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Abstract

Engineering structures are designed to resist a certain range of intensities of
natural hazards. However, they are not designed to resist the entire range
of possible intensities due to technical and economic constraints. Instead,
in cases where they are most likely to fail as a result of emerging hazard
events, several actions are undertaken to minimize possible consequences in
real-time. For example, a dike is built to protect inhabitants and proper-
ties against flood events up to the intensity level that has a certain return
period. In extreme rain storm events where dike failure is likely to occur,
persons and movable property can be evacuated or temporary physical pro-
tections can be built. Such measures, when deemed prudent or necessary,
are recommended or ordered by public authorities but also voluntarily un-
dertaken by individuals. Other examples where private sector agents are in
charge include engineering facilities such as wind turbines, agricultural facil-
ities and offshore platforms. Operators of these facilities are often required
to make decisions regarding the continued operations of their facilities in ex-
treme storm events. These decisions, which in the present thesis are called
real-time decisions, are often made by a small number of people in extremely
stressful situations, ad-hoc relying on personal experiences of decision mak-
ers.

On the other hand, recent advancements of information technology po-
tentially make it possible for decision makers to access various types of infor-
mation in real-time. Remarkable examples that facilitate real-time decision
making in emerging natural hazard events are weather observation systems
at the global scale, observation data processing systems, provision of best
estimates of current atmospheric states and weather forecasts. However, the
information provided is in most cases limited to the estimate of the current
intensity of the emerging hazard event and the forecast thereof, and includes,
in very limited cases, the prediction of risks. Yet, none of the cases seem to
systematically utilize such information for the decision optimization of the
choice and commencement of risk reduction measures in real-time. Conse-
quently, unnecessary costs and losses may occur. However, systematic use
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of such information on a decision support system would not only alleviate
the stress of decision makers but also facilitate the identification of optimal
decisions, thereby avoiding unnecessary costs and losses. Motivated by these
factors, the present thesis aims at developing a framework for the decision
support system for real-time decision making in emerging natural hazard
events. The thesis also demonstrates the implementation of the developed
framework to illustrate its use and advantages.

The developed framework is based on the work by Nishijima et al. (2009).
They formulate the general framework concept; however, it lacks an algo-
rithm that solves the optimization problem with sufficient speed so that it
can be utilized in practice. The difficulty lies in the sequential nature of the
optimization problem, which requires backward induction. Respecting the
analogy between the considered decision problem and the American option
pricing, the present work proposes a very efficient algorithm on the basis of
the Least Squares Monte Carlo method (LSM), which has been developed
as an algorithm for pricing American options. The main contribution of the
present work is the development of the efficient algorithm based on LSM,
which is called enhanced LSM (eLSM). As shown in the examples the ef-
ficiency of the proposed algorithm is up to the order of 100 compared to
other algorithms applied. Due to its efficiency it becomes possible to utilize
decision support systems for a variety of real-time decision problems. More-
over, whereas the algorithm is developed primarily aiming at applications to
the real-time decision making in emerging natural hazard events, the algo-
rithm can be straightforwardly applied for other types of decision problems
that share the same decision problem characteristics. These include decision
problems in quality control and structural health monitoring.



Resumé

Konstruktioner er designet for naturkatastrofer op til en vis intensitet, men de
er ikke designet til at modst̊a hele spektret af mulige intensiteter p̊a grund
af tekniske og økonomiske begrænsninger. I stedet bliver der iværksat for-
anstaltninger i realtid for at minimere mulige konsekvenser for de steder
og situationer hvor konstruktionerne har størst sandsynlighed for at bryde
sammen. For eksempel er diger bygget for at beskytte indbyggerne og ejen-
domme mod oversvømmelser op til en vis gentagelsesperiode. I ekstremt vejr
med store mængder nedbør, hvor det er sandsynligt at digerne bliver over-
svømmet, kan personer blive evakueret eller der kan bygges en midlertidig
fysisk beskyttelse. I situationer hvor foranstaltninger synes nødvendige, bør
disse foranstaltninger beordres af myndighederne, men i tilfælde hvor myn-
dighederne ikke er ansvarlige, kan individer frivilligt organisere sig og foretage
disse foranstaltninger. Andre eksempler hvor den private sektor er ansvarli-
ge omfatter tekniske faciliteter, s̊asom som vindmøller, landbrugs-faciliteter
og offshore platforme. Operatører af disse faciliteter er ofte forpligtet til at
træffe beslutninger vedrørende den fortsatte operation af deres faciliteter i
ekstreme storme. Disse beslutninger, som i nærværende afhandling kaldes re-
altid beslutninger er ofte lavet af et lille antal mennesker i ekstremt stressede
situationer, og er baseret p̊a personlig erfaringer af beslutningstagerne.

P̊a den anden side, har de seneste fremskridt indenfor informationstek-
nologi gjort det potentielt muligt for beslutningstagere at f̊a adgang til for-
skellige typer af information i realtid. Bemærkelsesværdige eksempler, der
indeholder realtid beslutningstagen for naturkatastrofer er vejrobservationer
p̊a globalt plan, observation databehandlingssystemer, tilvejebringelsen af
bedste skøn over de nuværende atmosfæriske tilstande og vejrudsigter. Imid-
lertid, er oplysninger i de fleste tilfælde begrænset til estimatet af det nu-
værende intensitet af den spirende fare begivenhed og prognosen deraf, og
omfatter i meget begrænsede tilfælde, forudsigelse af risici. Ingen af tilfældene
synes endnu systematisk at udnytte s̊adanne oplysninger for beslutningsop-
timeringen af valg og p̊abegyndelse af foranstaltninger for risikoreducering i
realtid. Følgelig kan unødvendige omkostninger og tab forekomme. Systema-
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tisk anvendelse af s̊adanne beslutningsstøttesystemer vil ikke blot afhjælpe
den stressede situation for beslutningstagerne, men ogs̊a lette identifikationen
af optimal beslutninger, og derved undg̊a unødvendige omkostninger og tab.
Motiveret af disse faktorer, sigter denne afhandling p̊a at udvikle en ramme
for beslutningsstøtte i realtid i forbindelse med naturkatastrofer. Afhandlin-
gen viser ogs̊a implementeringen af den udviklede metode for at illustrere
dens anvendelse og fordele.

Den udviklede metode er baseret p̊a arbejdet af Nishijima et al. (2009). De
formulerer det generelle koncept, men det mangler en algoritme det løser op-
timeringsproblemet med tilstrækkelig hastighed, s̊a det kan udnyttes i prak-
sis. Vanskeligheden ligger i den sekventielle natur af optimeringsproblemet,
som kræver baglæns induktion. Observeret analogi mellem det beskrevne
beslutningsproblem og amerikansk options prissætning, det nærværende ar-
bejde foresl̊ar en meget effektiv algoritme baseret p̊a Least Squares Monte
Carlo metoden (LSM), som er blevet udviklet som en algoritme til pris-
fastsættelse amerikanske optioner. Det væsentligste bidrag i det nærværende
arbejde er udviklingen af en effektiv algoritme baseret p̊a LSM, som kaldes
forbedret LSM (eLSM). Som vist i eksemplerne er effektiviteten af den fo-
resl̊aede algoritme op til størrelsesordenen 100. P̊a grund af dens effektivitet
bliver det muligt at udnytte beslutningsstøttesystemer til forskellige realtid
beslutningsproblemer. Selvom algoritmen er udviklet primært til anvendel-
se af realtid beslutningstagning for naturkatastrofer, kan algoritmen umid-
delbart benyttes for andre typer af beslutningsproblemer, der deler samme
problemstillinger og karakteristikker. Disse omfatter beslutningsproblemer i
kvalitetskontrol og strukturel monitorering.
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Chapter 1

Introduction

1.1 Background

In the face of an emerging natural hazard event, decision makers have to
decide whether or not warnings and preparation orders are communicated to
the affected people and if so which order is optimal. This decision problem is
typically solved on the basis of two issues: what is the forecast intensity of the
natural hazard event and what are the resistances of the affected engineering
structures relative to the intensity of the natural hazard event. The present
thesis investigates an algorithm to find the optimal decision in such situations
in real-time.

Before going into details on the procedure of how to find the optimal
decision, some background information about natural hazards and their con-
sequences is provided. A hazard is an extreme phenomenon that is a poten-
tial threat to human life and economy within a given time period and area
(EM-DAT, 2013). When a hazard is caused by natural processes, it is called
natural hazard. Natural processes include geophysical and hydrometeorolog-
ical processes.1 The first-mentioned processes are related to the solid earth
like earthquakes, volcano eruption and dry mass movement (e.g. rockfall),
whereas the latter are related to meteorological, hydrological and climato-
logical processes like storm, flood, wet mass movement (e.g. snow avalanche),
drought, extreme temperature and wild fire. In general, the intensity of a
natural hazard event is high leading to large adverse consequences and the
probability that it occurs is low.

1Natural hazards can also be caused by biological processes; e.g. disease epidemics
and insect/animal plagues. Therein the same decision problems occur and the approach
presented here can be applied. However, these are not considered in the present thesis.
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In recent years, natural hazards have caused large numbers of casualties
(injured people and fatalities) and high economic damage (e.g. cost of re-
pair, reconstruction as well as interruption of operations and production).
Hereafter, casualties and economic damage resulting from a natural hazard
event are collectively referred to as consequences. Figure 1.1 illustrates the
recent development of (a) the number of natural disasters2 reported, (b) the
number of reported people that were affected by natural disasters, and (c)
the estimated damages resulting from natural disasters within the years 1975
- 2012. The data are provided by EM-DAT (2013).

EM-DAT (2013) defines a disaster as “a situation or event, which over-
whelms local capacity, necessitating a request to national or international
level for external assistance; an unforeseen and often sudden event that causes
great damage, destruction and human suffering”. Note that the data present
only those natural hazards that led to a natural disaster. In fact, there are
more situations in which natural processes are detected that are likely to
evolve to a natural hazard and eventually to a disaster. Also in these situ-
ations, decision makers have to decide whether to prepare for an impact or
not.

Before conclusions are made from the presented figures, a general com-
ment to the data provided by EM-DAT (2013) is given in the following. First
of all, note that the economic damage as it is provided by EM-DAT (2013)
represents only the value of immediate damage when the disaster occurs; i.e.
only direct damages are included such as directly reported casualties, repair
costs and replacement costs and not (future) indirect damages such as cost
of production interruption, unemployment, and market destabilization (EM-
DAT, 2013). If indirect damages were also included, the data would show
higher consequences. Secondly, the increasing trend presented in Figure 1.1
can be explained partly with several factors, which are elaborated in the fol-
lowing. From Figure 1.1(a) it is seen that the number of natural disasters
increased until about the year 2002; thereafter it is slowly decreasing. For the
increase of natural disaster occurrences, one reason, which is often cited, is
the growth of population and economy, especially in risk prone locations. Fur-
thermore, it is guessed that climatic change contributes and will contribute
further to the increase of the number of occurrences and/or their intensity,
see e.g. Huppert & Sparks (2006), UNISDR & WMO (2012), Rougier et al.
(2013, Chapter 1), Smith (2013). However, the small decrease in occurrences
may be within the range of random variability. Apparently, the growth of

2For a disaster to be listed in EM-DAT (2013), one or more of the following criteria must
be fulfilled: (i) Ten (10) or more people reported killed; (ii) Hundred (100) or more people
reported affected; (iii) Declaration of a state of emergency; or (iv) Call for international
assistance.

2 Department of Civil Engineering - Technical University of Denmark
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Figure 1.1: Development of (a) the occurrence of natural disasters in the
world over the last years, 1975 - 2012. The figures show (b) the number
of affected people and (c) the estimated damages. The data are provided by
EM-DAT (2013).

population and economy can also be related to the increase of the total conse-
quences (i.e. the number of affected people and estimated damage). Rougier
et al. (2013, Chapter 1) state that according to the World Bank disaster
impact assessment of the years 1960 - 2007 (Okuyama & Sahin, 2009), the
total consequences increased but at the approximate rate the global gross
domestic product increased. According to Smith (2013) if the consequences
are normalized (i.e. the number of fatalities is adjusted to the number of
people at risk and the economic damages to the price), then there is no evi-
dence that economic damage increases. Another reason for the rise of total
consequences may be the change in data recording methods (Smith, 2013).
UNISDR & WMO (2012) identifies further factors that contribute to the
consequences: “poorly planned and managed urbanization, environmental
degradation, poverty and weak governance”.

However, the conclusion from Figure 1.1 is that the consequences related
to natural disasters worldwide are considerable and the overall aim should
be to reduce these consequences. In order to achieve this aim, a significant
effort has been devoted to risk assessment and risk reduction in the field of
natural hazard risk management, see e.g. Zschau & Kuppers (2003), World
Bank and United Nations (2010), ASCE (2011), Smith (2013), Rougier et al.
(2013). Therein the focus lies on answering questions such as how to opti-
mally mitigate risk, how to prepare for a hazard event, how to respond during
the emergence of a hazard event and how to respond after the impact.

While the occurrence of natural hazard events cannot be prevented, the
consequential risk can be mitigated prior to such events through, for exam-
ple, adequate urban planning, risk adapted building codes and standards,

Department of Civil Engineering - Technical University of Denmark 3
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or protective structures. All types of public structures and infrastructure
(e.g. infrastructures for transportation, energy and communication) as well
as private and industrial engineering structures (e.g. buildings, refineries and
offshore platforms) are collectively referred to as engineering facilities here-
after. Conventionally, engineering facilities are designed and built for a spe-
cific service and withstand the majority of the possible load situations during
their service time. However, they are not designed to resist the entire range
of possible intensities of natural hazard events. This follows from economic
and technical reasons and is also rational in a risk based decision framework.

The limited resistance implies that engineering facilities may fail and col-
lapse in extreme events. Their failure often results in casualties and economic
damage. In order to keep these consequences as low as possible, in case an en-
gineering facility is likely to fail in an extreme event the option to commence
risk reducing measures is considered in the overall strategy of risk manage-
ment. Here, risk reducing measures include to shutdown operations as well
as to evacuate people, livestock and property in the face of an emerging nat-
ural hazard. However, these measures are only relevant when the affected
area can be warned in order to respond in time. Important examples in
which such decisions are presently utilized are related to (i) the shutdown of
refineries and fixed offshore platforms subject to tropical cyclones and storm
surges, (ii) the closure of railways or roads subject to avalanches, and (iii)
the evacuation of people from urban habitats and other engineering facilities
subject to natural hazard events like storms, floods, landslides, tsunamis,
wildfires, avalanches and volcanic eruptions.

The natural hazards of the aforementioned examples have in common
that indicators can be observed prior to the impact, which facilitates the
forecast of the severity of the consequences. Additionally, there is time to
react once the emerging hazard is detected. If this holds, it can be ex-
pected that a significant amount of fatalities and economic damage can be
prevented if the adequate risk reducing measure is commenced in time. As
illustrated in Figure 1.2, the most frequently occurring natural hazards with
these characteristics are flood, storm, mass movement (wet), extreme tem-
perature, drought, wild fire, volcano eruption and tsunami. These events
contribute to more than half of the fatalities and economic damage of the
last 20 years. Considering the proportion of the consequences resulting from
these natural hazards combined with their characteristics (forecast and re-
action possibility), it is likely that enhancing the algorithm used to find the
optimal decision, in such a way that it is sufficiently fast, will contribute to a
reduction of the consequences. The present work focuses on developing such
an efficient algorithm.

4 Department of Civil Engineering - Technical University of Denmark
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Figure 1.2: Proportions of the main natural disasters in the world over the
last 20 years, i.e. 1992 - 2012. The figures show the proportion of (a) the
main natural disasters as well as the corresponding proportion of (b) fatalities
and (c) estimated damage. The data are provided by EM-DAT (2013).

As mentioned earlier, the decisions made in the face of emerging natural
hazard events are not only based on the estimated resistance of the systems
affected but also on the forecast of the intensity of the hazard. In order to
forecast the future development of the emerging natural hazard event, models
are required. For many natural hazards, statistical or physical models or a
combination of both are available to describe the processes that characterize
them. For instance, the track and the intensity of a tropical cyclone can
basically be formulated as a function of the translation speed, the translation
angle and the central pressure.

When the relevant information and models are available, the question is
how should the information be utilized in order to find the optimal decision
in the face of an emerging natural hazard event. The optimal decision is de-
fined as the one that lies within the set of decision alternatives available and
maximizes, using the information available, the utility function that reflects
the preferences of the decision maker. Usually a small number of decision
makers is responsible to make decisions on possible actions. The term deci-
sion maker refers to one or more decision makers; assuming that they have
one common perspective and preferences. The decision makers perspective
and preferences are represented through the utility function, which however
does not necessarily reflect her own preferences. The optimal decision de-
pends on the perspective of the decision maker: for example decision makers
representing a societal perspective have different preferences from the ones
of decision makers with an economic or private focus.

Department of Civil Engineering - Technical University of Denmark 5
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In this thesis, the utility is represented in terms of the consequences that
result from the decision alternative(s) chosen and the state of nature. The
set of decision alternatives comprises the decisions to commence possible
risk reducing measures and the decision to wait in order to collect further
information. The state of nature concerns the state of the considered facility
that is possibly subject to an impact of a hazard event; for instance the state
of the facility could be described as damaged, which leads to consequences,
or not damaged, which leads to no consequences. Furthermore, the state
of nature depends on natural phenomena that are related to the hazard
development and also on characteristics of the affected area and engineering
facility(s) that influence the resulting consequences. These characteristics
include the location (e.g. in the mountains, at the coast line or in the ocean),
accessibility and size (e.g. number of affected people).

In the case of emerging natural hazard events, local decision makers of the
affected area obtain usually relevant information and support from experts
and organizations like the Tropical Cyclone Warning Centers3 or the Pacific
Tsunami Warning Center4 or other warning centers depending on the location
and type of hazard. These organizations operate so-called Early Warning
Systems (hereafter abbreviated by EWS). They have the task to detect, track
and forecast emerging natural hazard events and if necessary disseminate
information and warnings, see Section 2.3. EWS are widely installed and it
is shown that they contribute to the reduction of natural hazard consequences
when utilized correctly, see Zschau & Kuppers (2003), Rogers & Tsirkunov
(2011), Golnaraghi (2012).

When precursors of an emerging hazard event are detected (e.g. through
satellites or sensors) by an EWS, the information is processed in such a way
that the information can be utilized for finding the optimal risk reducing
measure. The information is processed with decision support systems (here-
after abbreviated by DSS). Typically, these systems return the estimated
time at which the hazard impact is expected to occur, the estimated occur-
rence probability as well as its projected future intensity. However, it seems
that none of the DSS provides information about the consequences related to
the available decision alternatives. Knowing in addition what the expected
consequence of a decision alternative is, facilitates finding the optimal de-
cision as it can help to understand and compare the different consequences
from the decision alternatives. The expected consequences would be inter-
esting for public decision makers as well as for individual decision makers
such as an operator of an offshore platform, because the consequences are

3See e.g. http://www.nhc.noaa.gov/aboutrsmc.shtml.
4See e.g. http://ptwc.weather.gov/.
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typically largest when engineering facilities fail during operation. Whereas
consequences can be still large if the operations are stopped unnecessarily,
since their re-starts may require long time until they are back to normal
operation; implying opportunity losses due to business interruption.

In order to be prepared to warn of an emerging natural hazard event, DSS
are designed and installed for individual regions. The design may be based on
the findings of a (probabilistic) risk assessment in which the relevant natural
hazard events and the possible consequences are analyzed; further details are
provided in Section 2.1. The difficulty to design a DSS for real-time decisions
in the face of emerging natural hazard events results from the following three
characteristics:

(a) Complexity of natural hazards
In order to compute the future consequences a model describing the
development of the natural hazard is necessary. Modeling natural haz-
ards is difficult as their development is not completely understood so
far; i.e. forecasts based on physical equations do not accurately repre-
sent the real world. Moreover, they are often characterized by multiple
continuous, time dependent processes with an infinite number of pos-
sible states. Therefore, probabilistic models are introduced to describe
the development. Using these probabilistic models, the probability dis-
tribution of possible scenarios and their consequences can be estimated.

(b) Limited time frame available for decision making
As natural hazards develop continuously in time and often rapid, de-
cisions should be made right after new information becomes available.
Recent advances in information technology make it possible to access
information in (near) real-time. This should be utilized in DSS to im-
prove decision making in the face of natural hazard events. Hereafter,
the decision problem described above is called real-time decision prob-
lem.

(c) Sequential nature of decision problem
In the real-time decision problem of consideration, decisions are made
successively in response to new information. This leads to the typical
problem of sequential optimizations, which is the exponential increase
of combinations of the states of the underlying random processes and
decision alternatives with increasing number of considered time steps
and number of decision alternatives.

In practical applications, it is often the case that the optimization problem
cannot be efficiently solved in real-time by using standard techniques such
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as Monte Carlo simulations, decision trees, influence diagrams or numerical
methods. An optimization problem is solved efficiently by an algorithm if
its computational time is “optimal” in the sense that the computational
time, which is needed to obtain the optimal decision at a given level of
accuracy, is minimal compared to the pace the hazard evolves. In order to
meet the time constraints, common solution approaches are for example the
approximation of the state space of the stochastic processes characterizing the
natural hazard, the reduction of the number of time steps when a decision can
be made and/or the reduction of the number of available decision alternatives.
As the computational time matters, complex probabilistic forecast models
cannot be used for modeling natural hazard events within a DSS as long as
no efficient algorithm is available.

Approaches proposed in the literature, which solve the real-time decision
problem in a sequential manner and include a probabilistic hazard model,
are relatively rare. Examples are Considine et al. (2004), Regnier & Harr
(2006) and Nishijima et al. (2009). The first two references do not focus
on real-time decision making itself. They investigate the value of weather
forecast for oil-companies and society, respectively. The third introduces
the sequential decision framework as it is used in the present work; yet a
crude approximation of the state space is used to estimate the expected
consequences. In Anders & Nishijima (2011) it is shown that this approach is
inefficient and may lead to suboptimal decisions. This shows the relevance to
develop efficient algorithms that incorporate adequate probabilistic models.

1.2 Objective

Sequential decision problems have been investigated for a long time; see
e.g. Bellman (1957), Raiffa & Schlaifer (1961), DeGroot (1970), Puterman
(1994). Therein several approaches have been introduced to solve related
optimization problems. Nevertheless, to the knowledge of the author, only
the aforementioned examples investigate complex decision problems similar
to the real-time decision problems introduced earlier.

In situations in which decision makers need to make decisions under time
pressure, as it is in the face of emerging natural hazard events, it is important
to be able to solve real-time decision problems efficiently. An efficient algo-
rithm can contribute to the reduction of consequences by providing optimal
decisions, which minimize the expected future consequences. The develop-
ment of such an efficient algorithm is the objective of this thesis.

8 Department of Civil Engineering - Technical University of Denmark



1.3 Focus

1.3 Focus

Natural hazards can be categorized into groups with characteristic attributes.
Attributes that characterize natural hazards are:

- Frequency

- Types and magnitude of consequences

- Pace of development

- Size of affected area

- Availability of precursors

Natural hazard events are rare events that result in large adverse conse-
quences. The frequency and the consequences of individual natural hazard
events vary from location to location. Note that for example earthquakes
happen every day all over the world especially near fault-zones, yet many of
them are not considered as natural hazards since those with a small mag-
nitude cause in general no severe damage. Furthermore, the more often a
hazard occurs in an area the better are people prepared and the engineering
facilities in the area are adapted to the associated risk. The adaptation re-
duces in general the consequences. However, in areas where a hazard occurs
less frequently or has never been observed before, already medium intense
hazards can cause high consequences.

Natural hazards evolve at different paces and have a different scale with
respect to the sizes of the affected area. For instance, gravitational hazards
like rock-falls, landslides and avalanches have a very short time period of
sliding land once they are triggered, yet only affecting relatively small areas;
whereas hazards like earthquakes or tsunamis occur also within a very short
time or relatively short time after the triggering event, but the affected area
is relatively large. Slowly emerging hazards like floods (caused by precipita-
tion), bush fires, volcanic ash clouds and tropical storms may induce damages
over considerably large areas. Hazards caused by climatic changes, like the
sea level rise, may evolve over centuries and affect the entire Earth.

In regard to the availability of information on precursors of an emerging
hazard event, there is a significant difference between the types of natural
hazards. For example, earthquakes occur typically without precursors, while
forecasts or several precursors are available before a tropical cyclone strikes.
Other examples for which precursors may be identified are tsunamis. The
triggering event may be an earthquake or a mass movement, which can be
detected, another natural precursor may be the drawback of the water below
the low-tide level.

Department of Civil Engineering - Technical University of Denmark 9
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The possibility to collect information on precursors has the advantage
that in combination with models the impact can be estimated. In cases
the natural hazard event evolves also relatively slowly, then there is some
time to react on the precursors. This is in general not possible for natural
hazards that evolve fast and have no precursors (e.g. earthquakes). For the
fast evolving gravitational hazards mentioned above, there may be precursors
available as long as the regions concerned are under close observation. In this
case processes that cause gravitational hazards, such as precipitation, can be
monitored and used to forecast the triggering event and intensity. However,
once an event is triggered, there is little or no time to react; therefore precau-
tious risk reduction measures have to be undertaken prior to the triggering
of these events.

Considering the aforementioned characteristics, the focus of this thesis
lies on natural hazard events for which

- The time horizon is limited to a relatively short time period (hours or
days).

- The impact and thus the consequences can be quantified.

- The natural hazard develops relatively slowly allowing for reactive de-
cision making.

- Precursors are available to update the probability of an impact and its
intensity.

- A probabilistic hazard model can be formulated to forecast future
states.

Further, in order to support the subjective of this thesis, i.e. to develop an
efficient algorithm for solving the considered real-time decision problems, the
application of this algorithm is illustrated by means of examples. However,
due to the time constraints of the Ph.D. project, the focus thereby lies on
examples that assume various simplifications especially in the consequence
model. For instance, throughout the thesis only cost optimization is con-
sidered. This implies that all consequences are modeled in monetary terms;
i.e. the factors representing life safety or casualties are not considered. As
the time horizons considered in this thesis are relatively short, discounting
of the consequences is not included. In this thesis only random processes
are investigated that are related to the natural processes which may lead to
the considered natural hazard events. Other factors such as the time neces-
sary to complete a risk reducing measure or the resistance of the considered
structure are assumed to be deterministic; both can be included in the frame-
work as additional random processes straightforwardly. The examples and
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the proposed algorithm focus on sequential decision problems, although the
framework introduced in Chapter 3 takes basis in the sequential/pre-posterior
decisions analysis; the extension of the algorithm to the pre-posterior deci-
sion problems (i.e. including sequential Bayesian updating) is left for future
research.

1.4 Approach

In order to achieve the objective, the framework introduced in Nishijima
et al. (2009) is applied to formulate the real-time optimization problem.
This framework takes basis in the sequential/pre-posterior decisions analysis
(Raiffa & Schlaifer, 1961). Given the framework, an algorithm is developed
to solve efficiently the real-time optimization problem. In order to find poten-
tial algorithms, which might be taken as a basis, the following two research
hypothesis were formulated:

1. The considered real-time decision problem is similar to the American
option pricing problem.

2. American option pricing algorithms can be adapted to the real-time
decision problem such that real-time information can be used efficiently.

When approaching the question whether the second hypothesis can be ac-
cepted or not, several algorithms developed for American option pricing were
tested. The most promising algorithm is found to be the Least Squares Monte
Carlo method (herafter abbreviated by LSM method) proposed by Longstaff
& Schwartz (2001). It is shown that the algorithm can be adapted to the
present purpose and constitutes the basis of this thesis.

1.5 Outline

The interrelation of the chapters in the thesis is illustrated in Figure 1.2.
Chapter 2 provides the fundamentals and the state-of-the-art of the re-

search fields relevant to the topic. It further addresses the thesis work in a
relevant context. The relevant research fields are probabilistic risk assess-
ment, decision theory and early warning systems.

Chapter 3 first characterizes the decision problem in consideration and
then introduces the mathematical terms used in the subsequent chapters.
It includes the mathematical terms used in sequential/pre-posterior decision
analysis, the definition of the real-time decision framework and the optimiza-
tion problem.
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Chapter 4 introduces the mathematical background as well as the idea of
the proposed algorithm. This chapter presents the main part of the thesis.
It gives a short introduction to American option pricing, which is relevant in
order to understand the similarities as well as the differences of the decision
problems. Thereafter, the adaptations of the LSM method to the real-time
decision framework as well as an enhanced version of the LSM method are
presented.

Chapter 5 presents a scheme of a decision support system (DSS) which
illustrates the interrelations between the model components. It facilitates the
application of the framework. After the general introduction of the struc-
ture of the DSS, three sections follow. Each section describes a different
model component (module) of the DSS; these are the hazard module, the
consequence module and the optimization module.

Chapter 6 presents two examples that illustrate how the DSS can be ap-
plied in practice. The computational advantage of the adapted algorithm
compared to two traditional methods (a Monte Carlo method and a numer-
ical integration method) is also presented. The findings from the examples
motivate the use of the adapted algorithm for complex sequential decision
problems.

Chapter 7 concludes the work with the discussion and the outlook of
future work.

Three annexe are included which support the context of the thesis. Annex
A illustrates step by step the implementation of the first example introduced
in Chapter 6 by means of numerical results and Matlab code. Annex B
presents two theoretical examples introduced in DeGroot (1970, Chapter
12). These examples show that the proposed algorithm is also applicable to
engineering problems like quality control. Annex C provides two conference
papers that were written during the Ph.D. project.
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Figure 1.3: Outline of the thesis. Thick framed boxes highlight the main
contributions of the thesis.
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Chapter 2

Fundamentals for decision
making within warning systems

The aim of this chapter is to provide the fundamentals and state-of-the-art
of three research areas relevant to the thesis: probabilistic risk assessment
(PRA); decision theory; early warning. Within the first section, the basics of
probabilistic risk assessment are introduced, which is necessary to understand
and model the impact of hazard events and its resulting consequences. This
is important for making optimal decisions. The fundamentals to find the
optimal decision is provided in the second section. The section introduces
the fundamentals to formulate and solve the considered decision problem by
applying the ideas of sequential/pre-posterior decision analysis. The third
section outlines a potential field of application for the proposed framework;
namely within early warning systems for finding an optimal decision on risk
reducing actions in the face of an emerging natural hazard event.

2.1 Probabilistic risk assessment

The overall procedure to identify, analyze and evaluate potential failure sce-
narios and corresponding consequences is referred to as risk assessment. Risk
assessment that includes the analysis of the uncertainties of effects leading
to a failure is named probabilistic risk assessment (PRA).1 Random effects
that lead to a failure of engineering systems can be distinguished in internal
and external hazard processes. Internal hazard processes are for example fa-

1In the literature, similar problems and approaches to those considered in probabilistic
risk assessment are known under the terms probabilistic risk analysis, see e.g. Kaplan &
Garrick (1981), or quantitative risk analysis and probabilistic safety analysis, see Bedford
& Cooke (2001).
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tigue and design errors. External hazard processes include natural hazards,
explosions or collisions. A detailed introduction to PRA can be found, for
example, in Stewart & Melchers (1997), Bedford & Cooke (2001) and Haimes
(2004). In the following the basics are introduced.

2.1.1 Definition of risk

ISO (2009) defines risk as an effect of uncertainty on objectives. The cause of
such effect is considered to be an event that occurs randomly and influences
the performance of an engineering system. The effect can have either positive
or negative consequences related to the objective.

In the present work, the main focus lies on assessing the risk related to
engineering systems due to natural hazard events. A system is “an organized
or connected group of objects” (OED, 2013) and examples of engineering
systems are engineering facilities as well as services of entire infrastructure
systems (e.g. health care, road network, public transportation system, energy
provision). In general, engineering systems provide the built environment
and related services for modern human society. If a random effect such as a
natural hazard event occurs, the related loads can lead to the collapse of the
complete or part of the engineering system or to the discontinuity of its use.
The performance of the engineering system is not ensured thereafter, which
in turn can lead to adverse consequences such as casualties and/or economic
losses.

Since the effect E involves uncertainty, the probabilities pi, i = 1, 2, ..., of
all possible states Ei of the effect need to be assessed for the quantification
of the corresponding risk R.

Technical risk R is defined as the sum over the possible consequences
multiplied by the corresponding probability of occurrence (Faber & Stewart,
2003); i.e. the expected consequences of the random effect E:

R =
∞∑
i=1

piC(Ei) (2.1)

where the function C(Ei) denotes the consequence of Ei. This definition re-
quires that all possible consequences as well as their occurrence probabilities
are well defined and can be quantified.

It should be noted that dependent on the formulation of the decision
problem and information available other tools representing the uncertainty
of effects leading to failure may be relevant. Such tools are the conditional
distribution (Haimes, 2004, Chapter 8), or the whole distribution function of
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the risk is relevant (Kaplan & Garrick, (1981) or Rougier et al. (2013), Chap-
ter 2). Decision problems where e.g. the whole or part of the distribution
function is of interest include the evaluation of scenarios that cause an insur-
ance company to become insolvent. These scenarios are investigated in order
to ensure that the insurance companies have enough capital to cover also
extreme situations up to a certain threshold or probability as it is required
by the Swiss Solvency Test or the Solvency II regulations.

2.1.2 Probabilistic risk assessment

According to Kaplan & Garrick (1981), for a PRA the following three ques-
tions need to be investigated:

1. What can happen? (i.e. What can go wrong?)

2. How likely is it that that will happen?

3. If it does happen, what are the consequences?

PRA is a widely used concept to quantify risk for decision making. Exem-
plary application fields are finance, insurance, medicine and engineering. In
the field of natural hazards, Grossi & Kunreuther (2005), Smith (2013) or
Rougier et al. (2013) provide a description of procedures and methods for
PRA.

