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Preface

This thesis is submitted as a partial fulfilment of the requirements for the
Danish Ph.D. degree. The thesis is divided into two parts. The first part
introduces the theoretical background and motivation of the research. A
presentation of the research conducted is given and the major findings are
concluded. The second part comprises four papers, which present the most
important work conducted during the study.

Copenhagen, the 23rd of January 2017

Morten Andersen Herfelt
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Abstract

Precast concrete elements are widely used in the construction industry as
they provide a number of advantages over the conventional in-situ cast con-
crete structures. Joints cast on the construction site are needed to connect
the precast elements, which poses several challenges. Moreover, the current
practice is to design the joints as the weakest part of the structure, which
makes analysis of the ultimate limit state behaviour by general purpose soft-
ware difficult and inaccurate.

Manual methods of analysis based on limit analysis have been used for
several decades. The methods provide excellent tools for engineers, how-
ever, the results are very dependent on the skill and intuition of the design
engineer. Increasingly complex structures and the extensive use of computer-
aided design on other aspects of civil engineering push for more accurate and
efficient tools for the analysis of the ultimate limit state behaviour. This
thesis introduces a framework based on finite element limit analysis, a nu-
merical method based on the same extremum principles as the manual limit
analysis. The framework allows for efficient analysis and design in a rigorous
manner by use of mathematical optimisation.

The scope is to be able to model entire precast concrete structures while
accounting for the local behaviour of the joints. The in-situ cast joints are
crucial to the capacity of precast concrete structures, however, the behaviour
of joints is in practice assessed by simple, empirical design formulas. A
detailed study of in-situ cast joints in two-dimensions is conducted using
finite element limit analysis, and the findings are used in the development
of a two-dimensional multiscale joint finite element, which can represent the
complex behaviour of the joints to a satisfactory degree.

Analysis of three-dimensional structures is rather difficult, especially by
manual methods, however, considering three-dimensional nature of structures
will generally increase the capacity. The two-dimensional joint element is
therefore generalised to three-dimensions in order to be able to account for
the influence of the joints.

The strength and efficiency of the presented framework are demonstrated
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by two real size examples, a two-dimensional precast shear wall and a three-
dimensional precast concrete stairwell. The analysis shows that the frame-
work is capable of modelling complex precast concrete structures efficiently.
Moreover, the influence and local behaviour of the joints are accounted for
in the global model.

The results of the two examples demonstrate the potential of a frame-
work based on finite element limit analysis for practical design. The use of
mathematical optimisation ensures an optimised design, and the optimisation
problems are solved efficiently using state-of-the-art solvers. It is concluded
that the framework and developed joint models have the potential to enable
efficient design of precast concrete structures in the near future.



Resumé

Præfabrikerede betonelementer bruges i stor grad i byggeindustrien, da de
har mange fordele frem for konventionelle pladsstøbte betonkonstruktioner.
Fuger støbt p̊a byggepladsen er dog nødvendige for at samle de præfabrike-
rede elementer, hvilket medfører store udfordringer for b̊ade entreprenør og
r̊adgiver. Den nuværende praksis er at designe fugerne som de svageste led i
konstruktionen, hvilket gør analyse med gængse computerværktøjer besvær-
ligt og unøjagtigt.

I praksis har h̊andberegningsmetoder baseret p̊a brudstadieanalyse været
brugt i adskillige årtier. Metoderne giver de r̊adgivende ingeniører værdifulde
og effektive værktøjer, men kvaliteten af resultaterne afhænger meget af den
enkelte ingeniørs færdigheder. Konstruktioner bliver stadig mere komplekse,
hvilket, sammen med den stigende brug af computerstøttet design i andre de-
le af bygningsingeniørfaget, giver et behov for effektive og nøjagtige værktøjer
til analyse af konstruktionens opførsel i brudgrænsetilstanden. Denne afhand-
ling introducerer en beregningsmetode kaldet numerisk brudstadieanalyse,
som er baseret p̊a de samme grundprincipper som h̊andberegningsmetoderne.
Ved brug af matematisk optimering, muliggør beregningsmetoden effektiv
analyse og design i en stringent manér.

Målet er at kunne modellere hele betonelementkonstruktioner og samtidig
tage fugernes lokale opførsel med i regning. De pladsstøbte fuger er essentielle
for den overordnede kapacitet af betonelementkonstruktioner, men fugerne
bliver ikke desto mindre dimensioneret ved brug af empiriske formler. Et de-
taljeret studie af pladsstøbte betonfuger ved brug af numerisk brudstadieana-
lyse er gennemført, og resultaterne er brugt til at udvilke et to-dimensionelt
multiskala fugeelement, som kan repræsentere fugernes komplekse virkem̊ade
tilstrækkeligt præcist.

Tre-dimensionelle konstruktioner er generelt svære at analysere, specielt
med h̊andberegningsmetoder. Ikke desto mindre vil det ofte give en større
bæreevne at betragte hele den tre-dimensionelle konstruktion frem for blot
et to-dimensionelt udsnit. Det to-dimensionelle fugeelement er generaliseret
til tre-dimensioner for at gøre det muligt at tage fugernes virkem̊ade med i
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regning ved analyse af betonelementkonstruktioner i tre dimensioner.
To eksempler, en to-dimensionel stabiliserende betonelementvæg og en

trappeskakt af betonelementer betragetet i 3D, demonstrerer styrken og ef-
fektiviteten ved den præsenterede beregningsmetode. Analysen viser at be-
regningsmetoden kan h̊andtere komplekse konstruktioner effektivt i b̊ade 2D
og 3D, samtidig med at de pladsstøbte fuger h̊andteres p̊a en fornuftig m̊ade.

Potentialet for praktisk design ved brug af numerisk brudstadieanalyse
illustreres tydeligt ved resultaterne for de to eksempler. Brugen af matematisk
optimering sikre et optimeret design, og selve optimeringsproblemerne kan
løses hurtigt og effektivt ved brug af moderne løserer. Det kan konkluderes,
at det nærværende forskningsarbejde har potentiale til at muliggøre effektivt
og optimeret design af betonelementkonstruktioner i en nær fremtid.
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Chapter 1

Introduction

1.1 Precast concrete

Concrete as a material has been known and used by humans for millennia.
The Romans used a cement based on quicklime and volcanic ash, also known
as pozzolana. When mixed with aggregates, e.g. rock pieces or ceramic
tiles, the final product was a durable concrete that the Romans used for
aqueducts, bridges, arches, and domes (Delatte, 2001). The Pantheon in
Rome (built under emperor Hadrian about 126 AD) is still to this day the
largest unreinforced concrete dome in the world. The Roman concrete was
unreinforced in a modern sense, however, it was known that adding horse
hair to the mixture would reduce cracking induced by shrinkage.

Figure 1.1: Sketch of the cross section of the Pantheon: The spherical dome
has an inner diameter of 43.3 metres (image from wikipedia.org).

Modern concrete uses Portland cement, which was patented in 1824 by
the British cement manufacturer Joseph Aspin and further developed by his
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1.1 Precast concrete Introduction

son William Aspin. However, it was not until the second half of the 19th
century that metal reinforcement was added to the concrete. The ability to
create such cheap composite materials capable of carrying both tension and
compression quickly became essential.

During the rebuild of many European cities after the Second World War,
reinforced concrete became widely used in the construction industry. Den-
mark also faced an increased demand for residential and industrial build-
ings, hence, a more rational and efficient method of construction was needed.
Moreover, a shortage of masons accelerated this process.

Precast concrete was used as early as the Romans, however, in a modern
context the method was developed in the early 20th century, but not adopted
in a larger scale until after the Second World War. In Denmark, the earli-
est attempts at using precast concrete elements took place in the beginning
of the 1950s. The transformation from the traditional building methods to
the industrialised building methods can be seen as a transition from crafts-
manship to mass production - something which many industries had already
undergone before the 1950s (Nissen, 1961). During the 1950s and 60s, the
industrialisation made it possible to increase the production of the Danish
construction industry several times, and the use of precast concrete provided
a technique that could remedy a massive shortage of housing. Several sys-
tems for precast concrete elements were developed during the 1950s and 60s,
which made the Danish precast industry one of the leading players in the
market, and many of the systems as well as methods developed in that time
are still used today.

1.1.1 Practice and challenges

Precast concrete is cast and cured in a controlled environment, which allows
for increased quality control and, therefore, makes it possible to decrease
many of the tolerances. Moreover, precasting enables parallel production
which increases the speed of production considerably. The commonly used
techniques for precast concrete elements are described in fib bulletin 43 (2008)
amongst other publications.

The most widely used precast component is perhaps the hollow core slab
(often abbreviated HCS). The voids of the hollow core slab decrease the
weight of the structure significantly, while the moment capacity of the ele-
ment is practically unaffected. Both the compressive capacity of the concrete
and the tensile strength of the reinforcement are exploited in the hollow core
slabs. The slabs typically have a width of 1.2 metres and the joints between
them are reinforced in the longitudinal direction.

The shear capacity of the HCS is somewhat limited as the slabs usually

4 Department of Civil Engineering - Technical University of Denmark



Introduction 1.1 Precast concrete

do not have shear reinforcement. In order to increase the capacity, the voids
are sometimes filled with mortar near the supports, however, experiments
show that this have little to no effect.

Joints cast on the construction site are needed to connect the precast
elements. These joints are often crucial to the overall behaviour and capac-
ity of the structure, however, the design and construction techniques have
developed little over the last 60 years. Several different types of joints are
used, e.g. slab-to-beam joints, beam-to-column joints, panel-to-panel joints.

The panel-to-panel joints are usually reinforced with loop reinforcement,
e.g. U-bars or wire loops, and the interfaces are often indented. In case of
U-bars, the loops are often pre-bend by the manufacturer and, following a
vertical lowering of the precast element on the construction site, the U-bar
loops are straightened manually within the rather narrow gap between the
precast elements. Subsequently, the void is filled with a mortar with low size
aggregates.

The technique shown in Figure 1.2 poses several issues. It is almost
impossible to ensure that the void of the joint is filled sufficiently with mortar.
Moreover, the procedure of pre-bending and straightening the U-bars back
again affects the position of the U-bars, and the quality of the joint will
depend on the skill of the workers to a large degree. The current procedure
means that there is no guarantee that the U-bars are placed closely together,
which is assumed for the design calculations. Further more, it imposes some
ductility requirements on the steel used for the U-bars, hence, high-strength
steel cannot necessarily be used.

An important property of the joints is the ductility. It has been shown
that the current design with U-bar loops displays some ductility, but experi-
ence a decrease capacity after the first peak load (Sørensen et al., 2016). It
is therefore necessary to consider this when designing the joints.

Many of the current design methods used in Denmark for the ultimate
limit state are based on the theory of rigid plastic materials, which will be
introduced in Section 1.2. Lower bound methods, e.g. the stringer method,
are frequently used as design tools. Advanced numerical methods such as
non-linear finite element analysis are, on the other hand, rarely used for
design of the ultimate limit state for precast concrete structures. Such meth-
ods require expert knowledge by the user, are often time consuming, and are
prone to numerical instability.

Design of joints according to the Eurocode 2

The Eurocode 2 (European Committee for Standardization, 2008) is the cur-
rent standard for design of structural concrete in most of Europe, including

Department of Civil Engineering - Technical University of Denmark 5
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Element being
lowered in

Pre-bend U-bars

(b) (b)

(a)

(c) (c)

(b) (c)

Figure 1.2: a) Assembly of the precast panels on the construction site, b)
horizontal cross section, and c) vertical cross section of a panel-to-panel joint
(adapted from Sørensen et al., 2016)

Denmark. The design approach comprises a single criterion, namely a shear-
friction criterion for the interface for concrete cast at different times, such as
the interface between the precast element and the joint concrete. An upper
limit for the shear capacity is also given:

vRdi = cfctd + µσn + ρfyd (µ sinα + cosα) ≤ 0.5νfcd

where cfctd can be interpreted as a contribution to the shear capacity from
the cohesion, and µσn is the contribution to the capacity from external nor-
mal stresses on the joint σn (compression positive). The angle α is in practice
always 90◦ (U-bar reinforcement perpendicular to the joint), hence, the con-
tribution to the friction from the transverse reinforcement is reduced to µρfyd,

6 Department of Civil Engineering - Technical University of Denmark



Introduction 1.1 Precast concrete

where ρ is given as the reinforcement area As divided by the considered area
of the interface Ai. The values of c and µ depend on the type of interface,
and four types are defined according to the Eurocode 2:

• Very smooth: c = 0.025 to 0.10 and µ = 0.5

• Smooth: c = 0.20 and µ = 0.6

• Rough: c = 0.40 and µ = 0.7

• Indented (keyed): c = 0.50 and µ = 0.9

For keyed joints, it is assumed that the transfer of stresses only occurs over
the area of the keys. This does not affect the contribution from the friction
since the normal and shear stresses are scaled proportionally, however, it
affects the contribution from the cohesion cfctd and the upper limit 0.5νfcd.
Keyed joints will therefore often display a lower capacity than rough joints,
see Figure 1.3.

0 2 4 6 8 10
0

200

400

600

800

1,000

1,200
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V
R
d
i

[k
N

/
m

]

Keyed
Rough

Figure 1.3: Shear force capacity for unreinforced keyed and rough joints as
a function of the transverse confinement σn for typical material parameters
and geometric quantities according to the Eurocode 2.

The interfaces for the keyed joints will often be smooth, however, µ = 0.9
can be used to account for the effect of the indentation. Moreover, it was
found by Dahl (1994) that the friction coefficient for smooth interfaces can
be taken as 0.75. The term representing the formal cohesion, cfctd, is clearly
an empirical expression as the usual Coulomb friction model gives no link
between the uniaxial tensile strength and the cohesion. According to Nielsen
and Hoang (2010), the cohesion of an uncracked interface can be taken as

Department of Civil Engineering - Technical University of Denmark 7



1.2 Limit analysis of concrete Introduction

0.55
√
fc, however, cracking due to e.g. shrinkage will more or less always

occur at the interface, which reduces the cohesion considerably.

According to the Eurocode 2, the characteristic, 5 % fractile tensile
strength can be taken as:

fctk;0.05 = 0.21f
2/3
ck

If the interface is subjected to external tension, the contribution cfctd should
be set to zero.

1.2 Limit analysis of concrete

The method of limit analysis is widely used in both the industry and academia.
The assumption of a rigid-plastic material behaviour leads to a simple and el-
egant framework for assessing the capacity and behaviour of structures. The
term limit analysis covers a wide variety of methods including the well-known
yield line method (Johansen, 1962).

Studies of plastic behaviour of materials can be traced back as far as
the 17th century. However, it was not until the 20th century that a general
formulation of the theory for rigid plastic materials was given by Gvozdev
in 1936 (see Gvozdev, 1960, for the English translation). Gvozdev’s work
remained unknown in the Western world until the 1950s, but a similar theory
was developed independently, mainly by Prager and Drucker (see e.g. Prager,
1952; Drucker et al., 1952). The formulation of the theory of rigid-plasticity
also included precise definitions of three crucial theorems, namely the lower
bound theorem, the upper bound theorem, and the uniqueness theorem.

Several Danish researchers have contributed to the field of limit analysis
and concrete plasticity. One of the first, Ingerslev, worked in the 1920s and
30s on a calculation method for reinforced concrete slabs, which would later
be known as the yield line method (Ingerslev, 1921, 1923). It is worth noting
that this work was done before the precise formulations of the theorems
of limit analysis were given, however, it was known by intuition that the
developed method was an upper bound method (Nielsen and Hoang, 2010).
Johansen continued the work of Ingerslev, and in Johansen’s work (Johansen,
1931, 1932, 1962) the so-called yield lines are given a statical and geometrical
interpretation as lines with constant bending moment where internal work
(i.e. rotations) can take place at the collapse load. An upper bound to the
load carrying capacity can then be calculated by use of the work equation.
As the name indicates, upper bound solutions will give an upper bound to
the exact capacity and will therefore be unsafe.

8 Department of Civil Engineering - Technical University of Denmark



Introduction 1.2 Limit analysis of concrete

Lower bound methods are generally more desirable for design, as they
give a safe estimate of the load carrying capacity (within the assumptions of
the model). Several different methods have been developed, e.g. the stringer
method (Kærn, 1979; Damkilde et al., 1994) or the strip method (Hillerborg,
1960). Lower bound models, however, might underestimate the capacity
of the given structure considerably as it can be difficult to guess a decent
estimate of the optimal stress field. Therefore, the quality of the solution will
depend on the experience and engineering intuition of the structural engineer.
The same can be said about upper bound solutions, but it is generally easier
to guess the exact collapse mechanism (for simple structures).

A large portion of the knowledge and understanding of limit analysis
of concrete structures comes from the work of M. P. Nielsen (Nielsen and
Hoang, 2010). Nielsen and Hoang present the general formulation, yield
criteria, and the exact analytical solutions to several common problems. The
topics of punching shear, joints, and debonding are also treated in the same
work within the framework of limit analysis.

1.2.1 Material model

Limit analysis assumes a rigid, perfectly plastic material with, in principle,
unlimited deformation capacity. The material displays no deformations un-
til a specific stress level has been reached and the material starts yielding,
allowing for plastic deformations. Such materials do not, of course, exist in
reality, however, it is a reasonable assumption when the elastic deformations
of the given structure are insignificant compared to the plastic deformations.
Commonly used materials like mild steel as well as reinforced concrete can
be modelled as rigid, perfectly plastic with a reasonable degree of accuracy.

σ

ε

(a)

ε

σ

−fy

fy

(b)

Figure 1.4: a) Sketch of a typical stress-strain curve for mild steel loaded
in uniaixial tension, b) rigid plastic stress-strain curve.
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1.2 Limit analysis of concrete Introduction

All materials will display some degree of elastic deformations before yield-
ing, however, for both mild and cold formed steel, the elastic deformations
are insignificant compared to the plastic deformation capacity, see Figure 1.4.
The area under the curves indicates the work done and for the rigid-plastic
stress-strain curve, Figure 1.4(b), the plastic work.

Figure 1.4(a) shows a typical stress-strain curve for mild steel loaded in
uniaxial tension: A linear elastic part is followed by a yield plateau, hard-
ening, and finally necking and failure. Figure 1.4(b) shows the stress-strain
curve for a rigid, perfectly plastic material where plastic deformations initiate
when the yield strength fy has been reached.

Concrete displays behaviour far from the rigid plastic stress-strain curve.
In tension, the behaviour is characterised by a steep drop in the capacity
after the peak stress has been reached as illustrated in Figure 1.5 (first quad-
rant). The material will behave linear elastic at first until microcracks start
forming which reduces the stiffness of the material. At the peak stress, ft,
the microcracks localise into discrete macrocracks which causes softening of
the material (Karihaloo, 1995).

ft

−fc

−νfc

ε

σ

Figure 1.5: Sketch of a typical stress-strain curve for unreinforced concrete
under uniaxial loading. Thick, dashed line indicate a rigid, perfectly plastic
stress-strain curve based on the effective strength νfc.

In compression, the concrete will typically display the same elastic stiff-
ness as in tension, however, the loss of stiffness occurs at a higher level of
stress and the stress can still be increased considerably until the peak stress,
fc, has been reached. After the peak stress, the material will display softening
until failure by crushing occurs.

Steel and concrete are often combined, and the resulting composite ma-
terial exploits the tensile strength of the steel and the compressive strength
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κ

M

Figure 1.6: Typical moment-curvature relation of a normally reinforced
concrete beam: The plateau marks the point where the reinforcement starts
yielding.

of the concrete. Moreover, the composite material will display a ductile
behaviour which is much closer to the rigid-plastic material model than un-
reinforced concrete provided a reasonable amount of reinforcement, see the
moment-curvature relation shown in Figure 1.6.

Figure 1.5 also shows a rigid plastic stress-strain curve which uses the
effective strength νfc, where ν is the so-called effectiveness factor which ac-
counts for both microcracking and softening behaviour. The magnitude of
the effectiveness factor depends on the stress conditions of the material and
the reinforcement layout amongst other factors. Standards, e.g. the Eu-
rocode 2, give recommendations for the value of ν to be used in different
cases, e.g. for beam shear problems:

ν = 0.6

(
1− fc

250 MPa

)
(fc in MPa)

An effectiveness factor of unity may be used for lower bound problems de-
pending on the model (Nielsen and Hoang, 2010). Exner (1979) suggested
an effectiveness factor for beams of ν = 3.2/

√
fc (fc in MPa) based on a the-

oretical stress-strain function. Exner also mentioned that the effectiveness
factor increases with the amount of reinforcement. For upper bound solu-
tions, which by definition is on the unsafe side, an effectiveness factor below
unity should be used. As mentioned, the effectiveness factor accounts for
several phenomena and, in principle, for calibration of ν for a given problem
the exact rigid-plastic solution has to be used.
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1.2.2 Extremum principles for rigid-plastic materials

Within the framework of limit analysis, the yield strength, fy for steel, νfc
for concrete, describes the largest allowable stress level in the given material
for uniaxial loading. For a general stress state σ, such criteria can be stated
as:

f(σ) ≤ 0 (1.1)

where f is the so-called yield function which depends on the material and
type of modelling. Plastic strains can only develop for stress states which
are on the yield surface, i.e. when f(σ) = 0. For stress states that ful-
fil f(σ) < 0, no strains develop due to the assumption of a rigid plastic
material. The yield function f is generally assumed to be a convex, non-
linear function. A number of yield functions for materials commonly used in
structural engineering will be presented in details in Section 3.3.

The relation between the general stresses σ which are on the yield surface,
i.e. f(σ) = 0, and the rate of general plastic strains ε can be written as

εp = λp
∂g(σ)

∂σ
(1.2)

where g is the plastic potential function, and λp ≥ 0 is the so-called plastic
multiplier. Equation (1.2) is the flow rule, which links the stresses and the
strain rates. The associated flow rule is commonly used meaning that g is
identical to the yield function f , and the strain rates εp will be normal to
the yield surface, i.e.:

εp = λp
∂f(σ)

∂σ
(1.3)

If the stresses are inside the yield surface, the plastic multiplier will be zero
as no strains occur. If the stresses are on the yield surface, λp can be either
zero or positive depending on whether or not the given point is active, i.e. if
plastic displacements occur. This can be stated as

λpf(σ) = 0 (1.4)

and is commonly referred to as the complementarity condition. For a rigid
plastic material, no elastic strains will occur and, therefore, at the very onset
of failure the total strains will be equal to the plastic strain rates εp. In the
literature, the term plastic strain rates is therefore often replaced by plastic
strains.

We now consider a body subjected to a generalised load P which gives
rise to the generalised, work-conjugate displacements u. Moreover, the stress
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and strain fields of the body are described by the generalised stresses σ and
the generalised, work-conjugate strains ε. The external work is given as

Wext = uTP ,

and the internal work of the body is given as

Wint =

∫

Ω

εTσdΩ

where Ω is the domain of the body. Equating the external and the internal
work gives the work equation:

Wext = uTP =

∫

Ω

εTσdΩ = Wint (1.5)

The rigid plastic constitutive model means that internal work is only pro-
duced by stresses, σ, that are on the yield surface, i.e. f(σ) = 0. The yield
surface is assumed to be convex and contain the origin (σ = 0), hence, given
a set of stresses σ and corresponding strain rates ε according to the associ-
ated flow rule (1.3), any other stress state σ + δσ will contribute equally or
less to the internal work through the same plastic strains ε:

∫

Ω

εT (σ + δσ) dΩ =

∫

Ω

(
εTσ + εTδσ

)
dΩ ≤

∫

Ω

εTσdΩ (1.6)

The convexity of the yield surface implies that the scalar product εTδσ is
non-positive, see Figure 1.7. The load on the structure is given as λP , where
λ is a load factor. The exact collapse load of the rigid plastic body can be
stated as P ∗ = λ∗P with λ∗ being the exact load factor.

σ2

σ1

σ

σ + δσ

δσ

ε

Figure 1.7: Two stress states illustrated in a convex yield envelope: The
product εTδσ will be negative.
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1.2 Limit analysis of concrete Introduction

Lower bound theorem

The lower bound theorem states that if a given stress field σ is statically
admissible and safe, i.e. it fulfils the equilibrium conditions, balances the
external loads λP , and satisfies the yield function in any point, the load
will be a lower bound to the exact collapse load λ∗P . Assuming the exact
displacement field u∗ and strain rates ε∗, the work equation (1.5) gives

λ(u∗)TP =

∫

Ω

(ε∗)TσdΩ (1.7)

From (1.6) it follows that the work of the stresses σ will be less than or equal
to the work by the exact stress field, σ∗:

λ(u∗)TP =

∫

Ω

(ε∗)TσdΩ ≤
∫

Ω

(ε∗)Tσ∗dΩ = λ∗(u∗)TP (1.8)

From (1.8) it is clear that λ ≤ λ∗. Lower bound method can therefore be
used to establish safe stress fields, which gives a rigorous lower bound to the
exact limit load.

Upper bound theorem

The upper bound theorem states that given a kinematically admissible dis-
placement field u and the corresponding strain rates ε, an upper bound
to the exact limit load can be found by equating the internal and external
work. Given a kinematically admissible collapse mode described by the dis-
placement field u and the strains ε as well as the corresponding stresses σ
(according to the flow rule, Equation 1.3) which balances the external load
λP , the work equation reads

λuTP =

∫

Ω

εTσdΩ (1.9)

We now assume that the exact, optimal stress field is described by σ∗ which
balances the exact collapse load λ∗P .

The work done by the stresses σ corresponding the strains ε will larger
than or equal to the work by any other set of stresses inside or at the yield
surface including the exact stresses σ∗ illustrated in Figure 1.8. The following
must therefore be true,

λuTP =

∫

Ω

εTσdΩ ≥
∫

Ω

εTσ∗dΩ = λ∗uTP , (1.10)

and it follows directly from (1.10) that the load factor λ for the kinematically
admissible collapse mode will be an upper bound, i.e. λ ≥ λ∗.
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σ2

σ1

σ

σ∗

ε

Figure 1.8: Convex yield envelope showing the strain rates ε and stresses
σ corresponding to the kinematically admissible collapse mode as well as the
optimal stresses σ∗.

Uniqueness theorem

Finally, the uniqueness theorem states that given a statically admissible and
safe stress field σ as well as a kinematically admissible displacement field
u and the corresponding strain rates ε which satisfy the flow rule, the load
factor λ will be equal to the exact load factor λ∗.

This follows directly from the upper and lower bound theorems: A stat-
ically admissible and safe stress field will give a lower bound of the load
factor, while a kinematically admissible collapse mode, i.e. displacements
and strains, will give an upper bound, hence, for the two to be equal, the
determined load factor must be the exact.

1.3 Finite element limit analysis

Several manual methods have been developed within the framework of limit
analysis. These methods provide excellent tools for assessment of the ulti-
mate load carrying capacity of structures and bound the exact limit load in a
rigorous manner. For simple structures, manual methods, e.g. the yield line
theory, will often provide a decent estimate of the capacity. As structures
increase in complexity, however, it becomes increasingly difficult to deter-
mine an adequate estimate of the stress fields or displacement fields by hand,
hence, numerical methods are needed.

The finite element method is a numerical method for solving boundary
value problems for differential equations. The method was developed in the
1950s and 60s and quickly gained popularity (see e.g. Zienkiewicz and Taylor,
1977; Cook et al., 2001). The method was originally developed for structural
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and mechanical engineering, however, it is used in a wide variety of fields
today as the method is applicable to any differential equation. The main idea
of the method is to divide a given domain into sub-domains called elements.
Each element represents some variation of the unknown variables and the
accuracy of the solution depends on how well the variations of the elements
approximate the exact solution.

The simplest version of the finite element method used in the field of
structural engineering assumes a linear elastic material behaviour as well as
small deformations. The resulting mathematical problem is a linear system
of equations. More advanced types of the method that incorporate plastic-
ity or large deformations are widely used in academia, however, they only
see somewhat limited use outside. Non-linear finite element analysis gives a
non-linear system of equations, where the stiffness of the structure depends
on the current state of stresses and deformations. It is therefore necessary to
deploy an iterative approach where the forces (or deformations) are applied
gradually. This makes the calculations computationally heavy and (possibly)
numerically unstable. Moreover, for practical design where the ultimate load
carrying capacity is the main result of interest, an iterative approach is unde-
sirable. Non-linear finite element analysis does have a number of advantages,
e.g. it is possible to capture the post-peak behaviour which can be relevant
in some cases.

Finite element limit analysis can be considered as a special case of the
general finite element method. It uses an element discretisation and assumes
a rigid plastic material behaviour similarly to the manual limit analysis dis-
cussed in Section 1.2. The research in the field began in the late 1960s
and several papers on the topic were published in the early 70s. Some of
the first were Belytschko and Hodge (1970) who used quadratic stress ele-
ments to obtain strict lower bound solutions for several problems, however,
sophisticated methods were necessary to ensure that the stress fields of the
elements satisfied the yield criterion. Later, elements with linear stress fields
became favoured (see e.g. Sloan, 1988). Anderheggen and Knöpfel (1972)
presented the general formulation as well as equilibrium elements for solids
and plates. The formulation of Anderheggen and Knöpfel was based on linear
programming, i.e. linear optimisation, and the chosen yield criterion had to
be linearised to fit the format. During the 1980s and 90s, several researchers
contributed to the field of finite element limit analysis for two-dimensional
problems (Christiansen, 1986; Sloan, 1989; Krenk et al., 1994; Andersen and
Christiansen, 1995; Poulsen and Damkilde, 2000). Linear programming was
still the choice of optimisation, however, there were some attempts of develop-
ing algorithms capable of handling non-linear constraints (Zouain et al., 1993;
Borges et al., 1996; Christiansen and Andersen, 1999; Andersen et al., 2000;
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Krabbenhoft and Damkilde, 2002). In the 2000s, primal-dual interior point
methods for second-order cone programming and semidefinite programming
- generalisations of linear programming - became established technologies
and several papers on finite element limit analysis using second-order cone
programming were published (Krabbenhøft et al., 2007; Makrodimopoulos
and Martin, 2006, 2007). Many yield criteria commonly used for structural
engineering can be cast as either second-order cones or semidefinite cones
(Bisbos and Pardalos, 2007), e.g. the von Mises criterion has the shape of a
conic section. A brief introduction to the field of mathematical programming
will be given in Chapter 2, and the commonly used yield criteria and their
conic form will be presented in Section 3.3.

Numerical limit analysis is still primarily used in academia, however,
some commercial programs for geotechnical engineering are available. The
commercial software LimitState, which uses discontinuity layout optimisation
and is capable of handling both geotechnical problems and slabs, has been
developed by a research group at the University of Sheffield (Gilbert et al.,
2014; Smith et al., 2014). Moreover, the software OptumCE developed by
researchers as the University of Newcastle incorporates finite element limit
analysis for modelling of geotechnical problems (Krabbenhøft and Lyamin,
2014).

1.4 Relevance for the industry

The gap between researchers working in the field of numerical methods and
practitioners in the field of structural engineering is substantial. Countless
sophisticated material models including damage, cracking and so on, have
been developed for the finite element method. These models are capable of
predicting the behaviour of experimental tests accurately under certain as-
sumptions, however, they have little practical use. Moreover, such models
often require material constants which are not readily available and experi-
mental testing are necessary to determine the required material parameters.
Numerical non-linear finite element analysis in general requires expert knowl-
edge and the results are difficult to verify and perform quality assurance on
due to the various material models used by commercial software and the
black box nature of the solvers and algorithms.

Manual limit analysis has been used in academia for about a century. The
methods provide efficient tools for assessment of the ultimate load carrying
capacity in an intuitive manner, which can easily be checked for errors. To-
day, many of the calculations based on these methods are automated using
e.g. spreadsheets, which speed up the design process to some extent. For
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the overall load distribution in structures, the quality of the solution depends
heavily on the engineering intuition of the design engineer, hence, suboptimal
solutions are unavoidable.

A framework based on finite element limit analysis will provide an ex-
cellent tool for optimisation of the overall load distribution and capacity of
structures. As mentioned in Section 1.3, the method is based on the same
basic principles as the manual limit analysis and the solutions will in most
cases be intuitive and easily checked. One of the key components of precast
concrete structures is the in-situ cast joints connecting the precast elements.
The capacity and behaviour of these joints are today assessed using empirical
expressions, see Section 1.1.1, and the overall distribution of forces does not
consider the joints. Development of a framework based on finite element limit
analysis capable of handling in-situ cast joints will not only lead to a more
accurate load distribution in the structure, but also significant material sav-
ings. Moreover, the framework will make the design process more efficient,
which is crucial to consulting engineering companies in today’s market.

The material savings will benefit the environment as well. Cement, one
of the key components of concrete, is responsible for approximately 7 % of
the global CO2 emissions, and the production of cement has been increasing
annually by about 2.5 %. From an environmental perspective, optimisation of
concrete structures will therefore be a valuable tool in reducing the emissions
from the construction industry in general.

1.5 Objectives of the thesis

As discussed, the industry predominately uses automated manual methods
based on the assumption of a rigid plastic material behaviour for the ultimate
limit state design. Linear elastic finite element analysis is widely used in the
serviceability limit state and to some extend in the ultimate limit state. More
advanced types of numerical analyses, however, are rarely used for practical
design and analysis in the industry.

The primary scope of the present thesis is to develop a general framework
based on finite element limit analysis for design of precast concrete structures.
The focus of the study will be on the in-situ cast joints which are crucial to
the overall capacity and behaviour of precast structures. The objectives can
be listed as follows:

• Identification of the critical mechanisms of two-dimensional shear joints.

• Development of a simplified model for use in a generalised numerical
framework.
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• Extension of the findings to the three-dimensional case.

In addition to these objectives, several finite elements for the framework are
developed and presented in the thesis. The developed models are validated
by comparison to experimental results found in the literature as well as the
current standards. Moreover, real size examples are analysed using the de-
veloped framework and the findings are discussed.

1.6 Overview of the thesis

The thesis comprises two parts: Introduction and Summary (Part I) and
Appended Papers (Part II). The content of the two parts overlaps to some
extent as Part I will attempt to tell the complete story of the study including
the research and findings presented in the papers.

After the introduction, Chapter 2 will present the basics of mathematical
programming as well as a brief overview of an interior point algorithm for
second-order cone programming. Chapter 3 gives a detailed description of the
mathematical formulation of finite element limit analysis and the commonly
used yield criteria used in structural engineering.

Chapter 4 presents the main findings of the study. This includes

• the detailed analysis of shear joints, presented in Paper I (Herfelt et al.,
2016),

• the development of a simplified mechanical model for two-dimensional
joints, presented in Paper II (Herfelt et al., 2017a),

• the development of a generalised plane stress element for modelling of
shear walls, presented in Paper III (Herfelt et al., 2017c), and

• the generalisation of the joint model to the three-dimensional case,
presented in Paper IV (Herfelt et al., 2017b).

Chapter 5 will present examples of real size structures analysed using the de-
veloped models and framework. In addition to the core work of the present
study given in Chapter 4, several finite elements have been developed and
their formulations are given in Chapter 6. Finally, conclusions and recom-
mendations for future work will be given in Chapter 7.
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Chapter 2

Convex optimisation

2.1 Introduction

Mathematical optimisation is used in many fields of research. The formula-
tion of finite element limit analysis (FELA), discussed in Section 1.3, is an
optimisation problem as well. The first formulations of FELA were based
on linear optimisation, however, efficient solution methods for many types
of non-linear, convex optimisation problems have become established tech-
nologies, and non-linear, convex optimisation is widely used in the field of
FELA today. In this chapter, the basics of mathematical optimisation are
introduced and the formulations of linear programming (LP), second-order
cone programming (SOCP), and semidefinite programming (SDP) - all for-
mulations used for FELA - will be presented.

In many fields of engineering, the distinction between easy and hard prob-
lems is whether or not the given problem is linear, e.g. linear differential
equations are considered easy to solve. This is not the case in the field of op-
timisation where the distinction between easy and hard problems should be
drawn between convexity and non-convexity rather than linearity and non-
linearity (Boyd and Vandenberghe, 2004). Convex problems are considered
easy to solve due to the fact that any local minimum must be the global
minimum, while general non-linear optimisation problems with more than a
few variables are extremely difficult to solve due to the possible existence of
multiple local minima and saddle points.

The general mathematical optimisation problem can be stated as:

minimise f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m
(2.1)

where x ∈ Rn is the variable vector of the optimisation problem, and the

21



2.1 Introduction Convex optimisation

scope of the optimisation problem (2.1) is to minimise the objective func-
tion f0(x), while satisfying the constraints fi(x) ≤ 0 for all i. Whether or
not (2.1) is a convex optimisation problem depends on the convexity of the
functions fi. Generally, a function f(x) is convex if it satisfies the inequality

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2), (2.2)

for all (x1, x2) ∈ Rn and α ∈ [0; 1]. If the objective function as well as the
constraints fulfil (2.2), the optimisation problem (2.1) is a convex optimisa-
tion problem.

x

f(x)

x1 x2

αf(x1) + (1− α)f(x2)

Figure 2.1: An example of a convex function, f(x) = ax2 + b, a ≥ 0.

If the second derivative f ′′(x) is non-negative for all x, the function f(x)
is considered convex as well. Figure 2.1 shows an example of such a function,
namely f(x) = ax2 + b, which has the second derivative f ′′(x) = 2a, hence,
the function is convex for a ≥ 0. Other examples of convex functions are
listed below:

• f(x) = |x|

• f(x) = kex

• f(x) = x3 for x ≥ 0

• f(x) = x−1 for x > 0, and f(x) = −x−1 for x < 0

Linear functions are considered both convex and concave since they satisfy

f(αx1 + (1− α)x2) = αf(x1) + (1− α)f(x2)

which is a stricter version of (2.2).
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Introducing a slightly more general version of the optimisation problem
(2.1), which also includes equality constraints:

minimise f(x)

subject to gi(x) = 0, i = 1, . . . ,m

hi(x) ≥ 0, i = 1, . . . , p

(2.3)

For the problem (2.3), we now introduce the Lagrange function (also called
the Lagrangian), which is defined as

L(x,y, s) = f(x)−
m∑

i=1

yigi(x)−
p∑

i=1

sihi(x) (2.4)

where the vector y is the Lagrange multipliers for the equality constraints
of (2.3), and the vector s is the Lagrange multipliers for the inequality con-
straints. The Lagrangian is closely linked to the optimality criteria, which
will be presented later in this section. Moreover, the Lagrangian links the
original problem (2.3), denoted the primal problem, to a dual problem, which
provides a lower bound to the primal minimisation problem.

2.2 Linear programming

One of the simplest subclasses of convex optimisation is linear optimisation,
where the objective function and constraints are linear functions. Solving
linear optimisation problems (also called linear programs or LP) with more
than a few variables by hand is rather difficult. However, such problems can
be solved very efficiently numerically. It is often convenient to use a so-called
standard form of the problem when dealing with numerical solvers: Every
linear program can be recast to fit the standard form by rearranging the
constraints and introducing additional variables. The standard form for LP
is given as:

minimise cTx

subject to Ax = b

x ≥ 0

(2.5)

where a linear combination of the non-negative problem variables x is sought
to be minimised while fulfilling the linear equality constraints Ax = b. (2.5)
is the primal problem and has a corresponding dual problem, which is linked
via the Lagrange function, L, see (2.4):

L(x,y, s) = cTx− yT (Ax− b)− sTx (2.6)
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where y and s are the Lagrange multipliers associated with the equality
constraints and the non-negativity constraints, respectively. The vectors y
and s are also the variables of the dual problem, which provides a lower
bound for the primal problem. Rearranging the terms of the Lagrangian
gives:

L(x,y, s) = bTy +
(
c−ATy − s

)T
x (2.7)

Similar to x, the Lagrange multipliers for the non-negativity constraints, s,
are required to be non-negative, and the dual problem can now be stated as
an maximisation problem to obtain the largest lower bound to the primal
problem:

maximise inf
x
L(x,y, s) = bTy + inf

x

(
c−ATy − s

)T
x

subject to s ≥ 0
(2.8)

where inf
x

is the infimum with respect to x, i.e. the greatest lower bound.

The term,
(
c−ATy − s

)T
x, is a linear function of x, thus, for the Lagrange

function to be bounded from below,
(
c−ATy − s

)
is required to be zero.

The dual problem (2.8) can therefore be stated as:

maximise bTy

subject to ATy + s = c

s ≥ 0

(2.9)

The primal problem (2.5) and dual problem (2.9) are closely linked together
by the Lagrangian and are solved simultaneously. The Lagrangian will also
be used to derive the first-order optimality conditions, which is sufficient to
prove optimality for convex problems. Morten er dum.

2.3 Second-order cone programming

Second-order cone programming (SOCP) is a generalisation of linear pro-
gramming and a subclass of semidefinite programming (SDP), which will be
discussed in the following section. The many yield criteria commonly used
for finite element limit analysis can be formulated as quadratic constraints,
and the resulting problem will fit the format of second-order cone program-
ming. SOCP also has application in many other fields of engineering, physics,
and chemistry (Lobo et al., 1998). For an in-depth introduction to the topic
of second-order cone programming, the reader is referred to Alizadeh and
Goldfarb (2003) and Antoniou and Lu (2007).
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First and foremost, the second-order cone in 1, 2, 3, and k dimensions is
introduced:

x1 ≥ 0, for x ∈ R1

x1 ≥ |x2|, for x ∈ R2

x1 ≥
√
x2

2 + x2
3 = ‖x2:3‖2, for x ∈ R3

x1 ≥
√
xT2:kx2:k = ‖x2:k‖2, for x ∈ Rk

(2.10)

where ‖x‖2 is the Euclidean norm. The second-order cone is also commonly
known as the quadratic cone or the Lorentz cone.

x1

x2

x1 ≥ ‖x2‖2x1 = ‖x2‖2

Figure 2.2: Two-dimensional second-order cone: The interior of the set is
indicated with gray.

The set of vectors that are in the k-dimensional cone (2.10) is defined as
follows:

Qk =
{
x | x ∈ Rk, x1 ≥ ‖x2:k‖2

}
(2.11)

It is observed that the one-dimensional cone Q1 will be a non-negativity
constraint. The notation v ∈ Qk is therefore equal to

v ∈ Qk ⇔ v1 ≥ ‖v2:k‖2 (2.12)

We also define Q as the Cartesian product of second-order cones:

Q = Qk1 ×Qk2 × · · · × Qkq ,

hence,
x ∈ Q ⇔ x1 ∈ Qk1 , x2 ∈ Qk2 , . . . ,xq ∈ Qkq , (2.13)

where xi are subsets of x associated with the ith cone.
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The standard form of the primal second-order cone program is given as

minimise cTx

subject to Ax = b

x ∈ Q
(2.14)

where x is the problem variables. The problem (2.14) is similar to the primal
LP problem (2.5), and if all cones have a size of one, (2.14) is in fact a linear
program. The primal problem has of course also a dual problem, which can
be stated as follows:

maximise bTy

subject to ATy + s = c

s ∈ Q
(2.15)

which again is similar to the LP dual problem (2.9). The dual problem (2.15)
can be derived from the Lagrangian of the primal problem and visa versa.

Several problems that arise in finite element limit analysis, e.g. Jo-
hansen’s criterion for plates given in Section 6.3.3, will require constraints of
the following type:

2v1v2 ≥ vT3:kv3:k, (v1, v2) ≥ 0, (2.16)

i.e. the vector v is in a set defined as

Qrk =
{
x | x ∈ Rk, 2x1x2 ≥ xT3:kx3:k, (x1, x2) ≥ 0

}
,

which is denoted a rotated quadratic cone. The rotated quadratic cone can
be transformed into a quadratic cone (2.11) to fit the standard form of SOCP.
Introducing a matrix K defined as

K =




1/
√

2 1/
√

2 0T

1/
√

2 −1/
√

2 0T

0 0 I




where I is an identity matrix of appropriate dimension. If a vector v is in a
rotated quadratic cone Qrk, the vector v̄ = Kv will be in a quadratic cone
Qk.

