groups from XRD given as mass %. Standard deviation within 246 

groups is  given in brackets. 247 

  Gr. 1 Gr. 2 Gr. 3 Gr. 4 Gr. 5 

Quartz 72      (4) 78       (5) 75        (3) 79        (3) 76        (5) 

Albite 0.6     (0.9) 4.3      (0.7) 1.6       (0.4) 2.7       (1.4) 4.4       (1.2) 

Microcline 5.4     (0.3) 0.2      (0.4) 1.9       (1.4) 4.9       (0.7) 5.4       (1.3) 

Calcite 0        (0) 0         (0) 0.06     (0.13) 0.04     (0.07) 0.07     (0.13) 

Dolomite 6        (4) 4         (2) 6          (4) 5.5       (1.3) 3.6       (1.3) 

Siderite 0.5     (0.5) 0.01   (0.03) 2          (2) 0          (0) 0.8       (0.7) 

Illite/Mica 5        (1.0) 10       (2) 9          (3) 6.7       (1.1) 8          (2) 

Kaolinite 10.8   (1.0) 0         (0) 3.4       (1.3) 0          (0) 0          (0) 

Chlorite 0        (0) 6         (2) 0          (0) 0          (0) 2.2       (0.7) 

Pyrite 0.4     (0.4) 0.1      (0.2) 0.3       (0.4) 0.01    (0.04) 0          (0) 

Anhydrite 0.01  (0.02) 0.02    (0.03) 0.4       (0.8) 0.3      (0.9) 0          (0) 

Barite 0        (0) 0          (0) 0.08     (0.2) 0         (0) 0          (0) 

no samples 9 11 14 22 7 

 248 

Figure 2 shows the mineral loadings and the sample scores mapped onto the first three PC, for the PCA on 249 

the entire dataset. The loadings on the minerals are dominated by the difference between samples in Group 1, 250 

which have a distinctly higher kaolin content and a lower illite/mica, albite, and quartz content, and Group 2, 251 



which have a higher chlorite and illite/mica content compared to the remaining 43 samples (Table 1). 252 

Accordingly there is a high loading on these minerals on PC1. PC2 and PC3 have a high loading on minerals 253 

that are only present in very few samples in the dataset, such as barite and pyrite, which would not warrant 254 

an additional grouping. Therefore a second PCA analysis was applied in order to group the remaining 43 255 

samples. Again PC1 distinguishes kaolin rich samples in Group 3 from chlorite rich samples in Group 5, 256 

samples in Group 4 contain neither kaolin nor chlorite minerals (Figure 3). The first two PC are sufficient to 257 

subgroup the data into three groups. PC3 and PC4 have high loadings on pyrite, calcite and illite/mica, for 258 

which there are similar variations among samples within groups and among the groups themselves (Table 1 259 

and Table A2). The loadings for the first six PC for the PCA on all data and for the PCA on 43 samples are 260 

given in Table A1 and Table A2 in Appendix A.  261 

a b  262 

Figure 2: Principal component, PC, loadings on minerals (lines) and principal component scores (symbols) 263 

for all 63 samples grouped into Group 1 (9 samples), Group 2 (11 samples) and the remaining 43 samples, 264 

Groups 3-5. (  = porosity;   = anhydrite;   = barite;  =calcite;    = chlorite;   = dolomite/ankerite;    = 265 

microcline;    = albite;     = illite/mica;  = kaolin;   = pyrite;   = quartz;   = siderite) 266 

 267 

  268 



 269 

Fig 3 Principal component, PC, loadings on minerals (lines) and principal component scores (symbols) for 270 

43 samples that are grouped into Group 3 (14 samples), Group 4 (22 samples) and Group 5 (7 samples).  271 

(  = porosity;   = anhydrite;   = barite;  =calcite;    = chlorite;   = dolomite/ankerite;    = microcline; 272 

   = albite;     = illite/mica;  = kaolin;   = pyrite;   = quartz;   = siderite) 273 

 274 

6.2 Pore geometry 275 

6.2.1 Image analysis 276 

Figure 4 shows the BSEM images and the segmented BSEM images for two characteristic samples from 277 

each group. The A samples represent samples with a relatively low mean   , and samples B represent a 278 

higher mean   , Table 2 shows how many samples have a    distribution that is similar to sample A and 279 

sample B for each group. The area fractions of clay minerals and all pores, and of only clay-free pores, are 280 

shown in Table 2. The area of the clay fraction including all pores equals the sum of the He-porosity and the 281 

clay solid volume from XRD for all ten samples. This indicates that the interrogation area in image analysis 282 

was representative. Images at 0.6 μm/pixel resolution were acquired in order to characterise clay 283 

morphology, therefore no quantitative analysis was applied to these.  284 
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Figure 4: Representative backscatter electron microscopy (BSEM) images for a sample with a lower mean 300 

NMR    (samples A) and a sample with a higher mean    (samples B) from each of the five groups. Below 301 

BSEM images are processed images where white pixels are grains, grey pixels contain clay and porosity and 302 

black pixels are clay-free porosity. Pixel length of images used for image analysis is 3 μm/pixel, for close up 303 

images 0.6μm/pixel. Orientation unknown.  304 

  305 



Table 2: Image analysis with a resolution of 3 μm/pixel was used to quantify the area fractions. Error 306 

margins in brackets on image analysis data are based on the maximum difference among two or three images 307 

of the same sample. Clay volume per sample from XRD is calculated using Eq. (4) and Eq. (5). Error 308 

margins for the clay volume are based on clay mineral densities as in (Durand et al., 2000; Grim, 1953) 309 
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Gr 1 
A 7  12.2  16   (3) 32 (3) 1.0   (0.2) 

B 2 19.5  12   (2) 37 (2) 2.5   (0.4) 

Gr 2 
A 5 10.3  13   (3) 19 (1.1) 1.4   (0.3) 

B 6 11.1  11   (3) 17 (1.0) 4.2   (1.1) 

Gr 3 
A 8 9.2    11   (2) 20 (0.8) 0.3   (0.5) 

B 6 17.5  12   (3) 31 (2) 4.1   (0.7) 

Gr 4 
A 4 9.2    4.5  (1) 17 (3) 0.49 (0.04) 

B 16 10.6  5.1  (1) 19 (3) 1.17 (0.11) 

Gr 5 
A 3 16.4  7.0  (2) 19 (0.9) 4.6   (0.3) 

B 4 17.9  6.6  (2) 23 (0.9) 13.2 (0.9) 

 310 

5.3.2 NMR data and mercury injection porosimetry 311 

NMR yields a    time distribution where the amplitude,        is the fraction of the total porosity that 312 

corresponds to a given    time,     , thus          is the pore volume that corresponds to     . Similarly       313 

is the fraction of the total porosity that is injected for a capillary pressure increment,     , and         is the 314 

corresponding pore volume. Figure 5 shows the NMR curves and the differential mercury saturation curves. 315 

To compare the logarithmically spaced NMR data to mercury data, the pore diameters on mercury injection 316 

are equally spaced on the logarithmic axis (Lenormand, 2003).  317 

  318 
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Figure 5: Differential NMR plots and radii obtained from incremental mercury injection (Hg) using the 325 

Washburn equation for representative samples with a lower mean    (samples A) and a higher mean     326 



(samples B). The fraction of the porosity,    that corresponds to a given     or    is multiplied by the sample 327 

porosity in %   in order to show differences among the total porosity of the samples as well as their pore 328 

size distribution.  329 

 330 

6.3 Permeability 331 

Figure 6a shows scatter in the permeability-porosity trend, which is largest in groups 3 and 5 and least in 332 

groups 1 and 4. Samples from Group 5 tend to have a high permeability relative to their porosity. The 333 

relation between porosity and the ratio of gas permeability to brine permeability likewise shows scatter, 334 

(Figure 6b).  335 

a b  336 

Figure 6: a) Porosity and gas permeability,   , at in situ confining stress for 63 samples divided into five 337 

subgroups based on mineralogy. b) The ratio of gas permeability to brine permeability,   , ranges between 1 338 

and 30 and shows no correlation with porosity.  339 

 340 

  341 



7. Discussion  342 

7.1 Sample grouping based on mineralogy 343 

Samples from the same well had similar scores in PCA and were therefore categorised in the same group. 344 

This indicates that differences in mineralogy are dominated by regional variations in sediment supply and 345 

diagenesis. The high loadings on kaolin and on chlorite minerals in PC1, indicate that these minerals account 346 

for a large portion of the variability among samples (Figures 2 and 3). Accordingly, some authors have 347 

described regional variation in the clay mineralogy of Rotliegend sandstones in the Netherlands in terms of 348 

clay provinces (Gaupp and Okkerman, 2011).  349 

Variation of the kaolin and chlorite clay content among samples within groups is less than variation among 350 

different groups; as a consequence of this the five groups are characterised mainly by the clay mineral 351 

content (Table 1). By contrast, variation of albite and microcline, siderite, pyrite, anhydrite, and barite 352 

content within groups is high. The high loadings on these minerals in the second and third PC are due to only 353 

a few outlier samples that were therefore not assigned individual groups (Figure 2). The effect of clay 354 

content and clay morphology on permeability is addressed using the results from image analysis, NMR, Hg-355 

injection, and permeability measurements in the following sections.  356 

The dataset is too small to use PCA to derive general relations among minerals based on the loadings on 357 

minerals in PCs. The PCA on 63 samples results in a PC1 with opposite high loadings on chlorite minerals 358 

and on porosity, whereas PC1 from PCA on 43 samples has positive and same sign loadings for these 359 

variables. The nine samples in Group 1 dominate the PCA on 63 samples, these have a relatively high 360 

porosity and contain no chlorite. The PCA on 43 samples does not include Group 1, and as a consequence 361 

PC1 reflects seven samples in Group 5 that have a high porosity as well as chlorite clay minerals. Therefore 362 

we used PCA only to group samples, and not to provide general correlations among minerals and porosity. 363 

The relatively low variance contained in the first PC’s furthermore reflects a low level of correlation among 364 

minerals and mineral groups (Appendix A).  365 

7.2 Pore geometry  366 



Group 1 367 

Kaolin clay particles are distributed throughout the pore bodies in samples from Group 1 (Figure 4a-e). Pore 368 

filling, as opposed to grain lining, kaolin is often observed in sandstones, whereby flat kaolin plates can be 369 

observed as stacks ‘booklets’ or as loose plates (Wilson and Pittman, 1977). As kaolin is dispersed through 370 

the pore bodies, and is present in nearly all pores, there is little clay-free porosity in the segmented images 371 

(Figure 4d and e; Table 2).  372 

All samples in Group 1 have a single broad    peak, which indicates a continuous range of pore sizes (Figure 373 

5a). Whereas the maximum    time is the same in samples 1A and 1B; the maximum pore throat size from 374 

mercury injection is higher in sample 1B than in sample 1A (Figure 5d). This could be due to a higher 375 

connectivity among larger pores in sample 1B, whereas in sample 1A larger pore bodies are only accessed 376 

through smaller pore throats. Sample 1B has a higher clay-free porosity in images, and a larger pore volume 377 

with a high   , which suggests a higher connectivity among larger pores (Table 2, Figure 4a). 378 

Group 2 379 

Whereas the kaolin clay particles are dispersed throughout the pore bodies in Group 1, the illite/mica and 380 

chlorite platelets in Group 2 samples are observed closer to the grain surface (Figure 4f-h). Therefore a larger 381 

fraction of the porosity is clay-free than in Group 1 samples (Figure 4i and j; Table 2). We observe both clay 382 

platelets in random orientation to the grains and a thin layer of clay minerals parallel to the grain surface 383 

(Figure 4h). Other authors have also observed layers, or sheets of illite clay minerals parallel to the grain 384 

surface, from which thin illite laths or fibres protrude into the pore space (Desbois et al., 2011; Wilson and 385 

Pittman, 1977). This morphology of illite, forming sheets that extend into laths was also observed in SEM 386 

and BSEM images of groups 3 and 4 (Figures 4m and 4r and Figure 7).  387 

The NMR curves show a single peak with a larger maximum    for sample 2B than for sample 2A (Figure 388 

5b). Accordingly mercury injection curves for samples 2A and 2B show a broad pore size distribution with 389 

larger pores in sample 2B (Figure 5e).  390 



Group 3 391 

The illite/mica and kaolin clay minerals in Group 3 show a variety of morphologies including kaolin 392 

booklets, kaolin or illite/mica platelets, and illite fibres both parallel to the grain surface and protruding into 393 

the pore volume (Figure 4 k-m and Figure 7).  394 

 395 

Figure 7: Scanning electron microscopy (SEM) image of illite in sample 3B. Dense tangential mats of illite 396 

can be seen on the grain surface as well as illite fibres that protrude into the pore space perpendicular to 397 

grains.  398 

 399 

Sample 3A represents eight samples with a high clay mineral content whose NMR curves are accordingly 400 

skewed towards smaller pores (Figure 5c). Sample 3B represents three samples that also have a significant 401 

NMR peak at larger   . Accordingly sample 3B has a higher clay-free pore area (Figure 4n and o; Table 2). 402 

The mercury injection curve for sample 3B shows only one peak at large pore sizes, as opposed to the two 403 

approximately equal peaks in the    distribution (Figure 5c and f). The lack of a peak for smaller pore sizes 404 

in the mercury injection data could be due to incomplete mercury saturation, however with a maximum 405 

capillary pressure of 413.7 MPa, the minimum accessible pore size would be 2 nm cf. Eq. (3). Alternatively, 406 

the collapse of illite fibres on the grain surface during drying as observed by Luffel et al. (1993), or 407 



deformation of illite during the Hg-injection experiment, could have increased the porosity in large pores at 408 

the expense of smaller pores and thereby cause the difference between the shapes of the NMR and the 409 

mercury injection curves.  410 

Group 4 411 

The illite/mica minerals in Group 4 are mainly observed as thin fibres that bridge the pores (Figure 4r). This 412 

results in a low clay-free pore area, despite the relatively low clay mineral content (Figure 4s and t; Table 2). 413 

Accordingly Desbois et al. (2011) observe a higher porosity and larger pores in fibrous illite perpendicular to 414 

the grains, than in the illite that forms denser mats with smaller pores parallel to the grain surface. 415 

Considering that the same mass fraction of fibrous illite would have a larger effect on the pore geometry than 416 

tangential illite, the clay-free pore volume from image analysis characterises the effect of clay minerals on 417 

the pore geometry more effectively than the clay content from XRD combined with helium porosimetry.  418 

The NMR curve (Figure 4g) of sample 4A shows distinct peaks, indicating a discontinuous pore size 419 

distribution, which could be related to poor sorting (Figure 4p). As the inter-granular space is nearly entirely 420 

composed of the clay fraction, the maximum pore size would be expected to reflect pores in between the clay 421 

particles (Figure 4s and 4t). The maximum pore sizes from mercury injection are 1.5 μm and 0.8 μm in 422 

samples 4A and 4B respectively (Figure 5i), which is in the same order of size as the pores in fibrous illite 423 

observed by other authors in Rotliegend gas sandstone (Desbois et al., 2011).  424 

Group 5 425 

In Group 5 only a very thin layer of chlorite or illite fibres that are perpendicular to the grain surface is 426 

observed, resulting in a high clay-free porosity (Figure 4w). Whereas samples in Group 4 have a similar clay 427 

content per pore volume as Group 5 samples, in Group 4 samples clay minerals bridge the pores whereas in 428 

Group 5 samples they only line the grains, which results in a lower clay-free porosity (Table 2). As discussed 429 

above, this indicates that image analysis provide a better quantification of the effect of clay minerals on the 430 

pore geometry than quantitative XRD.  431 



The mercury injection curves of the two samples have a similar shape, with a high peak for large pores that 432 

indicates connectivity among large pores (Figure 5j). The prominent peak for smaller    that is observed in 433 

NMR for sample 5A is absent in the mercury injection curve (Figure 5 h and j). As discussed for sample 3B, 434 

this might be due to incomplete saturation or alteration of the clay morphology during sample drying, or due 435 

to deformation of illite during the Hg-injection experiment.  436 

7.3 Surface relaxivity  437 

Surface relaxivity was estimated from surface area per bulk volume,  , from mercury injection and   from 438 

NMR. Capillary pressure from mercury injection can be integrated over the volume of mercury injected to 439 

obtain   in Eq. (6) (Giesche, 2006; Rootare and Prenzlow, 1967). 440 
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where     is the volume of mercury injected, and   is the sample bulk volume. For stepwise injection of 442 

mercury where       is the fraction of the porosity that is filled by mercury for the pore pressure 443 

increment     , so that                , then S is given by Eq. (7). 444 

 445 
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The specific surface area from NMR is given by summation of the surface area for each    time over the 447 

pore volume Eq. (8).  448 
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Where        is the fraction of the porosity that corresponds to     . Assuming 100% mercury saturation,   is 450 

given by Eq. (9). 451 
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Groups 1, 2 and 5 have a mean   of 8-9 μm/s; groups 3 and 4 have mean   of 12-13 μm/s. For the entire 453 

dataset   = 10 μm/s with standard deviation 4 μm/s. The surface relaxivity of quartz (99.5% SiO2) and kaolin 454 

samples (purity 99.9%) measured using high salinity NaCl solution are only 3.6 μm/s and 3.9 μm/s 455 

respectively (Alam et al., 2014). However, iron bearing minerals, such as siderite, chlorite, or hematite, can 456 

increase the surface relaxivity (Keating and Knight, 2007, 2010; Matteson and Tomanic, 2000). Keating and 457 

Knight (2010) measured   exceeding 19 μm/s for mixtures of quartz and siderite with an iron content of 458 