2.1.3 Uncertainties involved in probabilistic risk as-
sessment

Even if it would be possible to predict2 where and when a hazard event oc-
curs (including its intensity), the answer to the three questions would not be
straightforward. In order to answer these questions there are more uncer-
tainties involved than those related to the prediction of the time and place of
the hazard event. As a matter of fact in practice the answers to these ques-
tions involve significant uncertainties related to the forecast of the following
variables:

1. The occurrence of the hazard process in time and space

2. The intensity of the hazard process if it occurs

2In this thesis, the following distinction between the terms to predict and to forecast
is made: to predict is to state, on the basis of knowledge or reasoning, that an event will
happen in the future, whereas to forecast is to estimate, conjecture or imaging what is
likely to happen in the future.
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3. The resistance of the considered system

4. The consequences

Furthermore, it is usually the case that the available information involves
also uncertainties, e.g. the data obtained from tests or the information about
the state of precursors is often uncertain due to measurement errors.

In order to incorporate the uncertainties, the related variables must be
modeled in probabilistic manners. Therein the uncertainties should be dif-
ferentiated according to their origin (see e.g. Faber (2005), Der Kiureghian
& Ditlevsen (2009)). Three types are usually considered; these are the inher-
ent natural variability, the model uncertainty and the statistical uncertainty.
The former is often referred to as aleatory uncertainty and the latter two as
epistemic uncertainties.

The distinction between aleatory and epistemic uncertainty is often not
trivial. As Faber (2005) points out, aleatory uncertainty (or a mixture of
aleatory and epistemic uncertainty) about a future state of a system trans-
forms into pure epistemic uncertainty as soon as the future state is observed
or realized. The difference is that before the state is realized, no information
is available to reduce uncertainty, which changes as soon as the state is real-
ized, since information can be collected (e.g. by testing). This implies that
the type of uncertainty depends on the prevailing conditions. The difficulty
of understanding this change of “perspective” is described in Spiegelhalter
(2011). The author uses a simple example flipping a fair unbiased coin. Be-
fore flipping the coin, people are aware of the aleatory uncertainty and that
the state of the coin is unpredictable; after flipping and in case the coin
is still covered (i.e. the state of coin is realized but unknown), people hesi-
tate about the uncertainty in the state, realizing that now the uncertainty
is only related to their lack of knowledge. In Der Kiureghian & Ditlevsen
(2009) it is noted that making this distinction facilitates the understanding
of which uncertainty is reducible (e.g. by testing) and which is less likely to
be reducible.

In practice, the type of uncertainty may be subjective and if considered in
either way it makes no difference (Paté-Cornell, 2012). Where Paté-Cornell
(2012) sees a practical problem is that two popular images, “perfect storms”
and “black swans”, representing aleatory and epistemic uncertainty are re-
lated to terms like “extreme unlikely” and “unthinkable”. She points out
that this relation implies severe consequences when these terms are used as
ubiquitous justification (ex-post) for the failure to apply proactively risk re-
ducing measures, although often precursors are available, but not considered,
when assessing potential hazard events.
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This thesis neglects, for simplification, the transition of aleatory uncer-
tainty to epistemic uncertainty and considers only aleatory uncertainty; im-
plying that only the reduction of the risk associated to aleatory uncertainty
is investigated. Following the above reasoning, this should be understood as
follows: the risk associated to aleatory uncertainty of a random variable is
reduced by “waiting”; i.e. waiting until future states of the underlying ran-
dom variables are realized and can be observed. It is assumed that in case
the state of a random variable is realized, it can be observed without any
uncertainty.

2.1.4 Hazard process assessment

Potential hazard events are typically assessed using historical data and prob-
abilistic models; although historical events show that these tools are not
sufficient to foresee all combinations of effects that have a positive probabil-
ity. The accidents at the Fukushima reactors in 2011 are a recent example
of a chain of effects that were not considered in the design with such inten-
sities. Two interrelated natural hazards, an earthquake and a subsequent
tsunami, resulted in the failure of several safety components which in turn
led to radioactive release. As noted by Ramana (2011), the Fukushima acci-
dents demonstrate the difficulty to understand and model common-cause or
common-mode due to natural hazards. However, Paté-Cornell (2012) notes
that in the case of the Fukushima reactors, the risk related to the conjunc-
tion of the two events with the resulting intensity could have been estimated
based on the prevailing information and existing PRA methods. She points
out that the applied evaluation techniques as well as the negligence of his-
torical events3 led to the severe underestimation of the risk. Although it was
known that such scenarios are likely to occur in the area, it appears that
the responsible decision makers of the reactors decided not to anticipate this
information and retrofit the reactors, see also Acton & Hibbs (2012). Acton
& Hibbs (2012) mention several causes why the owners did not follow inter-
national best practice and standards; (1) there is a focus on seismic safety in
Japanese nuclear industry, leading to the exclusion of other possible hazards;
(2) nuclear professionals may have failed to use the available knowledge; and
(3) many believed that a severe accident was simply impossible. These points
clearly show that it is not only difficult for engineers or scientists to assess

3According to Paté-Cornell (2012) at least two earthquake events resulting in a tsunami
wave above the design criteria occurred. She lists one in the year 869 and in the year 1611.
The information is taken from the National Oceanic and Atmospheric Administration
(NOAA) available online at http://www.ngdc.noaa.gov/hazard.
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unknown hazard processes, but also to communicate the risk associated to
these low-probability events.

However, it can be assumed that as knowledge increases with appropriate
research efforts and more experience, the proportion of failures resulting from
unforeseen natural hazard events (i.e. unknown effects) will decrease over
time (Stewart & Melchers, 1997, Chapter 2).

In order to assess the probabilistic characteristics of a hazard process
related to an engineering system, two random factors have to be considered:
how often does a hazard process occur and what intensity does it have, when
it occurs. The probability of the occurrence and the intensity of hazard
processes can be estimated using historical data and probabilistic models.
The Probabilistic Model Code (JCSS, 2001, Part 2) provides for instance
the basics on the probabilistic modeling of variable loads due to natural
phenomena such as wind load and snow load. An adequate assessment of
the hazard processes, which can be significant for the considered engineering
system, form not only the basis for the related hazard modeling for the
forecast but also for the related consequence assessment.

2.1.5 Consequence assessment

The assessment of consequences requires to understand possible failure states.
In natural hazard events failures are caused by the additional (extreme) loads
that exceed the resistance of the system. The load as well as the resistance
include uncertainties and usually the number of possible combinations is
large. For each combination, the state of the system can be assessed, in
case the physical response is understood and the circumstances are known.
If for instance an engineering facility such as an offshore platform collapses
completely under certain conditions one knows the lost value; whereas, if it
collapses only partially, the resulting consequences are in general subject to
uncertainty (Kübler, 2006, Chapter 4). This uncertainty comes from the lack
of knowledge about the partial collapse; often the details about the degree
of damage and the affected components are unknown.

Consequences are often represented by the number of injured people and
fatalities as well as economic damages, see e.g. EM-DAT (2013). However,
consequences such as cultural and environmental damages, which are often
not straightforward to assess, should also be considered, see Kübler (2006,
Chapter 4), JCSS (2008). These consequences can be further differentiated
between material and immaterial consequences. Assessing the immaterial
consequences is difficult if not impossible. In risk assessment, a third dis-
tinction is made between direct and indirect consequences. Usually the focus
lies on the assessment of direct consequences; whereas often indirect con-
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sequences are simply considered through risk-averse utility functions within
the decision making (JCSS, 2008). This simplification may come at the cost
of relevant information, especially in cases where indirect consequences are
an important factor and the total consequences might be under or overesti-
mated by this crude simplification (Faber & Maes, 2003). Apparently, the
differentiation between the types of consequences is subjective and problem-
atic. The assessment of immaterial and indirect consequences is in general
extremely difficult, especially in the case of system failures with long term
consequences that are hardly understood such as radioactive release.

As mentioned above, the total consequences can be distinguished, amongst
others, between direct and indirect consequences. In the following this dis-
tinction is considered specifically.

Indirect consequences can result directly from the damage state of the
constituent (e.g. cost of business interruption) but also from direct conse-
quences (e.g. in case of radioactive release the death rate may increase later
on due to higher cancer rate). These indirect consequences are collectively
called event imposed indirect consequences. Other indirect consequences are
caused by society and are a result of the perception of system changes; ex-
amples of such indirect consequences include the loss of reputation or cred-
ibility of responsible companies or decision makers. These societal imposed
indirect consequences occur usually after extremely stressful situations where
the decision maker is not fully informed and where a sub-optimal decision is
preferred to no decision (Schubert et al., 2007).

In order to compute the risk related to the possible damage states of
a system, the associated probability distribution needs to be known. This
probability distribution is characterized by the conditional probabilities of
the system being in the damage states given the intensity of the hazard
event. The conditional probabilities can be determined by so-called fragility
curves.

Shinozuka et al. (2000) provide the basic ideas on how to analyze statis-
tically (empirically and analytically) fragility functions. For different hazard
events different fragility functions apply, since the intensity of the hazard
translates to a different type of load on the engineering system. Likewise
for different types of constituents different fragility functions represent their
resistance for the same hazard. Further approaches and examples for the
assessment of fragility functions for seismic hazards can be found in Ravin-
dra (1990), Straub & Kiureghian (2008), Bayraktarli (2009), Jaiswal et al.
(2011) and a vast literature survey is provided in Rossetto et al. (2013); of
wind related hazards see for example Ellingwood & Rosowsky (2004), Li &
Ellingwood (2006), Smith & Caracoglia (2011), Mardfekri & Gardoni (2013)
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and of flood hazards see for example van de Lindt & Taggart (2009), van der
Meer et al. (2009).

Recent work that consider the assessment of fragility curves as well as
the modeling of consequences due to natural hazard events are summarized
in the following. Bayraktarli (2009) investigates an example of seismic risk
assessment for answering the question whether to retrofit a certain type of
house or not. Therein the procedure of computing fragility functions as
well as direct and indirect consequences are illustrated. Schubert (2009)
proposes a generic risk model and considers especially the risk due to rock-
fall. The thesis includes a detailed description on the modeling of direct and
indirect consequences, which is illustrated by means of the risk related to
rock-fall galleries. The modeling of loss of life in flood events is investigated
by Jonkman (2007). Dutta et al. (2003) consider the modeling and estimation
of economic loss due to floods.

Note that, an alternative to the usage of a fragility function is the use
of a so-called damage function. The damage function relates the intensity
of the hazard to the resulting damage state of the considered constituent in
percentage, where 0% refers to no damage and 100% refers to the collapse of
the constituent (see e.g. Grossi & Kunreuther (2005), Dutta et al. (2003)).

So far, only the damage state of the considered system is considered to be
uncertain, but there are more factors that are relevant for the consequence
assessment and include uncertainties. For example, in a tropical cyclone
event the resulting consequences are highly related to the lead time (i.e. the
time before the tropical cyclone strikes) and the time necessary in order to
complete the commenced risk reducing measures (e.g. the time needed to
evacuate people from the affected area) - both, the lead time as well as the
completion time are uncertain. A part of the involved uncertainties arises
from the unpredictable behavior of the affected people, which may lead, for
example, to delays in the evacuation process. For details on the modeling of
evacuations (considering the time period starting from the warning until the
evacuation is completed) it is referred to Jonkman (2007). Other situations
that are difficult to foresee are situations in which important back-up or
rescue facilities and infrastructures may not be in place, because they were
not installed before or failed in the hazard event. These potential situations
make the estimation of the time necessary for completing the risk reducing
measures difficult. Furthermore, the shorter the lead time, the higher are
the costs for risk reducing measures because the time needed to complete the
risk reducing measure may not be sufficient and additional emergency actions
may be necessary. For deciding when it is best to commence an order, the
following extremes need to be considered: for early orders costs may arise
due to unnecessary risk reducing measures or business interruption; whereas
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for late orders more expansive actions may be necessary to actually perform
and complete the risk reducing measures.

2.1.6 Failure probability assessment

The probability of failure of a system is a function of the resistance of the
system and the intensity of the considered hazard process as a variable load.
In practice, the decision problems considered in this thesis are usually so
complex that there are no analytical solutions available to calculate the prob-
ability of a failure state accurately. Methods such as numerical integration
and crude Monte Carlo methods are computational expensive. In order to
obtain an estimate of the probability of failure in a reasonable time, many
approximation methods have been introduced. These methods are included
in the field of structural reliability analysis. Well-known methods are the
first-order reliability method (FORM), the second-order reliability method
(SORM) or simulation based methods (e.g. Monte Carlo methods using im-
portance sampling and subset sampling). A broad overview of structural
reliability methods is described for example in Melchers (2001), Ditlevsen &
Madsen (2005) or Madsen et al. (1986). Note that in complex problems ap-
proximations can lead to large deviations from the true value and therefore to
suboptimal decisions. Furthermore, the assessment of the failure probability
involves similar difficulties as mentioned in the assessment of the hazard pro-
cesses; namely how to assess the probability of an hazard process for which
no historical data is available, instead it is only known that it did not occur
so far.

2.1.7 Methods for probabilistic risk assessment

Well established methods in order to assess the probability of possible states
of a system are event trees and fault trees, see e.g. Paté-Cornell (1984), Faber
(2009). These methods allow to graphically represent possible scenarios. This
facilitates the understanding of common-cause effects. Within these meth-
ods, the failure probabilities are estimated using the methods mentioned in
Section 2.1.6. Given these probabilities the risk is estimated according to
Equation (2.1). For a probabilistic risk assessment, methods such as Monte
Carlo simulation (see e.g. Stroeve et al. (2009)), Bayesian modeling frame-
works (see e.g. Graf et al. (2007), Bayraktarli (2009), Kelly & Smith (2009))
as well as various combinations have been introduced.
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Figure 2.1: Risk assessment spiral. PRA has different objectives in the
three phases of hazard risk management.

2.1.8 Probabilistic risk assessment in risk management

In risk management, PRA is commonly used to collect information regarding
risk reducing measures. Based on this information, decisions are made on the
design and the implementation of the optimal risk reducing measures. The
objective of risk assessment changes relative to the occurrence of a hazard
event; i.e. there is a phase before, during and after the hazard event as
described in JCSS (2008). This follows from the differences in the boundary
conditions and the decision alternatives available during the three phases.
Figure 2.1 illustrates these phases and the related objectives.

In the first phase, before the hazard event, the objective is to obtain
the optimal investment in preventive measures to mitigate the risk through
adequate design (e.g. as given in the codes and standards), retrofit as well as
installation of protective structures. Another objective is how to prepare for
an occurrence with emergency strategies such as an evacuation plan.

The phase during the hazard event is defined as the time period from
the point in time when an emerging hazard is detected until the emergency
response is completed. In this time period the impact of the hazard event
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may occur. The focus is first (before the impact) on the limitation of con-
sequences in the short-term by deciding whether to commence risk reducing
measures such as warnings, evacuation orders or shut-down of operations.
Then immediately after the impact the objective is to define and implement
rescue, evacuation and first-aid strategies.

After the hazard event, the priority is set on the recovery of the affected
infrastructures and/or facilities. This includes the rehabilitation of the dam-
ages and recovering functionality.

In Figure 2.1 the spiral form is chosen to illustrate the state of knowl-
edge. It should increase through learning from the performance of the risk
management related to the hazard event. The learning process is especially
important, when the “spiral” comes back again to the state where decisions
are made about risk mitigation and preparation for the next hazard event.
This phase is somehow similar to the phase before the impact but with in-
creased knowledge.

2.2 Decision theory

Decision theory provides the mathematical formulation of the procedure to
find an optimal decision among two or more decision alternatives. In engi-
neering, many decisions are made based on (probabilistic) risk assessment.
Probabilistic concepts and decision theory provides the foundation to make
optimal and consistent decisions for planning, designing, operating and man-
aging engineering systems; see e.g. Benjamin & Cornell (1970), Ang & Tang
(2007), Faber (2012). The objective is to maximize the overall life cycle ben-
efit under constraints such as the fulfillment of legislative safety requirements
and budget limits. However, in the face of an emerging natural hazard the
objective is focused on minimizing the consequences.

2.2.1 Components of decision making

Three components are relevant in any decision problem:

1. The state of nature

2. The set of decision alternatives

3. The utility function

The state of nature is unknown and characterizes the decision problem.
Within the context of decision problems related to engineering systems sub-
ject to natural hazard events, examples are (i) the state of an offshore plat-
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form in a tropical cyclone event describing whether the offshore platform col-
lapses or not; (ii) the state of a city in a storm event describing whether the
amount of precipitation leads to flooding or not; and (iii) the state of a habi-
tat subject to extreme temperature whether temperature leads to fatalities
or not. Typically, the development of the natural processes that characterize
the natural hazard and thus the state of nature cannot be influenced by the
decision maker; however the related consequences can be reduced through
adequate measures. The state of nature is denoted by the random variable
Θ.

The set of decision alternatives, denoted by A, represents possible actions
from which the decision maker can choose. In the phase before a natural haz-
ard event emerges, risk mitigation measures include retrofitting of existing
buildings, the construction of dikes or tsunami walls. In the face of an emerg-
ing natural hazard event, immediate actions include risk reducing measures
such as evacuation and shut-down of operations.

The utility function related to a decision maker represents her preferences
over the consequences resulting from the state of nature and the decision
alternative. A realization U(a, C(θ, a)) of the utility is a function of the
decision a and the consequence C(θ, a) related to the state of nature Θ = θ.
The utility function should be consistent with the choice of decisions. This
is guaranteed by the axioms of utility given by von Neumann & Morgenstern
(1944). For instance, from the axioms it follows that if the decision maker
prefers decision alternative a(2) to a(1) and a(3) to a(2), then she prefers a(3)

to a(1) and the utility function must be defined such that

U(a(1), C(θ, a(1))) < U(a(2), C(θ, a(2))) < U(a(3), C(θ, a(3))) (2.2)

The consistency and the rationality of the choice of a decision are provided
by the axioms and the findings of Savage (1954). Under the assumption of
rational decision making the optimal decision a∗ is the one that maximizes
the utility U(a, C(·, a)); i.e.

a∗ = arg max
a∈A

U(a, C(·, a)) (2.3)

This normative assumption is taken in this thesis; although it has been shown
for example by Kahneman & Tversky (1979) that individuals do not act in
general according to these axioms.

2.2.2 Types of decision making conditions

Following Luce & Raiffa (1957), the decision theory can be applied to three
conditions; that are conditions of certainty, “risk” and uncertainty. When
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solving a decision problem the condition is defined through the choice of
model and the information available or used. Under the first condition each
decision alternative leads to a known consequence; under “risk” condition,
the decisions may lead to several possible consequences but the probability of
their occurrence is given; whereas under the third condition the distributions
are also unknown, i.e. the possible decisions lead to consequences for which
the occurrence probabilities are not given and need to be estimated. In
the present work, the second condition is of relevance; that is, the decision
problem is considered to be under the condition of “risk” as it is assumed that
the distribution of the underlying random variables are known. Therefore the
optimization problem (2.3) is rewritten using the expectation operator E[·]
related to the distribution of Θ:

a∗ = arg max
a∈A

E[U(a, C(Θ, a)] (2.4)

2.2.3 Sequential and pre-posterior decision analysis

In the considered decision problem, the state of nature evolves over time such
that the question arises whether it is optimal to collect further information to
reduce uncertainty or to make a decision immediately. This type of problem
may be treated within the framework of sequential decision analysis, see
e.g. Bellman (1957), or Bayesian decision theory, see e.g. Raiffa & Schlaifer
(1961), DeGroot (1970) and Benjamin & Cornell (1970).

In sequential decision analysis observations are assumed to be obtained
one after the other. After each observation a decision is made, which is
either to choose an action or to take another observation. For further details
see Wald (1947), Wald (1950), Berger (1980). A common approach to solve
sequential decision problems is the so-called Dynamic Programming approach
by Bellman (1957).

The pre-posterior decision analysis is an approach to decide sequentially
whether to conduct, for example, an experiment to gain more information
or not, before one makes another observation. The idea is to compare the
expected utility of making an immediate decision (i.e. without further ob-
servations) and the expected (posterior) utility that is obtained including
possible future observations. This makes pre-posterior decision analysis an
useful technique for risk assessment in general, and in civil engineering in
particular. For example, in the field of civil engineering, it has been utilized
for the assessment of the performance of existing structures and to opti-
mize maintenance plans for the deterioration of structures on the basis of
risk minimization. In these engineering decision problems, prior information
is available and additional information can be “bought” by using different
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methods such as inspection; see Straub (2004) and Kübler (2006). Presently,
the Bayesian pre-posterior decision analysis provides a concept for risk assess-
ment and management of engineered facilities, and generally for engineering
decision making, see JCSS (2008) and Faber et al. (2007a).

The mathematical formulations relevant in the present thesis are given in
Section 3.2.

2.2.4 Methods to solve sequential and pre-posterior
decision problems

An analytical solution is generally not available for practical sequential/pre-
posterior decision problems. Only for a few simple examples an analytical
solution is provided, see e.g. DeGroot (1970, Chapter 12). Two simple exam-
ples, for which the solution is known analytically, are revised in Annex B.2.2.
These examples help to understand the nature of the sequential/pre-posterior
decision problems.

In this thesis sequential/pre-posterior decision problems must be ad-
dressed for which no analytical solution is available. The literature available
on methods that solve such decision problems is extensive. Various solution
approaches have been proposed. A selection of available approaches that
formulate and solve sequential/pre-posterior decision problems includes: de-
cision tree models, Monte Carlo simulation approaches, influence diagrams,
Bayesian inference, neural networks, and in particular reinforced learning to
solve Markov decision processes (policy or value function approach) or par-
tial observable Markov decision processes, stochastic mesh method or the
least-squares Monte Carlo method; these can be found for example in De-
Groot (1970), Jensen & Nielsen (2007), Kjaerulff & Madsen (2008), Puter-
man (1994), Haykin (1999), Powell (2011), Littman (1996), Sutton & Barto
(1998) and Glasserman (2004). These models often assume conditions re-
stricting the application or they introduce crude approximations such as (1)
simplification of a non-stationary stochastic process by a first-order Markov
process or Markov chain; (2) approximation of a continuous random process
by a discretized model; (3) the choice of a finite or infinite time horizon; (4)
reducing the number of decision alternatives available; or (5) reducing the
number of time steps at which a decision can be made.
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2.3 Early warning systems as tool for risk

management

Early warning systems (EWS) are not only an important tool for the risk
management of natural hazard threats, but also for warnings of other hazards
such as fire in buildings (Paté-Cornell, 1986), or the inspection and mainte-
nance of e.g. airplanes (Lakats & Paté-Cornell, 2004), power plants (see e.g.
Renders et al. (1995), Hashemian (2011)), or the prevention of collisions of
vehicles (see e.g. Ding & Zhou (2013), (Wu & Wang, 2000)) or financial crisis
(see e.g. Davis & Emanuel (1991), Ciarlone & Trebeschi (2005), Bussiere &
Fratzscher (2006)). In these examples, often similar characteristics of the
underlying random processes can be found as those described in Section 3.1.

This section introduces the main elements of EWS and gives a brief
overview on literature describing existing EWS with the focus on the ap-
plication to natural hazard events.

2.3.1 Early warning systems for natural hazards

Figure 1.1 in Chapter 1 illustrates the development of consequences in the
world due to natural hazard events in the last 37 years. The increase of
the consequences in the late 20th Century resulted in an increasing aware-
ness of people for the associated risks, which in turn led to an increasing
demand for protection against natural hazard events. Protection can either
be accomplished through implementing risk reducing measures for risk miti-
gation before a natural hazard event occurs or for emergency response during
the event. The latter requires well prepared early warning systems (EWS).
The outcomes of the World Conference on Disaster Reduction held in Kobe,
Hyogo, Japan in 2005, commit “the international community to address dis-
aster reduction and to engage in a determined, results-oriented plan of action
for the next decade” (WCDR, 2013). Its final report, the Hyogo Framework
of Action 2005-2015, prioritizes five actions; among them to “Identify, assess
and monitor disaster risks and enhance early warning” (UNISDR, 2005).
This fostered research and further implementation of EWS, which according
to Rogers & Tsirkunov (2011) has saved many lives and property in recent
years.

2.3.2 Definition and elements of early warning systems

In the list of terminologies of the United Nation International Strategy for
Disaster Reduction UNISDR (2009) an EWS is defined as “the set of ca-
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pacities needed to generate and disseminate timely and meaningful warning
information to enable individuals, communities and organizations threatened
by a hazard to prepare and to act appropriately and in sufficient time to re-
duce the possibility of harm or loss.”

Thereafter it is mentioned that a people-centered EWS integrates four
main elements:

1. Knowledge of risk : Obtained by (probabilistic) risk assessment that
provides relevant information to define priorities for mitigation as well
as response strategies and to design early warning systems.

2. Monitoring, analysis and forecasting of the hazard : Monitoring systems
combined with forecasting models provide timely risk estimates.

3. Communication or dissemination of alerts and warnings : Communica-
tion systems deliver warning messages to the local and regional govern-
mental agencies responsible for the areas that are likely to be affected.

4. Local capability to respond to the warning : Coordination, good gover-
nance and appropriate action plans need to be available beforehand.
Additionally, the affected people should be aware of the potential haz-
ards and accordingly informed or trained what to do in such situations.

Failure of any part of the EWS will imply failure of the whole system. These
elements basically correspond to those of an EWS applied to warn individuals
such as owners of industrial systems (e.g. owner of an offshore platform).

2.3.3 Existing EWS and decision support in EWS

The recent advances in information technology provide new possibilities to
monitor natural processes. Technologies such as sensors, satellite imagery,
radar or automated weather stations provide information and indication
about emerging natural hazards. The information is in principle accessi-
ble from everywhere. This possibility facilitates the idea of a global early
warning system as proposed at the World Conference on Disaster Reduction
in 2005 by the United Nations.

Natural hazards are a global problem affecting developing as well as de-
veloped countries. The EWS utilized in developed countries are in general
well integrated and accepted by the population. This is in general not the
case in developing countries. In these countries, the World Bank and the
United Nations provide technical support and guidance to install EWS in
risk-prone areas. The advances and the state of art of the implementation
of EWS can be found for instance in Zschau & Kuppers (2003), UNISDR
(2010), Rogers & Tsirkunov (2011), UNEP (2012), and Golnaraghi (2012).
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The focus of these reports lies on the application of the aforementioned ele-
ments to people-centered EWS.

Common EWS are installed with priority to save lives, which is ethi-
cal from a societal point of view. However, the framework applied in this
thesis uses as decision criteria the estimate of the expected consequences in
terms of monetary units. Emphasizing economic loss is usually important in
industrial applications where decisions are made on whether to shut down
operations or not. Note that casualties can be considered additionally within
the framework e.g. by constraining the decision optimization to a minimum
acceptable human risk or directly by monetizing loss of life.

The focus of this thesis lies on the decision optimization related to the
first and second element mentioned above; which is to assist decision makers
to find an optimal decision. This part of the EWS is referred to as Decision
Support System (DSS) hereafter. In the following, some existing DSS are
provided for tropical cyclones and for snow avalanche hazards, since these
are considered in the examples in Chapter 6.

DSS for tropical cyclones

Tropical cyclones (TC) are also known in the Atlantic and eastern North
Pacific as hurricanes, in the western North Pacific as typhoons or in India as
cyclones. These are intense rotating storm events that originate over warm
tropical waters (typically 26.5◦C or greater); low atmospheric pressure, high
winds and heavy rainfalls are the main characteristics (Ahrens, 2009, Chapter
15). These characteristics make them to a potential natural hazard event. A
well-known example is Hurricane Katrina in 2005 with over 1’300 estimated
fatalities and an estimated financial loss of $100 billion (Kirlik, 2007).

The information for early warnings facing TC are in general provided
by meteorological agencies such as the Japan Meteorological Agency (JMA)
or the National Hurricane Center (NHC). The relevant information includes
for example the expected time of landfall, the expected intensity and the
potential affected zones. With this information public officials as well as
private decision makers have to decide whether or not to recommend the
evacuation of people in potentially affected areas, to shut-down operations, or
other risk reducing measures. State of the art DSS such as the HURREVAC
software of the Federal Emergency Management Agency (FEMA) provide
regional recommendation for the “evacuation decision time” at each time
step when new information about the present state and future forecasts are
available, see FEMA (2012) for further details. The recommendation is based
on the tropical storm forecast of the NHC and the Weather Service. The
evacuation decision time is defined as the latest point in time by which
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an evacuation should be ordered so that it is completed successfully. It is
computed by subtracting the estimated evacuation time from the estimated
time when the strongest winds of the TC arrive at the considered area. For
the estimation of the arrival time, the worst-case scenario is taken where the
TC hits directly the area; however with the translation speed and wind of
the NHC forecast.

Kirlik (2007) investigates the HURREVAC DSS by means of the evacu-
ation in the case of hurricane Katrina in 2005. He states that HURREVAC
provides information when a decision needs to be made, but not what deci-
sion should be made. Furthermore, HURREVAC provides the information
on worst-case scenarios, which meant in the case of hurricane Katrina that
the entire gulf coast (Florida to Texas) should have been evacuated (Kirlik,
2007). HURREVAC provides the forecast uncertainty in two ways: using
an error cone4 and numerical strike probabilities. In case of New Orleans
the mean track of the cone was directly above New Orleans, yet the strike
probability was estimated by 17% with the 72-hr forecast 56 hours before
the landfall. Kirlik (2007) claims that the actual burden is then on the de-
cision makers to identify a true hazard and to try to avoid false alarm. A
similar study of the EWS in case of hurricane Katrina by Einstein & Sousa
(2007) pointed out that no warning system nor an adequate risk management
plan existed for the actual hazard scenario; meaning that the flooding due
to the dike breaks were not adequately considered as a possible consequence
from the prevailing storm surge in the risk assessment. This example shows
also how important reasonable risk assessment prior to a hazard event is,
which enables decision makers to estimate the risk related to the decision
alternatives available.

Summarizing the findings from the reports mentioned above, HURRE-
VAC has basically three drawbacks: (i) it uses only worst-case storm sce-
narios to compute the evacuation decision time, which is rather conservative
and may lead to false alarm; (ii) it does not provide which decision is op-
timal, decision makers need to interpret the probabilities; (iii) it does not
consider possible future realizations of a hurricane nor consequences or the
corresponding evacuation decision times in the computation of the present
evacuation decision time; i.e. it solves only one-time decision problems5. The
last mentioned drawback actually fails to motivate decision makers to plan

4The error cone represents the average error associated with the NHC forecast track;
see for details FEMA (2012).

5One-time decision problems are decision problems in which one decision can be made
out of the set of terminal decision alternatives; the decision to postpone making a terminal
decision is not available. A simple example of a near-real time decision problem using one-
time decision making is given in Nishijima et al. (2008).
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an evacuation or shut-down of operation in situations in which the informa-
tion indicates to do nothing, however this can be important when the TC
takes an unexpected transition in future times and an evacuation might be
too late or much more expensive due to the reduced time. Regnier (2008)
state similar conclusions and propose a dynamic model, which is similar to
the presented real-time decision framework. However, her optimal decision
is based on a simple statistical hurricane track model, a first-order Markov
chain model, introduced in Regnier & Harr (2006). Using this model, 10’000
hurricane tracks are simulated by crude Monte Carlo simulations. Given
these simulations the total costs related to the decision alternatives are com-
puted. Regnier & Harr (2006) note that the most likely tracks the model
produces are not necessarily close to the track forecast of NHC; i.e. the fore-
cast ability of the model is not sufficient for real-time decision making. The
potential costs are defined as a function of the fixed lead times; outcomes are
compared and discussed. The computational time is not mentioned, however
the authors note that one reason, why the real-time decision making is not
implemented, is that the stochastic model to simulate hurricane tracks is not
designed for forecasting.

DSS for snow avalanches

Snow avalanches are hydro-meteorological natural hazards. They are further
classified as mass movement hazards like rockfall, landslides or debris flow.
In Figure 1.2, it can be seen that snow avalanches do not belong to the
most significant natural hazards on a global scale, but in Switzerland, for
example, they affect important industries such as tourism and transportation.
According to the statistics of SLF (Swiss Federal Institute for Snow and
Avalanche Research) every year about 200 avalanche accidents are reported
and in average 25 people die. In Switzerland the last “avalanche winter” was
in 1998/99, when people actually died in buildings and on roads (SLF, 2013).
During this winter 28 people in inhabited areas were subject to an avalanche,
17 of whom died, 131 snow sport tourists were subject to avalanches, 19 died,
and the economic damage is estimated to be over CHF 600 million (SLF,
2000).

During the winter months, the SLF publishes every day two avalanche
bulletins that include the forecast of avalanche danger levels of the follow-
ing day. The danger levels are illustrated with a colored map. The bulletin
is kept general and no local risk assessment is provided. To establish the
report, information is obtained from observers (about 180 persons), auto-
mated measuring stations (about 100 stations), MeteoSwiss or other weather
agencies and reports of actual avalanches. The statistical software tool NXD
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provides historical data about weather, snow conditions and avalanches; by
using the nearest neighbor approach similar historical events are determined
to estimate the future avalanche danger. Furthermore, it is planned that
software like SNOWPACK and ALPINE3D can be used to simulate physical
processes to evaluate the avalanche danger; both are still in the development
phase and deterministic.