2.4 Semidefinite programming

The yield criteria used for finite element limit analysis may take the form of
a semidefinite cone. This is the case for the general Mohr-Coulomb criterion,
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which is given in terms of the principal stresses, i.e. the eigenvalues of the
stress tensor. A matrix M is said to be positive semidefinite if it fulfils the
following criterion:

xTMx ≥ 0 for all x ∈ Rn (2.17)

If the product xTMx is strictly larger than zero, the matrix M is positive
definite. A curved inequality sign � is often used to indicate that a matrix
is positive semidefinite, e.g. M � 0.

The semidefinite optimisation problem can be stated in several different
ways, and different authors use different notation. Vandenberghe and Boyd
(1996) use the following, compact notation:

minimise cTx

subject to F(x) � 0
(2.18)

with

F(x) = F0 +
m∑

i=1

Fixi

where Fi are symmetric matrices, and xi is the ith element of x. F(x) � 0 is a
so-called linear matrix inequality and defines a convex set of allowable vectors
x. Antoniou and Lu (2007) use a slightly different form of the semidefinite
program which are closer to the standard form of LP and SOCP:

minimise C ·X
subject to Ai ·X = bi, i = 1, 2, . . . ,m

X � 0

(2.19)

where C, X, and Ai for all i are symmetric matrices of size n. The inner
product, denoted by “·”, of two matrices is given as:

A ·X =
n∑

i=1

n∑

j=1

aijxij

If C and all Ai are diagonal matrices, i.e.

C = diag(c), A = diag(a),

the original semidefinite program (2.19) is reduced to the standard form of
LP.
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2.5 Optimality and algorithms

As mentioned, the Lagrangian can be used to establish the first-order op-
timality conditions. For the general, non-linear optimisation problem (2.3),
we have the Lagrangian:

L(x,y, s) = f(x)−
m∑

i=1

yigi(x)−
p∑

i=1

sihi(x) (2.20)

Utilising the partial derivatives of the Lagrangian, the first-order optimality
conditions (also called the Karush-Kuhn-Tucker, or KKT, conditions) can be
stated as follows:

∇xL(x,y, s) = ∇f(x)−
m∑

i=1

yi∇gi(x)−
p∑

i=1

si∇hi(x) = 0 (2.21a)

∇yL(x,y, s) = gi(x) = 0, i = 1, 2, . . . ,m (2.21b)

∇sL(x,y, s) = hi(x) ≥ 0, i = 1, 2, . . . , p (2.21c)

si ≥ 0, i = 1, 2, . . . , p (2.21d)

sihi(x) = 0, i = 1, 2, . . . ,m (2.21e)

where ∇ is a differential operator and ∇x indicates the partial derivative
with respect to x. Any point (x∗,y∗, s∗) that fulfil (2.21) will be a solution to
the primal problem and the dual problem. For convex optimisation problems,
any local minimum must be the global minimum, hence, any point that fulfil
the KKT conditions will be solution to both the dual and the primal problem.
The condition(2.21e) is the complementarity condition, which will link the
dual and primal solutions.

For linear programming we have the following KKT conditions:

Ax− b = 0

ATy + s− c = 0

x ≥ 0

s ≥ 0

xisi = 0, i = 1, 2, . . . , n

(2.22)

It is seen that the KKT conditions (2.22) comprise the constraints of the
primal problem (2.5) and the dual problem (2.9).

For second-order cone programming, the KKT conditions are similar to

28 Department of Civil Engineering - Technical University of Denmark



Convex optimisation 2.5 Optimality and algorithms

the linear case (2.22):

Ax− b = 0

ATy + s− c = 0

x ∈ Q
s ∈ Q
arw(xi)arw(si)ei = 0, i = 1, 2, . . . , q

(2.23)

where q is the number of conic constraints, and ei is the first basis vec-
tor of appropriate dimension. The notation arw(v) denotes an arrowhead
operation on the vector v ∈ Rn,

arw(v) =

[
v1 vT2:n

v2:n v1I

]
,

where v1 is the first element in v and the notation v2:n denotes the remaining
n − 1 elements of v. Even for linear programming, the KKT conditions
(2.22) represent a non-linear system of equations due to the complementarity
condition with some additional non-negativity constraints on the variables.

Interior point methods

Optimisation problems are rarely solved by hand, and since the 1940s solution
methods for optimisation problems have been an active field of research. One
of the most well-known algorithms is the simplex algorithm first published
by G. B. Dantzig in 1947 (see e.g. Dantzig, 1998). The method was used for
linear programming and follows a simple scheme where it moves from vertex
to vertex by updating the set of active constraints. The simplex method
works remarkably well in practice, however, it has an exponential worst-case
complexity, i.e. in the worst case scenario, the time required to solve the
problem grows exponential with the problem size. This was shown by Klee
and Minty (1972) who devised a problem where the simplex algorithm visited
every single vertex before finding the optimum.

Karmarkar (1984) proposed an algorithm for linear programming with
a polynomial worst-case complexity. Karmarkar’s publication marked the
beginning of a new era for mathematical programming. The algorithm lead to
a class of algorithms, which today is known as interior point methods. It was
shown by Nesterov and Nemirovsky (1988) that interior point methods could
be extended to handle convex optimisation while maintaining the polynomial
time complexity. Furthermore, Nesterov and Nemirovsky (1988) showed that
interior point methods can solve general convex optimisation problems as
efficiently as linear problems.
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Mehrotra (1992) suggested an extension of Karmarkar’s algorithm, namely
a so-called predictor-corrector method, where two search directions are cal-
culated every iteration. The same factorisation of the equation system can be
used for both search directions, hence, the method only requires a marginally
additional computational effort. The predictor-corrector is widely used to-
day and implemented in many state-of-the-art solvers (see e.g. Wright, 1997;
Roos et al., 1997; Nocedal and Wright, 2006; Terlaky, 2013).

Several methods and tricks, which increase the stability and speed of the
algorithms, have been developed. Amongst those, the homogeneous model
can be mentioned (Sturm, 1997; Nesterov et al., 1999), where the original
problem is embedded in a slightly larger problem in order to detect infeasi-
bility and ill-posed problems.

State-of-the-art commercial solvers for second-order cone programming
also use scaling to increase the speed and accuracy of the algorithms. The
non-linear system of equations is solved using the Newton’s method in a
scaled space, where a unique solution always is ensured (Nesterov and Todd,
1997; Kuo and Mittelmann, 2004). It has been proven that interior point
algorithms based on scaling has a polynomial time complexity (Tsuchiya,
1999; Monteiro and Tsuchiya, 2000).

The mathematical optimisation problem of finite element limit analy-
sis will generally feature extremely sparse problem matrices. This can be
exploited by state-of-the-art solvers, and the computational time be a poly-
nomial of a low order. In the following chapters, the computational time for
various problems will be analysed and discussed.
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Chapter 3

Finite element limit analysis

3.1 Introduction

A brief introduction to the field of finite element limit analysis was given
in Section 1.3, and the historical development of the method as a whole
was discussed. Like the manual counterpart, numerical limit analysis poses
an optimisation problem, however, the types of problems are different. For
manual limit analysis, the optimisation variables are typically angles of yield
lines or geometric parameters, and the resulting mathematical optimisation
problem are highly non-linear and non-convex (see e.g. the upper bound
model by Joergensen and Hoang, 2013).

For finite element limit analysis, the domain is discretised using finite
elements, hence, the geometry of the problem is given in advance, and the
optimisation variables are the discretised stress and displacement fields. Pro-
vided a convex yield function, the resulting mathematical optimisation prob-
lem will be convex and, therefore, easy to solve in a mathematical sense.
The type of optimisation problem depends on the yield criterion, however,
the yield functions can often be approximated using e.g. linear constraints,
which was a widely used technique before second-order cone programming
and semidefinite programming became established technologies (Olsen, 1998,
1999; Poulsen and Damkilde, 2000).

Equivalently to manual limit analysis discussed in Section 1.2, finite ele-
ment limit analysis can be formulated as either strict lower bound or upper
bound problems which makes it possible to bound the exact limit load in a
rigorous manner. A third formulation commonly called mixed problems can
be considered as something in-between the lower and upper bound problems.
Mixed formulations provide neither a statically admissible stress field nor
a kinematically admissible collapse mode, however, the calculated collapse
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load will be typically closer to the exact limit load than an equivalent lower
or upper bound solution. Mixed finite elements will be discussed in Chapter
6.

3.2 Problem formulation

The scope of the basic lower bound formulation is to maximise the load
acting on a given structure while ensuring a statically admissible and safe
stress field, i.e. a stress field that satisfies the equilibrium conditions and
does not violate the yield functions in any point. The problem variables of
the lower bound problem is the discretised stress field, however, additional
variables usually called auxiliary variables are typically needed in order to
cast the yield function as either a second-order cone or a semidefinite cone.

The scope of the upper bound formulation is to minimise the load act-
ing on a given structure while ensuring a kinematically admissible collapse
mode. The primary variables of the upper bound problem are the discretised
displacement field as well as the plastic multipliers.

Triangular elements with linear stress fields and quadratic displacement
fields are generally favoured (Sloan, 1988, 1989; Makrodimopoulos and Mar-
tin, 2006). The stress fields of such elements are defined by stress vectors in
the vertexes, and the state of stress in any point within the element can be
stated as a linear combination of the stress vectors. Linear stress fields in
combination with triangular elements means that it is only necessary to check
the yield function in the vertexes to ensure a statically admissible stress field
of the element. Moreover, for lower bound elements, traction continuity can
likewise be ensure by enforcing the conditions near the vertexes of a given
element boundary.

Example: Bar with quadratic displacement field

In order to illustrate some of the principles of finite element limit analysis, a
simple example is presented. We now consider a bar element with a quadratic
displacement field and a linear stress field, see Figure 3.1. The upper bound
formulation of the bar element will now be derived. The quadratic displace-
ment field and corresponding strain field are discretised and denoted û and
ε̂, respectively. Similarly, the stress field and external loading are discretised
and denoted σ̂ and P̂ , respectively.

û =



u1

u2

u3


 , ε̂ =

[
ε1

ε2

]
, σ̂ =

[
σ1

σ2

]
, P̂ =



P1

P2

P3


 .
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u1, ε1 u2, ε2u3

u(x)

−l
2

0 l
2

x

(a)

σ1 σ2

σ(x)

P1 P2P3

−l
2

0 l
2

x

(b)

Figure 3.1: a) The discretised displacements and strains for the bar, b) the
discretised stresses and external loads.

The displacement in a point x can be stated as

u = Nuû =
[
2s2 − s, 2s2 + s, −4s2 + 1

]
û

where s = x/l is a length coordinate. The relationship between the displace-
ments and strains is given as

ε =
∂u

∂x
= (∇Nu) û = Bû

where ∇ is a differential operator and B is given as

B = ∇Nu =
1

l

[
4s− 1, 4s+ 1, −8s

]

The linear stress field can be expressed in terms of linear shape functions
and the discretised stress field:

σ = Nσσ̂ =
[

1
2
− s, 1

2
+ s
]
σ̂

The work equation (1.5) for the bar can now be stated as follows using
discretised quantities:

ûT P̂ =

∫

Ω

εTσdΩ =

∫

Ω

ûTBTNσσ̂dΩ (3.1)

All the discretised quantities are independent from the coordinates of the
considered domain, hence, we obtain

ûT P̂ = ûT
[∫

Ω

BTNσdΩ

]
σ̂ = ûT

[∫ l/2

−l/2
BTNσdx

]
(Aσ̂)
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where A is the cross sectional area of the bar. Eliminating ûT and defining
B̂T for the bar as

B̂T =

∫ l/2

−l/2
BTNσdx =



−5/6 −1/6

1/6 5/6

4/6 −4/6


 ,

we arrive at the following relation between the stress field (or normal forces)
and external forces:

P̂ =



P1

P2

P3


 =



−5/6 −1/6

1/6 5/6

4/6 −4/6



[
Aσ1

Aσ2

]
= B̂T n̂ (3.2)

where n̂ is the discretised normal force vector. Equation (3.2) has the shape
of equilibrium equations which relates the stresses (or section forces) to the
external loads, however, (3.2) does not ensure a statically admissible stress
field. The equations are derived from the relation between the displace-
ments and the strains, hence, (3.2) ensures a kinematically admissible col-
lapse mode.

For lower bound solutions, it is often more convenient to establish B̂T

directly from the necessary requirements to equilibrium for the considered
domain. For the bar shown in Figure 3.1, the three necessary relations be-
tween the external loads and stresses can easily be established:

P1 = −Aσ1

P2 = Aσ2

P3 = A (σ1 − σ2)

or equivalently in matrix form:

P̂ =



P1

P2

P3


 =



−1 0

0 1

1 −1



[
Aσ1

Aσ2

]
= B̂T n̂ (3.3)

The set of equations (3.3) ensures equilibrium, but not a kinematically ad-
missible collapse mode.

General lower bound formulation

The procedure described for the bar example is general in some ways. For
the general case, we also define the discretised quantities, i.e. the discre-
tised displacement field û, the discretised external load P̂ , the discretised
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stress field σ̂, and the discretised strain field ε̂. Shape functions define the
relationship between the continuous and discretised fields:

σ = Nσσ̂, ε = Nεε̂, u = Nuû (3.4)

The stress and strain fields will often use the same shape functions, i.e.
Nσ = Nε. The strain field is defined as the derivative of the displacement
field:

ε =
∂u

∂x
=
∂Nu

∂x
û = Bû (3.5)

where B is the strain-interpolation matrix. The work equation (1.5) now
reads

ûT P̂ =

∫

Ω

εTσdΩ (3.6)

where ε and σ are continuous quantities and functions of the coordinates of
the domain Ω. The continuous quantities in (3.6) can be replaced by shape
functions and the discretised quantities according to (3.4) and (3.5):

ûT P̂ =

∫

Ω

(Bû)T (Nσσ̂) dΩ (3.7)

The quantities û and σ̂ are not functions of the coordinates of domains,
hence, (3.7) can be restated as

ûT P̂ = ûT
[∫

Ω

BTNσdΩ

]
σ̂ (3.8)

Elimitating the displacements ûT from the equation and defining B̂ as

B̂T =

∫

Ω

BTNσdΩ,

we obtain the discretised equilibrium equations:

P̂ = B̂T σ̂ (3.9)

As shown for the bar, (3.9) does not necessarily ensure equilibrium despite
the name of the system of equations. Whether or not equilibrium is ensured
depends on B̂T .

The discretised stress field σ̂ approximates the exact stress field and fulfils
the yield functions in the chosen check points,

f(σ̂i) ≤ 0, i = 1, 2, . . . ,m (3.10)
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where m is the number of check points, and σ̂i is a subset of the discretised
stress field σ̂. The total load P̂ is assumed to comprise a constant part p̂0

and a scalable part p̂λ where λ is the load factor, which is sought to be
maximised while ensuring a statically admissible stress field. The resulting
optimisation problem can now be stated as

maximise λ

subject to B̂T σ̂ = p̂λ+ p̂0

f(σ̂i) ≤ 0, i = 1, 2, . . . ,m

(3.11)

which combines (3.9) and (3.10). Provided that B̂T is defined such that
equilibrium is ensured, the solution to (3.11) will be a lower bound solution
since the discretised stress field σ̂ will be statically admissible and safe.

General upper bound formulation

For the upper bound formulation, the yield function f is linearised around a
point σ̃ which satisfies f(σ̃) ≤ 0. This gives

(∇f(σ̃))T σ ≤ k (3.12)

with
k = (∇f(σ̃))T σ̃

which follows from the associated flow rule (1.3) and the assumed convexity of
the yield function. k will in the general case depend on the stress σ̃, however,
for commonly used yield functions, e.g. the Mohr-Coulomb criterion, k will
be a constant. The associated flow rule gives the following relation:

ε = λp
∂f(σ)

∂σ
= λp∇f(σ),

where λp ≥ 0 are the plastic multiplier. The linearised yield function is now
introduced, and we obtain

ε = λp∇f(σ̃),

where ∇f(σ̃) is a constant vector. The discretised version of the flow rule
can be derived from the internal work, which can be stated as:

Wint =

∫

Ω

σTεdΩ =

∫

Ω

σT (λp∇f(σ̃)) dΩ (3.13)

Defining the discretised plastic multipliers using shape functions,

λp = Nλλ̂p,
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and introducing the discretised quantities into the integral of (3.13) gives
the following relation ship between the discretised displacements and plastic
multipliers:

∫

Ω

(Nσσ̂)T (Bû) dΩ =

∫

Ω

(Nσσ̂)T
(
∇f(σ̃)Nλλ̂p

)
dΩ (3.14)

The discretised quantities are independent of the coordinates of the domain,
hence, (3.14) can be restated as

σ̂T
[∫

Ω

NT
σBdΩ

]
û = σ̂T

[∫

Ω

NT
σ∇f(σ̃)NλdΩ

]
λ̂p (3.15)

The stress field can be eliminated from the equation and we arrive at the
discretised flow rule,

B̂û = F̂(σ̃)λ̂p, (3.16)

where B̂ and F̂(σ̃) is given as

B̂ =

∫

Ω

NT
σBdΩ

and

F̂(σ̃) =

∫

Ω

NT
σ∇f(σ̃)NλdΩ

An expression for the load factor, which is sought to be minimised, can be
derived in a similar manner. An upper bound to the internal work can now
be stated using the linearised yield function:

∫

Ω

(λp∇f(σ̃))T σdΩ ≤
∫

Ω

λpkdΩ (3.17)

Introducing the discretised plastic multipliers λ̂ and shape functions gives

Wint =

∫

Ω

λpkdΩ =

∫

Ω

kNλλ̂dΩ =

[
k

∫

Ω

NλdΩ

]
λ̂p = k̂T λ̂p (3.18)

which also defined k̂ implicitly. The work done by external loads, p̂λ + p̂0,
is given as

Wext = ûT (p̂λ+ p̂0) (3.19)

Equating the internal work (3.18) and the external work (3.19) gives an
expression of the load factor λ:

λ =
k̂T λ̂p − ûT p̂0

ûT p̂
(3.20)
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which can be reduced to a linear expression by scaling the denominator, i.e.
ûT p̂ = 1. The optimal upper bound solution is the lowest load which satisfies
ûT p̂ = 1 as well as (3.16):

minimise k̂T λ̂p − ûT p̂0

subject to B̂û = F̂(σ̃)λ̂p
ûT p̂ = 1

λ̂p ≥ 0

(3.21)

The approach of (3.21) is rather impractical, and - as already discussed - up-
per bound problems can be implemented using the same formulation as for
lower bound problems (see also Krabbenhoft et al., 2005; Makrodimopou-
los and Martin, 2007). The upper bound formulation (3.21) has the dual
problem,

maximise λ

subject to B̂T σ̂ = p̂λ+ p̂0(
F̂(σ̃)

)T
σ̂ ≤ k̂

which is a linearised version of the lower bound formulation (3.11). σ̂ and
λ are the Lagrange variables associated with the flow rule condition and the
scaling (ûT p̂ = 1), respectively. The inequalities,

(
F̂(σ̃)

)T
σ̂ ≤ k̂

represent the discretised linearised yield function, which can be replaced by
the original, non-linear function to obtain

maximise λ

subject to B̂T σ̂ = p̂λ+ p̂0

f(σ̂i) ≤ 0, i = 1, 2, . . . ,m

Again, the equilibrium matrix B̂T determines whether or not the particular
problem is a lower bound, upper bound, or mixed problem. As discussed in
Chapter 2, the primal and dual problems are solved simultaneously. This
means that a stress field is determined when solving the upper bound prob-
lem, but the stress field is most likely not statically admissible. Similarly, a
collapse mode is determined when solving the lower bound problem, however,
the collapse mode is most likely not kinematically admissible. Nevertheless,
the upper bound stress field and lower bound collapse mode hold some infor-
mation and can be used to analyse the behaviour of the considered structure.

In the following sections and chapters, the discretised quantities are re-
ferred to without the hat for convenience, e.g. σ will refer to the discretised
stress field.
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Optimality conditions for finite element limit analysis

The formulation of finite element limit analysis (3.21) represent a convex
optimisation problem, thus, the first-order optimality conditions (KKT con-
ditions) will be sufficient to prove optimality for the problem. The problem
(3.21) can be rewritten as

maximise
[
0T 1

] [σ
λ

]

subject to
[
BT − p

] [σ
λ

]
= p0

−f(σi) ≥ 0, i = 1, 2, . . . ,m

(3.22)

The Lagrangian to the problem (3.22) is given as

L (σ, λ,u,λp) =
[
0T 1

] [σ
λ

]
− uT

([
BT − p

] [σ
λ

]
− p0

)
+

m∑

i=1

λ(i)
p f(σi)

(3.23)

where u is the discretised displacement field and the Lagrange variables as-
sociated with the equality constraints of the optimisation problem (3.22).

The notation λ
(i)
p denotes the ith element in the plastic multiplier vector λp

which is the Lagrange variables associated with the inequality constraints.
The KKT conditions can now be stated as follows:

∇σL = −Bu+ λp∇f(σ) = 0 (3.24a)

∇λL = 1− pTu = 0 (3.24b)

∇uL = BTσ − pλ− p0 = 0 (3.24c)

∇λpL = −f(σi) ≥ 0, i = 1, 2, . . . ,m (3.24d)

λ(i)
p ≥ 0, i = 1, 2, . . . ,m (3.24e)

λ(i)
p f(σi) = 0, i = 1, 2, . . . ,m (3.24f)

The KKT conditions (3.24) include the equality constraints of the lower and
upper bound problems (using the general, non-linear yield function), hence,
any solution

(
σ∗, λ∗,u∗,λ∗p

)
which satisfies (3.24) will fulfil the primal and

dual problems of finite element limit analysis. Moreover, the link between
the primal and dual problems, (3.24f), is recognised as the complementarity
condition introduced in Section 1.2, see Equation (1.4).
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Lower bound material optimisation

Material optimisation can be considered as a special case of the lower bound
problem. The scope is not to maximise the external load but rather to
minimise the weighted cost of the materials for a given load case. The yield
function now takes an additional input, namely the vector φ which contains
the material parameters:

f(σi,φ) ≤ 0, i = 1, 2, . . . ,m

The resulting optimisation problem can be stated as

maximise wTφ

subject to BTσ = p0

f(σi,φ) ≤ 0, i = 1, 2, . . . ,m

(3.25)

where w is the weight vector which depends on the cost of the given material
and the particular areas or volumes associated with the material parameter.
Material optimisation has a considerable potential in regards to design and
analysis of new structures, however, the work presented in this thesis is pri-
marily concerned with the lower bound load optimisation problem (3.11).

Multiple load cases

Structures have to be designed to withstand a number of different load cases
prescribed by the standards, e.g. wind from different directions combined
with snow, dead load, and imposed loads. When assuming a linear elastic
material, the multiple load cases can be handled with a marginally additional
computational effort, however, this is not the case if plasticity is considered
and the stiffness of the system depends on the stress field.

A given structure is subjected to N load cases each described by the load
vectors pi0 and pi, i = 1, 2, . . . , N . The lower bound problem (3.11) can be
expanded to obtain

maximise λ

subject to




BT

BT

. . .

BT







σ1

σ2

...

σN


 =




p1

p2

...

pN


λ+




p1
0

p2
0
...

pN0




f(σ1
i ) ≤ 0, i = 1, 2, . . . ,m

f(σ2
i ) ≤ 0, i = 1, 2, . . . ,m

...

f(σNi ) ≤ 0, i = 1, 2, . . . ,m

(3.26)
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The stress fields σi are independent and only the critical load case affects
the load factor, hence, the combined optimisation problem (3.26) can be split
into N problems and the critical load factor can be determined as the lowest
load factor:

λ = min
(
λ1, . . . , λN

)

It is generally more efficient to solve many small problems rather than one
large problem, hence, it is advantageous to split the combined problem (3.26)
into N smaller problems.

In the case of material optimisation, the stress fields are linked together
by the material parameter vector φ via the yield functions. The resulting
optimisation problem is given as

maximise wTφ

subject to




BT

BT

. . .

BT







σ1

σ2

...

σN


 =




p1
0

p2
0
...

pN0




f(σ1
i ,φ) ≤ 0, i = 1, 2, . . . ,m

f(σ2
i ,φ) ≤ 0, i = 1, 2, . . . ,m

...

f(σNi ,φ) ≤ 0, i = 1, 2, . . . ,m

(3.27)

where the external load cases are given by the vectors pi0. The problem (3.27)
cannot be split into smaller problems since the stress fields are not indepen-
dent, and the combined problem has to be solved. Specialised solvers may
be able to exploit the structure of the problem (3.27), however, to the best
knowledge of the author papers on such algorithms have not been published.

3.3 Commonly used yield criteria

In this section, the commonly used yield criteria for structural engineering
and their conic formulation will be presented. The conic formulations of many
yield functions are presented by Bisbos and Pardalos (2007). Krabbenhøft
et al. (2007), Krabbenhøft et al. (2008) and Makrodimopoulos and Martin
(2008) present the conic formulation of the Mohr-Coulomb criterion, which
is commonly used for soil. As discussed in Section 1.2, yield functions are
generally non-linear but convex and can be stated as

f(σ) ≤ 0
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where f is the yield function and σ is the given stress state. In most cases,
some auxiliary variables are necessary to recast the yield function in a format
which fit the chosen scheme of optimisation.

The Mohr-Coulomb criterion

The Mohr-Coulomb criterion can be used to describes materials prone to
sliding failure. This includes soils, rock, and concrete. The basic material
constants are the cohesion c and the internal angle of friction θ or the friction
coefficient µ = tan θ. For some materials, the sliding failure criterion is
combined with a criterion for separation failure which bounds the tensile
stresses by the tensile strength ft. For concrete, the uniaxial compressive
strength fc is often used, which can be expressed in terms of the cohesion
and a friction parameter k:

fc = 2 c
√
k

with

k =
(√

1 + µ2 + µ
)2

where µ is the friction coefficient and θ is the internal angle of friction. For
normal strength concrete, k = 4 corresponding to µ = 3/4 and θ ≈ 37◦

is commonly used. The Mohr-Coulomb criterion is typically formulated in
terms of the principal stresses. In three-dimensions, the criterion reads

σ1 ≤ ft (3.28a)

k σ1 − σ3 ≤ fc (3.28b)

where σ1 ≤ ft constitutes the separation criterion and k σ1 − σ3 ≤ fc the
sliding criterion. σ1 and σ3 are the largest and smallest principal stresses,
respectively.

The yield envelope has a rather simple form illustrated in Figure 3.2. The
criterion (3.28) is based on the principal stresses, which are the eigenvalues
of the stress tensor, hence, (3.28) can be modelled exactly using semidefinite
cones, which makes it possible to impose constraints on the eigenvalues of
symmetric matrices (Krabbenhøft et al., 2008; Makrodimopoulos and Mar-
tin, 2008; Larsen, 2010). The formulation F � 0 indicates that the lowest
eigenvalue of F must be non-negative, while−F � 0 indicates that the largest
eigenvalue of F must be non-positive.

Introducing the concrete stress tensor σc, which has the eigenvalues σ1 ≥
σ2 ≥ σ3, the separation criterion (3.28a) can then be rewritten as

− σc + ftI � 0 (3.29)
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σ

τ

σ1σ2σ3

ft

c

µ

Figure 3.2: The Mohr-Coulomb yield envelope including separation crite-
rion. Mohr’s circle for a triaxial stress state is shown inside the envelope.

where I is the identity matrix. The sliding criterion (3.28b) uses two principal
stresses, hence, it is necessary to introduce an auxiliary variable α1 to obtain

−σ1 + α1 ≥ 0

σ3 − k α1 + fc ≥ 0
(3.30)

Using the concrete stress tensor σc, (3.30) can be rewritten as

−σc + α1I � 0 (3.31a)

σc + (fc − k α1) I � 0 (3.31b)

The equations (3.29) and (3.31) comprise three linear matrix inequalities,
however, they can be reduced to two by introducing an additional variable
α2 which fulfils:

α2 ≤ ft and α2 ≤ α1

The Mohr-Coulomb criterion can now be stated as:

−σc + α2I � 0

σc + (fc − k α1) I � 0

α2 − α1 ≤ 0

α2 − ft ≤ 0

(3.32)
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The Mohr-Coulomb criterion for plane stress

For plane stress, the principal stresses are given as σ1 ≥ σ2. The Mohr-
Coulomb criterion (3.28) now reads

σ1 ≤ ft

k σ1 − σ2 ≤ fc

−σ2 ≤ fc

(3.33)

where the principal stresses σ1 and σ2 are calculated as

σ1

σ2

}
=
σx + σy

2
±
√(

σx − σy
2

)2

+ τ 2
xy (3.34)

The expression (3.34) comprises the square root of the sum of two squares,
hence, the Mohr-Coulomb criterion for plane stress can be formulated for
second-order cone programming (Makrodimopoulos and Martin, 2006; Krabbenhøft
et al., 2007; Nielsen, 2014). Introducing three auxiliary variables

pm = −σx + σy
2

, σd =
σx − σy

2
, ϕ ≥

√
σ2
d + τ 2

xy, (3.35)

the principal stresses (3.34) can now be written as

σ1 ≤ −pm + ϕ,

−σ2 ≤ pm + ϕ,

and the Mohr-Coulomb criterion (3.33) can be stated as

−pm + ϕ ≤ ft

(1− k) pm + (k + 1)ϕ ≤ fc

pm + ϕ ≤ fc

(3.36)

The rewritten Mohr-Coulomb criterion (3.36) fits the format of second-order
cone programming as the definition of ϕ (3.35) has the shape of a quadratic
cone.

The von Mises criterion

The von Mises criterion is commonly used for metals and is based on the
second stress invariant J2. It can be considered as a special case of the
Drucker-Prager criterion with an internal angle of friction of zero. In terms
of J2, the von Mises criterion can be stated as

√
3J2 ≤ fy (3.37)
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where fy is the yield strength. J2 is given as

J2 =
(σx − σy)2

6
+

(σy − σz)2

6
+

(σz − σx)2

6
+ τ 2

xy + τ 2
yz + τ 2

zx, (3.38)

hence, the yield function (3.37) comprise the square root of a sum of squares,
and the criterion can be cast for second-order cone programming (Bisbos and
Pardalos, 2007). Introducing six auxiliary variables,

α1 =
σx − σy√

2
, α2 =

σy − σz√
2

, α3 =
σz − σx√

2
,

α4 =
√

3 τxy, α5 =
√

3 τyz, α6 =
√

3 τzx,

into (3.38), the yield criterion (3.37) can then be stated as

√
α2

1 + α2
2 + α2

3 + α2
4 + α2

5 + α2
6 ≤ fy (3.39)

which has the shape of quadratic cone. In principal stress space, the yield
surface has the shape of a circular tube along the hydrostatic axis.

The von Mises criterion for plane stress

In plane stress, the second stress invariant J2 is reduced to

J2 =
(σx − σy)2

6
+
σ2
y

6
+
σ2
x

6
+ τ 2

xy (3.40)

Three unique stress components exist in plane stress, hence, three auxiliary
variables are sufficient to represent the criterion as a quadratic cone, however,
their definitions are not as straight forward as the general, three-dimensional
case. Defining

α1 =

√
3

2
(σx − σy), α2 =

1

2
(σx + σy), α3 =

√
3 τxy,

the yield criterion (3.37) can now be stated as

√
α2

1 + α2
2 + α2

3 ≤ fy (3.41)

which again has the shape of a quadratic cone. In principal stress space, the
plane stress version of the von Mises criterion has the shape of an ellipse,
which is a conic section, see Figure 3.3.
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σ1

σ2

fy

fy

−fy

−fy

Figure 3.3: The von Mises yield envelope for plane stress illustrated in
principal stress space.

The yield functions presented in this section can be considered as material
yield functions. The framework of finite element limit analysis makes it pos-
sible to formulate advanced yield functions which e.g. consider the behaviour
of composite materials. In the following chapters, so-called submodel yield
functions will be introduced which comprise semi-analytical mechanical mod-
els. The stress field and forces of the considered submodel are then checked
against the appropriate material yield function, e.g. the Mohr-Coulomb cri-
terion for concrete.

46 Department of Civil Engineering - Technical University of Denmark



Chapter 4

Modelling precast structures

4.1 Modelling shear panels

Many of the methods and the general concept of modern precast concrete
were developed in the 1950s and 60s. The calculation method and design
equations have evolved to some extent, and in the serviceability limit state
numerical analysis, such as linear elastic finite element analysis, is commonly
used in practice. More advanced numerical methods are, however, rarely
used in the ultimate limit state for practical design. Instead, methods based
on manual limit analysis are favoured and many have been automated using
spreadsheets.

Many of the components of the precast concrete structures are rather
simple, e.g. simply supported beams. These components can be treated in-
dependently and designed analytically in both the serviceability limit state
and the ultimate limit state, and effects such as cracking, yielding, and an-
chor slip of pre- and post-tensioned strands can be accounted for in a simple
manner. For shear walls, however, it is necessary to consider the wall includ-
ing shear joints as a whole. Analytical methods are still used, but it is in an
approximative manner. Lower bound methods, e.g. the stringer method, are
typically favoured for design.

Precast concrete structures are typically designed with shear walls as
the main load carrying component. Beams and columns are of course to
some degree responsible for distributing vertical forces, e.g. gravity loads.
However, little is gained from a full rigid-plastic analysis due to their rather
simple behaviour and support conditions.

The shear walls ensure the lateral stability of the structure, however, shear
walls as structural components are rather complex. Various methods have
been developed for manual design of shear walls (Nielsen, 1971; Nielsen and
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Hoang, 2010; Muttoni et al., 1997, 2015). The stringer method is commonly
used in practice in Denmark as it provides a rigorous lower bound and makes
it possible to design for a specific shear capacity of the considered panels.

4.1.1 Plane stress lower bound element

Design and analysis of shear walls can be handled efficiently within the frame-
work of finite element limit analysis. Shear walls are considered to be in plane
stress, thus, plane stress finite elements will be the obvious choice for numer-
ical modelling of such structures.

Several researchers have worked with plane stress and plane strain ele-
ments within the field of finite element limit analysis. Sloan (1988, 1989)
presented lower bound and upper bound plane strain elements, however, the
equilibrium equations are identical for plane strain and plane stress elements.
From a design perspective, lower bound elements are generally more desir-
able as they ensure a safe design (within the assumption of rigid-plasticity).
Analysis by upper bound elements determines an unsafe design, but it can be
used to bound the exact limit load. Mixed elements which will be discussed
in Section 6 provide neither. However, the capacity obtained using a mixed
formulation will generally be closer to the exact limit load than both the
upper and lower bound solutions.

Poulsen and Damkilde (2000) presented a triangular lower bound plane
stress element using a linearised yield criterion due to the limitation of linear
programming. The element uses a linear stress field, hence, it is sufficient
to check the stresses in the corners to ensure a lower bound solution. Lower
bound elements require traction continuity along every element boundary,
however, this may lead to linear dependencies which are undesirable as they
may cause numerical instability for the solver. Makrodimopoulos and Mar-
tin (2006) discuss this issue in details for lower bound plane strain elements
and provide guidelines for avoiding linear dependencies for both internal and
boundary nodes. Nielsen (2014) suggests a subdivision of the triangular el-
ement to avoid linear dependencies and to increase the accuracy: A centre
node is added to the triangular element which is divided into three subele-
ments, each with a linear stress variation. Several of the additional stress
variables and equations can be eliminated, hence, the number of equations
and variables only increase marginally.

In this section, the plane stress element by Poulsen and Damkilde (2000)
is presented. The method for element enhancement by subdivision (Nielsen,
2014) will be presented as well. Next, the formulation of a generalised lower
bound plane stress element for 3D analysis of structures will be given, and a
yield criterion for reinforced concrete based on the Mohr-Coulomb criterion

48 Department of Civil Engineering - Technical University of Denmark



Modelling precast structures 4.1 Modelling shear panels

is presented. Finally, four examples are analysed and the convergence rates
and computational times will be discussed.

A plane stress state is described by three stress variables, namely σx,
σy, and τxy. As mentioned, the lower bound element uses a linear stress
field, thus, a total of 9 stress variables are required. The stress variables are
shown in Figure 4.1 together with the tractions given in local coordinates of
the element boundary, which must be in equilibrium with adjacent elements.
The stress variables of an element is given as:

σel =



σ1

σ2

σ3


 , and σi =



σxi
σyi
τxyi


 (4.1)

where σi is the stress state in the ith corner node.

Side 3

Side 1

Side 2

σ1

σ2

σ3

q21τ

q21σ

q31τ

q31σq32τ

q32σ

q12τ

q12σ

q13τ
q13σ

q23τ
q23σ

qx

qy

y

xz

Figure 4.1: Stress vectors and tractions in local coordinate systems of the
plane stress element (Poulsen and Damkilde, 2000).

The stresses are given in global coordinates and for the traction equilib-
rium along the element boundaries transformations are needed. Due to the
linear stress field of the element, traction continuity is enforced at both ends
of a boundary. We define the following geometric quantities:

ai = xk − xj, bi = yk − yj, li =
√
a2
i + b2

i

where i, j, and k are permutations of 1, 2, and 3. We also define the stress-
to-traction array

PT =
1

li

[
bi 0 −ai
0 −ai bi

]
(4.2)
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In global coordinates, the tractions of side i near node j can now be stated
as tji = PT

i σj. Introducing a transformation matrix Ei for side i,

Ei =
1

li

[
bi ai
−ai bi

]
,

the tractions in local coordinates at side i is given as

t̂ji = ET
i PT

i σj = P̂T
i σj

with

P̂T
i = ET

i PT
i =

1

l2i

[
b2
i a2

i −2aibi
aibi −aibi b2

i − a2
i

]
(4.3)

Using (4.3), the tractions in local coordinates related to node i can now be
stated as

qi =




qijσ
qijτ
qikσ
qikτ


 =

[
P̂T
j

P̂T
k

]
σi (4.4)

where j and k are the two sides which meet in node i.
The nodal forces qx and qy, shown in the centre of the element in Figure

4.1, ensure internal equilibrium within the element. The element is subjected
to surface loads, γx and γy, acting on the entire surface area of the element.
This gives rise to two partial differential equations:

∂σx
∂x

+
∂τxy
∂y

+ γx = 0

∂σy
∂y

+
∂τxy
∂x

+ γy = 0

(4.5)

Introducing linear shape functions, the stress in a point (x, y) can be stated
as

σ(x, y) =
3∑

i=1

Ni(x, y)σi (4.6)

with

Ni(x, y) =
bix− aiy + di

2A
, (4.7)

where di = −xjyk + xkyj and A is the surface area of the element. Using the
shape functions (4.7), the differential equations (4.5) can be restated as

[
qx
qy

]
= A

[
γx
γy

]
=

1

2

[
P̃T

1 P̃T
2 P̃T

3

]
σel (4.8)
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where σel is the element stress vector, see (4.1), and P̃T
i is defined as

P̃T
i = liP

T
i =

[
bi 0 −ai
0 −ai bi

]

The element equilibrium matrix BT
el comprise the contributions from the

traction continuity (4.4) as well as internal equilibrium (4.8):

qel =




P̂T
2

P̂T
3

P̂T
3

P̂T
1

P̂T
1

P̂T
2

1

2
P̃T

1

1

2
P̃T

2

1

2
P̃T

3






σ1

σ2

σ3


 = BT

elσel (4.9)

The basic plane stress element by Poulsen and Damkilde (2000) contributes
to a total of 14 equilibrium equations on the global level and requires 9 stress
variables.

4.1.2 Element enhancement by subdivision

The formulation presented here is based on the work of Nielsen (2014) and
also presented in Paper I (Herfelt et al., 2016). The basic plane stress triangle
is divided into three subelements, each with a linear stress variation. This
subdivision will of course increase the accuracy of the element, however,
it will also ensure that no linear dependencies are present. Utilising local
coordinate systems for the stress variables, several of variables and equations
can be eliminated, hence, the subdivision only increases the problem size
marginally.

A centre node divides the element into three subelements as seen in Fig-
ure 4.2. The enhanced element requires four stress nodes, three located at
the corners as well as one located in the centre. Two subelements meet in
each corner and in the global coordinate system, two times three variables
are needed to describe the two plane stress states near the corner. Utilis-
ing a local coordinate system, however, the number of stress variables can
be reduced to four, and the traction continuity in the particular corner will
always be fulfilled, while the normal stress in the local t-direction can be dis-
continuous, see Figure 4.2. The stress vector of the ith corner, σCi , therefore
contains four stress variables

σCi =
[
σni τnti σ−ti σ+

ti

]T
,
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x

y
Subel. 1

Subel. 2

Subel. 3

σC1

σC2

σC3

σS1
t

n
t

n

t

n

Figure 4.2: The three subelements of the plane stress element as well as
local coordinate systems for the corner stresses.

where superscripts − and + indicate that the normal stress is associated with
the subelement clockwise and counter-clockwise from the corner, respectively.
For the centre node we have

σS1 =
[
σx σy τxy

]
,

which is defined in global coordinates. The enhanced element requires a total
of 15 stress variables. The element equilibrium matrix (4.9) is given in global
coordinates, hence, transformations are necessary for the enhanced element:

σel =

[
TC

TS

] [
σC

σS1

]
(4.10)

where

σC =



σC1
σC2
σC3




σel contains 27 stress variables in global coordinates, which are used to estab-
lish the equilibrium equations on the global level according to the equations
presented in Section 4.1.1 and Poulsen and Damkilde (2000). The matrix
TC ∈ R18×12 transforms the stresses from the local coordinates of the corner
to the global coordinates, while TS ∈ R9×3 defines the other sets of stresses
in the centre. Given the unit normal vector n = [nx ny]

T to the boundary
connecting the ith corner node and the centre node, the transformation of
the corner stresses can be stated as:



σx
σy
τxy


 =



n2
x n2

y −2nxny
n2
y n2

x 2nxny
nxny −nxny n2

x − n2
y





σn
σ±t
τnt


 (4.11)
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Equation (4.11) defines the contributions to TC . At the centre node S,
equilibrium across the subelement boundaries gives the following equations:

Txy
1

(
σS3 − σS1

)
= 0,

Txy
2

(
σS1 − σS2

)
= 0,

Txy
3

(
σS2 − σS3

)
= 0,

(4.12)

where Txy
i is given as

Txy
i =

[
nx 0 ny
0 ny nx

]

where i is the corner associated with the particular subelement boundary

and n =
[
nx ny

]T
is the aforementioned unit normal to the boundary. The

relation (4.12) can be rewritten as a linear system:



−Txy

1 0 Txy
1

Txy
2 −Txy

2 0

0 Txy
3 −Txy

3





σS1
σS2
σS3


 = 0 (4.13)

Rearranging the terms gives




0 Txy
1

−Txy
2 0

Txy
3 −Txy

3



[
σS2
σS3

]
= −



−Txy

1

Txy
2

0


σS1 (4.14)

The two matrices, T1 and T23, are now defined as

T1 =



−Txy

1

Txy
2

0


 , T23 =




0 Txy
1

−Txy
2 0

Txy
3 −Txy

3


 ,

and the stresses near the centre node can now be obtained from the following
equation:



σS1
σS2
σS3


 =

[
I

−T−1
23 T1

]
σS1 = TSσ

S
1 (4.15)

Equation (4.15) also defines TS, one of the matrices needed for the transfor-
mation from local to global coordinates, see (4.10).
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4.1.3 Generalised lower bound element

For three-dimensional concrete structures, carrying external loading as in-
plane forces rather than moments is more efficient. Modern buildings are
usually designed with this in mind using shear walls as the main load carrying
component for lateral loading. Moreover, most walls and slabs are simply
supported with respect to bending action, hence, no plastic redistribution of
forces can occur. The moment capacity of shear walls is therefore to some
degree irrelevant for the overall distribution of forces in the building, and
sufficient capacity for combined bending and in-plane action can be ensured
by a detailed analysis at a later point in the design process.

