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Preface

This thesis is submitted as a partial fulfilment of the requirements for the
Danish Ph.D. degree. The thesis is divided into two parts. The first part
introduces the background and motivation for the study and concludes the
major findings. Also a presentation of the work conducted is given here.
The second part is a collection of three papers focused on the most impor-
tant topics of the research that has been undertaken.
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Abstract

Ports and industries require special types of pavements to resist the heavy
static load from containers and continuous loads from operation vehicles. To
reduce the risk of rutting and settlements over time concrete or composite
pavement systems are typically applied. The structural design of such pave-
ments are today based on Mechanistic-Empirical (M-E) methods. The M-E
method is appropriate for many situations, in other situations it may lead
to overdesign, or maybe worse, underdesign. The method has limited ca-
pabilities and cannot account for significant factors affecting the pavement
response, such as geometry, realistic material behavior and arbitrary loading
conditions in a unified manner.

In recent years we have seen significant growth in the capabilities of com-
puter hardware and software that has allowed numerical modeling and anal-
ysis of structural problems for an increasing variety of applications. Such
models allow use of constitutive models that have the potential to replicate a
wide range of material behavior under arbitrary loading conditions. However,
successful application of numerical models in engineering design is often pre-
vented by complex implementation, unstable simulations and a large number
of model parameters.

In order to move a step towards more generalised structural design meth-
ods for analysis of heavy duty pavements, this study aims at developing a
mechanistic approach based on constitutive models. A simple framework for
engineering application is sought; creating a rational link between laboratory
tests, design and field applications.

First, a realistic 3-D cohesive finite element model for structural analy-
sis of composite block pavement systems is developed. This model is used
for verification and compared to experimental results. Secondly, a simpli-
fied two-dimensional engineering model is developed incorporating a cohe-
sive hinge and a two-parameter foundation model into a beam element. This
model includes the most significant parameters that influences the structural
response, i.e. soil-structure interaction and cyclic damage of the cemented
material.
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It is found that both the conventional cohesive zone model and the cohe-
sive hinge model is suitable for the description of the fracture behaviour of
cemented materials in concrete and composite pavement systems. The engi-
neering model is efficient, resulting in computationally fast and stable sim-
ulations, and a simple calibration method for estimating foundation model
parameters is developed. The consistent format applied enables straight-
forward implementation of different unloading and reloading schemes. The
presented damage model accounts for the material behavior in all the cracked
phases, linking the development of the fracture process zone and damage of
the existing fracture process zone to the monotonic material characteristics
in a unified manner.

The obtained results show that the methodology is attractive and well-
suited for further developments and practical use. The real-scale model can
be used directly in design, whereas the engineering model can be used in spe-
cial design cases, for sensitivity analysis and simple studies. The engineering
model, can when extended to three-dimensional applications, replace many
of the more complex real-scale cohesive zone models. The engineering model
can then be used for structural analysis enabling a full mechanistic analy-
sis of concrete and composite pavement structures, something which is not
possible today.



Resumé

Havne- og industriomr̊ader kræver specialbelægninger for at modst̊a tunge
statiske containerlaster og kontinuerlige laster fra køretøjer. Typisk benyttes
beton eller cementstabiliserede materialer i stive eller halvstive belægningsty-
per for at reducere sporkøring og sætningsskader over tid. Dimensionering af
denne type belægninger er i dag baseret p̊a analytisk-empiriske metoder. Me-
toden kan være passende i mange situationer, men i enkelte vil den medføre
overdimensionerede, eller meget værre, underdimensionerede konstruktioner.
Denne type metode har begrænset anvendelse og tager ikke højde for væ-
sentlige faktorer der p̊avirker belægningens respons, som geometri, realistisk
materiale opførsel og vilk̊arlige belastningsforhold p̊a en konsistent måde.

De seneste års betydelige udvikling indenfor computerteknologi tillader
nu numerisk modellering og strukturel analyse for en række forskellige appli-
kationer. Denne teknologiske udvikling tillader brug af konstitutive modeller,
der har potentiale til at realistisk afspejle en bred vifte af materialers opførsel
under vilk̊arlige belastningsforhold. Dog er effektiv anvendelse i praksis ofte
forhindret af modellernes kompleksitet, et højt antal af materiale parametre
og nummerisk instabilitet.

Formålet med dette forskningsprojekt er at udvikle nye og mere gene-
relle nedbrydningsmodeller for havne- og industribelægninger. Velfunderede
mekaniske principper og konstitutive modeller er inddraget for at skabe en
rationel forbindelse mellem laboratorieforsøg, design og anvendelser i marken.

Først, er der udviklet en fuldskala model til analyse af halv-stive beton-
stensbelgninger. Denne model benyttes til verifikation og sammenligning med
eksperimentelle resultater. Dernæst, er en forenklet ingeniørmodel udviklet
p̊a baggrund af en bjælkemodel hvori et plastisk hængsel og en to-parameter
jordmodel er indarbejdet p̊a konstitutivt niveau. Denne model beskriver de
væsentligste parametre der p̊avirker den strukturelle opførsel, dvs. interak-
tion mellem konstruktion og jord samt udmattelse af det cementstabiliserede
materiale.