An overview of other models that estimate the avalanche danger is given in
Fromm & Adams (2012). Most of the models mentioned therein, are based on
the nearest neighbor approach. Another approach cited in Fromm & Adams
(2012) is the numerical avalanche prediction scheme proposed by Floyer &
McClung (2003). They apply an extensive variance analysis and a canonical
discriminant analysis to determine the variables that contribute most to the
prediction of an avalanche or non-avalanche day. The variables contributing
most are: the amount of new precipitation, present temperature, snowpack
depth, foot penetration and present temperature trend. These variables are
used to build a set of functions that allow to predict whether a future time
period can be classified as either an avalanche or a non-avalanche period.
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Chapter 3

Real-time decision framework

This chapter consists of five sections. The first section introduces the char-
acteristics of the considered decision problem that are required in order to
apply the proposed framework. Additionally, the section shows the limita-
tions of the frameworks application. The second section provides the general
formulation of sequential/pre-posterior decision analysis, which is followed
by the description of the characteristics and interrelations of the random
variables underlying the decision problem. The proposed real-time decision
framework is introduced in Section 3.4. The differences between the formal
sequential/preposterior decision framework and the real time decision frame-
work are pointed out as well as the proposed adaptations. Thereafter the
mathematical formulation of the optimization problem is provided. Parts of
this chapter are adapted from Nishijima et al. (2009) and Anders & Nishijima
(2011).

3.1 Characterization of the decision problem

The considered decision situation is specified by the following characteristics,
see Nishijima et al. (2009):

1. The hazard process emerges relatively slowly and allows for reactive
decision making.

2. Prior to the impact of the hazard, various types of information can be
obtained, which can be utilized to predict its severity.

3. Decision makers have options for risk reducing measures, which may
be commenced at any time, supported by the information available.

4. The decision making is subject to uncertainties, part of which might
be reduced by collecting further information.
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5. The decisions must be made fast, in (near) real-time.

The decision problems that can be characterized by these five characteristics
are hereafter referred to as real-time decision problems. The characteristics
are interrelated. As these interrelations may not be obvious at a first glance,
they are pointed out in the following in order to facilitate the understanding
of the decision problems considered:

(i) Precursors are in general available only if the hazard process emerges
relatively slowly.

(ii) It is only possible to decide on risk reducing measures if decision makers
are aware of the emerging natural hazard, which is only realistic in
case the hazard process evolves relatively slowly and/or precursors are
available.

(iii) Further information can only be collected if the hazard process and/or
its precursors emerges with such a slow pace that time is available to
postpone risk reducing measures. The available time frame should be
in such a way that another decision can be made before an impact
occurs; otherwise one-time decision making is sufficient.

(iv) The decisions have to be made fast since risk reducing measures take
time until they are completed successfully. How fast the decisions need
to be made is in turn related to the pace of the development of the
natural hazard event or its precursors; i.e. the faster the development,
the shorter is the time period that is available for making a decision
and completing a risk reducing measure.

From the possibility to postpone the decision for risk reducing measures
in order to collect further information the following typical problem arises:
when a decision is postponed, time passes until the next decision is made,
which implies the reduction of uncertainty but also the reduction of available
time for commencing and completing risk reducing measures, in case they
are necessary.

The decision to postpone making a terminal decision and to collect further
information can be described as “waiting”. This “waiting” is often associated
with costs; these information costs consist of two components. The first
component includes those costs that arise when further measurements are
taken or further data collected in order to improve forecasting. The second
component is related to the costs that arise when the time is too short to
complete a risk reducing measure. These costs include costs that would not
arise if the risk reducing measure was commenced and completed in time. For
example, this is the case when people have to be evacuated from a flooded
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area, property like vehicles are left in a flood zone, ships are still in a harbor
or offshore platforms are still in operation when a tropical cyclone strikes.

As mentioned in Section 2.1, two types of uncertainty should be dis-
tinguished; i.e. aleatory uncertainty and epistemic uncertainty. Note that,
whereas the reduction of the risk associated to both types of uncertainty is
relevant in general, only the former is considered in this thesis in order to
emphasize the essential ideas in the proposed framework. In the following, it
is briefly described how the risk of both types of uncertainties can be reduced
in principle.

Epistemic uncertainty is reduced by collecting more information to up-
date the probability model representing the random phenomena underlying
the decision problem. As mentioned above, this may involve costs. Hence,
collecting more information is worth undertaking only if the corresponding
expected information costs are smaller than the expected value of the addi-
tional costs arising from a potentially suboptimal decision. In the examples
presented in Chapter 6, the risk associated to aleatory uncertainty may be
reduced by “waiting”. Namely, as time goes by it becomes more apparent
whether the impact of a natural hazard event occurs or not.

By postponing the decision the probability is reduced that the decision
maker makes a suboptimal decision; but, in turn, the probability increases
that risk reducing measures are undertaken too late if they are necessary.
This leads to a trade-off between the risk of making a sub-optimal terminal
decision and the risk of making this decision too late. This trade-off problem
is similar to that of the error type I and II in hypothesis testing. Assuming
that the null-hypothesis is that the hazard occurs in a certain time period,
then error type I stands for rejecting the null-hypothesis when it is true.1 In
this case the initiation of risk reducing measures is too late, insufficient or not
ordered, although the hazard occurs. Whereas error type II represents the
case where risk reducing measures are initiated, when no hazard occurs; i.e.
the case of a false alarm. Sometimes this may also include the cases where
the initiation is a lot too early or excessively. The similarity to hypothesis
testing is mentioned here, as the sequential (decision) analysis introduced in
Section 3.2 can be seen as a sequential hypothesis testing where the sample
size or the time horizon is not fixed in advance.

1For an introduction to hypothesis testing see e.g. Savage (1954), Benjamin & Cornell
(1970), Ang & Tang (2007).
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3.2 Mathematical formulation of the sequen-

tial decision procedure

In order to solve the decision problem that is defined by the characteristics
given in Section 3.1, the sequential/pre-posterior decision analysis provides
the mathematical basis. In this section the general formulation of the se-
quential and pre-posterior decision analysis is presented in accordance with
DeGroot (1970) and Berger (1980). Therein the idea of sequential and pre-
posterior decision analysis is introduced mainly for hypothesis testing and
experimental design. For the purpose of illustration the exemplary decision
problem involved in the quality control of a product series is considered. For
further reading it is referred to Raiffa & Schlaifer (1961) and Benjamin &
Cornell (1970).

As mentioned in Section 2.2, there are three key components in a decision
problem: the state of nature Θ, the set of decision alternatives A and the
utility function U(·, ·). For instance, Θ may represent the quality of a product
series that specifies the decision problem whether to buy the product series
or not.

Let {Yt}t=1,2,... denote a sequence of random variables that can be ob-
served for the estimation of the state of nature. In case of quality control of
a product series, Yt represents the quality of the product that is observed at
time t, assuming that at each time step t = 1, 2, . . . the quality of a product
is observed. The range of samples of Yt is denoted by Yt. Let Yt be the
vector of random variables that can be observed at times s = 1, 2, . . . , t; i.e.
Yt = (Y1, Y2, . . . , Yt). Assume that Yt has the conditional probability den-
sity function (cpdf) ft(yt|θ), conditional on the realization θ of the state of
nature, and the conditional cumulative distribution function Ft(yt|θ) on the
range of samples Y1 × Y2 × · · · × Yt. If the random variables Y1, Y2, . . . are
independent and identically distributed from a common cpdf f(y|θ), then
the cpdf of Yt is

ft(yt|θ) =
t∏

s=1

f(ys|θ) (3.1)

The sequence {Yt}t=1,2,... represents a sequential sample from the cpdf f(yt|θ)
where the observations are taken sequentially. The information available if
no observation is taken is represented by the variables Y 0 and Y0.

The decision problem can be formulated at each time step: is it optimal
to make decision a ∈ A or is it better to wait and take another observation.
In case a decision is made, no further observation can be taken; i.e. the sam-
pling is terminated. Hereafter, these decisions are called terminal decisions.
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procedure

Taking another observation may reduce the uncertainty about the quality
of the product series, but additional costs arise. The total costs depend on
the number n of observations taken and the decision a ∈ A made thereafter.
The number n represents the time step at which a terminal decision taken
and represents the time horizon of the index of the random variable Yt; i.e.
t = 1, 2, . . . , n. In this section n is not assumed to be fixed in advance.

Denote the loss function by

L(a, θ, n) (3.2)

Assuming that the utility function is linear, the loss function L(a, θ, n) is the
sum of the loss L(a, θ) = −G(a, θ) due to decision a and the observation cost
C(n) after n observations are taken. G(a, θ) denotes the gain as a function
of the realization (a, θ). If the utility function is non-linear, then

L(a, θ, n) = −U(a,G(a, θ)− C(n)) (3.3)

Here, only those decision problems are considered for which it can be
assumed that a terminal decision is made after a finite number of observa-
tions. Denote π(θ) the prior density function of the unknown state of nature.
The prior density function π(θ) can be updated when information becomes
available. For instance, if random variables Ys, s = 1, 2, . . . , t are distributed
according to the joint probability density function ft(yt|θ) and y

t
is observed

after t samples, then the posterior density function is obtained by applying
Bayes rule:

π(θ|y
t
) =

ft(yt|θ)π(θ)∫
Θ
ft(yt|θ)π(θ)dθ

(3.4)

The calculation of the posterior density function is straightforward if the ran-
dom variables Ys, s = 1, 2, . . . , t are independent and identically distributed.
In this case the joint probability function ft(yt|θ) is given by Equation (3.1).
In case the update is requested after each observation, Bayes rule can be
applied as follows: assume the prior is now given by π(θ|y

t−1
) and the ob-

servation yt is made at time t, then the corresponding posterior probability
density function is

π(θ|yt,yt−1
) =

f(yt|yt−1
, θ)π(θ|y

t−1
)∫

Θ
f(yt|yt−1

, θ)π(θ|y
t−1

)dθ
(3.5)

Before the optimization problem in the sequential/pre-posterior decision
problem is introduced, note that the set of decision alternatives A changes
over time, which is denoted by the index t; i.e. At. Namely, after a terminal
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decision is made at time t, no further decision is available at time t + 1; i.e.
the decision set At+1 is empty. It is convenient to divide the decision set into
two mutually exclusive subsets:

At = A
(c)
t ∪ A

(s)
t , A

(c)
t ∩ A

(s)
t = ∅

where A
(c)
t consists of one decision alternative a

(0)
t to “wait” and collect fur-

ther information (i.e. A
(c)
t = {a(0)

t }) and A
(s)
t is the set consisting of the

terminal decisions. Note that, in regard to the subsequent application, this
formulation of time dependent decision sets is different to the formulation
introduced in DeGroot (1970) and Berger (1980), yet it represents the same
set of decision alternatives.2

In general, the aim is to maximize the expected utility over the set of deci-
sion alternatives. Since here, the loss or cost is investigated, the optimization
problem is defined using the minimum-operator.3

In case no terminal decision is made up to time t, the optimal decision
a∗t at time t is identified as the one that minimizes the expected loss at time
t conditional on the collection of information up to time t (Nishijima et al.,
2009):

Eθ|y
t
[L(a∗t (yt), θ, t)|yt]

=


min
at∈At

Eθ|y
t
[L(at(yt), θ, t)|yt], for t = 0, 1, ..., n− 1

min
at∈A(s)

t

Eθ|y
t
[L(at(yt), θ, t)|yt], for t = n

(3.6)

where the expectation is computed with respect to the updated distribution.
Furthermore, for t = 0, 1, . . . , n−1 the conditional expected value of the loss
associated to the decision a

(0)
t is defined through the equation

Eθ|y
t
[L(a

(0)
t (y

t
), θ, t)|y

t
]

=

∫
Eθ|y

t
[L(at+1((y

t
, yt+1)), θ, t+ 1)|y

t
]f(yt+1|yt)dyt+1

(3.7)

2DeGroot (1970) introduces a sampling plan in which at least one observation is taken.
The sampling plan is characterized by a stopping set Bn ∈ Y1×Y2×· · ·×Yn, n = 1, 2, . . .
with the following property: sampling is terminated after observing (y1, y2, . . . , yn), if
(y1, y2, . . . , yn) ∈ Bn. Further he introduces a decision rule δ = {δ0, δ1(y

1
), δ2(y

2
), . . .},

where δt(yt
) represents the action to be taken in case sampling is terminated after y

t
is

observed. Whereas Berger (1980) introduces a sequential decision procedure d = (τ, δ)
consisting of the stopping rule τ and the decision rule δ. τ = {τ0, τ1(y

1
), τ2(y

2
), . . .}, where

τt(yt
) represents the probability that sampling is terminated and a decision is made after

y
t

is observed. The decision rule is defined like the one introduced by DeGroot (1970).
3DeGroot (1970) and Berger (1980) use the infimum-operator instead of the minimum-

operator. In fact the infimum is called minimum, if the infimum is an element of the
considered set.

40 Department of Civil Engineering - Technical University of Denmark



3.3 Characteristics of random processes underlying the
decision problem

From Equation (3.7) it can be seen that for the decision a
(0)
t at time t, the

optimization requires to know all optimal decisions at future times, t+ 1, t+
2, . . . , n; hence, backward induction is required.

3.3 Characteristics of random processes un-

derlying the decision problem

In the previous section the general idea of sequential and pre-posterior de-
cision analysis is provided; this section introduces the characteristics and
interrelations of the random processes underlying the decision problem of
consideration. The content is presented in accordance with Nishijima et al.
(2009) and Anders & Nishijima (2011).

Let Z denote the random variable of relevance to the consequences in a
decision problem; e.g. the state whether the (maximum) wind speed exceeds
a certain threshold z̃ during a storm event or not. The exceedance of the
threshold reflects the impact; i.e. if the wind load exceeds the expected wind
resistance of the considered engineering system implies that the storm leads
to consequences. In accordance with Section 3.2 the random variable Z is
similar to the unknown state of nature Θ. However, Z is not fixed at the
beginning; but it is realized latest at the time horizon n. n is the number
of points in time at which observations can be made. For example, the
maximum wind speed during a storm event is defined as a sequence of random
variables {Zt}t=0,1,...,n, where Zt denotes the maximum wind speed in the time
period [0, t]. Let Z be equal to one, in case the emerging storm evolves to a
natural hazard event leading to an impact during the time period [0, n], and
Z equal to zero, otherwise; i.e.

Z =

{
1, if Zτ ≥ z̃ for some τ ∈ [0, n]

0, otherwise
(3.8)

where both cases have a certain probability at each time step as long as Zt < z̃
and t < n. As soon as there is a first time step τ ≤ n for which Zt exceeds the
threshold (i.e. Zτ ≥ z̃), the state of Z is known. However, latest at time t = n,
the state of Z is either equal to one or to zero, which is typically observable;
this is different compared to other sequential/pre-posterior decision problems
such as the ones in quality control or inspection planning. The sequence
{Zt}t=0,1,...,n is called the hazard index and is characterized by a sequence
of random variables (Y0, Y1, ..., Yn), which are required for calculating the
probabilistic characteristics of Z.
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Figure 3.1: Structure and interrelations of the relevant random processes.
The variables characterizing the random phenomena are characterized by a
second-order Markov model. This scheme is adapted from Nishijima et al.
(2009).

Prior to or at the last time step n, a terminal decision must be made.
Denote by En = (E0, E1, ..., En) a sequence of random variables representing
the observed information at the respective time steps. The observed infor-
mation can be utilized to reduce the uncertainty associated with the future
states of Yt and in turn with Z. Note that the variables Z, Zt, Yt and Et,
t = 0, 1, ..., n, can be scalar or vector. Hereafter, if necessary a vector variable
will be denoted by a bold letter to avoid ambiguity.

The illustrative relationship between the variables is shown in Figure 3.1
for the case that Yt is represented by a second-order Markov model. Each
node represents a variable and each directed edge link represents the proba-
bilistic dependency between the connected variables. For instance, the edge
link directed from the node Y0 to the node E0 represents that the random
variable E0 is characterized by the conditional probability P [E0|Y0]. When
more than two edge links are directed to a node, it signifies that the random
variable represented by the node is characterized by the conditional proba-
bility on the variables represented by the nodes from which the edge links are
directed. For instance, in Figure 3.1 the random variable Y2 depends on the
random variables Y0 and Y1 (illustrated by the dashed red arrows); the node
Y2 is characterized by the conditional probability P [Y2|Y1,Y0]. When all
the conditional probabilities are given that correspond to the directed edge
links and the (unconditional) probabilities for the nodes to which no edge
link is directed, conditional probabilities of any variable in the graph can be
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calculated. Hence, the probabilistic characteristics of the random phenomena
underlying the decision problem can be completely defined.

In the present decision framework (introduced in Section 3.4) it is im-
portant to compute the conditional probability of the state of Z conditional
on the information Et and the conditional probabilities of Et+1 given Et,
t = 0, 1, . . . , n. In this thesis, it is assumed that the probabilistic models
and algorithms are available to calculate the conditional probabilities rele-
vant in the considered decision problems. For the examples in Chapter 6 the
conditional probabilities are represented through regression models. How-
ever, in case the conditional probabilities have to be computed, Bayesian
Probabilistic Networks for instance provide the basis to represent the inter-
relations between the relevant variables. Given the structure of the decision
problem, several generic algorithms are available to compute the conditional
probabilities; some are presented e.g. in Jensen & Nielsen (2007).

3.4 Framework for real-time decision support

The framework introduced in this chapter is called real-time decision frame-
work. In the following, the formulation of the framework is introduced in
accordance with Nishijima & Anders (2012).

The real-time decision framework is based on the sequential and pre-
posterior decision procedure presented in Section 3.2. Whereas the principal
ideas of the decision procedure are the same, the following differences between
the decision problems are found:

- The finite time horizon is defined in advance.

- The process Yt, t = 0, 1, . . ., characterizing the phenomena are not
necessarily independent and identically distributed; typical examples
are non-stationary first- or higher-order Markov processes.

- The decision procedure is not only terminated through making a ter-
minal decision, but also in case the state of nature becomes realized;
i.e. also in case the impact of the natural hazard is occurred.

- The observed information et does not necessarily equal the state yt
or a deterministic function of yt. This is the case when observation
or measurement errors are considered; if so, et may be probabilistically
dependent on yt and is characterized by a conditional distribution func-
tion given yt.

The idea of the real-time decision framework is illustrated in Figure 3.2.
The state of the natural hazard changes over time, which is represented
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Figure 3.2: Decision tree representing the real-time decision problem.

through the hazard index {Zt}nt=0. The hazard index is characterized by
the underlying random sequence {Yt}nt=0, as illustrated in Figure 3.1. At
each time step t = 0, 1, . . . , n new information becomes available. The new
information can be utilized to evaluate the present state of nature and to
update the probabilistic characteristics of the underlying random processes.
In case the impact of the natural hazard is realized, no further decision can
be made. A decision is made at time t only if no impact occurred before. The
points in time when a decision can be made are illustrated by the decision
nodes (represented by the squares in the lower part of Figure 3.2). In order
to find the optimal decision, the updated probabilistic characteristics are
utilized to estimate the future states of the underlying random processes as
well as the future states of the hazard index. As mentioned before the set
of decision alternatives At consists of the decision to “wait” a

(0)
t and the set

of terminal decisions A
(s)
t = {a(1)

t , a
(2)
t , . . . , a

(m)
t }. The decision alternatives

are illustrated in the upper part of the figure. An oval after a terminal
decision represents the fact that no further decision can be made and the set
of decision alternatives is thereafter empty; i.e. only the future state of nature
will influence the outcome of the consequences. Whereas, in case the decision
a

(0)
t is made, the square thereafter represents the fact that future decisions

are made that influence the corresponding consequences, in addition to the
future state of nature. However, at the time horizon n the decision to wait
is not available anymore, which implies a terminal decision has to be made.
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Let at denote the vector of decision alternatives taken prior and at time
t; i.e. at = (a0, a1, . . . , at). Making no terminal decision up to time t implies

that at = (a
(0)
0 , a

(0)
1 , . . . , a

(0)
t ).

Assuming a decision is made at time t, then the optimal decision a∗t is
identified as the one that maximizes the expected utility at time t condi-
tional on the collection of the information up to time t. This is analog to
Equation (3.6):

E[Ut(a
∗
t ,Z)|at−1, et]

=


max
at∈At

E[Ut(at,Z)|at−1, et], for t = 0, 1, ..., n− 1

max
at∈A(s)

t

E[Ut(at,Z)|at−1, et], for t = n

(3.9)

where for t = 0 the decision a−1 should be regarded as zero and for the time

steps t = 0, 1, ...., n− 1 and a
(0)
t ,

E[Ut(at
(0),Z)|at−1, et]

=

∫
E[Ut+1(a∗t+1,Z)|at−1, a

(0)
t , et+1]f(et+1|, et)det+1

(3.10)

Here, Ut(at, z) represents the utility function. It is a function of the decision
alternative at and the realization z of the hazard index Z that is relevant for
the decision problem. The vector et = (e0, e1, ..., et) is the collection of the
information available up to time t.

Comments to the real-time decision framework

In the examples presented in Chapter 6, it is assumed that

yt = et, (t = 0, 1, ..., n) (3.11)

namely, the states of the underlying random processes relevant to the decision
problem are known to the decision maker without uncertainty. Thus, the
symbols yt and et are utilized interchangeably. ft(.|et) is the conditional
probability density/mass function of information Et+1 given Et = et. This
simplification is introduced for illustrative reasons. The uncertainty of Et

can be included straightforward in the framework if relevant; however, the
computational cost will increase and the algorithm may convergence at a
slower rate.

The framework can be extended for decision problems where it is rele-
vant that not only one “terminal” decision can be made. In this case the
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“terminal” decisions are not actually terminating the decision procedure but
further decisions can be made at subsequent time steps. The possibility
to make several terminal decisions subsequently is similar to the decision to
wait. Likewise, for the computation of the expected utility the future optimal
decisions have to be known. This can be achieved for example by applying
again least squares methods or implementing the eLSM as a sub-algorithm.

Assuming that a terminal decision needs s time steps taking δ time (one
time interval is defined by [t, t+ δ]) until it is effective, then the latest point
in time τ at which this decision should be included is τ = n − sδ. After
time τ considering this decision does not make sense as long as no benefit
is introduced for commencing the associated risk reducing measure although
it is not fully completed before a hazard impact occurs or before the time
horizon. In practice, it may be relevant to introduce a partial reduction of
consequences as soon as a risk reducing measure is commenced.

Note that, the decision “to do nothing” is introduced for formal reasons.
It results from the fact that at the time horizon the decision to wait (i.e.

a
(0)
n ) is not available. Typically, it is then optimal to do nothing instead of

commencing a risk reducing measure.

3.5 Reformulation of optimization problem

The decision alternatives in A
(c)
t and A

(s)
t have different characteristics for

computing the respective expected utilities. The computation of the ex-
pected utilities for the terminal decisions at ∈ A

(s)
t is straightforward and

can be estimated for example relatively easy with Monte Carlo simulation;
whereas the computation of the expected utility for the decision a

(0)
t ∈ A

(c)
t

is not straightforward. As it is noted in Section 3.2, for the decision a
(0)
t

the optimization requires to know all optimal decisions in the future time
steps. In order to obtain these optimal decisions, it is required to evaluate
all possible future realizations of the underlying random phenomena com-
bined with the decisions available. Usually in practice there is no analytical
solution for the expected utility given in Equation (3.10). The large num-
ber of states that need to be evaluated makes the numerical computation
expansive. The most common approach to solve the optimization problem is
to use backward induction as introduced by Bellman (1957) under the name
dynamic programming. The idea of dynamic programming is to reduce the
optimization problem introduced in Equation (3.10) to smaller optimization
problems that can be easily solved. Starting at the time horizon n, where
the decision problem is straightforward to solve, the estimate of the expected
utility respective to the optimal decision (i.e. the maximized expected util-
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ity) is obtained; moving one time step backward (to time step t = n− 1) the
maximal expected utilities are estimated using the solutions at time t = n.
This procedure is repeated backward in time until the initial time step. Note
that, the more time steps, underlying random phenomena and decision al-
ternatives are considered, the more states of possible combinations need to
be evaluated in order to estimate the expected utility corresponding to the
decision to wait.

In order to emphasize the dynamic programming structure and the dif-
ferences in the computation of the expected utility for the terminal decisions
and the decision to wait, the optimization problem given in Equation (3.9)
is reformulated in accordance with Anders & Nishijima (2012):

qt(at−1, et) =

{
max

{
ht(at−1, et), ct(at−1, et)

}
, for t = 0, 1, . . . , n− 1

ht(at−1, et), for t = n.

(3.12)
Here,

qt(at−1, et) = E[Ut(a
∗
t ,Z)|at−1, et] (3.13)

ht(at−1, et) = max
at∈A(s)

t

lt(at−1, at, et) (3.14)

lt(at−1, at, et) = E[Ut(at,Z)|at−1, et], at ∈ A
(s)
t (3.15)

ct(at−1, et) = E[qt+1(et,Et+1)|at−1, et] (3.16)

The function qt(at−1, et), t = 0, 1, ..., n, is the maximized expected utility,
hereafter abbreviated as MEU. The functions ht(at−1, et) and ct(at−1, et) are
named stopping value function (SVF) and continuing value function (CVF),
respectively.

From the Equations (3.12)-(3.16), it becomes apparent that the evaluation
of the SVF does not require backward induction, whereas the evaluation of
the CVF requires backward induction. However, no matter how complex the
structure of the decision optimization problem may seem, ct(at−1, et) is only
a function of et. Furthermore, if the underlying random process {Yt}nt=0

follows sth-order Markov process, ct(at−1, et) is a function effectively of the
last s information, et−s+1, et−s+2, ..., et.

In this thesis, only cases where one terminal decision can be made are
considered. This implies that if a decision can be made at time t, it is
required that the vector of previous decisions consists only of decision to
wait; i.e. at−1 = (a

(0)
0 , a

(0)
1 , . . . , a

(0)
t−1). Thus the vector at−1 is neglected in the

functions (3.12)-(3.16).
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Chapter 4

Proposed optimization
algorithm

The optimization algorithm proposed in this chapter is the core of the thesis.
The chapter consists of five sections. At first, to understand the basic idea of
the proposed algorithm, its original application to American option pricing is
introduced in the first three sections. The first two sections provide the tech-
nical details and the third a literature review on the application, convergence
rate and previously introduced modifications. The fourth section highlights
similarities as well as differences between the American option pricing prob-
lem and the real-time decision problem. This is followed by the proposal of
the enhanced algorithm that is applicable to the real-time decision problems
considered in this thesis. The main ideas of this chapter are published in
Anders & Nishijima (2011) and Anders & Nishijima (2012).

4.1 Introduction to American option pricing

From a mathematical point of view, the decision problem formulated in the
last chapter is similar to the problems of the American option pricing in the
field of finance, see Anders & Nishijima (2011).

An option is a financial instrument that gives the owner the right to
execute (sell or buy) a predefined number of shares of, for example, a stock
at a predefined execution price and before or at the predefined time horizon n.
An option that can only be executed at the time horizon n is called European
option; whereas an option that can be exercised at any time before or at the
time horizon of the option is called American option.1 The appropriate price

1For early references see e.g. Karatzas (1988) or Cox et al. (1979); for a broad overview
on option pricing in general see e.g. Hull (2012).
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of an American option is identified by comparing the expected (discounted)
benefits gained by executing the option and by not executing (i.e. postponing
the execution); the maximum value of these two benefits is regarded as the
price of the option. In order to assess the expected benefit gained by not
executing the option, the prices of the option (i.e. its expected benefits) at
future times must be known; thus, a backward induction is required.

Let Ys denote the stochastic process with first-order Markov property
that represents the price of an underlying asset at time s, on which an
American option is defined. In the case where Ys is a continuous process
in time, as before, it is approximated by discretization Yt, t = 0, 1, . . . , n.
The probabilistic characteristics of the first-order Markov process Yt is then
characterized by the transition probability density function ft(yt+1|yt) from
Yt = yt to Yt+1 = yt+1, t = 0, 1, . . . , n − 1. The initial state Y0 = y0 is
known.

Define the continuing value function (CVF) ct(yt) and the stopping value
function (SVF) ht(yt) respectively for the American option. The CVF ct(yt)
represents the expected benefit gained by not executing the option at time
t, given the state of the process Yt = yt. The SVF ht(yt) represents the
benefit gained by executing the option at time t, given Yt = yt. Typically,
the value of ht(yt) can be assumed to be analytically known for all times t
given yt; it is calculated by comparing the execution price and the price yt
of the underlying asset at time t. The benefit qt(yt) of the American option
with any given state Yt = yt is then written as:

qt(yt) =

{
max {ht(yt), ct(yt)} , t = 0, 1, . . . , n− 1

ht(yt), t = n
(4.1)

and the CVF can be expressed by:

ct(yt) = E[qt+1(Yt+1)|Yt = yt] (4.2)

With this setting, the pricing of an American option is formulated as: to
identify the maximized expected benefit q0(y0) under the random process Yt

with the known initial state Y0 = y0. This is similar in the decision problem
formulated in Equations (3.9) and (3.10).

For an overview of algorithms available to solve American option pricing
it is referred to Glasserman (2004) and Brandimarte (2006).

4.2 Description of LSM method

The main technical problem of the option pricing formulated in the previous
section is the evaluation of the conditional expectation in Equation (4.2). In
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principle, for any given state Yt = yt at time t (≤ n − 1) the conditional
expected value E[qt+1(Yt+1)|Yt = yt] can be estimated by Monte Carlo Sim-
ulations (hereafter abbreviated by MCS) of the underlying process. However,
in order to estimate the conditional expected value above, the conditional ex-
pected values E[qt+1(Yt+2)|Yt+1 = yt+1] for the individual realizations yt+1

at time t+ 1, which are simulated by MCS starting from the state Yt = yt,
must be evaluated. This requires another set of simulations corresponding
to each of the realizations yt+1. Consequently, the total number of the re-
quired simulations increases exponentially as a function of the number n,
which usually is not computationally feasible. The Least Squares Monte
Carlo method (LSM method) by Longstaff & Schwartz (2001) circumvents
this, by employing a least squares method. In the LSM method, the CVF
c(t,yt) are approximated with certain functions for all time steps, and these
functions are estimated by regression utilizing a single set of realizations of
Yt simulated by Monte Carlo method.

Before introducing how this is performed, it is noted that the CVF at
time t is a function only of yt, because the probabilistic characteristics of the
underlying first-order Markov process at future times is fully characterized
by the state Yt = yt at time t. In the context of American option pricing,
this means that if the price of a stock follows a first-order Markov sequence,
the price of its American option is a function only of the current stock price.
Therefore, under regular conditions (among others that the CVF is square
integrable see Longstaff & Schwartz (2001) and Stentoft (2004b) for detail),
the CVF can be represented by an appropriate set of basis functions Lk(yt),
k = 0, 1, . . ., with respect to the state Yt = yt, i.e.

ct(yt) =
∞∑
k=1

rt,kLk(yt) (4.3)

with the coefficients rt,k, k = 0, 1, . . . for t = 0, 1, . . . , n−1. In the regressions,
this is approximated as:

ct(yt) ≈
K∑
k=1

rt,kLk(yt) (4.4)

with a finite number K of basis functions.
A list of basis functions can be found in Abramowitz & Stegun (1972,

Chapter 22). The coefficients rt,k are estimated using least-squares method;
i.e. by minimizing the sum of the squared distances between the observed
realizations of the dependent variable qt+1(y

t+1
) in the data set and their

fitted values. In matrix form the coefficients are obtained by solving:

rt = arg min
r
||qt+1 − Ltr||22 (4.5)
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Figure 4.1: Illustration of (a) the realizations yit, and (b) the stopping
value functions given the realizations yit of exemplary paths i = 1, 2, 3,
t = 0, 1, . . . , n.

where rt = (rt,1, rt,2, . . . , rt,K), || · ||2 denotes the Euclidean norm, Lt is a b×K
matrix consisting of values of basis functions {Lt,k(·)}Kk=1, which are functions
of realizations of yt, and qt+1 the b× 1 vector of realized MEU in time t+ 1;
i.e. qt+1 = (qt+1(y1

t+1), qt+1(y2
t+1), . . . , qt+1(ybt+1)).

In the following the steps of the algorithm of the LSM method are de-
scribed:

The first step is, by MCS, to generate a set of b independent paths of the
random process Yt according to the transition density function ft(yt+1|yt),
t = 0, 1, . . . , n − 1, with the initial condition Y0 = y0. These realizations
of the paths are denoted by yi = (yi0,y

i
1, . . . ,y

i
n), i = 1, 2, . . . , b. Note that,

yi0 = y0 for all paths. Three exemplary paths are illustrated in Figure 4.1(a).
The second step is to compute the values of the SVF ht(y

i
t) for each

realization yit, t = 0, 1, . . . , n and i = 1, 2, . . . , b; see Figure 4.1(b). In the case
of American option pricing, these values are usually directly given through
a deterministic function.

The next steps are performed backwards in time, since the MEU is defined
backward recursively. The third step is to determine the MEU qn(yin) at
time t = n. At time n, the option expires; hence, the realization of the benefit
qn(yn) for each individual path is determined by qn(yin) = hn(yin) according
to Equation (4.1).

Having obtained the MEU at time step n, the fourth step is to move
one time step backward to t = n − 1. Each realization qn(yin) is related to
the observation yin−1 so that the data set (yin−1, qn(yin)), i = 1, 2, . . . , b, is
obtained. This data set is utilized to approximate

cn−1(yn−1) = E[qn(Yn)|Yn−1 = yn−1] (4.6)

with Equation (4.4) by least squares method, see Figure 4.2. The estimated
CVF is denoted by ĉn−1(yn−1). Here, it should be emphasized that the
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Figure 4.2: Illustration of the estimation of the continuing value function
cn−1(yn−1) given the observations yin−1 of the paths i = 1, 2, . . . , b.

individual realizations qn(yin) associated to the realizations yin−1 are “shared”

to estimate E[qn(Yn)|Yn−1 = yjn−1] (j 6= i), but also to interpolate and
extrapolate the estimates over the support of Yn−1 where no realizations are
available in the simulation.