In this section, the formulation of a generalisation of the plane stress lower
bound element presented in Section 4.1.1 is given. The element is enhanced
by subdivision, see Section 4.1.2, which increases accuracy of the element and
removes linear dependencies for a marginally larger computational effort.

For the three-dimensional element, a local coordinate system is needed.
The element itself is defined by three corner nodes, and associated with each

node i is a stress vector σi =
[
σx σy τxy

]T
given in the local coordinates

of the element.

x

y

z

v12

v13

ex
ey

ez

Figure 4.3: Geometry and local coordinate system of the generalised plane
stress element.

The local coordinate system of a given element is defined by the three
basis vectors seen in Figure 4.3:

ex =
v12

‖v12‖
, ez =

v12 × v13

‖v12 × v13‖
, ey = ez × ex (4.16)
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where vij is a vector going from node i to node j given in the global coor-
dinates. The local coordinates of the three nodes xi of the element can now
be calculated as

xi = ETXi,

where Xi is the global coordinates of node i, and E =
[
ex ey ez

]
is the

transformation matrix. For each side i, a unit normal vector is defined in the
local coordinate system:

ni =

[
nix
niy

]

Similarly to the two-dimensional element, traction continuity is required for
the three-dimensional element to ensure a lower bound solution. Figure 4.1
illustrates this for the two-dimensional case where the global coordinate sys-
tem is used. For the present element, the local coordinate system is used,
and the tractions are then afterwards transformed to global coordinates us-
ing the transformation matrix E. We define the stress-to-traction array for
the three-dimensional element as

PT
i =



nix 0 niy
0 niy nix
0 0 0


 (4.17)

and

P̃T
i = liP

T
i

where li is the length of side i. The matrix PT
i transforms the stresses given

in local coordinates to the tractions of element side i, still in local coordinates
of the element. Traction equilibrium is enforced in global coordinates, and
the generalised nodal forces can be stated as

qi =




qikx
qiky
qikz
qijx
qijy
qijz




=
1

2

[
ET

ET

] [
P̃T
j

P̃T
k

]
σi (4.18)

where E is the element transformation matrix, and j and k are the two
element boundaries which meet in node i. Equation (4.18) appears almost
identical to (4.4) with the exception of the transformation, which is necessary
for the three-dimensional element.
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The three-dimensional plane stress element is subjected to surface loads
given in local coordinates. This leads to the same equations as presented in
Section 4.1.1 in Equation (4.8):

qc = A

[
γx
γy

]
=

1

2

[
P̃T

1 P̃T
2 P̃T

3

]
σel (4.19)

where A is the surface area of the given element and γx and γy are the
surface loads. The element equilibrium matrix in global coordinates can now
be stated as follows by combining (4.18) and (4.19):

qel =
1

2




EP̃T
2

EP̃T
3

EP̃T
3

EP̃T
1

EP̃T
1

EP̃T
2

P̃T
1 P̃T

2 P̃T
3






σ1

σ2

σ3


 = BT

elσel (4.20)

which appears similar to the element equilibrium matrix of the two-dimensional
element (4.9) with the exception of the transformations. As mentioned pre-
viously, the element enhancement by division into three subelements intro-
duced in Section 4.1.2 is also used for the generalised three-dimensional ele-
ment.

4.1.4 Yield criterion for plane stress

Reinforced concrete yield criterion

The stresses on the element level σel is the so-called total stresses which
comprise the stresses carried by the reinforcement and concrete, respectively.
The reinforcement is assumed to be constituted by an orthogonal mesh of
rebars oriented in an angle φ with respect to the local coordinate system (in
which the stresses are defined).

Figure 4.4 shows an element with an orthogonal reinforcement mesh in-
cluding the local coordinate system and the orientation of the reinforcement.
The stresses are transformed to the coordinate system of the reinforcement
and split into concrete and reinforcement stresses accordingly:



c2 s2 2cs

s2 c2 −2cs

−cs cs c2 − s2





σx
σy
τxy


 =



σxm
σym
τxym


+



σ̃xs
σ̃ys
0


 (4.21)
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y

xz
φ

Figure 4.4: Orthogonal reinforcement oriented in an angle φ to the local
coordinate system.

where c = cosφ and s = sinφ. Subscript m indicates concrete stresses (ma-
trix material) and subscript s indicate reinforcement stresses (steel). Equa-
tion (4.21) uses equivalent reinforcement stresses, σ̃is, which are defined as

σ̃is =
Asi
t
σis

where Asi is the reinforcement area per unit length in the ith direction and t
is the out-of-plane thickness of the concrete. As seen in (4.21), it is assumed
that the reinforcement only carries axial forces (Nielsen and Hoang, 2010).
A simple, linear yield criterion can then be used:

0 ≤ σ̃xs ≤ f̃yx =
Asx
t
fy

0 ≤ σ̃ys ≤ f̃yy =
Asy
t
fy

(4.22)

where f̃y is the equivalent reinforcement strength which is implicitly defined
in (4.22). As seen in (4.22), the compressive strength of the reinforcement is
neglected and the reinforcement stresses must be non-negative.

The concrete is treated as a Mohr-Coulomb material with a tension cut-
off. For plane stress, the criterion is given as follows in principal stresses:

σ1 ≤ ft

kσ1 − σ2 ≤ fc

−σ2 ≤ fc

(4.23)

where ft is the uniaxial tensile strength of the concrete, fc is the uniaxial
compressive strength, and k is a friction parameter. The criterion is linear
in principal stresses, but non-linear in terms of σxm, σym, and τxym. The
criterion (4.23) can be cast as a single conic constraint and a couple of linear
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constraints, hence, the criterion fits the format of second-order cone pro-
gramming. The exact formulation for second-order cone programming of the
Mohr-Coulomb criterion for plane stress has been given in Section 3.3 and
will not be repeated here.

Von Mises yield criterion

The von Mises yield criterion is commonly used for metals and is based on
the second stress invariant, J2. The criterion can be stated as:

√
3 J2 ≤ fy (4.24)

where fy is the uniaxial yield strength of the material. For plane stress, J2

is given as

J2 =
(σx − σy)2

6
+
σ2
y

6
+
σx
6

+ τ 2
xy,

and by introducing three auxiliary variables, (4.24) can be formulated as a
single conic constraint. The details are given in Section 3.3.

4.1.5 Examples

In this section, four examples using the two-dimensional and the three-
dimensional plane stress elements are presented. The convergence rate and
computational time will be analysed for the different examples. The meshes
for examples 3 and 4 are generated using GiD v12 (Ribó et al., 1998).

Example 1: Deep beam with shear supports

The first examples is a deep reinforced concrete beam subjected to a uni-
formly distributed load acting on the top boundary. The deep beam is sup-
ported at the left and right boundaries by shear supports as seen in Figure
4.5.

The analytical solution to the deep beam problem is well-known (Nielsen
and Hoang, 2010) and can be obtained using homogeneous stress triangles
(Nielsen, 1971) and the mesh on the left side in Figure 4.5. The exact limit
load is given as

p∗ =
4 Φh2 fc

(1 + Φ)L2
≤ fc. (4.25)

The mechanical reinforcement ratio Φ is defined as

Φ =
As fy
tfc
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CL p

h

L/2

h− y0

y0

Figure 4.5: Deep beam with shear supports including mesh for the analytical
solution (left) and for the convergence analysis (right).

where As was the cross sectional area of the reinforcement per unit length.
Using h = 2 m, L = 6 m, fc = 20 MPa, and Φ = 0.075, the exact limit load
is p∗ = 0.6202 MPa. The symmetry is exploited for the model, and a lower
bound to the exact limit load is calculated using the structured mesh shown
on the right-hand side of Figure 4.5.

Table 4.1: Limit load, error, and computational time for the deep beam
problem.

nel p [MPa] Error [%] Time [s]

64 0.5555 10.42 0.15

256 0.6053 2.40 0.68

1,024 0.6177 0.39 3.57

4,096 0.6191 0.17 16.18

16,384 0.6193 0.13 67.36

Table 4.1 shows that the structured mesh approaches the exact limit load
p∗ from below as the number of elements nel increases. The computational
time appears to be roughly proportional to the problem size (or at least a low
order polynomial complexity), which will be discussed later in this section.

Example 2: Circular disk with hole

The second example is a circular concrete disk with a concentric hole loaded
by radial pressure. The geometry, mesh, and loading are shown in Figure
4.6. The geometry of the disk is defined by the radius of the hole, a, and the
radius of the disk, R.

A structured mesh is used for the modelling, and only one quarter of
the disk is modelled as seen in Figure 4.6 utilising the symmetry. The only
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a

R

p

Figure 4.6: Circular disk with a concentric hole loaded by radical pressure
p. Mesh discretisation is shown in the lower right quarter.

supports used for the model is symmetry supports. Due to the curved edges
of the disk, the mesh approximates the actual geometry of the disk, and the
accuracy of the approximation will increase with the mesh density. The exact
analytical solution to the circular disk problem is given as

p∗ = Φfc

(
R

a
− 1

)
≤ fc

according to Nielsen and Hoang (2010). R is chosen as 3 m, a as 1 m, fc as
30 MPa, and Φ as 0.100, hence, the exact limit load is p∗ = 6 MPa.

Table 4.2: Limit load, error, and computational time for the circular disk
problem.

nel p [MPa] Error [%] Time [s]

64 5.6086 6.62 0.15

256 5.8842 1.93 0.67

1,024 5.9675 0.54 2.07

4,096 5.9901 0.17 9.26

16,384 5.9924 0.13 46.44

Table 4.2 shows that the model approaches the exact limit load from
below, which is to be expected using a lower bound element. The computa-
tional time is slightly lower than for the deep beam example, but the overall
tendency is the same: The computational time is proportional to the problem
size to a lower order of power.
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Example 3: Cantilever I-beam

A cantilever steel I-beam is subjected to a uniformly distributed load acting
in the centreline on the top of the web. The beam is modelled using the gen-
eralised, three-dimensional plane stress element introduced in Section 4.1.3.
The material is modelled using the von Mises criterion with a yield strength
of fy = 250 MPa. The beam has a length of 3 metres. The web has a height
of 300 mm and a thickness of 10 mm, while the flanges have a width of 300
mm and a thickness of 10 mm. The plastic moment capacity of the I-beam
is calculated to be 281 kNm, which corresponds to a limit load of p∗ = 62.5
kN/m.

p

(a)

3
2.5

2
1.5

1
0.5

00

0

0.3

0.3

(b)

Figure 4.7: a) Support condition and loading, b) medium mesh density of
the I-beam using 948 elements.

Four different meshes are analysed whereas the medium density mesh is
shown in Figure 4.7(b). The beam is supported in all three directions at the
left end as shown in Figure 4.7(a). With a thickness of just 10 mm, the effect
of local bending in the web and flanges will be negligible, and the external
load will be carried almost exclusively via in-plane forces. Using a plane
stress element will therefore provide a decent estimate of the load carrying
capacity despite omitting the local bending in the web and flanges.

The von Mises criterion requires fewer constraints and variables than the
reinforced concrete criterion, hence, the computational time is lower for the
same number of element as seen in Table 4.3. The load capacity is also shown
in Table 4.3 and it is seen that it exceeds the analytical capacity slightly. This
is due to the nature of the von Mises criterion where the stresses can exceed
the yield strength fy provided either compression or tension in two direc-
tions. Figure 4.8 shows the largest and smallest principal stresses near the
supported end of the cantilever, and it can be seen that the stresses exceeds
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Table 4.3: Limit load and computational time for the cantilever I-beam
example.

mesh nel p [kN/m] Time [s]

Coarse 238 63.24 0.28

Medium 948 64.18 0.95

Fine 3,616 64.90 4.47

Very fine 14,646 65.24 21.38

fy in areas where both principal stresses are either positive or negative.
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Figure 4.8: Largest and smallest principal stresses, σ1 and σ2 respectively,
near the support of the I-beam using the fine mesh with 3616 elements.

Example 4: Four-storey stairwell with door openings

The fourth and final example is a four-storey stairwell of reinforced concrete.
The stairwell features four door openings and is subjected to a shear force
acting on the top the wall with the door openings as illustrated in Figure
4.9.

The shear load cause shear and torsion in the structure. The shear walls
have a thickness of 180 mm and are reinforced with two layers of Ø8 rebars
per 150 mm in both directions. The shear walls will have a considerable
bending strength which is not taken into account when using the presented
generalised plane stress element. The model will therefore provide a some-
what conservative lower bound of the capacity of the wall. In order to utilise
the local bending of the walls, sufficient connections between the panels are
required. This can be ensured for in-situ cast structures, but not necessarily
for precast concrete structures.
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Figure 4.9: a) Four-storey stairwell subjected to a shear force which in-
duces bending, torsion and shear in the structure. b) Coarse mesh with 864
elements. Dimensions are given in metres.

The reinforcement has a design yield strength of fyd = 458 MPa, and
it is assumed that the reinforcement only carries tension. The concrete has
a uniaxial compressive design strength of fcd = 21.43 MPa and the tensile
strength is taken as zero. The wall is analysed for two different effectiveness
factors ν, namely ν = 1 and ν = 0.7 − fc/200 = 0.55 where fc is the
characteristic concrete strength (fc = 30 MPa). The effective design concrete
strength is given as ν fcd.

Table 4.4: Limit load and computational time for the stairwell example.

p [kN/m]

mesh nel ν = 1 ν = 0.55 Time [s]

Coarse 864 85.27 85.06 2.15

Medium 3,564 88.62 87.80 14.78

Fine 11,379 89.25 88.46 56.53

Table 4.4 shows that the coarse mesh gives a reasonable estimate despite
only using 864 elements. The fine mesh gives less than 5 % additional capac-
ity even though it uses more than 13 times the number of elements. It is also
observed that the effectiveness factor ν hardly affects the capacity in this
example, since the reinforcement is governing the behaviour of the stairwell:
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Figure 4.10: Failure mode (a) and smallest principal stresses (b) of the
stairwell example using the fine mesh and ν = 1.

Less than one percent difference is found between using ν = 1 and ν = 0.55.
Figure 4.4 shows the failure mode and smallest principal stress for the

shear wall with the door openings. The failure mode is interpreted from
the dual solution, i.e. the solution to the corresponding kinematic problem.
The stairwell fails in a bending failure as illustrated in Figure 4.4(a). Local
failure also occurs near the top of the door openings in the bottom storey.
Figure 4.4(b) shows that compression struts are formed between the door
openings. The slender columns to the left of the door openings carry consid-
erable stresses, and the largest compressive stresses approach the compressive
strength of the concrete.

Computational time

The computational times for the four examples are plotted as a function of
the number of elements in Figure 4.11. It is observed that all curves are
approximately linear in the double logarithmic coordinate system and are
therefore power functions.

It is seen that the computational time is approximately proportional to
the number of elements to the power of 1.1, illustrated by the curve denoted
O (n1.1). The third example, the cantilever I-beam, had a lower computa-
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Figure 4.11: Computational time for the four examples as a function of
the number of elements.

tional time, however, the slope is still the same as the other examples.

4.2 Modelling in-situ cast joints

Joints cast on the construction site are necessary to connect the precast
concrete elements. The boundaries of the precast panels (with the exception
of the bottom) are typically reinforced with loop reinforcement, i.e. U-bar
loops. The vertical interfaces of the precast panels are often indented, and
these types of joints are commonly referred to as keyed joints.

A four-storey precast shear wall is shown in Figure 4.13. The wall is
subjected to external loads and the in-situ cast joints are crucial to transfer
the loads to the foundations of the shear wall. The strut-and-tie and stringer
methods are commonly used in practice to assess the capacity of shear walls
and joints. A strut of a given width crossing a joint will subject the joint and
interfaces to shear and confinement, which in practice is checked against the
design criterion of the standard. If the confinement is insufficient, transverse
reinforcement can be added to increase the shear capacity of the joint.

As discussed in Section 1.1.1, the construction techniques for in-situ cast
joints lead to several issues and impose rather high requirements on the
ductility of the steel used for the U-bar loops. Moreover, the U-bars are
straightened through a narrow gap as seen in Figure 4.13, and it cannot be
guaranteed that the U-bars are placed closely together in practice.

During the 1970s and 80s, several papers were published on the topic
of shear capacity of keyed joints: Fauchart and Cortini (1972), Hansen and
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In-situ cast joints

Precast panels

Details of keyed joint
(indented interface and
overlapping U-bar loops)

Figure 4.12: Four-storey shear wall constructed from precast panels con-
nected by in-situ cast joints.

A A

(a) In-situ cast joint connecting two
precast panels

(b) Horizontal section A-A

Figure 4.13: a) Precast concrete panels connected by in-situ cast joints. b)
Horizontal section of a keyed joint reinforced with U-bar loops and a locking
bar in the centre.

Olesen (1976), and Rizkalla et al. (1989) present experimental results for
various different geometries and material parameters. Moreover, Hansen and
Olesen tested joints with different reinforcement layouts. Cholewicki (1971)
also presents experimental results and discuss the deformation capacity of
such joints, while Bhatt (1973) and Bljuger (1976) discuss analytical and
semi-analytical models for keyed joints.

Attempts to establish simple mechanical models based on limit analysis
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Figure 4.14: (a) Simplified failure mechanism (Jensen, 1975; Christof-
fersen, 1997) and (b, c) strut-and-tie models (Christoffersen, 1997; Nielsen
and Hoang, 2010) for analytical modelling of shear capacity of keyed joints.

for the ultimate limit state design of in-situ cast joints have been published:
This includes both upper bound solutions based on the yield line theory
(Jensen, 1975; Christoffersen, 1997) and lower bound methods based on strut-
and-tie models (Christoffersen, 1997; Nielsen and Hoang, 2010; fib bulletin 43,
2008), see Figure 4.14. Jørgensen (2014) presented several analytical upper
bound solutions to a similar type of joints, namely wire loop connections.

In spite of the extensive work to establish a rational mechanical model
for the behaviour of in-situ cast joints, the standards still use simple design
formulas derived from experimental data (see e.g. Eurocode 2, European
Committee for Standardization, 2008, discussed in Section 1.1.1). Moreover,
neither the models based on limit analysis nor the current standards consider
the reinforcement layout or the effects it can have on the capacity and failure
mode of the joint. Hansen and Olesen (1976) observed that the reinforce-
ment layout severely altered the failure mode of the specimens and decreased
the capacity as well. Depending on the joint and reinforcement layout, the
current standards may overestimate the capacity as the complex stress field
within the joint is not accounted for.

4.3 Detailed modelling of joints

In order to assess the behaviour of keyed shear joints for different reinforce-
ment layouts, a detailed plane stress model based on finite element limit
analysis is developed. The work presented in this section is also presented in
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Paper I (Herfelt et al., 2016).

Lower bound limit analysis

The method of finite element limit analysis was deliberately chosen over con-
ventional incremental non-linear finite element analysis for several reasons:
First and foremost, the chosen approach allows the results to be placed in the
same context as the existing analytical models based on limit analysis. Sec-
ondly, finite element limit analysis is extremely efficient from a computational
point of view as discussed in Section 1.3 and shown in Section 4.1.5: Large
problems with millions of variables can be solved in a matter of minutes on a
standard PC. Moreover, interior point methods discussed in Section 2.5 are
stable and numerical instability is rare. Finally, this detailed analysis should
be seen as the first, small step towards developing a general framework based
on finite element limit analysis for precast concrete structures.

The general formulation of lower bound finite element limit analysis was
presented in Section 3.2 and is repeated below:

maximise λ

subject to BTσ = pλ+ p0

f(σi) ≤ 0, i = 1, 2, . . . ,m

(4.26)

where σ is the stress vector, and BT is the global equilibrium matrix. The
load comprises a constant part p0 and a scalable part pλ where λ is the load
factor sought to be maximised. The inequalities f(σi) ≤ 0 ensure that the
stress in point i satisfies the yield criterion described by the function f .

4.3.1 Keyed joints

We consider a keyed joint reinforced with U-bar loops in the transverse di-
rection and a locking bar in the longitudinal direction. The U-bar loops
are placed with a mutual distance u as indicated in Figure 4.15, thus, it
is necessary to mobilise the surrounding concrete in order to activate the
reinforcement.

The geometry of the keyed interface is defined by h1, h2, and d, while the
reinforcement layout is defined by o and u. The width of the joint is given
by b and the out-of-plane thickness by t.

The detailed model will use the enhanced plane stress element presented
by Poulsen and Damkilde (2000) and Nielsen (2014) as well as in Section
4.1.1 and 4.1.2. The joint mortar and surrounding precast panels will be
modelled as unreinforced concrete using the plane stress element. Due to the
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Figure 4.15: Elevation and cross section of the basic keyed joint reinforced
with U-bar loops.

size of the model, the reinforcement will be modelled discretely instead of
smeared using a one-dimensional bar element (Poulsen and Damkilde, 2000).
The bar element only provides dissipation along its axis and dowel action
is neglected. All shear forces and confinement has to be transferred via the
interface between the joint and the precast panels, hence, a suitable finite
element is needed to assess the behaviour and capacity of the interface.

A one-dimensional interface element with a width of zero is introduced.
The element has to be compatible with the plane stress element presented
in Section 4.1.1, thus, linear variation of stresses is required. Two stress
components can be present in the interface, namely a shear stress and a
normal stress, and traction continuity between the interface element and
adjacent plane stress elements must be satisfied, see Figure 4.16.
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Plane stress el.

Plane stress el.
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q+τ2

q−σ2
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Figure 4.16: a) Local coordinate system and stress variables of the interface
element, b) generalised nodal forces.

The four stress variables and eight generalised nodal forces are illustrated
in Figure 4.16. The stresses are simply transferred directly through the
interface, which simplifies the equations greatly together with the fact that
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the stresses are given in the local coordinate system. The local equilibrium
can be stated as:

q =




q+
σ1

q+
τ1

q+
σ2

q+
τ2

q−σ1

q−τ1

q−σ2

q−τ2




=




1 0 0 0

0 −1 0 0
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0 1 0 0

0 0 −1 0
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


σn1

τ1

σn2

τ2


 = BT

elσel (4.27)

where BT
el is the element equilibrium matrix. Nielsen and Hoang (2010)

describe a suitable yield criterion for interfaces between joints and precast
concrete, which corresponds to the plane stress Mohr-Coulomb criterion with
a tension cut-off and one free normal stress, σt.

σn

|τ |

ft

c

1

µ

Figure 4.17: Yield envelope for the interface element.

Figure 4.17 shows the yield criterion described by Nielsen and Hoang
(2010). The modified Mohr-Coulomb criterion and its formulation for second-
order cone programming are presented in Section 3.3 and will not be repeated
here. While the criterion described by Nielsen and Hoang (2010) is slightly
different, the formulation is identical. In principal stresses, the criterion can
be stated as

σ1 ≤ ft

kσ1 − σ2 ≤ 2c
√
k

(4.28)

where σ1 and σ2 are the largest and smallest principal stresses, respectively.
The properties of the interface are given by ft, the uniaxial tensile strength,
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c, the cohesion, and k, a friction parameter defined as:

k =
(√

µ2 + 1 + µ
)2

(4.29)

where µ is the friction coefficient of the interface. The cohesion c is sensitive
to curing conditions. If cracking has not taken place, the cohesion can be
taken as c = 0.55

√
fc (Nielsen and Hoang, 2010). In practice, cracking

due to shrinkage will more or less always occur and the cohesion has to be
reduced substantially. For the following analysis, a cohesion in the range of
0 to 0.5 MPa will be used. The friction coefficient depends on the type of
interface, and for smooth interfaces, a friction coefficient of µ = 0.75 can
be used according to Dahl (1994) and Nielsen and Hoang (2010). Moreover,
the separation strength of the interface ft is chosen as zero for all interface
elements.

4.3.2 Model

The detailed numerical model will be compared with experimental data from
Hansen and Olesen (1976) and Fauchart and Cortini (1972). Moreover, the
model and the experimental data will be compared to the current design for-
mulas of the Eurocode 2. Hansen and Olesen tested 16 specimens in total:
Six were reinforced with U-bar loops and the remaining 10 were subjected
to external confinement. Fauchart and Cortini tested 10 specimens, all rein-
forced with U-bar loops.

Table 4.5: Geometry for the specimens by Hansen and Olesen (1976) and
Fauchart and Cortini (1972). All parameters are given in millimetres.

h1 h2 d b t o l

Hansen and Olesen (1976) 40 40 6 50 50 30 1200

Fauchart and Cortini (1972) 167 83 20 145 90 115 1500

The geometric parameters of the two sets of specimens are listed in Ta-
ble 4.5, see also Figure 4.15. The specimens by Hansen and Olesen (1976)
featured short keys with a small key depth with a total of 14 full keys, while
the specimens by Fauchart and Cortini (1972) had longer and deeper keys
and a total of 5 full keys. Figure 4.18(a) shows the model including loading
and support conditions, while the meshes used for the model are displayed
in 4.18(b)-(e). The loading ensures that the centre line of the joint is loaded
in pure shear, and due to the anti-symmetric loading no forces are actually
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l

Joint

x

y

Supports: vx = vy = 0

F1

F1

F2

F2

Precast concrete element

Precast concrete element

(a)

(b) (c)

(d) (e)

Figure 4.18: a) Sketch of the numerical model including boundary condi-
tions and loading; b) mesh for the specimens by Fauchart and Cortini (8,064
elements); c) zoom of the mesh seen in b) showing the keyed interface, two
pairs of U-bars (thick vertical lines), and two locking bars (thick, straight
horizontal lines), d) half of the mesh for the specimens by Hansen and Ole-
sen (20,024 elements); e) zoom of the mesh seen in d) showing the keyed
interface, a locking bar (thick horizontal line), and a pair of U-bars (thick
vertical lines).
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transferred to the supports, which are only used to restrict the model against
rigid-body movement.

The concrete of the joint is modelled using the Mohr-Coulomb criterion
for plane stress, see Section 3.3. Near the U-bar loops, the joint will nec-
essarily experience triaxial stress, hence, the assumption of plane stress is
conservative in those regions. Due to the poor behaviour of concrete loaded
in tension, a tensile strength of ft = 0 is assumed. The choice of effectiveness
factor ν is discussed in Section 1.2: For lower bound models featuring direct
strut action an effectiveness factor of ν = 1 has been used by Nielsen and
Hoang (2010). Jørgensen (2014) adopted an effectiveness factor smaller than
unity, however, the models by Jørgensen are upper bound models.

4.3.3 Comparison and analysis

The experimental results of Hansen and Olesen (1976) and Fauchart and Cor-
tini (1972) are compared to the detailed model based on finite element limit
analysis and the Eurocode 2. First and foremost, we define the reinforcement
ratio as

Φ =

∑
Asufy
Acfc

, (4.30)

where Asu is the cross sectional area of the U-bar loops, fy is the yield
strength, and Ac = tl is the cross sectional area of the concrete. The Eu-
rocode design formulas were presented in Section 1.1 and are repeated below.
The shear capacity of keyed joints can be calculated as

τ =

{
cftAkey/Ac + µΦfc
1
2
νfcAkey/Ac

(4.31)

where Akey is the area of the keys, cft is an expression for the cohesion of

the joint, and ft can be taken as 0.21f
2/3
c according to the Eurocode 2. For

keyed interfaces, an friction coefficient of µ = 0.9 and a cohesion paramter
c = 0.5 can be used. It is worth noting that µ = 0.9 is higher than the
value recommended by Dahl (1994) and Nielsen and Hoang (2010). For the
Eurocode 2 design formula, the effectiveness factor

νEC2 = 0.7− fc
200

(4.32)

is used, where fc should be in MPa. It is important to emphasise that the
mean values of the material parameters are used for the comparison.

Figure 4.19 shows that the presented numerical model predicts a satis-
factory estimate of the shear capacity for a wide range of experiments. It
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Figure 4.19: Comparison of normalised shear capacity of the 24 experi-
ments (Hansen and Olesen, 1976; Fauchart and Cortini, 1972) and the nu-
merical model.

is observed that the model on average predicts a capacity slightly below the
experimental results, however, for a single specimen (no. 29, indicated by
a circle in Figure 4.19) the model overestimates the shear capacity consid-
erably. It is worth noting that specimen 29 is the only specimen where the
Eurocode 2 overestimates the capacity, see Figure 4.20(a) and Tabel 4.6.
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Figure 4.20: Comparison of the Eurocode design formulas with (a) experi-
mental results and (b) the presented numerical model.
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Figure 4.20(a) shows that the Eurocode generally underestimates the
shear capacity of the joints, in some cases by almost 60 %, see Table 4.6.
The errors shown in Tables 4.6 and 4.7 are computed as

εmodel =
τmodel

τtest

− 1, and εEC2 =
τEC2

τtest

− 1

The average error is −4.3 % for the presented model and −37.9 % for the
Eurocode design formulas. Figure 4.20(b) shows that the presented model
predicts a shear capacity considerably larger than the Eurocode. It is also ob-
served that only little scatter is seen in Figure 4.20(b) for τ/fc ≤ 0.1. Table
4.6 and 4.7 shows all results in addition to the material data and geometry.
Specimens 01, 02, 03, 04, 05, 12, 13, 14, 18, and 29 by Hansen and Olesen
(1976) listed in Table 4.6, did not have any transverse reinforcement, and
external confinement pressure was added instead. Table 4.6 lists a reinforce-
ment ratio equivalent to the external confinement. It is seen that specimen
29 is the only externally confined specimen with an equivalent reinforcement
ratio above 0.10, however, the specimen yielded a shear capacity similar to
the capacities of specimens 12 and 13, which have equivalent reinforcement
ratios of 0.43 and 0.95, respectively.

The reinforcement layout of specimens 24 and 26 by Hansen and Olesen
(1976) makes them particular interesting: They both feature a suboptimal
reinforcement layout, i.e. a large value of u, and the presented model seems
to capture the behaviour well in comparison to the Eurocode 2. Specimen
25 is identical to specimen 26 with the exception of the reinforcement layout.
The determined stress fields and collapse modes of the two specimens are
displayed in Figure 4.21 and 4.22.
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Figure 4.21: a) Collapse mode and b) lowest principal stress for specimen
25 by Hansen and Olesen (1976).

The thick blue lines in Figure 4.21(a) and 4.22(a) indicates the interface
between the precast panels and the joint mortar. The red lines represent the
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Table 4.6: Data and results of experiments by Hansen and Olesen (1976),
the numerical model, and Eurocode 2.

fc Φ u Test Numerical Eurocode 2

No. [MPa] [-] mm τ/fc τ/fc Error [%] τ/fc Error [%]

01 29 0.013 - 0.064 0.053 -17.2 0.029 -55.0

02 32 0.030 - 0.095 0.079 -16.8 0.044 -54.2

03 32 0.055 - 0.105 0.102 -2.9 0.066 -37.1

04 16 0.061 - 0.087 0.107 23.0 0.076 -13.0

05 53 0.018 - 0.068 0.064 -5.9 0.030 -55.6

12 25 0.043 - 0.140 0.092 -34.3 0.057 -59.9

13 23 0.095 - 0.146 0.133 -8.9 0.104 -28.8

14 25 0.039 - 0.099 0.088 -11.1 0.053 -46.4

18 27 0.049 - 0.073 0.097 32.9 0.062 -15.6

29 17 0.188 - 0.137 0.203 48.2 0.150 9.5

23 31 0.025 10 0.080 0.083 3.8 0.040 -50.5

24 26 0.030 150 0.072 0.068 5.6 0.045 -37.3

25 24 0.076 10 0.161 0.131 -18.6 0.087 -45.9

26 24 0.076 70 0.124 0.128 3.2 0.087 -29.8

27 15 0.139 10 0.213 0.189 -11.3 0.147 -31.0

28 13 0.235 10 0.286 0.230 -19.6 0.150 -47.6

Table 4.7: Data and results of experiments by Fauchart and Cortini (1972),
the numerical model, and Eurocode 2.

fc Φ u Test Numerical Eurocode 2

No. [MPa] [-] mm τ/fc τ/fc Error [%] τ/fc Error [%]

5 20 0.049 10 0.106 0.088 -17.0 0.057 -46.3

6 20 0.049 10 0.085 0.088 3.5 0.057 -33.0

7 20 0.096 10 0.120 0.126 5.0 0.099 -17.3

8 20 0.246 10 0.197 0.206 4.6 0.100 -49.4

9 20 0.047 10 0.104 0.086 -17.3 0.055 -47.0

10 20 0.096 10 0.148 0.126 -14.9 0.099 -32.9

11 20 0.096 10 0.148 0.126 -14.9 0.099 -32.9

12 20 0.191 10 0.208 0.186 -10.6 0.100 -52.2
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Figure 4.22: a) Collapse mode and b) lowest principal stress for specimen
26 by Hansen and Olesen (1976).

reinforcement, i.e. the loop reinforcement and locking bar. The deformed
shape of the reinforcement is determined by interpolating the location of the
nodes in the deformed mesh. The gray lines in Figure 4.21(b) and 4.22(b)
represents the reinforcement.

Figure 4.21(a) shows failure of the interface of specimen 25, whereas Fig-
ure 4.22(a) shows that the primary failure mechanism is a diagonal yield zone
through the core of the joint. This correlates well with what Hansen and Ole-
sen (1976) reported, namely that specimen 23, 25, and 27 failed by shearing
off the keys, while for specimens 24 and 26 the core of the joint was almost
completely destroyed. From Figure 4.21(b) and 4.22(b) it is clear that the
reinforcement layout heavily affects the stress field within the joint. Figure
4.21(b) displays clear, distinct struts, whereas Figure 4.22(b) shows that the
compression struts are disrupted by reinforcement layout. For specimen 26,
localised strut action are necessary to mobilise the loop reinforcement, which
of course affects the entire stress field. It is worth noting that the collapse
mode seen in Figure 4.21(a) as well as the stress field seen in Figure 4.21(b)
are similar to the simplified analytical models shown in Figure 4.14.

Figure 4.23 shows the shear capacity for the different specimens as a func-
tion of the reinforcement ratio (or equivalent reinforcement ratio for Figure
4.23(b)). The curves are computed by varying the yield strength of the re-
inforcement. All specimens by Fauchart and Cortini (1972) have the same
geometry and concrete strength, see Table 4.7, hence, they are all plotted
together, and it is seen Figure 4.23(a) that the presented numerical model
provides an excellent estimate of the shear capacity of these specimens.

The results of the specimens with external confinement by Hansen and
Olesen (1976) are somewhat scattered as seen in Figure 4.23(b), but the nu-
merical model provides a decent estimate nevertheless (with the exception
of specimen 29 as discussed earlier). Figure 4.23(c) and (d) show that the
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(b) Specimens 01, 02, 03, 04, 05, 12, 13, 14,
18, and 29 (Hansen and Olesen, 1976).
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Figure 4.23: Experimental for the specimens by Fauchart and Cortini
(1972) and Hansen and Olesen (1976) and capacity curves computed using
the presented numerical model.

experimental results fall close to the computed capacity curves for the spec-
imens. A substantial difference is observed between the curves of specimens
23 and 24, as well as specimens 25 and 26, respectively, and the effect of the
reinforcement layout can be seen clearly.

Despite the fact that little to no cohesion was assumed for the interface of
the numerical model, a pseudo cohesion seems to be present in Figure 4.23(a)
and (b), if the linear part of the curves is extended to intersect the (τ/fc)-
axis. This is similar to the cohesion shown in Figure 4.17. The pseudo
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cohesion seems to take a value of approximately 5 % of the compressive
strength, however, this value will most likely depend on the reinforcement
layout amongst other parameters. This pseudo cohesion seems to be a result
of the keyed interface, where local failure at the corners of the keys occur.

Computational effort

The presented model requires several thousand plane stress elements in addi-
tion to the interface elements and bar elements. Solving the resulting math-
ematical optimisation problem (4.26) requires a considerable computational
effort. The detailed model for the specimens by Fauchart and Cortini (1972)
uses more than 8,000 finite elements, while the model for the specimens by
Hansen and Olesen (1976) uses 20,000 finite elements. The sparsity of the
problem (4.26) will increase with the number of elements, and for larger prob-
lems the system matrix will be extremely sparse. The sparsity is exploited
in the solver (MOSEK ApS, 2015).

Table 4.8: Number of elements, problem size, and computational time for
the numerical model.

Hansen and
Olesen (1976)

Fauchart and
Cortini (1972)

Plane stress el. 19,040 7,520

Interface el. 596 236

Bar elements. 388 308

Variables 1,364,509 539,709

Linear constraints 1,305,890 516,428

Conic constraints 134,472 53,112

Computational time 94.14 s 37.10 s

Table 4.8 shows the problem sizes and computational time for the two
meshes seen in Figure 4.18. The model for the specimens by Hansen and
Olesen (1976) uses more elements due to the number of keys, and the re-
sulting optimisation problem has more than 1.3 million variables and linear
constraints. Moreover, 134,472 conic constraints are required to model the
yield functions of the plane stress elements and interface elements. Table
4.8 shows that the computational time is approximately proportional to the
problem size, similar to the analysis in Section 4.1.5, and even large problem
can be solved in a matter of minutes.
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4.3.4 Summary

The presented model was validated by comparison to the experimental data
and satisfactory correlation was found: The numerical model predicted a
decent estimate of the shear capacity approximately 4 % below the exper-
imental result on average. The design formulas of the Eurocode 2, on the
other hand, underestimate the shear capacity by 38 % on average despite the
use of mean strength values for the materials.

The numerical model accounts for the effect of the reinforcement layout,
which was shown to be quite substantial for some of the experiments by
Hansen and Olesen. Moreover, the model computes the optimal, statically
admissible stress field from the lower bound model and corresponding failure
mechanism can be interpreted from the solution to the corresponding dual
problem. All in all, the model provides unique insights into the ultimate
limit state behaviour of keyed joints.

The findings can be used to optimise the joint geometry, i.e. comput-
ing the optimal depth of the keys. Such optimisation is relevant for precast
concrete manufactures which will benefit from the optimisation through the
mass production of the optimised panels. For consulting engineers designing
entire buildings, however, the level of detail of the presented model is far to
high. Moreover, modelling larger structures using the presented model would
result in enormous computational problems which would require computa-
tional resources not available to consulting engineering companies.

4.4 Joints in two dimensions

The scope of the present work is to develop a framework for finite element
limit analysis of precast concrete structures. The detailed model presented
in Section 4.3 and Paper I (Herfelt et al., 2016) is able to assess the complex
stress field within the joint and capture the local failure mechanisms, however,
for practical design of precast concrete structures it is simply not feasible to
use that level of detail. The four-storey wall seen in Figure 4.12 comprises
a total of 12 panels and more than 50 metres of in-situ cast joints in total,
hence, it would require millions of elements to obtain the same level of detail
as the model presented in Section 4.3.

In this section, a multiscale finite element for modelling of in-situ cast
joints is presented (see also Paper II, Herfelt et al., 2017a). The multiscale
element comprises a macro joint element, which interacts on the element level,
and a so-called submodel criterion which is used to assess the behaviour of
the joint on the sub-element level. Like the plane stress elements, the joint
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element will be a lower bound element, and it will be compatible with the
aforementioned plane stress elements presented by Poulsen and Damkilde
(2000) and in Section 4.1. The scope is to be able to model entire wall
systems, e.g. the four-storey wall seen in Figure 4.12, using a limited number
of the joint elements. The element of course also requires an adequate yield
function which can capture the mechanisms identified by the detailed model
in Section 4.3. For this purpose a submodel yield criterion is developed, i.e.
a simple mechanical submodel is used on the sub-element level to obtain the
relevant stress field within the joint and enforce the material yield criterion
on the submodel level.

Plane stress is still assumed, and the presented joint element and sub-
model yield criterion will fit the format of second-order cone programming.
The developed macro element and submodel will be compared to the detailed
numerical model as well as the experimental results by Hansen and Olesen
(1976) and Fauchart and Cortini (1972).

4.4.1 Macro joint element

A lower bound element is developed, and the general problem formulation
will be identical to the one presented in Section 3.2:

maximise λ

subject to BTσ = pλ+ p0

f(σi) ≤ 0, i = 1, 2, . . . ,m

(4.33)

In this case, however, the yield function f(σi) is the so-called submodel yield
criterion, i.e. the notation f(σi) represents both several additional equilib-
rium equations which are enforced on the submodel level, and the material
yield criterion which take the submodel stress fields as input. Expanding the
yield function in (4.33) gives

maximise λ

subject to BT σ = pλ+ p0

Cββ + Cαα+ Cγγ = C0

Eσβ + Eαα+ Eγγ ≤ E0

γi ∈ Qki , i = 1, 2, . . . ,m

(4.34)

where Cσ, Cα, and Cγ are the matrices associated with the equality con-
straints for the yield function, and Eσ, Eα, and Eγ are the matrices asso-
ciated with the inequality constraints. The vectors, C0 and E0, typically
contain material strength parameters or similar.

Department of Civil Engineering - Technical University of Denmark 81



4.4 Joints in two dimensions Modelling precast structures

Two different vectors are used for the auxiliary variables for the yield
function, namely α and γ, where γ is used to establish the second-order
constraints, γi ∈ Qki . γi is a subset of γ associated with the ith check point
and Qki represents a conic set of size ki, see Section 2.3.

On the element level, the equilibrium equations and yield functions can
be stated as

BT
elσel = qel

Cel,i
σ σel + Cel,i

α αi + Cel,i
γ γi = Cel,i

0 , i = 1, 2, . . . ,mel

Eel,i
σ σel + Eel,i

α αi + Eel,i
γ γi ≤ Eel,i

0 , i = 1, 2, . . . ,mel

γi ∈ Qki , i = 1, 2, . . . ,mel

(4.35)

The vector qel contains the contributions to the equilibrium equations on the
global level, σel contains the stress variables of the given element, and BT

el is
the element equilibrium matrix. The matrices Cel,i and Eel,i define the yield
function for the mel check points of the element.

We now consider a unit section of a joint. The unit section has exactly
one pair of U-bar loops and is defined by the length s, see Figure 4.24. The
unit joint section will comprise more than one key if the loop reinforcement
pairs are placed with a considerably distance, i.e. if s is large, see Figure
4.24(b).

The horizontal black line in the centre of the joint represents the locking
bar, while the vertical lines represent the transverse reinforcement, i.e. U-
bar loops. The unit joint sections seen in Figure 4.24 are defined by the
aforementioned length s, the width b, and the out-of-plane thickness t. The
loop reinforcement of the unit section is assumed to be placed with a mutual
distance u, see Figure 4.24. It has already been shown in Section 4.3 that this
value, u, affects the capacity as well as the failure mode of the joint, and it
is therefore crucial to establish a model capable of modelling this behaviour.

The joint element only models the behaviour of the core of the concrete,
i.e. the localised effects that take place inside the joint. The behaviour of the
interfaces will be modelled using the interface element presented in Section
4.3, and the values adopted for the cohesion and friction for the comparison
to the detailed numerical model and experimental results will be discussed
later.

The macro finite element is formulated in the following. The length and
orientation of the macro joint element is defined by the two end nodes seen
in Figure 4.25(a). The joint element will dictate the distribution and transfer
of stresses through the joint. The element will be formulated for interaction
with the plane stress element which has a linear stress field. Due to the
requirement of traction continuity, the joint element will necessarily also
have a linear variation of stresses.
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Figure 4.24: Unit section forming the basis of the joint model.
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Figure 4.25: a) Geometry of the macro joint element including local coor-
dinate system and stress variables. b) Nodal forces of the joint element and
compatibility with the plane stress element.
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One key feature of the joint element is the ability to establish compression
in the longitudinal direction via shear from adjacent panels. This means that
the shear stress can vary in the top and bottom halves of the element and
a four shear stress variables are necessary to describe two linear variations.
The transverse normal stress is assumed to be transferred directly through
the joint, hence, two variables are sufficient. The linear variation of shear
stresses leads to a quadratic variation in the normal stress in the longitudinal
direction (t-direction), thus, three variables are needed. In total, nine stress
variables are used for the joint element:

σel =
[
σn1 σn2 τ+

1 τ+
2 τ−1 τ−2 σt1 σt2 σt3

]T
(4.36)

The macro element contributes to 12 equilibrium equations, four for each of
the two adjacent plane stress elements ensures traction continuity, and four
equations to ensure equilibrium in the longitudinal direction. The equilib-
rium equation on the element level can be stated as

qel = BT
elσel,

where qel contains the 12 nodal forces, and BT
el is the local equilibrium matrix.