0.6%, and they found that   increases with iron content. Keating and Knight (2007) showed that quartz sand 459 

coated with hematite has   greater than 18 μm/s, whereas sand coated with goethite with the same iron 460 

content has   of only 1.6 μm/s, indicating that the structural relation in which iron is present affects  .  461 

All 63 samples contain Fe-dolomite, samples in groups 2 and 5 contain chlorite, and samples in groups 3 and 462 

5 contain siderite. However, Figure 8 shows no correlation between the content of iron bearing minerals 463 

from XRD and  . This would be expected as the effect of iron on surface relaxivity depends on the specific 464 

surface and type of iron bearing minerals. Samples in groups 3 and 4 are red, which indicates the presence of 465 

hematite and could possibly account for a higher mean   in these groups. However, hematite grains can also 466 

be present as grains among clay minerals in Rotliegend sandstone samples that are white or grey (Desbois et 467 

al., 2011).  468 



 469 

Figure 8: The iron bearing mineral content (dolomite, siderite, pyrite and chlorite) from X-ray diffraction 470 

(XRD) and surface relaxivity as calculated from mercury injection data.  471 

 472 

Differences among   for different groups could also be due to the experimental methods. Mercury injection 473 

reflects the minimum size of the pores, pore throats, through which larger pores, pore bodies, are accessed, 474 

whereas NMR directly measured pore bodies (Coates et al., 1999; Dastidar et al., 2006). Incomplete mercury 475 

saturation would yield a higher   cf. Eq. (9). Some authors match the modes for the differential mercury 476 

injection curve and the differential NMR data in order to estimate  , (Coates et al., 1999; Dastidar et al., 477 

2006). For samples in Group 5, this results in   ranging from 1 μm/s to 300 μm/s, as opposed to 5-12 μm/s 478 

from Eq. (9) . The large range, and in particular the outliers where   exceeds values reported by Keating and 479 

Knight (2007, 2010) suggest that   estimated from the modes of the curves are more sensitive to 480 

experimental artefacts than   estimated from  . This would be expected as connectivity among pore bodies, 481 

and the ratio of pore body to pore throat size would primarily affect larger pores, whereas   is controlled by 482 

the smaller pores. Other authors match the cumulative mercury data and cumulative NMR curves (Mbia et 483 

al., 2014). For samples with different shapes of NMR and Hg curves such as 1B, 4A, 3B, and 5A only a 484 

segment of the total curves overlaps for a given  . When   is chosen so that the curves overlap for the 485 

smallest pores, the results are comparable to   calculated from  .  486 



7.4 Modelling permeability to gas 487 

The permeability    in each      interval was calculated using Eq. (10) (Hossain et al., 2011).  488 
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where   is a function of porosity Eq. (11) (Mortensen et al., 1998). 490 
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To estimate the range of pores that control permeability,    was summed up to     , where the cumulative 492 

permeability equals the measured permeability. The fraction of the porosity in these pores,        , is given 493 

by Eq. (12). 494 
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The maximum pore size that controls permeability,         , is calculated from         using Eq. (2) for 496 

cylinders where       . As it is not certain whether differences in   from Eq. (9) among samples reflect 497 

artefacts during mercury injection experiments, we used   10 μm/s ±4 μm/s. A lower   reduces    in Eq. (10) 498 

and accordingly results in a higher      and a higher       . However,   has a relatively small effect on the 499 

maximum effective pore size,         , as a lower   offsets a higher         in Eq.(2). Figure 9 shows    and 500 

the effect of   on         for three characteristic samples.  501 

Sample 1A characterises samples that have a broad single peak in the NMR curve, those samples represented 502 

by 1A, 1B, 2A, 2B, 3A, 4B (Figure 5; Table 2). The         approximately coincides with the mode of the    503 

distribution and with the geometrical mean   ,         . Sample 4A is representative for samples with 504 

multiple peaks where smaller pores up to         control permeability (Table 2). Sample 5B characterises 505 

samples where larger pores, with a    >          also contribute to permeability. This includes samples with 506 



distinct peaks as well as samples with a single peak in the NMR curve, samples are represented by 5 A, 5B, 507 

and 3B (Figure 5; Table 2) 508 

 509 

a     b     c 510 

 511 

Figure 9: The permeability for each segment of the porosity distribution    is shown for the pores that 512 

dominate permeability by assuming surface relaxivity ρ =10μm/s. To achieve the measured permeability 513 

only a part of the porosity is required. This is 50%, 40% and 90% of the total porosity in samples 1A, 4A and 514 

5B respectively. The full pore size distribution,      is shown by the dashed grey line; vertical dashed black 515 

lines indicate    time of the largest pores that dominate permeability,        when permeability is modelled 516 

using     μm/s and      μm/s. 517 

 518 

The measured permeability corresponds to the summation of    up to        , for   10 ± 4 μm/s for the 519 

majority of samples in Groups 1, and 4, as well as some of the samples groups 2 and 3 (Figure 10). The clay-520 

free porosity from image analysis is less than 2% for samples where                 (1A, 2A, 3A, 4A, 4B, 521 

Table 2). Samples with a higher clay-free porosity require summation over a larger portion of the porosity, 522 

indicating a higher connectivity among larger pores. Accordingly, Hossain et al. (2011) require summation 523 



over the full pore volume in order to model permeability for samples where micro-pores are concentrated in 524 

glauconite pellets and macro-porosity is in the order of 20%. As permeability rises proportional to     
  the 525 

permeability per    increment rises sharply with   ; therefore the largest connected pores make a dominant 526 

contribution to the sample permeability (Figure. 9).  527 

 528 

a      b    c 529 

d e  530 

Figure 10: NMR permeability (k) from summation of permeability of pores up to the mean    time,        , 531 

for        μm/s. Permeability is dominated by pores smaller than         in groups G1, G2 and G4 532 

whereas the majority of the samples in G3 and G5 have a higher permeability.  533 

  534 



Connectivity cannot be directly measured from 2D image analysis, however, the fraction of clay-free 535 

porosity indicates in which samples clay-free pores are connected. Sample 1B is the sample with the lowest 536 

clay free porosity, 2.5%, in which               . This is in the same order as percolation threshold 537 

porosity values that are used for clay-free sandstones with a low porosity by e.g. Mavko and Nur (1997) and 538 

Walderhaug et al. (2012). In those samples, the percolation threshold would relate to the minimum porosity 539 

that is required in order for the porosity to form a connected path through the sample. In these samples, a 540 

clay-free porosity threshold would be required for the clay-free pores to form a connected path; in samples 541 

with a lower clay-free porosity, clay-free pores would be connected through pores in the clay mineral 542 

fraction and those pores would control permeability.  543 

The fraction of the clay-free porosity does not predict       , e.g., Samples 5A and 5B have the same       , 544 

although sample 5B has a three times higher clay-free porosity (Tables 2 and 3). The extent to which larger 545 

pores contribute to flow would depend on the pore shape and 3D connectivity, which is not characterised by 546 

only clay-free porosity. Similarly the clay-free porosity threshold would be sample dependent, and the 547 

minimum of 2.5% found by us is based on analysis of a limited number of samples. The image resolution 548 

would also affect the fraction of clay free porosity, because at a higher resolution a higher clay-free porosity 549 

can be resolved. Nonetheless, for a comparison among a set of sandstones using the same images, image 550 

segmentation, rather than the shape of the NMR curve or the clay content from XRD, gave the best 551 

prediction of samples in which permeability would be controlled by smaller pores and where permeability 552 

can be modelled by summation of    up to        . 553 

  554 



Table 3: Effective fraction of porosity is the fraction of porosity that accounts for the measured permeability. 555 

The maximum effective pore radius corresponds to maximum    of the effective fraction of porosity, and 556 

effective specific surface        is calculated from the measured permeability and the total effective porosity. 557 

Immobile layer thickness is the thickness of bound water that would result in the measured brine 558 

permeability if the maximum effective pore radius to brine flow were the same as to gas flow. Refer to text 559 

for details. Error margins in brackets indicate result range for   6-14 μm/s. 560 

Group  Measured 

Permeability 

Effective 

fraction of 

porosity 

Maximum 

effective 

radius to gas 

μm 

       

m
2
/cm

3
 

 

Immobile 

layer 

thickness 

  mD  rho=10μm/s rho=10μm/s nm 

1 
A 0.021    0.49 (0.07) 0.20   (0.02) 23     (2) 40     (10) 

B 0.55 0.55 (0.09) 0.70   (0.04) 6.1    (0.5) 120   (30) 

2 
A 0.0052 0.55 (0.11) 0.09   (0.02) 45     (5) 10     (2) 

B 0.099    0.68 (0.12) 0.35   (0.05) 12.0  (1.1) 100   (20) 

3 
A 0.0096 0.70 (0.12) 0.11   (0.03) 35     (3) 22     (4) 

B 0.45   0.76 (0.08) 0.81   (0.07) 7.6    (0.4) 210   (20) 

4 
A 0.0094 0.40 (0.10) 0.15   (0.03) 27     (4) 35     (5) 

B 0.022    0.46 (0.07) 0.231 (0.010) 20     (2) 45     (5) 

5 
A 31 0.87 (0.11) 5.0     (0.3) 0.96 (0.06) 1100 (100) 

B 43 0.87 (0.14) 5.7     (0.7) 0.85 (0.07) 550   (50) 

 561 

 562 

When permeability is controlled by a fraction of the pore volume, the specific surface area that is effective 563 

with regards to permeability in Eq. (1) would be the specific surface relative to the fraction of pores that 564 

control permeability. The mean effective specific surface,       , was calculated from the effective porosity 565 

and permeability by using Eq. (13)  566 
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Figure 11 shows a positive correlation between        and volumetric clay content per inter-granular volume 568 

(porosity + clay mineral volume) whereby samples in different groups fall on different lines. Samples 569 



dominated by illite fibres in Group 4 have the highest        for a given clay content, whereas samples 570 

containing a larger kaolin or mica/illite platelets (Group 1 and 3) show a lower       . This also indicates 571 

that permeability is indeed controlled by the specific surface of pores in among clay particles, and 572 

accordingly the specific surface of illite is higher than the specific surface of kaolin (Matteson and Tomanic, 573 

2000; Santamarina et al., 2002). Those samples from group 5, represented by 5A and 5B where large pores 574 

control flow accordingly show a low        (Figure 11; Table 3). 575 

 576 

Figure 11: Effective specific surface area versus clay volume scaled by inter-granular volume 577 

(     )/(         ). Samples from different groups have different clay types and different clay 578 

morphologies, this results in a different effective specific surface area for a given clay content.  579 

 580 

  581 



7.4.1 Gas slip 582 

Gas slip contributes to gas flow when the mean free path length of gas molecules,  , is approximately one to 583 

three orders of magnitude smaller than a characteristic length 0.001  
  

 
     (Cao et al., 2009). With a 584 

pore pressure of 6.7 MPa,    3 nm for helium c.f. Eq. (14) (Loeb. 1927) .  585 
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where   is the gas viscosity,   is the mean pore pressure,    is the gas constant,   is temperature and   is 587 

the molar mass of the gas. A higher apparent permeability due to gas slip is related to the true permeability 588 

by Eq. (15) and Eq. (16) (Klinkenberg. 1941). 589 
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As a first approximation to characterize the effect of gas slip on our results we used the mean effective radius 592 

      in Eq. (16). The effect of gas slip cf. Eq. (15) and Eq. (16) would be largest for sample 2A, which has 593 

the smallest      (Table 3); in this sample       = 1.3. The summation of    up to the lower true 594 

permeability   yields      = 0.076 ± 0.007 μm as compared to the      = 0.087 ± 0.008 μm/s for the 595 

measured permeability and        = 0.51 ± 0.11 as compared to 0.55 ± 0.11. The difference due to slip is 596 

smaller than the difference due to the error margin on  . For the other samples that have a larger      the 597 

effect of gas slip would be even smaller.  598 

6.5 Modelling permeability to brine 599 

The measured brine permeability is lower than the measured gas permeability for all samples (Figure 6b). On 600 

average gas permeability is eight times higher than brine permeability; which is significantly larger than the 601 



effect of gas slip estimated in Section 6.4. One reason for the difference in permeability to brine and water 602 

could be a layer of bound water on the mineral surface that reduces the pore volume that is available to brine 603 

flow (Andreassen and Fabricius, 2010; Heid et al., 1950; Luffel et al., 1993; Solymar et al., 2003). Another 604 

reason could be the reversible collapse of fibrous illite during drying (De Waal et al., 1988; Luffel et al., 605 

1993).  606 

The effect of bound water can be modelled as a reduction of the effective pore size. Solymar et al. (2003) did 607 

this by modelling a layer of bound water on the grain surface in images. However, this requires images with 608 

a higher resolution than the 3 μm in Figure 4. Therefore we model the effect of bound water on the pore size 609 

distribution from NMR. The free pore volume that is available to water,         , is given by the fraction 610 

that is available to air,        , minus the thickness of bound water,  , on the grain surface Eq. (17):  611 

 , ,NMR i NMR i ifw f S      (17) 612 

Substitution of Eq. (2) where        gives Eq. (18). 613 
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Whereas     = 1, i.e. all porosity is available for gas flow, due to bound water        . As a first 615 

approximation,   is constant so that the specific surface per pore volume of free water,       is Eq. (19) 616 
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Substitution into Eq. (10) yields the brine permeability,     , of pores for a given     in Eq. (20), where      618 

is cf. Eq. (11) using        . 619 
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We assumed that those pores that do not control gas flow because they are connected through smaller pores, 621 

also do not control brine flow. Therefore, from summation of      up to the same maximum      that was 622 

obtained from gas permeability and the measured brine permeability we estimated the value of   that would 623 

be required to account for the measured permeability difference between gas and brine. Figure 12 shows the 624 

gas and the brine porosity and permeability distributions for representative samples.  625 

 626 

a     b     c 627 

Figure 12: The permeability    is shown up to the maximum   ,       , where the cumulative    equals the 628 

measured permeability for gas. Brine permeability is shown for the immobile layer thickness,   , which 629 

accounts for the measured water permeability. The porosity to brine is lower than the porosity to gas due to 630 

the immobile water on the pore walls.  631 

For samples in groups 1, 3 and 4,   is in the order of 50 nm, whereas for samples in Group 5,   ranges up to 1 632 

μm (Fig. 13). Measurements of the bound water layer are affected by the experimental techniques used 633 

(Goertz et al., 2007), however, experiments with flow through thin quartz capillaries indicate a bound water 634 

layer thickness of 8 nm (Zheleznyi et al., 1972). The higher estimated   suggests that other factors contribute 635 

to the lower brine permeability.  636 

This could be the alteration of fibrous illite clay minerals as suggested by Luffel et al. (1993). Those authors 637 

found that the effect was larger in samples with a lower permeability and caused a permeability increase of a 638 

factor five to gas in a sample with 0.7 mD permeability. All groups contain 5% illite or more, and clay fibres 639 

perpendicular to the grain surface can be observed in BSEM and SEM images (Figures 4 and 7). These 640 

samples were also air dried; therefore the presence of illite perpendicular to the grains indicates that not all 641 



illite was affected by drying, which was also observed in North Sea samples by Wilson et al. (2014). The 642 

additional reduction of the effective pore size to brine was estimated by calculating the maximum effective 643 

pore size for brine permeability,            for   10 nm. Figure 14 shows that the difference between 644 

           and          increases with         .  645 

 646 

Figure 13: The thickness of bound water,   that would need to be invoked in order to account for the 647 

measured difference between gas and brine permeability if the same pores controlled flow. The mobile 648 

porosity to brine may be lower than to gas due to a combination of bound water on the mineral surface and to 649 

illite fibres that are perpendicular to the grain surface in a saturated sample but collapse on the grain surface 650 

during drying. 651 

 652 

Figure 14: When a bound water layer thickness of 10 nm is assumed, the size of the largest pores that are 653 

effective for gas flow          exceeds the size of the largest pores that contribute and the largest pores that 654 

are effective for brine flow,           . The difference                     is shown on the y-axis and 655 

         is shown in the x-axis. Error bars indicate                      for bound water layer thickness 5 656 

and 20 nm.  657 

 658 



8 Conclusions 659 

We analysed permeability to brine and to gas for 63 Rotliegend sandstone samples by means of nuclear 660 

magnetic resonance transverse relaxivity data, mercury injection, X-ray diffraction, and image analysis.  661 

 Principal component analysis, PCA, of the sample mineralogy showed that clay mineralogy 662 

dominates variations among samples, and that samples from the same geographical location are 663 

grouped together.  664 

 Permeability to gas was modelled using the pore size distribution from NMR to estimate which pores 665 

control flow. The range of pores that control flow depends on the distribution of clays in the pore 666 

volume, rather than on the total clay content; therefore image analysis rather than quantitative XRD 667 

indicates in which samples permeability is controlled by small pores.  668 

 The measured gas permeability could be accounted for by the fraction of porosity that with a pore 669 

size smaller the mean pore size in 38 out of 63 samples. 670 

 Surface relaxivity was estimated from the specific surface area as calculated from mercury injection 671 

data and the specific surface area from NMR data.  672 

 Permeability to brine was modelled by including a bound water layer, a water layer of 10 nm was 673 

insufficient to account for the measured permeability. This indicates that other factors such as the 674 

presence of fibrous illite contribute to the lower brine permeability.  675 
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Appendix A: Principal Component Analysis 770 

Table A1: Orthonormal principal components loadings for minerals for principal component analysis on 63 771 

samples. Mineral content is centred and normalised. Values greater than 0.35 are bold.  772 

  PC1 PC2 PC3 PC4 PC5 PC6 

variance 

explained % 26 18 13 13 8 7 

Quartz 0.37 -0.04 0.08 0.40 0.00 0.38 

Albite 0.40 0.12 0.18 -0.21 -0.20 -0.38 

Microcline -0.27 0.25 0.35 0.22 -0.28 -0.38 

Calcite 0.08 -0.12 0.12 0.36 0.65 -0.46 

Dolomite -0.12 -0.14 -0.36 0.44 -0.30 0.08 

Illite/mica 0.35 -0.03 -0.34 -0.13 0.11 -0.34 

Kaolin -0.45 -0.10 -0.22 -0.15 0.14 -0.05 

Chlorite 0.36 0.14 -0.19 -0.42 0.03 0.11 

Pyrite -0.19 0.00 -0.57 -0.06 -0.17 -0.33 

Siderite -0.05 -0.57 0.02 -0.11 0.25 -0.02 

Barite -0.01 -0.55 0.10 -0.21 -0.11 0.13 

Anhydrite 0.03 -0.42 0.31 -0.10 -0.42 -0.28 

Pores -0.34 0.23 0.25 -0.36 0.24 0.13 

 773 

Table A2: Orthonormal principal components loadings for minerals for principal component analysis on 43 774 

samples. Mineral content is centred and normalised. Values greater than 0.35 are bold.  775 

  PC1 PC2 PC3 PC4 PC5 PC6 

variance 

explained % 30 18 14 10 8 8 

Quartz -0.11 0.49 -0.33 -0.11 -0.02 -0.33 

Albite 0.33 -0.33 0.04 -0.09 -0.35 0.30 

Microcline 0.44 0.06 -0.01 0.12 -0.31 -0.05 

Calcite -0.07 0.02 -0.07 -0.83 -0.14 0.16 

Dolomite -0.22 0.21 0.00 0.17 0.09 0.77 

Illite/mica -0.13 -0.08 0.58 -0.15 -0.25 -0.33 

Kaolin -0.43 -0.12 0.12 -0.06 0.08 0.07 

Chlorite 0.27 -0.33 0.23 -0.19 0.33 0.10 

Pyrite -0.19 0.09 0.54 0.29 -0.14 0.01 

Siderite -0.34 -0.40 -0.08 -0.12 0.20 -0.07 

Barite -0.26 -0.40 -0.24 0.19 0.07 -0.18 

Anhydrite -0.11 -0.37 -0.35 0.20 -0.49 0.01 

Pores 0.36 -0.13 -0.03 0.10 0.52 -0.11 
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Abstract 

The seasonal imbalance between supply and demand of renewable energy requires temporary storage, which can be 

achieved by hot water injection in warm aquifers. This requires that the permeability and porosity of the aquifer are not 

reduced significantly by heating.  