In the fifth step the approximation of the CVF ĉn−1(yn−1) for time
step t = n − 1 is utilized to determine the realizations of qn−1(yn−1), i.e.
qn−1(yin−1), according to Equation (4.1):

qn−1(yin−1) =

{
hn−1(yin−1), if hn−1(yin−1) > ĉn−1(yin−1)

qn(yin), otherwise
(4.7)

Moving to time step n − 2, each realization qn−1(yin−1) is related to a state
yin−2, such that the data set (yin−2, qn−1(yin−1)), i = 1, 2, . . . , b, is obtained.
Then, in the same way as at time step t = n − 1, the CVF is estimated
(denoted by ĉn−2(yn−2)) and again according to Equation (4.1) the values of
the MEU at time n− 2 are determined

qn−2(yin−2) =

{
hn−2(yin−2), if hn−2(yin−2) > ĉn−2(yin−2)

qn−1(yin−1), otherwise.
(4.8)

This procedure is repeated until time t = 1, such that for all paths the
maximum expected benefit q1(yi1) is obtained.

In the final sixth step ĉ0(y0) is obtained by the average of the realizations
q1(yi1), i = 1, 2, . . . , b, since the initial value of all paths equals y0:

ĉ0(y0) =
1

b

b∑
i=1

q1(yi1) (4.9)

Finally the price of the American option q0(y0) is obtained as ĉ0(y0), which
represents the price of the considered American option.
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4.3 Comments to the application of the LSM

method

Approaches using Monte Carlo simulation combined with regression meth-
ods are proposed by Keane & Wolpin (1994) to solve dynamic programming
problems, and Carriere (1996) as well as Tsitsiklis & Van Roy (1997) for
American option pricing (Longstaff & Schwartz, 2001). In the literature,
it is often mentioned that these methods are similar, yet there are signifi-
cant differences in the performance as the investigations in Stentoft (2012,
2013) illustrate. The author concludes from his investigations that the LSM
method leads to less biased estimators2, especially in cases where multiple
early exercises were considered. Furthermore, the LSM method has been
proven to be flexible in the application to other fields where multiple early
exercises and/or path dependent stochastic processes are relevant. Examples
in which the LSM method worked well include

- The valuation of mortgage-backed securities when the borrowers have
to refinance their credits at a certain rate, see Longstaff (2005).

- The pricing of real options3, see e.g. Gamba (2008) and Alesii (2008).

- For pricing life and pension insurances, see e.g. Andreatta & Corradin
(2003), Bacinello (2008), Bacinello et al. (2010), Bauer et al. (2010).

- The measuring and managing of longevity risk, see Boyer & Stentoft
(2013).

Besides Longstaff & Schwartz (2001), the convergence properties of the
LSM method are investigated in Clément et al. (2002), Moreno & Navas
(2003), Glasserman & Yu (2004) and Stentoft (2004a, 2004b). Their findings
are reviewed in the following.

Longstaff & Schwartz (2001) and Clément et al. (2002) show that the
approximation using the least squares method converges to the true price
as the number K of basis functions (regressors) increases and that for a
fixed number K of basis functions the approximation of the CVF using MCS
converges to the CVF approximated by the basis functions. In Moreno &
Navas (2003) as well as Stentoft (2004a) the convergence is analyzed with

2An estimator of a parameter is called biased if its mean value is different from the true
value of the estimated parameter, see e.g. Faber (2012, Chapter 5.7.2), and this difference
is called bias.

3A real option is similarly defined as an option in Finance; it gives the right to the owner
to decide on exercising the option in the future. However, a real option is often related
to a business decision like an investment. Further details can be found e.g. Schwartz &
Trigeorgis (2001).
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respect to various types of basis functions, increasing degree of the basis
functions and increasing numbers b of paths. Both find that the convergence
of the LSM method may not be guaranteed in general.

Glasserman & Yu (2004) find a relationship between the number b of
paths and the number K of regressors that has to be fulfilled in order to
converge. The relationship is that the number b of paths has to grow expo-
nentially in the number K, considering the worst case convergence for Brow-
nian motions and geometric Brownian motions. This finding is diminished
in Stentoft (2004b). It is shown that the increase of b should be polynomial
in K if the state space of the underlying random processes is bounded; i.e.
for the regression extreme values are neglected. Limiting the state space by
neglecting extreme values is the main difference compared to the approach of
Glasserman & Yu (2004). Gerhold (2011) points out that this is the reason
for the different results of convergence rate, which means that the tails of
the distributions of the underlying random processes cause the results found
in Glasserman & Yu (2004). The assumption of the bounded state space is
a simplification that may have no influence on the result as the lower and
upper bound can be chosen arbitrarily small and large respectively. This
includes also the smallest or larges value of the sampled realizations of the
underlying random processes. Whether this assumption is valid in practice
is, according to Gerhold (2011), not clear and further investigations should
be conducted to answer the question how strong the truncation effects the
convergence rate. However, following the arguments of Stentoft (2004b), he
shows that under mild conditions the result of the LSM method converges
also in general multi-period settings; these conditions include:

- The state space is bounded.

- The CVF is sufficiently smooth.

- The probability is zero that the value of the CVF and the value of the
SVF are equal.

Stentoft (2004b) concludes that in terms of the mean squared error, it is
worth to increase the number b of paths, rather than the number K of basis
functions.

The investigations of Moreno & Navas (2003) and Stentoft (2004a) show
that the result of the LSM method is robust with respect to the choice of
the type of basis function and its degree when applied to relatively simple
American options. Stentoft (2004a) proposes to use simple polynomials with
a relatively low degree (2 or 3), which is efficient considering the computa-
tional time needed for the regression procedure. Similar investigations are
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given in the examples in Chapter 6 of this thesis. The results support the
findings that simple polynomials are sufficient.

The results of the applications in Chapter 6 indicate a bias. The bias is
also observed in the case of American option pricing and is investigated, for
example, in Stentoft (2004a, 2013). In Stentoft (2004a) two types of sources
are identified:

- The approximations of the CVF result in a low bias (i.e. E[q̂0] ≤ q0);
this bias should vanish as the number of regressors increases.

- Using the same paths to estimate the CVF and to calculate the SVF
results in a high bias (i.e. E[q̂0] ≥ q0); this should vanish as the number
of paths increases.

The resulting bias is in general not known and depends on the number b of
paths and the number K of regressors (Stentoft, 2004a). In order to reduce
the bias, Glasserman & Yu (2004) propose to use an independent set of MCS
to estimate the CVF at each decision step, which leads, however, to a higher
computational demand.

As mentioned above the method is relatively robust and flexible, which
allows for modifications while preserving the convergence properties. Among
others the following modifications (compared to the original algorithm pro-
posed by Longstaff & Schwartz (2001)) are proposed in the literature:

- Use of all paths for the estimation of the CVF.

- Application of variance reduction methods for the simulation of the
independent paths.

- Generalization of the underlying random processes to GARCH and to
Lévy processes.

- Application of different types of regression methods to estimate the
CVF.

These modifications are introduced briefly in the following. In the original
LSM method, as proposed by Longstaff & Schwartz (2001), only “in-the-
money” paths are used in the regression to approximate the CVF at each
time step. The “in-the-money” paths denote those paths that have a strictly
positive value at the considered time step. Longstaff & Schwartz (2001) use
only these values for the estimation of the CVF since the decision whether
to exercise the option at time t or not is only relevant if the option has a
positive value. This is equivalent to introducing a lower bound to the region
over which the CVF must be estimated and reduces computational time. In

56 Department of Civil Engineering - Technical University of Denmark



4.3 Comments to the application of the LSM method

this thesis all paths are used, which is in accordance with the investigations
of Clément et al. (2002), Bacinello (2008), Stentoft (2013).

In order to improve the LSM method with regard to the rate of conver-
gence the application of variance reduction methods is investigated among
others by Lemieux & La (2005) and Areal et al. (2008) for American option
pricing. Lemieux & La (2005) apply important sampling, control variates
as well as randomized quasi-Monte Carlo methods. The authors use one ex-
ample for which it turns out that, whereas randomized quasi-Monte Carlo
methods consistently reduce the variance, for importance sampling and a
control variate the reduction is sensitive to the parameters used in the ex-
ample. Further investigations are provided in Areal et al. (2008) by means
of several examples as well as various types of basis functions. Implementing
several quasi-Monte Carlo methods, Areal et al. (2008) find similar results
as Lemieux & La (2005); i.e. the low-discrepancy sequences (Halton (1960),
Niederreiter (1992) and Sobol (1967) sequences) provide better results. They
also applied the low discrepancy sequences introduced in Faure (1982), but
without obtaining an improvement in the convergence rate. Besides that,
they consider the method of moments, control variates, Brownian bridge
and combinations of the considered methods. In general, it turns out that
a relatively specific combination of these methods is preferable for simple
options. In the examples considered in Chapter 6 only the method of anti-
thetic variates4 is applied as suggested in Longstaff & Schwartz (2001) and is
straightforward to implement. Nevertheless, it is assumed that implement-
ing, for example, quasi-Monte Carlo methods or randomized quasi-Monte
Carlo methods may lead to an improvement if well chosen.

An extension to the LSM with regard to the underlying random processes
has been introduced first in Stentoft (2005) to processes with a time-varying
volatility in form of GARCH processes5, in Stentoft (2008) to processes with a
time-varying volatility with conditional skewness and leptokurtosis (GARCH
models with normal inverse Gaussian distribution) and in Gerhold (2011) to
Lévy processes6. The idea of the present thesis to apply the LSM method
to time-dependent higher-order Markov processes was built upon the state

4The definition of antithetic random variables can be found for example in Kroese
et al. (2011): a pair (X,X∗) is antithetic if X and X∗ have the same distribution and are

negatively correlated; antithetic estimator 1/N
∑N/2

i=1 (Xi +X∗
i ) is unbiased with variance

V ar(X)(1 + ρX,X∗)/N where ρX,X∗ is the correlation of X and X∗.
5Generalized Autoregressive Conditional Heteroskedastic processes introduced by

Bollerslev (1986).
6Lévy processes “are essentially stochastic processes with stationary and independent

increments” Applebaum (2009, Chapter 1); examples include Brownian motion, Poisson,
Gamma and Normal inverse Gaussian processes.
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of knowledge of the first two articles; the latter confirms that also other
stochastic processes like Poisson processes and Gamma processes lead to the
convergence of the algorithm.

Kohler & Krzyzak (2012) and to some extent Areal et al. (2008) con-
sider various different regression methods when the LSM method is applied
to price American options with simple Markov processes. For instance,
Kohler & Krzyzak (2012) use non-parametric regression estimates like the
least squares estimate with complexity penalties including spline, neural net-
works, smoothing splines and orthogonal series estimates. They mention that
the bias may decrease by using these methods, but the corresponding compu-
tational time is increased significantly (it is in the range of hours) compared
to the computational time of the original LSM algorithm, which is in the
range of minutes. Considering the significant increase of computational cost,
these methods are not considered in this thesis.

4.4 Similarities and differences to the real-

time decision problem

By comparing the characteristics of the procedure for pricing an American
option described in Section 4.1 in practice with those for making real-time
decisions described in Section 3.1, the following similarities are found:

- Decisions have to be made fast in accordance with the accessibility of
information.

- The decisions are made any time in a predefined finite time frame.

- The decisions are affected by underlying Markov processes.

- At each decision phase the procedure to determine the price of an
American option (cf. Equation (4.1)) is equivalent to the procedure to
determine the MEU (cf. Equation (3.12)); i.e. the price of an American
option when it is exercised and the price when it is not are compared.

In the last mentioned item the choice to exercise the American option corre-
sponds to the choice of making a terminal decision and the associated price
function corresponds to the SVF. The choice not to exercise the American
option corresponds to taking decision a(0) (to postpone) and the associated
price function corresponds to the CVF as formulated in Equation (3.10)
where all the future prices have to be known.

Besides these similarities, there are also differences between the settings
of American option pricing and real-time decision problems:
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- In American option pricing the underlying random phenomena are in
general characterized by stationary, first-order Markov processes, which
is not necessarily the case for real-time decision problems.

- In American option pricing the realizations of the SVF are known,
which is in general not the case for real-time decision problems in en-
gineering applications.

- In American option pricing the set of terminal decisions comprises only
two alternatives: to execute or not to execute the option; whereas in
real-time decision problems more decision alternatives can be relevant.

The second difference is especially important, since this implies that fur-
ther uncertainties are involved in the solution and further computations are
required to estimate the SVF.

4.5 Proposal of eLSM

This section presents the extensions to the LSM method for the purpose of
applying the LSM method to the real-time decision framework. It can be
used to find the optimal decision in the face of an emerging natural hazard
event in (near) real time.

The proposed algorithm is developed over two subsequent steps. The
first step is to introduce the necessary extensions to overcome the differ-
ences. These extensions result in a first adapted version of the LSM method
(Anders & Nishijima, 2011). The first version is presented in the first part
of this section. However, as it is found that the computational performance
of the first version is not sufficient, a further enhancement is applied. This
enhanced version of the adapted LSM method is also the final version that
was introduced in Anders & Nishijima (2012) and is presented in the second
part.

Part 1: Extensions of LSM for real time decision problems

As mentioned in Section 4.4, real-time decision problems in the face of emerg-
ing natural hazard events and the pricing of American options differ mainly
in the following two settings: (1) the underlying random processes may not
be characterized by first-order Markov processes and (2) the SVF, i.e., the
expected utilities corresponding to terminal decisions, are not analytically
known and the evaluation of the stopping values often requires MCS.

Concerning the first difference, the LSM method can be straightforwardly
extended: by approximating the CVF defined by Equation (4.2) with a set of
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basis functions whose arguments include all the states of the underlying pro-
cesses to the extent that these states can fully characterize the probabilistic
characteristics of the processes in the future.

The second difference, concerns the fact that in the real-time decision
problems of consideration the SVF cannot be evaluated analytically, unlike
in the case of American option pricing. Therefore, in the first version of the
extended LSM method MCS are introduced to estimate the SVF, see Anders
& Nishijima (2011). These additional MCS are computationally expensive
if a large number of MCS is required in order to converge. The additional
computational effort increases proportional to n. However, in the examples
presented in Chapter 6 of this thesis, it is found that one additional simulation
may be sufficient in order to estimate the SVF, but to the expense of a greater
bias. The reason why one additional information may be sufficient is that
the information of the simulated and estimated values of the SVF of different
paths is “shared” in two ways: (1) the simulated values of the SVF are used
in the least squares regression for estimating the CVF and (2) at the initial
time step, the average of all b MEU (i.e. implicitly also the simulated values
of the SVF) at time t = 1 are taken to estimate c0(y0). Hence, precise
estimates of the individual SVF are not necessary.

The implementation of the extensions to the LSM algorithm modify the
steps as introduced in Section 4.2 as follows:

- Similar to the first step, the set of b independent realizations (paths)
of the random sequence Yt is generated by MCS. Note that, the simula-
tion is performed according to the transition density function ft(yt+1|et),
t = 0, 1, . . . , n − 1, which is conditional on the information available.
The information at time t includes all relevant historical information;
i.e. if Yt is a Markov process of order s, the relevant information in-
cludes et = (et−s+1, et−s+2, . . . , et). The initial conditions are assumed
to be known Y0 = y

0
.

- In the second step, the SVF is not analytically known, here the SVF
is estimated using additional MCS for each of the realizations {yit}nt=0,
i = 1, 2, . . . , b, see Figure 4.3.

- The third, fourth and fifth step are analog to the steps introduced
in Section 4.2. except that the SVF estimates that are obtained by the
Monte Carlo method are used.

- The sixth step is to determine the value c0(y0), which is equal to
q0(y0). In the real-time decision framework the aim is not only to
determine the value c0(y0) but also to identify which decision is optimal.
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Figure 4.3: Three paths of the underlying random sequence Yt with an
exemplary set of additional MCS to estimate the value of h1(y3

1).

The optimal decision is identified by comparing h0(y0) with c0(y0). The
SVF for the extended LSM is defined according to Equation (3.14), i.e.

ĥ0,MCM(y
0
) = max

a∈A(s)
0

l0,MCM(a,y
0
) (4.10)

In case ĥ0,MCM(y
0
) > ĉ0,MCM(y

0
), it is optimal to stop the decision

procedure and take the best terminal decision; i.e. the one that returns
ĥ0,MCM(y

0
). In case ĥ0,MCM(y

0
) ≤ ĉ0,MCM(y

0
), it is optimal to continue

with the decision process and wait for further information. The abbre-
viation “MCM” in the index of the functions denotes that the functions
are estimated using the extended LSM method described above.

Part 2: Enhanced LSM - an enhanced version of the extended LSM

As mentioned before, in Step 2 of the extended LSM additional MCS are
required to estimate the SVF. These additional MCS are, nevertheless, com-
putationally expensive and the computational effort increases proportional to
the numbers n and b. The enhanced LSM method (hereafter abbreviated by
eLSM method) circumvents this by applying the least squares method also
for the estimation of the SVF. The general idea is explained in the following.

As before the SVF ht,eLSM(y
t
) of the eLSM is defined as maximum of

the conditional expected utilities lt,eLSM(a
(j)
t ,y

t
) with respect to the terminal
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decisions a
(j)
t ∈ A

(s)
t , cf. Equations (3.14) and (3.15). Unlike the approach

described in Part 1, now the functions lt,eLSM(a
(j)
t ,y

t
) are estimated using

the least squares method, similar to the estimation of the CVF described in
Section 4.2; i.e. given the realizations {yi

t
}bi=1 the functions lt,eLSM(a

(j)
t ,y

t
)

are approximated by linear combination of basis functions {Lt,k(·)}Kk=1 and

unknown coefficients r
(j)
t,k , j = 1, 2, . . . ,m:

lt,eLSM(a
(j)
t ,y

t
) ∼=

∑K

k=1
Lt,k(yt)r

(j)
t,k . (4.11)

The coefficients r
(j)
t = (r

(j)
t,1 , r

(j)
t,2 , . . . , r

(j)
t,K)T are estimated using least squares

method, which is given by the following equation in the matrix form:

r
(j)
t = arg min

r
||u(j)

t − Ltr||22 (4.12)

where Lt is the same b × K matrix consisting of values of basis functions
{Lt,k(·)}Kk=1 as used for the estimation of ct(yt) in Equation (4.4). However,

instead of the MEU, here the dependent variable is u
(j)
t , which denotes the

b × 1 vector of observed future utilities ut(a
(j)
t , zi), i = 1, 2, . . . , b, given

the realization zi of the state of nature (as a function of the hazard index)

related to the path i and given the decision a
(j)
t is made at time t. Note that

ut(a
(j)
t , zi) is a realization of lt,eLSM(a

(j)
t ,yi

t
). The realization z1 of the state of

nature related to the path i = 1 is illustrated in Figure 4.4(a). Figure 4.4(b)
illustrates the functional relation between the observations y1

t
in path i = 1

and the observed future utilities ut(a
(j)
t , z1) for t = 0, 1, . . . , n; where z1 is a

function of {y1
t
}nt=0.

Let Z be defined by Equation (3.8); i.e. Z is scalar and equal to one if
the hazard index Zt exceeds the threshold z̃ for t ∈ [0, n], and Z is equal
to zero otherwise. In case Zs < z̃ for all s ∈ [0, t], it follows that Z is

still unknown at time t. Let ut(a
(j)
t , zi) represent the utility that is realized

when decision a
(j)
t is made at time t and the future realizations of path i

are given by {Yi
s}ns=t+1 = {yis}ns=t+1. As described in Section 3.3, given the

realizations {zis}ts=0 the realization of the random variable Z in path i is a
function of the future realizations {zis}ns=t+1 of the hazard index Zt. The
hazard index is characterized, in turn, by the future realizations {yit} of the
underlying random phenomena Yt. Based on the set of realizations {yit}nt=0

illustrated in Figure 4.4(a), Figure 4.4(c) represents the realizations involved
in the estimation of the SVF for t = 1 and Figure 4.4(d) illustrates the least

squares method in order to approximate the function l1,eLSM(a
(j)
1 ,y

1
).
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In order to avoid to introduce a bias by using the least squares estimates
within the determination of the MEU, Equation (4.8) is changed to:

qt,eLSM(yi
t
) =

{
u∗t (a

∗
t , z

i), if ĥt,eLSM(yi
t
) > ĉt,eLSM(yi

t
)

qt+1,eLSM(yi
t+1

), otherwise
(4.13)

where u∗t (a
∗
t , z

i) is the observed future utility of path i for the optimal ter-
minal decision a∗t .
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Chapter 5

Implementation of the decision
support system

In the previous chapters the real-time decision framework with its mathemati-
cal formulation as well as an efficient optimization algorithm are introduced.
This chapter proposes a scheme for a decision support system (DSS) and
represents the second main contribution. The scheme provides the interrela-
tions between the different components evolved in the decision process. Each
component is described in detail in the corresponding section. The scheme
is hereafter used to structure the implementation of the various components
required in the application examples.

5.1 Structure of the decision support system

The structure of the proposed DSS is illustrated by the flowchart shown in
Figure 5.1. The flowchart presents the main components (i.e. the modules
representing the units for the related algorithms and the decision alternatives
available) as well as their interfaces. In the present context, the scheme of
the DSS is designed for one hazard event. This can be extended to multi-
hazard events as described in Schmidt et al. (2011) or as it is embedded in the
HAZUS software provided by the Federal Emergency Management Agency
(FEMA) of the United States of America (FEMA, 2004). Note that both
software tools are designed for decisions for risk mitigation and emergency
or recovery planning; i.e. for the risk assessment far before a hazard impact
or after the impact and not for real-time decision support in the face of an
emerging hazard event.

The modules of the DSS are the hazard, the consequence and the opti-
mizations module; these are described briefly in the following.
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Figure 5.1: Representation of the decision support system with the natural
hazard module, consequence module and the optimization module.
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5.1 Structure of the decision support system

The hazard module for a specific hazard event consists of the following
elements:

- Input parameters: current information on the state of the natural haz-
ard event; location of the considered engineering system; area that is
likely to be affected; considered time horizon n; number b of simula-
tions; number of considered time steps; and if applicable information
about parameters like the roughness length, sea surface temperature
and other hazard specific parameters

- Hazard models: physical and/or statistical functions describing the
future development of the hazard event

- Probabilistic models: functions characterizing aleatory and epistemic
uncertainties involved in the hazard models

- Output parameters: multiple realizations of the future hazard event
(i.e. the realizations {yit}

i=1,2,...,b
t=0,1,...,n of the underlying random variables

and related realizations {zit}
i=1,2,...,b
t=0,1,...,n of the hazard index representing

the intensity of the hazard event)

The consequence module consists of the following elements:

- Input parameters: multiple realizations of the future hazard event; the
decision alternatives available; and the relevant specific information
about the performance of the considered engineering system

- Fragility model: fragility functions describing the probability that a
certain degree of damage (or failure state) is exceeded as a function of
the hazard intensity

- Loss model: consequences as a function of the degree of damage caused
in the hazard event and the choice of decision alternative

- Probabilistic models: functions characterizing the uncertainties involved
in the fragility and loss model

- Output parameters: realizations of the future state of nature (occur-
rence of an impact) and the consequences/losses related to the future
intensities of the hazard event

The optimization module consists of the following elements:

- Input parameters: multiple realizations of the future hazard event; de-
cision alternatives available; realizations of the consequences (as a func-
tion of the decision alternatives and the hazard realizations); and rele-
vant specific information for the optimization method (e.g. the choice
of regression method, type and degree of basis functions, relevant vari-
ables for the estimation of the SVF and CVF)
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- Optimization method: e.g. the proposed eLSM

- Output parameter: optimal decision

In Figure 5.1 the fact that in this thesis only the hazard module includes
uncertainties is shown by leaving out the probabilistic models in the fragility
and the loss model. The probabilistic models can be included straightforward
in the other modules, which may be relevant for practical applications.

Figure 5.2 illustrates a scheme of the proposed eLSM algorithm when
implemented within the DSS. The figure facilitates the understanding of
the structure of the algorithm including the hazard and the consequence
model. The algorithm processes the realizations provided by these models
for the estimation of the SVF and the CVF. By backward induction the
values of the estimated functions are compared to obtain the MEU for each
path and considered time step. At the initial time step t the optimal decision
is obtained based on the current information and the available models.

5.2 Hazard modeling

The hazard module includes all models that describe the random processes
underlying the decision problem and may have a physical impact on the
considered engineering system. The natural hazard processes considered in
the thesis have been introduced before; examples are storm, avalanche, flood,
wild fire and ash clouds. In a more general engineering context, hazard
processes such as the progress of corrosion within a structure, the quality of
a product or the uncertain cost of a construction project could be considered;
however, these processes need to have the characteristics listed in Section 3.1.

In principle, there are two different approaches for probabilistic modeling;
the so-called pure statistical approach and the engineering approach. Note
that this differentiation is not strict, i.e. the engineering approach may in-
volve in addition to physical models also statistical analysis. Whereas the
pure statistical approach relies extensively on the statistical analysis mod-
eling the natural hazard event in probabilistic manners. The pure statisti-
cal approach assumes a direct relationship between the observed data and
the model prediction. By regression analysis the distribution of the process
to be modeled is estimated using possible distribution functions. This ap-
proach is mainly applied in cases where the detailed physical mechanics are
not well understood or too complex to treat in a practical model. Engineer-
ing approaches try to overcome the obvious drawbacks of the pure statistical
approach such as (i) direct observations of extreme events are rare; (ii) ob-
servations may not be available at the desired location; and (iii) scientific
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knowledge and/or engineering experience cannot be included directly. For
this shift an important work is provided by Cornell (1968) in the field of
seismic hazard assessment. An example of a typhoon model based on an
engineering approach for the northwest Pacific region has been introduced
by Graf et al. (2009), which can be used for the estimation of statistics of
insured portfolio losses in the insurance industry. Further examples of com-
bined models for tropical cyclones are run by NHC, e.g. the Statistical Hur-
ricane Intensity Prediction Scheme (SHIPS), cf. Schumacher et al. (2013).
Another example for an engineered approach is provided by Straub & Schu-
bert (2008), they provide a framework for the risk assessment of rock-fall
hazards. Other software tools which facilitate decision making in regard e.g.
design of structures and hazard mitigation planning are available in public
domains. In the United States of America FEMA provides a suite of soft-
ware tools called HAZUS (FEMA, 2004), which facilitates to estimate losses
due to earthquake, hurricane and flood events in the United States of Amer-
ica see http://www.fema.gov/plan/prevent/hazus. Another such software is
RiskScape that provides a framework for the risk assessment of several types
of natural hazards in New Zealand, see https://riskscape.niwa.co.nz. A num-
ber of engineering approaches and corresponding software tools for different
natural hazards have been developed if not fully quantitative; see e.g. Gruber
(1998) for avalanches and see e.g. Crosta & Agliardi (2003) for rock-falls.

Whichever approach is chosen, the components involved in the modeling
of possible future states of the hazard event can be subdivided with regard
to two objectives; these are (1) deterministic forecast models that provide
the future mean development of the hazard event, or its median, and (2)
probabilistic models that represent the uncertainties of the corresponding
deterministic forecast model, as illustrated in Figure 5.1. The uncertain-
ties include aleatory and epistemic uncertainties. Probabilistic models are
also introduced when the deterministic forecast models consist of physical
functions in order to incorporate the forecast uncertainties, as the available
physical functions do not capture the true development of the hazard event.
The realizations generated with the hazard models describe possible future
intensities of the hazard event to which the corresponding loads acting on
the considered engineering system can be assigned. Under these additional
loads the engineering system may experience damage or even collapse.

5.3 Consequence modeling

On the basis of the outputs from the hazard module (i.e. the realizations of
the hazard index and the associated loads) the consequence module provides
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Figure 5.3: Representation of the fragility and the loss model within the
consequence module.

the estimates of the expected total consequences related to each realization
and decision alternative. The resulting consequences depend on the state of
the hazard index, the choice of action and the resistance of the considered
engineering system.

The components of the consequence module are represented in Figure 5.3.
It includes the fragility and the loss model. The fragility model describes the
resistance of the considered engineering system when exposed to a hazard
event. The loss model links the damage state (or failure state) of the en-
gineering system to the resulting consequences (casualties and/or economic
loss).

As mentioned in Section 2.1.5 the resulting consequences can be distin-
guished, amongst others, between direct and indirect consequences. This
distinction is resumed in this section. In the following, the principal descrip-
tion on how to calculate the expected direct and indirect consequences is
presented in accordance with Faber et al. (2007b). The following description
is explained by means of one hazard event with intensity Zt; although hazard
events occur often combined and should be considered so, in general.

Let the engineering system consist of nCON constituents such as physical
components or human activities. Each constituent is associated to a damage
state Ci, which in turn is related to direct consequences cD(Ci). The state
space of the damage state is defined by a set of nCi

discrete, mutually exclu-
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sive states ci,j, i = 1, 2, . . . , nCON, j = 1, 2, . . . , nCi
, which can be extended

to the continuous case.
The probability of the direct consequences cD(Cl) that are related to

the lth damage state Cl of all nCSTA combinations of damage states of all
constituents of the engineering system, conditional on the hazard intensity Zt,
is characterized by the conditional probability P [Cl|Zt]. The risk associated
to the direct consequences that result from the lth damage state is equal
to cD(Cl)P [Cl|Zt]. The risk resulting from all possible direct consequences
defines the vulnerability of an engineering system. It is obtained by the
following equation

RD = EZ

[
nCSTA∑
l=1

cD(Cl)P [Cl|Zt]

]
(5.1)

where EZ [·] denotes the expectation with respect to the probability distribu-
tion of the random intensity Zt of the hazard event. The conditional probabil-
ity P [Cl|Zt] can be computed by using so-called fragility functions. A fragility
function of a constituent represents the probability that the constituent is at
least in a certain damage state given the hazard intensity. It is basically a
cumulative distribution function representing the conditional probability of
the damage state (Stewart & Melchers, 1997, Chapter 4). Three exemplary
fragility functions are illustrated in Figure 5.4. The associated conditional
probabilities P [Cl|Zt] are illustrated in Figure 5.4(b) for one constituent that
is characterized by four damage states, where the damage state ci,0 denotes
the state when no damage occurs and ci,f the state when the constituent
collapses.

Note that the performance of the considered engineering system is not de-
terministic; implying that the threshold when a facility is in a certain damage
state or collapses is uncertain. The uncertainty involved in the estimation of
the fragility function is illustrated in Ravindra (1990). A typical choice to
describe fragility functions is to use a log-normal distribution function.

Indirect consequences cID(Sm, cD(Cl)) are a function of the system state
Sm associated to the indirect consequences and the direct consequences re-
sulting from the damage state Cl of the engineering system. Let nSSTA denote
the number of possible system states. The probability P [Sm|Cl, Zt] charac-
terizes the indirect consequences given the damage state Cl and the hazard
intensity Zt. The associated conditional risk is cID(Sm, cD(Cl))P [Sm|Cl, Zt].
The conditional risk is used to obtain the risk due to indirect consequences,
which is given by the following equation

RID = EZ

[
nCSTA∑
l=1

nSSTA∑
m=1

cID(Sm, cD(Cl))P [Sm|Cl, Zt]P [Cl|Zt]

]
(5.2)
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Figure 5.4: Illustration of (a) three fragility functions for three damage
states ci,j, j ∈ {1, 2, f} and (b) the probabilities pj that the engineering system
is in damage state ci,j, j ∈ {0, 1, 2, f}, conditional on Zt = z. The damage
state ci,0 denotes the case where the engineering system has no damage and
ci,f the case where it fails.

In the following a general approach for the estimation of consequences is
presented when the fragility function is available. Let η = (η1, η2, . . . , ηnCON

)T

denote the vector of inventory associated to the considered engineering sys-
tem. It is assumed that to each constituent one element of inventory can
be related. Further, for each element ηi the corresponding value of loss
Vi,j = V (ηi, ci,j) can be determined given the constituent is in damage state
ci,j. Then the direct consequences cD(Cl) can be estimated by

cD(Cl) =

nCON∑
i=1

Vi,πi(l) (5.3)

where πi(l) denotes the index of the damage state of constituent i correspond-
ing to the lth damage state Cl of all nCSTA combinations of damage states of
all constituents of the engineering system. This representation requires that
the consequences (i.e. the values Vi,j, i = 1, 2, . . . , nCON, j = 1, 2, . . . , nCi

)
have the same units, which is usually monetary units. In general, it is recom-
mended to monetize the value of the consequences, which is straightforward
for goods that are traded but not for others such as human life or the envi-
ronment. For methods to determine the monetary value of goods that are
not traded it is referred to Schubert (2009).

The examples in Chapter 6 do not consider explicitly a certain type of
fragility function nor uncertainties within the consequence model. Instead
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fairly crude models are postulated to emphasize the application of the opti-
mization algorithm. Within the models, it is assumed that only two damage
states exist, these are either “no damage” or “collapse”. The two states are
distinguished through a boundary level z̃ of the intensity of the hazard; i.e.
either the hazard index stays below z̃ then there is no damage or it exceeds
z̃ then the system collapses. Given the damage state the value of realized
consequences depends further on the choice of decisions made before. Ex-
amples of similar assumptions for the consequence model can be found for
example in Katz & Murphy (1997, Chapter 6). Therein sequential decision
making based on two weather and climate states (adverse or not adverse)
is considered. Further, in these examples a lower and an upper boundary
of the adverse consequences are assumed. Such an assumption can be made
for many engineering applications which ensures the square integrability of
the CVF. In cases where such boundaries cannot be defined, often the con-
sequence model can be formulated with functions that are square integrable.
The square integrability of the CVF is a requirement in order to apply the
LSM approach as it is presented in this thesis.