Due to the fact that the stress variables are given in local coordinates, no
transformations are needed. The quantities qel and BT

el are explicitly given
in (4.37):



q+

q−

qN


 =




q+σ1
q+τ1
q+σ2
q+τ2
q−σ1
q−τ1
q−σ2
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qN2

qp1
qp2


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=




t 0 0 0 0 0 0 0 0

0 0 −t 0 0 0 0 0 0

0 t 0 0 0 0 0 0 0

0 0 0 −t 0 0 0 0 0

−t 0 0 0 0 0 0 0 0

0 0 0 0 t 0 0 0 0

0 −t 0 0 0 0 0 0 0

0 0 0 0 0 t 0 0 0

0 0 0 0 0 0 b t 0 0

0 0 0 0 0 0 0 −b t 0

0 0 t 0 −t 0 3 b t
le

b t
le

−4 b t
le

0 0 0 t 0 −t − b tle −3 b t
le

4 b t
le


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σn1
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

= BT
elσel

(4.37)

and

qel =



q+

q−

qN




where q+ denotes the four nodal forces associated with the positive side of
the joint, q− denotes the four nodal forces associated with the negative side,
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see Figure 4.25(b), and qN denotes the four equations that ensure equilibrium
in the longitudinal direction. Each point along the joint element has a stress
state defined by four stress variables, namely σn, σt, τ

+, and τ−, which is
passed on to the submodel yield criterion and checked using the submodel
yield criteiron.

4.4.2 Submodel for two-dimensional behaviour

The scope of the submodel yield criterion is to capture the behaviour and
the critical mechanisms within the joint identified by the detailed model in
Section 4.3. The submodel is based on the aforementioned unit joint section
illustrated in Figure 4.24, which is subjected to shear as well as axial forces
in two directions.

The general idea of the submodel yield criterion is to divide the seemingly
complex problem into smaller parts. This is illustrated in Figure 4.26 where
three rather simple stringer models are introduced. A modified version of
the stringer models is used where confinement stresses acting on the rectan-
gular panels replace the function of the smeared reinforcement, which is not
available in the zones considered. For a general description of the stringer
method, the reader is referred to Kærn (1979) and Damkilde et al. (1994).
Each of the three models imposes constraints on the stress field in the joint
and represents a basic state of stresses. The three basic stress states are then
added together to obtain the actual stress state of the combined problem,
which is then checked against the appropriate material yield criteria for the
joint mortar and reinforcement, respectively.

Plane stress is assumed for the submodel yield criterion similarly to the
detailed model presented in Section 4.3. The geometry of the loop reinforce-
ment will necessarily lead to a triaxial stress state within the joint, however,
the out-of-plane mechanisms are neglected and plane stress is assumed to
obtain a safe lower bound solution. Due to this assumption, the model may
underestimate the capacity in some cases.

The first stringer model, see Figure 4.26(b), activates the reinforcement,
which is required in order to transfer tension across the joint or to estab-
lish confinement pressure on the joint. From the stringer model, it can be
seen that tension in the loop reinforcement necessarily will induce shear in
the centre row of panels. From the moment equilibrium of the model, the
following relations can be derived:

τ21 =
V

o t
=
u

s

T

o t
, τ22 =

(u
s
− 1
) T

o t
(4.38)

where T is the tension force in the U-bar loops. From the antisymmetry of
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Unit joint section.
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Figure 4.26: Unit joint section and the three stringer models: The be-
haviour of the unit joint section is governed by three stringer models, each
describing a key mechanism, namely transverse tension, shear, and compres-
sion, respectively.
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the stringer model, it can be concluded that τ21 = τ23. The stringer force V
seen in Figure 4.26(b) will be balanced out by an adjacent joint element.

The stringer model for transfer of shear stresses is shown in Figure 4.26(c).
The horizontal boundaries of the model may be subjected to shear of differ-
ent magnitudes, which leads to a linear varying normal force in the central
stringer, i.e. the locking bar. The shear in the two panels of the stringer
model will be equal to the applied shear stresses, τ+ and τ−:

τ1 = τ+, τ3 = τ−, (4.39)

Horizontal equilibrium for the central stringer gives the following equation:

F+
lt − F−lt = s t (τ1 − τ3) (4.40)

The shear panels 1 and 3 seen in Figure 4.26(c) overlap the three shear panels
of the first stringer model, Figure 4.26(b). The resulting shear stresses can
simply be computed by adding the appropriate stresses.

Contrary to the ordinary stringer method, the panels are not reinforced
and all reinforcement is modelled discretely as stringers. Instead, confinement
pressure is added, which may originate from externally applied loads or from
stresses developed to create internal equilibrium with the tensile forces of
the reinforcement. The stringer model shown in Figure 4.26(d) describes the
transfer of compression through the joint. Equilibrium is required for the
horizontal boundaries of the unit joint section: The transverse normal stress
σn is balanced by the stringer forces of the two previous stringer models, T
and V , as well as the confinement pressure σni:

s t σn = T − V − s− u
2

t (σn1 + σn3)− u t σn2 (4.41)

Equilibrium is likewise required for the horizontal boundaries of the unit joint
section:

F+
t = F+

lt − 2Ft −
b− o

2
t
(
σ+
t1 + σ+

t3

)
− o t σ+

t2

F−t = F−lt − 2Ft −
b− o

2
t
(
σ−t1 + σ−t3

)
− o t σ−t2

(4.42)

The shear stress in the panels will be symmetric about the vertical centre line
of the unit join section, hence, the confinement pressure in the n-direction
will be symmetric as well, i.e. σn1 = σn3. For simplicity, the same is assumed
for the confinement in the longitudinal direction, i.e. σt1 = σt3, which may
lead to a lower shear capacity when τ+ 6= τ−.
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Yield criteria on the submodel level

The normal stress in the t-direction will vary linearly when τ+ 6= τ−, hence,
to ensure a statically admissible and safe stress field on the submodel level,
the stresses have to be checked in several locations. Given a position in the
joint, the resulting stress state can be established from the shear stresses
of the two first stringer models and the normal stresses of the last stringer
model, see Figure 4.26. The number of stress states to be checked can be
reduced by exploiting the symmetry of the model, and a total of eight stress
states is sufficient for the panels to ensure a safe stress field. The submodel
comprises two different types of stringers, namely reinforcement stringers
and compression stringers. The reinforcement stringers are, as the name
indicates, stringers where reinforcement is present, hence, they can carry
tension. Compression stringers, on the other hand, cannot carry tension
since no reinforcement is present and confinement is required to keep the
stringer in compression.

We assume that the reinforcement stringers only carry tension, and the
tensile force is limited by the yield strength of the reinforcement. The yield
condition can be stated as

0 ≤ T ≤ Asufyu
0 ≤F+

lt ≤ Aslfyl
0 ≤F−lt ≤ Aslfyl

(4.43)

where Asu and Asl seen in (4.43) are the cross sectional areas of the U-bar
loops and locking bar, respectively, while fyu and fyl are the yield strengths.

The horizontal stringers shown in the stringer model for transverse ten-
sion, Figure 4.26(b), are the aforementioned compression stringers. The con-
finement force Ft shown in 4.26(b) and 4.27 ensures that the stringer is loaded
in compression.

Ft Ftτ21 τ21τ22

−Ft −Ft

−Ft + τ21 t
s− u

2
−Ft − τ21 t

s− u
2

(s− u)/2 u (s− u)/2

Figure 4.27: Stringer force distribution of the unreinforced compression
stringers subjected to shear stress from adjacent panels as well as confining
forces at the ends.
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Figure 4.27 shows the stringer force distribution, and the criterion for the
compression stringers can be stated as a linear inequality:

− Ft + τ21 t
s− u

2
≤ 0 (4.44)

Finally, the Mohr-Coulomb criterion for plane stress is used for the shear
panels of the submodel. The exact formulation of the criterion using second-
order cone programming is given in Section 3.3, where it was shown that
the criterion can be formulated for second-order cone programming using a
single conic constraint. In principal stresses, the criterion can be stated as:

σ1 ≤ ft

kσ1 − σ2 ≤ fc

−σ2 ≤ fc

(4.45)

where σ1 and σ2 are the largest and smallest principal stresses, respectively.
ft and fc are the uniaxial tensile and compression strengths of the joint
mortar, and k is a friction parameter usually taken as 4 for normal strength
concrete corresponding to an internal angle of friction of approximately 37◦.

4.4.3 Validation and comparison

In the following section, the developed multiscale joint element is analysed.
The results are compared to the detailed model presented in Section 4.3 as
well as the experimental results by Hansen and Olesen (1976) and Fauchart
and Cortini (1972). The scope of this analysis is to maximise the applied
shear load for a given joint configuration. The shear load is applied on both
sides of the joint, see q+

τ1, q−τ1, q+
τ2, and q−τ2 in Figure 4.25(b). No normal

forces are introduced via the external loading, see Figure 4.28.

Joint element

Figure 4.28: Model for the analysis including supports and loading: The
dashed lines indicates the interface elements representing the interface be-
tween the precast panels and the in-situ cast joint.

In practice, the keys near the ends of the joint is used to establish a com-
pressive force in the longitudinal direction, which increase the shear capacity
considerably. To simulate this behaviour using just a single joint element,
both ends are modelled as supported, i.e. equilibrium is not required for
the generalised nodal forces qN1 and qN2, see Figure 4.25(b). The specimens
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tested by Hansen and Olesen (1976) and Fauchart and Cortini (1972) and
the detailed model are of course subject to such boundary effects, and the
analysis using the presented joint element may therefore overestimate the
capacity slightly due to this choice of supports.

Two interfaces are indicated in Figure 4.28 (dashed lines), which are
used to represent the interface between the precast panels and the in-situ
cast joints. The yield envelope of the interface element is defined by two
parameters, namely the cohesion and the friction coefficient. For the analysis,
these parameters will be fitted to the curve of the detailed model. It was
observed in Section 4.3.3 that the keys add pseudo cohesion to the interface
in the order of approximately 5 % of the compressive strength, however, the
magnitude of this pseudo cohesion depends on the geometry of the keys as
well as the reinforcement layout. A friction coefficient of µ = 0.6 is used for
all specimens by Hansen and Olesen (1976), while µ = 0.75 is used for the
specimens by Fauchart and Cortini (1972). The cohesion for the interface
elements varies between 5 % and 11 % of the concrete strength of the given
specimen and is listed in Table 4.9.

Table 4.9: Fitted values of the cohesion and friction coefficient for the in-
terface elements used for the analysis.

Hansen and Olesen c µ

Specimens [fc] [-]

23 7 % 0.6

24 6 % 0.6

25, 26 8 % 0.6

27, 28 11 % 0.6

01, 02, 03, 04, 05,
12, 13, 14, 18, 29

6 % 0.6

Fauchart and Cortini c µ

Specimens [fc] [-]

All 5 % 0.75

Similarly to the detailed model, an efficiency factor of ν = 1 has been
used, i.e. the compressive strength is not reduced. This is due to the fact
that the detailed model showed that the primary load carrying mechanisms
is direct strut action with a deep strut inclination. A brief discussion on the
efficiency factor was given in Section 1.2.
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The normalised shear capacity of the joints will be plotted as a function
of the mechanical reinforcement ratio which was defined as:

Φ =

∑
Asufyu
Acfc

where Ac = t l is the cross sectional area of the concrete with t being the
thickness of the joint and l is the the total length of the considered joint.

Hansen and Olesen (1976) investigated the behaviour of keyed joints with
different reinforcement layouts, and some of the specimens features a consid-
erable distance between the U-bar loops, i.e. a large value of u, see Figure
4.24 and 4.26. Hansen and Olesen reported that the specimens with a large
value of u gave a lower shear capacity and that the joints were completely
destroyed upon failure. As shown in Section 4.3.3, the detailed model in
captured this behaviour to a satisfactory degree.

170 150

(a) Specimen 24

90 70

(b) Specimen 26

Figure 4.29: The two specimens with a considerable distance between the U-
bars tested by Hansen and Olesen (Hansen and Olesen, 1976), measurements
in millimetres.

The geometry of the specimens are given in Table 4.5. Figure 4.29 shows
the two specimens which featured large values of u, while the U-bar loops were
placed with a distance of 10 mm for the remaining specimens by Hansen and
Olesen. For specimen 24 and 26, the shear capacity is illustrated as a function
of the reinforcement degree in Figure 4.30 together with experimental results
and the results of the detailed model. Figure 4.31 and Table 4.10 and 4.11
shows the results for all specimens.

Figure 4.30 shows that a single joint element using the submodel yield
criterion can capture the same behaviour as the detailed model. The first,
non-linear part of the curve is governed by the interface elements, which can
represent the behaviour of the keyed interface with a reasonably accuracy
by fitting the cohesion and friction coefficient of the interface element to the
detailed model.

The submodel criterion governs the horizontal limit for the capacity. It is
observed that the submodel provides an excellent estimate of the plateau, i.e.
the upper limit for the shear capacity. The submodel criterion overestimates
the capacity of specimen 24 slightly for lower reinforcement ratios, however,
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Figure 4.30: Results obtained by a single joint element with the submodel
yield criterion compared to the results of the detailed model using several
thousand elements. Experimental results for specimens 24 (a) and 26 (b) by
Hansen and Olesen (1976).

the capacity of the detailed model increase as with the reinforcement ratio
and surpass the capacity of the submodel criterion.
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Figure 4.31: Comparison of the results obtained using a single joint element
with the submodel yield criterion with (a) the detailed numerical model and
(b) experimental results (Hansen and Olesen, 1976; Fauchart and Cortini,
1972).
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Table 4.10: Data and results of experiments by Hansen and Olesen (1976),
the detailed numerical model, and the presented joint element with the sub-
model yield criterion.

fc Φ u Experimental Detailed Joint element

Specimen [MPa] [-] mm τ/fc τ/fc τ/fc

01 29 0.013 - 0.064 0.053 0.054

02 32 0.030 - 0.095 0.079 0.079

03 32 0.055 - 0.105 0.102 0.101

04 16 0.061 - 0.087 0.107 0.106

05 53 0.018 - 0.068 0.064 0.063

12 25 0.043 - 0.140 0.092 0.092

13 23 0.095 - 0.146 0.133 0.131

14 25 0.039 - 0.099 0.088 0.089

18 27 0.049 - 0.073 0.097 0.097

29 17 0.188 - 0.137 0.203 0.201

23 31 0.025 10 0.080 0.083 0.075

24 26 0.030 150 0.072 0.068 0.074

25 24 0.076 10 0.161 0.131 0.126

26 24 0.076 70 0.124 0.128 0.126

27 15 0.139 10 0.213 0.189 0.193

28 13 0.235 10 0.286 0.230 0.242

Table 4.11: Data and results of experiments by Fauchart and Cortini
(1972), the detailed numerical model, and presented joint element with the
submodel yield criterion.

fc Φ 2u Experimental Detailed Joint element

Specimen [MPa] [-] mm τ/fc τ/fc τ/fc

5 20 0.049 10 0.106 0.088 0.087

6 20 0.049 10 0.085 0.088 0.087

7 20 0.096 10 0.120 0.126 0.112

8 20 0.246 10 0.197 0.206 0.235

9 20 0.047 10 0.104 0.086 0.085

10 20 0.096 10 0.148 0.126 0.122

11 20 0.096 10 0.148 0.126 0.122

12 20 0.191 10 0.208 0.186 0.193

Figure 4.31(a) shows an excellent agreement between the results of the
joint element and the detailed model. The joint element overestimates the
capacity for a few cases compared to the detailed model, namely for speci-
mens with high reinforcement ratios, see Table 4.10 and 4.11. The choice of
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supports for the joint element might be the reason for this. Figure 4.31(b)
shows that the single joint element with the submodel yield criterion predicts
a satisfactory estimate of the shear capacity compared to the experimental
results.

Computational effort

The multiscale joint element comprising the macro finite element and sub-
model criterion has shown to be able to capture the behaviour of keyed joints
with various reinforcement layouts to a satisfactory degree, and compared to
the detailed model it provides excellent results. The multiscale joint element
leads to a considerably smaller optimisation problem which can be solved
in a fraction of a second compared to the detailed model, which required
either 37.10 seconds or 94.14 seconds on average depending on the specimen
analysed by detailed model, see Table 4.8.

Table 4.12: Number of equilibrium elements, problem size, and computa-
tional time for a single joint element and the detailed model.

Joint element Detailed model

Equilibrium elements 3 20,024

Variables 302 1,364,509

Linear constraints 388 1,305,890

Conic constraints 44 134,472

Computational time 0.022 s 94.14 s

The computational times shown for the joint element in Table 4.12 is the
average of 10 runs. From Table 4.12, it is evident that the proposed joint
element is superior for practical modelling and analysis of entire precast
concrete structures.

4.4.4 Summary

For practical design and analysis of precast concrete structures within the
framework of limit analysis, an adequate equilibrium element representing
the in-situ cast joints is needed. The formulation of a multiscale joint ele-
ment is given. The multiscale element comprises a macro finite element and
a submodel yield criterion, which functions on the stress level and makes it
possible to account for various local effects within the joint itself. The sub-
model criterion represents a simple mechanical model based on the stringer
method, and the material yield criteria are then applied on the resulting
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stress state of this mechanical model. The submodel yield criterion was for-
mulated using second-order conic constraints, hence, the multiscale element
fits the format of second-order cone programming, see Section 2.3.

The multiscale joint element is validated by comparison to the detailed
numerical model presented in Section 4.3 and experimental results by Hansen
and Olesen (1976) and Fauchart and Cortini (1972). Satisfactory agreement
was found between the multiscale joint element and the experimental re-
sults, and excellent agreement was found between the joint element and the
detailed model. The fact that the joint element only poses a rather small
mathematical optimisation problem compared to the detailed model makes
it more relevant for practical applications. It can be concluded that the de-
veloped multiscale joint element makes it possible to assess the capacity of
real size precast concrete structures while accounting for the local behaviour
of the in-situ cast joints. This will be demonstrated in Chapter 5.

4.5 Joints in three dimensions

Many types of in-situ cast joints typically used in precast concrete structures
transfer shear stress from one plane to another, see Figure 4.32. As discussed
in Section 4.2, several papers on the behaviour of shear joints were published
in the 1970s and 80s (see e.g. Fauchart and Cortini, 1972; Hansen and Olesen,
1976), however, no experimental studies on the behaviour of joints in three-
dimensions have been published. The simplified, empirical expression of the
Eurocode 2 (European Committee for Standardization, 2008) only considers
the capacity of the interface. The actual stress field within the joint is not
considered.

Both joints shown in Figure 4.32 are commonly used in precast concrete
structures, and they both experience triaxial stress since they transfer shear
from one plane to another. Many types of joints feature loop reinforcement
and for design and analysis, it is assumed that the U-bar loops are placed
closely together, however, this is not always the case as discussed, and the
capacity of the joint is reduced as a consequence. The joint model presented
in this section and in Paper IV (Herfelt et al., 2017b) will account for this
behaviour similar to the two-dimensional joint model, namely by use of a
mechanical submodel.

The multiscale joint element comprises a macro joint element and a sub-
model yield criterion, see Figure 4.33. The macro joint element is a lower
bound element, hence, traction continuity is required between the joint el-
ement and adjacent 3D plane stress elements. The stresses on the element
level are transferred to the submodel level, where a mechanical model is used
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(a) (b)

Figure 4.32: a) Vertical section of slab-to-panel joint reinforced with U-bar
loops and embedded rebars. b) Horizontal section of panel-to-panel T-joint
reinforced with U-bar loops extruding from all three panels.

In-situ joints

Plane stress elements

Joint element

Corbel mechanism

(a) (b) (c)

Figure 4.33: The general concept of the 3D joint model shown visualised
two dimensions: a) Precast concrete structure on the structural level, b) Joint
element and plane stress elements on the element level, c) corbel mechanisms
and load path on the submodel level.
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to determine the local stress field within the joint.

4.5.1 Lower bound macro element

First, a lower bound macro joint element is introduced. The mathematical
optimisation problem on the structural level can be stated as the general
lower bound formulation (3.11). The yield criterion of the element is in this
case a submodel criterion, which is formulated for semidefinite programming
due to the triaxial stress state in the core of the joint. On the element level,
the equilibrium equations and yield criterion can be stated as follows:

BT
elσel = qel

Cel,i
σ σel + Cel,i

α αi + Cel,i
γ γi = Cel,i

0 , i = 1, 2

Eel,i
σ σel + Eel,i

α αi + Eel,i
γ γi ≤ Eel,i

0 , i = 1, 2

Fel,j
α αj + Fel,j

0 � 0, j = 1, 2, . . . ,mel

γl ∈ Qkl , l = 1, 2, . . . , qel

(4.46)

The element equilibrium matrix BT
el ensures equilibrium of the element. The

element is designed to be compatible with the generalised plane stress ele-
ment presented in Section 4.1.3 and a linear varying stress field is therefore
assumed. Moreover, the normal stresses in the longitudinal direction of the
joint is not considered, hence, to ensure a lower bound, it is sufficient to
enforce the submodel yield criterion in the two ends of the macro element.

The matrices Cel,i
σ , Cel,i

α , and Cel,i
γ define the equality constraints of the

two submodels, while Eel,i
σ , Eel,i

α , and Eel,i
γ define the inequality constraints.

The variables α and γ are associated with the yield function, whereas γ is
used to define the second-order constraints, and α is used to define the linear
matrix inequalities together with the symmetric matrices Fel,j

α and Fel,j
0 . The

scalar mel is the number of linear matrix inequalities for the submodels while
qel is the number of second-order constraints. The matrices will only be given
implicitly in the following.

The submodel criterion assumes that the adjacent plane stress elements
are oriented in right angles. Despite this assumption, the present model will
cover the vast majority of joints in precast structures, e.g. the two joints
shown in Figure 4.32. The formulation of the macro finite element, however,
is general and does not assume any specific orientation and is applicable to
any configuration and any number of adjacent plane stress elements.

The macro element comprises a number of strips, one for each adjacent
plane stress element, see Figure 4.34. As mentioned, for the macro element to
be compatible with the 3D plane stress element, linear stress field are required
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Figure 4.34: Sketch of a joint element with three adjacent plane stress
elements: Local coordinate systems for the three joint strips are shown.

for the strips, which are assumed to be in plane stress. The stress field in
a strip is given in local coordinates and comprise two unique components,
namely σy and τxy. The element stress vector is given as

σel =



σ1

...

σN


 (4.47)

where N is the number of strips and σi denotes the stress vector of the ith
strip,

σi =

[
σi1
σi2

]
=




σy1

τxy1

σy2

τxy2


 (4.48)

The strips balance the tractions of the adjacent elements as well as internally
within the element. Figure 4.34 shows local coordinate systems for each strip,
which is defined based on the plane of the adjacent triangular element. The
local x-axis is in the longitudinal direction of the joint going from node 1
to node 2, while the local y-axis lies in the plane of the adjacent triangular
element. The basis of the local coordinate system of strip i can be defined
based on the vectors v12, going from node 1 to 2, and v1ni

, going from node
1 to the third node of the adjacent element, see Figure 4.34:

exi =
v12

‖v12‖2

, ezi =
v12 × v1ni

‖v12 × v1ni
‖2

, eyi = ezi × exi (4.49)
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The transformation matrix for strip i can then be stated as Ei =
[
exi eyi ezi

]
.

The traction continuity is enforced in global coordinates, and the contribu-
tions for strip i at node j can be stated as:

qij = Ei




0 til

til 0

0 0



[
σyj
τxyj

]
= P̃T

i σij, j = 1, 2 (4.50)

where qij is the generalised nodal forces, l is the length of the macro element,
and ti is the thickness of strip i. Equation (4.50) also defines P̃T

i implicitly.
Traction continuity is enforced in both ends of the element due to the linear
stress field.

Traction continuity between the N strips of the macro element is also
required. This is likewise enforced in both ends of the element:

− P̃T
1σ1j − · · · − P̃T

NσNj = 0, j = 1, 2 (4.51)

where j is the node number. Equilibrium on the element level for a macro
joint element with N adjacent plane stress element can be stated as:

qel =




P̃T
1

P̃T
1

. . .
. . .

P̃T
N

P̃T
N

−P̃T
1 . . . . . . −P̃T

N

−P̃T
1 . . . . . . −P̃T

N






σ1

...

σN


 = BT

elσel (4.52)

where BT
el is the element equilibrium matrix, see also (4.46). The size of the

element equilibrium matrix depends on the number of adjacent plane stress
elements, N .

4.5.2 Submodel for 3D behaviour

Identically to the two-dimensional case, a unit section of the joint is consid-
ered. The unit section has the shape of a rectangular box and is reinforced
with U-bar loops from up to four faces. The placement of the U-bars are
defined by u, uy1, and uz1 according to Figure 4.35. The geometry of the
unit joint section is given by the length, s, the widths, ty and tz. The overlap
of the U-bars is given by oy and oz.
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U-bar

Concrete
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ty
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uz1 uz2

uy1 uy2

oy ty

y

xz
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Figure 4.35: Unit joint section forming the basis of the submodel yield
criterion: a) three-dimensional representation of the geometry including U-
bar loops, b) two-dimensional sketch of the U-bar placement.

As indicated in Figure 4.35, the distances between the U-bars in the y and
the z-directions, respectively, are assumed to be identical, i.e. u = uy1 + uy2

and u = uz1 + uz2. This greatly reduce the number of possible combinations
of stress fields for the submodel.

In practice, joints are always reinforced in the longitudinal direction with
a so-called locking bar. The present model, however, does not consider the
behaviour in the longitudinal direction and the locking bar will therefore not
affect the model. The stresses of the strips are given in local coordinates,
thus, a common coordinate system is needed. The coordinate system of strip
number 1 is chosen, and the stresses of the remaining strips are transformed
accordingly:

Ŝij = ET
1 EiSijE

T
i E1 (4.53)

where Ei is the transformation matrix of strip i, and Sij is the stress tensor
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of strip i at node j. For example, for strip 1 at node 2 - which is always
chosen for the common coordinate system - we have

S12 =




0 τxy12 0

τxy12 σy12 0

0 0 0




Most of the components in Sij will only contain two stress components, σy
and τxy or σz and τzx depending on the orientation of the considered strip.

The shear stress component of Ŝ will be used for the corbel presented in
the following, while the normal stress component of Ŝ is assumed to be
transferred directly through the joint and is simply added to the final stress
filed of the submodel.

Corbel mechanisms for local shear transfer

The purpose of the submodel is to transfer shear from one plane to another,
e.g. from τxy to τzx. A model based on concrete corbels is proposed. The

corbels utilises the U-bar loops to transform a shear stress (from Ŝ, see
Equation 4.53) acting on the face of the unit section to a normal stress in
the core of the joint.

(a)

τzx

τzx

σz

σz

σx

V T2

T1xy

z

l

tz − oz
2

oz

(b)

Figure 4.36: a) Sketch of two corbel mechanisms working in two-
dimensions. b) Two-dimensional visualisation of a corbel model in the xz-
plane transforming a shear stress τzx to a normal stress σx. Positive direc-
tions of forces and stresses are shown. The panels indicated by gray has a
out-of-plane thickness of oy.

The corbel model illustrated in Figure 4.36 comprises a rectangular shear
panel and a triangle in uniaxial stress. Two stringers are shown in the figure,
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whereas the rightmost represent the transverse reinforcement, i.e. the U-bar
loops, and leftmost is a compression stringer without any reinforcement. The
tensile force in the reinforcement T balances the stress σz as well as V . For
a single corbel, see Fig. 4.36(b), we have the following variables:

αi =
[
σ

(i)
x , σ

(i)
z , τ

(i)
zx , T

(i)
1 , T

(i)
2 , V (i)

]T
(4.54)

or

αi =
[
σ

(i)
x , σ

(i)
y , τ

(i)
xy , T

(i)
1 , T

(i)
2 , V (i)

]T
(4.55)

depending on the orientation of the corbel. From the corbel model, a sys-
tem of linear equations can be derived which ensures equilibrium for the
considered corbel:




ozoy 0 −loy 0 0 0

0 −loy 0 0 −1 −1

0 −loy ozoy 0 0 0

0 0 −tz − oz
2

oy 0 0 −1

0 0 −tz − oz
2

oy 1 −1 0

0 0 −ozoy −1 0 0







σx

σz

τ

T1

T2

V




= 0 (4.56)

The first three equations of (4.56) ensure vertical, horizontal, and moment
equilibrium of the corbel model, while the last three equations ensure equi-
librium for the stringers. The stresses σx and σz will practically always be
negative.

uy1s
2 − uy1

s/2s/2

y

xz

Figure 4.37: Four corbel models surrounding a single U-bar: The length is
fixed at s/2 for the two largest, while the length of the two smallest depends
on the position of the U-bar in the unit joint section. Dashed lines indicate
the load path through the triangular corbels. Some of the corbels overlap and
their stress fields are added to obtain the actual stress state.
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The corbels have a predefined length l, see Figure 4.36. The optimal value
of l depends on the reinforcement and loading, and to ensure a reasonable
model four corbels are used for each of the four boundaries, hence, the com-
plete submodel may use up to 16 corbels. This is illustrated in Figure 4.37
which shows four corbels and a single U-bar. The corbels shown in the figure
overlap to some degree. Moreover, corbels associated with the other U-bars
in the submodel overlap these as well, hence, to obtain the actual stress state
of the submodel, the stress states of the appropriate corbels are added.

u oy
s−u
2

s−u
2

oz
Transfer boxxy

z

Figure 4.38: Shear transfer from one plane to another via two corbels. The
central transfer box will experience uniaxial compression in the x-direction.

Several corbels are needed to transfer shear stress from one plane to an-
other, since each corbel only can transfer a shear stress to a normal stress in
the centre of the joint. Combining several corbels enables the desired transfer
of shear stresses and the process is illustrated schematically in Figure 4.38.

t4 t1 t2 t3 t4

1

2

3

4

5

6

7

8

9
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11

12

13

14

15

16

Figure 4.39: Interaction of the 16 corbels and four transfer boxes illustrated
schematically: The triangles represent a corbel mechanism, while the rectan-
gles represent the transfer boxes. Each set of arrows represent an equilibrium
equation. The size and locations of corbels are not to scale.

Figure 4.39 illustrates the transfer of normal stresses σx in the centre
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of the joint. Each set of arrows represents an equilibrium equation and is
located at the position of an U-bar loop. The four equilibrium equations are
given as

σ(1)
x + σ(2)

x − σ(3)
x − σ(4)

x + σt4x − σt1x = 0,

σ(5)
x + σ(6)

x − σ(7)
x − σ(8)

x + σt1x − σt2x = 0,

σ(9)
x + σ(10)

x − σ(11)
x − σ(12)

x + σt2x − σt3x = 0,

σ(13)
x + σ(14)

x − σ(15)
x − σ(16)

x + σt3x − σt4x = 0,

(4.57)

where σ
(i)
x is the stress in the x-direction associated with the ith corbel, see

Figure 4.36. The first four corbels are associated with the first U-bar loop,
the next four with the second U-bar loop and so on, see Figure 4.39 for the
numbering, and σtjx is the normal stress of the jth transfer box. Two corbels
associated with the same U-bar loop, e.g. the two corbels on the left-hand
side in Figure 4.37, can work together, each transferring a fraction of the
total shear force on the particular face of the submodel.

The stress fields of the up to 16 corbels are combined to obtain the actual
stress field in the unit joint section. As mentioned, the corbels overlap to
some degree, and - depending on the values of u, uy1 and uz1 - up to ten
triaxial stress states might be present within the core of the joint. The shear
stress τyz will always be zero in the local coordinate system of the particular
strip and also in the coordinate system of strip 1. The triaxial stress states
inside the joint can therefore be described by three normal stresses and two
shear stresses.

The triaxial stress states in the centre of the unit joint section must
satisfy the Mohr-Coulomb criterion presented in Section 3.3. As discussed,
semidefinite programming is required to represent the general Mohr-Coulomb
criterion for triaxial stress. The rectangular panels shown in Figure 4.36
will experience plane stress and must satisfy the Mohr-Coulomb criterion for
plane stress, which can be formulated exactly using second-order constraints,
see Section 3.3 for the formulation.

The U-bar loops are loaded in tension, and the tensile force must be lower
than or equal to the yield strength. Moreover, the compressive strength of
the reinforcement is neglected, hence, the yield condition is given as

0 ≤ Ti ≤ fyAsu (4.58)

where Asu is the cross sectional area of the U-bar and fy is the yield strength.
The compressive stringer shown in Figure 4.36 must be in compression,

i.e. V must be non-negative:
V ≤ 0
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The macro element and submodel yield criterion are implemented in Matlab
with the commercial solver MOSEK (see MOSEK ApS, 2015).

4.5.3 Analysis and parameter study

Behaviour in two-dimensions

The three-dimensional multiscale joint element is compared to the two-dimensional
joint element presented in Section 4.4. The 3D submodel is designed for the
shear transfer in three-dimensions, but the corbel models are capable of han-
dling the two-dimensional case as well. It is, however, expected that the
three-dimensional submodel underestimates the capacity. The following pa-
rameters are used for the comparison:

fc = 30 MPa, ft = 0, ty = tz = 200 mm, oy = oz = 50 mm

A single element for each of the two joint models is used for the comparison,
while no interface elements are used. The value of u, i.e. the distance between
the U-bar pairs, and the reinforcement degree Φ are varied. We define the
reinforcement degree as

Φ =
Asufy
stfc

where Asu is the cross sectional area of a single U-bar. The normalised
capacities are illustrated in Figure 4.40 and 4.41 for two different values of
s, namely 200 and 400 mm.

Figure 4.40 shows that the three-dimensional joint element predicts a
lower capacity than the two-dimensional element. Moreover, the corbels
mean that the capacity varies linearly with the reinforcement degree until
the compressive concrete stress reach the compressive strength, fc. The slope
of the first, linear part of the capacity curve increases when s increases from
200 to 400 mm.

For the 2D joint element, it is observed that u/s = 0.90 gives a higher
capacity than u/s = 0.5 for all reinforcement degrees. This makes sense,
physically, since the U-bars are closer together for u/s = 0.90 than for u/s =
0.50. The corbel mechanisms, however, do not capture this, and u/s = 0.50
gives a slightly higher capacity than u/s = 0.90. It is observed that the curves
for u/s = 0.50 for the two submodels are nearly identical for s = 400, which
indicates that the corbel mechanism becomes favourable for u/s ≈ 0.50 in
combination with larger values of s, even for the two-dimensional case.

Figure 4.41 shows the same tendencies as Figure 4.40: The three-dimensional
element generally predicts a lower capacity for most values of u. Figure
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Figure 4.40: Shear capacity for the two submodels as a function of the rein-
forcement ratio. The solid lines indicate the three-dimensional joint element,
while dashed lines indicate the two-dimensional one.
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Figure 4.41: Shear capacity for the two submodels as a function of u. The
solid lines indicate the three-dimensional joint element, while dashed lines
indicate the two-dimensional one.
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4.41(b) clearly visualise that the corbel mechanisms become favoured for
larger values of s with u/s ≈ 0.50.

As shown in Figure 4.41, the three-dimensional element severely under-
estimates the shear capacity for joins with close to optimal reinforcement
layout, i.e. u/s ≈ 0 and u/s ≈ 1, especially for larger reinforcement ratios.
It can be concluded that the developed three-dimensional multiscale element
predicts a safe estimate of the capacity and the model is mostly applicable
to joints with severely suboptimal reinforcement layouts.

Corner joint subject to shear

The three-dimensional macro element and submodel are designed to model
the transfer of shear stresses from one plane to another. A corner joint
subjected to pure shear is analysed using the multiscale element. Unfortu-
nately, no experimental results for three-dimensional U-bar joints have been
published to the best knowledge of the author. The results are therefore
compared to the design formula of the Eurocode 2, which only considers
a criterion for the interface and a simple upper bound on the shear stress,
but nevertheless is the basis of practical design of joints in three dimensions
currently.

yz

x
Panel 1
τzx

Panel 2
τxy

Joint

Figure 4.42: Corner joint connecting two reinforced concrete panels subject
to pure shear analysed using a single joint element.

Figure 4.42 shows a in-situ cast corner joint connecting two precast panels
subjected to pure shear. According to the Eurocode 2, see also Section 1.1.1,
the shear capacity can be evaluated as

τ = cft
Akey
Ac

+ µρfy ≤
1

2
νfc

Akey
Ac

(4.59)

where Akey and Ac are the area of the keys and the total area, respectively.
A keyed interface is assumed, hence, c = 0.5 and µ = 0.9 can be used. ρ is
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defined as

ρ =

∑
Asu
Ac

An effectiveness factor of ν = 0.7 − fc/200 (fc in MPa) is used for the
comparison as well as the following parameters:

ft = 0 MPa, tz = ty = 50 mm, oz = oy = 40 mm

For the Eurocode formula (4.59), ft = 0.21f
2/3
c and Akey/Ac = 0.5 are used.

The multiscale joint element is analysed using varying values of u with u/2 =
uy1 = uz1, see Figure 4.35. Three U-bar loops commonly used in practice is
used for the analysis.
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Figure 4.43: Characteristic shear capacity of the corner joint with fc =
20 MPa and different values of s: The results of the multiscale joint ele-
ment are represented using solid lines, while the capacity predicted using the
Eurocode 2 is shown with dashed lines.

The shear capacity of the corner joint is illustrated in Figure 4.43 and 4.44.
Similar to the two-dimensional case, considerable variations in the capacity is
seen for varying values of u. The figures also show that the concrete strength
affects the heavily reinforced joints, which is to be expected.

The shear capacity estimated with the Eurocode 2 design formula is sur-
prisingly similar to the joint element despite the fact that no consideration
to the actual stress state of the joint is given. For low values s, the Eurocode
might underestimate the capacity significantly, while it might overestimate
it for larger values of s depending on u. Based on the two-dimensional case
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Figure 4.44: Characteristic shear capacity of the corner joint with fc =
35 MPa and different values of s: The results of the multiscale joint ele-
ment are represented using solid lines, while the capacity predicted using the
Eurocode 2 is shown with dashed lines.

it was concluded that the accuracy of the three-dimensional joint model was
highest for large values s, hence, it is somewhat worrisome that the Eurocode
overestimates the capacity for larger values of s. In any case, based on the
analysis of the corner joint it can be concluded that it is necessary to consider
the actual mechanisms and stress field within the joint for design.
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Chapter 5

Applications

5.1 Introduction

The structural design of buildings has to meet several different, and some-
times opposing, requirements. The geometry of the structure is often decided
by the architects who do not necessarily consider optimal structural perfor-
mance as a key requirement. For the serviceability limit state, i.e. everyday
use of the building, it is necessary to consider e.g. vibrations, deflections,
acoustics, and crack widths. The behaviour of the structure in the serviceabil-
ity limit state can be the critical case, and the aforementioned considerations
might govern the final design of the structure. Similarly, accidental loads,
e.g. fire loads, have to be considered, which again might govern the design
and the final structural layout.

The present study is only concerned with the requirements at ultimate
limit state, where the scope is to ensure a sufficiently level of safety against
structural collapse, and issues such as crack widths and deflections are not
considered.

The scope of this chapter is to demonstrate the strength and efficiency of
the presented framework and models when used to analyse real life structures.
Precast concrete structures comprise several different components, and the
focus of this thesis is on the precast panels and the in-situ cast joints. As
discussed in Chapter 1, the behaviour of the in-situ cast joints is crucial to
the overall capacity of precast concrete structures. The current practice is to
design the joints as the weaker part of the structure, which makes analysis by
general purpose software, e.g. finite element analysis, difficult and inaccurate.

Based on the findings presented in Section 4.3, a macro joint element and
submodel for two-dimensional modelling of joints were developed (see also
Paper II, Herfelt et al., 2017a). The presented joint element makes it possible
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to model real life precast concrete structure in a framework based on finite
element limit analysis. In this chapter, an example of a four-storey shear wall
with door openings will be analysed using the plane stress elements repre-
senting the precast panels, and the joint element and submodel representing
the in-situ cast joins.

A three-dimensional macro joint element and submodel were developed
and presented in Section 4.5 and Paper IV (Herfelt et al., 2017b). The model
can be seen as a generalisation of the two-dimensional element, however, the
normal forces in the longitudinal direction are not incorporated in the model.
In Section 5.3, an example of a four-storey stairwell subjected to shear and
torsion is analysed, and the influence of the joints will be discussed.

5.2 Two-dimensional precast shear wall

A four-storey shear wall is considered. The wall comprises 12 precast panels
of which three have door openings. The panels are connected on the construc-
tion site using in-situ cast joints. The wall is analysed using the presented
framework, i.e. the plane stress element and two-dimensional joint element,
and the results are compared to the original design of the wall which was
done by manual calculations, i.e. strut-and-tie methodology combined with
the Eurocode expression for the capacity of the joints.

The vertical joints shown in Figure 5.1 have keyed interfaces and are re-
inforced with U-bar loops extruding from the adjacent precast panels. The
interfaces of the horizontal joints, on the other hand, are considered as rough.
The horizontal joints are reinforced with rebar rods extruding from the pre-
cast panel below. As shown in Figure 5.1, a reinforcement stringer is placed
in the left side of the wall to carry the overturning moment induced by the
horizontal forces H1 to H4.

The shear wall is designed for multiple load cases including accidental
loads, however, for the present analysis only the three critical load cases are
considered. All of the three load cases include horizontal wind loads as well
as vertical loads from the dead load of the structure and additional imposed
loads. Table 5.1 lists the loads, where L1, L2, L3, and L4 refer to the four
storeys of the wall, see Figure 5.1. The vertical loads from the stairs are
applied on top of the three door openings. The horizontal loads, H1 to H4,
are treated as scalable, i.e. applied as pλ where λ is the load factor sought
to be maximised. The vertical loads are treated as constant and applied as
the vector p0 in the optimisation problem, see the lower bound formulation,
Equation (3.11) in Section 3.2.

All precast panels and joints have a thickness of 240 mm. The panels are
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Figure 5.1: Geometry of the four-storey shear wall. All measurements are
given in metres.

Table 5.1: Design loads acting on the shear wall.
Vertical loads [kN/m] Vertical loads,

stairs [kN/m]
Horizontal loads [kN]

Load case: L1 L2, L3 L4 L2, L3 L4 L1 L2, L3 L4

1 65.2 61.8 67.6 68.4 70.3 45.0 42.0 73.0

2 33.4 31.0 31.7 24.2 24.2 45.0 42.0 73.0

3 74.2 70.2 74.2 65.9 76.9 46.0 46.0 58.0

reinforced with two layers of Ø8 rebars per 300 mm in both directions (cor-
responding to 335 mm2/ m). The reinforcement has a design yield strength
of fyd = 350 MPa, while the concrete has a design compressive strength of
fcd = 22 MPa. The tensile strength of the concrete is assumed to be zero,
and the reinforcement is assumed only to carry tension.

The vertical joints have a width of 60 mm, and the horizontal joints have
a width of 200 mm. The joint mortar has a design compressive strength of
22 MPa and the tensile strength is taken as zero for the joints, identical to
the concrete of the precast panels. The reinforcement of the joints is listed
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in Table 5.2. For the horizontal joints, L1 indicates that the joint is located
above level 1.