We present an overview of published results regarding the effect of temperature on sandstone permeability. These tests are 

performed with mineral oil, nitrogen gas, distilled water and solutions of NaCl, KCl, CaCl2 as well as brines that contain a 

mixture of salts. Thirteen sandstone formations, ranging from quartz arenites to formations with a significant fraction of fine 

particles including clay minerals are investigated. The porosities range from 0.10 to 0.30 and permeabilities span the range 

from 1 to 1000 md. To compare different rock types, specific surface is determined from permeability and porosity using 

Kozeny’s equation.  

Heating causes thermal expansion, which results in porosity reduction if the sandstone is confined. The maximum effect of 

porosity reduction as a result of thermal expansion on permeability is modelled and compared the change in specific surface 

that is computed from the reported data. This does not account for all the permeability reductions observed.  

Permeablity reduction occurs both when distilled water is the saturating fluid as well as in tests with NaCl, KCl or CaCl2 

solutions, however, this is not the case in tests with mineral oil or nitrogen gas. The formation of a filter cake or influx of 

colloidal particles due to corrosion of the apparatus at elevated temperature causes permeability reduction in a number of 

investigations. Mobilisation of internal particles, particularly kaolinite particles, is considered a probable mechanism of 

permeability reduction for the other experiments reviewed here. 

The parameters that strongly affect the success of heat storage therefore include the quality of the equipment and 

particularly the prevention of corrosion, as well as the sandstone lithology and its interaction with the reservoir fluid.  

 

Introduction 
An imbalance in supply and demand of renewable energy requires seasonal storage, which can be achieved by hot water 

injection in warm aquifers. This requires that the permeability and porosity of the aquifer are not reduced significantly by 

heating. The mechanisms responsible for possible porosity and permeability reduction must be identified, in order to select 

geological formations that are suitable for heat storage. 

The effect of heating on sandstone permeability is addressed in multiple laboratory studies, but results vary widely among 

investigations ranging from no change to a 99% permeability decline. A systematic interpretation of the body of published data 

involves comparison between different lithological units and different experimental procedures to assess under which 

conditions permeability reduction occurs. The quality of the experimental data varies; in a number of cases experimental error 

is discovered and verified to be the only cause of the permeability reduction. However, there exist both mechanical and 

physico-chemical mechanisms that can lead to permeability reduction of sandstone at elevated temperature.  

Chemical interaction of the fluid and the experimental apparatus causes a permeability reduction in a number of 

investigations (Potter et al. 1981; Stottlemyre 1981; Milsch et al. 2009). Corrosion products result in formation of a filter cake 

at the sample inlet or clogging of the sandstone pores. Mechanical problems (Sageev et al. 1980) and insufficient time for 

equilibration of the sample can result in unreliable data. Furthermore, the viscosity value used to compute permeability from 

experimental data may differ from the actual viscosity due to chemical dissolution or precipitation. 
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Thermal expansion of the solid frame occurs in all types of sandstone, resulting in porosity reduction when the rock is 

prevented from expanding. The effect of thermal expansion on permeability is predicted by e.g., Stottlemyre (1981), Somerton 

(1992) and Baudracco and Aoubouazza (1995). Somerton (1992, pp 192-193)  predicts the largest permeability reduction, of 

approximately 20% for heating from 20 to 90˚C; whereas Stottlemyre (1981) and Baudracco and Aoubouazza (1995) predict a 

reduction of less than 5% for the same temperature range. The variation is due to differing assumptions regarding the 

expansion of the solids and the bulk volume, as well as to the different models used to relate porosity to permeability.  

Porosity reduction can furthermore be due to increased compressibility of the sandstone at elevated temperature.  

Measurements of sandstone compressibility in 8 samples indicate pore volume compressibility is on average 20% higher at 

200˚C than at room temperature (Von Gonten and Choudhary 1969).  

Fluid mineral interaction can result in a different permeability of the same sandstone sample to different saturating fluids 

(Wei et al. 1986; Baudracco and Aoubouazza 1995). One mechanism that can explain this is the formation of an electrical 

double layer (EDL) on the surface of the grains (Andreassen and Fabricius 2010). The EDL in sandstone is a consequence of 

interaction of the quartz surface with water molecules resulting in a surface charge that attracts oppositely charged ions [e.g., 

Revil et al. (1996) and Lorne et al. (1999)]. The EDL is comprised of the layer of ions adsorbed to the surface and a diffuse 

layer of attracted ions. Water in part of the EDL can be presumed to be less mobile than in the bulk solution (Tchistiakov 

2000). The thickness of the EDL depends on how effectively the surface charge is shielded, which is affected by the solution 

composition as well as by temperature.  

Swelling of certain clay minerals in contact with aqueous solutions can cause permeability reduction. The degree of 

swelling is affected by both the clay mineral structure and the solution composition (Sposito et al. 1999), and its effect on 

permeability depends on the distribution of clays in the sandstone pores (Tchistiakov 2000).  

Particle mobilisation and their subsequent filtration can lead to significant permeability reductions (Mungan, 1965). 

Mobilisation of kaolinite particles due to heating can be attributed to an increase in the electric double layer repulsive force 

acting between the quartz and kaolinite surfaces (Schembre and Kovscek 2004). The surface forces acting on a colloid can be 

computed using Derjaguin-Landau-Verwey-Overbeek (DVLO) theory. This is used to predict the kaolinite particle 

mobilisation observed as a consequence of a reduction of the ionic strength. The reduction of the ionic strength causes an 

increase in the EDL force on the kaolinite particles [e.g., Khilar and Folger (1984), Tchistiakov (2000), Schembre and 

Kovscek (2004)]. The effect of heating on particle mobilisation, however, is not observed in all investigations. Khilar and 

Folger (1984) report that heating does not affect the ionic strength at which kaolinite particles are mobilized; Schembre and 

Kovscek (2004) on the other hand do find particle mobilisation as a consequence of heating.  

Typically fines are clay minerals residing in the space between quartz grains but other sources exist. Blair et al. (1984) 

suggest that dissolution of silica or calcite cement can also release fines. Grain cracking due to differential thermal expansion 

of the mineral constituents is furthermore suggested as a possible source of fines by Stottlemyre (1981). Zuo et al. (2010) 

observe this process in the Pingdingshan sandstone and find it occurs predominantly when temperatures exceed 150°C. 

In this paper, the use of the surface area per unit pore volume, Sp, is introduced, as a measure to compare porosity and 

permeability change of different geological formations. An extensive compilation of published data regarding permeability 

change as a consequence of heating is used to investigate the extent to which different mechanisms affect Sp.  

 
Theory 
Specific Surface 

The specific surface, S, is defined as the surface area/rock volume ratio. This appears in the Kozeny (1927) equation to 

relate permeability, k, to porosity, φ, of a homogenous sedimentary rock: 

     
   

  
    …………………………..….…………………………………………………….………………………..(1) 

The factor c accounts for the geometry of the porous medium, and can be expressed as a direct function of porosity 

(Mortensen et al. 1998). 
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The ratio Sp (Eq. 3), expresses the surface area per unit of pore volume. This is inversely related to the pore radius i.e., 

      , and thereby allows comparison of porosity and permeability changes between lithologies with different porosity.  
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To predict the effect of a porosity change on   ,    is expressed as a function of Ss (Eq. 4) where Ss is the surface area per 

unit volume of solids (Eq. 5).  
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Grain shape and surface roughness affect the Ss of sandstone grains, but the effect of heating on these is presumed to be minor. 

An increase in volume can therefore be expected to reduce Ss, however, the extent of this is unknown. To predict an upper 

limit of the change in Sp as a consequence of thermal expansion we assume Ss to be constant in Eq. 4. 

 

Porosity Change 

Porosity change due to thermal expansion is determined by the expansion of both the solids and the bulk volume. In-situ, 

the bulk volume is prevented from expanding and expansion of the solids induces porosity reduction. On the other hand, in 

laboratory tests the bulk expansion depends on the confining pressure. The linear thermal expansion coefficients, α, measured 

for three sandstone lithologies by Somerton et al. (1981) are similar to that of quartz perpendicular to the c-axis. In this case 

the porosity remains constant with temperature change. The porosity, φΔT, after a temperature change, ΔT, is computed using 

Eq. 6 where αsolid and αbulk  are the linear thermal expansion coefficients of the solid and the bulk respectively. 

 

         
(    )(           )

          
……..…………………………………………………………..…………………….(6) 

 

Electrical Double Layer 

The formation of an EDL on the quartz surface is expected to lead to a reduction in the mobility of the fluid closest to the 

surface, and consequently a reduction in the effective pore space. For a detailed description of the electrical charge on the 

mineral surface and the charge distribution in the EDL in sandstone the reader is referred to Revil et al. (1996) and Lorne et al. 

(1999). Silanol groups (SiOH) form by interaction of the quartz surface with water; the gain or loss of H
+
 results in a surface 

charge that depends on the H
+
 concentration (pH) of the solution. The surface charge attracts oppositely charged ions, resulting 

in the formation of a diffuse layer whose charge counters the surface charge. The concentration of ions in the EDL is 

dependent on their concentration in the solution (Lorne et al. 1999). The thickness of the EDL is characterized by the inverse 

Debye parameter       (Eq. 7), which predicts the distance over which the surface potential is reduced by a factor 1/e, for a flat 

surface with a limited surface charge in a solution of a low ionic strength (Lyklema 1995).  

     √
       

      
…………………………………………………………………………......…………………………(7) 

kB is the Boltzmann constant, ε0 is the vacuum permittivity, εr the relative permittivity of the solution, NA the Avogadro 

number, e is the electron charge and I is the ionic strength of the solution and T is the absolute temperature. This does not 

account for the size of the adsorbed ions or the surface geometry (Lyklema 1995).  

Eq. 7 suggests that heating results in an increase of κ
-1

 (Andreassen and Fabricius 2010), this applies only when εr is 

assumed constant. A temperature rise causes a more than proportional reduction in the relative permittivity of water. 

Accounting for this change implies that       is reduced as a consequence of heating. It can be presumed that the thickness of 

the water layer immobilized in the EDL is similarly reduced. This effect is only present in polar solutions with a low ionic 

strength. At a high ionic strength (i.e. greater than 0.7 M for NaCl solution) the EDL can be considered to be reduced to a 

single layer (Revil et al. 1996) and heating can be expected to have no effect on its thickness.  

 

Kaolinite mobilisation 

Particle mobilization is predicted to result from an increase in EDL repulsive forces between kaolinite and quartz that can 

be due to a reduction of ionic strength or to an increase in temperature (Tchistiakov 2000; Schembre and Kovscek 2004). 

Kaolinite is a mineral consisting of a silica and alumina sheet and has a different charge on faces and edges (Grimm). The 

different charges affect the aggregation of suspensions of kaolinite, with different pH the particles collect face face or edge 

face (Gupta etc.). This affects the rheology of kaolinite suspensions 

Heating makes the overall charge more negative (Rodri and Rama).  

 
Data 

Data from 17 publications addressing the effect of temperature on permeability of sandstones is presented in Table 1. The 

data represents 13 sandstone formations, ranging from clean sandstones with a high quartz content (Fontainebleau, Massilon 

and St. Peters Sandstone) to sandstones with a significant clay content (Berea, Boise). When one paper addresses more 

sandstones, each lithological unit is given a different Arabic number. Experiments consisting of multiple steps, i.e. where 

different fluids are tested in the same lithology, the steps are indicated by Roman numerals, i.e., No. 1i, 1ii. Firing, heating the 

sample to temperatures in the range of 400-1000˚C prior to testing, alters the structure of clay minerals (Shaw 1991). For this 

reason, fired cores are considered as a different lithology from unfired cores.  

The clay content and mineralogy are not reported for several tests performed on the Berea and the Boise sandstones. The 

former consists predominantly of quartz, and contains a fine fraction of up to 20%, where kaolinite is the dominating clay 

mineral (Somerton et al. 1974). The latter consist of quartz, feldspar and plagioclase grains and contains 35% of fines 

including kaolinite (Somerton et al. 1974).  
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Porosity is not reported in all cases. For tests on Berea or Boise sandstone where the measured permeability is reported, the 

porosity values based on data from related investigations are assumed. For less commonly studied lithologies as well as 

experiments where the permeability is not reported, the qualitative results are included in the discussion, however our 

emphasis is placed on results from the more thoroughly documented tests.  

In tests 12, 14 and 19, an important conclusion is that the cause of permeability reduction is contamination of the sandstone 

sample by iron oxides or hydroxides related to corrosion of the equipment. Subsequent tests where this is prevented are 

performed in those studies; however, in the remaining investigations the absence of corrosion products is not explicitly 

addressed.  

 

Method 
To compare the effect of heating in different lithologies, Sp is computed from the porosity and permeability measurements. 

As opposed to the permeability, porosity is measured only at room temperature in the majority of the experiments. To account 

for thermal expansion, the error margin on the porosity measurement is increased as a function of temperature. The minimum 

porosity is computed using the lower error margin of the porosity measurement in combination with Eq. 6 where αbulk is set to 

zero. This predicts the porosity assuming that no bulk expansion occurs; the linear thermal expansion coefficient of quartz 

perpendicular to the c-axis is used for αmineral (Fjaer et al. 2008, pp 441). The maximum porosity at elevated temperature is 

assumed to be the upper error margin of the reported porosity; it is assumed that αbulk = αmineral , i.e., no porosity reduction due 

to thermal expansion. For permeability the error margins as given in Table 1 are used.  

To investigate the effect of heating in situations where there is no electrical double layer formation, data is divided into 

tests performed with an aqueous solution and those performed with oil or nitrogen gas. Tests with aqueous solutions are 

furthermore grouped according to the effect of heating on   .  

 

Experiments 
Tests were performed on Berea sandstone cores, each core was first flooded with distilled water and the temperature was 

increased from 23˚C to 80˚C and subsequently reduced. At 23˚C the injection fluid was changed to 0.34 M NaCl and the test 

was repeated. The test parameters are shown in Table 2. Permeability measurements are made at each step using different flow 

rates (10, 20 and 40 ml/hr).  

 

 

Results 
The predicted maximum porosity reduction resulting from thermal expansion is shown in Fig. 1a. Porosity measurements 

at a confining stress of 14 MPa by Jing et al. (1992) agree with the predicted values. The measured porosity change is caused 

by both thermal expansion and the increase in compressibility due to heating, whereas the prediction accounts only for thermal 

expansion. This suggests the increased compressibility has a negligible effect under these test conditions.  

a) b)  
 
Fig. 1 a) Porosity declines as a function of temperature due to thermal expansion. Lines represent the modeled reduction for a 100% 
quartz sample. Measured porosity from sandstone samples No. 9 (crosses) and No. 10 (triangles) indicate a similar porosity change. 
Numbers refer to Table 1. 
b) Modeled Sp increases as a consequence of porosity reduction, curves are shown for samples with initial porosity of 0.10 and 0.20 
and permeability 1-, 10-, 100-, 1000 md. 