5.4 Optimization method

The optimization module is basically the core of the decision support system.
It provides the optimization algorithm returning the optimized decision and
various interfaces to the hazard module, the consequence module and the
set of decision alternatives, see Figure 5.2. In this thesis the implemented
optimization algorithm is the proposed eLSM. However, depending on the as-
sumptions on the conditions, defining the decision problem, other algorithms
can be applied to the framework. Possible examples that are also applied in
the context of American option pricing include the Stochastic Mesh Method
by Broadie & Glasserman (2004) or the regression method proposed by Tsit-
siklis & Van Roy (2001). However, it seems to be difficult to find a similar
flexible algorithm with the formulation and underlying assumptions so that
it can handle non-stationary higher order Markov-processes.
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Chapter 6

Applications

This chapter illustrates the application of the real-time decision framework
to practical examples. The procedure how to implement the hazard, the
consequence and the optimization module is demonstrated by means of two
examples. The efficiency of the proposed algorithm is also demonstrated with
the application examples. The results support the idea that the proposed
framework is useful in practice.

6.1 Real-time evacuation decisions in the face

of increasing avalanche risk

The aim of this section is twofold: (1) to illustrate the application of the
extended LSM as well as the eLSM and (2) to evaluate the performance
of the eLSM compared to the performance of the extended LSM. For this
purpose, a decision situation is considered in which a decision maker has to
decide whether to order the evacuation of people in the face of an avalanche
hazard, see Anders & Nishijima (2012).

6.1.1 Problem setting

Consider a village located nearby a mountain slope having a critical angle for
snow avalanches. Given the prevailing winter conditions and critical snow
heights, a decision has to be made whether to evacuate people from the village
or not. Assume that the occurrence of a severe avalanche, causing significant
damages to the village, depends only on the additional snow height St; i.e.
St is the hazard index. Further, if St exceeds the threshold s̃ ( = 800 [mm])
a severe avalanche occurs.
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The weather forecast by a meteorological agency predicts that snowfall is
likely within the next hours, which increases the likelihood of the occurrence
of an avalanche. However, the duration and the intensity of the snowfall
are uncertain. New information becomes available every 8 hours from the
meteorological agency; i.e. the time interval between the subsequent decision
phases is set to 8 hours (dt = 8). At each decision phase a decision is
made according to the information available. Three decision alternatives are
assumed: to evacuate the people a(1), not to evacuate a(2), and to wait a(0).
It is assumed that the evacuation takes 16 hours to complete.

6.1.2 Hazard model

Based on the idea in Floyer & McClung (2003) the model to forecast whether
a day is an avalanche or a non-avalanche day is formulated as a function of the
amount of new precipitation, see Section 2.3.3. The model for precipitation is
adapted from a rainfall model developed by Hyndman & Grunwald (2000).
From this rainfall model, the hypothetical probabilistic snowfall model is
obtained by adjusting the amount of rainfall with the ratio of the water
density to the snow density.

Let Xt denote the random sequence representing the amount of snowfall
in the time period (t − dt, t]. Hereafter, this time period is denoted by
(t − 1, t] (i.e. the time unit is dt = 8) and thus {Xt}nt=0 for simplicity. The
distribution of Xt is a mixture comprising a discrete component concentrated
at xt = 0 and a continuous component for xt > 0. The discrete component
of Xt represents the non-occurrence of snowfall and is characterized by the
Bernoulli sequence Jt, whose conditional probability function is:

πt(yt−1,yt−2) = P [Jt = 1|Yt−1 = yt−1,Yt−1 = yt−2]

= l(µt(yt−1,yt−2))
(6.1)

where Yt = (Jt, Xt) and l(·) denotes the logit function, which is defined as
l(µ) = exp(µ)/(1 + exp(µ)) if µ > 0 and l(µ) = 0 otherwise, and

µt(yt−1,yt−2) = α0 + α1jt−1 + α2jt−2 + α3 log(xt−1 + c1)

+ α4 log(xt−2 + c2) + α5t
2 (6.2)

The continuous component of Xt is strictly positive and characterizes the
intensity of the snowfall. If Jt = 1, Xt is described by the continuous condi-
tional density gt(x|yt−1), x > 0. gt(·|·) follows the Gamma distribution with
shape parameter κ and mean νt(yt−1), where

log(νt(yt−1)) = β0 + β1jt−1 + β2 log(xt−1 + c3) + β3t
2 (6.3)
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Figure 6.1: Illustration of the probability density function ft(x|yt−1,yt−2).

Then the transition probability density function ofXt is defined as (see Figure
6.1):

ft(xt|yt−1,yt−2) = (1− πt(yt−1,yt−2))δ0(xt)

+ πt(yt−1,yt−2)gt(xt|yt−1)
(6.4)

where δ0 is the Dirac delta function.

The additional snow height is obtained by multiplying the snow intensity
by the factor Fs, which accounts for the density of the snow; i.e.

St = St(yt) =
t∑

s=0

Fsxt1{js=1} = St−1 + Ftxt1{jt=1} (6.5)

where 1{j=1} denotes the indicator function or characteristic function which
is equal to 1 in the case j = 1 and equal to 0 otherwise. Hence, St (the
hazard index) at time t is characterized by the index St−1 at time t− 1 and
a stochastic process composed of a second- and a first-order Markov process
(Xt and Jt, respectively, in the second term in the rightmost equation of
Equation 6.5). The values of the parameters of the model are summarized
in Table 6.1. The time frame is set to three days; i.e. n = 9.
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Table 6.1: Parameters of the probabilistic snowfall model.

Parameter Value

(j−1, j0, S0) (0, 0, 0)
c = (c1, c2, c3) (0.15, 0.30, 0.5)
α = (α0, α1, ..., α5) (4.50, 0.26, 0.10, 0.50, 0.05,−0.20)
κ 1.50
β = (β0, β1, β2, β3) (1.95,−0.20, 0.25,−0.04)
Fs 10

6.1.3 Consequence model

The consequences are postulated as follows, see also Table 6.2. The conse-
quence is equal to the evacuation cost CEv = 1 in two cases: (1) when the
evacuation has been initiated but the avalanche does not occur, and (2) when
the evacuation is completed before the avalanche occurs. The consequence
CD = 10 representing the total cost of damage is incurred if the avalanche
occurs and the people are not evacuated or the evacuation was initiated too
late and thus is not completed. No consequences arise only in the case when
no evacuation is initiated and no avalanche occurs. The postulated con-
sequence model ensures that the CVF is finite and thus square integrable,
as the minimum consequences are zero and the maximum consequences are
CD = 10.

Table 6.2: Conditions and associated consequences postulated in the conse-
quence model.

Additional snow height St in the time period [0, t]

People St > s̃ = 800[mm] St 6 s̃ = 800[mm]

Not evacuated CD = 10 0
Evacuated CEv = 1 CEv = 1

6.1.4 Decision optimization

Here, the MEU in Equation (3.12) is defined by the expected consequences;
i.e. the minimum operator is used and the inequality signs in Equation (4.7)
and (4.13) are turned. The steps of the optimization algorithm are executed
with the extended LSM and the eLSM (described in Section 4.5 Part 1 and
Part 2, respectively) to obtain the optimal decision.
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Step 1: By MCS, generate b independent realizations of {Yt}nt=1 and Si =
(Si0, S

i
1, ..., S

i
n), i = 1, 2, ..., b, where Sit = Sit(y

i
t
) and yit = (jit , x

i
t). As

noted in Section 4.3 the realizations are obtained using the method of
antithetic variates. The realizations yi1,y

i
2, ...,y

i
n are simulated accord-

ing to the probability density functions in Equations (6.1) and (6.4);
the paths are denoted by yi = (yi−1,y

i
0, ...,y

i
n) with the following ini-

tial values: yi−1 = y−1 = (0, 0), yi0 = y0 = (0, 0) (see Table 6.1) for
i = 1, 2, . . . , b.

Step 2: For each yit the value hit = ht(y
i
t,y

i
t−1) of the SVF is estimated. At

time n = 9 the consequence related to each realization and decision is
assumed to be known; i.e. either sin exceeds the threshold s̃ or not, thus
hin,MCM = hin,eLSM for all i. Further, for t = 1, 2, ..., n− 1

(a) with the extended LSM method : Simulation of additional M paths
yi,m
t

= (yi−1, ...,y
i
t,y

i,m
t+1, ...,y

i,m
n ), m = 1, 2, ...,M , for which the

observed consequences ut(s
i,m, a

(j)
t ), j = 1, 2, are determined.

Here si,m is the realization of the additional snow height related
to the path realization yi,m

t
. Define

l̂t,MCM(a
(j)
t ,yit,y

i
t−1) =

1

M

M∑
m=1

ut(s
i,m, a

(j)
t ) (6.6)

then

ĥit,MCM = min{l̂t,MCM(a
(1)
t ,yit,y

i
t−1), l̂t,MCM(a

(2)
t ,yit,y

i
t−1)} (6.7)

(b) with the eLSM method : Define

ĥit,eLSM = min{l̂t,eLSM(a
(1)
t ,yit,y

i
t−1), l̂t,eLSM(a

(2)
t ,yit,y

i
t−1)} (6.8)

where l̂t,eLSM(a
(j)
t ,yit,y

i
t−1) = Li

t · r
(j)
t ,j = 1, 2. The vector r

(j)
t of

the coefficients related to a
(j)
t is computed by Equation (4.12). Li

t

denotes the ith row of matrix Lt; Lt consists of values of basis
functions with arguments yt, yt−1 and St; e.g. for 1st order linear
basis functions

Lt =


1 x1

t x1
t−1 s1

t

1 x2
t x2

t−1 s2
t

...
...

...
...

1 xbt xbt−1 sbt

 . (6.9)
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For t = 0 set l̂
(j)
0 = l̂0,MCM(a

(j)
0 ,y0,y−1) = l̂0,eLSM(a

(j)
0 ,y0,y−1) =∑b

i=1 u0(si, a
(j)
0 )/b, j = 1, 2.

Step 3: Starting at time n, for both LSM approaches, the values of qin,MCM =
qn,MCM(yin,y

i
n−1) and qin,eLSM are set equal to hin,MCM and hin,eLSM re-

spectively, for all i.

Step 4: Moving to time n−1 the values of cn−1(yn−1,yn−2) are similarly esti-
mated for both approaches using the least squares method as described
in Section 4.2.

Step 5: Then, for each path i the values of qn−1(yn−1,yn−2) are determined:

(a) with the extended LSM method :

qin−1,MCM =

{
ĥin−1,MCM, if ĥin−1,MCM < ĉin−1,MCM

qin,MCM, otherwise
(6.10)

(b) with the eLSM method :

qin−1,eLSM =

{
u∗,in−1, if ĥin−1,eLSM < ĉin−1,eLSM

qin,eLSM, otherwise
(6.11)

where u∗,in−1 denotes the observed future consequence in path i for
the optimal terminal decision a∗n−1.

Moving another time step backward the same procedure is repeated.
This is continued until time t = 1 and for each path qi1,MCM and qi1,eLSM

are determined.

Step 6: Execute Step 6 as it is described in Section 4.5 to determine the
optimal decision at time t = 0: first compute

ĉ0,· =
1

b

b∑
i=1

qi1,· (6.12)

ĥ0,· = min{l̂(1)
0,· , l̂

(2)
0,· } (6.13)

then compare ĥ0,· and ĉ0,·; in case ĥ0,· < ĉ0,· it is optimal to make a
terminal decision, otherwise it is optimal to continue and wait until the
next time step when new information becomes available.
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6.1.5 Results

To evaluate the performance of the eLSM method compared to the ex-
tended LSM method, both approaches are applied to solve the decision
problem of the example. The optimal decision at the initial time is ob-
tained by estimating the expected consequences for the three decision al-
ternatives. Various types and degrees of basis functions are implemented;
e.g. linear, Legendre and Chebyshev polynomials. Applying these basis
functions, it is found that the results do not significantly differ. Thus,
only the results obtained with linear basis functions are presented. Fig-
ures 6.2 and 6.3 illustrates the findings for different parameter settings of
the LSM methods. Therein, Figure 6.2 shows for increasing number b of
paths, b = {102, 3 · 102, 103, 3 · 103, 104, 3 · 104, 105}, the convergence of the
consequence estimates for the three decisions. For each b the estimates are
calculated by the average of 100 computations of the indicated method. To
be able to compare the results 100 different yet fixed sets of random num-
bers are used to generate the paths in Step 1. Hence, the estimates for the
terminal decisions (a

(1)
0 and a

(2)
0 ) are identical for all methods; they are pre-

sented by solid lines with circles respectively squares. The following results
are obtained for b = 105: l̂

(1)
0 = 1.0192, l̂

(2)
0 = 0.8969 and ĉ0,eLSM = 0.8055

with the eLSM method. The optimal decision is a
(0)
0 , which is independent

of the choice of LSM method; see Figure 6.2 . Further, the figure shows
that the estimate ĉ0 obtained by the extended LSM method with M = 10
is biased. Therefore it is not considered in Figure 6.3 which illustrates the
convergence rate in terms of the coefficient of variation (COV) of the esti-
mates ĉ0 as a function of the computational time [sec]. The figure shows a
significant improvement with the eLSM method in terms of computational
time; a reduction up to the factor of 100. The improvement of the computa-
tional time of the eLSM method compared to the extended LSM method with
only one additional MCS comes from the fact that, for each realization yit,
t = 1, 2, . . . , n and i = 1, 2, . . . , b, an additional path yi,ms , s = t, t+ 1, . . . , n
is generated; resulting in bn(n− 1)/2 additional MCS.

6.1.6 Illustration of application

An application of the proposed approach in practice is presented in Figures
6.4 and 6.5. Figure 6.4 illustrates a hypothetical time series of the additional
snow height {St}6

t=0 where the threshold s̃ is exceeded within the time interval
(3, 4]. The eLSM method is applied subsequently for each time step in order
to compute the expected consequences for each decision alternative. The
development of the three expected consequences is illustrated in Figure 6.5.
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Figure 6.2: Comparison of the results of the extended LSM method (with
various numbers M of additional MCS) and eLSM method. Convergence of
the average expected consequences with increasing total number of paths; the
average of 100 independent realizations is presented.

In this figure, it can be seen that the optimal decision at time t = 0 is a
(0)
0 ,

whereas at time t = 1 it is a
(1)
1 given that the snow height increases up to

time t = 1 as shown in Figure 6.4.

6.1.7 Discussion

In this example, the enhancement of the extended LSM (abbreviated by
eLSM) method is applied in the context of real-time decision problems for
evacuation in the face of an avalanche event. It is found that the eLSM
method significantly improves the computational efficiency compared to the
extended LSM method; by the factor up to 100.

6.2 Real-time operational decisions for an off-

shore platform in the face of an emerging

typhoon

The example investigated in Section 6.1 applies a simple statistical hazard
model in order to illustrate the essence of the idea of the eLSM method.
The following example studies the application of the eLSM method, in case
a more complex hazard model is applied; that is a combination of physical
functions and non-stationary higher-order Markov models.
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Figure 6.3: Comparison of the results of the extended LSM method (with
various numbers M of additional MCS) and eLSM method for the decision
to “wait” and the terminal decisions. The expected consequence related to the
terminal decisions is for all algorithms identical, as the same set of Monte
Carlo realizations in Step 1 is used. Illustration of the decreasing COV of
ĉ0 related to the increasing calculation time for one LSM computation as the
number b of paths increases.
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Figure 6.4: A hypothetical time series of St for which the expected conse-
quence of the three decision alternatives are estimated.

Department of Civil Engineering - Technical University of Denmark 83



Applications

0 1 2 3 4 5 6
0

2

4

6

8

10

Time step t

E
x
p
ec

te
d
 c

o
n
se

q
u
en

ce

a
(1)

a
(2)

a
(0)

Figure 6.5: The time series of the estimated expected consequences of the
three decision alternatives corresponding to the hypothetical time series of
St, cf. Figure 6.4. The estimates are calculated with the eLSM method and
b = 105.

6.2.1 Problem setting

A decision maker is faced to decide whether or not the operation of an off-
shore platform should be shut down in the emergence of a typhoon event. The
possible decision alternatives are the terminal decisions of shut-down a(1), no
shut-down a(2) and postponing the terminal decision a(0). When the decision
maker chooses a(0), she can obtain further information on the state of the
typhoon such as position, central pressure, translation speed and direction of
the typhoon. The information is assumed to be provided by a meteorological
agency once every six hours at no cost. It is assumed that the shut-down of
the operation of the platform takes twelve hours after the terminal decision
a(1) is made. In the decision problem considered here, it is assumed that the
decision is terminated within 30 hours. The time frame is discretized into
five time intervals of six hours; i.e. there are six time steps where informa-
tion becomes available and the decisions are made. This assumption seems
reasonable, since the typhoon is very likely to pass through the area relevant
for the platform until the 6th time step (t = 5), see Nishijima et al. (2009).
The initial conditions, assumed in the example, are summarized in Table 6.3.
Figure 6.6 illustrates the initial conditions of the emerging typhoon. It fur-
ther shows the decision process as time goes by with an exemplary typhoon
track.

Since the time frame of this decision problem is relatively short, discount-
ing is not considered. In what follows, the models employed and further
assumptions are explained.
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Table 6.3: Assumed initial conditions.
Parameters Values

Central pressures at t = −2,−1, 0 930, 930, 930 [hPa]
Translation speeds at t = 0 20 [km/h]
Translation angles at t = −1, 0 0 [◦], 0 [◦] (Northwards)
Position at t = 0 (129◦E, 28◦N)
SST at the location of the typhoon at t = 0 27.9 [◦C]
Radius of max. wind speed, RM 100 [km]
Location of the platform (130.3◦E, 31.25◦N)
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Figure 6.6: Illustration of the transition of the typhoon and the location of
the platform (after Nishijima et al. (2009)).
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6.2.2 Hazard model

The typhoon model developed by the group of Risk and Safety at ETH Zurich
is employed for the modeling of the wind speed at the platform induced by
the typhoon; see Graf et al. (2009). The typhoon model is composed of five
components; occurrence model, transition model, wind field model, surface
friction model and vulnerability model. For this example, only the transition
model, the wind field model and the surface model are of relevance. In the
following, a short summary of the transition model employed in the example
is provided in order to show the probabilistic characteristics of the random
processes underlying the decision problem. The transition model describes
the transition of the state of a typhoon probabilistically. It is assumed that
the state of a typhoon is characterized by three parameters: Vt representing
the translation speed [km/h]; Γt the translation angle [◦] and PC,t the central
pressure [hPa]. These parameters are modeled by the following components
of a vector Markov process:

ln(Vt+1) = a1 + (1 + a2) ln(Vt) + a3Γt + εV,t+1 (6.14)

Γt+1 = b1 + (1 + b3)Γt + b2Vt + b4Γt−1 + εΓ,t+1 (6.15)

PC,t+1 = c1 + c2PC,t + c3PC,t−1 + c4PC,t−2 + c5Tt

+c6(Tt+1 − Tt) + εPC ,t+1 (6.16)

where Tt is the sea surface temperature (SST) at the location of the typhoon
at time t. The coefficient vectors a = (a1, a2, a3)T , b = (b1, b2, b3, b4)T and
c = (c1, c2, . . . , c6)T , as well as the distribution of the random terms εV,t+1,
εΓ,t+1 (both are modeled by normal distributions with mean zero and stan-
dard deviations σV,t+1 and σΓ,t+1 respectively) and εPC ,t+1 (modeled by an
empirical distribution) are estimated using historical data. Therein, in order
to incorporate the spatial and temporal inhomogeneity of the probabilistic
characteristics of the typhoon transition, these coefficients and the distribu-
tions are estimated for each individual grid area (5◦ latitude-by-5◦ longitude
grids in the northwest Pacific) and for each month. The hazard index, which
is in this example the 10-minute sustained wind speed u [m/s] at the plat-
form, is calculated by the wind field model and the surface friction model.
Given the state of the typhoon together with the radius of maximum wind
speed RM and the roughness length z0 of the location of the platform, the
wind speed u is calculated deterministically. Note here that the random pro-
cess underlying the decision problem is expressed by Yt = (Vt,Γt, PC,t)

T at
times t, t = 0, 1, ..., n, and it is assumed that the precise state of the ty-
phoon is known at each time, hence, the information Et about the state of
the typhoon is equal to Yt.
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Table 6.4: Conditions and associated costs postulated in the consequence
model.

Wind speed
Platform u > uc = 38[m/s] u 6 uc = 38[m/s]

In operation CD = 10 0
Not in operation CPI = 1 CPI = 1

6.2.3 Consequence model

The platform is assumed to be damaged if the 10-minute sustained wind
speed u at the surface of the location of the platform exceeds the threshold
uc (= 38[m/s]), while the platform is in operation. The expected damage
cost CD is equal to 10. The platform is assumed not to be damaged if the
wind speed does not exceed the threshold, or if the operation of the platform
is successfully shut down, i.e. not in operation when the wind speed exceeds
the threshold. However, in the latter case the cost CPI arises for production
interruption. Here CPI is set equal to 1. The summary of the assumed
consequence model is shown in Table 6.4.

Three cases are possible in which the expected damage cost CD is in-
curred; the first case is the case where the decision a(2) is made and the wind
speed exceeds the threshold uc, the second case is where the decision a(1) is
made but the wind speed exceeds uc before the shut-down is completed, and
the last case is the case where the decision a(0) is made and the wind speed
exceeds uc before the next time a decision is made. No consequences arise
if and only if the decision a(2) is made and the wind speed does not exceed
the threshold. Remember that until time n, either action a(1) or a(2) has to
be chosen. The expected cost CPI for production interruption is incurred if
the decision a(1) is made and the shut-down is completed before the wind
speed u exceeds the threshold (if it does), or if the decision a(1) is made but
the wind speed does not exceed the threshold. In the example, it is assumed
that RM is constant and the current as well as the relevant previous states
of the typhoon are known precisely.

Like in the example presented in Section 6.1, Equation (3.12) is reformu-
lated to

qt(at−1, et) =

{
min

{
ht(at−1, et), ct(at−1, et)

}
, for t = 0, 1, . . . , n− 1

ht(at−1, et), for t = n.

(6.17)
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with the SVF defined as

ht(at−1, et) = min
at∈A(s)

t

lt(at−1, at, et) (6.18)

6.2.4 Decision optimization

Before the steps of the eLSM method are introduced, it is noted that the
underlying random process (i.e. the transition of the typhoon) is a third-
order Markov process (second-order with respect to the movement and third-
order with respect to the central pressure). Thus, the CVF and SVF are
functions of the typhoon states of the last three time steps and written as
ct(yt,yt−1,yt−2) and ht(yt,yt−1,yt−2), respectively. Note that at−1 is herafter

neglected as it is assumed that at−1 = (a
(0)
0 , a

(0)
1 , . . . , a

(0)
t−1). The CVF is

approximated with a set of basis functions with respect to yt,yt−1,yt−2 as in
Equation (4.4). However, it is anticipated that the function may be better
represented with parameters, which themselves are functions of yt,yt−1,yt−2

and physically more meaningful. With trial-and-errors, in this example the
realizations of the translation speed vt, the distance dt between the location of
the typhoon and the platform, and the central pressures pC,t, pC,t−1, pC,t−2 are
adopted. Consequently, the CVF and the SVF are assumed to be represented
by c◦t (xt) and h◦t (xt), respectively, where xt = (vt, dt, pC,t, pC,t−1, pC,t−2). To
obtain the optimal decision in Situation A the eLSM is applied. As described
in Section 4.5 the algorithm is characterized by the following steps.

Step 1: By MCS, generate b independent paths yi = (yi−2,y
i
−1,y

i
0, . . . ,y

i
5),

i = 1, 2, . . . , b with known initial values y0 = (v0, γ0, pC,0)T , y−1 =
(γ−1, pC,−1)T and y−2 = pC,−2. As in the previous example, the method
of antithetic variates is applied in order to reduce the variance. Note
that an individual path, in regard to the typhoon movement, is first
generated as the collection of the realizations of the translation speed
Vt and angle Γt; then, using these realizations together with the ini-
tial location of the typhoon, the locations of the typhoon at times
t = 1, 2, . . . , 5 are identified. Thus, the variable Yt representing the
state of the typhoon at time t and its realizations yit can be (re-) com-
posed, e.g. by the location (longitude and latitude) and the central
pressure, instead of the translation speed, angle and the central pres-
sure. Having simulated the paths, the 10-minute sustained wind speeds
at 10-minute intervals are calculated by interpolating the states of the
realized typhoons. However, note that in the following it is assumed
that the estimated functions depend only on the realizations summa-
rized in xit instead of the realizations yit.
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Step 2: Using the realizations of xt, the values of the SVF are defined by
h◦t (xt) = min{l◦t (a

(1)
t ,xt), l

◦
t (a

(2)
t ,xt)}. The functions l◦t (·, ·) are esti-

mated using Equation (4.7) for t = 1, 2, . . . , n. The estimates are de-

noted by ĥ◦t (xt) and l̂◦t (a
(j)
t ,xt) respectively, j = 1, 2.

Step 3: Starting at the time horizon n, the MEU values q5(xi5) = ĥ◦5(xi5),
i = 1, 2, . . . , b are determined (see Step 3 in Section 4.2).

Step 4: Moving to t = 4 for each individual path i the MEU realization q5(xi5)
is related to the realizations of x4 = (v4, d4, pC,4, pC,3, pC,2) such that
the data set (xi4, q5(xi5)), i = 1, 2, . . . , b is obtained. This set is then
used to estimate c◦4(x4) as in Equation (4.4) by least squares method.
The estimate is denoted by ĉ◦4(x4).

Step 5: Using the estimated CVF ĉ◦4(x4) and the estimated SVF ĥ◦4(x4), the
realizations of the MEU are obtained by:

q4(xi4) =

{
u∗4(xi4), if ĥ◦4(xi4) < ĉ◦4(xi4)

q5(xi4), otherwise
(6.19)

where u∗4(xi4) denotes the observed future consequence in path i for
the optimal terminal decision a∗4 in this path. Moving another time
step backward to time t = 3, the same procedure is repeated; i.e.
applying the least squares method to estimate the CVF ĉ◦3(x3) with
the realizations xi3 and then obtain the MEU q3(xi3), i = 1, 2, . . . , b.
This procedure is repeated until t = 1, hence for each path q1(xi1) is
determined.

Step 6: This step is analogous to Step 6 in Section 6.1.4.

Method using numerical integration

The numerical integration (NI) method as it is applied in this example is
described in detail in Nishijima et al. (2009). The underlying stochastic pro-
cesses are defined through the three regression models given in the Equations
(6.14)-(6.16); each of the processes has a random error term. As described in
Section 6.2.2 the random terms have different distributions. The state space
of each random term is discretized in P partitions with equal probability 1/P .
Then the boundaries of the partitions and the corresponding midpoint (the
center of gravity) is obtained by numerical integration. These midpoints are
used as realizations of the random terms to compute the next realization of
the underlying random processes. Since in the present example three random
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processes are relevant, P 3 states are considered at each time step. Each state
has the probability 1/P 3. This means starting from the initial time step P 3

realizations are computed and for each of them another P 3 realizations are
computed and so forth, until the time horizon. With these realizations the
decision problem is solved backward in time as it is common in a decision
tree. Here, the decision tree has (P 3)n branches. Note that the total number
of considered branches is less, since in case the wind speed threshold uc is
exceeded, the decision process in this branch will stop and all future states
have the same value.

Crude Monte Carlo method

The crude Monte Carlo method (cMCM) that is applied here, can be de-
scribed similar to the NI method introduced above. However, in the cMCM
at each time step C realizations of the underlying random processes are in-
dependently generated according to their probability distribution function.

Extended LSM method with additional MCS

The first version of the extended LSM method, as introduced in Section 4.5
Part 1, is also applied to the considered real-time decision problem.

6.2.5 Results

Following the algorithms described above, the optimal decision at the initial
time step t = 0 is identified. The convergence of the result is illustrated
in Figure 6.7 using the eLSM method. The average c̄0,eLSM of 100 eLSM
realizations with b = 105 (i.e. a total number of 107 paths) of the estimated

expected cost for a
(0)
0 converges to the value 2.0021 for eLSM with a coeffi-

cient of variation (COV) 6.6 · 10−3. The dashed lines above and below the
average represent the boundaries of the interval of the standard deviation.
The expected costs of the two terminal decisions a

(1)
0 and a

(2)
0 are estimated

as 1.8437 and 2.0147 respectively. Thus, the optimal decision is identified as
a

(1)
0 ; i.e. to shut down.

In Figure 6.8 and 6.9 the performance of the eLSM method is compared
to that of the LSM method with additional MCS. Figure 6.8 illustrates the
computational superiority of the eLSM method in terms of the calculation
time needed to obtain a certain level of COV. Therein the computational
time of 100 realizations of the eLSM method or respectively that of the LSM
method with different numbers of additional MCS is illustrated. The de-
crease in the COV values is related to the increase in numbers b of simulated
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Figure 6.7: Convergence of the estimated expected cost for a
(0)
0 , a

(1)
0 and

a
(2)
0 at time t = 0, as a function of the number b of paths. Therein for

each decision alternative the average of 100 independent LSM realizations
is presented by a solid line and the corresponding interval of one standard
deviation by dashed lines.

paths used in the algorithm; the values are b = 103, 3 ·103, 104, 3 ·104, 105. As
in the previous example the calculation time of the LSM method with M = 1
is larger than that of the eLSM method for a given number b. This results
from the higher number of total MCS, where the corresponding computa-
tional time is larger than the computational time required for the additional
computations due to the application of the least squares method. Further,
the computational time of the NI method with P = 3 is shown as a dashed
vertical line. Note, there is no COV value attached with it, since it is not
a stochastic method. The figure shows also the computational time for the
cMCM (vertical black line). The corresponding COV value (0.1908) is not
shown, since it is about three times larger than those of the other methods.

Figure 6.9 illustrates how the LSM method with additional MCS conver-
gences as a function of the number M for decreasing COV (i.e. increasing b);
whereas the eLSM method returns about the same values of the LSM method
with additional M = 1000 MCS. It can be seen that the estimated values
of the LSM method are biased-low and converge as M increases. This may
be explained by the different accuracies in the estimation of the expected
consequences for the terminal decision and that of waiting combined with
the minimum-operator in the equation system to solve.

In the optimization, various sets of basis functions (Linear, Chebyshev,
Power, weighted Laguerre and Hermite polynomials) with different trunca-
tion order K are examined. It is found that in the present example the
numerical result shown above is insensitive to the choice of the basis func-
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Figure 6.8: Coefficient of variation (COV) of the estimated expected con-
sequence for the decision to wait in the initial time step. Comparison of the
eLSM (solid line with crosses) and the LSM with additional branches (other
lines denoted by the different numbers M of additional MCS). The results of
100 independent eLSM/LSM realizations are used. Illustration of the supe-
riority of the eLSM compared to the other methods.

tions and the order K; see Figures 6.10 and 6.11 for the results obtained
with K = 1, 2. The results presented in these figures deviate from each
other less then 1%. Further it seems that the results converge parallel,
which is attributed to the characteristics of the basis functions applied in
the least-squares method. Deviations in the results when applying different
basis function are also documented by Moreno & Navas (2003) for pricing
American options. In the following the detailed results are shown for the
case of first-order linear polynomials.

In order to evaluate the application of the eLSM method for this type
of decision situation two additional Situations B and C with different initial
conditions of the typhoon are considered. The initial conditions are presented
in the Tables 6.5 and 6.6. Since in both situations the typhoon is assumed
to be closer to the considered platform compared to Situation A the time
horizon is set to n = 4. Equivalent to situation A, the NI method and
cMCM are performed to obtain benchmark values.

In Table 6.7 the results of NI, cMCM as well as the LSM method with
M = 1 additional MCS and the eLSM method (b = 100’000) are summa-
rized. The estimates corresponding to the three decision alternatives are
shown. In the case of the eLSM method and the LSM method with M = 1
additional MCS, the estimates of the expected cost corresponding to the ter-
minal decisions are calculated using the average of the b paths. These paths
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Figure 6.9: Coefficient of variation (COV) of the estimated expected con-
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K = 1.
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Figure 6.11: Results of eLSM obtained with different types of basis functions
(Linear, Chebyshev, Power, weighted Laguerre, and Hermite polynomials) for
K = 2.

Table 6.5: Assumed initial conditions for decision situation B.

Parameters Values

Central pressures at t = −2,−1, 0 930, 930, 930 [hPa]
Translation speeds at t = 0 20[km/h]
Translation angles at t = −1, 0 22.5[◦],0[◦] (Northwards)
Position at t = 0 (129.25◦E, 28.5◦N)
SST at the location of the typhoon at t = 0 27.9 [◦C]
Radius of max. wind speed, RM 100 [km]

Location of the platform (130.3◦E, 31.25◦N)

Table 6.6: Assumed initial conditions for decision situation C.