Table 5.2: Transverse and longitudinal reinforcement of the in-situ cast
joints.

Horizontal joints Vertical joints

L0, L1 L2, L3, L4 L1 L2 L3, L4

Top side - - Ø10 Ø10 Ø10

Bottom side Ø10 Ø10 Ø10 Ø10 Ø10

s [mm] 200 200 150 450 600

Locking bar 4 Ø25 2 Ø20 - - -

The joint reinforcement listed in Table 5.2 has a design yield strength
of 385 MPa. The parameter s in Table 5.2 refers to the distance between
the pairs of U-bars (or rebar rods for the horizontal joints). The horizontal
joints are reinforced with several rebars in the longitudinal direction, while
no locking bar is used for the vertical keyed joints. For the interface elements
of the model, the friction coefficient for the keyed interfaces of the vertical
joints is taken as µ = 0.90, while µ = 0.7 is used for the rough interfaces of
the horizontal joints according to the Eurocode 2. The cohesion is taken as
zero.

The submodel yield criterion presented in Section 4.4 makes it possible
to account for local failure in the core of the joint caused by suboptimal
reinforcement layout. An off-set u is defined and for the present analysis the
worst-case scenario is assumed i.e. u/s = 0.5, see Figure 4.24. This will
affect the shear capacity of the joints in the top storeys substantially due
to the larger value of s, however, it will only affect the joints in the lower
storeys to a minor degree as the U-bar pairs are placed closely together.

The reinforcement stringer shown in Figure 5.1 balances the overturning
moment from the horizontal forces. In the bottom storey, two Ø25 rebars
with a design yield strength of 664 MPa are used, and for the remaining
storeys a single Ø25 with a design yield strength of 385 MPa is used.

The shear wall is analysed using different meshes to assess the conver-
gence rate and behaviour of the model. The meshes are generated using the
Distmesh package for Matlab (Persson and Strang, 2004). Figure 5.2 shows
that the capacity generally increases with the number of elements and ap-
proach the exact (unknown) limit load from below. An exception to this is
load case 2 with a mesh of 2,646 plane stress elements which yield a slightly
larger load factor than some of the finer meshes. Figure 5.2 also shows that
load case 2 is the critical one: For the finest mesh analysed (16,940 plane
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0 5,000 10,000 15,000 20,000
3.00

4.00

5.00

6.00

7.00

Number of elements

λ

Load case 1
Load case 2
Load case 3

Figure 5.2: Load factor λ for the three load cases as a function of the
number of plane stress elements.

stress elements) a load factor of λ = 5.09 was found for load case 1, λ = 3.48
for load case 2, and λ = 6.27 for load case 3.

(a) Load case 1 (b) Load case 2 (c) Load case 3

Figure 5.3: Smallest principal stress for the three load cases using 6834
plane stress elements. The stresses are given in MPa, and compression is
negative.

Figure 5.3 shows that the horizontal forces are transferred via strut action
to the supports for all three load cases. The struts are more pronounced for
load cases 1 and 3, which give the largest load factors and, therefore, are
subjected to the largest horizontal loads. The joints affect the stress field to
some degree: This is visible in the top storey where the strut is obstructed
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near the leftmost joint. In the bottom storey, the joints and rebar stringer
also affect the stress field and introduce a wide strut with a moderate stress
level.

(a) Load case 1 (b) Load case 2 (c) Load case 3

Figure 5.4: Collapse mode of the four-storey precast shear wall determined
from the dual solution to the lower bound problem using 6834 plane stress
elements.

The primal and dual problems are solved simultaneously and the dual
solution can be interpreted as the collapse mode of the structure, however,
the collapse mode will not be kinematically admissible. The dual variables,
i.e. the displacement field, are associated with the traction equilibrium,
hence, the displacements are associated with the element boundaries and
not the nodes, which gives a somewhat scattered image in the failure zones.

For load case 1 and 3, it is seen that the failures occur in the bottom level
and feature a diagonal failure zone through the three precast panels. The
rebar stringer is yielding as well, thus, the wall can start to rotate. Moreover,
some sliding and separation are observed near the joints above the bottom
storey. For load case 2, Figure 5.4(b), the wall fails in bending failure: The
horizontal joints have no tensile capacity as the top boundary is unreinforced,
hence, the rebar stringer is responsible for carrying the overturning moment.
The vertical loads, see Table 5.1, are beneficial to the structure and load case
2 features the lowest vertical loads, which ultimately leads to the bending
failure. A ductile failure is expected due to yielding of the rebar stringer.

The stress field and collapse mode provide excellent tools for validating
the calculations. The collapse mode can be used to establish a simple upper
bound solution using the yield line method, hence, the numerical calculations
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can be checked analytically. This is often a major issue for non-linear finite
element models, where the results cannot be checked easily by hand due to
the often complex non-linear material models and black-box nature of the
software.
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Figure 5.5: Computational time as a function of the number of plane stress
elements for the two-dimensional shear wall problem.

The shear wall problem is analysed for varying mesh densities and the
computational time required for solving the optimisation problem on a desk-
top PC with an Intel Xeon CPU W3565 with 8 CPUs and 3.2 GHz clock
frequency is illustrated in Figure 5.5. For the finest mesh, the resulting
optimisation problem has 1,384,026 variables, 1,384,947 linear constraints,
and 144,980 second-order constraints, however, it is solved in about three
minutes.

As shown in Figure 5.5, the computational time is approximately pro-
portional to the problem size to the power of 1.1, which is identical to the
findings in Section 4.1.5. The structure of the optimisation problem and spar-
sity of the problem matrices make the computational time scale well with the
problem size, and large problems can be solved efficiently on a standard PC.

5.3 Three-dimensional precast stairwell

The four-storey stairwell analysed in Section 4.1.5 is now considered as a
precast concrete structure. The four walls are assumed to be monolithic
and connected by vertical in-situ cast corner joints. The wall panels are
modelled using the generalised plane stress element (see Paper III, Herfelt
et al., 2017c) and the corner joints are modelled using the three-dimensional
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multiscale joint elements presented in Section 4.5 and in Paper IV (Herfelt
et al., 2017b). The following analysis is likewise presented in Paper IV.

pRd

6.6

16.0

3.6

Joints

0

0

3.6

06.6

16

(a)

0

0

3.6

06.6

16

(b)

Figure 5.6: Precast concrete stairwell subjected to shear and torsion: a)
Sketch of the structure with loading and positions of the joints, b) coarse
mesh with 864 plane stress elements, c) fine mesh with 11,379 plane stress
elements. All dimensions are given in metres.

The precast concrete stairwell as well as the imposed line load, the posi-
tions of the joints, and the dimensions are shown in Figure 5.6 together with
the two meshes used for the analysis, which are generated using GiD v12
(Ribó et al., 1998). The door openings have a height of 2.10 metres and a
width of 0.90 metres. The precast panels have a thickness of 180 mm and are
reinforced with two layers of Ø8 rebars per 150 mm in both directions which
has a design yield strength of fyd = 458 MPa. The concrete has a design
compressive strength of fcd = 21.4 MPa and the tensile strength is taken
as zero. For the present analysis, two different values of the effectiveness
factor are considered, namely ν = 1 and ν = 0.7− fc/200 = 0.55 (where the
characteristic compressive strength fc is in MPa). The interfaces in-between
the precast panels and the joints are not considered for the present analysis.

The joints have the same width as the precast panels, i.e. tz = ty =
180 mm. The overlap of the U-bar loops in the core of the joint is assumed
to be 50 mm, i.e. oz = oy = 50 mm. The U-bar pairs are placed every 300
mm, hence, s = 300 mm is used. For the joint mortar, fcd = 21.4 MPa and
ft = 0 are used as well. Considering a single U-bar, the reinforcement ratio
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of the joint is given as

Φ =
Asufy
stfc

where Asu is the cross sectional area of a single U-bar. The reinforcement
ratio for the joint is varied and the results for ν = 1 are illustrated in Figure
5.7 for the coarse and the fine meshes with 864 and 11,379 plane stress
elements, respectively. The precast stairwell is analysed using two different
values of u in order to assess the influence of the reinforcement layout on the
overall capacity.

0 2 4 6 8 10

·10−3

20

40

60

80

100

Φ [-]

p
R
d

[k
N

/m
]

u/s = 0.1

u/s = 0.5
Monolithic

(a) Coarse mesh

0 2 4 6 8 10

·10−3

0

20

40

60

80

100

Φ [-]

p
R
d

[k
N

/m
]

u/s = 0.1

u/s = 0.5
Monolithic

(b) Fine mesh

Figure 5.7: Load carrying capacity of the precast concrete stairwell as a
function of the reinforcement ratio of the joints for two different values of u
and ν = 1.

Figure 5.7 shows that the capacity depends heavily on the joint reinforce-
ment for lower reinforcement ratios, however, at Φ ≈ 0.004 the curves reach
a plateau close to the capacity of the monolithic stairwell. The joints with
the lowest value of u/s perform better and reach this plateau at lower levels
of reinforcement. Assuming a design strength of 214 MPa, a reinforcement
degree of Φ = 0.004 corresponds to Ø5 U-bar loop per 544 mm, which is far
below what is typically used in practice.

Figure 5.8 shows the same behaviour as observed in Figure 5.7 despite
the reduced concrete strength. For the fine mesh, see Figure 5.8(b), it is
seen that the slope of the curve for u/s = 0.1 decreases at Φ ≈ 0.002. An
effectiveness factor of ν = 0.55 reduces the capacity by less than 5 per cent
since the reinforcement is the main limiting factor of the structure and the
compressive stresses can be redistributed.
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Figure 5.8: Load carrying capacity of the precast concrete stairwell as a
function of the reinforcement ratio of the joints for two different values of u
and ν = 0.55.
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Figure 5.9: Comparison of the smallest principal stress for the wall with
the door openings using the finest mesh. For the joints, u/s = 0.5 is used.
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Figure 5.9 shows that compression struts are formed in-between the door
openings to transfer the load from the top to the supports at the bottom.
Comparing Figure 5.9(a) and (b) to Figure 5.9(c) shows that the joints push
the structure towards a more evenly distribution of stresses. Due to the low
capacity of the joints for Φ = 0.001, Figure 5.9(a), bending is observed for
the slender panel next to the bottom door opening: The compressive stress
from the strut cannot be transferred to the adjacent wall, hence, the slender
panel has to transfer the forces to the foundations via bending.

1.5 1.0 0.5 0
0

2

4

6

8

10

12

14

16

τ [MPa]

z-
co

or
d

in
at

e
[m

]

0 -0.5 -1.0 -1.5

τ [MPa]

Φ = 0.001
Φ = 0.004
Φ = 0.007
Φ = 0.010

Figure 5.10: Shear stress distribution over the height of the structure in the
joints at the slender wall with the door openings for different reinforcement
degrees Φ using the fine mesh. The ratio u/s = 0.5 is used for the joints.
The wall structure is shown in the centre.

Figure 5.10 shows that for Φ = 0.001 the joints on either side of the wall
with the door openings are fully utilised. For Φ = 0.004, only the joint near
the door openings is fully utilised, but the other joint (right-hand side of
the figure) is still loaded quite evenly. In order to activate the U-bar rein-
forcement over the entire height of the structure simultaneously, significant
ductility is needed.

For Φ = 0.007 and 0.010, it is observed that the shear distribution be-
comes more uneven and a shear reserve is present in the joints. The effect
of the door openings and the struts is clearly seen on the curves to the left
in Figure 5.10, and to some degree on the curves to the right which display
an almost wave-like pattern. The bottom parts of the joints are fully utilised
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for Φ = 0.007 and 0.010, hence, the requirement to the ductility of the joints
is considerably lower, and the structure is more robust.

The analysis has shown that the generalised plane stress element and the
multiscale joint element are capable of modelling real life structures in three-
dimensions. For lower levels of reinforcement, joints decrease the capacity
of the structure significantly, however, provided sufficient reinforcement, the
overall capacity becomes hardly unaffected by the joints. The stress field is,
however, affected by the joints for all analysed reinforcement ratios, and the
joints push the structure towards more evenly distributed stress fields. The
computational time of the precast concrete stairwell with joints using the fine
mesh was approximately 65 seconds, which is a marginal increase compared
to the monolithic stairwell problem presented in Section 4.1.5.
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Chapter 6

Auxiliary work

6.1 Introduction

This section presents several finite elements, which are not considered part
of the core of the present thesis, but they are nevertheless important and
can be relevant for future work. The primary work of the Ph.D. project
presented in Section 4 and 5 is based on the lower bound method: The
plane stress triangles and the developed joint elements are all lower bound
elements, which will yield a statically admissible and safe stress field.

While lower bound solutions generally are considered the most useful for
practical design and applications, upper bound solutions as well as so-called
mixed solutions also have merit. In some cases, the lower bound solution may
be far from the exact limit load, hence, an upper bound solution provide some
intelligence on the level of approximation. A stress field and collapse mode
is determined from both the lower bound problem and the upper bound
problem.

For the lower bound problem, the stress field will be statically admissible
and safe, while the determined collapse mode will (most likely) not be kine-
matically admissible. Contrarily, the stress field of the upper bound problem
will not be statically admissible, but the collapse mode will be kinematically
admissible.

Mixed formulations are something in-between the lower and upper bound
solutions. Such formulations cannot be used to establish rigorous bounds
for the given problem. The solution to the mixed problem, however, will
typically be closer to the exact limit load. The mixed formulations presented
in this chapter can be considered as relaxed lower bounds, where the rigorous
traction continuity is relaxed and the tractions are distributed to the nodes
according to the displacement field. In the case of the solid elements, the
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mixed formulation results in a numerically stable and well-scaled problem
compared to the lower bound problem. Moreover, the lower bound plane
stress element might have linear dependencies, but this appears not to be an
issue with the proposed mixed element (see Makrodimopoulos and Martin
(2006) for a description of linear dependencies in two-dimensional problems).

6.2 Mixed plane stress element

The mixed element presented in this section is a relaxed version of the lower
bound element presented by Poulsen and Damkilde (2000) and in Section
4.1.1. The element is developed by Krabbenhøft (2016) and will be used for
the mixed shell element. The traction continuity along the element bound-
aries are relaxed by distributing the stresses to the three nodes of the given
element side according to the quadratic displacement field of the element.
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n̂2

Figure 6.1: Geometry of the six-node mixed element: Unit normal vectors
to the three sides and stress variables are shown.

The element stress vector comprise the three stress vectors of the corners,
which each describe a plane stress state:

σel =



σ1

σ2

σ3


 , with σi =



σxi
σyi
τxyi




As shown in Figure 6.1, we have a unit normal vector for each side:

ni =

[
nix
niy

]

The tractions on side i opposite node i are defined in global coordinates and
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are given as

ti(s) =

[
tix(s)

tiy(s)

]
=

(
1

2
− s
)

PT
i σk +

(
s− 1

2

)
PT
i σj (6.1)

where i, j, and k are permutations of 1, 2, and 3. The scalar s is a length
coordinate ranging from −1/2 to 1/2. The matrices PT

i gives the tractions
from the stress vector and are defined as for side i:

PT
i =

[
nix 0 niy
0 niy nix

]

The element has a linear stress field, hence, the displacement field is quadratic.
The tractions along each element side is distributed to the three nodes of the
side by use of the quadratic shape functions, see Figure 6.2.
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Figure 6.2: Traction, t3(s), and shape functions, N1(s), N2(s), and N6(s),
for side 3 of an element.

Figure 6.2 shows an element side with three nodes, 1, 2, and 6. The
tractions are linear along the boundary as the figure shows, and the resulting
nodal forces in each of the three nodes can be calculated as

qij = li

∫ 1/2

−1/2

N i
j(s)ti(s)ds (6.2)
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where j refers to the node number and i to the side number, and li is the
length of side i. The middle node of the particular side gets the majority of
the tractions according to (6.2). Using the example of side 3 of an element
shown in Figure 6.2, we obtain

q3
1 =

P̃T
3

6
σ1, q3

2 =
P̃T

3

6
σ2, q3

6 =
P̃T

3

3
σ1 +

P̃3

3
σ2,

where
P̃T
i = liP

T
i

The corner nodes, i.e. nodes 1, 2, and 3, receive contributions from the
two adjacent sides, e.g. sides 2 and 3 both contribute to node 1. Similar
to the lower bound plane stress element presented in Section 4.1, internal
equilibrium is enforced for the element, which gives the following equilibrium
equations:

A

[
γx
γy

]
=

1

2

[
P̃T

1 P̃T
2 P̃T

3

]
σel (6.3)

where γx and γy are surface loads imposed on the surface area of the ele-
ment in the x and y-directions, respectively, and A is the surface area of the
element. The element equilibrium matrix can be written as follows:

BT
el =

1

6




P̃T
2 + P̃T

3 0 0

0 P̃T
3 + P̃T

1 0

0 0 P̃T
1 + P̃T

2

0 2P̃T
1 2P̃T

1

2P̃T
2 0 2P̃T

2

2P̃T
3 2P̃T

3 0

3P̃T
1 3P̃T

2 3P̃T
3




(6.4)

The element requires a total of 14 equilibrium equations. The element is
implemented in a finite element limit analysis framework using the Mohr-
Coulomb criterion for plane stress presented in Section 3.3.

Comparison to the lower bound element

The deep beam with shear support presented in Section 4.1.5 is analysed
using the plane stress mixed element. We recall the analytical solution from
Nielsen and Hoang (2010):

p∗ =
4 Φh2 fc

(1 + Φ)L2
≤ fc, Φ =

As fy
tfc

(6.5)
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Using the same parameters as in Section 4.1.5, namely h = 2 m, L = 6 m,
fc = 20 MPa, and Φ = 0.075, the exact limit load is p∗ = 0.6202 MPa. An
identical structured mesh is used for the mixed element, see Figure 6.3.

CL p

h

L/2

h− y0

y0

Figure 6.3: Deep beam with shear supports including mesh for the analytical
solution (left) and for the convergence analysis (right).

Table 6.1: Limit load and error for the deep beam problem using the lower
bound and mixed elements.

Lower bound Mixed

nel p [MPa] Error [%] p [MPa] Error [%]

64 0.5555 10.42 0.5890 5.02

256 0.6053 2.40 0.6124 1.25

1,024 0.6177 0.39 0.6189 0.20

4,096 0.6191 0.17 0.6196 0.08

16,384 0.6193 0.13 0.6198 0.05

Table 6.1 shows that the mixed element generally gives a limit load closer
to the exact limit load. The error is approximately halved compared to the
lower bound element, and the fine mesh with 16,384 elements give an error
of just 0.05 %. It is observed that the mixed element approaches the exact
limit from below, however, this might not always be the case.

6.3 Mixed shell element

The mixed shell element combines the in-plane behaviour of the mixed plane
stress element with a plate bending element (Krabbenhøft, 2016). Based
on the unit normal vectors ni seen in Figure 6.1, we define the following
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geometric quantities:

PT
i =

[
nix 0 niy
0 niy nix

]

n̂i =

[−niy
nix

]

aij = Pinj

bi = Pin̂i

cij = liljaij

P̂i = liP

(6.6)

where li is the length of side i opposite of node i. The vectors aTii and bTi give
the tractions in local coordinates which is used to ensure moment continuity
similarly to the lower bound plane stress element presented in Section 4.1.1
which required traction continuity.

6.3.1 Plate bending

We now consider a triangular element with a linear moment field and a
quadratic displacement field. The element has six displacement nodes (cor-
ners and centre of the element sides) and six rotation nodes (two for each
side near the corners). The geometry is illustrated in Figure 6.4.
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Figure 6.4: Plate bending element: Location of the displacement nodes and
rotation nodes (Krabbenhøft, 2016).

The moment nodes indicated in Figure 6.4 describe the linear moment
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field. The element moment vector is given as

mel =



m1

m2

m3


 , with mi =



mi
x

mi
y

mi
xy




The equilibrium equations for the element can be stated as

[
qext

mext

]
=

[
BT
z

BT
θ

]
mel (6.7)

where BT
z are the equations associated with the displacement nodes and BT

θ

are the equations associated with the rotation nodes, see Figure 6.4. The vec-
tors qext and mext are the externally applied transverse forces and moments,
respectively. The matrix BT

z comprise contributions from the concentrated
nodal forces in the corners and the Kirchhoff shear forces:

BT
z = BT

r + BT
q + BT

t

where BT
r are the contributions from the concentrated nodal forces, BT

q +BT
t

are the contributions from the Kirchhoff shear forces.
Concentrated nodal forces acting in the corners of the element are given

as the difference in the twisting moments along the two sides that meet in a
given corner. The twisting moment along side i is given as

mi
t = bTi m

where m is the moment in a given point. The contributions to the displace-
ment nodes from the twisting moment are therefore given as




r1

r2

r3

r4

r5

r6




=




bT2 − bT3 0 0

0 bT3 − bT1 0

0 0 bT1 − bT2
0 0 0

0 0 0

0 0 0






m1

m2

m3


 = BT

rm (6.8)

where ri are the forces in the displacement nodes.
The Kirchhoff forces acting along each side of the element are given by

the sum of the shear forces and the derivative of the twisting moment:

Vi = qi +
dmi

t

ds
(6.9)
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where s ∈ [0, li] is a local coordinate along side i of the element. The shear
forces along the element sides are given as

qi = nTi q = nTi
(
∇Tm

)
(6.10)

where ∇T is a differential operator. The derivative of the linear moment field
can be found in a similar manner as for the plane stress element in Section
4.1.1 using linear shape functions:

q = ∇Tm = − 1

2A

3∑

i=1

liP
T
i mi

and (6.10) can be rewritten as

qj = nTj q = −nTj

(
1

2A

3∑

i=1

liP
T
i mi

)
= − 1

2A

3∑

i=1

lia
T
ijmi (6.11)

The shear forces along the element sides qj are distributed to the six dis-
placement nodes according to the chosen quadratic displacement field, and
their contributions to the displacement nodes are given as




q1

q2

q3

q4

q5

q6




=
1

12A




−cT11 −cT21 −cT31

−cT12 −cT22 −cT32

−cT13 −cT23 −cT33

4cT11 4cT21 4cT31

4cT12 4cT22 4cT32

4cT13 4cT23 4cT33






m1

m2

m3


 = BT

qm (6.12)

The gradient of the twisting moments along element side i is given as

ti =
dmi

t

ds
=
bTi (mk −mj)

li

where i, j, and k are permutations of 1, 2, and 3. The contribution from
the twisting moment is likewise distributed to the six displacement nodes
according to the chosen quadratic displacement field:




t1
t2
t3
t4
t5
t6




=
1

6




bT3 − bT2 −bT3 bT2
bT3 bT1 − bT3 −bT1
−bT2 bT1 bT2 − bT1

0 4bT1 −4bT1
−4bT2 0 4bT2
4bT3 −4bT3 0






m1

m2

m3


 = BT

tm (6.13)
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The equations (6.8), (6.12), and (6.13) give the contributions to the displace-
ment nodes.

Finally, the moment along element side i is given as

mi
n = aTiim (6.14)

where m is the moment in a given point. To ensure bending moment con-
tinuity for the linear moment field, this equation is enforced twice for each
element side in the rotation nodes illustrated in Figure 6.4. This gives the
final matrix for the equilibrium matrix (6.7):

BT
θ =




0 aT11 0

0 0 −aT11

0 0 aT22

−aT22 0 0

aT33 0 0

0 −aT33 0




(6.15)

6.3.2 Combining in-plane and bending actions

The plane stress and the plate bending elements are combined to obtain a
mixed shell element. The plane stress element governs the in-plane behaviour
of the element while the plate bending element governs the out-of-plane be-
haviour. Both elements have six displacement nodes and the generalised
nodal forces in a local two-dimensional coordinate system can be computed
using the presented equilibrium equations for the two elements.

The equilibrium matrix for the plane stress element is now denoted BT
xy

and the contributions to displacement node j from the stress vector associ-
ated with corner i, σi, is denoted BT

xyij, i.e.:

BT
xy =




BT
xy11 BT

xy21 BT
xy31

...
...

...
...

...
...

BT
xy16 BT

xy26 BT
xy36




Similarly, the contributions to displacement node j from the moment vector
associated with corner i, mi, is denoted BT

zij, i.e.:

BT
z =




BT
z11 BT

z21 BT
z31

...
...

...
...

...
...

BT
z16 BT

z26 BT
z36



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The contributions to displacement node j from the stress and moment vectors
associated with corner j can now be stated as:

BT
xyzij =

[
BT
xyij 0

0 BT
zij

]
,

and the full matrix can be stated as

BT
xyz =




BT
xyz11 BT

xyz21 BT
xyz31

...
...

...
...

...
...

BT
xyz16 BT

xyz26 BT
xyz36




The stress and moment variables are collected in a single vector

χ =




σ1

m1

σ2

m2

σ3

m3



,

and the combined equilibrium equations in local coordinates can now be
written as

pext = BT
xyzχ (6.16)

The local coordinate system of the shell element is now established in the
same manner as for the generalised plane stress element presented in Section
4.1.3.

The vectors v12 and v13 given in global coordinates, see Figure 6.5, are
used to define the basis vectors of the local coordinate system:

ex =
v12

‖v12‖
, ez =

v12 × v13

‖v12 × v13‖
, ez = ez × ex

and the transformation matrix is given as E =
[
ex ey ez

]
. The local nodal

coordinates are computed as

xi = ETXi

where Xi are the global coordinates for node i. The equilibrium equations
can now be transformed to the global coordinates using the block-diagonal
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x
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z
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v12

v13

exey

ez

Figure 6.5: Definition of the local coordinate system for the shell element.

transformation matrix D given as

D =




E
. . .

E




Equilibrium for the shell element in global coordinates can be written as

BT
XY Z = DBT

xyz (6.17)

The moment continuity is still enforced for the shell element, see (6.15),
hence, we obtain the following system of equations:

[
qext
mext

]
=

[
BT
XY Z

Bθ

]
χ (6.18)

The internal equilibrium equation for the plane stress element (6.3) is also
carried over and enforced in local coordinates for the shell element.

6.3.3 Yield criteria for shells

The subject of yield criteria for shells is rather complicated, especially when
considering a complex composite material like reinforced concrete. The stress
state in a given point in a shell element is defined by three in-plane stresses
and three section moments. Some attempts at establishing an adequate yield
criterion for shells within the framework of finite element limit analysis has
been done, and Larsen (2010) presented a layer-based yield function which
also considered the transverse shear stresses. The criterion was formulated
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for semidefinite programming since the inclusion of the transverse shear stress
leads to a triaxial stress in the material.

Simplified yield functions can of course be used, however, the section
moments give rise to varying levels of stresses throughout the thickness of
the shell which complicates matters. A suitable yield function for shells needs
to account for this.

Simplified criteria

The section moments and in-plane stresses can either be treated completely
separately or combined in a linear manner to ensure a solution which is always
safe. Whether or not these criteria provide a good estimate of the exact yield
envelope depends on the material. For instance, for steel shells (assuming no
instability) the combined criterion will provide a decent approximation.

First, we define two yield functions for in-plane action and slab bending,
respectively:

fσ (σ,Sσ) ≤ 0

fm (m,Sm) ≤ 0
(6.19)

where fσ is the yield function for in-plane action, and fm is the yield function
for slab bending. The vectors Sσ and Sm denotes the material parameters
associated with the two yield functions. The criterion (6.19) can be consid-
ered as the simplest yield criterion for shells where the in-plane stresses and
section moments are handled completely separately. Introducing an auxiliary
variable ζ, the two yield functions are combined linearly:

fσ (σ, ζSσ) ≤ 0

fm (m, (1− ζ)Sm) ≤ 0

ζ ∈ [0, 1]

(6.20)

This formulation means that if e.g. ζ = 40 % of the capacity is used carrying
the in-plane stresses (fσ), 1−ζ = 60 % of the capacity remains for the section
moments. A set of in-plane stresses and section moments satisfying (6.20) is
safe compared to the exact yield envelope.

Using the Mohr-Coulomb criterion for plane stress with a tension cut-
off, Sσ represents the uniaxial compressive strength fc as well as the tensile
strength ft, and the criterion can be stated as follows in principal stresses:

σ1 ≤ ζft

kσ1 − σ2 ≤ ζfc

σ2 ≤ ζfc

(6.21)
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For reinforced concrete slabs, Johansen’s criterion is commonly used (see e.g.
Johansen, 1962; Nielsen and Hoang, 2010). Reducing the moment capacities
by (1− ζ), the criterion can be stated as:

−
(
(1− ζ)m+

px −mx

) (
(1− ζ)m+

py −my

)
+m2

xy ≤ 0

−
(
(1− ζ)m−px +mx

) (
(1− ζ)m−py +my

)
+m2

xy ≤ 0
(6.22)

where mx, my, and mxy are the moment about the x-axis, the y-axis, and the
twisting moment, respectively. The positive moment capacities are denoted
m+
p , while m−p denotes the negative moment capacities. All capacities are

reduced by a factor of (1− ζ). Introducing four auxiliary variables,

α1 =
1√
2

(
(1− ζ)m+

px −mx

)
≥ 0, α2 =

1√
2

(
(1− ζ)m+

py −my

)
≥ 0,

α3 =
1√
2

(
(1− ζ)m−px +mx

)
≥ 0, α4 =

1√
2

(
(1− ζ)m−py +my

)
≥ 0,

the criterion (6.22) can be rewritten as

2α1α2 ≥ m2
xy

2α3α4 ≥ m2
xy

(6.23)

which has the shape of two rotated quadratic cones, see Section 2.3.

Layer-based criterion

A layer-based approach will make it possible to approximate the actual yield
envelope of the shell. The approach is similar to the one presented by Larsen
(2010), however, in this case the transverse shear stress is not considered.
This means that the problem can be formulated for second-order cone pro-
gramming rather than semidefinite programming. Moreover, the reinforce-
ment is treated as separate layers which give a more accurate description of
the composite material.

We consider a plane shell of reinforced concrete seen in Figure 6.6. The
shell is reinforced in the top and bottom in both the x and the y-directions.
The location of the reinforcement in the cross section is given by dt for the
top and db for the bottom. The shell is divided into n layers, where ti defines
the thickness of the ith layer, and zi defines the distance from the centre of
the ith layer to the centre of the shell. The shell has a total thickness of
t =

∑
ti as shown in Figure 6.6.

The shell cross section is subjected to in-plane forces, Nx, Ny and Vxy as
well as moments mx, my, and mxy, which are all carried by the stresses in
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t

dt

db
x

y

z

Figure 6.6: Reinforced concrete shell split into five layers. Origin of the
local coordinate system is located in the centre of the shell.

the n layers. Each layer is assumed to be in plane stress, i.e. the stress state
is defined by σx, σy, and τxy. The relation between the section forces and
stresses is given as

Nx = σxt = Astxσstx + Asbxσsbx +
n∑

i=1

σxiti (6.24a)

Ny = σyt = Astyσsty + Asbyσsby +
n∑

i=1

σyiti (6.24b)

Vxy = τxyt =
n∑

i=1

τxyiti (6.24c)

where Ast and Asb are the reinforcement areas per unit length in the top and
bottom of the shell, respectively. Likewise, σst and σsb are the reinforcement
stresses in the top and bottom. As seen in (6.24c), it is assumed that the
shear is solely carried by the concrete and the reinforcement only carries axial
forces. The relation between the section moments and layer stresses are given
as follows:

mx = Astxσstx

(
dt −

t

2

)
+ Asbxσsbx

(
t

2
− db

)
+

n∑

i=1

σxitizi (6.25a)

my = Astyσsty

(
dt −

t

2

)
+ Asbyσsby

(
t

2
− db

)
+

n∑

i=1

σyitizi (6.25b)

mxy =
n∑

i=1

τxyitizi (6.25c)
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where zi and ti are constants defined based on the layers, thus, (6.25) rep-
resents a set of linear equations, which fit the format of the optimisation
problem.

Each layer is treated as an unreinforced concrete panel loaded in plane
stress. Tension in the discrete reinforcement enables confinement in the con-
crete layers within the limits of the equations (6.24). The stress state in
a given layer must satisfy the Mohr-Coulomb criterion for plane stress, see
Section 3.3. The reinforcement is assumed to only carry tension, hence, the
criterion for the four reinforcement stresses can be stated as

0 ≤ σstx ≤ fy

0 ≤ σsbx ≤ fy

0 ≤ σsty ≤ fy

0 ≤ σsby ≤ fy

where fy is the uniaxial yield strength of the reinforcement.
An external moment λm0

x and axial force λN0
x is applied and the layer-

based criterion for shells used to compute the yield envelope. For the analysis,
the layers are distributed evenly and the following parameters are used:

fc = 30 MPa, ft = 0, k = 4, t = 300 mm, db = dt = 30 mm

fY = 500 MPa, Astx = 500 mm2/m, Asbx = 1000 mm2/m,

Asty = 200 mm2/m, Asby = 1500 mm2/m

The load factor λ is sought to be maximised to obtain the yield envelope.
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Figure 6.7: a) Yield envelope for the shell illustrated for Nx and mx with
t = 300 mm. b) Moment capacity for varying t for the shell with Nx = 0.
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Figure 6.7(a) shows the yield envelope for the layer-based yield criterion
for shells together with the exact criterion for concrete beams. It is observed
that the number of layers affects the accuracy of the layer-based criterion to
some degree: Using two layers gives a rather crude approximation consisting
of four straight line segments, however, the difference between the yield en-
velope for n = 5 and 6 is marginal. Figure 6.7(b) shows the moment capacity
as a function of the thickness of the shell, t. The moment capacity generally
increase with the number of layers, which is to be expected .

6.3.4 Examples

Two examples will be presented, namely the cantilever steel beam and the
four-storey stairwell, both analysed in Section 4.1.5 using the lower bound
plane stress element. The different yield criteria will be analysed using the
presented shell element and the results will be compared to the results of
the generalised plane stress element to assess the contribution of the plate
bending component.

The layer-based criterion has also been implemented using the von Mises
criterion, however, as discussed in the previous section it is expected that
the simplified shell criteria provide decent estimates of the capacity for steel.

Cantilever steel I-beam

The cantilever steel I-beam was presented in Section 4.1.5 using the gener-
alised plane stress element. The model here is identical: The beam is sup-
ported at the left end and subjected to a uniformly distributed load acting
in the centreline on the top of the web.

3
2.5

2
1.5

1
0.5

00

0

0.3

0.3

Figure 6.8: Medium mesh density of the I-beam using 948 elements.

The material is modelled using the layer-based criterion with the von
Mises criterion for the individual layers, and the yield strength is chosen as
fy = 250 MPa. The web has a height of 300 mm while the flanges has a
width of 300 mm. The elements have a thickness 10 mm and the beam has
length of 3 metres. The beam is analysed using four different mesh densities.
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Table 6.2: Computed line load p in kN/m for the generalised plane stress
element and the shell element using the layer-based yield criterion. Compu-
tational time in seconds is listed as well.

Mesh: Coarse Medium Fine Very fine

Number of elements: 238 948 3,616 14,646

Plane stress 63.24 64.18 64.90 65.24

t [s] 0.28 0.95 4.47 21.38

Shell: Layer (n = 2) 65.07 64.87 65.41 65.54

t [s] 0.80 2.86 14.72 80.82

Shell: Layer (n = 3) 65.08 64.87 65.41 65.55

t [s] 0.33 1.71 18.23 104.66

Table 6.2 shows that the shell element gives slightly larger limit loads
which is to be expected. Moreover, it is seen that the number of layers used
for the yield criterion hardly affects the limit load in this case due to the
in-plane behaviour being dominant.

The computational time of the shell element is significantly larger due to
the additional equations for the moment continuity and the complex yield
function. It is also observed that the number of layers increase the com-
putational time for the fine and very fine mesh, which again is due to the
additional constraints.

32.52

0

0.3

1.50.3 10 0.50

Figure 6.9: Collapse mode of the cantilever I-beam using the mixed shell
element and the fine mesh (3616 elements).

Figure 6.9 shows the collapse mode of the I-beam. The beam displays a
bending failure near the support which allows the beam to start rotating. The
collapse mode is given by the solution to the dual problem. The solution only
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gives the direction and relative magnitude of the displacements and strains,
and the solution can be scaled for a better visualisation of the failure mode.

The flanges and web of the beam have a 10 mm thickness which cause
some numerical problems when using more than three layers. A low thickness
leads to badly scaled constraints as the term ziti in (6.25) is proportional to
the square of the thickness. The equations for the in-plane behaviour, on the
other hand, scale linearly with the thickness, hence, the generalised plane
stress element is less prone to badly scaled constraints.

Four-storey stairwell subjected to shear and torsion

This example has been analysed using the generalised plane stress element
in Section 4.1.5 and in Section 5.3, where the joint element for triaxial stress
was used to represent the in-situ cast corner joints. The stairwell will be
analysed using the shell element as well, and the results will be compared to
the results of the generalised plane stress element.

p

6.6

16

3.6

Figure 6.10: Four-storey stairwell subjected to a shear force which induces
shear and torsion in the structure. Dimensions are given in metres.

The dimensions of the stairwell are shown in Figure 6.10 and the door
openings have a height of 2.10 metres and a width of 0.90 metres. A shear
load is applied on the top boundary of the wall with the door openings which
induces shear and torsion into the structure. The walls have a thickness of
180 mm and are reinforced with two layers of Ø8 rebars per 150 mm, which
both have cover layers of 25 mm concrete.

The reinforcement has a design yield strength of 458 MPa. The concrete
has a design compressive strength of 21.43 MPa and the tensile strength is
taken as zero. The stairwell is analysed using the simplified yield criteria as
well as the layer based criterion, and the results are listed in Table 6.3.
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Table 6.3: Limit shear load p in kN/m for the stairwell example: Compari-
son of the generalised plane stress element and the shell element with various
yield criteria. Results marked with ∗ indicate that the solver stalled and was
unable to reach a solution.

Mesh: Coarse Medium Fine

Number of elements: 864 3,564 11,379

Plane stress 85.27 88.62 89.25

t [s] 2.15 14.78 56.53

Shell: Combined 99.97 100.36 99.29

t [s] 3.96 26.75 99.31

Shell: Separate 104.08 102.31 99.93

t [s] 2.85 12.03 50.11

Shell: Layer (n = 4) 101.87∗ 100.31∗ 99.52∗

t [s] 7.49 39.65 153.27

Shell: Layer (n = 5) 102.34∗ 98.89∗ 99.00∗

t [s] 7.80 42.32 154.50

In contrary to the cantilever beam example, the shells of the stairwell
example have a considerable moment capacity. It is therefore expected that
the shell element yields a larger limit load than the plane stress element,
which disregards the moment capacity completely. Table 6.3 shows that the
shell element gives a capacity of 99 kN/m to 104 kN/m depending on the
mesh and yield criterion.

The simplified yield criterion (6.20) combines the in-plane behaviour and
plate bending in a linear manner and will give a lower bound to the limit
load. The separate criterion (6.19), on the other hand, gives a higher capacity,
but the capacity decreases for the finer meshes. Layer-based yield criterion
appears to give results in-between the combined and the separate criteria,
however, the layer-based yield criterion cause some numerical issues and the
solver stalls before reaching optimality. The quality of the solutions marked
with ∗ will therefore vary considerably.

The layer-based criterion require the most constraints, hence, it is ex-
pected that the computational time will be larger. Compared to the plane
stress element, the layer-based criterion requires almost three times the com-
putational time. It is remarkable, however, that the computational time of
the separate yield criteria is smaller than the plane stress element for the

Department of Civil Engineering - Technical University of Denmark 141



6.4 Mixed solid element Auxiliary work

medium and fine meshes despite the additional equations for the plate bend-
ing behaviour.

0

0

0 6.6
3.6

16

Figure 6.11: Collapse mode of the stairwell using the mixed shell element
and the fine mesh (11,379 elements).

From Figure 6.11, it is observed that all walls are activated and con-
tributes to the overall resistance of the stairwell. The stairwell fails in a
combination of shear and bending. The wall with the door openings will
necessarily experience the largest displacements as the load is acting on the
top boundary.

6.4 Mixed solid element

For the overall load distribution and capacity of precast concrete structures,
two-dimensional elements, e.g. plane stress elements or shells, are usually
preferred, and modelling using solid elements is rarely used. Nevertheless,
solid modelling can be used within the present framework for e.g. assessment
of the capacity of complicated joints. Solids are, on the other hand, widely
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used in the field of geotechnical engineering (see e.g. Krabbenhoft et al., 2005;
Krabbenhøft et al., 2008; Makrodimopoulos and Martin, 2008).

Similar to how triangular elements are preferred for two-dimensional prob-
lems, tetrahedral elements are generally preferred for three-dimensional. A
linear stress field is commonly used and the stresses are checked at the
four vertexes of the tetrahedron. Lyamin and Sloan (2002a) presented a
lower bound tetrahedron and two approximation of the Mohr-Coulomb cri-
terion, namely a linearisation and a non-linear, smooth version. Upper bound
tetrahedral elements were presented by Yu et al. (1994), Lyamin and Sloan
(2002b), and Krabbenhoft et al. (2005), again using the Mohr-Coulomb crite-
rion. Larsen (2010) also presented a version of the lower bound tetrahedron
as well as the semidefinite formulation of the Mohr-Coulomb criterion for
reinforced concrete.

6.4.1 Equilibrium

This section presents a novel mixed tetrahedron, which is based on the same
relaxation of the traction continuity as the plane stress element presented
in Section 6.2. Two yield criteria will be presented, namely a criterion for
reinforced concrete based on the Mohr-Coulomb criterion (see Larsen, 2010)
and the Drucker-Prager criterion, which is commonly used for soils.

v12

v13v41
v42

v43

1

2

3

4

(a)

1

2

3

4

5

6

7

8

9

10

(b)

Figure 6.12: (a) Geometry of the elements including the geometric nodes.
(b) The 10 displacement nodes representing the quadratic displacement field.

The geometry of the element is defined by the four corner nodes, see
Figure 6.12(a). Associated with each corner node is a stress vector which
comprises the six unique stress variables,

σj =
[
σx σy σz τxy τzx τyz

]T
,
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where j is the node number. The element stress vector is given as

σel =




σ1

σ2

σ3

σ4




In the following, face i of an element refers to the face opposite node i. For
each face, a normal vector is calculated from the vectors v seen in Figure
6.12(a):

n̂1 = 2A1n
1 = v42 × v43

n̂2 = 2A2n
2 = v43 × v41

n̂3 = 2A3n
3 = v41 × v42

n̂4 = 2A4n
4 = v13 × v12

(6.26)

where Ai is the surface area of face i, and ni are unit normal vectors implicitly
defined in (6.26). The stress-to-traction matrix can be stated as

PT
i =



nix 0 0 niy niz 0

0 niy 0 nix 0 niz
0 0 niz 0 nix niy


 (6.27)

and

P̂T
i = 2AiP

T
i =



n̂ix 0 0 n̂iy n̂iz 0

0 n̂iy 0 n̂ix 0 n̂iz
0 0 n̂iz 0 n̂ix n̂iy




The tractions on face i at node j can be calculated as PT
i σj, where σj is the

stress vector associated with node j.
The mixed element has a linear stress field and, therefore, a quadratic

displacement field. The element is a relaxed version of the lower bound
tetrahedron (see Lyamin and Sloan, 2002a; Larsen, 2010). Similarly to the
mixed plane stress element presented in Section 6.2, the strict traction con-
tinuity has been relaxed by distributing the tractions to the six nodes of a
face according to the quadratic displacement field. The contribution to the
nodal force in node j from face i can be calculated using the same approach
as in Equation (6.2):

qij =

∫

Ai

N i
j (ξ, η) ti (ξ, η) ∂η∂ξ (6.28)
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where ξ and η are area coordinates, N i
j (ξ, η) is the quadratic shape function

for node j for face i, and ti (ξ, η) are the tractions on face i. The shape
functions and integration are similar to the plane case. The tractions on
each face contributes to six nodes, and the contributions are summed to
obtain the element equilibrium matrix for the mixed element.