 

The modeled porosity reduction has a minor effect on Sp. Fig. 1b shows the computed Sp as a function of temperature. The 

predicted permeability change resulting from the changes in Sp and   is larger in rocks with a lower porosity. These have a 

larger fraction of solids expanding into a smaller volume of pore space. For a rock with a porosity of 0.10, thermal expansion 

is predicted to cause at most a reduction from 100 to 88 md for a temperature rise of 100°C.   
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The increase in Sp due to heating does not exceed the predicted maximum effect of thermal expansion in tests performed 

with an inert saturating fluid, mineral oil or nitrogen gas (Fig. 2).  In a number of experiments, the permeability at elevated 

temperature is the same as the permeability at room temperature suggesting that the pore volume is not affected by heating. 

The lithological units in this figure include both clean sandstones with a high quartz content and a negligible clay fraction (No. 

1) as well as samples containing a significant amount of feldspars, matrix and clay minerals (No. 6). The numbers in the 

figures refer to the sample numbers in Table 1.  

 
Fig 2: Sp as a function of temperature for samples tested using mineral oil (solid lines) and nitrogen gas (dashed lines), as well as Sp 
as a function of temperature modeled as a consequence of thermal expansion. Numbers correspond to tests in Table 1. 

 

In tests where an aqueous solution saturates the sample, the permeability reduction ranges from no change (Fig. 3a) to a 

significant reduction (Figs. 3b, 3c, 3d). There is no case where permeability increases as a function of temperature. Tests 

where the temperature subsequently is reduced indicate that this leads to complete (Fig. 3b) or very significant permeability 

recovery (Fig. 3c).  

Fig. 3a shows tests where no permeability reduction occurs. This is the case for the relatively clay free sandstone sample 

where contamination is prevented (No. 19iii) as well as samples where the clay mineralogy has been altered by firing, one at a 

temperature exceeding 700˚C (No. 7) and one where the firing temperature is not reported (No. 15). In tests No. 8 and No. 11 

kaolinite mobilisation causes permeability reduction at room temperature, but subsequent heating causes no further reduction. 

Samples No. 22 and No. 23 contain kaolinite, however, their permeability is not reduced. These samples are only heated up to 

68˚C, and are saturated with a KCl solution with an ionic strength of 0.79 M.  

The effect of temperature is reversible in the majority of the tests performed with distilled water (Fig 4. b). Exceptions are 

test No. 19ii (Fig. 3c) due to colloid contamination, and test No. 3i. This sample contains smectite and illite in the clay 

fraction; whereas the other samples tested with distilled water contain predominantly kaolinite (Fig. 3b).   

The Sp at room temperature of samples No. 2 and No. 3 is different when distilled water, NaCl or CaCl2 solution (both with 

ionic strength of 1M) are the saturating fluids. In sample No. 2 the permeability is higher to distilled water (No. 2i) and CaCl2 

solution (No. 2iii) than to NaCl solution (No. 2ii). The Sp increase as a consequence of heating is reversible in the first two 

cases but during the test with NaCl solution the permeability of the sample is reduced permanently. For sample No. 3 on the 

other hand the permeability is lowest to CaCl2 solution (No. 3iii), and increases when distilled water is used (No. 3i), it is 

highest when NaCl solution is the saturating fluid (No. 3ii). In tests where the saturating fluid is KCl, no permeability 

reduction occurs when the ionic strength is 0.79 M (No. 22i and No. 23i, Fig. 4a). For tests with NaCl with an ionic strength of 

0.86 M (No. 9 and No. 10, Fig. 3d) the change in Sp is only slightly greater than predicted due to thermal expansion.  
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 a) b)  

c) d)   
 
Fig 3: Sp versus temperature; solid and dashed lines indicate flow with distilled water and brine respectively. Dotted lines are the 
predicted effect of thermal expansion. The results are grouped according to those where there is (a) no permeability change (b) an 
entirely reversible change (c) a partially reversible change (d) the reversibility is not investigated. The effect in No. 19ii is found to be 
due to colloid contamination.  Numbers correspond to tests in Table 1.  

 

The change in Sp with heating was similar in the two experiments performed. Our results for one sample are plotted in Figure 

4 along with data from other tests performed on Berea samples using water or NaCl solutions. At 23 ˚C the permeability is not 

dependent on the flow rate. The difference between the permeability measured with a flow rate of 10ml/hr and that measured 

at 20 ml/hr increases with increasing temperature. This effect occurred in both samples, both during the test phase with 

distilled water and that with brine.  

 
Fig 3: Sp versus temperature; solid lines are experimental data from this study, dotted lines indicate literature data. Black lines are 
tests performed with distilled watter, gray lines are tests with NaCl.  
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Discussion 
Colloidal contamination is noted in multiple studies. At elevated temperature iron oxide and hydroxide colloids can be 

transported into the sample and result in the formation of a filter cake (Piwinksii and Netherton 1977; Milsch et al. 2009), or 

the clogging of pores (Potter et al. 1981; Stottlemyre 1981). The permeability reduction in the latter case is partially reversible 

with cooling (Fig. 3c, No. 19ii). In experiments where measures are taken to prevent colloidal contamination, heating causes 

no change in Sp (Fig. 3, No.19iii). Colloid contamination is not ruled out for any of the tests where a reversible or partially 

reversible change is observed. However, it is less probable that colloid contamination is the cause of the changes observed in 

No. 5iii and No. 6i (Fig. 3b) as these tests are part of the same investigation as No. 7 (Fig. 3a) where no permeability reduction 

occurs. A similar argument holds for the tests No. 14 and No. 16.  

Increased compressibility can be considered not to cause a significant permeability reduction in these experiments. Strain 

measurements by Stottlemyre (1981) show that the average sample length does not change at a constant confining stress of 15 

MPa. Measurement of pore volume reduction during heating at a confining stress of 14 MPa by Jing et al. (1992) (Fig. 1) 

furthermore indicate no porosity reduction greater than expected as a consequence of thermal expansion. At higher 

temperature or under higher confining stress, porosity reduction due to increased compressibility may be more significant, but 

it is negligible as a mechanism of permeability reduction for the test conditions of the tests discussed in this paper.  

Thermal expansion is found to have a minor effect on permeability in the tests considered in this review. The predicted 

permeability reduction is highest for sandstones with a lower porosity where an increase in temperature of 100˚C causes a 12% 

permeability reduction.  However, the majority of the permeability measurements in samples where the fluid is inert show no 

change in permeability (Fig. 2), suggesting that the pore volume is not reduced due expansion of the solids.  

 There are no cases where the permeability increases with temperature, indicating that thermal contraction of the EDL does 

not significantly affect porosity. This effect is expected to be more significant in samples with a high Sp. The samples in this 

review with the highest Sp (No. 22 and No. 23) are tested with gas, in which case no EDL forms, or with a 0.79M KCL 

solution wherefore the EDL is expected to be reduced to a minimum thickness.   

Clay minerals are present in the tests where a permeability reduction is observed in Figs. 3b, 3c and 3d (with the exception 

of 19ii where the effect is found to be due to colloid contamination). Kaolinite is the dominant clay mineral in the majority of 

the samples where a permeability reduction is observed. In samples 7 and 21 that have been fired at temperatures exceeding 

600˚C, heating has no effect on the Sp during flow with distilled water. It is suggested (check) that the kaolinite mineral loses 

its hydrationwater irreversibly at temperatures exceeding 600˚C changing its surface properties thereby preventing 

mobilization by EDL repulsion. In those investigations, samples fired at lower temperatures where the kaolinite is present do 

show an increase in Sp with heating during flow with distilled water (tests 5 and 20). This suggests kaolinite mobilisation is a 

probable contribution to the permeability reduction. In tests No. 16 and No. 20, kaolinite is found in the effluent fluid at 

elevated temperature supporting the hypothesis of kaolinite particle mobilisation.  

Mobilisation of kaolinite may also be due to hydrodynamic drag forces. Permeability reduction at constant temperature due 

to fines migration is reported by McKay and Brigham (1984) and by Gobran et al. (1987) for samples containing kaolinite. 

Subsequent temperature increase has no effect on the permeability (Fig. 3a, No. 8 and 11). However, Sydansk (1980) observes 

both permeability reduction at room temperature and further reduction at 85˚C (No. 20). The difference can be expected to be 

due to the relative magnitude of the Stokes drag force of the fluid on the particles and the magnitude of the EDL repulsive 

force. The magnitude of the EDL force is dependent on both the negative surface charge of the particles, that becomes more 

negative with increasing temperature, and the range over which the charge acts, which increases as the ionic strength 

decreases. The effect of heating on mobilisation is expected to be greater in solutions with a low ionic strength. 

The literature data analysed do not show a robust correlation between the permeability reduction and the ionic strength of 

the solution. Tests 2 and 3 show a similar or greater effect of heating on permeability for solutions with an ionic strength of 1 

M than with distilled water in the same sample. Our test results also show a similar effect of heating in the tests with distilled 

water and the test with 0.34 M NaCl. Switching from distilled water to 0.34 M NaCl solution in our test resulted in a relatively 

small increase in permeability which is in general accordance with the reduction of the EDL repulsion causing less particles to 

be mobilized. Reduction of the ionic strength at room temperature in a kaolinite bearing sandstone, is reported to cause a sharp 

reduction in permeability, in the order of 90% or more, that is not or only marginally reversible when the strength is 

subsequently increased [e.g., Mungan (1965), Khilar and Folger (1984), Tchistiakov (2000)].  

Both in tests performed here and in the literature data, the permeability reduction caused by heating is for the greater part 

reversible, (Figs 3b and c, and 4). The difference magnitude of the permeability reduction due to heating, max 50%, and that 

due to the reduction of ionic strength, up to 99%, and the difference in the reversibilities of the two effects may indicate that a 

different mechanism causes the permeability change. Reducing the ionic strength may mobilise particles from the pore walls 

and cause them to aggregate in the pore throats forming firm clogs. Heating similarly causes mobilisation, but due to the 

change in the surface charge the particles are prevented from forming stable aggregates in the pore throats, instead forming a 

suspension with a higher viscosity than water. This results in an apparent reduction of the permeability that is less than when 

the pores are clogged. The heterogeneous surface charge on kaolinite particles  smaller reduction of permeability. The increase 

of the temperature increases the viscosity of the solution and thereby the Stokes drag force on the mobilized particles. This 

may remove them  

 

 Alternatively the reversibility when the sample is cooled may be d 
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The reversibility of the effect of heating on permeability is not explained by the EDL repulsive forces alone, as these are 

reduced with cooling which can be expected to result in particles being more firmly plugged in the pores. A possible cause of 

remobilization of plugged particles is the increase in fluid viscosity as the temperature is reduced. A reduction of the 

temperature or an increase of the flow rate increase the Stokes shear force on the particles, and remobilisation may account for 

a recovery of the permeability. In the experiments performed for this study at elevated temperatures increasing the flow rate 

results in a permeability increase. This is not addressed in the tests reviewed, however in tests by McKay and Brigham (1984), 

where the permeability is reduced steadily at room temperature, increasing the flow rate results in a sudden increase in 

permeability.  

Particles may also be released when silica cement dissolves (Somerton et al. 1981, Blair et al. 1984).  Significant 

permeability reduction after prolonged flow at elevated temperature is reported by Blair et al. (1984) for a sample that does not 

contain clay minerals (No. 4) where concentrations of silicium and calcium in the effluent are found to increase at elevated 

temperature. The effect of dissolved of silica on the viscosity of distilled water is measured by Stottlemyre (1981) and reported 

to be negligible for concentrations in the order of that measured in the effluent. 

 
Conclusion 

Heating causes mineral expansion and porosity reduction under confined conditions; within the temperature and stress 

ranges studied in this paper the effect of this on permeability is negligible. Permeability reductions are only found in tests 

where a non inert fluid is used. Colloidal contamination as a consequence of corrosion can cause significant permeability 

reductions at elevated temperature. In this review of published experimental data, particle migration is a probable mechanism 

contributing to permeability reduction for tests where permeability reduction results from heating. The lithologies where 

significant permeability reductions are observed contain kaolinite, with one exception where particle release can be related to 

silica cement dissolution. Heating has less effect in cores where the clay mineralogy has been altered by firing at temperatures 

over 600˚C, or in samples where no kaolinite minerals are present.  

Permeability reduction due to heating is observed when distilled water is the saturating fluid as well as when solutions of 

KCl, NaCl, CaCl2, or artificial brines resembling in situ fluid composition are used; however, not all tests with these fluids 

result in permeability reduction. The permeability change is found to be reversible to a large extent when the temperature is 

reduced.  

Based on this study, it is recommended that formations with a low kaolinite clay content are selected for heat storage. The 

composition of the injected fluid can affect both permeability and the effect of heating; the specific interaction between the 

fluid and the sample mineralogy requires laboratory testing. Finally the prevention of colloid contamination and corrosion at 

elevated temperature is an important requirement for successful heat storage.  

 
Nomenclature 
 e = Elementary charge, q, C 

 I = Ionic strength of electrolyte, n/L
3
, mol/L 

 k = Absolute permeability, L
2
, m

2 

 kB = Boltzmann’s constant, mL
2
/t

2
T, J/K 

 NA = Avogadro number, n
-1

, mol
-1 

 S = Specific surface area (grain surface area to total rock volume), L
2
/L

3
, m

2
/μm

3
 

 Ss = Specific surface area per unit solids volume (grain surface area to solids volume), L
2
/L

3
, m

2
/μm

3
 

 Sp = Specific surface area per unit pore volume (grain surface area to pore volume), L
2
/L

3
, m

2
/μm

3 

 α = Linear thermal expansion coefficient, T
-1

,  
o
C

-1
  

 εo = Permittivity of vacuum, q2t2/mL3 , F/m 

 εr = Relative dielectric permittivity 

 κ
-1 

= Inverse Debye parameter, L, m 

 φ = Porosity 

 

SI-metric conversion factors 
 

o
F × (

o
F-32)/18  = 

o
C  

 ft × 3.048* E-01 = m 

 psi × 6.894 757 E+00 = kPa 
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 Table 1: Overview of the literature data reviewed. Error margins for permeability measurements are 
those reported, or they are estimated from scatter in the reported data. Where neither is available, an error 
margin of 10%, indicated in italic, is assumed. Results in bold indicate that permeability reductions are 
reported to result from contamination by colloidal particles that do not originate in the core. 
* porosity not reported for the sample but assumed from other sources 
No. Authors Strati- 

graphic 
Unit 

Φ k, 
md 
(error 
margin) 

Clay 
content 
Mineralogy 

Fluid Temperature, 
°C 

Confining 
Stress/ 
Pore 
pressure, 
MPa 

Permeablity 
ratio 
kT high/kT low 

1 Aruna 
(1976) 

Massilon  
Sandstone 
Fired 
(300°C) 

0.22 
 

i) 585  
ii)  866 
iii) 923 
(±10%) 

Low clay 
content 
 
Kaolinite 

i) distilled 
water 
ii) mineral 
oil 
iii) N2 gas  

i) 24-149 
ii) 20-121 
iii) 20-121 

13.9/ 
1.4 

i) 0.52 
ii) 0.92 
iii)1.00 
 

2 Baudracco 
and 
Aoubouazza 
(1995) 

Berea 
Sandstone 

0.20 3.9 
(±10%) 

8% 
 
Mainly 
kaolinite 

i) distilled 

water 

ii) 1M 

NaCl 

iii) 0.4 M 

CaCl2 

20-90 0.2/ 
0.1 
 

i)   0.75 
ii)  0.70 
iii) 0.55 

3 Baudracco 
and 
Aoubouazza 
(1995) 

Vosges 
Sandstone 
 

0.20 10.2 
(±10%) 

4% 
 
Mainly 
kaolinite and 
illite, 0.5% 
smectite  

i) distilled 

water 

ii) 1M 

NaCl 

iii) 0.4M 

CaCl2 

20-90 0.2/ 
0.1 
 

i)   0.55 
ii)  0.38 
iii) 0.22 

4 Blair (1984) Ironton-
Galesville 
Sandstone 

- - Low clay 
content 

i) synthetic 

ground-

water  

20-150 6.2/ 
2.4 

0.20 

5 Casse and 
Ramey 
(1979) 

Berea  
Sandstone 
Fired  
(450°C) 

0.19* i) 130  
ii) 132 
iii) 106 
(±5%) 

- i) mineral 

oil 

ii) N2 gas 

iii) distilled 

water 

 

i)25-149 
ii) 20-160 
iii) 26-146 

13.8/ 
1.4 

i)  1.00 
ii) 1.00 
iii) 0.56 

6 Casse and 
Ramey 
(1979) 

Boise 
Sandstone 
 Fired 
(450°C) 

0.28*  i)  2063 
ii) 1930 
(±5%) 

- i) distilled 

water 

ii) mineral 

oil 

 

21- 153 13.8/ 
1.4 

i)  0.65 
ii) 1.00 

7 Casse and 
Ramey 
(1979) 

Boise  
Sandstone  
fired  
(760°C) 

28* 1852 
(±5%) 

- distilled 

water 

20-100 13.8/ 
1.4 

95 

8 Gobran et 
al. (1987) 

Berea 
Sandstone 

0.19* 138 
(±5%) 

- distilled 
water 

38-149 13.8/ 
1.4 

1.00 

9 Jing et al. 
(1992) 

Millstone 
Grit Series 
Sandstone 

0.13 6.5  
(±5%) 

5% Mica  0.86 M 
NaCl 

23-93 13.8/ 
1.4 

0.76 
 

10 Jing et al. 
(1992) 

Upper Coal 
Measures 
Sandstone 

0.17 4.7 
 (±5%) 

5% Clay 
minerals 

0.86 M 
NaCl 

23-93 13.8/ 
1.4 

0.80 
 

11 McKay and 
Brigham 
(1984) 

Fontaine-
bleau 
Sandstone 

0.11 260  
(±5%) 

Low clay 
content 
 
Kaolinite 
 

distilled 
water 

25-149 13.8/ 
1.4 

0.97 

12 Milsch et al. 
(2009) 

Rotliegend 
Sandstone 

0.11 200  
(±0.36) 

<10% clay 
 
 Illite, 
chlorite  

synthetic 
formation 
brine 

150 50.0/ 
5.0 

1.00 
(k at room 
temp. not 
reported) 

13 Piwinskii Kayenta - 50 - i) synthetic 100  0.02 



SPE 154489  11 

and 
Netherton 
(1977) 
 

Sandstone 
 

 brine 
unfiltered 
 

 
 

(k reported as 
function of flow 
volume) 

14 Potter et al. 
(1981) 

St. Peters 
Sandstone 

- i) 554  
ii) 1071 
(±5%) 

<1% clay i)+ii) 
distilled 
water w. 
colloids 
iii) distilled 
water 

i) 25 
ii) 100  
iii) 100 

20.0/ 
2.5 

i) 1.00 
ii) 0.65  
iii) 1.00 
(k reported as 
function of flow 
volume) 

15 Schembre 
and Kovscek 
(2004) 

Berea 
Sandstone 
Fired 
(temp ?) 