Parameters Values

Central pressures at t = −2,−1, 0 930, 930, 930 [hPa]
Translation speeds at t = 0 24[km/h]
Translation angles at t = −1, 0 0[◦],0[◦] (Northwards)
Position at t = 0 (128◦E, 28.75◦N)
SST at the location of the typhoon at t = 0 27.9 [◦C]
Radius of max. wind speed, RM 100 [km]

Location of the platform (130.3◦E, 31.25◦N)
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are equivalent for both methods since the same seed is used for their simula-
tion in order to be able to compare the results. In order to verify the results
of the eLSM method, different numbers of partitions in the NI and of MCS
in the cMCM are used.

For the NI, in Situation A the sample space of each error term has P = 3
and P = 5 partitions (i.e. 3 and 5 representative values) at each time step;
whereas in the other two situations P = 7 partitions are computational
feasible since the considered time frame is shorter. Equivalent, for the cMCM
C = 27, 125, 343 independent simulations are evaluated at each time step.
In the case of Situation A and C = 27, the cMCM is applied 100 times to
estimate the average value and the corresponding COV; in Situations B and
C this is done also for C = 125. In general, in all cases where it was possible
to simulate 100 realizations the COV is presented in the brackets in Table
6.7.

In Table 6.7 it can be seen that the results of the NI method are not
sufficiently exact to verify the results of the extended LSM nor the eLSMs
method or to give evidence on the bias. The number of partitions is too
low. Therefore cMCM is taken as a benchmark. First of all, it is found
that in all three exemplary situations the cMCM, the LSM method with
additional MCS and eLSM method come to the same optimal decision; that
is in Situation A decision a

(1)
0 and in Situations B and C decision a

(0)
0 . Thus,

it can be concluded that both types of the LSM method are applicable for
these decision situations. Note that in the later situations the typhoon is
so close to the platform that in average it is too late to initiate decision
a

(1)
0 . Nevertheless, these situations are chosen to investigate whether the

eLSM method is able to obtain correct result or not; i.e. the correct expected
consequence for the decision to postpone a

(0)
0 at the initial time step.

In the following, only the expected consequences for the decision a
(0)
0 are of

interest. By comparing the expected consequences obtained with the cMCM
to the eLSM method, it can be seen that the COV value for the cMCM
is over ten times larger, which results in a larger confidence interval (CI).
The 100 realizations of the estimates ĉ◦0(x0) appear to follow approximately
a normal distribution with mean c̄0,cMCM (c̄0,eLSM) and standard deviation
s̄0,cMCM (s̄0,eLSM) the 95%-CI is estimated by[

c̄0,· − 1.96
s̄0,·√
100

, c̄0,· + 1.96
s̄0,·√
100

]
(6.20)

In Situation A the average value for C = 27 is c̄0,cMCM = 1.9549 with 95%-CI
[1.8818,2.0280], whereas that of the eLSM is c̄0,eLSM = 2.0021 with 95%-
CI [1.9995,2.0047]. In Situation B, the average of the cMCM (C = 125)
is c̄0,cMCM = 3.0137 and the 95%-CI [2.9700,3.0604], that of the eLSM is
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c̄0,eLSM = 3.0049 with a 95%-CI [3.0018,3.0080]. Finally in situation C,
one gets an average value c̄0,cMCM = 2.1548 for the cMCM (C = 125)
and the 95%-CI [2.1140,2.1956] and for the eLSM c̄0,eLSM = 2.1389 with
[2.1364,2.1414].

6.2.6 Illustration of application

The application of the eLSM method in case of a typhoon event is presented in
Figures 6.12 and 6.13. Figure 6.12 illustrates the transition of typhoon Bart
(199918) in 1999. Typhoon Bart is taken as a reference event to apply the
DSS with the settings of the aforementioned example. The initial values for
the illustrative example with typhoon Bart are computed with data provided
by JMA; these are the initial location, translation direction, wind speed and
central pressure. The best track of the typhoon is presented in Figure 6.12.
The crosses of the best track represent the time steps t = 0, 1, ..., 9 at which
new information becomes available. Using the typhoon model introduced
above with the data from JMA, it is calculated that between time steps
t = 7 and t = 8 the 10-minute sustained wind speed u at the surface of the
location of the platform exceeds the threshold uc (= 38[m/s]). The time
intervals, within which the wind threshold was exceeded, are illustrated by
the dashed line of the best track in Figure 6.12.

The computations with the eLSM method are performed at time steps
t = 0, 1, ..., 9 in order to obtain for each decision the associated expected
costs and thus the optimal decisions. The development of the expected costs
for each decision alternative is presented in Figure 6.13. In the figure it is
seen that the optimal decision at time steps t = 0 until t = 4 is a

(0)
0 , whereas

at time t = 5 it is a
(1)
0 . Assuming that the evacuation takes 12 hours, starting

the evacuation at time t = 5 implies that the platform is evacuated at time
step t = 7, which is the last time step before the typhoon strikes the platform
according to the illustration in Figure 6.12.

Both figures illustrate how the DSS can be applied for real-time decisions
in the face of a natural hazard event.

6.2.7 Discussion

The evaluation of the results shows that the eLSM method is a promising
algorithm to solve the real-time decision problem considered. However, it
cannot be concluded that it will work efficiently in all problems. Examples
in which the algorithm may fail are decision situations where the hazard
index is characterized by underlying random processes that have jump dis-
tributions or where the consequence model is more complex. The case where
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Figure 6.12: Best track of Typhoon Bart (19918) in 1999. The crosses
illustrate the time steps at which the eLSM method is performed to obtain
the optimal decisions.
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Figure 6.13: The time series of the estimated expected consequences of the
three decision alternatives corresponding to the best track of Typhoon Bart,
illustrated in Figure 6.12. The estimates are calculated with the eLSM method
and b = 105.

the underlying random processes are characterized by jumps may be solved
through continuous approximations or further embedding of the idea of the
LSM/eLSM method. The later mentioned problem is usually the case in
practice when for instance the consequence model is considered to be uncer-
tain or life safety is an issue.

From the results in Situation A it seems that, compared to the result
of the cMCM, the eLSM method is biased high; whereas in Situation B
and C one observes that it is biased low. The observations in Situation A
may seem contradictory to the observation presented in Figure 6.9 In the
figure, the estimated costs computed with the extended LSM method with
additional MCS converge from below to the estimated costs of the eLSM
method. However, it can be assumed that the cMCM underestimates the
true value as the calculations in Situation A are performed with only C = 27
simulations at each time step. Furthermore, comparing the 95%-CI of the
cMCM estimate with the 95%-CI of the eLSM method, it is seen that the
former encloses the latter. The observation of a bias is in accordance with
those made in American option pricing and noted in Section 4.3.
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Chapter 7

Conclusions & Outlook

7.1 Conclusions

The present thesis proposes an algorithm for real-time decision optimization
in the face of emerging natural hazard events. The efficiency of the algo-
rithm is evaluated with two examples. Thereby, it is demonstrated that the
proposed algorithm is efficient enough to be utilized in real-time decision
optimizations in practice. A decision support system is introduced enclos-
ing the proposed algorithm. The applicability and the use of the decision
support system are evaluated also with the two examples, which successfully
demonstrates its usefulness to practical applications.

In the following the originality of the thesis and the limitations of the
proposed algorithm are accounted for. Thereafter, the main findings are
summarized, which is followed by the conclusions.

Originality of the work

The originality of the work is summarized as:

1. The introduction of the Least Squares Monte Carlo method (LSM
method), originally proposed for pricing American options, to the real-
time decision problems in the face of emerging natural hazard events.

2. The development of an efficient algorithm by adapting and extend-
ing the original LSM method to the considered real-time optimization
problems.

3. The development of a general decision support system enclosing the
proposed algorithm.
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Main findings in the thesis

A detailed literature survey on existing algorithms that are used for real-time
decision optimization revealed that there is no efficient algorithm available
in practice so far. The thesis first addressed this lack.

The real-time decision framework was compared to the framework for
American option pricing problems. Thereby, it was found that both frame-
works have common characteristics and follow a similar mathematical for-
mulation. These common characteristics are:

- Decisions have to be made fast in accordance with information avail-
able.

- The decisions can be made any time in a predefined finite time frame.

- The decisions are affected by random phenomena characterized by
Markov processes.

- At each decision phase the conditional expected utility related to the
decision “wait” (i.e. to postpone a terminal decision) is compared to
the conditional expected utility related to a terminal decision.

Both frameworks need to overcome the following computational problem:
the exponential increase in combinations of possible states that need to be
considered. In the research field of American option pricing, many algorithms
have been proposed that tackle this problem. After a detailed survey of these
methods, the LSM method was found to be a promising method to take as
the basis.

In devising the LSM method for the application to the real-time decision
problems in consideration, several differences were found that need to be
addressed. These are summarized in the following:

- In American option pricing the underlying random processes are in
general characterized by stationary, first-order Markov processes; this
is not necessarily the case for the real-time decision problems in consid-
eration. In order to apply the algorithm of the LSM method to cases
of higher-order, non-stationary Markov processes, the basis functions,
which are used in the least squares method, use all the states neces-
sary to fully characterize the conditional expected value over the state
space.

- In American option pricing the value of the option is known when it
is exercised; this is in general not the case for the real-time decision
problems in consideration. Therefore, at first additional Monte Carlo
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simulations are introduced (extended LSM method), which are substi-
tuted later by additional approximations using least squares method
(enhanced LSM (eLSM) method).

- In American option pricing, the set of terminal decisions comprises only
two alternatives: to execute or not to execute the option; whereas in
the considered real-time decision problems more decision alternatives
can be relevant. This can be treated by calculating the expected values
for all terminal decisions alternatives and selecting the optimal one.

The LSM method combined with the three enhancements constitutes the
proposed algorithm.

The proposed algorithm is illustrated by means of two examples. The
first considers a situation where a decision maker has to decide whether to
evacuate people from a village in the face of an avalanche hazard. The second
considers a situation where a decision maker has to decide whether to shut-
down an offshore platform in the face of an emerging typhoon. It is found
that the proposed algorithm can be applied to both considered types of real-
time decision problems. An advantage of the proposed algorithm is that the
computational time is reduced significantly (by a factor up to 100) compared
to the two standard methods; i.e., Monte Carlo simulations and numerical
integration. Further, the proposed algorithm turns out to be flexible and
robust with respect to the choice of parameters and type of basis functions
used in the least squares method.

It was also found that the proposed algorithm is applicable to other types
of real-time decision problems in engineering. In this thesis the application
is demonstrated for decisions in quality control in Annex A.

Limitations

Although the proposed algorithm and decision support system are proved to
be flexible and robust with respect to the implementation, there are limita-
tions in their applications.

First of all, the proposed algorithm is not applicable, as it is now, to real-
time decision problems in which the characteristics of the underlying random
processes change after applying a risk reducing measure. For instance, in
maintenance decision problems the underlying random processes represent
the physical state of the considered structure, and its state changes after the
repair works. In this type of decision problems, additional simulations are
required reflecting the effects of the repair works in estimating the expected
consequences corresponding to the chosen repair works.
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Furthermore, the proposed algorithm as formulated now is limited to
random processes that are characterized by known probability distribution
functions. However, they are in general not known and the probabilistic
distribution family as well as the distribution parameters are estimated with
a limited amount of historical data; being subject to epistemic uncertainties.

Conclusions from the findings

It is demonstrated that the proposed algorithm can lead to significant im-
provements in the optimization of the real-time decisions in the face of emerg-
ing natural hazard events.

Due to the reduction of computational time, the optimal decision can be
made faster. In case the optimal decision is to commence a risk reducing
measure, this implies that more time is available to complete the measure
successfully.

Thus it is concluded that the real-time decision framework together with
the proposed algorithm is a useful tool to support decision makers in the
face of emerging natural hazard events and will contribute to the reduction
of adverse consequences.

7.1.1 Outlook

The application of the real-time decision framework requires probabilistic
models that describe the physical development of the underlying random
processes as well as their inherent variability. This thesis considered two
examples in which only the natural hazard model includes random processes
that describe the transition and the intensity of the natural hazard. However,
in practice, the performance of the engineering systems is not deterministic,
which is also true for the consequences. The application of probabilistic
models to describe the behavior of the resistance and consequences within
the framework is a future research task. Potential methods to implement
the probabilistic characteristics are additional Monte Carlo simulations or
by using expected values that are calculated in advance.

The considered examples include only monetary values as consequence
measure. However, the framework may be required to be extended to in-
clude casualties as part of consequences. The consideration of both monetary
losses and live losses may require to formulate the optimization problems as
constrained optimization problems with marginal life-saving costs as a con-
straint. Alternatively, the value of life could be monetized by using the
human compensation cost concept, which however may pose ethical prob-
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lems. The extension of the framework in this direction remains as a future
research topic.

The integration of physical hazard models, such as meso-scale weather
forecast models, into the framework is a challenging topic. The extension
in this direction is promising for improving the performance of the decision
support system, since the weather forecast models have been and are be-
ing sophisticated and the computational capacities, required for running the
models, are being advanced drastically.

The presented framework is “static” in the sense that the parameters
used in the models are treated as deterministic values; i.e. parameters have
no epistemic uncertainties. This implies that new information that may
improve the model accuracies cannot be utilized to update the models when
running; the models themselves need to be exchanged. The extension in
this direction remains one of the future tasks, where the Bayesian statistical
framework provides the basis.

In cases where the number of Monte Carlo simulations is restricted due
to computational time constraints, variance reduction methods may be use-
ful to improve the performance of the algorithm. These methods have been
demonstrated to lead to large improvements in the applications to the pric-
ing of American options; however, these methods need to be chosen carefully.
Therefore, the development of general instructions on the choice of appropri-
ate variance reduction methods is useful.

Finally but not least, possibilities of the applications of the developed
decision support system to other types of engineering decision problems that
share common characteristics such as, among others, structural health mon-
itoring should be investigated.
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Annex A

Numerical example with
Matlab code

This chapter consists of two section. In the first section some numerical
results are presented for the avalanche example introduced in Section 6.1
using the eLSM method. In the second section the corresponding Matlab
code is provided.

A.1 Numerical example

The example introduced in Section 6.1 is the basis for the numerical example
investigated in this section. In order to illustrate the steps of the eLSM
method the following parameters are chosen: b = 10 and n = 6. Note
that the time horizon applied in the numerical example is less than it is
assumed in Section 6.1. This is done to shorten the procedure and from the
simulations it could be seen that no significant event occurs after the sixth
time step. Further, linear functions are used as basis functions in the least
squares method. In the following, the steps of the eLSM method are given
as introduced in Section 6.1 supported by numerical results.

As described in Section 6.1 the first step is to generate 10 independent
realizations of {Yt}6

t=1 and Si = (Si0, S
i
1, ..., S

i
6), i = 1, 2, ..., 10, where Sit =

Sit(y
i
t
) and yit = (jit , x

i
t). For the purpose of this example only the crude

Monte Carlo method is applied. The realizations yi1,y
i
2, ...,y

i
6 are simulated

according to the probability density functions in Equations (6.1) and (6.4);
the paths are denoted by yi = (yi−1,y

i
0, ...,y

i
6) with the following initial

values: yi−1 = y−1 = (0, 0), yi0 = y0 = (0, 0). The realization of the Monte
Carlo simulation using predefined seeds (see the Matlab code in Annex A.2)
are given in Table A.1 for i = 1, 2, . . . , 10.
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Table A.1: Realizations of the random processes Jt, Xt and St obtained
with crude Monte Carlo simulations. Ten paths are generated over the time
interval [0, 6]. The realizations of the total additional snow amount St that
exceed the critical threshold 800[mm] are highlighted in bold.

Time step

Path t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

Jt

1 0 1 1 1 1 1 1
2 0 1 1 1 1 1 0
3 0 1 1 1 1 1 0
4 0 1 1 1 1 1 1
5 0 1 1 1 1 1 1
6 0 1 1 1 1 1 0
7 0 1 1 1 1 1 0
8 0 1 1 1 1 1 0
9 0 1 1 1 1 1 0
10 0 1 1 1 1 1 1

Xt

1 0.00 77.37 375.28 395.64 73.95 49.76 12.54
2 0.00 21.35 116.45 117.73 176.57 89.27 0.00
3 0.00 21.90 93.86 54.00 81.11 259.19 0.00
4 0.00 33.69 309.51 77.68 37.19 92.31 54.76
5 0.00 30.63 58.24 18.64 111.99 13.74 18.43
6 0.00 2.25 10.68 111.94 147.50 53.88 0.00
7 0.00 9.67 25.83 125.24 66.16 13.67 0.00
8 0.00 97.98 286.18 271.26 315.40 81.16 0.00
9 0.00 167.81 105.90 181.37 3.32 16.87 0.00
10 0.00 163.46 137.33 153.62 93.64 150.21 87.66

St

1 0.00 77.37 452.65 848.29 922.24 972.00 984.54
2 0.00 21.35 137.80 255.53 432.10 521.37 521.37
3 0.00 21.90 115.76 169.76 250.86 510.05 510.05
4 0.00 33.69 343.21 420.89 458.07 550.39 605.14
5 0.00 30.63 88.87 107.51 219.49 233.23 251.66
6 0.00 2.25 12.93 124.87 272.37 326.25 326.25
7 0.00 9.67 35.50 160.75 226.91 240.58 240.58
8 0.00 97.98 384.15 655.42 970.81 1051.97 1051.97
9 0.00 167.81 273.70 455.07 458.39 475.27 475.27
10 0.00 163.46 300.79 454.41 548.04 698.26 785.91
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The second step as it is described in Section 6.1 is applied in parallel
to the backward induction. This is described in the subsequent steps. For
the purpose of simplicity this step was introduced separately in the theo-
retical description of the algorithm. In the following the eLSM algorithm is
demonstrated as implemented in Annex A.2.

The subsequent steps are going backward in time, which is referred to as
backward induction. Starting at time n = 6, for each path i, i = 1, 2, . . . , 10,
the value of qi6(yi

6
) is set equal to hi6(yi

6
) = min{ui6(a

(1)
6 , zi), ui6(a

(2)
6 , zi)},

where the function ut(at, z) denotes the utility (or consequence) function
related to the chosen decision alternative at and the state of nature z as
described in Section 4.5 Part 2. There is no value for the CVF as at the time
horizon the decision to postpone is not available.

Moving to time t = n − 1 = 5, the values of c5(y
5
), l5(a

(1)
5 ,y

5
) as well

as l5(a
(2)
5 ,y

5
) are estimated using the least squares method with linear func-

tions. The applied realizations are listed in Table A.2. Using linear functions
one obtains, for the different decision alternatives at time t = 5, the following
approximations of the SVF and the CVF representing the expected conse-
quences conditional on the information available

l̂5(a
(1)
5 ,Y5) = −3.1089− 0.0158X5 + 0.0062X4 + 0.0117S5

l̂5(a
(2)
5 ,Y5) = −4.5654− 0.0176X5 + 0.0069X4 + 0.0130S5

ĉ5(Y5) = −4.5654− 0.0176X5 + 0.0069X4 + 0.0130S5

Note that the equations for the decisions a(0) and a(2) are equivalent. This
is due to the fact that the following equation holds for all paths i: qi6(yi

6
) =

hi6(yi
6
) = l̂i6(a

(2)
6 ,yi

6
).

Then, for each path i the value of q5 = q5(y
5
) is determined by

qi5 =

{
u∗,i5 , if ĥ

i
5 < ĉi5

qi6, otherwise
(A.1)

where u∗,i5 = ui5(a∗5, z
i) denotes the observed future consequence in path i

for the optimal terminal decision a∗5. Note that in the present example the

realizations of l5(a
(1)
5 ,y

5
), l5(a

(2)
5 ,y

5
) and c5(y

5
) are bounded by the upper

threshold CD = 10 and the following lower limits: (1) for lt(a
(1)
t , ·) it is the

cost of evacuation CEv = 1 and (2) for lt(a
(2)
t , ·) and ct(·) it is Zero. The

results are presented in Table A.3.
Moving another time step back to time step t = 4 the same procedure is

repeated. The realizations applied in the least squares method are presented
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Table A.2: Realizations of the consequences u6(a
(1)
6 ,Z) and u6(a

(2)
6 ,Z) at

time t = 6 for the corresponding decision alternatives a(1) and a(2) as well as
the realizations J5, X5, X4 and S5 of the random processes that are applied
in the least squares method in time step t = n− 1 = 5.

Path u6(a
(1)
6 ,Z) u6(a

(2)
6 ,Z) q6(y

6
) J5 X5 X4 S5

1 10.00 10.00 10.00 1.00 49.76 73.95 972.00
2 1.00 0.00 0.00 1.00 89.27 176.57 521.37
3 1.00 0.00 0.00 1.00 259.19 81.11 510.05
4 1.00 0.00 0.00 1.00 92.31 37.19 550.39
5 1.00 0.00 0.00 1.00 13.74 111.99 233.23
6 1.00 0.00 0.00 1.00 53.88 147.50 326.25
7 1.00 0.00 0.00 1.00 13.67 66.16 240.58
8 10.00 10.00 10.00 1.00 81.16 315.40 1051.97
9 1.00 0.00 0.00 1.00 16.87 3.32 475.27
10 1.00 0.00 0.00 1.00 150.21 93.64 698.26

Table A.3: For each path the following estimated values of l5(a
(1)
5 ,y

5
),

l5(a
(2)
5 ,y

5
) and c5(y

5
) are obtained using the least squares method. With

these values the MEU q5(y
5
) is then determined at time step t = n− 1 = 5.

Path l5(a
(1)
5 ,y

5
) l5(a

(2)
5 ,y

5
) c5(y

5
) q5(y

5
)

1 10.00 10.00 10.00 10.00
2 2.67 1.85 1.85 0.00
3 1.00 0.00 0.00 0.00
4 2.09 1.21 1.21 0.00
5 1.00 0.00 0.00 0.00
6 1.00 0.00 0.00 0.00
7 1.00 0.00 0.00 0.00
8 10.00 10.00 10.00 10.00
9 2.20 1.33 1.33 0.00
10 3.25 2.51 2.51 0.00
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Table A.4: Realizations of u4(a
(1)
4 ,Z), u4(a

(2)
4 ,Z, q5(Y5), J4, X4, X3 and

S4 that are applied in the least squares method at time step t = 4.

Path u4(a
(1)
4 ,Z) u4(a

(2)
4 ),Z) q5(Y5) J4 X4 X3 S4

1 10.00 10.00 10.00 1.00 73.95 395.64 922.24
2 1.00 0.00 0.00 1.00 176.57 117.73 432.10
3 1.00 0.00 0.00 1.00 81.11 54.00 250.86
4 1.00 0.00 0.00 1.00 37.19 77.68 458.07
5 1.00 0.00 0.00 1.00 111.99 18.64 219.49
6 1.00 0.00 0.00 1.00 147.50 111.94 272.37
7 1.00 0.00 0.00 1.00 66.16 125.24 226.91
8 10.00 10.00 10.00 1.00 315.40 271.26 970.81
9 1.00 0.00 0.00 1.00 3.32 181.37 458.39
10 1.00 0.00 0.00 1.00 93.64 153.62 548.04

in Table A.4. Using these realizations and the linear functions one obtains,
for the three decision alternatives, the following approximations

l̂4(a
(1)
4 ,Y4) = −3.3270 + 0.0107X4 + 0.0172X3 + 0.0049S4

l̂4(a
(2)
4 ,Y4) = ĉ4(Y5)

= −4.8078 + 0.0119X4 + 0.0191X3 + 0.0055S4

The equations for the decisions a(0) and a(2) are again equivalent which follows
from the same argumentation as given above.

This backward procedure is applied until t = 1. The realizations for the
least squares method at time step t = 1 are given in Table A.5.

With the linear functions one obtains, at time t = 1 for the different
decision alternatives, the following equations

l̂1(a
(1)
1 ,Y1) = 1.6580 + 0.0039X1

l̂1(a
(2)
1 ,Y1) = 1.0869 + 0.0146X1

Again in this example the estimates for decision a(2) and a(0) are equivalent.
Applying these function for each path the values qi1, i = 1, 2, . . . , 10, are
determined; see Table A.6.

Execute Step 6 as it is described in Section 4.5 to determine the optimal
decision at time t = 0: first compute the expected consequences for each
decision alternative, then compare ĥ0 and ĉ0; in case ĥ0 < ĉ0 it is optimal to
make a terminal decision, otherwise it is optimal to continue and wait until
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Table A.5: Realizations of u1(a
(1)
1 ,Z), u1(a

(2)
1 ,Z), q2(Y2), J1, X1, X0 and

S1 that are applied in the least squares method in time step t = 1.

Path u1(a
(1)
1 ,Z) u1(a

(2)
1 ,Z) q2(Y2) J1 X1 S1

1 10.00 10.00 10.00 1.00 77.37 77.37
2 1.00 0.00 0.00 1.00 21.35 21.35
3 1.00 0.00 0.00 1.00 21.90 21.90
4 1.00 0.00 0.00 1.00 33.69 33.69
5 1.00 0.00 0.00 1.00 30.63 30.63
6 1.00 0.00 0.00 1.00 2.25 2.25
7 1.00 0.00 0.00 1.00 9.67 9.67
8 1.00 10.00 10.00 1.00 97.98 97.98
9 1.00 0.00 0.00 1.00 167.81 167.81
10 1.00 0.00 0.00 1.00 163.46 163.46

Table A.6: Expected consequences associated to each decision alternative as
in Table A.3 for time step t = 1.

Path l1(a
(1)
1 ,y

1
) l1(a

(2)
1 ,y

1
) c1(y

1
) q1(y

1
)

1 1.96 2.22 2.22 10.00
2 1.74 1.40 1.40 0.00
3 1.74 1.41 1.41 0.00
4 1.79 1.58 1.58 0.00
5 1.78 1.53 1.53 0.00
6 1.67 1.12 1.12 0.00
7 1.70 1.23 1.23 0.00
8 2.04 2.52 2.52 1.00
9 2.31 3.53 3.53 1.00
10 2.29 3.47 3.47 1.00
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the next time step when new information becomes available:

ĉ0 =
1

10

10∑
i=1

qi1 = 1.3 (A.2)

ĥ0 = min{l̂(1)
0 , l̂

(2)
0 } (A.3)

= min{1.0, 2.0} = 1.0 (A.4)

The estimation of the expected consequences related to the terminal decisions
at time t = 0 is obtained using the realizations presented in Table A.1; i.e.

l̂
(1)
0 =

1

10

10∑
i=1

u0(a
(1)
0 ,Z) = 1.0 (A.5)

l̂
(2)
0 =

1

10

10∑
i=1

u0(a
(2)
0 ,Z) = 2.0 (A.6)

With this low number of realizations the optimal decision would be to evac-
uate. However, it can be seen that such a low number of realizations is not
reliable.

A.2 Matlab code corresponding to the nu-

merical example

The code used to obtain the numerical results presented in the previous
section is given in the following.

%% Batch for the avalanche example
% by Annett Anders

close all
clear;
clc;

%% parameter of the model
a0 = 4.5;
a1 = 0.26;
a2 = 0.1;
a3 = 0.5;
a4 = 0.05;
a5 = -0.2;
a = [a0, a1, a2, a3, a4, a5];
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b0 = 1.95;
b1 = -0.2;
b2 = 0.25;
b3 = - 0.04;
b = [b0, b1, b2, b3];

c0 = 0.5;
c1 = 0.15;
c2 = 0.3;
c = [c0, c1, c2];

% Shape parameter:
r = 1.5;

% Factor for snow density:
Ft = 10;

% Number of simulations:
Sim = 10;

% Set predefined seeds:
seedsVal = [123456, 234567];

% Run the calculation:
result = avalancheEx diss(Sim,a,b,c,r,Ft,seedsVal);
save('Result Avalanche Ex',result)

%% LSM method applied to the avalanche example
% by Annett Anders

function out = avalancheEx diss(Sim,a,b,c,r,Ft,seedsVal)
tic
n = 8; % time horizon
sThreshold = 800; % snow threshold

%% Initialization
y = zeros(Sim,n); % intensity process
j = zeros(Sim,n); % occurence process
S = zeros(Sim,n); % total snow = sum(y)
EV = zeros(Sim,n); % expected Value (Cost) matrix
EF = zeros(Sim,n); % auxiliary matrix

%% Consequence model
CostD = 10; % damage cost, if no evacuation has been done or too late
CostE = 1; % cost for the evacuation

%% Random variables
% Uniform random variable for occurence process
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s1 = RandStream.create('mrg32k3a','Seed',seedsVal(1));
u = rand(s1,Sim,n-2);

% gamma distributed random variable for intensity process
%with shape parameter r and scale parameter 1
s2 = RandStream('mrg32k3a','Seed',seedsVal(2));
RandStream.setDefaultStream(s2);
GamRV = randg(r,[Sim,n-2]);

i = 2;
while i < n

i = i+1;
t = i-2; % time; initial time is zero
% Parameter for the link function in the occurence model
mu = a(1) + a(2) * j(:,i-1) + a(3) * j(:,i-2) ...

+ a(4) * log(y(:,i-1)+c(2)) + a(5) * log(y(:,i-2)+c(3)) ...
+ a(6) *(t).ˆ2;

% Probability that it will be raining/snowing in the next time step
probRain = exp(mu)./(1+exp(mu));
% Scale parameter of the Gamma distribution for the intensity model
mean = exp(b(1) + b(2) * j(:,i-1) ...

+ b(3) * log(y(:,i-1)+c(1)) ...
+ b(4) * (t).ˆ2);

% Realizations of random processes J, Y and S
j(:,i) = logical(u(:,t)<=probRain);
y(:,i) = Ft * mean/r .* GamRV(:,t) .* j(:,i);
S(:,i) = S(:,i-1) + y(:,i);

end

% Cost matrix (including damage costs when threshold is exceeded)
C = CostD * logical(S>sThreshold);
TS = logical(sum(C,2)>0);
% Probability that an avalanche occurs within the time frame:
prob2failNoE = sum(TS)/Sim;
% Expected cost for aˆ(2) [doing nothing] at time 0:
CostDa2 = prob2failNoE * CostD;
% Probability that an avalanche occurs within the first 2 time steps:
prob2failE = sum(logical(sum(C(:,1:4),2)>0))/Sim;
% Expected cost for aˆ(1) [evacuation] at time 0:
CostEa1 = prob2failE * CostD + (prob2failNoE - prob2failE)* CostE ...

+ (1 - prob2failNoE) * CostE;

EV = C;
% Initialize the matrix EF where the expected cost are stored
% when making the optimal decision:
EF(:,n) = C(:,n);
% Initialize an auxiliary cost matrix to estimate
%the expected cost related to decision aˆ(1)
EVevM = EV + CostE.*logical(C==0);

Department of Civil Engineering - Technical University of Denmark 115



Numerical example with Matlab code

% under the assumption that after n nothing significant occurs
EVevM(:,end+1) = EVevM(:,end);

%% Backward induction
for i = n-1:-1:4

%% Regression matrix entries for the linear Regression
%% first-order of basis function:
regrmat = [ones(Sim,1),y(:,i),y(:,i-1), S(:,i)];

idx = C(:,i) == CostD;

%% Linear regression
% (using matlab-function pinv() to obtain the inverse)
% 1: Least squares method to obtain estimate for l(aˆ(2), y):
RegMInv = pinv(regrmat);
YregNoE = C(:,n);
parN = RegMInv * YregNoE;
EVne = regrmat * parN;
% after the approximation, the expected costs are bounded to
% the maximum damage cost and to the minimum cost of zero
EVne(idx,1) = CostD;
EVne(EVne<0,1) = 0;

% 2: Least squares method to obtain estimate for l(aˆ(1),y)
YregEv = EVevM(:,i+2);
parE = RegMInv*YregEv;
EVev = regrmat * parE;
% after the approximation, the expected costs are bounded to the

% maximum damage cost and to the minimum cost of evacuation [CostE]
EVev(idx,1) = CostD;
EVev(EVev<1,1) = CostE;

% 3: Least squares method to obtain estimate for c(y)
Yreg = EV(:,i+1);
par = RegMInv*Yreg;
EVp = regrmat * par;
% after the approximation, the expected costs are bounded to the
% maximum damage cost and to the minimum cost of zero
EVp(idx,1) = CostD;
EVp(EVp<0,1) = 0;

% decision for evacuation only if expected cost strictly lower
indEvac = EVev(:,1) < min(EVp,EVne(:,1));

EV(indEvac,i) = YregEv(indEvac,1);
EF(indEvac,i) = YregEv(indEvac,1);
EV(indEvac==0,i) = EV(indEvac==0,i+1);
EF(indEvac,i+1:end) = 0;

end
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%% For the case i=3
%% Regression matrix entries for the linear Regression
%% first-order of basis function:
regrmat = [ones(Sim,1),y(:,3)]; % because y(:,i-1)=0 and S(:,i)=y(:i)
idx = C(:,3) == CostD;

%% Linear regression
% (using matlab-function pinv() to obtain the inverse)
% 1: Least squares method to obtain estimate for l(aˆ(2), y):
RegMInv = pinv(regrmat);
YregNoE = C(:,n);
parN = RegMInv * YregNoE;
EVne = regrmat * parN;
% after the approximation, the expected costs are bounded to the
% maximum damage cost and to the minimum cost of zero
EVne(idx,1) = CostD;
EVne(EVne<0,1) = 0;

% 2: Least squares method to obtain estimate for l(aˆ(1),y)
YregEv = EVevM(:,5);
parE = RegMInv*YregEv;
EVev = regrmat * parE;
% after the approximation, the expected costs are bounded to the
% maximum damage cost and to the minimum cost of evacuation [CostE]
EVev(idx,1) = CostD;
EVev(EVev<0,1) = CostE;

% 3: Least squares method to obtain estimate for c(y)
Yreg = EV(:,4);
par = RegMInv*Yreg;
EVp = regrmat * par;
% after the approximation, the expected costs are bounded to the
% maximum damage cost and to the minimum cost of zero
EVp(idx,1) = CostD;
EVp(EVp<0,1) = 0;
%end i = 3

% decision for evacuation only if expected cost strictly lower
indEvac = EVev(:,1) < min(EVp,EVne(:,1));

EV(indEvac,3) = YregEv(indEvac,1);
EF(indEvac,3) = YregEv(indEvac,1);
EV(indEvac==0,3) = EV(indEvac==0,3+1);
EF(indEvac,3+1:end) = 0;

%% result of the expected cost when postponing the decision
resultp = sum(sum(EF))/Sim;
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%% Expected cost corresponding to the terminal decisions
Hev0 = CostEa1;
Hne0 = CostDa2;

time = toc;

out = [resultp, Hev0, Hne0, time];
%% end function
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Annex B

DeGroot examples

The following two examples are published in Nishijima & Anders (2012). The
efficiency and advantages of the proposed optimization scheme are demon-
strated with two numerical examples on the sequential sampling in the con-
text of quality control of manufactured product. Note however that under
this framework variable decision rules or competing decision rules are pos-
sible. In the examples, the updated probability distributions given the in-
formation et can be obtained analytically. However, in general this is not
the case. In such cases, Markov Chain Monte Carlo simulations to simulate
a realization(s) from the updated probably distributions may be useful; the
implementation of which is addressed as a future task.