The element may be subject to volume loads V γi, where V is the volume
of the element. This gives rise to three differential equations,

∂σx
∂x

+
∂τxy
∂y

+
∂τzx
∂z

+ γxV = 0,

∂τxy
∂x

+
∂σy
∂y

+
∂τyz
∂z

+ γyV = 0,

∂τzx
∂x

+
∂τyz
∂y

+
∂σz
∂z

+ γzV = 0,

(6.29)

which can be reduced by use of the linear shape functions, similarly to the
internal equilibrium equations in Section 4.1.1, to obtain:

1

6
P̂T

1 σ1 +
1

6
P̂T

2 σ2 +
1

6
P̂T

3 σ3 +
1

6
P̂T

4 σ4 = −V



γx
γy
γz




The element equilibrium matrix can be stated as follows:

BT
e =

1

120




2P̂T
2 + 2P̂T

3 + 2P̂T
4 −P̂T

3 − P̂T
4 −P̂T

2 − P̂T
4 −P̂T

2 − P̂T
3

−P̂T
3 − P̂T

4 2P̂T
1 + 2P̂T

3 + 2P̂T
4 −P̂T

1 − P̂T
4 −P̂T

1 − P̂T
3

−P̂T
2 − P̂T

4 −P̂T
1 − P̂T

4 2P̂T
1 + 2P̂T

2 + 2P̂T
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


(6.30)

The majority of the tractions are distributed to the edge nodes (nodes 5 to
10 in Figure 6.12(b)), and in the case of a constant stress field in the given
element, no nodal forces will be present for the corner nodes, since rows 1
to 4 in the element equilibrium matrix (6.30) sum to zero. The last row of
(6.30) ensures the internal equilibrium of the element.
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6.4.2 Yield criteria

For the solid elements, two general yield criteria for triaxial stress are con-
sidered, namely a criterion for reinforced concrete using the Mohr-Coulomb
criterion, and the Drucker-Prager criterion.

Mohr-Coulomb criterion for reinforced concrete

Similar to the plane stress case in Section 4.1.4, the stresses are divided into
concrete stresses and reinforcement stresses:

σ = σc + σ̂s (6.31)

where σc is the concrete stresses. It is assumed that the the reinforcement
only carries normal stresses, hence, the equivalent reinforcement stresses σ̂s
is defined as

σ̂s =




σsxAsx
σsyAsy
σszAsz

0

0

0




where Asi is reinforcement area per unit area in the i-direction. The rein-
forcement is assumed to be smeared, however, if smeared reinforcement is
not a reasonable assumption, 3D bar elements can be used to model the re-
inforcement discretely. The reinforcement stresses are checked against the
uniaxial yield strength fyi:

− fyi ≤ σsi ≤ fyi (6.32)

The concrete stresses must satisfy the Mohr-Coulomb yield criterion with a
tension cut-off presented in Section 3.3. The criterion has a rather simple
form in principal stresses which is repeated below:

σ1 ≤ ft

kσ1 − σ3 ≤ fc
(6.33)

where σ1 and σ3 are the largest and smallest principal stresses, respectively.
The properties of the concrete material are given by the uniaxial tensile
strength ft, the uniaxial compressive strength fc, and the friction parame-
ter k. Since the criterion is formulated in principal stresses, which are the
eigenvalues of the stress tensor, the criterion can be formulated exact using
semidefinite programming.
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Drucker-Prager criterion

The Drucker-Prager criterion can be considered as a smooth version of the
Mohr-Coulomb criterion, and is often used in geotechnical engineering. The
criterion is based on the first and second stress invariants, I1 and J2, defined
as

I1 = 3σv = σx + σy + σz,

J2 =
(σx − σy)2

6
+

(σy − σz)2

6
+

(σz − σx)2

6
+ τ 2

xy + τ 2
zx + τ 2

yz

The criterion can be stated as
√
J2 ≤ A−BI1 (6.34)

where A and B are constants. The criterion (6.34) has the shape of a
quadratic cone and can be represented exact using second-order cone pro-
gramming.

Circumscribe A =
6c cos θ√

3 (3− sin θ)
, B =

2c sin θ√
3 (3− sin θ)

,

Middle-circumscribe A =
6c cos θ√

3 (3 + sin θ)
, B =

2c sin θ√
3 (3 + sin θ)

,

Inscribe A =
3c cos θ√

9− 3 sin2 θ
, B =

c sin θ√
9− 3 sin2 θ

(6.35)

where c is the cohesion of the material and θ is the internal angle of friction.
The choice of A and B depends on if the Drucker-Prager envelope is going
to circumscribe, middle-circumscribe, or inscribe the Mohr-Coulomb yield
envelope as listed in (6.35).

The difference between the three sets of constants varies with the internal
angle of friction, θ. Figure 6.13(b) shows the yield envelope for some typical
values of concrete, and it is observed that the red line which circumscribes
the Mohr-Coulomb yield envelope will give significantly larger capacities in
compression. The blue and black lines will give lower results in case of
uniaxial compression compared to the yield envelope of the Mohr-Coulomb
criterion. If the internal angle of friction is zero degrees, the constant B will
be zero and (6.34) will be identical to the von Mises criterion.

6.4.3 Example

A rebar with a diameter of 25 mm is embedded in a 200×200×200 mm con-
crete cube. The rebar is modelled as a von Mises material using the Drucker-
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Figure 6.13: Comparison of the Mohr-Coulomb criterion (dashed line) and
the Drucker-Prager criterion for plane stress using different values of A and
B shown in principal stresses.

Prager criterion with a friction angle of θ = 0 and fy = 2 c = 500 MPa,
while the concrete cube is modelled using the Mohr-Coulomb criterion with
fc = 20 MPa and k = 4 corresponding to θ ≈ 37◦, while no additional limit
for the tensile strength is considered. For comparison, the concrete is also
modelled using the Drucker-Prager criterion with the three different sets of
constants, A and B, see (6.35), with θ = arctan (3/4) ≈ 37◦ and c = 5 MPa
(equivalent to the uniaxial compressive strength of 20 MPa for the Mohr-
Coulomb criterion). No special consideration has been given to the interface
between the rebar and the concrete, and a perfect bond is assumed.

P

100 mm
200 mm

200 mm
200 mm

Figure 6.14: Pull out of the Ø25 rebar embedded in a concrete cube.
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The rebar is embedded 100 mm into the concrete cube as illustrated in
Figure 6.14 which also shows the load and support conditions. The yield
strength of the rebar is chosen sufficiently large to ensure failure in the con-
crete. The separation criterion is not implemented for the Drucker-Prager
criterion, hence, to be able to compare the two criteria, no tension cut-off
is used for the Mohr-Coulomb criterion. The model is analysed using three
different meshes, one structured and two free.

Table 6.4: Limit load P for the pull out of a rebar embedded in concrete
using different material models and meshes (load given in kN).

Structured Free

Material nel = 2628 nel = 1649 nel = 6422

Mohr-Coulomb 140.8 130.6 137.7

Drucker-Prager

Circumscribes 189.2 183.3 195.9

Middle-circumscribes 104.4 98.0 101.4

Inscribes 101.7 95.3 98.5

Table 6.4 shows that the model approaches the limit load from below as
the free mesh with 1649 elements give the lowest capacity. The structured
mesh yields the largest capacity for the Mohr-Coulomb material as well as
for two versions of the Drucker-Prager criterion. Moreover, a significant
difference is seen between the three versions of the Drucker-Prager criterion,
where the yield envelope circumscribing the Mohr-Coulomb criterion gives
almost double the capacity.

Figure 6.15 shows the failure modes using the Drucker-Prager and Mohr-
Coulomb criteria. A clear difference is observed between the two criteria: The
displacements occur in close proximity to the rebar for the model using the
Drucker-Prager criterion, while a cone shape is seen for the Mohr-Coulomb
criterion which corresponds better to the failure modes observed for experi-
ments.
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(a) Drucker-Prager (inscribing) (b) Mohr-Coulomb

Figure 6.15: Failure modes for the pull out of a rebar embedded in concrete
using the fine free mesh with 6422 elements. The colour represents the relative
magnitude of the displacements, and red indicates the largest displacements.
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Chapter 7

Conclusions and future work

Despite an increased preference of clients for architecturally complex struc-
tures and the extensive use of computer-aided drawing software in practice,
concrete structures - and especially precast concrete structures - are often
designed by manual methods or simple numerical tools in the ultimate limit
state. The current practice is to design the joints as the weakest part of the
structure, which makes analysis by general purpose finite element software
difficult and inaccurate. Within the framework of finite element limit anal-
ysis, several finite elements and mechanical models have been developed to
facilitate efficient modelling of precast concrete structures. Summary and
conclusions of the research conducted is given in the following section.

7.1 Conclusions

Identification of the critical mechanisms of shear joints in 2D

The behaviour of joints in precast concrete structures is one of the main
topics of the present thesis. In order to develop an adequate joint model,
identification of the critical mechanisms inside the joint was necessary. For
this purpose, a detailed model based on lower bound finite element limit
analysis was presented in Section 4.3 and Paper I.

The detailed model was validated by comparison to experimental results,
and satisfactory agreement was found with an average error of just -4.3 per
cent. The model was able to capture the effect of the discontinuous layout
of the U-bars to a reasonable degree. The failure mode was interpreted
from the dual solution to the optimisation problem, i.e. the solution to the
corresponding kinematic problem.

From the the determined stress fields, it can be concluded that direct
strut action is the primary load carrying mechanism of keyed shear joints,
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however, the reinforcement layout affects the struts and a discontinuous lay-
out will disrupt the distinct struts. Local failures near the keys as well as
diagonal failure zones likewise indicate direct strut action. Moreover, it can
be concluded that localised failure zones between the U-bar loops may occur
as a consequence of the discontinuous reinforcement layout.

The detailed model provides a satisfactory estimate of the capacity and
the determined failure mode corresponds to the observed failures of the ex-
periments. The model, however, is rather heavy, computationally speaking,
and a simple mechanical model is needed to facilitate modelling of real size
structures.

Development of a simplified model for shear joints in 2D

Section 4.4 and Paper II presented a multiscale lower bound joint element.
The element uses a mechanical submodel as an advanced yield function,
which makes it possible to account for the local behaviour of the joint -
identified by the detailed model - on the structural level.

The mechanical submodel is based on the stringer method. Three inde-
pendent stringer models formed the basis of the submodel, and by adding the
stress fields of the three stringer models, the resulting stress field in the joint
is obtained, which is then checked against the appropriate yield criterion.

The multiscale joint element was validated by comparison to the detailed
model, and excellent agreement was found. The joint element captures the
same behaviour as the detailed model, including the effect of the discontinu-
ous reinforcement layout. The results of the joint element was also compared
to experimental results, and satisfactory agreement was found here.

The joint element poses a small mathematical optimisation problem which
is solved in a fraction of a second, and it can therefore be concluded that
the presented multiscale joint element enables modelling of real size precast
structures while accounting for the complex behaviour of the in-situ cast
joints.

Extension of the findings to the three-dimensional case

Taking the three-dimensional behaviour of structures into account will nec-
essarily increase the capacity of the considered structure. The findings and
lower bound finite elements presented for the two-dimensional case in the
present thesis were generalised to three dimensions and an adequate multi-
scale joint model for the behaviour of the in-situ cast joints was developed,
see Section 4.5 and Paper IV.
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A lower bound macro joint element was formulated, and the element
is compatible with the three-dimensional plane stress element, presented in
Section 4.1.3 and Paper III. The element uses a mechanical submodel to
account for the local behaviour. The submodel utilises concrete corbels inside
the joint in order to activate the loop reinforcement and to transfer shear from
one structural plane to another. The resulting triaxial stress field of the joint
is checked against the Mohr-Coulomb criterion.

A brief analysis of the three-dimensional and the two-dimensional joint
was conducted to assess the behaviour in two-dimensions. For the three-
dimensional case a parameter study with commonly used reinforcement lay-
outs and concrete strengths was conducted, and the results are compared to
the Eurocode design equation. Surprisingly, the results of the joint model
and Eurocode were relatively close even though the Eurocode equation only
considers a criterion for the interface.

It is concluded that the corbel mechanisms produce rather conservative
lower bound for the two-dimensional case, which is to be expected. The
corbels appear to be a reasonable choice of mechanism for transfer of shear
in three-dimensions, and it can be concluded that it is necessary to consider
the three-dimensional stress field of the joint for design and analysis.

Framework for design

Two examples of real size structures were given in Chapter 5. First, a four-
storey shear wall with three door openings was analysed using the lower
bound plane stress element and the two-dimensional joint element and sub-
model. The wall was subjected to design loads prescribed by the Eurocode.
The material and reinforcement parameters have been chosen based on a
conventional design using manual methods.

The model was analysed for varying mesh densities, and the determined
load factors increased slightly with the mesh density which was to be expected
for a lower bound model. The critical load case, load case 2, gave a load factor
3.48, i.e. the shear wall can sustain a horizontal load more than three times
larger than the design load. The two other load cases gave load factors of
5.09 and 6.27, respectively.

It was seen from the stress plots that the forces were transferred via strut
action to the supports of the structure. Moreover, the dual solution was
used to visualise the failure mode of the shear wall. The joints affected the
stress field to some degree, however, their influence on the failure mode was
clear: Separation occurred in some of the horizontal joints of the structure,
combined with a diagonal failure zone in the bottom storey for load cases 1
and 3.
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The second example was concerned with a four-storey precast concrete
stairwell with door openings. The precast panels were modelled using the
3D plane stress element and connected in the corners by in-situ cast joints
modelled by the developed 3D joint element. The stairwell was subjected to
shear and torsion and analysed for varying joint reinforcement degrees.

For low reinforcement degrees in the joints, the entire joint from the
foundations to the top of the structure was fully utilised, which will lead
to some extreme requirements to the ductility of the joints and panels. At
higher levels of reinforcement, the model yielded a capacity only a few per
cent lower than the capacity of the monolithic structure. The robustness of
the structure increased at the higher levels of joint reinforcement, as only a
small portion of the joint was utilised fully which lowered the requirement to
the ductility of the joints and panels.

From the two examples, it can be concluded that the joints play a vital
roll in the overall behaviour of precast concrete structures and that the pre-
sented models and elements are capable of modelling real size structures in
an efficient manner. Finally, it is concluded that the presented framework
based on finite element limit analysis has significant potential to enable fast
and efficient design of precast concrete structures in the near future.

7.2 Future work

The recommendations for future work can be split into two groups: Ex-
perimental work on joints and precast structures, and model development
to extend and mature the presented framework. This section will highlight
some of the areas where further research is needed and attempt to give rec-
ommendations.

Experimental work

The developed joint elements attempt to describe the influence of reinforce-
ment layout. An optimal layout cannot be ensured by the current practice,
however, nearly all published experiments uses a reinforcement layout where
the U-bar loops are placed closely together:

• Additional experimental work on joints in two-dimensions with subop-
timal reinforcement layout is needed. Only few experiments consider
this phenomenon, but a clear influence has been reported (see Hansen
and Olesen, 1976).

• For the three-dimensional case, basic investigations of the mechanisms
of shear transfer in the three-dimensional case are needed. To the best
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knowledge of the author, no experiments on corner joints have been
published, hence, analytical and numerical models cannot be validated.
For practical use of the developed three-dimensional joint model, such
validation by comparison to experiments is needed.

• A new design of the classical, two-dimensional U-bar joint is presently
being developed at the Technical University of Denmark (Sørensen
et al., 2016). The results are promising, and findings can hopefully
be extended to the design and behaviour of joints in three-dimensions,
where ductility of joints is crucial for the robustness.

• Manual methods based on limit analysis have been used in practice for
decades. The numerical framework presented here, however, enables
structural optimisation on a completely different level, and the struc-
tural design can easily be pushed to the limit. This is shown in the
example in Section 5.3, where all joints are fully utilised over the entire
height of the building when using a low reinforcement degree. This
poses some requirements to the ductility of the entire structure - not
just locally - and to the best knowledge of the author, no experimental
work on the interaction and ductility of large precast structures have
been published.

Model development

The present framework presented a novel concept within the field of finite
element limit analysis, namely the multiscale elements. The concept enables
modelling of local phenomena for the individual elements to be accounted
for on the structural model level.

• An extension of the submodel for the three-dimensional joint element
is needed. The presented corbel model handles the two-dimensional
case as well, but the obtained results are rather conservative compared
to the results of the two-dimensional submodel. The framework of the
submodel makes it possible to add additional models, and the resulting
stress field should be updated accordingly.

• Adequate submodels for e.g. beams can be developed to account for
local behaviour. The Eurocode prescribes several loads and moments
based on tolerances that need to be treated locally for the individual
structural components. Such effects can be included within the sub-
model concept and can therefore be accounted for on the global model
level.
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• Structures are designed for a multitude of load cases. For load optimi-
sation, the load cases can be handled individually, however, for material
optimisation, it is not the case. A general purpose optimisation solver
has been used for the work presented in this thesis, however, to be able
to treat multiple load cases efficiently, specialised solvers should be
developed. The mathematical optimisation problem of finite element
limit analysis with multiple load cases will have a distinct structure,
which likely can be exploited by specialised solvers

• Mixed elements were discussed in Chapter 6. The elements do not pro-
vide rigorous bounds to the exact limit load, but they are more accurate
compared to lower and upper bound elements and often more stable in
a numerical sense. The presented joint elements could be extended to
mixed formulations to be able to provide increased accuracy.

• Last but not least, material optimisation has a considerable potential
for practical applications. The presented framework is only concerned
with load optimisation, however, the framework can be extended to
cover material optimisation as well.
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Numerical limit analysis of keyed shear 
joints in concrete structures

This paper concerns the shear capacity of keyed joints that are 
transversely reinforced with overlapping U-bar loops. It is known 
from experimental studies that the discontinuity of the transverse 
reinforcement affects the capacity and the failure mode. Howev-
er, to the best knowledge of the authors, previous theoretical 
works and current design equations in standards do not account 
for this important effect. This paper introduces a detailed model 
based on finite element limit analysis to assess the effect of the 
discontinuous reinforcement. The model is based on the lower 
bound theorem and uses the modified Mohr-Coulomb yield crite-
rion, which is formulated for second-order cone programming. 
The model provides a statically admissible stress field as well as 
the failure mode. Twenty-four different test specimens were mod-
elled and the calculations compared with the experimental re-
sults. The results of the model show satisfactory agreement with 
the experimental observations. The model produces estimates of 
the shear capacity that are significantly better than those of the 
Eurocode 2 design equations.

Keywords:  shear walls, precast concrete elements, keyed joints, limit 
analysis, finite element, numerical modelling, plasticity

1	 Introduction

Precast concrete wall units connected by in situ concrete 
joints are often used to stabilize building structures against 
horizontal loads. The efficiency of such wall systems (of-
ten referred to as shear walls) is highly dependent on the 
ability of the joints to transfer in-plane shear forces be-
tween adjacent precast wall units. The joints are usually 
designed as so-called keyed joints where U-bar loops pro-
trude from the ends of the precast units and overlap each 
other in a narrow in situ zone (Fig. 1). A continuous rein-
forcing bar (locking bar) is typically placed inside the 
loops to enhance the transfer of tension between pairs of 
U-bars. Owing to the narrow geometry as well as the dis-
continuity of the reinforcement layout, the joints are most 
often the weakest parts of a shear wall system. Hence, in 
practice, the shear capacity of the keyed joints is often the 

governing factor for the load capacity of the entire shear 
wall.

Several papers on the shear capacity of keyed shear 
joints were published during the 1970s and 1980s (see 
[1]–[6], for example). The main body of these works con-
centrates on experimental investigations. As a result, only 
simple and rather primitive empirical design formulas are 
available in current design standards, including Eurocode 
2 [7]. In attempts to establish simplified mechanical mod-
els for the ultimate limit state design of keyed joints, 
works based on rigid-plastic theory have been presented 
in the literature. This includes upper bound solutions de-
rived from analyses of failure mechanisms [8], [9] and 
lower bound solutions based on strut-and-tie models [9]–
[11], see Fig. 2. Jørgensen et al. [12], [13] also presented 
several analytical upper bound solutions for similar prob-
lems, namely wire loop connections. Common to these 
plasticity models is that the discontinuity of the transverse 
reinforcement (i.e. the overlapping U-bars) is not taken 
into account. This means that depending on the U-bar 
layout, these models may be oversimplified because they 
can neither capture the complex stress field nor the com-
plex failure mechanism that develops within the joint. In 
the end, this will affect the ultimate capacity of the joint.

In this paper we present a detailed study of the ef-
fects of the discontinuous transverse reinforcement on the 
shear capacity of keyed joints. The study was carried out 
using numerical rigid-plastic limit analysis. This means 

*	� Corresponding author: mahe@alectia.com

Submitted for review: 08 October 2015; revision: 24 November 2015; accepted 
for publication: 26 November 2015. Discussion on this paper must be 
submitted within two months of the print publication. The discussion will then 
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Fig. 1.  Four-storey shear wall constructed from precast units connected by 
in situ joints
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tions, the yield conditions and an objective function. 
Anderheggen and Knöpfel [14] were the first to present the 
mathematical framework using linear programming to 
optimize the load-carrying capacity. Since the 1970s, sev-
eral researchers have contributed to and extended the 
theory and use of the method [15]–[19]. Numerical limit 
analysis is a so-called direct method, i.e. the ultimate load 
capacity is determined in one step, which is a clear advan-
tage over non-linear FEM when it comes to practical ap-
plications. The general formulation of lower bound load 
optimization can be stated as follows [17], [20]:

(1)

The linear equality constraints ensure equilibrium, while 
the yield functions ensure that the state of stress does not 
violate the yield criteria at any point. The load acting on 
the structure consists of a constant part R0 and a scalable 
part Rλ. The global equilibrium matrix H comprises the 
local contributions from each equilibrium element and β 
is the stress vector. The lower bound problem (Eq. (1)) has 
a corresponding upper bound problem, which is solved 
simultaneously, and the solution to the upper bound prob-
lem gives the collapse mode of the structure [21].

The yield function f is generally non-linear, but con-
vex; hence, Eq. (1) is a convex optimization problem. We 
use the modified Mohr-Coulomb yield criterion in this 
paper, which can be formulated exactly using second-or-
der cone programming (SOCP) and solved remarkably ef-
ficiently using interior point methods. The problem (Eq. 
(1)) will be solved using the commercial solver MOSEK 
[22]. For a detailed description of SOCP and interior point 
algorithms, the reader is referred to [23]–[25].

3	 Keyed joint

Fig. 3 is a schematic drawing of a typical keyed joint; the 
reinforcement and interfaces are indicated by thick black 
lines. A local coordinate system (n,t) is also included in 
Fig. 3. The keys of the interface are defined by the param-

maximize
subject to

( ) 0, 1, 2, ,
0

i

R RH
f i m

ββ
ββ

λ
λ= +
≤ = …

that the analysis is based on the same fundamental as-
sumptions as those adopted for the aforementioned upper 
and lower bound models. However, in numerical limit 
analysis, the problem is discretized using so-called equilib-
rium finite elements and subsequently solved as an optimi-
zation problem (see section 2); complex stress fields and 
failure modes can therefore be handled. The results of this 
study show that the U-bar configuration and, in particular, 
the mutual distance between adjacent overlapping U-bars 
play a dominant role in the ultimate shear capacity. It is 
demonstrated that the effects captured by the detailed nu-
merical limit analysis correlate well with experimental 
observations.

To emphasize the context in which this study has 
been undertaken, it is necessary to mention here that the 
numerical limit analysis approach was deliberately chosen 
instead of a classical incremental non-linear finite element 
model. The reason for this is threefold: Firstly, the chosen 
approach allows the results obtained to be placed in the 
same context as existing analytical models (i.e. the afore-
mentioned upper and lower bound models) and enables 
direct comparisons. Secondly, finite element limit analysis 
is more computationally efficient than incremental non-
linear finite element analysis due to the fact that the for-
mer approach is only concerned with the load-carrying 
capacity – the main objective in practical ultimate limit 
state design. Thirdly, the detailed modelling of keyed 
joints for finite element limit analysis has to be viewed 
with a long-term research perspective, where the authors 
are working on the development of numerical tools for 
the ultimate limit state design of entire precast buildings 
(see section 6).

2	 Finite element limit analysis

Numerical limit analysis based on the lower bound theo-
rem of plastic theory can be used to determine statically 
admissible stress fields, which will give a safe estimate of 
the load-carrying capacity of the structure. The method 
assumes a rigid-plastic material behaviour where no defor-
mations occur before yielding. The mathematical formula-
tion of the problem consists of a set of equilibrium equa-

Fig. 2.  Simplified failure mechanism (a) [8], [9] and strut-and-tie models (b and c) [9], [10] for the analytical modelling of the shear capacity of keyed joints
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(2)

Nielsen and Hoang [10] suggest a suitable yield criterion 
for joint interfaces, which corresponds to the modified 
Mohr-Coulomb yield criterion for plane strain with one 
free normal stress parameter. The yield envelope is illus-
trated in Fig. 5. In terms of principal stresses, the yield 
criterion can be written as

(3)

where:
σ1,σ2	 largest and smallest principal stresses respectively
ft	 separation strength of interface
c	 cohesion
k	 a friction parameter, defined as 12

2
k µ µ( )= + + , 

where µ is the friction coefficient of the interface

The principal stresses are given as

(4)
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eters h1, h2,  and d, while the parameters  and  define the 
overlap of the U-bars and the width of the joint respec-
tively. Finally, u is the distance between the two U-bars of 
a pair.

4	 Elements

Three types of equilibrium element are required for the 
detailed model: Firstly, a triangular element with a linear 
stress variation (LST element) will represent the precast 
concrete and joint concrete. In this paper we use an en-
hanced version of the plate element originally developed 
by Sloan [15] and Poulsen and Damkilde [17]. The en-
hanced element was developed by Nielsen [26] and a brief 
description of the element is given in the appendix. The 
reinforcement can be represented as one-dimensional bars 
modelled by a bar element developed by Poulsen and 
Damkilde [17]. The bar element only provides dissipation 
along its axis and dowel action is neglected. Finally, a suit-
able interface element is needed to model the casting in-
terface between the precast panels and the joint concrete.

In this section we present a one-dimensional inter-
face element developed for the detailed model. The inter-
face element has to be compatible with the linear stress 
variation of the LST element; hence, a linear variation of 
stresses is also required for the interface element.

The element has four stress variables as seen in Fig. 
4a and contributes to eight equilibrium equations on the 
global level, see Fig. 4b. The stresses are simply transferred 
directly through the interface as seen in the element equi-
librium matrix hel:

Fig. 3.  Elevation on and section through a basic keyed joint design reinforced with U-bars

Fig. 4.  Interface element: a) geometry, local coordinates system and stress variables and b) generalized nodal forces



484

M. Herfelt/P. Poulsen/L. Hoang/J. Jensen · Numerical limit analysis of keyed shear joints in concrete structures

Structural Concrete 17 (2016), No. 3

5	 Model and analysis

This section will present the numerical model and the re-
sults, which will be compared with experimental data 
from Hansen and Olesen [5] and Fauchart and Cortini [2] 
as well as the design formulas of Eurocode 2 [7]. The ge-
ometry of the 16 test specimens of Hansen and Olesen 
was: h1 = h2 = 40 mm, d = 6 mm, b = t = 50 mm, o = 30 mm 
(see Fig. 3), l = 1200 mm, 14 keys. The geometry of the 
eight test specimens of Fauchart and Cortini was: h1 = 
167 mm, h2 = 83 mm, d = 20 mm, b = 145 mm, t = 90 mm, 
o = 115 mm, l = 1200 mm, 4 keys.

Fig. 6 shows the numerical model and the meshes for 
the models of the specimens. The loads on the model ensure 
that the moment at the centre of the joint is zero, i.e. pure 
shear. The joint concrete is modelled using the Mohr-Cou-
lomb yield criterion for plane stress conditions. Near the U-
bar loops, the concrete will be in a triaxial stress state; 
hence, the assumption of a plane stress condition is con-
servative in those regions. The tensile strength of the joint 
concrete is neglected (ft = 0) and the effectiveness factor is 

and σt is the free normal stress. The yield criterion can be 
formulated as a single quadratic cone and two linear in-
equalities by introducing three auxiliary variables [19], 
[27].

Fig. 5.  Yield criterion for the interface – the grey region indicates the interi-
or of the yield envelope

Fig. 6.  a) Sketch of the numerical model including boundary conditions and loading; b) mesh for the specimens by Fauchart and Cortini [2] (8064 elements); 
c) close-up of the mesh shown in b) showing the keyed interface, two pairs of U-bars (thick vertical lines) and two locking bars (thick, straight horizontal 
lines); d) half of the mesh for the specimens by Hansen and Olesen [5] (20 014 elements); e) close-up of the mesh shown in d) showing the keyed interface, 
a locking bar (thick horizontal line) and a pair of U-bars (thick vertical lines).
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Fig. 7 shows that the numerical model is capable of pre-
dicting a satisfactory estimate of the load-carrying capaci-
ty for a wide range of experiments. On average, the model 
predicts shear capacities slightly below the experimental 
results, but for a single experiment (specimen 29, indicat-
ed by a circle in Fig. 7), the model overestimates the ca-
pacity by a significant margin. It is worth noting that 
specimen 29 is the only specimen for which the Eurocode 
overestimates the shear capacity (see Fig. 8a and Table 1).

Fig. 8a shows that the Eurocode generally underesti-
mates the capacity of the joint – in some cases by almost 
60 %. The numerical model predicts a higher shear capac-
ity that the Eurocode formulas, as can be seen in Fig. 8b. 
All results as well as compressive concrete strength, rein-
forcement ratio and distance between U-bars are given in 
Tables 1 and 2. The average error for the numerical model 
is – 4.3 %, whereas for the Eurocode the average error is 
– 37.9 %. The errors shown in the tables were computed 
using

Specimens 01, 02, 03, 04, 05, 12, 13, 14, 18 and 29, listed 
in Table 1, did not have any transverse reinforcement (U-
bars); instead, external confinement pressure was applied. 
For these tests, a reinforcement ratio equivalent to the 
confinement is listed in the table. It is worth noting that 
specimen 29 is the only specimen in that group with an 
equivalent reinforcement ratio >  0.10, but the specimen 
has a rather low capacity similar to the capacities of speci-
mens 12 and 13, which have equivalent reinforcement ra-
tios of 0.43 and 0.95 respectively.

As Table 1 shows, two of the specimens, 24 and 26, 
both have a large u value. It can be seen that the numeri-
cal model produces a very good estimate of the shear ca-
pacity for these two specimens in comparison to the Eu-
rocode. Specimen 25 is identical to specimen 26 except 

andmodel
model test

test
EC2

EC2 test

test
 

τ τ
τ

τ τ
τ

=
−

=
−

chosen as n = 1, which is the same value adopted for the 
lower bound strut-and-tie model of Nielsen and Hoang [10]. 
It should be mentioned that Jørgensen et al. [12], [13] adopt-
ed a n factor smaller than unity for looped joints; however, 
the models by Jørgensen et al. are upper bound models that 
take into account plane strain conditions as well as the tri-
axial stress state locally at the loops. Most probably, the best 
estimate of the n factor would be somewhere between unity 
and the value used by Jørgensen et al. Determination of such 
an estimate would require development of a 3D numerical 
model that can be calibrated with tests heavily reinforced 
with U-bars. As mentioned in section 4, the capacity of the 
interface is defined by the cohesion, the friction coefficient 
and the separation strength. For smooth surfaces, the cohe-
sion is very sensitive to curing and may be taken as 

0.55c fc= , provided that cracking (e.g. due to shrinkage) 
has not taken place [10]. For the numerical model, a cohe-
sion of 0–0.5 MPa gives the best results, indicating that 
shrinkage cracking has indeed taken place. The interface is 
assumed to be smooth and a friction coefficient µ = 0.75 can 
be used here [10], [28]. Finally, a separation strength ft = 0 
was used for the interface elements in all models.

5.1	 Comparison and analysis

The experimental results of Hansen and Olesen [5] and 
Fauchart and Cortini [2] were compared with the numeri-
cal model and Eurocode 2 [7]. We define the reinforce-
ment ratio as follows:

i.e. the total force in the U-bars over the total area times 
the compressive strength of the joint concrete.

According to Eurocode 2, the shear capacity of a 
keyed joint can be computed as

(5)

where:
Akey	 total area of keys
ft	 tensile strength
c	 a parameter that relates the tensile strength to the 

cohesion

The following values were used for keyed joints: µ = 0.9 
and c = 0.5. The tensile strength was taken as 0.21 2/3f ft c= . 
In Eurocode 2, the effectiveness factor n used for beam 
shear problems is also used for shear in joints, i.e. n = 0.7 
– fc/200 (fc in MPa).

It is important to emphasize that mean values of the 
material parameters were used for the comparison. When 
the numerical model is used for design, however, relevant 
partial safety coefficients prescribed by codes (e.g. Euroco-
des) must be introduced. In this context, it may be useful 
to mention that the design value for the cohesion of the 
interfaces should be determined by adopting a partial 
safety coefficient γc that is related to the tensile strength of 
the concrete (and not the compressive strength).
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Fig. 7.  Numerical results compared with a total of 24 experiments by Hans-
en and Olesen [5] and Fauchart and Cortini [2]
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Table 1.  Data and results of experiments by Hansen and Olesen [5], numerical model and Eurocode 2

fc Φ u Experimental Numerical Eurocode 2
Specimen [MPa] [–] mm t/fc t/fc Error [%] t/fc Error [%]

01 29 0.013 – 0.064 0.053 –17.2 0.029 –55.0
02 32 0.030 – 0.095 0.079 –16.8 0.044 –54.2
03 32 0.055 – 0.105 0.102 –2.9 0.066 –37.1
04 16 0.061 – 0.087 0.107 23.0 0.076 –13.0
05 53 0.018 – 0.068 0.064 –5.9 0.030 –55.6
12 25 0.043 – 0.140 0.092 –34.3 0.057 –59.9
13 23 0.095 – 0.146 0.133 –8.9 0.104 –28.8
14 25 0.039 – 0.099 0.088 –11.1 0.053 –46.4
18 27 0.049 – 0.073 0.097 32.9 0.062 –15.6
29 17 0.188 – 0.137 0.203 48.2 0.150 9.5

23 31 0.025 10 0.080 0.083 3.8 0.040 –50.5
24 26 0.030 150 0.072 0.068 5.6 0.045 –37.3
25 24 0.076 10 0.161 0.131 –18.6 0.087 –45.9
26 24 0.076 70 0.124 0.128 3.2 0.087 –29.8
27 15 0.139 10 0.213 0.189 –11.3 0.147 –31.0
28 13 0.235 10 0.286 0.230 –19.6 0.150 –47.6

Fig. 8.  a) Eurocode design formulas compared with experimental results, b) Eurocode design formulas compared with the results of the numerical model

Table 2.  Data and results of experiments by Fauchart and Cortini [2], numerical model and Eurocode 2

fc Φ u Experimental Numerical Eurocode 2
Specimen [MPa] [–] mm t/fc t/fc Error [%] t/fc Error [%]

5 20 0.049 10 0.106 0.088 –17.0 0.057 –46.3
6 20 0.049 10 0.085 0.088 3.5 0.057 –33.0
7 20 0.096 10 0.120 0.126 5.0 0.099 –17.3
8 20 0.246 10 0.197 0.206 4.6 0.100 –49.4
9 20 0.047 10 0.104 0.086 –17.3 0.055 –47.0
10 20 0.096 10 0.148 0.126 –14.9 0.099 –32.9
11 20 0.096 10 0.148 0.126 –14.9 0.099 –32.9
12 20 0.191 10 0.208 0.168 –10.6 0.100 –52.2
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Fig. 11 shows the shear capacity as a function of the 
reinforcement for the different specimens. In the calcula-
tions, the reinforcement ratio of the transverse reinforce-
ment is simply varied by adjusting the yield strength of the 
U-bars. The detailed model provides an excellent estimate 
of the capacity of the experiments by Fauchart and Cortini 
[2], as illustrated in Fig. 11a. Likewise, Fig. 11b shows that 
the model gives a reasonable estimate for the specimens 
without transverse reinforcement in Hansen and Olesen 
[5] despite the somewhat scattered data. Figs. 11c and 11d 
clearly illustrate the effect of the reinforcement layout, 
namely, that the shear capacity decreases, even for low 
reinforcement ratios, when the distance between overlap-
ping U-bars increases.

6	 Future work

A detailed model for numerical limit analysis provides 
unique insights into the ultimate behaviour of keyed joints 
and may, in practice, be used to optimize the joint layout, 
i.e. the geometry of shear keys and the positions of over-
lapping U-bars. Such a task is important and relevant for 
producers of precast concrete elements, for whom optimi-
zation of design details is often motivated by the fact that 
any benefits gained will accumulate over time because of 
mass production. On the other hand, for consulting engi-
neers working with the design and calculations of entire 
building structures, it is not feasible to aim for a level of 
detail similar to the model presented in this paper. It is 
simply too time-consuming to work with global models of 
entire structures (e.g. the four-storey shear wall shown in 
Fig. 1) where all joints are modelled in details. In global 

for the reinforcement layout; Figs. 9 and 10 show the dis-
tribution of the lowest principal stresses and the collapse 
modes of the two specimens.

The thick blue lines in Figs. 9a and 10a indicate the 
interface between the precast panels and the joint con-
crete, and the thick red lines indicate the reinforcement, 
i.e. U-bars and locking bar. The deformed reinforcement is 
plotted by interpolating the placement of the nodes in the 
deformed mesh. The reinforcement is indicated in Figs. 9b 
and 10b by thick grey lines.

Hansen and Olesen [5] reported that specimens 23, 25 
and 27 failed by shearing off the keys of the joint concrete, 
whereas for specimens 24 and 26 the core of the joint was 
almost completely destroyed. The numerical model cap-
tures this as illustrated in Figs. 9a and 10a: The keys are 
partially sheared off in specimen 25, whereas specimen 26 
fails due to a diagonal yield zone through the core of the 
joint. Figs. 9b and 10b likewise show that the reinforcement 
layout has a significant influence on the distribution of 
stresses within the joint: The model of specimen 25 shows 
distinct diagonal struts throughout the entire core of the 
joint, but this pattern is disrupted by the reinforcement lay-
out in the model of specimen 26. It should be noted that 
the collapse mode and stress field observed in Fig. 9 are 
similar to the simplified failure mechanism and strut-and-tie 
models shown in Fig. 2. However, this is not the case for 
specimen 26 (Fig. 10), where the large distance between the 
overlapping U-bars alters the load path and collapse mode. 
In both cases the diagonal struts tend to start and end at the 
corners of the shear keys. This indicates that direct strut ac-
tion carries the majority of the load and the shear capacity 
is not that sensitive to the interface friction coefficient.

Fig. 9.  a) Collapse mode and b) lowest principal stress for specimen 25 from Hansen and Olesen [5]

Fig. 10.  a) Collapse mode and b) lowest principal stress for specimen 26 from Hansen and Olesen [5]
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the aim of developing a set of simple design equations that 
will make it possible to account for the effect of the dis-
continuous reinforcement. These design formulas are 
thought of as an extension of the Eurocode formulas.

7	 Conclusions

The mathematical framework for the limit analysis of 
keyed shear joints based on a rigid-plastic material model 
has been presented. A new equilibrium element represent-
ing concrete-concrete interfaces was proposed and a de-
tailed finite element limit analysis model for keyed joints 
between precast concrete panels has been introduced. The 
model is formulated for second-order cone programming 
– a class of convex optimization problems that can be 
solved efficiently using interior point methods. The nu-
merical model has been compared with experimental re-

finite element models, each of the precast wall units 
should only be modelled by using a limited number of the 
aforementioned LST elements in order to reduce compu-
tational memory requirements and CPU time. The conse-
quence of this is that the keyed joints have to be modelled 
by one-dimensional equilibrium elements that are compat-
ible with the LST element. Hence, to enable numerical 
limit analyses of entire structures in the future, it will be 
necessary to develop a one-dimensional element to model 
the keyed shear joints. This is in fact an ongoing task for 
the authors and the primary challenge here is to devise a 
computationally efficient element that is able to reflect 
some of the important features of a keyed shear joint. 
Thus, in this context, the detailed model presented in this 
paper will be used for benchmarking and comparison. Fi-
nally, the authors are currently using the detailed numeri-
cal model to carry out an extensive parameter study with 

Fig. 11.  Capacity curves for various specimens and reinforcement layouts
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where:

(6)

hel	 is the local equilibrium for the basic linear stress 
triangle (see [13], [15]),

qel	 is the generalized nodal forces, i.e. the contribu-
tion to the global equilibrium equations,

σel	 contains 27 stress variables in global coordinates, 
nine for each subelement, and

TC	 transforms the local stress variables at the corners 
to global coordinates, which can be written as

(7)

where n = [nx ny]T is the normal to the subelement bound-
ary through the given corner. Eq. (7) gives the contribu-
tions to TC. At the central node S, equilibrium across the 
boundaries between the subelements gives the following 
equations:

where 1Txy is the stress to traction transformation matrix, 
defined as:

These equations can be organized as a linear system:

(8)

Eq. (8) also implicitly defines T1 and T23 as

So and2 3
S Sββ ββ  can now be written as

and TS (see Eq. (6)), can be defined as follows:
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sults and the design formulas of the Eurocode. A satisfac-
tory correlation between the numerical model and 
experiments was found, with an average error of -4.3 %. The 
model provides a much better estimate of the load-carrying 
capacity than the design formulas of the Eurocode, which 
had an average error of -37.9 %. Most importantly, the 
model also captures the effects of the discontinuous layout 
of the transverse reinforcement. The results show that the 
critical mechanisms and the stress fields within the joint are 
highly dependent on the mutual distance between overlap-
ping U-bars. The approach presented in this paper may be 
beneficial in optimizing the shear key layout at the bounda-
ries of mass-produced precast wall units and the position-
ing of the U-bars in the units.
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Appendix: Enhanced linear stress triangle

The formulation presented here is based on the work of 
Nielsen [26]. The enhanced linear stress triangle incorpo-
rates three subelements, each with a linear stress varia-
tion. Several of the variables can be eliminated, which re-
duces the problem size significantly.

A centre node divides the element into three subele-
ments, as can be seen in Fig. 12, and 1

Sββ  is the stress vec-
tor associated with this centre node. Stress vector bi con-
tains the stress variables associated with corner i and bc  
collects all stress variables at the corners:

The tractions on two opposing boundaries must be in 
equilibrium; thus, only four stress variables are necessary 
to describe the stress state at a corner since they are ex-
pressed in the local coordinates of the subelement bound-
ary. Only the normal stress in the t direction is discontinu-
ous. Equilibrium on the local level can be stated as
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Fig. 12.  Subelements, stress variables and local coordinates systems for 
enhanced plate element (dashed lines indicate subelement boundaries)
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a b s t r a c t

This paper is concerned with the shear capacity of keyed joints reinforced with overlapping U-bar loops
in the transverse direction. The layout of the loop reinforcement affects the capacity and failure mode,
and currently it is not accounted for by standards or previous theoretical work. A multiscale approach
to the issue is proposed: An equilibrium element for finite element limit analysis representing keyed
joints is coupled with a suitable submodel, which handles the complex stress states within the joint.
The submodel is based on several modified stringer models, which makes it possible to account for local
mechanisms in the core of the joint. The element and submodel are validated by comparison to a detailed
model based on finite element limit analysis and experimental data. The joint element and submodel lead
to a small optimisation problem compared to the detailed model and the computational time is reduced
by several magnitudes.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The lateral stability of modern precast concrete buildings is
often ensured by shear walls, i.e. precast wall panels connected
by in-situ cast joints. Horizontal forces, e.g. from wind load or seis-
mic action, are transferred as in-plane forces and the shear capac-
ity of the panels and joints are of the utmost importance. In
practice, the shear capacity of such walls is usually assessed by
analytical lower bound models, e.g. strut-and-tie models or stress
field methods [1,2]. The stress fields are also frequently deter-
mined by use of linear elastic finite element analysis. Naturally,
this practice often leads to suboptimal structures compared to
what can be obtained if the stress fields instead are determined
from a non-linear elastic-plastic analysis. Use of numerical
elastic-plastic analysis to determine stress fields has e.g. been
demonstrated in Refs. [3,4].