0.19* 100-250 -  0.05 M 
NaCl  

20-180 1.7-2.8/ 
- 
 

0.95 

16 Schembre 
and Kovscek 
(2004) 

Berea 
Sandstone 

0.19* 100-250 
 

- 0.01 M 
NaCl 
 (pH 7) 

20-120 1.7-2.8/ 
- 
 

 0.01 
 

17 Somerton 
and Mathur 
(1976) 

Berea 
Sandstone 

0.19* 397 
(±10%) 

- i)  distilled 
water 
ii) switch 
distilled 
water to 
0.04 M 
KCl  

i) 5-165 
ii) 190  

13.9/ 
1.4 
 

i) 0.59 
ii) ksalt/kwater 0.53  

18 Somerton 
(1992) 

Berea 
Sandstone 

0.19* - - i) 0.08 M 
KCl   
ii) 0.08 M 
KCl  
iii) 0.08 M 
KCl  
 

i) 27-156 
ii) 27-156 
iii) 20-160  
 

i) 6.9/ 1.4 
ii) 3.5/1.4 
iii) 13.4/1.4 

i) 0.54 
ii) 0.76 
iii)  0.77 

19 Stottlemyre 
(1981) 

Massilon 
Sandstone 

0.23 
 

i) 375 
ii) 300 
ii) 260  
(±10%) 

~ 10% clay 
 
 Kaolinite 

i)+ii) 
distilled 
water w. 
colloids 
iii) distilled 
water 

i) 25 
ii) 25-150 
iii) 25-150 
 

15.0/ 
6.0 
 

i) 0.92 
ii) 0.30 
iii) 1.03 

20 Sydansk 
(1980) 

Berea  
Sandstone 
Fired 
(450°C) 

0.19* - - i)+iii)  

distilled 

water 

ii)+iv) 

0.32M 

NaCl 

i) +ii) 22 

iii)+iv) 85 

- i)  0.74 
ii) 0.96 
iii) 0.19 
iv) 0.92 

21 Sydansk 
(1980) 

Berea 
Sandstone 
Fired 
(1000°C) 

0.19* - - i)+iii)  

distilled 

water 

ii)+iv) 

0.32M 

NaCl 

i) +ii) 22 

iii)+iv) 85. 

- i)  0.79 
ii) 0.94 
iii) 0.60 
iv) 0.98 

22 Wei et al. 
(1986) ; 
Morrow et 
al. (1983) 

Old Man 
Mountain 
Sandstone 

0.14 3.21 
(±5%) 

5-10% clay 
 
Kaolinite 

i)  0.79 M 

KNO3 

ii)  N2 gas 

i) 18-68 
ii) 19-96 

6.9/ 
- 

i)   1.00 
ii)  1.00 
 

 

23 Wei et al. 
(1986) ; 
Morrow et 
al. (1983) 

CIGE 
Sandstone 

0.12 0.41 
(±5%) 

5-10%  clay 
 
Kaolinite 

i)  0.79 M 

KNO3 

ii)  N2 gas 

i) 18-71 
ii) 19-93 

6.9/ 
- 

i)   1.00 
ii)  1.00 

 

24 Weinbrandt 
and Ramey 
(1975) 

Berea  
Sandstone 
Fired 
(450°C) 

0.19 106 
(±5%) 

- distilled 
water 

26-149 13.8/ 
1.4 

0.61 

25 
 

Weinbrandt 
and Ramey 
(1975) 

Boise 
Sandstone 
Fired 
(450°C) 

0.28 1970 
(±5%) 

- distilled 
water 

27-79 13.8/ 
1.4 

0.49 

 



PROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering 
Stanford University, Stanford, California, January 30 - February 1, 2012 
SGP-TR-194 
 

 
 

THERMALLY INDUCED PERMEABILITY REDUCTION DUE TO PARTICLE MIGRATION 
IN SANDSTONES: THE EFFECT OF TEMPERATURE ON KAOLINITE MOBILISATION 

AND AGGREGATION.  
Esther Rosenbrand*, Ida Lykke Fabricius*, Hao Yuan

+
 

 
*Department of Civil Engineering 

+
Department of Chemical Engineering 

Center for Energy Resources Engineering 
Technical University of Denmark 

Brovej, Building 119 
Kgs. Lyngby, 2800, Denmark 

e-mail: esro@byg.dtu.dk 
 

ABSTRACT 

The seasonal imbalance in supply and demand of 
renewable energy requires seasonal storage, which 
potentially may be achieved by hot water injection in 
geothermal aquifers to minimize heat loss by 
advection. A reduction of porosity and permeability 
is a risk of heating the rock above the in-situ 
temperature. Published data indicate that the 
permeability reduction can be a consequence of the 
mobilisation of kaolinite particles. Particle 
mobilisation as a result of changes in physico-
chemical conditions is often addressed using the 
DLVO theory (Derjaguin and Landau, 1941; Verwey 
and Overbeek, 1948). Mobilisation occurs due to 
similar surface charges on kaolinite and quartz grains 
which causes a detachment force on the kaolinite 
particles. Permeability reduction as a result of 
mobilisation requires the released particles to be 
captured in the pore throats. Data indicate that the 
permeability reduction can be reversible, implying 
captured particles are remobilised when the 
temperature is reduced.  
This paper considers the effects of mineralogy and 
hydrodynamic forces on particle mobilisation and 
aggregation. The mineral surface charge originates 
from the interaction between the particles and the 
saturating fluid and is affected by both the fluid 
composition and the temperature. Kaolinite particles 
have a heterogeneous surface charge distribution that 
can play an important role in the particle aggregation 
in the pore throats, leading to permeability damage. 
The reduction of temperature causes an increase in 
the hydrodynamic force on the aggregated particles at 
pore throats. It can remobilise particles and lead to 
permeability recovery.   
We discuss the mineral structure of quartz and 
kaolinite and estimate the effects of heating on the 
surface charges using published data. The DLVO 
theory is used to model the interaction energy 
between quartz and kaolinite particles for different 

saturating fluids. The results are compared to the 
published data addressing the effect of temperature 
on permeability. This provides a qualitative 
explanation for the observed changes in permeability 
with temperature for the tests with distilled water.   

INTRODUCTION 

Renewable energy production results in excess heat 
production during the summer in Denmark. This can 
be used in the municipal district heating system in 
winter, provided seasonal storage is available. 
Injection of heated water into sandstone aquifers that 
are currently exploited for geothermal energy is a 
promising and potential storage method. The in-situ 
temperatures of 60-100˚C reduce heat loss from the 
water that is injected at temperatures in the range of 
150-200˚C.  
Permeability reduction during hot water injection in 
sandstones is reported in some cases. Possible causes 
include: mineral precipitation; pore volume reduction 
due to thermal expansion of the solid fraction or 
compaction due to an increase in the pore volume 
compressibility; clogging by colloidal contamination 
and mobilisation of clay particles. Experimental data 
often show a recovery of the permeability when the 
temperature is reduced, (Weinbrandt and Ramey, 
1975; Aruna, 1976; Casse and Ramey, 1979; 
Baudracco and Aoubouazza, 1995). An overview of 
published data by Rosenbrand and Fabricius (2012) 
indicates that the presence of kaolinite is the common 
factor in the experiments where permeability 
reduction is observed; when no kaolinite is present no 
permeability reduction is observed. However, there 
are tests where no permeability reduction occurs and 
kaolinite is present. This includes tests performed 
with distilled water and those with solutions with 
dissolved KCl or NaCl.  
The mobilisation of kaolinite particles may not affect 
the porosity but the transport of kaolinite particles 
from the surface of the grains to the pore throats, as 



illustrated in Figure 1, can cause a significant 
permeability reduction. 
 

  
Figure 1:  Left: kaolinite particles (black) initially 

present on the surface of quartz grains 
(gray). Right: mobilized particles 
aggregate and bridge pore throats. 

 
Kaolinite mobilisation due to the change in 
temperature, ionic strength, or pH can be predicted 
using the DLVO theory (Khilar and Folger, 1984; 
Schembre and Kovscek, 2005). The DLVO theory 
accounts for the interaction of van der Waals 
attraction and the electrical double layer (EDL) force 
between the charged quartz and kaolinite surfaces. 
The sign and the order of magnitude of the surface 
charge depend on interaction with water molecules 
that adsorb on the mineral surface. At pH 6 both 
quartz and kaolinite have negative charges which 
attract oppositely charged ions that form a diffuse 
layer on the surface. Together the adsorbed and 
diffuse layers compose what is known as the 
electrical double layer (EDL). The EDL force results 
from the interaction of the double layers of two 
particles and is repulsive for similarly charged 
particles. It can result in repulsion between the 
particles when the EDL force exceeds the van der 
Waals force.  
The kaolinite mineral consists of two different sheets 
that are bonded together (Grim, 1953). As a result, 
the surface charge is not uniformly distributed. In the 
solutions with a low pH, different sides of the 
mineral may have an opposite sign, resulting in 
flocculation of kaolinite suspensions (Wang and Siu, 
2006).  
When kaolinite particles are attached to the grain 
surface (Figure 1), heating can cause an increase of 
the EDL force between kaolinite and quartz resulting 
in the mobilisation of particles. Interaction between 
the suspended particles may cause the formation of a 
large aggregate that bridges the pore throat (Figure 
1). The stability of the bridges is reduced at higher 
flow velocities due to larger hydrodynamic forces 
(Sen and Khilar, 2006). At constant flow velocity, the 
hydrodynamic forces may also be increased as a 
function of the fluid viscosity which increases when 
temperature is reduced. Together with the reduced 
repulsion from the quartz surface, the above 
mechanism can be a reason that cooling can recover 
the permeability.  

To understand the effects of the temperature on the 
mobilisation and the aggregation of particles, we 
consider the nature of the surface charge on kaolinite 
and quartz, and use the DLVO theory to estimate the 
effects of temperature on the EDL interaction 
between particles. Some of the published 
experimental results using different solutions and 
flow rates are compared to examine whether the 
observed permeability changes can be explained in 
the context of particle mobilisation and bridging. Due 
to the large number of parameters that affect these 
forces and the uncertainties of quantifications, the 
available data are insufficient to verify this 
mechanism.  

SURFACE CHARGE ON QUARTZ AND 
KAOLINITE 

Quartz (SiO2) is built up of silica tetrahedra that 
consist of one silicium atom bonded to 4 oxygen

 

atoms. Each oxygen
 
atom is shared by two tetrahedra. 

On the mineral surface bonds are broken, which 
results in reactive sites. These interact with water 
molecules to form silanol groups that gain or lose H

+
 

dependent on the solution pH as shown in Eq. 1 
(Lorne et al., 1999).  
 

2

Si OH Si O H

Si OH H Si OH

 

 

  

  
  Eq. 1 

 
When the solution contains additional cations, M

+
 or 

anions, A
-
, these may react with the surface sites as 

shown in Eq. 2 (Lorne et al. 1999).  
 

2

Si OH M Si OM H

Si OH A Si A H O

 



   

   
          Eq. 2 

 
The overall surface charge is determined by the 
number of positive and negative adsorbed ions. The 
pH at which the surface charge is zero is referred to 
as the point of zero charge, PZC, (Rudzinski et al., 
1999).  
The kaolinite mineral (Al2Si2O5(OH4)) consists of a 
silica sheet bonded to an alumina sheet as illustrated 
in Figure 2. In the silica sheet, silica tetrahedra are 
arranged in a hexagonal pattern so that 3 oxygens are 
shared between tetrahedra, and the remaining 
oxygens point in the same direction (Figure 2, top). 
These oxygens are bonded to two aluminum atoms 
from the alumina sheet (Figure 2, bottom). It consists 
of alumina octahedra where an aluminum atom is 
bonded to 4 hydroxyl groups and to two oxygens 
from the tetrahedral sheet. The hydroxyl groups in 
the alumina sheet are shared between two octahedra.  
It has often been assumed only the broken bonds on 
the edges result in surface sites that interact with 
water molecules and have a pH dependent surface 
charge. The faces on the other hand are assumed to 



be charged due to ion substitution in the silica and 
alumina sheets. However, the partially ionic nature of 
the covalent bonds in the silica tetrahedra and 
alumina octahedra leaves the surface groups on the 
faces polarized, which can allow ion adsorption. Data 
from Huertas et al. (1998), Gan and Franks (2006), 
and Gupta and Miller (2010), show that the face 
charges are affected by the pH which indicates ion 
adsorption to surface sites. Sites associated with Al 
atoms have a different reaction constant than those 
associated to Si atoms, and those associated to broken 
bonds will differ from those on the faces. Therefore a 
distinct surface charge is expected on the two faces 
and on the edges of the kaolinite.  
 

 
 

 
Figure 2:  Representation of the kaolinite structure, 
 Top: 001 face of the tetrahedral silica 

sheet; silica tetrahedra form a hexagonal 
pattern with oxygens on the tips of the 
tetrahedra all pointing below the plane 
(represented by light blue circles).  

 Bottom: side view of kaolinite mineral 
indicated by arrow. Oxygen atoms below 
the silicium atoms are shared with 
aluminum atoms in the octahedral sheet. 
These are bonded to hydroxyl groups.   

 
Different methods exist to approximate the surface 
charge, Ψ. Potentiometric titrations are used to 
determine the number of protons adsorbed to the 
mineral surface. Electro-kinetic methods are used to 
determine the charge on the interface between 
immobilized ions and mobile ions in the EDL, the 
zeta potential, ζ. The location in the EDL of this 
interface is a matter of debate (Elimelech et al., 
1995), and due to shielding by adsorbed ions the 
magnitude of ζ will be smaller than the surface 

potential. Experimentally, the absolute magnitude of 
ζ is found to decline with increasing ionic strength 
(Adekola et al. 2010). However, ζ is often used to 
approximate Ψ due to a lack of alternative data. 
For kaolinite particles, these methods yield a charge 
that is averaged over the entire particle. Atomic force 
microscopy (AFM) allows the determination of the 
surface charge on the individual faces of the kaolinite 
mineral. The interaction force between a surface and 
a probe with a known surface charge is measured, 
and DLVO theory is used to derive the surface charge 
of the mineral. Gupta and Miller (2010) measure the 
charge on the alumina and silica face of well 
crystallized kaolinite. To determine the edge charge, 
Gupta et al. (2011) compare the face surface charges 
from AFM data to data from potentiometric titration. 
At pH 6, this results in a surface charge density of the 
edges that is one order of magnitude greater than that 
on the faces. The relative contribution of the faces 
and edges to the average surface charge of the 
particle depends on the ratio of the edge to face 
surface areas.  
PZC data at ambient temperature for quartz and 
kaolinite from different studies is shown in Table 1.   
 
Table 1: PZC values of quartz surface and average 

on kaolinite particle from Kosmulski 
(2006). Data for alumina and silica faces 
and edges of kaolinite from Gupta et al. 
(2011). 

quartz kaolinite  
average 

alumina 
face 

silica 
face 

kaolinite 
edges 

<3 <2.4 - 6 6-8 <4 4-6 
 
The PZC for the average charge on kaolinite particles 
shows significant variation. In addition to the size 
and shape of the particles, ion substitution and the 
degree of crystallinity affect the relative numbers of 
face and edge surface sites. Du et al. (2010) observe 
stepped faces on kaolinite with a poor crystallinity, 
increasing the relative number of broken bonds and 
reactive sites.  

Effects of temperature on surface charge 

The temperature affects the equilibrium constants for 
the reactions on the surface sites (Brady et al. 1996), 
and thereby the surface charge. The effect of 
temperature on the surface potential, Ψ, resulting 
from protonation of an oxide surface has been 
estimated using Eq. 3 by Rudzinksi (1999) and by 
Schembre and Kovscek (2005). e is the elementary 
charge, kB is the Boltzmann constant and T the 
temperature (K).  
 

 2.303 Bk T
PZC pH

e
                           Eq. 3 

 
Eq. 3 is based on the Nernst law for the surface 
charge in the presence of potential determining ions. 



The presence of other ions that interact with the 
surface sites can affect both the surface charge and 
the effect of temperature on this. The change of the Ψ 
as a function of T is greater when the difference 
between the PZC and the solution pH is greater, 
hence injection of fluid with a pH of 6 or higher can 
be expected to cause a stronger reduction of the Ψ for 
quartz than for kaolinite.  
Based on a review of published experimental data 
Kosmulski (2003) suggests that the PZC is reduced 
when the temperature is raised. Considering that the 
PZC for the alumina face of kaolinite reported by 
Gupta and Miller (2010) is between pH 6 and 8, 
heating in a solution of pH 6 may result in the Ψ 
switching from positive to negative. The magnitude 
of the Ψ of the alumina face will change little due to 
the small value of (PZC-pH). 
There are relatively few experimental studies 
addressing the effect of temperature on the surface 
charge of quartz and kaolinite. Figure 3 shows 
streaming potential data for the ζ of quartz and 
kaolinite in solutions with a pH 4 or higher. Both 
minerals have an average negative ζ in this pH range, 
and heating causes a reduction of the ζ. The 
differences between the measured values can be 
attributed to the differences between the ionic 
strengths and ionic species in the solutions used. A 
difference between the crystallinity of the samples 
tested, and hence the surface site density, can also 
contribute to the difference in the data. Both datasets 
show the ζ of quartz is reduced to a greater extent by 
heating at pH 8 than at pH 6, as predicted by Eq. 3. 
 