B.1 Example 1: Sequential sampling from the

Bernoulli distribution

B.1.1 Decision problem

A manufactured product is designed, and the performance of the product
line is to be controlled. For simplicity, assume that the probability p that a
product is good quality is to be either 1/3 or 2/3. If p = 2/3, the product
line is satisfactory; otherwise unsatisfactory. It is to be judged whether the
product line is satisfactory. The decision maker has the option to perform
inspections before her judgment. The maximum number of inspections is as-
sumed to be n. The outcomes of the inspections are the sequence of random
samples Y1, Y2, . . . , Yn, which independently follow an identical Bernoulli dis-
tribution with a given parameter p = P [Yi = 0] = 1 − P [Yi = 1] (0: good
quality, 1: not good quality). The cost for inspecting one sample is assumed
to be C = 1. Given that the design was made and the product line was
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built, the penalty is imposed if and only if the judgment is incorrect, which
is assumed to be CP = 20. The prior distribution of p is assumed to be
ξ = P [p = 1/3] = 1− P [p = 2/3], 0 ≤ ξ ≤ 1. The decision shall be made for
a given value of ξ whether the first inspection should be performed, or make
the judgment without any inspection. In the following the case of n = 2 is
considered, the analytical solution to which is available in DeGroot (1970).

B.1.2 Application of the proposed scheme and result

The underlying random sequence Yt in this decision problem is the outcomes
from the inspections, each of which follows the Bernoulli distributions of the
parameter p, which in turn is uncertain and is characterized by ξ = P [p =
1/3] = 1−P [p = 2/3]. The information Et is equal to Yt; i.e. the state of the
underlying random sequence is deterministically known to the decision maker
without uncertainty. The decision alternatives are a(0) (continue sampling),
a(1) (terminate sampling and judge p = 1/3 ) and a(2) (terminate sampling

and judge p = 2/3) at each decision time; hence, A
(c)
t = {a(0)}, A(s)

t =
{a(1), a(2)}. Decisions at a decision time are possible only if a(0) is chosen at
all the earlier decision times.

The steps to apply the proposed scheme are explained for one value of
ξ. These steps are repeated in order to obtain the set of the solutions for
different values of ξ, which are shown in Figure B.1. Note, however, such
repetitions are not necessary in practice, since in a practical situation a single
value of ξ is assigned based on the decision maker’s degree of belief, for which
the optimal decision is to be identified.

Step 1: The first step is to simulate the realizations of p, i.e. pi, i = 1, 2, . . . , b.
For each pi, the realizations of the underlying random sequence (Y1, Y2)
are simulated, i.e. (yi1, y

i
2), i = 1, 2, . . . , b. In this example, eit = yi

t
,

i = 1, 2, . . . , b, t = 1, 2.

Step 2: The expected cost for a(1) at time t = 2 is calculated for each real-
ization (ei1, e

i
2). For this, first the probability of P [p = 1/3] is updated

with the realization (ei1, e
i
2) by the Bayes’ theorem. Based on the up-

dated probability the expected cost for a(1) is calculated. The expected
cost for a(2) is calculated in the same manner. By comparing these two
values, the optimal decision at time t is obtained for each ei2 = (ei1, e

i
2).

Step 3: The maximized expected utilities, which are defined as the negative
of the expected costs, q2(a1, e

i
2), are obtained for each realization i.

Step 4: The expected cost for a(0) (continuing sampling) at time t = 1 is
assumed to be approximated by r1,0 + r1,1e1. The coefficients r1,0, r1,1
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B.1 Example 1: Sequential sampling from the Bernoulli
distribution
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Figure B.1: Optimal decisions in Example 1.

are estimated with the set of points (ei1, q2(a1, e
i
2)) by the least square

method. Then, the expected cost for a(0) at time t = 1 is obtained for
each realization i. Note in this example, the functional form r1,0 +r1,1e1

can precisely represent the expected cost for a(0), since e1 takes only
two values; therefore, a function with two coefficients is flexible enough
(Step 4). The expected costs for a(1) and a(2) at t = 1 are calculated in
the same manner as t = 2 for each realization i. The minimum of the
expected costs for a(0), a(1) and a(2) is calculated for each realization
i, whose negative values are the maximized expected utilities at time
t = 1.

Step 5: The average of these minimum expected costs for all the realizations i
is the estimate of the expected cost for a(0) at time t = 0. By comparing
this with the expected costs for a(1) and a(2), the optimal decision at
time t = 0 is obtained.

The optimal decisions for different values of ξ are shown in Figure B.1. It is
seen that the proposed scheme performs satisfactorily.
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B.2 Example 2: Sequential sampling from the

normal distribution

B.2.1 Decision problem

A manufactured product is designed, and the performance of the product
line is to be controlled. The quality of the product is measured through an
indicator Y and the indicator follows the normal distribution with unknown
mean W and known precision r (= inverse of variance). The decision maker
has the option to perform inspections before her judgment. The maximum
number of inspections is assumed to be n. The outcomes of the inspections
are the sequence of random samples Y1, Y2, . . . , Yn, which follows the identical
distributions as Y . The random samples are observable without uncertainty
to the decision maker; hence, the information Et = Yt . The decision maker
has to judge whether the mean of Y is above w0 or not. The penalty of
misjudgment is proportional to the difference between the true mean value
w and w0; i.e. L = |w − w0|. The cost for one inspection is C.

B.2.2 Application of the proposed scheme and result

The decision alternatives are a(0) (continue sampling), a(1) (terminate sam-
pling and judge w ≤ w0) and a(2) (terminate sampling and judge w > w0 ) at

each decision time; A
(c)
t = {a(0)}, A(s)

t = {a(1), a(2)}. Decisions at a decision
time are possible only if a(0) is chosen at all the earlier decision times. In this
example, the expected cost for continuing sampling at time t is found to be
a function only of the average mt of the realizations of et = (e1, e2, . . . , et).
Here, a functional form rt,0 + rt,1mt + rt,2m

2
t + rt,3m

3
t is assumed for the least

squares estimation, where mt =
∑t

j=1 ej/t. Note that other functional forms
are tested and the results are found to be insensitive to the choice of func-
tional forms. The optimal decisions are computed and shown for different
values of the mean µ and precision τ (inverse of variance) of the unknown
mean W , for the case where n = 10, w0 = 1 and C = 0.2, see Figure B.2.
The optimal decisions obtained by the proposed scheme are indicated with
the symbols. The optimal decision bounds for the case where n is infinite
are analytically obtained by DeGroot (1970) for a subset of µ and τ : At the
left side of the left line in the figure the optimal decision is a(0), at the right
side of the right line the optimal decision is a(1) for µ ≤ 1 and a(2) for µ > 1,
and between the two lines, optimal decisions are not obtained. Given that
n = 10 is sufficient large, these two results are comparable. As can be seen
in Figure B.2, the optimal decisions obtained by the proposed scheme cor-
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B.2 Example 2: Sequential sampling from the normal
distribution
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Figure B.2: Optimal decisions in Example 2.

responds to the optimal decisions obtained by DeGroot (1970); furthermore,
the proposed scheme can identify the optimal decisions in the domain where
the optimal decisions are not obtained by DeGroot (1970).
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Adaption of option pricing algorithm to real time decision 
optimization in the face of emerging natural hazards

A. Anders & K. Nishijima
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ABSTRACT:  The present paper proposes an approach for the optimization of real time decision prob-
lems in the face of emerging natural hazards. It takes basis in the Least Squares Monte Carlo method (the 
LSM method) originally developed for option pricing in financial mathematics. In the present paper, first 
the decision problems considered in the paper are described. Then, the fundamental idea underlying the 
LSM method is introduced. Thereafter, extensions are presented, which are required for the application 
to the real time decision problems in consideration. The application of the LSM method and these exten-
sions constitute the proposed approach. The performance of the proposed approach is investigated with 
an example; decision in regard to shut-down of the operation of a platform in the event of an approach-
ing typhoon. The numerical result shows clear advantages of the proposed approach. Finally, possible 
applications to other engineering decision problems of pre-posterior type are briefly discussed.

by reducing the number of decision phases and/or 
decision alternatives at each decision phase; other-
wise, with coarse discretization of the sample space 
of the random phenomena. However, the adapta-
tion of appropriate simplifications often requires 
trial-and-errors, and the validation of the simpli-
fications is often difficult. On the other hand, the 
coarse discretization of the sample space may result 
in significant errors. The lack of algorithms for the 
solutions to the decision problems without such 
approximations significantly undermines the possi-
bility to apply the pre-posterior decision framework 
in practice.

1.2  Objective and focus

The present paper proposes an approach for solv-
ing pre-posterior decision problems without the 
approximations mentioned above. The proposed 
approach takes basis in a method originally devel-
oped for option pricing in financial mathematics; the 
Least Squares Monte Carlo method (LSM method) 
proposed by Longstaff & Schwartz (2001).

The example examined in Nishijima et al. (2009) 
is re-examined; however, the main focus in the 
present paper is the solution to the decision prob-
lem, whereas Nishijima et al. (2009) focus on the 
formulation of the decision framework and the 
solution to the decision problem and its efficiency 
are not examined in detail.

Although the present paper focuses on the appli-
cation to the real time decision optimization in the 
face of emerging natural hazards, the fundamental 
idea underlying the proposed approach in the 

1 intro duction

1.1  Background

Formal decision analysis in engineering often 
requires that a sequence of decisions has to be 
jointly optimized; i.e. the decision at each decision 
phase must be optimized based on the information 
available up to the current decision phase as well as 
on the consideration of all possible outcomes and 
decisions undertaken in the future. Important exam-
ples of such decision analysis include inspection 
planning of deteriorating structures (see e.g. Straub 
(2004)), quality control of manufactured products 
(e.g. Nishijima & Faber (2007)), and decision sup-
port for real time decisions in the face of emerging 
natural hazards (Nishijima et al. (2008), (2009)).

For the formulation of this type of decision 
problems, the pre-posterior decision framework 
provides the philosophical basis (Raiffa & Schlaifer 
(1961)). It has been applied, among others, in civil 
engineering for the examples mentioned above. The 
framework is general and the formulation of deci-
sion problems based on the framework is straight-
forward; however, the analytical solutions to the 
decision problems are available only in limited cases 
(see e.g. Chapter  12  in DeGroot (1970)). Quite 
often, the solutions are not available even numeri-
cally without any approximations to the problems. 
This is due to the large number of combinations 
of the decision alternatives and the realizations of 
random phenomena at all decision phases, which 
must be considered in the optimization. Thus, the 
original decision problems are often simplified; e.g. 
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paper can be applied to broader decision problems 
of the pre-posterior type.

1.3  Structure of the paper

In the next section, the characteristics of the deci-
sion problem considered in the present paper and its 
formulation are provided. Thereafter, options and 
option pricing in the context of finance are briefly 
introduced. Then, the fundamental idea underlying 
the LSM method is explained without going into the 
detail of the theory. Subsequently, identifying the 
relevant differences between the engineering decision 
problems and option pricing, the ideas for exten-
sions are presented. The LSM method together with 
the extensions constitute the proposed approach 
of the present paper. Finally, the implementation of 
the proposed approach is provided with a numerical 
example. Discussion and conclusion follow.

2  Framework for real time 
decisions

This section introduces the framework for real time 
decision optimization in the face of emerging natu-
ral hazards, which is proposed in Nishijima et al. 
(2008), (2009).

2.1  Description of decision problem

The decision situation considered here is described 
by the following characteristics: (a) The hazard 
process evolves relatively slow and allows for reac-
tive decision making; (b) various types of informa-
tion can be obtained prior to the impact of the 
hazard, which can be utilized to predict its sever-
ity; (c) the decision making is subject to uncertain-
ties, part of which might be reduced at a cost; (d) 
decision makers have options for risk reduction 
activities which may be commenced at any time, 
supported by the information available. Here, the 
typical problem arises that “waiting” will imply the 
reduction of uncertainty but it might also reduce 
available time for initiating the risk reduction 
activities; (e) and on top of all, the decisions must 
be made fast, in near-real time. The decision prob-
lems characterized as above is referred to as real 
time decision problems.

One of the important characteristics of the real 
time decision problems is that the decision maker 
has an option to postpone the decision for risk 
reduction measures, for the purpose to reduce the 
uncertainty concerning the decision problem. In 
general, there are two types of ways to reduce the 
uncertainty; i.e. reductions of aleatory uncertainty 
and epistemic uncertainty. The aleatory uncer-
tainty is reduced by “waiting”. For instance, the 

possibility that a typhoon hits an engineering facil-
ity becomes more evident as time goes by. Namely, 
by postponing the decision the probability that the 
decision maker makes a suboptimal decision can be 
reduced; but, in turn, the probability increases that 
risk reduction activities are undertaken too late if  
they are necessary. The epistemic uncertainty is 
reduced by collecting more information to update 
the probability model representing random phe-
nomena underlying the decision problem. However, 
such measures for collecting more information are 
worth undertaking only if  the corresponding cost 
is smaller than the expected value of the additional 
costs arising from the suboptimal decision.

Note that whereas both types of the uncertainty 
reduction are relevant in general, only the former 
type of the uncertainty reduction is considered in 
the present paper for simplicity and without loss of 
the essence of the ideas in the proposed approach.

2.2  Conditional probability representation

Denote by Z the random variable of relevance to 
the consequences in a decision problem; e.g. the 
maximum wind speed during a storm event. Let 
Y = (Y0, Y1, …, Yn) be a sequence of random vari-
ables at different discrete time steps t = 0, 1, …, n 
that characterize the phenomena underlying the 
decision problem and are required to calculate the 
probabilistic characteristics of Z. n is the number 
of points in time at which observations can be 
made. Prior to or at the last time step n, a terminal 
decision (the definition is provided later) must be 
made. Denote by E = (E0, E1, … En) a sequence of 
random variables representing the observed infor-
mation at the respective times. The observed infor-
mation can be utilized to reduce the uncertainty 
associated with the future states of Y and in turn 
with the hazard index Z. Note that the variables Z, 
Yt  and Et, t = 0, 1, …, n, can be scalar or vector.

The illustrative relationship between these vari-
ables is shown in Figure 1 for the case of a second-
order Markov model. Each node represents a 
variable and each directed edge link represents the 
probabilistic dependency between the connected 
variables. For instance, the edge link directed from 
the node Y0 to the node E0 represents that the ran-
dom variable E0 is characterized by the conditional 
probability P[E0|Y0]. When more than two edge 
links are directed to a node, it signifies that the 
random variable represented by the node is charac-
terized by the conditional probability on the vari-
ables represented by the nodes from which the edge 
links are directed. When all the conditional prob-
abilities corresponding to the directed edge links 
and the (unconditional) probabilities for the nodes 
to which no edge link is directed are given, con-
ditional probabilities of any variable in the graph 
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can be calculated. Hence, the probabilistic charac-
teristics of the random phenomena underlying the 
decision problem can be completely defined.

2.3  Formulation of decision optimization

A decision maker has a set of m terminal decision 
alternatives, A = {a(1), a(2), …, a(m)} out of which one 
alternative has to be chosen at latest by the time 
n, in response to the information Et that becomes 
available at each point in time t = 0, 1, …, n. With-
out loss of generality, it is assumed that the deci-
sion is made only at one of the discrete times t = 0, 
1, …, n; the decisions that actions should be com-
menced between the consecutive discrete times can 
be included in the set A, if  relevant. In addition 
to the terminal decision alternatives, the decision 
maker has the option to postpone the terminal 
decision at times t  =  0, 1, …, n−1. This optional 
alternative is denoted by a(0).

The decision optimization problem is then for-
mulated as the minimization of the expected cost, 
or more generally, the maximization of the expected 
utility by identifying the optimal action out of the 
set of the decision alternatives A(0) ≡ A ∪  {a(0)} at 
each respective time as a function of the information 
available up to that time. Here, it should be empha-
sized that in order to identify the optimal decision at 
a certain time, all possible decisions and information 
available at the future times must be considered.

Taking basis in the concept of the pre-posterior 
decision framework (Raiffa & Schlaifer, 1961), the 
optimal decision at

*(e0, e1, …, et) at time t given the 
information e0, e1, …, et is identified as the deci-
sion alternative which maximizes the conditional 
expected utility E[Ut(Z, a)|e0, …, et], a ∈ A(0):
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Ut(z, a) denotes the utility given the realization z 
of  the hazard index Z and the decision alternative 
a at time t, which itself  should be interpreted as the 
expected value if  uncertainties are associated with 
the assessment of the utility. f(et+1 | e0, …, et) is the 
conditional probability density that et+1 is observed 
at time t + 1 given the information e0, e1, …, et. The 
probability density can be calculated using condi-
tional probability models described above.

3  Algorithms for the 
optimization

3.1  American option

From a mathematical point of view, the decision 
problem formulated above is analogous to the 
problems of the American option pricing in the field 
of finance. Note that an option is a financial instru-
ment on the contract for buying or selling an asset, 
e.g. stock, at a pre-defined execution price. An 
American option is an option that can be exercised 
at any time before or at the maturity date of the 
option. In order to identify the appropriate price 
of an American option, the expected (discounted) 
benefits gained by executing the option and by not 
executing (i.e. postponing the execution) must be 
compared; the maximum value of these two ben-
efits is regarded as the price of the option. Therein, 
in order to assess the expected benefit gained by 
not executing the option, the prices of the option 
(i.e. its expected benefits) at future times must be 
known; thus, a backward induction similar in the 
decision problem formulated above (Equations 1 
and 2) is required.

3.2  Pricing of American option

This subsection provides the formulation for the 
pricing of an American option.

Let Y(s) denote the first-order Markov proc-
ess for the price of an underlying asset at time s, 
on which an American option is defined. In the 
case where Y(s) is a continuous process in time, it 
is approximated by discretization and written as  
Y(st), t = 0, 1, …, n. For simplicity, hereafter Y(st) is 
abbreviated by Yt. Note that the state of the proc-
ess Yt can be scalar or vector, and discrete or con-
tinuous. In the following, the state of the process 
Yt is assumed to be continuous. Similar discussions 
hold for the other case. The probabilistic character-
istics of the first-order Markov process Yt is then 

Figure 1.  Conditional probabilistic model representa-
tion in the case of a second-order Markov model (after 
Nishijma et al. (2009)).
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characterized by the transition probability density 
f(yt+1 | yt; t) from Yt = yt+1 to Yt+1 = yt+1, t = 0, 1, …, 
n − 1, with the initial known condition Y0 = y0.

Let denoted by c(t,yt) and h(t, yt) the continu-
ing value function and the stopping value function 
respectively for the American option. The continu-
ing value function c(t,yt) represents the expected 
benefit gained by not executing the option (which 
corresponds to choose the option a(0) in the formu-
lation in Section 2.3) at time t, given the state of 
the process Yt  =  yt. The stopping value function 
h(t, yt) represents the benefit gained by executing 
the option (which corresponds to choose one of 
the terminal decisions in the formulation in Sec-
tion 2.3) at time t, given Yt = yt. Normally, the value 
of h(t, yt) is assumed to be analytically known for 
all t given yt; it is calculated by comparing the exe-
cution price and the price yt of  the underlying asset 
at time t.

Analogous to Equation 1, the benefit Q(t, yt) of 
the American option with any given state Yt = yt is 
then written as:

Q t
h t t n

h t c tt
t

t
( ) =

( )
( ),,

, ,
max , ( ,y

y
y

                        =
yyt t n) , , ,...,{ } = −



 0 1 1

	 (3)

and the continuing value function can be ex-
pressed by:

c t E Q tt t t t( , ) ,y Y Y y= + +[ ( 1 ) | = ]1 	 (4)

With this setting, the pricing of American 
option is formulated as: To identify the maximized 
expected benefit Q(0, y0)under the random process 
Yt with the known initial state Y0 = y0.

3.3  Least squares Monte Carlo method

The main technical problem of the option pric-
ing formulated above is the evaluation of the 
expectation in Equation 4. In principle, for any 
given state Yt = yt at time t (≤ n − 1) the expected 
value E[Q(t + 1, Yt+1)|Yt = yt] can be estimated by 
Monte Carlo simulations of the underlying proc-
ess. However, in order to estimate the conditional 
expected value above, the conditional expected 
values E[Q(t +2, Yt+2)|Yt+1 = yt+1] for the individual 
realizations yt+1 at time t + 1, which are simulated 
by Monte Carlo simulation starting from the state 
Yt  = yt, must be evaluated. This requires another 
set of simulations corresponding to each of the 
realizations yt+1. Consequently, the total number of 
the required simulations increases exponentially as 
a function of the number n, which usually is not 
computationally feasible. The Least Squares Monte 
Carlo method (LSM method) circumvents this, by 
employing least squares regressions.

In the LSM method, the continuing value func-
tions c(t,yt) are approximated with certain functions 
for all time steps, and these functions are estimated 
by regression utilizing a single set of realizations of 
Yt simulated by Monte Carlo method. Before intro-
ducing how this is performed, it should be empha-
sized that the continuing value function at time t 
is a function only of yt, because the probabilistic 
characteristics of the underlying first-order Markov 
process at future times is fully characterized by the 
state Yt = yt at time t. Therefore, under regular con-
ditions (see Longstaff & Schwartz (2001) for detail), 
the continuing value function can be represented by 
an appropriate set of basis functions Lk(yt), k = 0, 1, 
…, with respect to the state Yt = yt as:
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with the constant coefficients rt,k, k  =0, 1, … for 
t = 0,1, …, n−1. In the regressions, this is approxi-
mated as:
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with the finite number K of  the basis functions. 
The coefficients rt,k are estimated by regressions.

The first step in the LSM method is, by Monte 
Carlo simulations, to generate a set of b independ-
ent paths of the random process Yt according to the 
transition density f(yt+1|yt;t), t = 0, 1, …, n−1, with 
the initial condition Y0 = y0. These realizations of 
the paths are denoted by x x x xi i i

n
i= ( , ,..., )0 1 , i = 1, 

2, …, b. Note that, x y0 0
i =  for all paths.

The second step is to estimate the continuing 
value functions c(t,yt) at times t  =  0, 1, …, n−1. 
This is performed backwards in time, since the 
continuing value functions are defined backward 
recursively. At time n, the option expires; hence, 
the realization of the benefit Q(t,yt) for each indi-
vidual path is calculated as Q n h nn

i
n
i( , ) ( , )x x=  

according to Equation 3. Then, moving to time 
n−1, relating each realization Q n n

i( , )x  to xn
i

−1, the 
dataset ( , ( , ))x xn

i
n
iQ n−1  i = 1, 2, …, b is obtained. 

This dataset is utilized to approximate c(n−1, 
yn−1)  =  E[Q(n,Yn)|Yn−1  =  yn−1] with Equation 6 by 
least squares regression, see Figure  2. The esti-
mated continuing value function is denoted by 

1ˆ( 1, )nc n −− y . Here, it should be emphasized that 
the individual realizations Q n n

i( , )x  corresponding 
to the different realizations xn

i
−1 are “shared” to 

estimate E Q n n n n
j[ ( ) | = ]1 1,Y Y x− −  (j ≠i), but also to 

interpolate and extrapolate the estimates over the 
support of yn−1 where the realizations of yn−1 are 
not available in the simulation.
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Having obtained the approximation of the con-
tinuing value function 1ˆ( 1, )nc n −− y  for time t = n−1, 
the realizations of Q(n−1, yn−1), i.e. Q n n

i( 1 )1− −,x , 
are calculated using Equation 3 with 1ˆ( 1, )nc n −− y  
for y xn n

i
− −=1 1. Moving to time n−2, each realiza-

tion Q n n
i( , )− −1 1x  is related to a state xn

i
−2, such 

that the dataset ( , ( , ))x xn
i

n
iQ n− −−2 11  i  =  1, 2, …, 

b is obtained. Then, in the same way as at time 
t = n−1, the continuing value function is estimated 
as 2ˆ( 2, )nc n −− y . This procedure is repeated until 
time t  =  1, such that for all paths the maximum 
expected benefit Q i( , )1 1x  is obtained. Since the ini-
tial value of all paths equals y0 the estimate of the 
continuing value function 0ˆ(0, )c y  is obtained by 
the average of the realizations Q i( , )1 1x , i = 1, 2, …, 
b  and finally Q(0, y0) is obtained with Equation 3.

3.4  Extensions for real time decision problems 
in engineering

Real time decision problems in the face of emerg-
ing natural hazards and other pre-posterior types 
of engineering decision problems have several dif-
ferences in the problem setting from the pricing of 
options described above. Among others, (1) the 
underlying random processes may not be a first-
order Markov process, and (2) the stopping values, 
i.e., the expected utilities corresponding to terminal 
decisions, are not analytically known and often the 
evaluation of the stopping values requires Monte 
Carlo simulations.

Concerning the first difference, the LSM method 
can be straightforwardly extended; by approximat-
ing the continuing value function defined by Equa-
tion 5 with a set of basis functions whose arguments 
include all the states of the underlying process to 
the extent that these states can fully characterize 
the probabilistic characteristics of the process in the 
future. As for the second difference, it is found in the 
example in Section 4 that only relatively few numbers 
of simulations are required to estimate the stopping 

values. The reason for this is in principle the same 
as emphasized in the explanation of the use of least 
squares regressions for estimating the continuing 
value functions; information on the estimated stop-
ping values in different paths is “shared”, hence, pre-
cise estimates of the individual stopping values are 
not necessary. However, it should be mentioned that 
the estimated value of Q(0, y0) in this way is biased 
high due to the convexity of the max-operator in 
Equation 3. In contrast, when a decision problem is 
formulated as the minimization of an expected cost, 
the estimate of Q(0, y0) is biased low, as can be seen 
in the example below. The implementation of these 
extensions is explained along with the example.

4 E xample

4.1  Problem setting

A decision maker is faced to decide whether or not 
the operation of an offshore platform should be 
shut down in the emergence of a typhoon event. 
The possible decision alternatives are the terminal 
decisions of shut-down a(1), no shut-down a(2) and 
postponing the terminal decision a(0). When the 
decision maker chooses a(0), she/he can obtain fur-
ther information on the state of the typhoon such 
as position, central pressure, translation speed 
and direction of the typhoon. The information is 
assumed to be provided by a meteorological agency 
once every six hours at no cost. It is assumed that 
the shut-down of the operation of the platform 
takes twelve hours after making the terminal deci-
sion a(1). In the decision problem considered here, 
it is assumed that the decision is terminated within 
30 hours, and the time frame is discretized into five 
time intervals of six hours; i.e. there are six time 
steps where information becomes available and 
the decisions are made. This assumption seems 
reasonable, since the typhoon is very likely to pass 
through the area relevant for the platform until the 
6th time step (t = 5), see Figure 3. The figure shows 
two possible transitions (indicated by dashed lines 
with circles) of the typhoon.

Since the time frame of the decision problem 
here is relatively short, discounting is not consid-
ered. In what follows, the models employed and 
further assumptions are explained.

4.2  Probabilistic typhoon model

The typhoon model developed by the group of 
Risk and Safety at ETH Zurich is employed for 
the modeling of the wind speed at the platform 
induced by the typhoon; see Graf et  al. (2009). 
The typhoon model is composed of five compo-
nents; occurrence model, transition model, wind 

Figure 2.  Illustration of the estimation of the continu-
ing value function using the realizations ( , ( , ))x xn

i
n
iQ n−1 .
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field model, surface friction model and vulner-
ability model. For this example, only the transition 
model, the wind field model and the surface model 
are of relevance. In the following, a short summary 
of the transition model employed in the example is 
provided in order to show the probabilistic char-
acteristics of the random process underlying the 
decision problem.

The transition model describes the transition of 
the state of typhoons probabilistically. It is assumed 
that the state of a typhoon is characterized by three 
parameters: Vt  representing the translation speed 
[km/h]; Γt the translation angle [°] and PC,t the cen-
tral pressure [hPa]. These parameters are modeled 
by the following components of a vector Markov 
process:

ln ( ) ln ,( ) = 1 ( )1 2 1 3 1V a V a at t t V t+ ++ + + +Γ ε
	 (7)

Γ Γ Γ Γt t t t tb b b V b+ − ++ + + + +1 3 1 2 4 1 1= 1( ) ,ε
	

(8)

P c c P c P c P
c T c T T

C t C t C t C t

t t t PC t

, 1 1 2 , 3 , 1 4 , 2

5 6 1 ,

=
( )

+ − −

+ +

+ + +
+ + − + ε 11 	

(9)

where Tt is the sea surface temperature (SST) at 
the location of the typhoon at time t. The coef-
ficient vectors a =  (a1, a2, a3)T, b =  (b1, b2, b3, b4)T 
and c = (c1, c2, …, c6)T, as well as the distribution 
of the random terms εV,t+1, εΓ,t+1 (both are mod-
eled by normal distributions with mean zero and 
standard deviations σV,t+1 and σΓ,t+1 respectively) 
and εPC t, 1+  (modeled by an empirical distribution) 
are estimated using historical data. Therein, in 
order to incorporate the spatial and temporal in-
homogeneity of the probabilistic characteristics of 
the typhoon transition, these coefficients and the 
distributions are estimated for each individual grid 
area (5° latitude-by-5° longitude grids in the north-
west Pacific) and for each month.

The hazard index, i.e. the 10-minute sustained 
wind speed u [m/s] at the platform in this example, 
is calculated by the wind field model and the sur-
face friction model. Given the state of the typhoon 
together with the radius of maximum wind speed 
RM and the roughness length z0 of the location 
of the platform, the wind speed u is calculated 
deterministically.

Note here that the random process underlying 
the decision problem is expressed by Yt =  (Vt, Γt, 
PC,t)T at times t, t = 0, 1, …, n, and it is assumed that 
the precise state of the typhoon is known at each 
time, hence, the information Et about the state of 
the typhoon is equal to Yt.

4.3  Other assumptions

The platform is assumed to be damaged if  the 
10-minute sustained wind speed u at surface of 
the location of the platform exceeds the threshold 
uc (= 38[m/s]), while the platform is in operation. 
The expected damage cost CD is equal to 10. The 
platform is assumed not to be damaged if  the wind 
speed does not exceed the threshold, or if  the oper-
ation of the platform is successfully shut down, i.e. 
not in operation when the wind speed exceeds the 
threshold. However, in the latter case the cost CPI 
for production interruption is incurred. Here CPI  is 
set equal to 1. The summary of the assumed conse-
quence model is shown in Table 1.

Three cases are possible in which the expected 
damage cost CD is incurred; the first case is the case 
where the decision a(2) is made and the wind speed 
exceeds the threshold uc, the second case is where 
the decision a(1) is made but the wind speed exceeds 
uc before the shut-down is completed, and last case 
is the case where the decision a(0) is made and the 
wind speed exceeds uc before the next time a deci-
sion is made. No consequence occurs if and only if  
the decision a(2) is made and the wind speed does not 
exceed the threshold. Remember that until time n, 
either action a(1) or a(2) has to be chosen. The expected 
cost CPI for production interruption is incurred if  
the decision a(1) is made and the shut-down is com-
pleted before the wind speed u exceeds the threshold 
(if it does), or if the decision a(1) is made but the 
wind speed does not exceed the threshold.

Figure 3.  Illustration of the transition of the typhoon 
and the location of the platform (after Nishijima et al. 
(2009)).

Table 1.  Conditions and associated costs postulated in 
the consequence model.

Platform

Wind speed

u > uc = 38[m/s] u ≤ uc = 38[m/s]

In operation CD = 41 0
Not in operation CPI = 1 CPI = 1
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In the example, it is assumed that RM is constant 
and the current as well as the relevant previous states 
of the typhoon are known. The initial conditions 
assumed in the example are summarized in Table 2.

4.4  Solution with the extended LSM method

The first step is to simulate, by Monte Carlo simu-
lation, b independent paths x x x xi i i i= ( , ,..., )0 1 5  with 
the initial values y0 =  (v0, γ0, pC,0)T, y−1 =  (γ−1, pC−1)T 
and y−2 = pC,−2. Note here that the individual path in 
regard to the typhoon movement is first generated 
as the collection of the realizations of the transla-
tion speed Vt and angle Γt according to Equations 
7 and 8; then, using these realizations together with 
the initial location of the typhoon, the locations of 
the typhoon at times t = 0, 1, …, 5 are identified. 
Thus, the variable Yt representing the state of the 
typhoon at time t and its realizations xt

i can be (re-)
composed, e.g. by the location (longitude and lati-
tude) and the central pressure, instead of the trans-
lation speed and angle and the central pressure. 
Having simulated the paths, the 10-minute sustained 
wind speeds at 10-minute intervals are calculated by 
interpolating the states of the realized typhoons.