The joints between the precast panels are of particular interest
as they are often a critical part of the structure. In-situ cast joints
consist of a concrete core and two interfaces, where the core typi-
cally is reinforced in two directions, and the interfaces typically are
keyed. The shear capacity of the joints and interfaces is in practice
assessed by simple empirical formulas [5] which often gives a con-

servative estimate of the capacity. Several authors have investi-
gated the behaviour of in-situ cast joints. The investigations
cover both experimental testing [see e.g. 6–9] and simplified
mechanical models based on the theory of rigid-plasticity, namely
upper bound solutions based on yield line theory [10,11] and lower
bound solutions based on strut-and-tie models [1,11,12]. The
experiments showed that the geometry of the joint and the rein-
forcement layout affect the shear capacity as well as the collapse
mode, but the analytical methods have only been able to capture
the observed behaviour to a certain extent. Local failure mecha-
nisms caused by the reinforcement layout, however, have not been
investigated using analytical methods. Investigations using numer-
ical tools, e.g. finite element method or similar, have focused on
single key joints often used in precast concrete segmental bridges
[13,14]. These investigations have primarily been carried out by
use of non-linear finite element analysis. This approach is compu-
tationally heavy, especially when considering the fact that the ulti-
mate load carrying capacity is the result of main interest.

Herfelt et al. [15] presented a detailed model for keyed joints
based on finite element limit analysis. The model was based on a
lower bound formulation and the analysis yielded a statically
admissible stress field. Moreover, the solution to the dual problem,
i.e. the corresponding kinematic problem, was interpreted as the
failure mode. The detailed model used triangular plane stress ele-
ments [16] representing the concrete, bar elements [16] represent-
ing the reinforcement, and an interface elements representing the

http://dx.doi.org/10.1016/j.engstruct.2016.12.054
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concrete-to-concrete interfaces. It was shown that the model could
represent the complex stress states within the joint and captured
the local failure mechanisms to a satisfactory degree; however,
for practical design it is not feasible to use that level of detail.
Fig. 1 shows a four storey wall comprising several precast panels
connected by in-situ cast joints. As indicated in the figure, plane
stress elements may be used to model the precast panels, while a
special joint element is needed for the joints.

This paper presents a lower bound equilibrium element repre-
senting the in-situ cast joints. The element is designed for interac-
tion with the triangular plane stress element [16] and interface
elements [15]. The scope is to be able to model entire wall systems,
e.g. the four storey wall seen in Fig. 1. The joint element requires a
suitable yield criterion which can capture the critical mechanisms
identified by the detailed model [15], and for this purpose, a semi-
analytical submodel yield criterion based on the stringer method is
developed. The joint element and submodel fit the format of
second-order cone programming, and the developed model is com-
pared to the detailed model [15] as well as experimental data [6,7].
The proposed multiscale model captures the behaviour of the
detailed model as well as the specimens.

2. Problem formulation

Finite element limit analysis can be considered as a special case
of the general finite element method: It is based on the extremum
principles for rigid-plastic materials [see e.g. 1,17,18] and deploys
a mesh discretisation known from the finite element method.
Anderheggen and Knöpfel [19] presented a general formulation
as well as equilibrium elements for solids and plates. Since the
1970s several authors have contributed to the method see e.g.
[16,20,21]. Finite element limit analysis is a direct method, where
the ultimate load is determined in a single step, which is a signif-
icant advantage over non-linear finite element methods for practi-
cal applications. Moreover, when modelling concrete structures,
there is no need to consider any tensile strength to avoid problems
related to numerical stability. From the lower bound formulation,
the stress field is determined. Associated with the lower bound
problem is a so-called dual problem, and the solution to this dual
problem can be interpreted as the displacement field and plastic
strain. Since we are dealing with a rigid plastic material model,
no information on the magnitude of the strains and displacements
are determined; only the directions. When the method is applied
to structural concrete, it is necessary to operate with effective
strength parameters (via the so-called effectiveness factors) to
account for the limited ductility of concrete as well as the reduc-
tion of the compressive strength as a result of cracking and tension
strains transverse to compressive stress fields. In practice, the
effective strength parameters have to be found by calibration of
calculations with results of tests on structural components.

Numerical lower bound limit analysis is formulated as an opti-
misation problem where the scope is to maximise a load factor k.
The analysis determines a statically admissible stress, i.e. a stress
field which satisfies equilibrium and does not violate the yield cri-
teria in any points. The general problem can be stated as [16,22]:

maximise k

subject to Hb ¼ Rkþ R0

f ðbiÞ 6 0; i ¼ 1;2; . . . ;m
ð1Þ

The load acting on the model consists of a constant part R0 and a
scalable part Rk. The linear equality constraints ensure equilibrium
while the functions f ðbiÞ 6 0 ensure that the stress filed does not
violate the yield criteria. H is the global equilibrium matrix, and b

is the stress vector. m is the number of check points for the yield

function, f, which is generally convex, but non-linear; thus, (1) rep-
resents a convex optimisation problem.

In this work, the optimisation problem (1) will be a second-
order cone program (SOCP). Second-order cone programming as
well as semidefinite programming have been used in the field of
finite element limit analysis for more than a decade, see e.g. Refs.
[23–25]. Expanding the yield functions f, (1) can be restated as:

maximise k

subject to Hb ¼ Rkþ R0

Cbbþ Caaþ Ccc ¼ C0

Ebbþ Eaaþ Ecc 6 E0

ci 2 Qki ; i ¼ 1;2; . . . ;m

ð2Þ

where a and c are problem variables associated with the yield func-
tions, and the C and E matrices define the necessary linear equali-
ties and inequalities for the chosen yield criterion. The variables
ci, associated with the ith check point for the stresses, are in a quad-
ratic cone Qki of size ki, defined as:

Qk ¼ xjx 2 Rk; x1 P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ � � � þ x2k

q� �
ð3Þ

The problem (2) can be solved efficiently using interior point algo-
rithm, and in this work the commercial solver MOSEK [26] is used.
The reader is referred to Refs. [27–30] for a detailed description of
SOCP and interior point solvers.

On the element level, the equilibrium equations and yield func-
tions can be stated as:

helbel ¼ qel

Cel;i
b bel þ Cel;i

a ai þ Cel;i
c ci ¼ Cel;i

0 ; i ¼ 1;2; . . . ;mel

Eel;i
b bel þ Eel;i

a ai þ Eel;i
c ci 6 Eel;i

0 ; i ¼ 1;2; . . . ;mel

ci 2 Qki ; i ¼ 1;2; . . . ;mel

ð4Þ

qel is the contributions to the equilibrium equations on the global
level, bel is the stress variables of the given element, and hel is the

element equilibrium matrix. The matrices Cel;i and Eel;i define the
yield function for the mel check points of the element. Similarly to
(2), the variables denoted ci are required to be in a quadratic cone
Qki of size ki.

3. Keyed joints and detailed numerical model

A keyed joint reinforced with loop reinforcement (U-bars) and a
locking bar is considered. Fig. 2 shows the basic geometry and a
unit section (dashed rectangle) which will form the foundation of
the submodel yield criterion. The thick vertical lines seen in
Fig. 2 represent the loop reinforcement, while the horizontal solid
line represents the locking bar. The length of keyed joints in prac-
tice usually ranges from a single storey height to the height of the
entire building, while the width b and thickness t usually are below
200 mm.

For the detailed numerical model presented by Herfelt et al.
[15], several thousand plane stress elements were necessary to
capture the local mechanisms and stress fields developed in the
core of the joint. The model was loaded such that the centre line
of the joint would be subjected to pure shear, i.e. no bending.
The concrete is modelled as a Mohr-Coulomb material, while a
simple linear criterion is used for the rebars. For the interface, a
Coulomb friction model is assumed. The model assumed plane
stress state, thus, the confinement provided by the reinforcement
loops and general triaxial stress states were disregarded.

Fig. 3(a) shows an example of the collapse mode determined by
the aforementioned detailed model [15] using the solution to the
dual problem, i.e. the corresponding kinematic problem. The inter-
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preted velocities are associated with the equilibrium equations,
hence, each element edge moves independently. The blue lines
indicate the interface between the joint and the precast panels,
while the red1 lines indicate the reinforcement. The critical mecha-
nism features a diagonal yield line through the core of the joint.
Fig. 3(b) shows the lowest principal stress. The reinforcement is indi-
cated by gray lines and it is observed that large compressive stresses
are present in the area between the vertical U-bars. This also shows
that the reinforcement layout has a significant effect on the capacity

and failure mode of the joint [15]. The detailed model [15] will be
used for comparison in the following analysis.

4. Joint equilibrium element

An equilibrium element representing in-situ cast joints is
needed for practical modelling of precast concrete structures. The
joint element will dictate the distribution and transfer of stresses
through the joint. The element is formulated to be compatible with
the plane stress element [16], see in Fig. 4.

The plane stress triangle has a linear stress field defined by the
three stress vectors in the corners. Equilibrium of tractions along

Precast wall panel modelled
with triangular plate elements.

In-situ cast joints mod-
elled with joint elements.

Detail of joint
layout.

Fig. 1. Four storey wall subjected to horizontal forces: The wall consists of 12 precast panels connected by joints. An example of a mesh (discretisation) for numerical analysis
is seen for the top right panel.

Precast panel

Precast panel

U-bars

Locking bar

n

t u
b

d

o

h2h1

s t

Fig. 2. Elevation and cross section of a basic design of a keyed joint reinforced with U-bars.

(a)

σ 2 [M
P

a]

−20

−15

−10

−5

0

(b)

Fig. 3. Detailed numerical model [15] for specimen 26 by Hansen and Olesen [6]: Collapse mode (a) and lowest principal stress (b).

1 For interpretation of color in Fig. 3, the reader is referred to the web version of
this article.
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the element boundaries means that the joint element requires a
linear variation of the shear stress and transverse normal stress,
which again leads to a quadratic variation of the longitudinal nor-
mal stress, see Fig. 5(b).

Fig. 5 shows the joint element. Length and orientation of the
element are defined by the two end nodes seen in the figure. The
element has 9 stress parameters and contributes to 12 equilibrium
equation on the global level. Equilibrium for the element can be
stated as:

qel ¼ hel bel ð5Þ

where bel is the element stress vector, qel contains the 12 nodal
forces seen in Fig. 5(b), and hel is the local equilibrium matrix.
The stress variables are given in local coordinates; thus, no transfor-
mations are necessary when establishing hel. bel;qel, and hel are
explicitly given in (6):

The equilibrium matrix and generalised nodal force vector can be
split into three parts; one for the positive side of the joint (denoted
qþ), one for the negative side of the joint (denoted q�), and one for
the nodal forces in the longitudinal direction (denoted qN). It is
assumed that the transverse normal stress (n-direction) is trans-
ferred directly through the joint, while the shear stress can be used
to build up an axial force in the longitudinal direction.

Each point along the joint element has a stress state defined by
four stress parameters, namely rn;rt ; sþ, and s�, which passed on
and checked against the appropriate model on the submodel level.

5. Submodel yield criterion

The stresses on the element level need to satisfy the submodel
yield criterion on the joint section scale. The submodel yield

criterion is in itself a small optimisation problem, and equilibrium
of the submodel is ensured by stress fields that are determined by
using a variation of the stringer method [see e.g. 1,31].

The scope of the submodel yield criterion is to capture the crit-
ical mechanisms within the joint, and three modified stringer mod-
els are introduced for this purpose. The submodel is based on a unit
joint section (see the dashed rectangle in Fig. 2) which is subjected
to shear as well as axial forces in two directions. Fig. 6 shows the
unit joint section and the three modified stringer models which
compose the submodel yield criterion. Each of the three modified
stringer models imposes certain constraints on the stress distribu-
tion in the joint and represents a basic state of stresses. These
stress states are then added together to obtain the actual stress
state of the combined model, which is checked against the chosen
yield criteria to ensure a safe solution.

The geometry of the loop reinforcement will necessarily lead to
a local, triaxial stress state in the joint; however, we have chosen to
neglect this effect and assume plane stress. This assumption will –
for the typical combinations of loop diameters, rebar diameters,
and rebar strengths – lead to a lower shear capacity, and the joint
element and submodel may underestimate the capacity in some
cases.

5.1. Equilibrium of the submodel

In order to transfer tension or to establish confinement pressure
on the joint, it is necessary to mobilise the loop reinforcement.
Tension in the loop reinforcement will introduce shear in the cen-
tre row of panels, see Fig. 6(b). Based on moment equilibrium, the
following relations must hold true:

s21 ¼ V
ot

¼ u
s
T
ot

; s22 ¼ u
s
� 1

� � T
ot

ð7Þ

Moreover, from the antisymmetric model it can be concluded that
s21 ¼ s23. The stringer force V seen in Fig. 6(b) will be balanced
out by an adjacent joint element.

The horizontal boundaries may be subjected to shear stresses of
different magnitudes, which leads to a linear varying normal force
in the central stringer seen in Fig. 6(c). A rather simple stringer
model is used to describe this behaviour, and the shear stresses
in panels 1 and 3, Fig. 6(c), can be stated as:

s1 ¼ sþ; s3 ¼ s� ð8Þ
The locking bar (see Fig. 2) functions as the central stringer.

Horizontal equilibrium for the stringer forces of the central stringer
and two shear forces gives the following relation:

Fþ
lt � F�

lt ¼ s t s1 � s3ð Þ ð9Þ

Side 3

Side 1

Side 2

β1

β2

β3

q21τ

q21σ

q31τ

q31σq32τ

q32σ

q12τ

q12σ

q13τ
q13σ

q23τ
q23σ

qx

qy

y

xz

Fig. 4. Generalised nodal forces and stress variables of the plane stress triangle
(adapted from [16]).

ð6Þ
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Shear panels 1 and 3, Fig. 6(c), overlap the three panels from the
first stringer model, Fig. 6(b), and the resulting stresses can be
determined by simply adding the stress states.

The shear panels need confinement pressure in order to carry
shear stresses. The confinement pressure may originate from
externally applied loads on the unit joint section, or from stresses
developed to create internal equilibrium with the tensile forces in
the loop reinforcement or locking bar. The stringer model for trans-
fer of compression, see Fig. 6(d), dictates how compressive loads
are transferred through the joint. Equilibrium is required for the
horizontal boundaries of the unit joint section; the transverse nor-
mal stress rn is balanced by the stringer forces T and V as well as
the confinement pressure:

s trn ¼ T � V � s� u
2

t ðrn1 þ rn3Þ � utrn2 ð10Þ

and similarly for the horizontal forces:

Fþ
t ¼ Fþ

lt � 2Ft � b� o
2

t ðrþ
t1 þ rþ

t3Þ � otrþ
t2

F�
t ¼ F�

lt � 2Ft � b� o
2

t ðr�
t1 þ r�

t3Þ � otr�
t2

ð11Þ

The shear stress will be symmetric about the vertical center line of
the unit joint section; hence, the confinement pressure in the
n-direction will be symmetric as well, i.e. rn1 ¼ rn3. Moreover, for
simplicity we assume the same for the confinement in the
t-direction, why may lower the shear capacity in cases where
sþ – s�.

5.2. Yield conditions for the submodel components

The actual stress states in the panels and stringers are obtained
by adding the stress states of the three stringer models, see Fig. 6
(b)-(d). The actual shear stress in-between the two U-bars will
e.g. be given as the sum of s1 and s22. The obtained stress states
are required to satisfy the appropriate yield criteria as discussed
in this section.

The loop reinforcement and locking bar carry tensile stringer
forces, which are limited by the yield strength of the reinforce-
ment. Moreover, we assume that the reinforcement only carries
tension, thus, the yield criteria can be stated as:

0 6 T 6 Asuf Yu
0 6 Fþ

lt 6 Aslf Yl
0 6 F�

lt 6 Aslf Yl

ð12Þ

where Asu and Asl are the cross sectional areas of the loop reinforce-
ment and locking bar, respectively, and f Yu and f Yl are the yield
strengths.

The horizontal stringers seen in the stringer model for trans-
verse tension, Fig. 6(b), are so-called compression stringers with-
out any reinforcement to carry tensile forces. The force Ft in
Fig. 7 ensures that the stringer force is non-positive. The criterion
can be written as a linear inequality:

�Ft þ s21
s� u
2

t 6 0 ð13Þ

Finally, the shear panels need an adequate yield criterion. The
stress state in each panel is described by two normal stresses
and a shear stress. We use the Mohr-Coulomb yield criterion for
plane stress with a tension cut-off which is given as follows in
principal stresses:

r1 6 f t
kr1 � r2 6 f c
� r2 6 f c

ð14Þ

where f t is the uniaxial tensile strength of the joint concrete, and f c
is the effective uniaxial compressive strength. k is a friction param-
eter defined as

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

q
þ l

� �2

with l ¼ tan h, where h is the angle of internal friction. For mono-
lithic concrete, h is usually taken as 37�, which corresponds to
k ¼ 4. r1 and r2 are the largest and smallest principal stresses,
respectively, given as:

r1

r2

�
¼ rn þ rt

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rn � rt

2

� �2
þ s2nt

r
ð15Þ

Introducing

pm ¼ �rn þ rt

2
; rd ¼ rn � rt

2
; u P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

d þ s2nt
q

; ð16Þ

the principal stresses can now be written as:

r1 6 �pm þu
�r2 6 pm þu

and the Mohr-Coulomb criterion (14) can be stated as:

1

2τ−
1

τ+
1

τ−
2

τ+
2

σt1, σn1

σt2, σn2
σt3

le

t

n

(a)

q−τ1
q−σ1 q−τ2

q−σ2

q+τ1

q+σ1

q+τ2

q+σ2

qp1
qp2

qN1

qN2

Plane stress el.

Plane stress el.

(b)

Fig. 5. (a) Geometry, local coordinate system, and stress variables of the joint element. (b) Nodal forces of the joint element and interaction with the plane stress elements.
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Unit joint section.

(b) τ22 τ23τ21

T

T V

V
Ft

Ft

Ft

Ft

(s− u)/2 (s− u)/2u

o
Stringer model for transfer of
transverse tension across joint.

(c)
τ1

τ3

F+
lt F−
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τ+

τ−

s

b
b/2

b/2
Stringer model for shear trans-
fer across joint.

(d)

σn1
σn2 σn3

σn1 σn2
σn3

σ+
t1

σ+
t2

σ+
t3

σ−
t1

σ−
t2

σ−
t3

o b

s

Model for transfer of compres-
sion across joint.

Fig. 6. Unit joint section and the three stringer models: The behaviour of the unit joint section is divided into three main mechanisms, namely transverse tension, shear, and
compression.

Ft Ft
τ21 τ21τ22

−Ft −Ft

−Ft + τ21 t
s− u

2
−Ft − τ21 t

s− u

2

(s− u)/2 u (s− u)/2

Fig. 7. Compression stringer, confinement pressure Ft , and stringer force distribution.
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� pm þu 6 f t
ð1� kÞpm þ ðkþ 1Þu 6 f c
pm þu 6 f c

ð17Þ

The yield criterion fits the format of second-order cone program-
ming since the definition of u (16) is a quadratic cone, see Eq. (3),
while the three constrains in (17) as well as the definitions of pm

and rd (16) are linear.

6. Analysis and discussion

6.1. Model

In the following, the results obtained using a single joint ele-
ment with the submodel yield criterion will be compared to the
results of detailed model [15]. The shear load sought to be max-
imised is applied as on both sides of the joint element, see
qþ
s1; q

�
s1; q

þ
s2, and q�

s2 in Fig. 5(b), and no normal forces are intro-
duced via the external loading, see Fig. 8.

In practice, the keys near the ends of the joint are used to estab-
lish a compressive force in the longitudinal direction, which
increase the shear capacity. In order to simulate this behaviour
using a single joint element both ends are supported, i.e. equilib-
rium is not required for the generalised nodal forces qN1 and qN2,
see Fig. 5. The detailed model [15] and the experiments are sub-
jected to these boundary conditions at the ends, and the single
joint element may overestimate the capacity slightly due to this
choice of supports.

Two interface elements [15] on either side of the joint element
is used to simulate the keyed interface. The interfaces require two
material parameters, namely cohesion and friction coefficients,
which are fitted to the curve of the detailed model. The magnitude
of the cohesion depends on the geometry of the keys as well as the
reinforcement layout.

For the analysis, an efficiency factor of m ¼ 1 has been used, i.e.
no reduction in the compressive strength. This is due to the fact
that the primary load carrying mechanisms is direct strut action
(as found in the detailed numerical mode [15]) with very deep
strut inclination. m ¼ 1 was also adopted by Nielsen and Hoang
[1] and Herfelt et al. [15].

6.2. Analysis

The calculations have been carried out using the geometry and
layout of the tests by Hansen and Olesen [6] and Fauchart and Cor-
tini [7]. The normalised shear capacity is plotted as a function of
the mechanical reinforcement ratio, which we define as:

U ¼
P

Asuf Yu
t l f c

ð18Þ

where Asu is the cross sectional area of the U-bars, t is the thickness
of the joint (see Fig. 2), and l is the total length of the considered
joint.

Hansen and Olesen [6] investigated the behaviour of keyed
joints with different reinforcement layouts. Some of the specimens
featured a significant distance between the U-bars (see Fig. 9) and
yielded a lower shear capacity compared to other experiments
with similar reinforcement ratios. Moreover, Hansen and Olesen
[6] reported that the concrete core of the specimens was com-
pletely destroyed at failure. A friction coefficient of l ¼ 0:6 is used
for all specimens by Hansen and Olesen [6], while l ¼ 0:75 is used
for the experiments by Fauchart and Cortini [7]. The cohesion coef-
ficient varies between 1 and 2 MPa.

The specimens seen in Fig. 9 have a length of l ¼ 1200 mm, a
width of b ¼ 50 mm, an overlap of o ¼ 30 mm, and 14 keys total.
The keys have a depth of 6 mm, a length of h2 ¼ 40 mm, and a
spacing of h1 ¼ 40 mm (see Fig. 2). As seen in Fig. 9, the two spec-
imens featured a significant distance between the loop reinforce-
ment, while the U-bars were placed with a mutual distance of
10 mm for the remaining specimens by Hansen and Olesen [6].
For specimens 24 and 26, the results are illustrated as a function
of the reinforcement degree in Fig. 10, and the results for all spec-
imens [6,7] are shown in Fig. 11 and listed in Tables 1 and 2.

The cohesion is taken as c ¼ 1:60 MPa for specimen 24 and
c ¼ 1:90 MPa for specimen 26. Fig. 10 shows that the joint element
can capture the same behaviour as the detailed model. The plane
interface elements can represent the same behaviour as keyed
interfaces of the detailed model and the experiments, while the
submodel yield criterion predicts an excellent estimate of the pla-
teau, i.e. the upper limit for shear capacity. The joint element over-
estimates the capacity of specimen 24 slightly compared to the
detailed model, which may be due to the choice of supports.

Fig. 11 shows the results of the joint element with the submodel
yield criterion plotted against the results of the detailed model and
the experimental results. Again, the single joint element predicts a
satisfactory estimate of the load carrying capacity; only a negligi-
ble difference is observed in Fig. 11(a). The joint element predicts
a slightly larger shear capacity than the detailed model for some
of the experiments, which may be due to the assumptions regard-
ing the supports. Fig. 11(b) shows that the joint element gives sat-
isfactory results compared to experimental data.

It has been shown that the multiscale joint model captures the
same behaviour as the detailed model and predicts an excellent
estimate of the shear capacity. In this context, it should be men-
tioned that the multiscale formulation leads to a small optimisa-
tion problem which can be solved in a fraction of a second. For
the detailed model, on the other hand, CPU time and problem size
are several magnitudes larger as seen in Table 3. The computa-
tional time shown in Table 3 is the average of 10 runs. The perfor-
mance is tested on a desktop computer with 12 GB RAM memory
and an Intel Xeon CPU W3565 with 8 CPUs and 3.2 GHz clock fre-
quency. The optimisation is performed in MatLab using the com-
mercial solver MOSEK [26]. Based on the required computational
time, it is evident that in practice, the joint element model has to
be used if entire precast concrete structures should be modelled
and analysed within the limited time frame that usually is avail-
able in real design projects.

Joint element

Fig. 8. Model for the analysis including supports and loading. The dashed lines
indicates the interface elements representing the keyed interface.

170 150

(a) Wall Joint: Specimen 24

90 70

(b) Wall Joint: Specimen 26

Fig. 9. The two specimens with a significant distance between the U-bars tested by Hansen and Olesen [6], measurements in millimetres.
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Fig. 10. Comparison of results obtained by the joint element and the detailed model using several thousand elements. Experimental results for specimens 24 (a) and 26 (b) by
[6].
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Fig. 11. Analysis using the proposed joint element: (a) Comparison with the detailed model [15], (b) comparison with experimental results [6,7].

Table 1
Data and results of experiments by Hansen and Olesen [6], the numerical model [15], and the proposed joint element.

Specimen f c U u Experimental Detailed Joint element
[MPa] [–] [mm] s=f c s=f c s=f c

01 29 0.013 – 0.064 0.053 0.054
02 32 0.030 – 0.095 0.079 0.079
03 32 0.055 – 0.105 0.102 0.101
04 16 0.061 – 0.087 0.107 0.106
05 53 0.018 – 0.068 0.064 0.063
12 25 0.043 – 0.140 0.092 0.092
13 23 0.095 – 0.146 0.133 0.131
14 25 0.039 – 0.099 0.088 0.089
18 27 0.049 – 0.073 0.097 0.097
29 17 0.188 – 0.137 0.203 0.201

23 31 0.025 10 0.080 0.083 0.075
24 26 0.030 150 0.072 0.068 0.074
25 24 0.076 10 0.161 0.131 0.126
26 24 0.076 70 0.124 0.128 0.126
27 15 0.139 10 0.213 0.189 0.193
28 13 0.235 10 0.286 0.230 0.242
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7. Conclusion

An equilibrium joint element for modelling of keyed shear
joints has been presented. The scope of the joint element is to be
able to assess the strength of shear walls in precast concrete build-
ings, which is highly dependent on the shear capacity of in-situ
cast joints. The main purpose of these joints is to transfer shear,
which is done by mobilising the reinforcement, i.e. loop reinforce-
ment and locking bar. The reinforcement layout, however, may
introduce local mechanisms inside the concrete core of the joint.
A multiscale approach to this problem is taken, and a equilibrium
joint element as well as submodel yield criterion have been
proposed.

Three modified stringer models form the basis of the submodel.
The resulting stress states are obtained by adding the stress states
of the three stringer models, which are checked against a suitable
yield condition. The submodel is formulated for second-order cone
programming, which can be solved efficiently using interior point
methods.

The joint element and submodel are validated by comparison to
a detailed numerical model based on finite element limit analysis.
Excellent agreement between the two models is found, and the
joint element captures the same behaviour as the detailed model.
The joint element also predicts a satisfactory estimate of the shear
capacity when compared to experimental data. The results
obtained from the joint element are generally satisfactory, and
the fact that the joint element only poses a small mathematical
problem, which can be solved in a fraction of a second, makes it
more relevant for practical applications than the detailed model
presented in [15]. It can be concluded that the proposed multiscale
model makes it possible to model real size precast structures while
accounting for the complex behaviour of the in-situ cast joints.
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Table 2
Data and results of experiments by Fauchart and Cortini [7], the numerical model [15], and the proposed joint element.

Specimen f c U u Experimental Detailed Joint element
[MPa] [–] [mm] s=f c s=f c s=f c

5 20 0.049 10 0.106 0.088 0.087
6 20 0.049 10 0.085 0.088 0.087
7 20 0.096 10 0.120 0.126 0.112
8 20 0.246 10 0.197 0.206 0.235
9 20 0.047 10 0.104 0.086 0.085
10 20 0.096 10 0.148 0.126 0.122
11 20 0.096 10 0.148 0.126 0.122
12 20 0.191 10 0.208 0.186 0.193

Table 3
Comparison of problem data for the joint element and detailed model.

Joint element Detailed model [15]

Number of equilibrium elements 3 20,024
Number of variables 302 1,364,509
Number of linear constraints 388 1,305,890
Number of conic constraints 44 134,472
Optimisation time 0.022 s 97.89 s
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In-plane action is often the primary load carrying mechanism of reinforced concrete structures. The plate bending

action will be secondary, and the behaviour of the structure can be modelled with a reasonable accuracy using

a generalised plane stress element for three-dimensions. In this paper, the formulation of such element is given

and the Mohr-Coulomb and von Mises criteria are presented for second-order cone programming. Three examples of

increasing complexity are used to analyse the performance of the element and the convergence rate and demonstrate

the potential of the proposed element.

1. Introduction

The lateral stability of reinforced concrete structures is often

ensured by shear walls. The horizontal loads, e.g. wind or seismic

loads, are transferred as in-plane forces via the concrete slabs and

the shear walls to the foundations of the structure. The in-plane

forces are transferred as shear between the slabs and shear walls

as well as in-between shear walls. The transverse forces acting on

the slabs and facades are in this regard secondary to the in-plane

forces. It is crucial to the overall capacity of the structure that the

analysis considers the structural system as a single unit: If the shear

walls are analysed individually, a significant portion of the strength

is neglected, see Fig. 1.

Practical design and analysis of reinforced concrete structures in the

ultimate limit state often requires consideration of plastic material

behaviour. This material behaviour can be incorporated in the

analysis by use of either simplified models, e.g. rigid-plasticity

(see e.g. Drucker et al., 1952; Prager, 1952), or more advanced

model which may include hardening, softening, etc. The latter

can be implemented in numerical frameworks, e.g. finite element

x

y
z

Figure 1. Shear wall subjected to a shear force: The transverse
wall increases the capacity of the structure.

analysis, and provides the most accurate results compared to the

simplified material models. While the advanced models can model

the observed material behaviour to a reasonable degree, it is often

difficult to obtain the required material parameters for the models.

Models based on the theory of rigid-plasticity have been used

for almost a century to assess the capacity of concrete structures

(Ingerslev, 1921; Nielsen and Hoang, 2010). The rather crude

material model leads to an elegant framework known as limit

analysis in which several methods have been developed e.g.

homogeneous stress triangles (Nielsen, 1971), the yield line method

(Johansen, 1962), and stress field methods (Muttoni et al., 1997).

Prepared using PICEAuth.cls [Version: 2014/10/10 v1.00] 1



Proceedings of the Institution of Civil Engineers Lower bound plane stress element for

modelling of 3D structures

Herfelt et al.

The methods can be classified as either upper bound methods,

where a kinematically admissible displacement field is determined,

or as lower bound methods, where a statically admissible stress

field is determined. In practice, manual upper bound and lower

bound methods are still widely used to assess the capacity in the

ultimate limit state. The accuracy of the calculations, however, is

very dependent on the skill and intuition of the individual structural

engineer. For complex structures, the results may be far from the

actual capacity.

Finite element limit analysis is the numerical counterpart of manual

limit analysis. The method is a special case of the general finite

element method and assumes a rigid-plastic material behaviour.

Like manual limit analysis, finite element limit analysis can be

formulated either as lower bound, upper bound problems, or mixed

problems (which are often more accurate than the strict upper

and lower bound problems). Anderheggen and Knöpfel (1972)

presented the general framework as well as finite elements for

both solids and plate bending. The mathematical problem of finite

element limit analysis is formulated as a convex optimisation

problem which can be solved remarkably efficiently using state-of-

the-art solvers.

Several authors have treated plane stress and plane strain

elements (see e.g. Sloan, 1988; Poulsen and Damkilde, 2000;

Makrodimopoulos and Martin, 2006, 2007). Plane strain elements,

however, have received most of the attention as they are used in

geotechnical engineering. More recently, meshless methods have

been presented as an alternative to the classical finite element

version of limit analysis (Smith et al., 2014). Adaptive meshing has

a major potential for finite element limit analysis as displayed by

Lyamin et al. (2005) amongst others. Numerical limit analysis of

concrete structures have not received the same amount of attention,

but there have nevertheless been some attempts at treating three-

dimensional concrete structures within the framework of finite

element limit analysis (Larsen, 2010).

This paper will present the basic mathematical formulation of finite

element limit analysis, namely lower bound load optimisation. A

brief introduction to second-order cone programming (SOCP) is

given and solution strategies will be presented.

The basic lower bound plane stress element is generalised to

three-dimensions, which will make it possible to model the load

carrying systems of modern concrete buildings in a simple manner

while disregarding the plate bending behaviour. For reinforced

concrete, the proposed element will use the Mohr-Coulomb yield

criterion, which can be cast as second-order cones, hence, the final

optimisation problem will be a second-order cone program. Three

examples will be presented: The first example will be used to

validate the implementation and analyse the convergence rate of

the element, while the second and third examples will demonstrate

the use and strength of the proposed element.

2. Convex optimisation and limit analysis

2.1. Convex optimisation

Convex optimisation problems, also known as convex programs,

can be found within several engineering applications, e.g. antenna

ray weight design and truss optimisation (Lobo et al., 1998). The

main advantage of convex optimisation is that any optimum will be

the global optimum, hence, the class of problems can be solved

efficiently using gradient based methods. For general non-linear

optimisation problems, several local extrema may exist making it

practically impossible to ensure that the found solution is the global

extremum. For plane problems in finite element limit analysis,

second-order cone programming is often used as the commonly

used yield functions can be represented exact using second-order

constraints (Bisbos and Pardalos, 2007).

Second-order cone programs are non-linear convex optimisation

problems, where a linear objective function is minimised over the

intersection of an affine set and the Cartesian product of second-

order cones (Andersen et al., 2003). The standard form of SOCP

can be stated as:

(1)

minimise gTx

subject to Ax = b,

x ∈ Q

where x is the problem variables. The matrix, A, and two vectors,

b and g, define the linear constraints and objective function of

the optimisation problem. The notation, x ∈ Q, indicates that the

vector x should be in the Cartesian product of second-order cones,

i.e.:

(2) x ∈ Q ⇔ x1 ∈ Qm1 , xx2 ∈ Qm2 , . . . , xq ∈ Qmq

where xi are subvectors of x and Qmi is a quadratic cone of size

mi. All second-order cone programs can be recast to fit the standard

form (1) by e.g. adding slack variables. The simplest quadratic cone

is the second-order cone also known as the Lorentz cone, which can
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be stated as the following set:

(3) Q :=

{
x ∈ Rn : x21 ≥

n∑

i=2

x2i , x1 ≥ 0

}

All quadratic cones can be transformed to the second-order cone

(3).

SOCP can be solved efficiently by interior point methods, a class of

algorithms developed from the polynomial time algorithm proposed

by Karmarkar (1984). Interior point methods are based on a steepest

descend approach, and in state-of-the-art solvers the Karush-Kuhn-

Tucker (KKT) conditions of the original optimisation problem is

embedded in a slightly larger model, a so-called homogeneous

model (see e.g. Nesterov et al., 1999; Sturm, 1997), which makes it

possible to easily detect primal and dual infeasibility as well as ill-

posed problems. The homogeneous model is solved using Newton’s

method, however, the step size is restricted to very small steps.

Nesterov-Todd scaling (see Nesterov and Todd, 1997) is used to

facilitate longer steps, and the search direction is computed in a

scale space where it is uniquely defined.

Modern solvers are capable of solving large scale optimisation

problems with hundreds of thousands variables and constraints in

a matter of minutes on a standard laptop due to the polynomial

time complexity of the algorithm. Large scale finite element limit

analysis problems will be extremely sparse, which can be exploited

by solvers to reduce the time complexity to near linear. This a

major advantage over non-linear finite element analysis, which

often requires much longer computational times. For an in-depth

description of convex optimisation and state-of-the-art solvers, the

reader is referred to Boyd and Vandenberghe (2004), Andersen

et al. (2003), and Terlaky (2013).

2.2. Lower bound limit analysis

The scope of lower bound limit analysis is to maximise the variable

load acting on the structure while ensuring a statically admissible

stress field, i.e. a stress field which satisfy equilibrium and does not

violate the yield criterion in any point. The objective function of

the optimisation problem is the load factor, λ, which is sought to be

maximised.

Every optimisation problem has a so-called dual problem, which is

linked to the original (primal) problem via the Lagrange function

and KKT conditions. The dual problem of lower bound limit

analysis is the corresponding kinematic problem. The primal and

dual problems are solved simultaneously, and while the solution

to the lower bound problem yields a statically admissible stress

field, the solution to the corresponding kinematic problem can be

interpreted as the collapse mode.

The mathematical problem of lower bound load optimisation can be

derived from the virtual work equation and can be stated as follows:

(4)

maximise λ

subject to BTσ = pλ+ p0

f(σi) ≤ 0, i = 1, 2, . . . ,m

The linear equilibrium equations and yield criteria ensure a

statically admissible stress field while the load factor λ is

maximised. The structure is subject to a load composed by

a fixed part, p0, and a scalable part, pλ. BT is the global

equilibrium matrix and σ is the stress vector. The yield function

f is generally non-linear, but convex, hence, the problem (4) is

a convex optimisation problem. For plane problems, the Mohr-

Coulomb criterion with a tension cut-off can be cast as second-order

cones. Second-order cone programming have been used for more

than a decade in the field of finite element limit analysis (Bisbos and

Pardalos, 2007; Krabbenhøft et al., 2007; Makrodimopoulos and

Martin, 2007) and can be considered as an established technology

at this point.

Assuming that the yield function f can be represented by linear and

second-order constraints, the problem (4) can be expanded to obtain

the following form:

(5)

maximise λ

subject to BTσ = pλ+ p0

Cββ + Cαα+ Cγγ = C0

Eσβ + Eαα+ Eγγ ≤ E0

γi ∈ Qki , i = 1, 2, . . . ,m,

where Cσ , Cα, and Cγ are matrices associated with the linear

equality constraints for the yield function, while the matrices, Eσ ,

Eα, and Eγ , define the linear inequality constraints. The two

vectors C0 and E0 typically contain material parameters. The

variable vectors, α and γ, contain the auxiliary variables used

for the yield function, whereas γ is used for the second-order

constrains: The vector γi is a subset of γ associated with the ith

checkpoint which is required to be in a quadratic cone Qki of size

ki. The scalar m is the number of checkpoints.
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3. Finite element formulation

3.1. Lower bound plane stress element

The geometry of the element is defined by three corner nodes. A

linear stress field is chosen for the element, and a set of stress

variables which describe a plane stress state is associated with each

of the three nodes. The stresses of the element are given in the local

coordinate system of the element. The element stress vector is given

as

(6) σel =




σ1

σ2

σ3


 ,

where σi is the set of stress variables associated with the ith node,

(7) σi =




σix

σiy

τ ixy




The element requires a total of nine variables to describe the linear

stress field.

x

y

z

1

2

3

v12

v13

ex

ey

ez

Figure 2. Geometry and local coordinate system of the
three-dimensional element.

The local coordinate system of the given element is defined by the

following basis vectors:

(8) ez =
v12 × v13
‖v12 × v13‖

, ex =
v12
‖v12‖

, ey = ez × ex,

where vij is a vector going from node i to node j in the global

coordinates. The local coordinates of node i, xi, can now be

determined by the transformation,

(9) xi = ETXi, with E = [ ex ey ez ]

where Xi is the global coordinates of node i, and E is the

transformation matrix. For each element boundary, we define a

normal vector in the local coordinate system,

(10) ni =


n

i
x

niy


 ,

where i is the element side number. In order to obtain a lower

bound solution, traction continuity is required. Due to the linear

stress field, equilibrium of tractions have to be enforced twice for

each element side. Based on the normal vectors (10), we define the

stress-to-traction array PT
i for side i,

(11) PT
i =




nix 0 −niy
0 −niy nix

0 0 0




and

(12) P̃T
i = liP

T
i ,

where li is the length of side i. The last row of PT
i represent the

local z-direction, in which no tractions are present. The global

equilibrium of the system is done in global coordinates, hence,

it is necessary to transform the tractions. The tractions in global

coordinates for node i of the element can therefore be stated as

(13) qi =




qijx

qijy

qijz

qikx

qiky

qikz




=
1

2


E

T

ET




P̃

T
j

P̃T
k


σi

where j and k are the two sides which meet in node i, and qijx is

the traction in the x-direction on side j at node i of the element.

The element can be subjected to surface loads, γx and γy in the

local x and y-directions, acting on the entire area. The derivatives

of the linear stress field must balance these surface loads, which
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leads to two additional equilibrium equations:

(14)

∂σx
∂x

+
∂τxy
∂y

+ γx = 0

∂σy
∂y

+
∂τxy
∂x

+ γy = 0

Utilising the shape functions of the linear stress field, the so-called

internal equilibrium equations (14) can now be stated as

(15) qc = A


γx
γy


 =

1

2

[
P̃T

1 P̃T
2 P̃T

3

]
σ,

The element equilibrium matrix can be written as follows by

combining (13) and (15):

(16) q =
1

2




ET P̃T
2

ET P̃T
3

ET P̃T
3

ET P̃T
1

ET P̃T
1

ET P̃T
2

P̃T
1 P̃T

2 P̃T
3







σ1

σ2

σ3


 = BT

elσe

Lower bound elements may contain linear dependencies which

cause numerical issues (Makrodimopoulos and Martin, 2006).

These problems, however, can be avoided by dividing the element

into three subelements, each with a linear stress field. This was done

by Herfelt et al. (2016) for the lower bound plane stress element

by Poulsen and Damkilde (2000). The subdivision also increase

the accuracy of the element, however, the problem size is likewise

increased. Several of the additional variables and equations can be

eliminated, hence, the problem size is only increased marginally.

3.2. Reinforced concrete yield criterion

The yield criterion is enforced for all three sets of stresses of the

element to ensure a safe stress field. For the equilibrium equations

the total stresses are used, which comprise the stresses carried by

the concrete and by the reinforcement. The Mohr-Coulomb yield

criterion with a tension cut-off is used for the concrete, while a

simple, linear criterion is adopted for the reinforcement.

The reinforcement is assumed to consist of an orthogonal mesh

of rebars oriented in an angle θ to the local coordinate system

of the element, see Fig. 3. Moreover, it is assumed that the

reinforcement only carries axial forces (Nielsen and Hoang, 2010).

The relation between the total stresses, the concrete stresses, and

y

xz
θ

Figure 3. Orthogonal reinforcement in an angle θ to the local
coordinate system of the element.

the reinforcement stresses are given as

(17)




c2 s2 2sc

s2 c2 −2sc

−sc sc c2 − s2







σx

σy

τxy


 =




σxm

σym

τxym


+




σ̃xs

σ̃ys

0


 ,

where c = cos θ and s = sin θ. Subscript m indicates concrete

stresses while subscript s indicates reinforcement stresses.

Moreover, σ̃si is the equivalent reinforcement stress defined as

(18) σ̃si =
Asi
t
σsi

whereAsi is the reinforcement area per unit length in the i-direction

and t is the out-of-plane thickness of the considered element. The

yield criterion for the reinforcement can be written as follows using

equivalent stresses:

(19)
0 ≤ σ̃xs ≤ f̃yx =

Asx
t
fy

0 ≤ σ̃ys ≤ f̃yy =
Asy
t
fy

where f̃y is the equivalent yield strength. The compressive strength

of the reinforcement is neglected as seen in (19), and the

reinforcement stresses must be non-negative as a consequence.