 
Figure  3:  Data of ζ as function of temperature for 

kaolinite and quartz. Red data Rodríguez 
and Araujo (2006); blue data 
Ramachandran and Somasundaran 
(1986). 

 
The effect of heating on the surface potential in a 
solution with pH 6 is estimated in Figure 4. This 
shows ζ data for quartz and kaolinite and Ψ data for 
the two sides of kaolinite and gibbsite (a mineral with 
the same structure as the alumina sheet), as well as 
the temperature dependency of these estimated from 
Figure 3 and Eq. 3. Due to the small difference 
between the PZC of alumina and the pH, the Ψ is 

expected to change little as a consequence of heating. 
The Ψ of the kaolinite silica face is in the same range 
as the ζ of the quartz mineral surface. The ζ data may 
under-estimate the Ψ due shielding by adsorbed ions, 
however, the lack of alternative data justifies the use 
of the ζ for quartz.  
 

 
Figure 4: Data of Ψ (crosses) and ζ (closed 

symbols) and estimated Ψ as a function of 
temperature for: Alumina face of kaolinite 
(gray); average for kaolinite particle 
(blue) and the quartz mineral surface 
(purple).  

DLVO INTERACTION ENERGY 

The DLVO theory is used to predict the interaction 
energy between the quartz grains and the kaolinite 
particles. The interaction energy results from the 
summation of the EDL interaction and the van der 
Waals interaction energies (Eq. 4).  
 

 T vdW EDL       Eq. 4 

 
The van der Waals interaction energy, ΦvdW, results 
from spontaneous magnetic and electrical 
polarization due to the proximity of particles and acts 
over a short separation distance. For the interaction 
between a flat plate and a sphere of radius a1 
separated at a distance h this is calculated by Eq. 5 
(Bedrikovetsky et al. 2010). 
 

1 1

132
vdW

11 1

2* 1
A

Φ ln
6h 2* 2

a a

h h
aa a

hh h

            
        

      Eq. 5 

 
A123 is the Hamaker constant for the interaction 
between two different materials that have Hamaker 
constants A11 and A22 in a medium with Hamaker 
constant A33 as given in Eq. 6 (Visser, 1972).   



 

   132 11 33 22 33A A A A A     Eq. 6  

 
Values of 8.86×10

-20 
J for silica, 6.5×10

-20 
J for quartz 

1.52×10
-19 

J for alumina and 3.70×10
-20 

J for water 
from Bergstrøm (1997) are used. The Hamaker 
constant for a kaolinite particle is approximated as 
the geometric mean of the values for silica and 
alumina (1.16×10

-19
 J). These values are assumed to 

be constant with temperature as a first approximation.   
 
The surface charge on the minerals attracts ions with 
an opposite charge forming a diffuse layer on the 
particle surface. The Poisson-Boltzmann relation 
gives the variation of electrical potential with 
distance from the surface in the EDL, subject to the 
assumption that the surface charge is uniformly 
distributed on the mineral surface, the ions are point 
charges and the properties of the fluid are constant 
with distance from the surface (Elimelech et al., 
1995). The interaction energy, ΦEDL, due to the 
potential in the EDL on a quartz grain and that on a 
kaolinite particle is approximated by Eq. 7 
(Elimelech et al., 1995) for a spherical particle and a 
flat surface, 
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  Eq. 7 
 
where εrs is the relative permittivity of the solution ε0 
is the vacuum permittivity, and Ψ1 and Ψ2 are the 
surface charges on the quartz surface and the 
kaolinite respectively. The inverse Debye parameter, 
κ

-1
, characterizes the distance over which the surface 

charge is reduced to a value 1/e i.e. 1/2.72 (Lyklema, 
1995). Eq. 8 expresses κ

-1
 where I is the ionic 

strength and NA is Avogadro’s number. 
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                                          Eq. 8  

It assumes that the surface potential on the kaolinite 
particles is uniformly distributed. 
The total interaction energy, ΦT, between a kaolinite 
particle and the quartz surface is computed using the 
surface potentials given in Table 2. The values for 
kaolinite represent the average charge on the 
kaolinite particles. Figure 5 shows the interaction 
energy between quartz and kaolinite scaled by kBT, a 

measure of the thermal energy. Negative interaction 
energy represents attraction.  
 
Table 2:  Ψ values estimated from data in Figures 3 

and 4.  Values at 150˚C have low 
accuracy due to extrapolation beyond the 
data range. 

 Ψ,  mV 
(25˚C) 

Ψ,  mV 
(150˚C) 

Quartz grain -70 -180 
Kaolinite average -10 -80 
 
 

 

 
Figure 5: Interaction energy, ΦT, between quartz 

surface and a spherical kaolinite particle 
(ai=0.5μm).  

At 25˚C the attractive forces between the quartz 
surface and the particles with the average kaolinite 
surface potential are dominant. Heating up to 150˚C 
changes the interaction energy into repulsion in the 
solutions with an ionic strength of 0.01 M.  
For separations smaller than 1 nm the van der Waals 
forces dominate. However, the fluid layer adsorbed to 
the mineral surface can be expected to prevent the 
particle from approaching the surface this closely 
(Khilar and Folger, 1984). The interaction energy at 
150˚C shows a secondary energy minimum around 
12 nm separation. It is suggested that particles may 
be captured via the minimum provided that the 
interaction energy is sufficiently attractive (Redman 
et al., 2004). Hydrodynamic forces can be expected 



to be more significant than DLVO forces at the 
distance.   
When the ionic strength of the solution is 1 M, the 
interaction energy between the quartz and the 
kaolinite particles is negative at both 25˚C and 
150˚C. The high ionic strength reduces the range of 
the EDL force so that van der Waals attraction 
dominates.  

HYDRODYNAMIC FORCES 

The hydrodynamic force that the fluid exerts on a 
particle depends on both the fluid velocity and the 
fluid viscosity. The flow velocity field in pores is 
non-uniform. Assuming laminar flow and a non slip 
condition on the solid surface, the flow velocity can 
be expected to increase with the distance from the 
quartz grains towards the center of the pores. 
Additionally, the pore geometry can be expected to 
result in flow channels as well as in pockets with low 
flow velocities (Bear, 1972). A schematic 
representation of expected flow velocity variations is 
shown in Figure 6.  
 

  
 

Figure 6:  Schematic representation of flow from 
left to right through a sandstone sample. 
The arrow length represents fluid velocity. 
The highest velocities are expected in the 
center of channels parallel to the flow 
direction. 

 
The velocity field in Figure 6 implies the 
hydrodynamic force on particle aggregates bridging 
the pore throats is greater than that on particles on the 
grain surface or in pockets with little flow.  
Figure 7, computed using the program provided by  
Mao (Mao and Duan, 2009), shows the reduction in 
viscosity of distilled water with temperature. Heating 
from 25˚C to 150˚C causes a more than 4 fold 
reduction in the viscosity.  
 

 
 

Figure 7: The viscosity of distilled water decreases 
non- linearly as a function of temperature.  

DISCUSSION 

The kaolinite mobilisation with increasing 
temperature can be attributed to an increase in the 
absolute magnitude of the surface potential of both 
kaolinite and quartz. Different sides of the kaolinite 
mineral have a different surface charge. Gupta et al. 
(2011) show that despite the larger surface area of the 
faces, the surface potential of the edges is dominant 
in determining the average surface potential of the 
kaolinite particle due to the higher charge density on 
the edges. The average surface potential for kaolinite 
is used to approximate the EDL interaction energy 
between quartz grains and the kaolinite particles at 
25˚C and 150˚C. This results in repulsion of the 
particles from the grain surface in solutions with low 
ionic strength, while it is insensitive to the 
temperature at high ionic strength due to increased 
shielding of the surface potential.   
The smaller absolute magnitude of the surface 
potential on the faces compared to the edges of 
kaolinite can be expected to influence the interactions 
between suspended particles. The change in the 
surface potential of the alumina face due to heating is 
expected to be smaller than that of the edges or that 
of the quartz grains. It may cause an attractive total 
interaction energy between kaolinite particles that 
have been mobilized due to heating.  
The flowing fluid carries and concentrates particles in 
the pore throats, where they can aggregate and form 
bridges, resulting in a permeability reduction. A 
reduction of the temperature reduces the absolute 
magnitude of the surface charges and the repulsive 
interaction energy. It tends to make bridged particles 
more stable. The effect can be offset by the increase 
in the hydrodynamic force with cooling which has a 
greater effect in the flow channels than on the grain 
surfaces. The dislodged particles may be recaptured 
via attachment on the surface of the sand grains 
downstream.  
 The mechanism correlating the temperature change 
and the permeability change requires the domination 
of both the electrostatic forces and the hydrodynamic 
drag on the particles. When the flow rate is low, 
cooling may not cause a remobilisation of aggregated 
grains. When it is high, heating may not cause 
additional mobilisation.  
Quantification of the DLVO interaction energies and 
the hydrodynamic forces is complicated by the 
number of influential parameters.  To the best of our 
knowledge, the effect of the heterogeneous surface 
charge distribution of kaolinite on the structure of the 
EDL is uncertain. The values assumed for the surface 
charges and the Hamaker constants, particularly at 
elevated temperature are based on the limited data. 
The characteristics of the porous medium, including 
i.e., the pore geometry, the mineral content, the 
crystallisation and the surface roughness, affect both 
the interaction energy and the hydrodynamic forces. 



The computed forces thus serve only for an indicative 
comparison of the interaction energies. 
The above described mechanism is in agreement with 
the observations of the permeability reductions in 
kaolinite bearing sandstones reported by Weinbrandt 
and Ramey (1975), Somerton and Mathur (1976), 
Casse and Ramey (1979), Sydansk (1980), Jing et al. 
(1992), Baudracco and Aoubouazza (1995), and 
Schembre and Kovscek (2005). The temperature is 
not subsequently reduced in all studies, but where it 
is the case the permeability reduction is found to be 
largely reversible. When the temperature is raised in 
successive increments the permeability also reduces 
in steps. Each temperature step increases the EDL 
repulsive force, provoking fines mobilisation from 
the grain surface, and reduces the fluid viscosity, 
reducing the destabilizing hydrodynamic force on the 
aggregated particles.  
In a number of experiments kaolinite mobilisation 
causes permeability reduction during injection at 
room temperature (Sydansk, 1980; McKay and 
Brigham, 1984; Gobran et al., 1987). Heating has a 
negligible effect in some cases (McKay and Brigham, 
1984; Gobran et al., 1987). In the tests by Sydansk 
(1980), permeability reduction is observed during 
injection at room temperature and heating causes an 
additional permeability reduction. The interstitial 
flow velocity in the first two tests is higher than in a 
number of tests where reversible permeability 
reduction occurs as a consequence of heating; 
however, the number of publications with reported 
flow velocity is limited. To examine whether the 
interaction of hydrodynamic and EDL forces is as 
proposed, experiments where permeability is 
measured as a function of temperature for different 
flow velocities are needed. 
A high ionic strength may result in the reduction of 
the thickness of EDL and the repulsive EDL force 
(Figure 5). DLVO theory is used to explain particle 
mobilisation caused by a reduction of the ionic 
strength of the saturating solution in a number of 
studies, e.g., Khilar and Folger (1984). Experiments 
by Sydansk (1980) as well as by Schembre and 
Kovscek (2005) with NaCl show the effect of 
temperature on permeability is greater in solutions 
with a lower ionic strength. No permeability 
reduction is observed in tests with 0.79 M KCl in two 
different kaolinite bearing sandstones (Wei et al., 
1986); on the other hand, tests with a 0.86 M solution 
of NaCl (Jing et al., 1992), as well as those with 1.0 
M NaCl and CaCl2 (Baudracco and Aoubouazza, 
1995) do show permeability reduction with 
temperature, which is reversible with cooling in the 
latter two cases.  
Besides the flow velocity differences, there may be 
other reasons why the temperature increase causes 
the permeability reduction in some tests with a high 
ionic strength but not in others. The size and charge 
of dissolved ions affects the strength of their 
interaction with the mineral surface (Khilar and 

Folger, 1984) and thereby the surface charge and 
EDL force. The surface charge of other rock forming 
minerals, such as feldspars, can be expected to differ 
from that of quartz. The clay content and the 
distribution of clay in the sandstone pores affect the 
amount of particle mobilisation and bridging. Based 
on scanning electron microscopy images, Tchistiakov 
(2000) suggests that kaolinite particles dispersed 
throughout the sandstone are mobilized to a greater 
extent than the kaolinite present in relatively isolated 
pockets that can result from the weathering of a 
feldspar grain. Furthermore, the possibility that the 
permeability change is due to a different mechanism 
is not ruled out in the tests compared here. Cement 
dissolution can release particles causing clogging 
(Blair et al. 1984). Experimental error, in particular 
contamination by colloidal particles released from the 
experimental equipment at elevated temperature, is 
detected in a number of experiments (Potter et al., 
1980; Stottlemyre, 1980) and not ruled out in other 
tests.  

CONCLUSION  

Kaolinite mobilisation is one of the mechanisms that 
can contribute to the permeability reduction in 
sandstones as a consequence of heating. The 
available data indicate that quartz and kaolinite have 
an average negative surface charge that becomes 
more negative due to heating. As a result, the 
repulsive interaction energy between the quartz 
grains and kaolinite particles is increased. Kaolinite 
is a sheet mineral consisting of two different sheets. 
It has a different surface charge on the two different 
faces as well as on the edges of the mineral. The 
interactions between different sides of the suspended 
kaolinite particles may promote particle aggregation 
and bridging in the pore throats which subsequently 
reduces the permeability of sandstones. The increase 
in the permeability at reduced temperatures can be 
attributed to the enhanced hydrodynamic force on the 
bridged particles and attachment of particles to the 
quartz grain surface. 
Due to the number of parameters affecting particle 
mobilisation and permeability reduction, comparison 
of published data is insufficient to verify the 
proposed mechanism. Further investigation under 
controlled conditions is required to verify the 
proposed mechanism of particle induced permeability 
reduction.  
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ABSTRACT 

The effect of temperature and salinity on sandstone 
permeability is critical to the feasibility of heat 
storage in geothermal aquifers. Permeability 
reduction has been observed in Berea sandstone when 
the salinity of the pore water is reduced as well as 
when the sample is heated. Several authors suggest 
that this effect is due to kaolinite clay mobilisation 
from the quartz grain surface; the mobilised particles 
subsequently plug the pore throats and reduce the 
permeability irreversibly. The expected hysteresis is 
observed when the salinity is reduced and increased; 
however, in contradiction with the throat plugging 
theory, the effect of heating is found to be reversible 
with cooling. In laboratory experiments we heated 
Berea sandstone from 20

o
C to 80

o
C and observed a 

reversible permeability reduction. The permeability 
of the heated samples increased at higher flow rates. 
We propose that in this case the mobilised kaolinite 
particles either remain suspended and thereby 
increase the fluid viscosity, or form porous 
aggregates that can be destabilized by hydrodynamic 
forces.  
To address how the pore scale distribution of 
kaolinite relates to the permeability of the entire 
sample, we relate permeability to the effective 
specific surface, Sp. The effective specific surface 
represents the average surface area that resists the 
flow through the sample of a volume of fluid. We 
propose that flow paths with a small Sp contribute 
more than proportionately to the total volume flux. 
Kaolinite mobilisation in pores with a small Sp diverts 
fluid flow through pores with a higher Sp, and thereby 
reduces permeability of the entire sample. 
In this paper, we use the DLVO theory to compare 
how temperature and salinity affect the surface 
interaction forces between quartz and kaolinite, as 
well as the interaction forces among kaolinite 
particles to evaluate whether heating can be expected 

to a) mobilise particles and b) result in kaolinite 
forming a suspension rather than plugging the pore 
throats.  