The second step is to estimate the function for 
the expected cost corresponding to the postponing 
of the terminal decision at each time. Note, this 
expected cost corresponds to the negative of the 
expected utility in Equation 1 or the continuing 
value in Equation 3. Since the underlying random 
process (i.e. the transition of the typhoon) is a third-
order Markov process (first-order with respect to 
the movement and third-order with respect to the 
central pressure), this is a function of the typhoon 
states in the last three time steps. Thus, it is written 
as g(t, xt−1, xt−2, xt−3), which hereafter is called con-
tinuing cost function. The continuing cost function 
can in principle be approximated with a set of basis 
functions with respect to xt−1, xt−2, xt−3 as in Equa-
tion 6; however, it is anticipated that the function 
may be better represented with parameters, which 
themselves are the functions of xt−1, xt−2, xt−3 and 
are physically more meaningful. With trial-and-er-

rors, in this example the translation speed vt−1, the 
distance dt−1 between the location of the typhoon 
and the platform, and the central pressures pc,t−1, 
pc,t−2, pc,t−3 are adopted. Consequently, the continu-
ing cost function is assumed to be represented by 
g(t-1, vt−1, dt−1, pc,t−1, pc,t−2, pc,t−3), and the function is 
approximated based on a set of basis functions as 
in Equation 6. Several sets of the basis functions 
are investigated and these performances are dis-
cussed in the next section together with the results.

At time t = 5, since the decision must be termi-
nated, the expected costs corresponding to a(1) and 
a(2) (hereafter the minimum of these two costs is 
called stopping cost) are determined in the similar 
manner as in Equation 3 for the case t = n, and the 
realizations of the stopping cost for the individual 
paths are obtained. Using the set of the realizations 
of the stopping cost and the corresponding realiza-
tions of (v4, d4, pc,4, pc,3, pc,2) for the individual paths, 
the continuing cost function  g(4, v4, d4, pc,4, pc,3, pc,2) 
is estimated by least squares regression. At time 
t = 4, using the estimated continuing cost function 

4 4 ,4 ,3 ,2ˆ '(4, , , , , )c c cg v d p p p  and the stopping costs, 
which are estimated by Monte Carlo simulation of 
the sample size M, the realizations of the continu-
ing costs are obtained. Applying the regression, the 
continuing cost function  g′(3, v3, d3, pc,3, pc,2, pc,1) is 
estimated. This procedure is repeated for t = 3,2,1.

The last step is to compare the expected costs 
corresponding to a(0), a(1) and a(2) at time t = 0. The 
expected costs for a(1) and a(2) are estimated by 
sufficient numbers of Monte Carlo simulations, 
whereas the expected cost for a(0) is estimated as 
the average of the realizations of the minimized 
expected costs at time t = 1 over all the paths.

4.5  Results

Following the algorithm described above, the opti-
mal decision at time t = 0 is identified. The estimated 
value of the expected cost for a(0) is 1.9881 (b  = 
200,000; M = 300), whereas the expected costs of 
the two terminal decisions a(1) and a(2) are estimated 
as 1.8614 and 2.0429 respectively. Thus, the optimal 
decision is identified as a(1); i.e., to evacuate.

In the optimization, various sets of basis func-
tions (Linear, Chebyshev, Legendre, weighted 
Laguerre and Power polynomials) with different 
truncation order K are examined, and it is found 
that the numerical result shown above is insensitive 
to the choice of the basis functions and the order 
K. Thus, the result and the figures are shown for 
the case of the first-order polynomials.

The convergence of the numerical results with 
respect to the numbers b and M are shown in 
Figure 4. The figure above shows the convergence 
as a function of the number b of  generated paths, 
where M = 1 is fixed. The figure below shows the 

Table 2.  Assumed initial conditions.

Central pressures at t = -2,-1,0 930, 930, 930 [hPa]
Translation speeds at t = 0 20 [km/h]
Translation angles at t =-1,0 0[°],0[°] 

(Northwards)
Position at t = 0 (129°E, 28°N)
SST at the location of the 

typhoon at t = 0
27.9 [°C]

Radius of max. wind speed, RM 100 [km]
Location of the platform (130.3°E, 31.25°N)
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convergence as a function of the number M of  
the simulations for estimating expected stopping 
costs for each typhoon state at each time, where 
b = 200,000 is fixed. As explained earlier this figure 
shows that the estimated values are biased low and 
converge as M increases.

It is found that the solution with a coarse discre-
tization of the probability space, adopted in Nishi-
jima et al. (2009), is biased; the possibility of which 
is mentioned in their paper.

5  discussion

The computational time required to obtain one solu-
tion (b = 200,000 and M = 50) in the example above 
is approximately two hours with a standard PC. 
Various variance reduction methods in Monte Carlo 
simulation such as importance sampling techniques 
and use of quasi-random sequences can be easily 
implemented into the proposed method, which facil-
itate further reduction of the computational time.

A larger number b of the Monte Carlo simula-
tions for estimating the expected stopping costs may 
be required for the cases where the probability of the 
occurrence of the consequences is smaller. In such 
cases, the separate simulations for estimating the 
stopping costs for individual states of the typhoon 
as undertaken in the example may be computation-
ally prohibitive; it totally requires b⋅M realizations 
of (part of) the typhoon paths. This may be circum-
vented by regressing the expected stopping costs 
using the b realizations of the typhoon path that 
are simulated at the first step in the LSM method; 
i.e. the idea described in Section 3.3 to estimate the 

continuing value functions c(t, yt) is applied also 
for estimating the function for the relation between 
the expected stopping cost and the state of the 
typhoon. However, the dependency between these 
two estimated functions caused by using the same 
set of realizations and its consequences with respect 
to bias and convergence must be investigated.

Finally, the LSM method and its extensions 
investigated in the present paper may be applicable 
for broader pre-posterior type of engineering deci-
sion problems, where the reduction of epistemic 
uncertainty or both epistemic uncertainty and 
aleatory uncertainty play the role in motivating 
decision makers to “wait”.

6  Conclusion

The present paper (1) introduces the Least Squares 
Monte Carlo method (LSM method) which is origi-
nally developed for option pricing, (2) points out that 
the method is useful to pre-posterior type of engineer-
ing decision problem, and (3) proposes extensions of 
the LSM method for the application to an engineer-
ing decision problem; i.e. real time decision making in 
the face of emerging natural hazards. The perform-
ance of the proposed approach is investigated with 
an example, and it is shown that it is applicable in 
practice from a computational point of view. Possible 
improvements and applications are briefly discussed.
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1 INTRODUCTION 
Real-time decision optimization has become an interesting and challenging topic with the pro-
gress of real-time information processing technology. Relevant applications in civil engineering 
include situations where operational decisions have to be made in response to real-time infor-
mation on evolving natural hazard events. In these situations, all real-time information available 
can and should be best utilized to find the optimal decisions at respective times; taking into ac-
count not only possible future outcomes, but also opportunities to make decisions in future 
times. This type of decision problem is generally described within the framework of the pre-
posterior/sequential decision analysis, see Nishijima et al. (2009); however, the development of 
efficient solution schemes to the formulated decision problems has remained a technical chal-
lenge.  

An efficient solution scheme is proposed by Anders & Nishijima (2011), taking basis in the 
Least Squares Monte Carlo method (hereafter, abbreviated as LSM), which is developed origi-
nally by Longstaff & Schwartz (2001) for American option pricing. In Anders & Nishijima 
(2011) the original LSM is extended and applied to an example for a real-time operational deci-
sion problem for shut-down of the operation of a technical facility in the face of an approaching 
typhoon. However, due to multiple evaluations of the expected consequences for different pos-
sible future states of the typhoon by means of Monte Carlo simulation (MCS), the solution 
scheme becomes less efficient, if the computational time required for MCS becomes dominant. 
The present paper proposes an enhanced solution scheme, which overcomes this drawback. 

The present paper is organized as follows. Section 2 formulates the real-time decision prob-
lems in consideration within the framework presented in Nishijima & Anders (2012). Section 3 
provides a brief introduction to the extensions of the LSM. Thereafter, the proposed enhance-
ment to the extended LSM is introduced. Section 4 presents an application example, which illus-
trates the performance of the enhanced LSM (eLSM). Section 5 concludes the presented work. 

Enhanced least squares Monte Carlo method for real-time 
decision optimizations for evolving natural hazards 

A. Anders & K. Nishijima  
Department of Civil Engineering, Technical University of Denmark, Denmark 

ABSTRACT: The present paper aims at enhancing a solution approach proposed by Anders & 
Nishijima (2011) to real-time decision problems in civil engineering. The approach takes basis 
in the Least Squares Monte Carlo method (LSM) originally proposed by Longstaff & Schwartz 
(2001) for computing American option prices. In Anders & Nishijima (2011) the LSM is 
adapted for a real-time operational decision problem; however it is found that further improve-
ment is required in regard to the computational efficiency, in order to facilitate it for practice. 
This is the focus in the present paper. The idea behind the improvement of the computational ef-
ficiency is to “best utilize” the least squares method; i.e. least squares method is applied for es-
timating the expected utility for terminal decisions, conditional on realizations of underlying 
random phenomena at respective times in a parametric way. The implementation and efficiency 
of the enhancement is shown with an example on evacuation in an avalanche risk situation. 



2 REAL-TIME DECISION FRAMEWORK 

2.1 Problem setting 

The decision situation considered in the present work is characterized by the following charac-
teristics, see Nishijima et al. (2009): (a) The hazard process evolves relatively slowly and allows 
for reactive decision making; (b) information relevant to predict the severity of the evolving 
hazard event can be obtained prior to its impact; (c) the decision making is subject to uncertain-
ties, part of which might be reduced at a cost; (d) decision makers have options for risk reducing 
activities which may be commenced at any time, supported by the information available up to 
the time. Here, “waiting” to commence the risk reducing measures implies the reduction of un-
certainty but might also reduce available time to complete the risk reducing activities; (e) and on 
top of all, the decisions must be made fast, in near-real time. The decision makers are then re-
quired to make decisions whether they commence one of the risk reducing activities which at 
the same time terminates the decision process (hence, hereafter these are called terminal deci-
sions) or they postpone making a terminal decision.  

2.2 Formulation of decision problem 

The decision problem characterized above can be formulated in accordance with Nishijima & 
Anders (2012). Denote by tA  the decision set consisting of possible decision alternatives at 
time t . Here, time is discretized. It is assumed that the decisions must be terminated before or 
at time n ; hence, {0,1,2,..., }t n . The decision set tA  generally depends on the decisions 
made before time t . If a decision maker decides to terminate the decision process, no decision 
alternative is available at later decision times. It is thus convenient to divide the decision set into 
two mutually exclusive subsets; i.e. ( ) ( ) ( ) ( ),c s c s

t t t t tA A A A A     where ( )c
tA  consists of 

one decision alternative ( )c
ta  “waiting” (i.e. ( ) ( ){ }c c

t tA a ) and ( )s
tA  is the set consisting of 

risk reducing decisions available. Let tE  be a set of variables representing possible infor-
mation available at time t  on the states of the evolving natural hazard event in consideration. 

Given that no terminal decision is made up to time t , the optimal decision *
ta  at time t  is 

identified as the one that maximizes the expected utility at time t  conditional on the collection 
of the information up to time t : 
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where, for 0,1,...., 1t n   and ( )c
ta , 

      
( ) * ( )
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Here, ( , )t tU az  is the utility, which is a function of the decision alternative ta  and the realiza-
tion z  of the hazard index Z  relevant for the decision problem. The hazard index Z  is de-
fined through the underlying random sequence 0{ }n

t tY , representing the evolution of the natural 
hazard event. 0 1( , ,..., )t te e e e  is the collection of the information available up to time t . 
Here, it is assumed that , ( 0,1,..., )t t t n y e ; namely, the state of the event relevant to the de-
cision problem is known to the decision maker without uncertainty. Thus, the symbols ty  and 

te  are utilized interchangeably in the following. (. | )t tf e  is the conditional probability densi-
ty/mass function of information 1tE  given t tE e . From Equation 2 it is seen that for the 
decision ( )c

ta  at time t  the optimization requires to know all optimal decisions at future times, 
1, 2,...,t t n  ; hence, backward induction is required. Equation 1 can be rewritten as: 
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Here, 
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The function ( )t tq e , 0,1,...,t n , is the maximized expected utility, hereafter abbreviated as 
MEU. The functions ( )t th e  and ( )t tc e  are named stopping value function (SVF) and contin-
uing value function (CVF), respectively. Note that, whereas the evaluation of the SVF is 
straightforward in the sense that it does not require backward induction, the evaluation of CVF 
requires backward induction. However, no matter how complex the structure of the decision op-
timization problem may seem, ( )t tc e  is only a function of te . Furthermore, if the underlying 
random sequence 0{ }n

t tY  follows ths -order Markov sequence, ( )t tc e  is a function effectively 
of the last s  information, 1 2, ,...,t s t s t   e e e . 

3 ENHANCEMENT OF THE EXTENDED LSM  

3.1 Extended LSM  

The main technical challenge of the optimization problem formulated in Section 2.2 is the eval-
uation of the CVF. The CVF can in principle be evaluated by calculating the expected utility for 
each combination of all possible discretized future states and possible decision opportunities. 
However, in practice this is not computationally feasible, since the total number of the possible 
combinations increases exponentially as a function of the number n . The LSM circumvents 
this by employing the least squares method. The idea behind the LSM is that any regular func-
tion can be represented by a linear combination of an appropriate set of basis functions; there-
fore, the CVF is approximated as such, for details see Longstaff & Schwartz (2001). In the con-
text of American option pricing, this means that if the price of a stock follows a first order 
Markov sequence, the price of its American option is a function only of the current stock price. 
Consequently the CVF is approximated as a superposition of basis functions whose argument is 
only the current stock price. The way on how this idea is implemented in the optimization is ex-
plained along with the extended version of the LSM (called extended LSM) in the following. 

In Anders & Nishijima (2011), it is demonstrated that the idea behind the LSM can be applied 
for the case where the underlying random sequence follows an inhomogeneous higher-order 
Markov sequence. Therein, two extensions are made: (1) the assumptions on the underlying 
random sequence is relaxed from stationary first-order Markov sequence to non-stationary high-
er-order Markov sequence, and (2) the SVF is evaluated by MCS. Note that in many engineer-
ing applications the SVF cannot be evaluated analytically, unlike the case when executing 
American options. Moreover, the MCS in the second extension is computationally expensive 
and the computational effort increases proportional to n . In the following, the steps of the ex-
tended LSM are presented: 

 
Step 1: A set of b  independent realizations (paths) of the random sequence tY  is generated 
by MCS according to the Markov transition density 1( | )t t tf y y , 0,1,..., 1t n   with the initial 
condition 0 0Y y , where 0 1( , ,..., )t ty y y y . These paths are denoted by 0 1( , ,..., )i i i i

ny y y y ,
1, 2,...,i b , where 0 0

i y y  for all paths, see Figure 1 (a). 
 

Step 2: The SVF for all realizations 0{ }i n
t ty , 1, 2,...,i b , are estimated by additional MCS. 

 
Step 3: Starting at the time horizon n  as illustrated in Figure 1 (a), for each path i  the value 
of the MEU 1(( , ))n n nq y Y  is identified by equating ( ) ( )i i

n n n nq hy y according to Equation 3. 
 

Step 4: Moving to time 1n   the CVF is approximated. This begins by relating each MEU 
( )i

n nq y  to 1
i
ny , to obtain the dataset 1( , ( ))i i

n n nqy y , 1, 2,...,i b , see the dots in Figure 1 (b). 
This dataset is utilized to approximate the CVF 1 -1( )n nc  y  with the least squares method. The 



approximated CVF is illustrated by the curve in Figure 1 (b). See Nishijima & Anders (2012) 
for details. The approximated CVF is denoted by 1 1ˆ ( )n nc  y . 
 
Step 5: Having obtained 1 1ˆ ( )n nc  y  for time 1t n  , the realizations of 1 2 1(( , ))n n nq   y Y , i.e. 

1 1( )i
n nq  y , 1, 2,...,i b , are determined as follows:  

             

1 1 1 1 1 1

1 1

ˆ( ), if ( ) ( )
( )

( ),      otherwise.    

i i i
n n n n n ni

n n i
n n

h h c
q

q

     

 

  


y y y
y

y
  (8) 

The procedure is repeated backwards in time until 1t  , hence 1 1( )iq y  is obtained for all paths.  
 
Step 6: At 0t   the estimate 0 0 0ˆ ˆ ( )c c y  is defined as the average of the realizations 1 1( )iq y , 

1, 2,...,i b . Finally 0 0( )q y  is obtained as the maximum of 0 0ˆ ( )c y  and 0 0( )h y . The optimal 
decision is the one that corresponds to the maximum. 
 

 
Figure 1. Illustration of (a) three paths of a underlying random sequence with corresponding values 

( )i
n nq y  ( 1, 2,3)i   at time n  and (b) the estimation of the CVF using the sets 1( , ( ))i i

n n nqy y . 

3.2 Enhancement of the extended LSM  

As seen in Section 3.1, additional MCS are required in Step 2 to estimate the SVF in the ex-
tended LSM. The enhanced LSM (eLSM) circumvents this by applying the least squares method 
for the estimation of the SVF. The general idea is explained in the following.  

Analogous to Equation 5 the SVF ,eLSM ( )t th y  of the eLSM is defined as maximum of the 
conditional expected utilities ( )

,eLSM ( , )j
t t tl a y  with respect to the terminal decisions ( ) ( )j s

t ta A . 
Here, the functions ( )

,eLSM ( , )j
t t tl a y  are estimated with the least squares method using the reali-

zations 1{ }i b
t iy , similar to the estimation of the CVF described in Section 3.1; i.e. by linear 

combination of basis functions , 1{ ( )}K
t k kL   with unknown coefficients ( )

,
j

t kr   

                   
( ) ( )

,eLSM , ,1
( , ) ( ) .

Kj j
t t t t k t t kk

l a L r


 y y  (9) 

Therein the least squares method is utilized to estimate the coefficients ( ) ( ) ( ) ( )
,1 ,2 ,( , ,..., )j j j j T

t t t t Kr r rr  
by minimizing the sum of the squared distances between the observed realizations of the de-
pendent variable ( )

,eLSM ( , )j
t t tl a y  in the dataset and their fitted values; in the matrix form this is 

expressed by 

                     
( ) ( ) 2

2arg min || ||j j
t t t rr u L r  (10) 

where 2|| ||  denotes the Euclidian norm, tL  is a b K  matrix consisting of values of basis 
functions , 1{ ( )}K

t k kL   which are functions of realizations of ty  and ( )j
tu  the 1b  vector of 

observed future utilities ( )( , )i j
t tu az , 1, 2,...,i b , given the realization iz  of the hazard index 

related to the path i
ny  and decision ( )j

ta  is made at time t . Note that ( )( , )i j
t tu az  is a realiza-

tion of ( )
,eLSM ( , )j i

t t tl a y . Furthermore, to avoid a bias introduced by the least squares estimation 
within the determination of the MEU, Equation 8 is changed to: 

           

* *
,eLSM ,eLSM

,eLSM
1,eLSM 1

ˆ ˆ( , ),        if ( ) ( )
( )

( ),  otherwise

i i i
i t t t t t t

it t
t t

u a h c
q

q  

  


z y y
y

y
  (11) 

where * *( , )i
t tu az  is the observed future utility of path i  for the optimal terminal decision *

ta .  



4 EXAMPLE 

The aim of this section is to demonstrate how the eLSM can be applied to an engineering deci-
sion problem and to compare its performance to that of the extended LSM. For this purpose, a 
decision situation of the evacuation of people in the face of an avalanche event is considered.  

4.1 Problem setting 

Consider a village located nearby a mountain slope having a critical angle for snow avalanches. 
Given prevailing winter conditions and critical snow heights, a decision has to be made whether 
to evacuate people from the village. Assume that the occurrence of a severe avalanche, causing 
significant damages to the village, depends only on the additional snow height ;tS  i.e. tS  is 
the hazard index. Further, if tS  exceeds the threshold s ( 800 [ ])mm  a severe avalanche oc-
curs. Weather forecast by a meteorological agency predicts that snowfall can occur within the 
next hours, which increases the likelihood of the occurrence of the avalanche. However, the du-
ration and the intensity of the snowfall are uncertain. New information becomes available every 
8 hours from the meteorological agency; i.e. the time interval between the subsequent decision 
phases is set to 8 hours ( 8dt  ). At each decision phase a decision is made according to infor-
mation available. Three decision alternatives are assumed; i.e. to evacuate the people (1)a , not 
to evacuate (2)a , and to wait ( )ca . It is assumed that the evacuation takes 16 hours to complete. 

4.2 Consequence model 

The consequences are postulated as follows, see also Table 1: The consequence is equal to 
1EvC   in two cases: (1) when the evacuation has been initiated but the avalanche does not oc-

cur, and (2) when the evacuation is completed before the avalanche occurs. A consequence of 
10DC   is incurred if the avalanche occurs and the people are not evacuated or the evacuation 

was initiated but not completed. No consequence is incurred only in the case when no evacua-
tion is initiated and no avalanche occurs. 

 
Table 1. Conditions and associated consequences postulated in the consequence model. _______________________________________________________________________________________ 

 Additional snow height in the time period [0, ]t   ____________________________________________________________ 

People 800[ ]tS s mm   800[ ]tS s mm   _______________________________________________________________________________________ 
Not evacuated 10DC   0 
Evacuated 1EvC   1EvC   _______________________________________________________________________________________ 

4.3 Probabilistic snowfall model 

A hypothetical probabilistic snowfall model is assumed, which is adapted from a rainfall model 
developed by Hyndman & Grunwald (2000). Let tX  denote the random sequence representing 
the amount of snowfall in the time period ( , ]t dt t . Hereafter, this time period is denoted by 
( 1, ]t t  (i.e. the time unit is 8dt  ) and thus 0{ }n

t tX   for simplicity. The distribution of tX  
is a mixture comprising a discrete component concentrated at 0tx   and a continuous compo-
nent for 0tx  . The discrete component of tX  represents the non-occurrence of snowfall and 
is characterized by the Bernoulli sequence tJ , whose conditional probability function is:  

       1 2 1 1 1 2 1 2( , ) ( 1| , ) ( ( , ))t t t t t t t t t t tP J l µ            y y Y y Y y y y   (12) 

where ( , )t t tJ XY  and ( )l   denotes the logit function which is defined as 
( ) exp( ) / (1 exp( ))l      if 0   and ( ) 0l    otherwise, and  

  1 2 0 1 1 2 2 3 1 1 4 2
2

52( , ) log( ) log( )t t t t t t tµ j j x tc x c                 y y .  (13) 

The continuous component of tX  is strictly positive and characterizes the intensity of the 
snowfall. If 1tJ  , tX  is described by the continuous conditional density 1( | )t tg x y , 0x  . 

( | )tg    follows the Gamma distribution with shape parameter   and mean 1( )t t y , where 

            1 0
2

31 1 2 1 3log( ( )) log( )t t t tj x c t          y .  (14) 



Then the transition probability density function of tX  is defined as (see Figure 2):  

      1 2 1 2 0 1 2 1( | , ) (1 ( , )) ( ) ( , ) ( | )t t t t t t t t t t t t t tf x x g x          y y y y y y y   (15) 

where 0  is the Dirac delta function. The additional snow height is obtained by multiplying 
the snow intensity by the factor sF , which accounts for the density of the snow; i.e.  

                 11 10
( ) 1 1 .

s t

t

t t t s t t t tj js
S S F x S F x 
   y  (16) 

Hence, tS  (the hazard index) at time t  is characterized by the index 1tS   at time 1t   
and a stochastic process composed of a second- and a first-order Markov process (the second 
term in the rightmost equation). The values of the parameters of the model are summarized in 
Table 2. The time frame is set to three days; i.e. 9n  .  

 
Table 2. Parameters of the probabilistic snowfall model. __________________________________________________________________________________________________________ 

Parameter Value Parameter Value ___________________________________________________      _________________________________________________ 

1 0,j j , 0S  0,0,0  1 2 3( , , )c c cc  (0.15,0.3,0.5)  
0 1 5( , ,..., )  α  (4.5,0.26,0.1,0.5,0.05, 0.2)    1.5 
0 1 2 3( , , , )   β  (1.95, 0.2,0.25, 0.04)   sF  10 __________________________________________________________________________________________________________ 

 

 
Figure 2. Illustration of 1 2( | , )t ttf x  y y . 

4.4 Solution with the eLSM 

Here, the MEU in Equation 3 is defined by the expected consequence; i.e. the minimum opera-
tor is used and the inequality sign of Equation 8 is turned. The steps in Section 3.1 are execut-
ed with the extended LSM and the eLSM to obtain the optimal decision.  

 
Step 1: By MCS, generate b  independent realizations of 1{ }n

t tY  and 0 1( , ,..., )i i i i
nS S SS , 

1, 2,..., ,i b  where ( )i i i
t t tS S y  and ( , )i i i

t t tj xy . The realizations 1 2, ,...,i i i
ny y y  are simulated 

according to the probability density functions in Equations 12 and 15; the paths are denoted by 
1 0( , ,..., )i i i i

ny y y y , where 1 1
i
 y y , 0 0

i y y  and 1,2,...,i b . 
 

Step 2: For each i
ty  the value 1( , )i i i

t t t th h  y y  of the SVF is estimated. At time 9n   the 
consequence related to each realization and decision is assumed to be known; i.e. either i

ns  ex-
ceeds the threshold s  or not, thus ,MC ,eLSM

i i
n nh h  for all i . Further, for 1,2,..., 1t n    

(1) with the extended LSM: Simulation of additional M  paths , , ,
1 1( ,..., , ,..., )i m i i i m i m

n t t n y y y y y , 
1, 2,...,m M , for which the observed consequences ( )( , )m j

t tu as , 1,2j  , are determined. 
Here ms  is the realization of the additional snow height related to the path realization ,i m

ny . 
Define ( ) ( )

,MC 1 1
ˆ ( , , ) ( , ) /

Mj i i m j
t t t t t tm

l a u a M 
y y s , then 

             
(1) (2)

,MC ,MC 1 ,MC 1
ˆ ˆ ˆmin{ ( , , ), ( , , )}i i i i i
t t t t t t t t th l a l a  y y y y   (17) 

(2) with the eLSM as explained in Section 3.2: Define 

           
(1) (2)

,eLSM ,eLSM 1 ,eLSM 1
ˆ ˆ ˆmin{ ( , , ), ( , , )}i i i i i
t t t t t t t t th l a l a  y y y y   (18) 

where ( ) ( )
,eLSM 1

ˆ ( , , )j i i i j
t t t t t tl a   y y L r , 1,2j  . The vector ( )j

tr  of the coefficients related to ( )j
ta  

is computed by Equation 10. i
tL  denotes the thi  row of matrix tL ; tL  consists of values of 

basis functions with arguments ty , 1ty  and tS ; e.g. for 1st  order linear basis functions 
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For 0t   set ( ) ( ) ( ) ( )
0 0,MC 0 0 1 0,eLSM 0 0 1 0 01
ˆ ˆ ˆ( , , ) ( , , ) ( , ) /

bj j j i j

i
l l a l a u a b  

  y y y y s , 1,2j  .  
 
Step 3: Starting at time n , for both LSM approaches, the values of ,MC ,MC 1( , )i i i

n n n nq q  y y  and 
,eLSM

i
nq  are set equal to ,MC

i
nh  and ,eLSM

i
nh  respectively, for all i . 

 
Step 4: Moving to time 1n  the values of 1 1 2( , )n n nc   y y  are similarly estimated for both 
approaches using the least squares method as described in Section 3.1. 

 
Step 5: Then, for each path i  determine the values of 1 1 2( , )n n nq   y y : 
(1) for the extended LSM with the estimate ,MC

ˆi
th  obtained by means of MCS:  

                   

1,MC 1,MC 1,MC
1,MC

,MC

ˆ ˆ ˆ,  if 
,    otherwise

i i i
i n n n

in
n

h h cq
q

  


  


  (20) 

(2) for eLSM with the estimate ,eLSM
ˆi
th  obtained by means of the least squares method:  

                

*,
1 1,eLSM 1,eLSM

1,eLSM
,eLSM

ˆ ˆ,      if 
,  otherwise

i i i
i n n n

in
n

u h cq
q

  


  


  (21) 

where *,
1

i
nu   denotes the observed future consequence in path i  for the optimal terminal deci-

sion *
1na  . As in Section 3.1, moving another time step back the same procedure is repeated. 

This is continued until time 1t   and for each path 1,MC
iq  and 1,eLSM

iq  are determined. 
 
Step 6: Execute Step 6 of Section 3.1. 

4.5 Results 

To evaluate the performance of the eLSM compared to the extended LSM, both methods are 
applied to solve the decision problem of the example. The optimal decision at the initial time is 
obtained by estimating the expected consequences for the three decisions alternatives. Various 
types and degrees of basis functions are implemented; e.g. linear, Legendre and Chebyshev pol-
ynomials. Applying these basis functions, it is found that the results do not significantly differ. 
Thus, only the results obtained with linear basis functions are presented. 

Figure 3 illustrates the findings for different parameter settings of the LSM. Therein, Figure 3 
(a) shows for increasing number b  of paths, 2 2 3 3 4 4 5{10 ,3 10 ,10 ,3 10 ,10 ,3 10 ,10 }b     , the 
convergence of the consequence estimates for the three decisions. For each b  the estimates are 
calculated by the average of 100 computations of the indicated method. To be able to compare 
the results 100 different yet fixed sets of random numbers are used to generate the paths in Step 
1. Hence, the estimates for the terminal decisions are identical for all methods; they are present-
ed by solid lines with circles. The following results are obtained for 510b  : (1)

0̂ 1.0192l  , 
(2)

0̂ 0.8969l   and e.g. 0,eLSMˆ 0.8055c   with the eLSM. The optimal decision is ( )
0
ca  which is 

independent of the type of LSM; see Figure 3 (a). Further, the figure shows that the estimate 0ĉ  
obtained by the extended LSM with 10M   is biased. Therefore it is not considered in Figure 
3 (b) which illustrates the convergence rate in terms of the coefficient of variation (COV) of the 
estimates 0ĉ  as a function of the computational time [sec]. The figure shows a significant im-
provement with the eLSM in terms of computational time; a reduction by the factor of 100. 

An application of the proposed approach in practice is presented in Figure 4. Figure 4 (a) il-
lustrates a hypothetical time series of the additional snow height 6

0{ }t tS   where the threshold 
s  is exceeded within the time interval (3,4] . Applying the eLSM subsequently for each time 
step it is found that the optimal decision at time 0t   is ( )ca  whereas at time 1t   it is found 
to be (1)a  given that the snow height at time 1t   in the figure is realized.  



 
Figure 3. Comparison of the results of the extended LSM (with various numbers M of additional MCS) 
and eLSM. (a) Convergence of the average expected consequences with increasing total number of paths. 

(b) Illustration of the decreasing COV of 0ĉ  related to the increasing calculation time for one LSM 
computation as the number b  of paths increases. 

 

 
Figure 4. Illustration of (a) a hypothetical time series of tS  and (b) the corresponding time series of the 

estimated expected consequence of the three decision alternatives calculated with the eLSM and 510b  . 

5 CONCLUSION 

The present paper proposes an enhancement of the extended LSM in the context of real-time 
operational decision problems for evacuation in the face of emerging natural hazards. The pro-
posed approach (eLSM) is applied to an example and it is found that the eLSM significantly im-
proves the computational efficiency; by the factor up to 100. 
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List of Abbreviations

ASCE American Society of Civil Engineers

CI Confidence Interval

cMCM crude Monte Carlo Method

COV Coefficient Of Variation

CVF Continuing Value Function

DSS Decision Support System

eLSM method enhanced Least Squares Monte Carlo method

EM-DAT Emergency Disasters Database

EWS Early Warning System

FEMA Federal Emergency Management Agency

FORM First-Order Reliability Method

GARCH model Generalized Autoregressive Conditional Heteroscedastic-
ity Model

HAZUS Hazards U.S. (freely distributed geographic information
system-based natural hazard loss estimation software
package; developed by FEMA)

HURREVAC Hurricane Evacuation (restricted-use computer program
funded by FEMA and USACE)

JCSS Joint Committee on Structural Safety

JMA Japan Meteorological Agency

LSM method Least Squares Monte Carlo method
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MCS Monte Carlo simulation

MEU Maximized Expected Utility

NHC National Hurricane Center

NI Numerical Integration

OED Oxford English Dictionary

PRA Probabilistic Risk Assessment

SLF Swiss federal Institute for snow and avalanche research

SORM Second-Order Reliability Method

SST Sea Surface Temperature

SVF Stopping Value Function

TC Tropical Cyclone

UNEP United Nations Environment Programme

UNISDR United Nations International Strategy for Disaster Re-
duction

WCDR World Conference on Disaster Reduction

WMO World Meteorological Organization
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Engineering structures are designed to resist a certain range of intensities of natural hazards like tropical 
storms, floods or avalanches, but not their entire range. In cases they are likely to fail in a hazard event, 
risk reducing measures are undertaken to minimize possible consequences. Whether to commence such 
measures needs to be decided in real-time as information becomes available to avoid unnecessary losses. 
The present thesis aims at developing a framework to support real-time decision making in emerging 
natural hazard events. The framework supports decision makers in the process of solving the decision 
optimization of the choice and commencement of risk reducing measures in real-time.
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