The Mohr-Coulomb criterion is given in terms of principal stresses

and can be stated as follows for plane stress:

(20)

σ1 ≤ ft
kσ1 − σ2 ≤ fc

−σ2 ≤ fc

where ft is the uniaxial tensile strength of the concrete, and fc is

the uniaxial compressive strength. k is a friction parameter, which

is usually taken as 4 for normal strength concrete corresponding to
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an angle of internal friction of approximately 37◦. σ1 and σ2 are the

largest and smallest principal stresses, respectively, which is given

as

(21)
σ1

σ2



 =

σxm + σym
2

±
√(σxm − σym

2

)2
+ τ2xym

Introducing three auxiliary variables,

(22)

pm = −σxm + σym
2

,

σd =
σxm − σym

2
,

ϕ ≥
√
σ2
d + τ2xym,

bounds to the principal stresses (21) can now be stated:

(23)
σ1 ≤ −pm + ϕ

−σ2 ≤ pm + ϕ

The yield criterion (20) can be written as three linear inequality

constraints in addition to the definitions of the three auxiliary

variables (22):

(24)

−pm + ϕ ≤ ft
(1− k) pm + (k + 1)ϕ ≤ fc

pm + ϕ ≤ fc

The yield criterion fits the form of second-order cone programming

since the definition of ϕ is a second-order cone (3).

3.3. von Mises yield criterion

The von Mises yield criterion is commonly used for metals and is

based on the second stress invariant, J2, which is given as follows:

(25)
J2 =

(σx − σy)2

6
+

(σy − σz)2
6

+
(σz − σx)2

6

+ τ2xy + τ2yz + τ2xz

For plane stress, the second stress invariant is reduced to

(26) J2 =
(σx − σy)2

6
+
σ2
y

6
+
σ2
x

6
+ τ2xy

The von Mises criterion is given as

(27)
√

3J2 ≤ fy,

where fy is the uniaxial yield strength. Introducing three auxiliary

variables,

(28) α1 =

√
3

2
(σx − σy) , α2 =

1

2
(σx + σy) , α3 =

√
3τxy,

the criterion (27) can be restated as a second-order cone:

(29)
√
α2
1 + α2

2 + α2
3 ≤ fy

It has been shown that both the reinforced concrete yield criterion

and the von Mises yield criterion fit the format of second-order cone

programming for plane stress.

4. Examples

The scope of this section is to analyse the performance of the

element and illustrate the use. The commercial solver, MOSEK

(MOSEK ApS, 2015) is used for the optimisation. For the

computational time, please note that all calculations are performed

on a laptop with an Intel core i7-4720HQ with 8 CPUs and 2.6 GHz

clock frequency. The meshes for examples 2 and 3 are generated

using GiD v12 (Ribó et al., 1998).

4.1. Deep beam with shear supports

The first example is a deep reinforced concrete beam subject to a

uniformly distributed load. The beam is supported in either end by

shear supports as seen in Fig 4. The analytical solution to the deep

CL p

h

L/2

h− y0

y0

Figure 4. Deep beam with shear supports.

beam example is well-known (Nielsen and Hoang, 2010) and can

be obtained by the mesh on the left side in Fig. 4:

(30) p∗ =
4Φh2fc

(1 + Φ)L2

where Φ is the mechanical reinforcement ratio defined as:

(31) Φ =
Asfy
tfc
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Using h = 2 m, L = 6 m, fc = 20 MPa, and Φ = 0.075, the exact

limit load is p∗ = 0.6202 MPa. A structured mesh (see the right

hand side of Fig. 4) is used to calculate a lower bound of the limit

load of the deep beam.

nel p [MPa] Error [%] Time [s]

64 0.5556 10.42 0.31
256 0.6053 2.40 0.88

1024 0.6177 0.39 3.77
4096 0.6191 0.17 9.23

16384 0.6193 0.13 43.40

Table 1. Limit load, error, and computational time for the deep
beam example.

Tab. 1 shows that the structured mesh approaches the exact limit

load from below as the number of elements (nel) increases.

The convergence and computational time will be discussed in a

following section, but it is observed that the computational time

appears to be roughly proportional to the problem size. The stress

distribution is illustrated in Fig. 5.

σ
2

[M
Pa

]

Figure 5. Lowest principal stress σ2 for the deep beam example
using 16384 elements.

4.2. Cantilever I-beam

A cantilever steel I-beam is subjected to a uniformly distributed

line load acting on top of the web. The web has a height of 300

mm, and the flanges have a width of 300 mm. The web and flanges

have a thickness of 10 mm, and the cantilever beam has a length of 3

metres. The steel has a yield strength of fy = 250 MPa. This gives a

plastic moment capacity of 281 kNm and a limit load of p∗ = 62.5

kN/m assuming a maximum stress of 250 MPa. Four different

meshes are analysed. The medium density mesh comprising 948

elements is shown in Fig. 6. With a thickness of just 10 mm, the

effect of local bending in the web and flanges is negligible, while

3
2.5

2
1.5

1
0.5

00

0

0.3

0.3

Figure 6. Medium density mesh of the cantilever I-beam using
948 elements. The beam is supported at the left end.

the external load will almost exclusively be carried via in-plane

forces, hence, the proposed element will provide a decent estimate

of the capacity.

The load capacity of the cantilever I-beam increases with the mesh

Mesh nel p [kN/m] Time [s]

Coarse 238 63.24 0.44
Medium 948 64.18 1.86
Fine 3616 64.90 3.56
Very fine 14646 65.25 16.06

Table 2. Limit load and computational time for the cantilever
I-beam example.

density as seen in Tab. 2. The von Mises yield criterion requires

fewer variables than the reinforced concrete criterion, hence, the

computational time is lower for the same number of elements.

The model predicts a limit load slightly larger than the analytical

moment capacity, however, this is due to the von Mises criterion

where the largest stress can exceed fy for certain stress states. Fig. 7

shows the largest and smallest principal stresses near the supported

(left) end of the cantilever.

4.3. Four-storey stairwell with door openings

The third example is a four-storey stairwell of reinforced concrete

with door openings. The stairwell is subjected to a shear force

acting on top of the wall with the door openings (see Fig. 8), which

causes both bending and torsion in the stairwell. The shear walls

have a thickness of 180 mm, hence, the effect of local bending in

each individual wall is not negligible as in the previous example,

however, a lower bound value is obtained by neglecting the moment

capacity of the walls. In practice, the corners are reinforced with

loop reinforcement which ensures the transfer of bending moments

between adjacent walls. The dimensions of the shear walls are given

in Fig. 8 and the door openings have a height of 2.10 metres and a
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Figure 7. Largest and smallest principal stresses near the support of the I-beam using the fine mesh.

P
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Figure 8. Four-storey shear wall subject to bending and torsion.
Dimensions are given metres.

width of 0.90 metres. The shear walls are reinforced with two layers

of Ø8 bars per 150 mm in both directions. The design yield strength

of the reinforcement is chosen as fyd = 458 MPa. The concrete

has a design compressive strength of fcd = 21.43 MPa, while the

tensile strength is set to zero. Two different effectiveness factors

ν is considered, namely ν = 1 and ν = 0.7− fc/200 = 0.550

(where fc = 30 MPa is the characteristic strength), and the design

compressive stress is reduced accordingly, fcd = ν · 21.43 MPa.

Tab. 3 shows that the coarse mesh yields a reasonable estimate

despite using only 864 elements. The fine mesh yields less than 5

% additional capacity despite having 13 times more elements. It is

noted that the model approaches the exact limit load from below

which is to be expected from a lower bound element. Tab. 3 also

p [kN/m]
Mesh nel ν = 1 ν = 0.550 Time [s]

Coarse 864 85.27 85.06 2.89
Medium 3564 88.62 87.80 10.52
Fine 11379 89.25 88.46 37.38

Table 3. Limit load and computational time for the stairwell
example.

shows that the two effectiveness factors yields approximately the

same capacity: Using ν = 0.550 reduces the capacity by less than

one percent since the reinforcement is the limiting factor.

Fig. 9(a) shows the collapse mode for the shear wall with door

openings: The bending failure occurs near the supports, which

allows the wall to start rotating. Moreover, local failures are

observed near the door openings and the top. Fig. 9(b) to (e)

shows the stress distribution for the four walls of the stairwell.

It is seen that all walls mobilised and carry stresses. Struts are

formed between the door openings as shown in Figure 9(c),

and the slender columns to the left of the door openings carry

considerably stresses. The largest compressive stresses occur near

the bottom door opening and approach the compressive strength of

the concrete, see Figure 9(b) and (c).

4.4. Computational time and convergence

The three examples have demonstrated the strength of the element.

For all three examples, the capacity increased with the number

of elements, i.e. the models approached the exact limit load from

8 Prepared using PICEAuth.cls
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Figure 9. a) Collapse mode of the wall with the door openings. b) - e) Smallest principal stresses of the four walls of the stairwell
example with ν = 1 using the fine mesh.

below, which is to be expected. For the first example, the deep

beam, the analytical solution is well-known. It is observed from

Tab. 1 that the error is approximately inversely proportional to the

number of element, i.e. increasing the number of elements by a

factor of four decrease the error by a factor of four.

For the cantilever I-beam and stairwell examples, the computed

limit loads only increase marginally for the fine meshes compared

to the coarse mesh. This indicate that coarse meshes provide

reasonable approximations to the actual stress field.

The computational time required for the three examples is

illustrated in Figure 10. It is observed that the computational time is

approximately proportional to the number of elements to the power

of 1.1, indicated by O(n1.1) in the figure. Moreover, the cantilever

I-beam example required a lower computational time due to the use

of the von Mises criterion, but the slope of the curve seems to be

approximately the same as the other two examples.

5. Conclusion

A generalised plane stress element subject to in-plane forces has

been presented. The element is a lower bound element with a

linear stress distribution. The necessary equilibrium equations of

101 102 103 104 105
10−1

100

101

102

103

Number of elements

C
PU

tim
e

[s
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Deep beam
I-beam
Stairwell
O
(
n1.1

)

Figure 10. Computational time as a function of the number of
elements.

the element are presented together with two different yield criteria,

namely the Mohr-Coulomb criterion with a tension cut-off and the

von Mises criterion, both for plane stress. Both yield criteria fit the

format of second-order cone programming, a class of optimisation

problems which can be solved efficiently using interior point

methods.
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Three examples are presented to display the use of the element.

The first example is a plane deep beam with shear supports subject

to a uniformly distributed load. The analytical solution is well-

known and the model approaches the true limit load from below

as the mesh density is increased. The next example is a steel

cantilever I-beam which uses the von Mises criterion. Again, the

model approaches the limit load from below.

The final example is a four-storey stairwell with door openings

subject to a shear force which introduces bending and torsion. The

limit load is determined using three different meshes using two

different effectiveness factors. Stress concentrations are observed

near the door openings, however, they are not critical. The collapse

mode is illustrated using the solution of the dual problem.

The presented element is capable of modelling complex structures

with a satisfactory accuracy. Moreover, it produces a lower bound

value and approaches the limit load from below. The computational

time is more or less proportional to the problem size, thus, even

large problems can be solved in a matter of minutes on a standard

laptop.
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Abstract

In practice, precast concrete structures are often being designed by manual
methods and linear finite element analysis in the ultimate limit state. This
practice leads to suboptimal structures, and the behaviour of the in-situ cast
joints are unaccounted for. More accurate and efficient means of design are
therefore needed, and a framework based on finite element limit analysis is
being developed. In this paper, a multiscale joint element is presented, and
a mechanical model is proposed as the yield function of the macro element.
The scope of the model is to capture the behaviour of joints in three dimen-
sions subjected to triaxial stress, and the resulting mathematical optimisation
problem fits the format of semidefinite programming. The presented joint el-
ement is analysed and a real size example of a four-storey stairwell subjected
to shear and torsion of precast concrete is presented. The influence of the
joints on the behaviour of the stairwell is assessed.

Keywords: In-situ cast joints, Precast concrete, Finite element limit
analysis, Semidefinite programming, Yield function, Multiscale

1. Introduction

Precast concrete elements are widely used in the construction industry as
they provide a number of benefits, however, joints cast on the construction
site to connect the precast elements pose several challenges. The current
practice is to design the joints as the weakest part of the structure. This
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makes analysis and design by general purpose finite element software inac-
curate as the behaviour of the joints is unaccounted for.

Several types of joints are used in precast concrete structures, e.g. slab-
to-beam joints, beam-to-column joints, and panel-to-panel joints, see Fig. 1.
The panel-to-panel joints, also called shear joints, are of particular interest
as the lateral stability usually is ensured by shear walls composing of pre-
cast wall panels. During the 1970s and 80s several papers were published
on the topic of shear joints including several experimental studies [1, 2, 3],
however, to the best knowledge of the authors, no experimental studies on
the behaviour of joints in three-dimensions have been published. The Eu-
rocode 2 [4] uses a simple, empirical design equation, which only considers
the interface and not the actual stress state within the joint. Both types of
joints shown in Fig. 1 transfer shear from one structural plane to another,
and must therefore experience a triaxial stress field which is not accounted
for by current design methods.

(a) (b)

Figure 1: a) Vertical section of slab-to-panel joint reinforced with U-bar loops and em-
bedded rebars. b) Horizontal section of panel-to-panel T-joint reinforced with U-bar loops
extruding from all three panels.

The experiments by Hansen and Olesen [3] featured several specimens,
where the U-bar loops were placed with a considerable distance. These ex-
periments displayed a lower capacity and the core of the joint was completely
destroyed upon failure. A detailed model based on finite element limit anal-
ysis captured this behaviour to a satisfactory degree [5]. The joint model
presented in this paper will attempt to account for this behaviour in three
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dimensions, as the reinforcement layout necessarily will affect the capacity
of joints in triaxial stress as well.

Manual limit analysis is widely used in practice as a tool for assessment
of the ultimate limit state behaviour of precast concrete structures. The
framework is based on the extremum principles [see e.g. 6, 7, 8], and several
methods have been developed within this framework, e.g. the yield line
theory [9]. Models for shear joints based on limit analysis have likewise been
developed; these models include both upper bound models [10, 11, 12] and
lower bound models [11, 13], however, these models are only concerned with
the two-dimensional case, i.e. joints between precast elements in the same
plane.

Finite element limit analysis is based on the same extremum principles as
the manual limit analysis and the element discretisation of the finite element
method, and it can be considered as a special case of the general finite element
method. The method was developed in the late 1960s and 70s [14, 15] and
since then several researchers have contributed to the further development
of the field [16, 17, 18, 19, 20]. Herfelt et al. [5] presented a detailed model
for two-dimensional shear joints and the findings were used to develop a 2D
multiscale joint element with a mechanical submodel as the yield criterion
[21].

In this paper a multiscale joint element for three-dimensional analysis is
presented. The joint element is compatible with the generalised plane stress
element [22] and uses a simplified mechanical model as the yield criterion
similar to the two-dimensional joint element [21]. The general concept is
visualised for the two-dimensional case in Fig. 2 where three scales are shown,
namely the structural level, the element level, and the submodel level.

Due to the triaxial stress state, the yield function submodel will be for-
mulated for semidefinite programming and second-order constraints. A brief
introduction to semidefinite programming as well as second-order cone pro-
gramming will be given in Sec. 2, where the conic representation of the
Mohr-Coulomb criterion will be given as well. The behaviour of the multi-
scale element will be analysed and compared to the equation in the Eurocode
2. Finally, a real size structure is analysed using the proposed joint element
and the generalised plane stress element [22], and the influence of the joint
elements is discussed.

3



In-situ joints

Plane stress elements

Joint element

Corbel mechanism
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Figure 2: The general concept of the multiscale joint element shown in 2D: a) Precast
concrete structure on the structural level, b) Joint element and plane stress elements on
the element level, c) corbel mechanisms and load path on the submodel level.

2. Convex optimisation

Convex optimisation is used in many fields of engineering and an extensive
research effort has gone into developing efficient algorithms for solving these
classes of problems [23, 24, 25]. Second-order cone programming (SOCP)
and semidefinite programming (SDP) are subclasses of convex optimisation
that have been used in the field of finite element limit analysis for more than
a decade [26, 27].

First and foremost, we introduce the k-dimensional second-order cone
defined as the set

Qk =

{
x | x ∈ Rk, x1 ≥

√
x22 + · · ·+ x2k

}
(1)

The standard form of a second-order cone program is commonly stated as

maximise cTx

subject to Ax = b

xi ∈ Qki , i = 1, 2, . . . , q

(2)
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where the x is the optimisation variables and q is the number of second-
order cones. SOCP is a generalisation of linear programming (LP), and (2)
is reminiscent of the well-known standard form of LP.

Semidefinite programing uses so-called matrix variables, symmetric ma-
trices which are required to be positive-semidefinite, i.e. a n × n matrix F
satisfies

xTFx ≥ 0 for all x ∈ Rn

A curved inequality sign � is often used to denote that a matrix is positive
semidefinite, e.g. F � 0. Vandenberghe and Boyd [28] uses the following,
very compact form of the semidefinite program:

maximise cTx

subject to F(x) � 0
(3)

with

F(x) = F0 +
m∑

i=1

Fixi

where Fi are symmetric matrices. F(x) � 0 is a so-called linear matrix in-
equality (LMI), which makes it possible to impose constraints on the eigen-
values of symmetric matrices, e.g. the stress tensor.

2.1. Conic representation of the Mohr-Coulomb criterion

The Mohr-Coulomb criterion is commonly used for concrete and soils. In
principal stresses the criterion is given as

σ1 ≤ ft (4a)

kσ1 − σ3 ≤ fc (4b)

where σ1 ≥ σ2 ≥ σ3 are the principal stresses, ft is the uniaxial tensile
strength, and fc is the uniaxial compressive strength. k is a friction parameter
defined as

k =
(√

µ2 + 1 + µ
)2

(5)

with µ = tan θ, where θ is the internal angle of friction. k = 4 corresponding
to µ = 0.75 and θ ≈ 37◦ is commonly used for normal strength concrete.

The principal stresses are the eigenvalues of the concrete stress tensor
σc, thus, (4) can be represented using linear matrix inequalities [26, 29, 30].
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Utilising that F � 0 means that the smallest eigenvalue of F must be non-
negative, and that −F � 0 means that the largest eigenvalue of F must be
non-positive, the separation criterion (4a) can be rewritten as

−σc + ftI � 0 (6)

where I is the identity matrix. The sliding criterion (4b) uses two principal
stresses and it is therefore necessary to introduce an auxiliary variable α1, to
obtain

−σ1 + α1 ≥ 0

σ3 − kα1 + fc ≥ 0

and

−σc + α1I � 0

σc + (fc − kα1)I � 0
(7)

using the stress tensor σc. The three LMIs of (6) and (7) can be reduced
to two, and the Mohr-Coulomb criterion with a tension cut-off (4) can be
stated as

−σc + α2I � 0

σc + (fc − kα1)I � 0

α2 − α1 ≥ 0

α2 − ft ≥ 0

(8)

For plane stress problems (8) can be used, however, it is more efficient in this
case to use the second-order cone representation instead. In plane stress, the
criterion is given as

σ1 ≤ ft

kσ1 − σ2 ≤ fc

−σ2 ≤ fc

(9)

where σ1 ≥ σ2 are the two principal stresses given as

σ1
σ2

}
=
σx + σy

2
±
√(

σx − σy
2

)2

+ τ 2xy
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Introducing the auxiliary variables

pm = −σx + σy
2

, σd =
σx − σy

2

and the second-order constraint

ϕ ≥
√
σ2
d + τ 2xy

the Mohr-Coulomb criterion for plane stress can be rewritten as

−pm + ϕ ≤ ft

(1− k)pm + (k + 1)ϕ ≤ fc

pm + ϕ ≤ fc

(10)

and the criterion for plane stress requires a total of five linear constraints
and one second-order constraint.

3. Finite element limit analysis

The presented joint element is to be implemented in a framework based
on finite element limit analysis for design of precast concrete structures. The
mathematical optimisation problem of lower bound limit analysis can be
stated as:

maximise λ

subject to BTσ = pλ+ p0
f(σi) ≤ 0, i = 1, 2, . . . ,m

(11)

The scope of the optimisation problem (11) is to find a statically admissible
stress field that maximises the load carrying capacity of the given structure.
A stress field that satisfies equilibrium is ensured by the linear equations
BTσ = pλ + p0, and a stress field that does not violate the yield criterion
in any points is ensured by the inequalities f(σi) ≤ 0. The load is given by
a constant part p0 and a scalable part pλ, where the load factor λ is sought
to be maximised. BT is the equilibrium matrix, σ is the stress vector, and
f is the yield function.

For the joint element presented in Sec. 4, the yield function f will rep-
resent a submodel, i.e. an advanced yield function comprising a mechanical
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model and sub-element level stress fields. By expanding the yield function
f , the lower bound problem(11) can be stated as:

maximise λ

subject to BTσ = pλ+ p0
Cσσ + Cαα+ Cγγ = C0

Eσσ + Eαα+ Eγγ ≤ E0

F
(i)
α αi + F

(i)
0 � 0, i = 1, 2, . . . ,m

γj ∈ Qkj , j = 1, 2, . . . , q

(12)

The matrices Cσ, Cα, and Cγ defines the equality constraints of the submod-
els, while Eσ, Eα, and Eγ defines the inequality constraints. The variables
α and γ are associated with the yield function, whereas γ is used to de-
fine the second-order constraints, and α is used to define the linear matrix
inequalities together with the symmetric matrices F

(i)
α and F

(i)
0 . m is the

number of linear matrix inequalities for the submodels while q is the number
of second-order constraints. The matrices will only be given implicitly in the
following.

The submodel presented in Sec. 5 comprises both triaxial stress states as
well as plane stress states, hence, both formulations of the Mohr-Coulomb
criterion given in Sec. 2 will be utilised at the stress level of the submodel.
The problem (12) comprises therefore both semidefinite constraints as well
as second-order constraints.

4. Macro finite element

This section introduces a lower bound macro finite element for analysis
and design of 3D structures. The general modelling concept of the element
was illustrated in two dimensions in Fig. 2, where a precast concrete wall
is modelled using plane stress elements and multiscale elements. On the
element level, the proposed macro element is compatible with the plane stress
element, and the stress states in the macro joint element are treated using a
so-called submodel which incorporates corbel mechanisms to transfer shear.

The lower bound plane stress element has a linear stress field, hence, a safe
stress field can be ensured by checking the yield function in the vertexes of
the element. Moreover, to ensure a lower bound solution traction continuity
has to be satisfied, and for the plane stress element the tractions are given
in global coordinates, see Fig. 3.
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Figure 3: a) The element and tractions illustrated in the local coordinate system (adapted
from [19]). b) The generalised plane stress element including local coordinate system and
tractions in global coordinates for one of the element boundaries.

The joint is concerned with the transfer of shear forces, and the axial
forces in the longitudinal direction are omitted in the present paper for sim-
plicity. The 2D joint element [21] treated this as well, and a two-dimensional
model can be added to the submodel criterion for the 3D joint element pre-
sented in the following section. Similarly, the necessary equilibrium equations
to facilitate longitudinal forces can be added as well.

The submodel criterion to be presented in Sec. 5 assumes that the adja-
cent elements are oriented in right angles, which covers the vast majority of
joints in practice, see e.g. the joints in Fig. 1. The formulation of the macro
element, however, is general and applicable to any configuration of adjacent
plane stress panels.

The joint element consists of a number of strips, one for each adjacent
plane stress element, see Fig. 4. The strips are assumed to be in plane stress
and balance the tractions of the adjacent plane stress triangles as well as
internally within the joint. For the stress fields of the strips to be compatible
with the plane stress elements, a linear variation is prescribed along the joint
element.

Each strip has two stress components given in local coordinates, namely
σy and τxy, hence, four stress variables are needed to describe the linear stress

9



field. The element stress vector σel is given as:

σel =



σ1

...

σN




where N is the number of strips and σi denotes the stress vector of strip i
given as:

σi =

[
σi1
σi2

]
=




σyi1
τxyi1
σyi2
τxyi2


 (13)

1

2

n2

n3

n1

ex1

ey1

ex2
ey2

ez2

ey3

ez3

Strip 1

Strip 2Strip 3

Figure 4: Sketch of a joint element with three adjacent plane stress elements: Local
coordinate systems for the three joint strips are shown.

For consistent orientation, a local coordinate system for each strip is
defined. The local x-axis is in the longitudinal direction of the joint element,
while the y-axis is in the plane of the adjacent plane stress element. Given
the vectors v12 going from node 1 to node 2 in Fig. 4 and v1ni

going from
node 1 to ni, where ni is the third node of the adjacent triangular element,
the basis of the local coordinate system can be defined as:

exi =
v12
‖v12‖2

, ezi =
v12 × v1ni

‖v12 × v1ni
‖2
, eyi = ezi × exi (14)
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where ‖v‖2 is the Euclidean norm of the vector v. The transformation matrix
for the ith strip can be stated as Ei =

[
exi eyi ezi

]
.

The contributions to traction continuity in global coordinates for strip i
at node j can be stated as:

qij = Ei




0 til

til 0

0 0



[
σyij
τxyij

]
= P̃T

i σij (15)

where qij is the generalised nodal forces vector, l is the length of the joint
element, and ti is the thickness of strip i. (15) also defines P̃T

i implicitly.
Due to the linear stress field it is necessary to enforce traction continuity at
the ends of the strip.

Internal traction equilibrium for the N strips of the joint element is like-
wise enforced, which can be stated as:

−P̃T
1σ1j − · · · − P̃T

NσNj = 0, j = 1, 2 (16)

where j is the node number. Equilibrium on the element level for an joint
element with N adjacent plane stress elements can now be stated as follows:

qel =




P̃T
1

P̃T
1

. . .
. . .

P̃T
N

P̃T
N

−P̃T
1 . . . . . . −P̃T

N

−P̃T
1 . . . . . . −P̃T

N






σ1

...

σN


 = BT

elσel (17)

where BT
el is the element equilibrium matrix, and qel contains the contribu-

tions to the global equilibrium equations of the joint element. The number
of stress variables and equations of the joint element depends on the number
of adjacent plane stress elements, N , as seen in (17).

5. Joint model

We now consider a unit section of the joint in the shape of a rectangu-
lar box. This unit section is reinforced with U-bar loops from up to four
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boundaries which are placed in positions defined by u, uy1 and uz1 according
to Fig. 5. The length of the unit section is s and the widths are given as
ty and tz. oy and oz are the overlap of the U-bars. The distances between
the U-bar pairs in the y and z-directions, respectively, are assumed to be
identical, i.e. u = uy1 +uy2 = uz1 +uz2, which reduce the number of possible
stress combinations inside the submodel greatly.

U-bar

Concrete

u

u

s

tz

ty

oz

oy

x

z

y

(a)

s

uz1 uz2

uy1 uy2

oy ty

y

xz

(b)

Figure 5: Submodel for the three-dimensional joint element: a) three-dimensional repre-
sentation of the geometry including U-bar loops, b) two-dimensional sketch of the U-bar
placement.

Joints are in practice always reinforced with a so-called locking bar in
the longitudinal direction, however, the present model does not consider the
behaviour in the longitudinal direction and the locking bar will therefore not
affect the capacity and behaviour of the submodel.
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Each of the four boundaries reinforced with U-bars can be subjected to
a normal stress and a shear stress, σy and τxy, or σz and τzx, depending
on the orientation. The stresses on the element level σel are given in the
local coordinate systems of the particular strip, hence, a common coordinate
system is needed, and all stresses are transformed to the coordinate system
of strip 1:

Ŝij = ET
1 EiSijE

T
i E1 (18)

where Ei is the transformation matrix of strip i, and Sij is the stress tensor
of strip i at node j, e.g. for strip 1 at node 2 - which is always chosen for the
common coordinate system - we have

S12 =




0 τxy12 0

τxy12 σy12 0

0 0 0




Most of the components in Sij are equal to zero as the strips only have
two stress components, which simplifies the calculations. The shear stress
component of Ŝ is used for the corbels presented in the following section.
The equilibrium equations of the element ensures that the normal stress
components of Ŝij are balanced, and the normal stresses are simply added to
the final stress field of the submodel, which must satisfy the Mohr-Coulomb
criterion.

5.1. Local shear transfer via corbels

A mechanical model for the transfer of shear from one plane to another,
e.g. from τxy to τzx, is needed. For this purpose a concrete corbel is consid-
ered. The corbel utilises the transverse reinforcement of the joint, i.e. the
U-bar loops, to transform the shear stress (from Ŝ) acting on the boundary
of the joint to a normal stress in the core of the joint. This is illustrated in
Fig. 6(a).

Fig. 6(b) shows a corbel subjected to a shear stress τzx from the trans-
formed stress state of the particular strip of the macro element. The loop
reinforcement is activated and the stringer force T in the reinforcement bal-
ances the stress σz and the stringer force V . The rectangular panel will have
constant shear stress, while the triangle will be in uniaxial compression. For
a single corbel, see Fig. 6(b), we have the following variables:

αi =
[
σ
(i)
x , σ

(i)
z , τ

(i)
zx , T

(i)
1 , T

(i)
2 , V (i)

]T
(19)
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(a)

τzx

τzx

σz

σz

σx

V T2

T1xy

z

l

tz − oz
2

oz

(b)

Figure 6: a) Sketch of two corbel mechanisms working in two-dimensions. b) Two-
dimensional representation of a corbel in the xz-plane transforming a shear stress τzx
to a normal stress σx. Positive directions of forces and stresses are shown. The panels
indicated by gray has a out-of-plane thickness of oy.

or

αi =
[
σ
(i)
x , σ

(i)
y , τ

(i)
xy , T

(i)
1 , T

(i)
2 , V (i)

]T
(20)

depending on the orientation of the corbel. The following system of equilib-
rium equations can be derived for a single corbel:




ozoy 0 −loy 0 0 0

0 −loy 0 0 −1 −1

0 −loy ozoy 0 0 0

0 0 −tz − oz
2

oy 0 0 −1

0 0 −tz − oz
2

oy 1 −1 0

0 0 −ozoy −1 0 0







σx

σz

τzx

T1

T2

V




= 0 (21)

The first three equations in (21) ensure vertical, horizontal, and moment
equilibrium, while the last three ensure equilibrium for the stringers. The
stresses σx and σz will practically always be negative, i.e. compressive, and
the same goes for the stringer force V . No reinforcement is located at the
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position of the leftmost stringer, hence, the stringer is a so-called compression
stringer which cannot take any tension.

A single corbel transforms a shear stress into a normal stress in the core
of the joint. Several corbels are therefore needed to transfer shear from one
plane to another. Moreover, the corbels are given a predefined length l, see
Fig. 6, however, the optimal value of l depends on the reinforcement and
loading. Four corbels for each of the four boundaries of the joint is therefore
used, thus, the complete submodel features up to 16 corbels, four for each
U-bar loop in the considered joint section.

uy1s
2 − uy1

s/2s/2

y

xz

Figure 7: Four corbel models around a single U-bar: The length is fixed at s/2 for the
two largest, while the length of the two smallest depends on the position of the U-bar in
the unit joint section. Dashed lines indicate the load path through the triangular corbels.
Some of the corbels overlap and their stress fields are added to obtain the actual stress
state.

Fig. 7 shows the four corbels around a U-bar. As shown in Fig. 7, some
of the corbels overlap, and it is therefore necessary to add the stress fields
together to obtain the actual stress field of the submodel. Each of the corbels
can transfer a shear stress to a normal stress in the centre of the joint, which
then can be transferred to a shear stress in a different plane via another
corbel. This is illustrated schematically in Fig. 8 for two corbels.

Combining the up to 16 corbels requires four equations - one for each
U-bar loop - which enforce equilibrium for the normal stresses σx according
to the positions of the corbels together with four transfer boxes, see Fig. 8.

Fig. 9 shows the transfer of normal stresses σx schematically, where each
set of arrows is located at the position of an U-bar loop. The four equilibrium
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u oy
s−u
2

s−u
2

oz
Transfer boxxy

z

Figure 8: Shear transfer from one plane to another via two corbels. The central transfer
box will experience uniaxial compression in the x-direction. Equilibrium of the corbels is
ensured by stringer forces and confinement not shown here.

t4 t1 t2 t3 t4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 9: Interaction of the 16 corbels and four transfer boxes illustrated schematically:
The triangles represent a corbel mechanism, while the rectangles represent the transfer
boxes. Each set of arrows represent an equilibrium equation. The size and locations of
corbels are not to scale.

equations are given as

σ(1)
x + σ(2)

x − σ(3)
x − σ(4)

x + σt4x − σt1x = 0,

σ(5)
x + σ(6)

x − σ(7)
x − σ(8)

x + σt1x − σt2x = 0,

σ(9)
x + σ(10)

x − σ(11)
x − σ(12)

x + σt2x − σt3x = 0,

σ(13)
x + σ(14)

x − σ(15)
x − σ(16)

x + σt3x − σt4x = 0,

(22)

where σ
(i)
x is the stress in the x-direction associated with the ith corbel, see

Fig. 6. The first four corbels are associated with the first U-bar loop, the
next four with the second U-bar loop and so on, see Fig. 9 for the numbering.
σtjx is the normal stress of the jth transfer box. Two corbels associated with
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the same U-bar, e.g. the two corbels on the left-hand side in Fig. 7, can
work together, each transferring a fraction of the total shear force.

The stress states of the 16 corbels are combined to obtain the actual
stress field within the unit joint section. The corbels overlap to some degree,
see Fig. 7 where some of the corbels in the same plane overlap, and it is
therefore necessary to superimpose the appropriate stress states. Depending
on the values of u, uy1, and uz1 up to ten triaxial stress states are present
inside the unit section. Each of these stress states are given by three normal
stresses and two shear stresses.

τyz is zero for all strips in their local coordinate system. The transforma-
tion from the local coordinate system of any strip to the coordinate system of
strip 1 is equivalent to rotating the coordinate system about the local x-axis,
hence, τyz will remain zero. The triaxial stress states in the joint concrete
must satisfy the Mohr-Coulomb criterion presented in Sec. 2. Moreover, the
rectangular panels in the corbels will experience plane stress, which must
satisfy the Mohr-Coulomb criterion for plane stress also presented in Sec. 2.

The U-bar loops are subject to tension in order to activate the corbel
mechanisms, and the tensile stress must be below the tensile strength:

0 ≤ Ti ≤ fyAsu (23)

where fy is the yield strength and Asu is the cross sectional area. It is
assumed that the reinforcement only carries tension as seen in (23). The
compression stringers illustrated in Fig. 6 must be in compression, i.e. V
must be non-positive:

V ≤ 0

The submodel requires second-order constraints as well as semidefinite con-
straints since the concrete experience both plane stress and triaxial stress.
The macro joint element and submodel are implemented in Matlab and the
commercial optimisation solver MOSEK [31].

6. Analysis and discussion

6.1. Corner joint subject to shear

First, a corner joint subjected to shear is analysed using a single joint
element with the submodel criterion, and the results are compared to the
current design criterion of the Eurocode 2. Comparison to experimental
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yz

x
Panel 2
τzx

Panel 1
τxy

Joint

Figure 10: Corner joint connecting two reinforced concrete panels subject to pure shear
analysed using a single joint element.

results would be preferable, however, as mentioned experimental results for
corner joints have not been published to the best knowledge of the authors.

Fig. 10 shows the corner joint connecting two precast concrete panels as
well as the loading, which is applied such that the joint is loaded in pure shear.
For the Eurocode 2, the shear capacity of a keyed joint can be calculated as:

τ = cft
Akey
Ac

+ µρfy ≤
1

2
νfc

Akey
Ac

(24)

where c = 0.5 is a parameter which relates the tensile strength ft to the
cohesion, and µ = 0.9 is the friction coefficient used for keyed joints. Akey is
the area of the keys and Ac is the total area of the joint. ρ is defined as

ρ =

∑
Asu
Ac

ν is the so-called effectiveness factor, which accounts for microcracking and
softening when using a rigid-plastic material model for concrete. An effec-
tiveness factor of ν = 0.7− fc/200 (fc in MPa) is used for the comparison.

The joint is analysed for varying value of u, see Fig. 5, with u/2 = uz1 =
uy1. The following parameters are used:

ft = 0 MPa, tz = ty = 50 mm, oz = oy = 40 mm

For the Eurocode 2 design formula (24), ft = 0.21f
2/3
c and Akey/Ac = 0.5

are used. Three different types U-bar loops commonly used in practice are
analysed using different values of U-bar spacing, s.
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Figure 11: Characteristic shear capacity of the corner joint with fc = 20 MPa and different
values of s: The results of the joint element is represented using solid lines, while the
capacity predicted using the Eurocode 2 is shown with dashed lines.
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Figure 12: Characteristic shear capacity of the corner joint with fc = 35 MPa and different
values of s: The results of the joint element is represented using solid lines, while the
capacity predicted using the Eurocode 2 is shown with dashed lines.
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Fig. 11 and 12 show the shear capacity of the corner joints for the three
types U-bar loops. It is observed that the values of u and s affect the capacity
of the joint element and submodel to some degree. Moreover, the concrete
strength heavily affects the capacity for the joints with Ø7 and Ø6 U-bars
(blue and black lines).

The shear capacity estimated with the Eurocode 2 design equation is
somewhat similar to the shear capacity of the joint element, however, for low
values of s the Eurocode underestimate the capacity, while it overestimates
the capacity for larger values of s depending on u compared to the joint
element. Based on the analysis it can be concluded that it is necessary to
consider the stress field inside the joint for design.

6.2. Four-storey stairwell with door openings

Herfelt et al. [22] analysed a four-storey stairwell with door openings
subjected to shear and torsion using the generalised plane stress element.
The stairwell is now considered as a precast concrete structure, and the
corners are modelled using the presented joint element.

pRd

6.6

16.0

3.6

Joints

(a)

0
0

3.6

06.6

16

(b)

0
0

3.6

06.6

16

(c)

Figure 13: Four-storey stairwell subjected to bending and torsion: a) Sketch showing
loading and joints located in the vertical corners are modelled using the joint element[22],
b) coarse mesh with 864 triangular elements, c) fine mesh with 11,379. All dimensions are
given in metres.
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The stairwell including the positions of the joints are seen in Fig. 13.
The dimensions of the wall as well as meshes for the model are also given in
the figure. The door openings have a height of 2.10 metres and a width of
0.90 metres. The precast concrete panels have a thickness of 180 mm and are
reinforced with two layers of Ø8 rebars per 150 mm in both directions. The
reinforcement has a design yield strength of fyd = 458 MPa, and the con-
crete has a design compressive strength of fcd = 21.4 MPa, while the tensile
strength is taken as zero. Considering a single U-bar loop, the reinforcement
ratio is given as

Φ =
Asufy
s t fc

For the joints, a thickness of tz = ty = 180 mm is used with an overlap
of oz = oy = 50 mm and s = 300 mm. fcd = 21.4 MPa, ft = 0, and
k = 4 are used for the joint concrete as well. The reinforcement ratio of
the joint is varied and the results are illustrated in Fig. 14 for two meshes
generated using GiD v12 [32]; a coarse mesh with 864 plane stress elements,
and a fine mesh with 11, 379 plane stress element, see Fig. 13(b) and (c).
Moreover, the stairwell is analysed for two values of u to assess the effect of
the reinforcement layout.

0 2 4 6 8 10

·10−3

0

20

40

60

80

100

Φ [-]

p
R
d

[k
N

/m
]

u/s = 0.1

u/s = 0.5
Monolithic

(a) Coarse mesh
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Figure 14: Design capacity of the stairwell as a function of the reinforcement ratio of the
joints for two different values of u.

Fig. 14 shows that the capacity depends on the joint reinforcement to
some degree, however, the joints will hardly affect the capacity provided
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sufficient reinforcement, i.e. Φ ≥ 0.004 corresponding to Ø5 U-bar loops per
544 mm assuming a design strength of 214 MPa which is far below what is
typically used in practice. It is seen that the model with the joint elements
approach the capacity of the model without the joint from below, which is to
be expected from a lower bound element. It is also seen that the fine mesh
predicts a larger capacity.
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(a) Joints: Φ = 0.001,
pRd = 47.12 kN/m
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Figure 15: Comparison of the smallest principal stress for the wall with the door openings
using the fine mesh with and without joints (u/s = 0.5).

From Fig. 15 it can be seen that the joints push the structure to-
wards a more evenly distribution of the shear stresses across the corner. For
Φ = 0.001 shown in Fig. 15(a), large compressive stresses are observed near
the bottom door opening. This is due to the fact that the joints do not have
sufficient shear capacity and the stresses have to be transferred to the foun-
dations via the wall itself. Fig. 15(c) shows large compressive stresses above
20 MPa near the bottom door opening which is possible since no criterion is
enforced on the stresses in the corner of the structure.

Fig. 16 shows that for Φ = 0.001 and 0.004, the shear stress in the joints
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Figure 16: Shear stress distribution over the height of the structure in the joints near
adjacent to the slender wall with the door openings. The shear stress is shown for four
different reinforcement degrees Φ using the fine mesh and u/s = 0.5 for the joints. The
wall structure is shown in the centre.

near the door openings will be constant over the entire height. In order
to activate the joints over the entire height, significant ductility is needed.
Increasing the reinforcement degree means that only a small portion of the
joints are utilised fully, hence, the requirement to the ductility is lower, and
the structure is more robust. The effect of the door openings on the shear
stress is clearly shown in Fig. 16 for Φ = 0.007 and 0.010. The forces
are primarily transferred as diagonal compression in the panels, hence, this
jagged pattern of shear stresses is generated. The effect of the door openings
is also seen to some degree for the joint to the right of the wall, where an
almost wave-like distribution is observed for Φ = 0.007 and 0.010.

The analysis has shown that the proposed multiscale joint element makes
modelling of real size structures possible. Moreover, the stairwell model using
the fine mesh only required a CPU time of approximately 65 seconds on a
desktop PC with an Intel Xeon CPU W3565 with 8 CPUs and 3.2 GHz clock
frequency. The low computational time is a major advantage over general
non-linear finite element models.
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7. Conclusion

In practice, design and analysis of precast concrete structure in the ulti-
mate limit state is primarily done using simple manual methods and linear
finite element analysis. The manual methods are often based on limit anal-
ysis and provide efficient tools for assessment of the capacity. For complex
structures, however, it becomes difficult to obtain a decent solution - espe-
cially for structures in three dimensions. Moreover, it is rather difficult to
account for the behaviour of the in-situ cast joints.

A lower bound multiscale joint element was presented. The element was
designed for interaction with a generalised plane stress element with the
scope of modelling of real life precast concrete structures. A mechanical
submodel was proposed as the yield function of the macro joint element. The
submodel used corbels to transfer shear stresses from one plane to another
and the resulting triaxial stress field within the joint was checked against the
Mohr-Coulomb criterion.

Unfortunately, no experiments of joints in three dimensions have been
published, thus, the joint element and submodel was analysed by comparison
to the Eurocode criterion. The results of the joint element and the Eurocode
design equation were somewhat close and for heavily reinforced joints, the
joint element predicted a larger capacity.

A four-storey precast concrete stairwell with door openings was analysed.
The precast panels were connected by in-situ cast joints in the corners, and
it was observed that the capacity of the joints are crucial to the overall
behaviour of the wall. The reinforcement of the joints heavily affects the
capacity, especially at low degrees of reinforcement. The joints also affected
the stress field considerably, and the shear stresses were distributed more
evenly across the corner joint. Higher levels of reinforcement increase the
robustness of the structure considerably and lower the requirement to the
ductility of the joints and panels.

The proposed multiscale joint model has shown significant potential, how-
ever, validation by comparison to experimental results is necessary. It can be
concluded that the presented framework and model will enable optimisation
of precast concrete structures, and the lower bound property of the model is
highly desirable for practical design.
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o This thesis presents a framework for efficient design and analysis of precast 
concrete structures based on finite element limit analysis. In-situ cast joints are 
crucial in precast structures, hence, adequate models for these components are 
developed and validated by comparison to experimental results. Real size exam-
ples illustrate the strength of the framework in both two and three dimensions, 
and the developed models for the joints make it possible to account for the local
behaviour in the global model. 
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