INTRODUCTION 

The permeability of a sandstone aquifer is critical to 
the successful extraction of water for geothermal 
energy production. Mineral-fluid interaction alters 
permeability when this causes dissolution or 
precipitation (Milsch et al. 2009), clay swelling, or 
clay mobilisation (Mungan, 1965; Gray and Rex, 
1966; Khilar and Fogler, 1983, 1984; Kia et al. 1987; 
Schembre and Kovscek, 2005). We address the 
mechanism by which kaolinite mobilisation affects 
the permeability of the Berea sandstone. Kaolinite is 
the dominant clay mineral in the Berea sandstone, 
and accounts for approximately 6% (Baudracco and 
Aoubouazza, 1995) to 9% of the solid mass (Shaw et 
al., 1991).  
Kaolinite particles are mobilised by an increase in the 
electrical double layer (EDL) repulsive force between 
quartz and kaolinite (Kia et al., 1987; Schembre and 
Kovscek, 2005). The EDL force acts between 
electrically charged surfaces. Kaolinite and quartz 
surfaces have broken bonds that interact with water 
molecules. The resulting surface groups have a 
charge that depends on their protonation. The 
equilibrium constants for the protonation reactions 
depend on both the pH and on the temperature (Brady 
et al., 1996). The surface charge attracts oppositely 
charged ions. These ions form the EDL on the 
surface that counters the surface charge. Inside the 
EDL the potential falls with distance from the 
surface. The distance over which the surface potential 
is reduced by a factor 1/e is given by the Debye 
length, which characterizes the thickness of the EDL 
(Lyklema et al., 1995). The concentration of counter-
ions at a given point inside the EDL depends on the 
surface potential and the ionic strength of the 
solution. As two surfaces with the same charge 
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approach, the overlap of their double layers causes a 
repulsive force between the EDLs (Israelachvili, 
2011). Reducing the ionic strength increases the EDL 
thickness and the magnitude of the EDL repulsion. 
Heating reduces the EDL thickness. However, data 
on the surface charge of kaolinite (Brady et al., 
1996), as well as data on the surface potential of both 
kaolinite and quartz show a significant increase in the 
magnitude of these with heating (Rodríguez and 
Araujo, 2006). This increase can offset the reduction 
of the EDL thickness, and can result in a net increase 
of the EDL repulsion (Khilar and Fogler, 1984; 
Schembre and Kovscek, 2005).  
According to the DLVO (Derjaguin and Landau, 
1941, 1993; Verwey and Overbeek, 1948) theory, the 
EDL repulsion is counteracted by van der Waals 
attraction. Changes in the ionic strength or 
temperature, in the 20

o
C to 80

o
C range, are assumed 

to have a negligible effect on the magnitude of the 
van der Waals attraction between mineral surfaces 
interacting across water or brine (Khilar and Fogler, 
1984; Schembre and Kovscek, 2005; Israelachvili, 
2011). When the EDL repulsion exceeds the van der 
Waals attraction, kaolinite particles are mobilised. 
Due to the different rates by which the magnitude of 
the EDL and the van der Waals force fall with 
separation between the surfaces, the net interaction 
energy typically shows an attractive primary energy 
minimum at short separations where van der Waals 
forces dominate (negative interaction energy 
represents attraction). At greater separation the EDL 
force causes a peak in the interaction energy 
(Israelachvili, 2011). The net interaction energy is 
considered to be repulsive when the peak is positive, 
even if there is attraction at smaller and larger 
separations (Khilar and Fogler, 1983, 1984; Kia et al. 
1987; Schembre and Kovscek, 2005).  
Currently it is assumed that the mobilised particles 
form plugs in the pore throats, resulting in a sharp 
drop in permeability (Mungan, 1965; Gray and Rex, 
1966, Khilar and Fogler, 1984; Schembre and 
Kovscek, 2005). Rosenbrand et al (submitted) found 
that reducing the ionic strength at 20

o
C causes a 

permeability reduction that is not reversed by 
increasing the ionic strength. This hysteresis is 
expected for plugged pores, and is also observed in 
the Berea sandstone by e.g., Mungan (1965) and by 
Khilar and Fogler (1984). The permeability only 
increases significantly when the flow direction was 
reversed both in our experiment and in tests by Khilar 
and Fogler (1983). Rosenbrand et al. (under review) 
found that heating the sandstone from 20

o
C to 80

o
C 

causes a smaller permeability reduction than reducing 
the ionic strength does, and that the effect of 
temperature is reversible with cooling. A reversible 
effect of temperature is also found by Aruna (1976), 
Baudracco and Aoubouazza (1995) and Cassé and 
Ramey (1979). This reversibility is not predicted by 
the particle plugging hypothesis. Furthermore, 
reversing the flow direction did not significantly 

affect permeability, but increasing the flow velocity 
improved permeability significantly.   
At elevated temperature, the permeability remained 
approximately constant as the ionic strength was 
reduced from 2.0M to 0.002 M NaCl and increased 
again (Rosenbrand et al., submitted). If heating only 
mobilised a fraction of the kaolinite, the reduction of 
the ionic strength would be expected to affect 
permeability in the heated samples by mobilising the 
remaining kaolinite. This suggests that the kaolinite 
is present as unstable aggregates or in suspension 
rather than as stable plugs in the pore throats.  
A more negative surface charge on the kaolinite at 
80

o
C, and thereby a higher EDL repulsion, could 

account for these observations. A higher EDL 
repulsive force among kaolinite particles may prevent 
mobilised kaolinite from forming stable aggregates. 
Individual particles may be small enough to pass 
through the pore constrictions, however, when the 
concentration of suspended particles is high, the 
particles can obstruct each others‟ passage through 
the pore and form particle bridges (McDowell-Boyer 
et al., 1986). Particle bridges can be destabilized by 
increasing the hydrodynamic drag forces (Sen and 
Khilar, 2006).  
Rather than being transported to the pore 
constrictions, the suspended kaolinite may alter the 
rheology of the pore fluid. Kaolinite suspensions 
behave as non-Newtonian fluids that only shear when 
a yield stress is exceeded (Johnson et al., 1998). Both 
unstable particle bridges as well as a non-Newtonian 
suspension can account for the increase in 
permeability with flow velocity observed in our 
experiments.  
The interaction forces between kaolinite particles are 
affected by the crystal shape of the kaolinite. 
Kaolinite particles are typically hexagonal platelets, 
made up of layers with one silica sheet bonded to an 
alumina sheet. A particle consists of a number of 
such layers that are connected by hydrogen bonds 
between adjacent alumina and silica sheets. The 
particle thereby has one silica face and one alumina 
face, and the edges have broken bonds where the 
mineral structure is interrupted. This results in 
different surface charges on the two faces and on the 
edges of the particle (Brady et al., 1996) and hence in 
different EDL interaction forces. Kaolinite forms 
compact stacked aggregates when there is attraction 
among the faces, and larger „card house‟ structures 
when there is attraction between the edges and the 
faces (Schofield and Samson 1954, Wang and Siu, 
2006; Gupta et al., 2011). In the untested Berea 
sandstone, compact stacks of kaolinite particles are 
observed by Shaw et al. (1991). If these reorient to 
card houses, this reduces porosity and increases the 
effective surface area in contact with the fluid.  
In this paper we show how the distribution of 
kaolinite on the pore scale affects the effective 
specific surface that resists fluid flow. We use the 
Kozeny (1927) equation to relate the effective 



specific surface per unit pore volume, Sp, to the 
sample permeability. We then use the DLVO theory 
to compare the effects of ionic strength and of 
temperature on the interaction energy between 
charged surfaces in order to evaluate the likelihood of 
the different scenarios for the kaolinite distribution. 

METHOD 

Effective specific surface 

Kozeny‟s (1927) equation (Eq. 1) relates the effective 
specific surface per unit of rock volume, S, to the 
porosity, φ, and permeability, k, for a homogeneous 
porous medium. Following Mortensen et al. (1998) 
the parameter c is taken to depend on the porosity. 
The porosity can be assumed constant during 
experiments where the sample is allowed to expand 
whilst it is heated. The permeability change is due to 
change in the effective specific surface area.  
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  (Eq. 1) 
 
The ratio Sp=S/φ, is the effective specific surface area 
per unit of pore volume. Sp is inversely proportional 
to the average pore diameter. The permeability is 
determined using Darcy‟s law (Eq.2) from the 
volumetric flow rate, Q, through the sample. Here, A 
is the cross sectional area, ΔP is the pressure 
difference over the sample length, L, and μ is the 
fluid viscosity.  
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  Eq. (2) 

  
 
The fluid on the solid surface is stationary according 
to Poiseuille‟s law. Therefore we expect a higher 
flow rate in pores with a lower Sp. Thereby, the pores 
with a smaller specific surface can be expected to 
contribute more to the total flow rate, and the average 
permeability is expected to be dominated by the flow 
through pores with a smaller specific surface.  
Kaolinite mobilisation can directly increase the 
effective surface area in a pore, when compact 
aggregates are dispersed. It can also plug a pore with 
a low Sp, and divert flow through pores with a larger 
Sp. In both cases the effective specific surface of the 
sample is increased, and the permeability in Eq. 1 is 
reduced. 

Kaolinite distribution 

Kaolinite in the Berea sandstone is often observed in 
locally high concentrations (Schembre and Kovscek, 
2005). The kaolinite particles are present in compact 
stacks (Shaw et al., 1991) and present a relatively 

small effective surface area. This is the initial 
condition in the permeability experiments at 20

o
C 

and high ionic strength. The net interaction force 
among kaolinite particles, as well as between quartz 
and kaolinite can be expected to be attractive in these 
conditions.  
Both reducing the ionic strength at 20

o
C, and heating 

to 80
o
C reduce the permeability, indicating kaolinite 

is mobilised. This is generally attributed to repulsion 
between the quartz and kaolinite surfaces. (Khilar 
and Fogler, 1983, 1984; Schembre and Kovscek, 
2005; Rosenbrand et al., under review).  
At 20

o
C, mobilised kaolinite is perceived to form 

aggregates that plug the pore throats (e.g., Khilar and 
Fogler, 1984). The mobilised kaolinite particles may 
flocculate and form aggregates that are too large to 
pass through the pore throats as shown in Scenario 1 
(Figure 1a). Flocculation can occur even if there is 
repulsive interaction energy at a given separation 
between surfaces subject to the conditions that the 
repulsive energy is small relative to the thermal 
energy  and that there is attraction for smaller 
separations (Hogg et al. 1966). In our case, due to 
flow, collisions between particles may have sufficient 
energy to overcome the repulsive energy barrier and 
attach in the energy minimum at close separation.  
Alternatively, if the suspended particles repel each 
other strongly enough to prevent aggregation, they 
may form particle bridges in the pore constrictions as 
shown in Scenario 2 (Figure 1b). The key difference 
between these two scenarios is the stability of the 
particle aggregates. The relatively high repulsion 
among particles in Scenario 2 implies that the particle 
bridges can be destabilised and removed from the 
pore constriction by an increase in hydrodynamic 
forces (Sen and Khilar, 2006), whereas stable 
aggregates that are strained in the pore constriction 
are not expected to be remobilised (Bedrikovetsky et 
al., 2012). In Scenarios 1 and 2, the Sp increases 
primarily due to a diversion of fluid flow through 
pores with a higher Sp. 
Scenario 3 (Figure 1c) shows kaolinite forming the 
voluminous card-house aggregates described by 
Schofield and Samson (1954) and Wang and Siu 
(2006). These form when there is attraction between 
kaolinite edges and faces, but repulsion among the 
kaolinite faces. The hydrodynamic forces are 
insufficient to overcome the gravitational forces on 
these larger aggregates, and/or the attractive forces 
tying the aggregate to the quartz, and they are not 
transported to the pore throats. In Scenario 3, the Sp is 
increased because the surface area of the kaolinite in 
contact with the fluid is increased and the effective 
porosity is reduced by the more voluminous kaolinite 
aggregate.  
Scenario 4 (Figure 1d) shows a kaolinite suspension 
where the kaolinite particles repel each other, as in 
Scenario 2. In Scenario 4, however, the strong 
repulsive interaction energy prevents the formation of 
particle bridges in the pore throats. The surface area 



of the kaolinite in contact with the fluid is increased, 
increasing Sp. Even when the EDL repulsion among 
kaolinite particles is high, interactions among the 
suspended particles result in a yield stress of the 
suspension (Johnson et al., 1998). Zbik and Frost 
(2009) observed that kaolinite particles form a 
structured network even in stable suspensions. 
Interactions between the electrical double layers of 
the particles can be expected to affect the orientation 
of the suspended particles.  
 

a) b)  

c) d)  
 
Figure 1: a) stable kaolinite aggregates that are too 

large to pass the pore constriction. b) 
kaolinite particles forming a particle 
bridge c) voluminous kaolinite aggregates 
in the pore body. d) kaolinite suspension 
in the pore body. Modified from 
Rosenbrand et al. (submitted)  

Interaction energy 

The DLVO theory is used to compare the effect of 
temperature and ionic strength on the net interaction 
energy between two surfaces. As a first 
approximation we consider the interaction forces 
between parallel plates. Kaolinite particles are 
platelets rather than spherical particles, and the radius 
of quartz grains relative to the kaolinite size is large, 
so that the surface can be approximated as a plane.  

Van der Waals interaction 

As a first approximation, we assume the van der 
Waals interaction is not affected by heating or by 
ionic strength. Atomic force microscopy (AFM) 
measurements on mica plates indicate that the van 
der Waals forces are not significantly affected by 
ionic strength (Israelachvili and Adams, 1978).  The 
van der Waals interaction energy, EvdW, between 
plates per square meter is given by Eq. 3 
(Israelachvili, 2011):  
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   (Eq. 3) 

 
The separation between the mineral surfaces is given 
by h. AH is the Hamaker constant that is determined 

by the intrinsic properties the two surfaces and the 
intervening medium. We use AH =2.2×10

-20
 J; this is 

comparable to values that are used for interactions 
between kaolinite and quartz in aqueous NaCl 
solution by Kia et al. (1987) and by Schembre and 
Kovscek (2005).  
 
 

EDL interaction 

We consider the electrical double layer as composed 
of two layers based on the Stern model (Stern (1924) 
in Lyklema (1995)). The Stern layer, the distance 
between the surface and the Stern plane, accounts for 
small-scale surface roughness, directly adsorbed 
water molecules and the size of the hydrated counter-
ions. Beyond the Stern plane, the ions in the diffuse 
part of the double layer are treated as point charges 
after the Gouy-Chapman theory (Gouy (1909), 
Chapman (1913) in Lyklema, 1995). In the diffuse 
part of the EDL, the potential drop with distance is 
characterized by the Debye length, κ

-1
 (Eq. 4).  
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Here ε is the relative permittivity of the solution, ε0 is 
the vacuum permittivity, kB, is Boltzmann‟s constant, 
T, is the absolute temperature, NA, is Avogadro‟s 
number, e, is the electron charge and I is the ionic 

strength of the solution 
21

2
i iI C z   where C is 

the concentration and z the valence of the ions. 
Temperature and ionic strength directly affect κ

-1
, and 

they also influence ε. We calculate the permittivity as 
a function of T and I after Michelsen and Mollerup 
(2007). 
The interaction energy due to the overlapping double 
layers can be calculated exactly by solving the 
Poisson-Boltzmann equation. This requires numerical 
methods, but analytical solutions based on 
simplifications can give results closely approximating 
the exact solution (Gregory, 1975). The boundary 
conditions that are required for both the numerical 
and the analytical solutions have a significant effect 
on the interaction at small separations. The 
assumption that the charge in the double layers is 
constant as the surfaces approach results in an 
estimate of the upper bound for the EDL repulsion. 
The lower bound is obtained by the assumption that 
the potential at the Stern plane is constant. This 
assumption, however, leads to the prediction that the 
EDL force between surfaces with different magnitude 
charge of the same sign, flips from repulsion to 
attraction at short separations. Gregory (1975) 
suggests the use of an intermediate condition, 
represented by the linear superposition approximation 



(LSA) Eq. 5. This solution does not lead to a change 
of sign of the EDL interaction force with separation 
distance. Rather than assuming constant potential or 
charge on the surfaces, the potential midway between 
the Stern planes is assumed to be given by the 
summation of the potentials of the individual double 
layers at this position. The assumption that the double 
layers do not affect each other is probably not valid 
for separations less than κ

-1
 (Elimelech et al., 1995).  
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Here, C is the concentration of the monovalent 
electrolyte in moles per litre, D is the separation 
between the Stern planes, and γi is the reduced 
surface potential which for monovalent electrolyte 
solutions is given by: 
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 (Eq. 6) 

 
The potential at the Stern plane should be used for 
the surface potential, ψ0, according to Frens and 
Overbeek (1972). The zeta potential ζ, is generally 
used to estimate the ψ0, (Elimelech et al., 1995). This 
can be measured using particle electrophoresis 
experiments. The ζ values reported in the literature 
for kaolinite at pH 8 vary significantly. This is 
partially because the ψ0 depends on the ionic strength 
as well as on ψ0 (Frens and Overbeek, 1972). To 
compare data from experiments at different 
electrolyte concentrations we used the relation 
between the ψ0 and the charge on the Stern plane, σ0 
after Grahame (1947).  
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By comparing the σ0 rather than the ζ we reduced the 
variation that is due to the different ionic strengths 
used to measure the ζ. Still, at pH 8, the values of the 
σ0 for kaolinite from different investigations (Johnson 
et al., 1998; Rodriguez and Araujo 2006; Zbik and 
Frost, 2009) vary in the range between 11 mC/m

2
 and 

22 mC/m
2
. This can be expected to be caused by 

differences in the particle shape and size. The value 
of the ζ is an average for the entire particle, but the 
different sides of kaolinite particles have different 
charge densities. Gupta and Miller (2010) measure 
the σ0 on both the alumina and the silica faces using 
AFM. Gupta et al. (2011) conclude that the σ0 on the 
edges must be significantly higher than the σ0 on the 
faces to account for the value of the ζ at pH 8. 
Particles with a larger ratio of edge to face surface 
area can therefore be expected to have a higher 

average σ0, and therefore a higher ζ. Brady et al. 
(2006) observe that the faces of their kaolinite 
particles are not planar but show steps. This 
effectively adds broken bonds or edge surface to the 
particle faces and can be expected to increase both 
the face σ0 and the average σ0 for the particle. Brady 
et al. (2006) use potentiometric titration in 
combination with chemical modelling to estimate 
distribution of surface charge. Their data suggests 
that the σ0 on the edges is in the order of 3 times as 
high as the average σ0. 
Heating is observed to increase the ζ by a factor 2 for 
both kaolinite and for quartz when these are heated 
from 20

o
C to 45

o
C (Rodríguez and Araujo, 2006). 

Brady et al. (2006) observe an approximate doubling 
of the σ0 of kaolinite for a temperature increase from 
25

o
C to 70

o
C.  

We calculated the value of the ψ0 from the σ0,20 at 
20

o
C  using Eq. 7. We assumed that the Stern plane is 

0.5 nm removed from the surface. This corresponds 
approximately to one layer of adsorbed water plus the 
radius of the hydrated counter-ions. Thereby the 
distance, D, for the EDL force as defined in Eq. 5 is 1 
nm less than the separation between mineral surfaces, 
h. The net interaction energy was calculated for 
kaolinite with σ0,20 ranging from σ0,20 =7 mC/m

2 
to 

σ0,20 =22 mC/m
2
. The lower values can be expected 

only on the faces, whereas the higher values 
correspond to measured ζ values. To account for the 
significantly higher edge charge density values 
between σ0,20=27mC/m

2
 and σ0,20=37 mC/m

2
 were 

used. However, the interaction energy of the edges 
was scaled by 0.2 μm

2
 whereas that for the faces is 

scaled by 4 μm
2
 to account for the difference in 

surface area. For quartz we used σ0,20=22 mC/m
2
 to 

σ0,20=32 mC/m
2 

based on data from Rodríguez and 
Araujo (2006) and from House and Orr (1992). 
We calculated the interaction energy at 80

o
C for both 

the same σ0,20 as at 20
o
C as well as for a two- and for 

a four-fold increase in σ0,20 that may result from 
heating. 



RESULTS  

Reducing the ionic strength causes a significant 
increase of the κ

-1
, whereas heating has a negligible 

effect (Figure 2a; Eq. 4). For a constant σ0, the 
magnitude of the ψ0 increases significantly when 
ionic strength is reduced according to Eq. 7. Heating 
to 80

o
C also increases the magnitude of the ψ0 but to 

a lesser extent (Figure 2b).  
 

a)  
 

b)  
 
Figure 2: (a) the reduction of the ionic strength 

increases the Debye length, κ
-1

. 
 (b) reducing the ionic strength also 

increases the magnitude of the surface 
potential, ψ0 at a constant surface charge. 
The effect of heating on  κ

-1
 and ψ0 is less 

significant than the effect of ionic 
strength. 

 
Figure 3 shows the effect of ionic strength on the net 
interaction energy between quartz and kaolinite at 
20

o
C. At high ionic strength, both κ

-1
 and ψ0 are low 

and the van der Waals forces dominate. The peak of 
the interaction energy profile switches from attraction 
(negative interaction energy) to repulsion (positive 
interaction energy) between ionic strengths 0.2 and 
0.02 M. Due to the thickness of the Stern layer, the 
minimum separation between surfaces is 1 nm. For 
separations between Stern planes, D, that are less 
than approximately κ

-1
, (indicated by the vertical 

dotted line in the figures) the calculated EDL 
interaction energy depends strongly on the 
assumption of constant potential or constant charge 
(Gregory, 1975). We limit the analysis to the 
interaction energies at greater separations. Therefore 
we do not compare the maximum height of the 
interaction barriers, but rather the interaction values 
at a larger separation.  
The value of the σ0,20 of kaolinite varies in literature, 
however, this variation does not change the sign of 
the interaction energy at 3 nm separation between the 

kaolinite and quartz surfaces, (D=h-1 nm) at 0.2 M 
(Figure 4a) and 0.02 M (Figure 4b). These figures 
show an attractive interaction at 0.2 M and repulsion 
at 0.02 M ionic strength for the range of σ0,20 that  we 
consider representative of faces or of the average 
charge. Only for the relatively high negative σ0,20 that 
can be expected on the edges, there is repulsion at 
both ionic strengths. The interaction energy is 
calculated as energy per square meter, and the total 
energy is therefore scaled by the interacting areas.  
Due to the smaller surface area of the edges, 0.2 μm

2 
, 

compared to the faces, 4 μm
2 

, the energy for the 
interactions between the edges of kaolinite and quartz 
is lower than for the interaction between the faces of 
kaolinite and quartz. This does not imply that 
attachment between quartz and the edges is more 
probable than between quartz and the faces. The 
difference is comparable to the difference between 
pressure and force.  
Mobilisation due to heating was observed even at 
high ionic strengths (Rosenbrand et al, under review). 
Figure 5a shows that the interaction energy between 
quartz and kaolinite remains negative when the 
temperature is increased from 20

o
C to 80

o
C at 0.34 M 

ionic strength. Heating only causes repulsion when 
the σ0 increases due to heating. Figure 5b shows that 
the increase in the surface charge density σ0, required 
for repulsive interaction energy at 2.0 M ionic 
strength is four times σ0,20 rather than the twofold 
increase that caused repulsion at 0.34 M ionic 
strength. At larger separations (4-7 nm) this curve 
shows a negative minimum, a minimum at this 
distance may indicate a stable configuration at this 
distance (Hahn and O‟Melia, 2004).  
If heating increases the σ0, this also increases the 
repulsive interaction among kaolinite particles. 
Figure 6a shows the calculated interaction energy 
between a kaolinite face with a σ0,20 11 mC/m

2
; which 

corresponds to the lower range of the ζ in literature, 
and all sides of the kaolinite particle at 20

o
C and 0.02 

M ionic strength, which is repulsive at all separation 
distances. Assuming that heating to 80

o
C increases 

the surface potential by a factor four, the interaction 
energy at close separations increases sharply even 
when partly compensated by the effect of a relatively 
high, 0.2 M, ionic strength (Figure 6b).  
At 20

o
C the kaolinite particles are expected to form 

relatively stable aggregates even at a low ionic 
strength. The interaction energy at 20

o
C and 0.02 M 

is less repulsive than the interaction energy at 80
o
C 

and 0.2 M, which can be expected to result in a 
higher aggregate stability at 20

o
C. The difference 

between the interaction energy at 20
o
C and 0.02M 

ionic strength and the energy at 80
o
C and 0.2 M 

depends on the separation distance, (Figure 6c). At 
small separations, the interaction energy is higher in 
the heated sample due to the higher σ0 . At greater 
separations the effect of the higher ionic strength at 
80

o
C outweighs the effect of the higher σ0 and there 

is a higher repulsion at 20
o
C.  



 

 
 
Figure 3 interaction energy as a function of 

separation between surfaces of kaolinite 
and quartz with σ0,20 between 11mC/m

2
 

and 27 mC/ m
2
. The Debye length 

increases as the ionic strength falls.  
 

a)  
 
 

b)  
 
Figure 4 the interaction energy between kaolinite 

faces and quartz at 2 nm between Stern 
planes (3 nm between surfaces) is 
attractive at 0.2M (a) and repulsive at 
0.02 M (b) for the range of σ0,20 based on 
face or average particle charge. For the 
edges with a higher surface charge 
density there is repulsion both at 0.2M 
and 0.02M.  

 

a)  
 
 

b)   
 
Figure 5: Heating can increase the surface charge 

density and thereby result in a repulsive 
interaction energy between kaolinite and 
quartz at small separations. At 0.34 M 
ionic strength, a), the interaction energy 
becomes repulsive if heating increases σ0  
by a factor two compared to σ0,20. At 2.0 
M ionic strength there is only repulsion 
for a fourfold increase in σ0,20. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



a)  
 

 

b)  
 

c)  
 
Figure 6: Comparison of the interaction energy 

among kaolinite particles at 20
o
C and 

0.02 M ionic strength (a) to the 
interaction energy at 80

o
C (b) and 0.2 M 

ionic strength. The repulsive interaction 
energy is highest in the heated sample for 
small separations (c) (when the surface 
charge density increases by a factor 4 
compared to the surface charge density at 
20

 o
C.  

DISCUSSION 

Heating from 20
o
C to 80

o
C has less effect on the 

Debye length, κ
-1

, than ionic strength does, according 
to Eq. 4 (Figure 1a). However, Israelachvili and 
Adams (1978) suggest that Eq. 4 may under-predict 

the thickness of the double layer at higher ionic 
strengths. Their measurements of the forces between 
mica surfaces indicate that the potential in the double 
layer falls less steeply than predicted by Eq. 4. A 
greater double layer thickness would result in  greater 
repulsive interaction energy between surfaces with 
the same sign charge than we calculated. This effect 
would be greatest for our calculation of the 
interaction energy at 2.0 M.   
The permeability reduction due to reduction of ionic 
strength, at 20

o
C, that was observed in experiments 

has been interpreted as kaolinite mobilisation. The 
calculated net interaction energy switched from 
attractive to repulsive between these ionic strengths 
(Figure 3a). Furthermore, Figure 4a and Figure 4b 
show that the switch from an attractive to a repulsive 
interaction energy can be expected to occur between 
these ionic strengths for a wide range of surface 
charge densities representative for the quartz-
kaolinite system. Repulsion dominated the quartz to 
kaolinite edge interaction even at 0.2 M ionic 
strength. This suggests that the average charge on the 
kaolinite particle or possibly only the charge on the 
faces is relevant to predict mobilisation. Currently the 
zeta potential, ζ, which represents the average surface 
charge, is often used to predict kaolinite mobilisation 
in Berea sandstone (e.g., Kia et al. 1987; Schembre 
and Kovscek, 2005). 
Heating from 20

o
C to 80

o
C was observed to reduce 

permeability in experiments with distilled water, as 
well as in tests with solutions of 0.34 M and 2.0 M 
NaCl. With a constant σ0, Eq. 7 predicts that the 
surface potential, ψ0 is higher at 20

o
C that at 80

o
C 

(Figure 1b). Figure 4 shows that this increase was not 
sufficient to cause repulsion at either 0.34 M or 2 M 
ionic strength. A doubling of the σ0,20 was sufficient 
to cause a repulsive interaction at 0.34 M, but the 
mobilisation we observed at 2.0 M ionic strength 
would require a fourfold increase in the σ0,20 to obtain 
a repulsive interaction energy for the minimum 
separation between surfaces. We limit ourselves to 
the distance range beyond twice the 0.5 nm Stern 
layer. No quantification is made of attractive forces at 
smaller distances, but we note that at closer approach 
the van der Waals interaction suggests strong 
attraction (Eq. 3). Figures 5a and 5b do show another 
minimum for separations around 4-7 and 2-4 nm 
separation respectively. It has been suggested that 
particles can be loosely attached in this secondary 
minimum, from where they are more easily mobilised 
by hydrodynamic forces (Hahn and O‟Melia, 2004). 
It appears unlikely that particles were attached in the 
secondary minimum at 80

o
C because the ionic 

strength had no effect on permeability whereas the 
secondary minimum is eliminated at low ionic 
strength. The secondary minimum is only present for 
a narrow range of separations; surface roughness can 
be expected to cause variation in the separation. The 
higher  repulsive interaction at smaller distances may 
be expected to have a dominant effect.  



The effect of heating on the surface potential can be 
significant. Electrophoresis data from Rodríguez and 
Araujo (2006) indicate that the ζ increases by a factor 
2 when the sample is heated from 20

o
C to 45

o
C. This 

might possibly be extrapolated to match the increase 
required at 2.0 M. However, potentiometric titrations 
indicate only an approximate doubling of the surface 
charge when a sample is heated from 25

o
C to 70

o
C 

(Brady et al., 1996). The effect of a change in σ0 on 
the interaction energy depends on the EDL thickness, 
which may be under-predicted by Eq. 4 at 2.0 M 
ionic strength. In that case a smaller change in  σ0 
could cause mobilization. Furthermore, we have 
assumed that the effect of heating on the van der 
Waals interaction was negligible. We have also 
assumed that the Stern layer thickness was not 
affected by heating, and that the dielectric properties 
of fluid in the Stern layer were the same as the 
dielectric properties of the bulk fluid. All of these 
assumptions can be challenged; however, we lacked 
the evidence to support alternative assumptions. With 
these assumptions, Figure 5 indicates that the effect 
of heating on the EDL interaction is less than the 
effect of ionic strength on the EDL interaction if the 
σ0 is constant. However, heating does increase the σ0; 
whether the increase is sufficient to cause particle 
mobilisation is subject to discussion. 
Scenario 1 can explain the stability of the aggregates 
at 20

o
C; here there is attraction among kaolinite 

particles even at low ionic strength. Figure 6a shows 
a small repulsive interaction energy between a 
kaolinite surface with a σ0 representative of the faces 
and kaolinite surfaces with values representative of 
the average σ0 and of the σ0 on the edges at 20

o
C and 

0.02 M ionic strength. The interaction between the 
surface and another surface with a kaolinite face σ0 

was attractive at short separations. However, the 
divergence between the different formulations for the 
EDL force is particularly significant at separations 
less than κ

-1 
(Gregory, 1975). We consider the 

interaction energy in this region to be more uncertain 
than those at larger separations. At greater 
separations there is repulsive interaction energy. 
However, suspended particles may aggregate despite 
a repulsive interaction energy barrier if their thermal 
energy is sufficient to overcome this (Hogg et al. 
1966). Therefore, we do not rule out Scenario 1 based 
on these calculations. Even if particles do not 
aggregate due to the repulsive interaction, particles 
transported to the pore constrictions may still form 
particle bridges as in Scenario 2.     
Scenario 3 appears unlikely. The repulsive interaction 
energy for the edges is lower than for the faces due to 
their smaller area. However, as also noted by Gupta 
et al. (2011), at pH 8 the edges have a high negative 
charge density, which makes it unlikely that they 
attach to the negatively charged faces. The 
observation that the permeability of the heated 
samples does not depend on the ionic strength also 
indicates that Scenario 3 is less likely. The stability 

of the aggregates can be presumed to depend on the 
interaction energy among kaolinite particles and 
thereby on the double layer length.  Scenario 4 is 
more plausible with repulsion among kaolinite 
particles.  
As the DLVO calculations did not rule out Scenarios 
1, 2 or 4, we considered these in combination with 
the permeability test data. Particles had been 
mobilised at 20

o
C by the reduction of the ionic 

strength and at 80
o
C they had been mobilised by 

heating.  
At 20

 o
C increasing the ionic strength to 0.2 M or 2.0 

did not improve the permeability. Figure 3 shows 
there is attraction between kaolinite and quartz at 0.2 
and 2.0 M ionic strength. In the case of Scenario 4, 
the particles would be expected to re-attach to the 
grain surface. This can be expected to reduce specific 
surface and improve permeability, however, we did 
not observe a permeability recovery. The 
combination of DLVO theory and experimental 
observations rather suggests Scenarios 1 or 2 
dominate at 20

o
C. These predict an irreversible 

permeability reduction. These scenarios are 
comparable to the current models for particle 
plugging (e.g. Khilar and Fogler 1984). At 80

 o
C the 

permeability reduction is reversible, and furthermore 
permeability increases at higher flow rates. This 
allows us to rule out Scenario 1, of stable aggregates. 
Scenario 3 has been ruled out based on the repulsive 
interaction energy between the edges and faces, 
leaving Scenarios 2 and 4. The observed reversibility 
with cooling suggests the particles are in suspension 
rather than as particle bridges. A reduction in the 
repulsive EDL force due to cooling would make the 
bridges more stable, rather than improve the 
permeability. This suggestion is supported by the 
observation that changing the flow direction had no 
significant effect on permeability at 80

o
C. However, 

the improvement in permeability with cooling may be 
due to removal of particle bridges by the increase in 
fluid viscosity and hydrodynamic forces. The lack of 
effect of flow direction may be due to the fact that 
when this was done at 80

o
C the particles formed 

bridges at the other side of the pore, since they were 
still repelled by the quartz surface. At 20

o
C the flow 

direction was reversed at high ionic strength so that 
particles could re-attach to the quartz grains. Scenario 
2 might therefore prevail at both 20

o
C and 80

o
C, 

whereby the difference in the effect of flow velocity 
on permeability was due to the difference in the 
magnitude of the EDL repulsion.  
 
Four different scenarios were proposed to explain 
permeability data in terms of kaolinite distribution.  
The permeability data suggest that a repulsive 
interaction energy prevails between kaolinite 
particles at high ionic strength at 80

o
C. This is 

supported by data showing that the surface charge 
density of the minerals increases with heating and by 
DLVO calculations based on this. The DLVO theory 



is successful in predicting the kaolinite mobilization 
caused by the reduction in ionic strength at room 
temperature (Khilar and Fogler, 1984, Kia et al. 
1987). We applied the DLVO theory to predict 
kaolinite mobilization for a range of different surface 
charge densities at 20

o
C and found that the ionic 

strength interval where mobilisation occurs was 
robust to the variation that can be expected for the 
kaolinite surface charge density. We then used the 
same EDL model and parameters to investigate 
kaolinite mobilization due to heating, and to 
investigate kaolinite aggregation at 20

o
C and at 80

o
C. 

The high uncertainty in the effect of heating on the 
relevant parameters, ζ and A, limits even a qualitative 
comparison of the effects of ionic strength and 
temperature.  

CONCLUSION 

The ionic strength at which permeability reduction 
occurs in laboratory experiments is within the same 
order of magnitude as the ionic strength that causes a 
repulsive interaction energy between kaolinite and 
quartz at 20

o
C. This ionic strength is robust for the 

range of surface potentials reported for different 
kaolinites in literature.  
Heating can be expected to increase the surface 
charge density. In the framework of the DLVO 
theory this can lead to particle mobilisation and 
prevent particles aggregation. This would imply that 
at elevated temperature, pore throat plugging by 
stable particle aggregates is an unlikely mechanism 
of permeability reduction. The effect of temperature 
on other relevant parameters is not established well 
enough to make reliable estimates of inter-particle 
forces at elevated temperature. 
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Hot water injection in geothermal sandstone aquifers is considered for seasonal energy storage in Denmark. 
However, an increase in the aquifer temperature might reduce permeability and increase production costs. An 
understanding of the factors that control permeability is required in order to address the effects of temperature 
on permeability. Therefore, different aspects of sandstone permeability are investigated in this research project. 
Mineral fluid interaction and clay mineral content affect permeability to different fluids and the effect of  
temperature on permeability. Hot water injection might induce clay particle mobilisation and mineral dissolution. 
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