B̊ade en traditionel kohesiv model og hængsel-modellen er velegnet til
beskrivelsen af revnernes opførsel i beton og cementstabiliserde materialer i
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stive- og halvstive belægninger. Ingeniørmodellen er effektiv, hvilket resulte-
rer i hurtige og stabile nummeriske simulationer, og kalibrering af modellen
er enkel og ligetil. Et generelt format muliggør simpel implementering af
konstitutiv materialeopførsel. Udmattelsesmodellen præsenteret tager højde
for materialets opførsel i alle faser af revneudvilkingen. Dette sikrer et konsi-
stent format der kan beskrive materialernes væsentligste karakteristika under
vilk̊arlige lasttilfælde.

Resultaterne viser, at metoden udviklet er effektiv og anvendelig til videre
udvikling og praktisk implementering. Fuldskala modellen kan benyttes di-
rekte til dimensionering, hvorimod ingeniørmodellen kan benyttes til specielle
design cases, forundersøgelser samt sensitivitets analyser. Ingeniørmodellen
kan, n̊ar udvidet til 3-D, erstatte komplekse fuldskala modeller og dermed
benyttes i en fuld mekanisk og rationel analyse, som ikke er mulig i dag.
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Chapter 1

Introduction

1.1 Background

With the phenomenal container trade growth in the 1970’s many ports ex-
perienced catastrophic problems with paving systems. Existing port surface
areas when used for container operations suffered severe failures (Meletiou
and Knapton, 1987). Asphalt rutting and punching, and concrete slab crack-
ing were among the primary damage types observed, see Figure 1.1.

(a) (b)

Figure 1.1: Pavement failure types reported in Barber (1980): (a) Asphalt
punching from static loads. (b) Concrete cracking from differential settle-
ments and overload.

Similar problems were also observed in many newly constructed areas
and soon such pavement systems were treated separately from conventional
paving and construction. Research in this area started in the the late 1970’s
by detailed assessment of port pavement failures, see e.g. Barber (1980). Fol-
lowing a series of new and more consistent design guidelines (Knapton, 1984,
1986; Knapton and Meletiou, 1996; Silfwerbrand, 2005; Asphalt-Institute,
2006; Knapton, 2008; PIANC, 2015).
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1.1 Background Introduction

In order to resist the heavy static loads from containers and continuous
loads from vehicles the pavement systems developed were thicker and stiffer
compared to conventional highway pavements. To reduce the risk of surface
damage, rutting and settlements over time, concrete and composite1 concrete
block pavement systems are typically preferred in design, see example in
Figure 1.2.

CBP

JS + BS

CBGM

USB + SF

UB

PCC

UB

USB + SF

(a) (b)

Figure 1.2: Sketch of typical pavement systems considered in the present
study: (a) composite concrete block pavement and (b) concrete pavement.
PCC: Portland Cement Concrete, CBP: Concrete Block Pavers, JS: Jointing
Sand, BS: Bedding Sand, CBGM: Cement Bound Granular Mixture, UB:
Unbound Base, USB: Unbound Sub Base, SF: Subgrade Foundation.

Although these special pavements are treated separately, the design method
rely on the same principles as for conventional pavements. The structural de-
sign of such pavement systems is based on empirical formulas which converts
the response analysis into a measure of performance, commonly referred to
as the Mechanistic-Empirical (M-E) method, first introduced in pavement
engineering by Kerkhoven and Dormon (1953). Figure 1.3 shows a schematic
overview of the various design approaches used in pavement engineering. The
pavement failure criterion is typically divided in two types:

(i) Stress-based: Reduction in pavement condition index (combined mea-
sure of pavement performance), crack initiation, area of visible cracks.

(ii) Strain-based: Reduction in E-modulus of the material (typically failure
at 50% of initial modulus).

For controlled stress laboratory testing the specimen will clearly fail after
a certain number of load repetition, but in controlled strain testing this is not
always the case. In controlled strain testing the modulus of the material will

1The term ’composite pavement’ is used in this thesis referring to a semi-rigid pavement
type consisting of a relatively thin layer of concrete blocks or asphalt constructed over a
cement bound granular mixture, providing the main bearing capacity of the structure.

4 Department of Civil Engineering - Technical University of Denmark



Introduction 1.1 Background

initially decrease before reaching a relatively constant level. Thus, failure of
the material is often defined as a decrease in modulus. For in-situ pavements,
failure is mostly defined as a certain severity and extent of cracking.

Pavement

Experience

Index properties: CBR

Limiting shear

Limiting deflection

Design

Pavement

Layered analysis

FE analysis
Design

- elastic

- non-linear (hyper elastic)

- elasto-plastic

Output

- stress
- strain

Formulas

- rutting
- damage
- fatigue
- thermal cracking

Mechanistic Empirical

Pavement

- FE methods

Design
- elastic, plastic, creep

- softening

- healing

Output

- stress
- strain
- damage

- cracking

- fatigue
- cycles to

2D or 3D

soloution procedures

Unified material model

- microcracking fracture

failure

(a)

(b)

(c)

Figure 1.3: Schematic description of various approaches for design of pave-
ments according to Desai (2007): (a) Empirical, (b) Mechanistic-Empirical
(M-E), (c) Mechanistic.

The M-E method represent one step forward from empirical methods, see
Figure 1.3 (a); the response model (mechanical part), is used to calculate
critical stress or strain in each material layer. This measure is then used as
input in an appropriate fatigue relationship (empirical part) to calculate the
performance. Very often uni-axial quantities are used as response measure
(Huang, 1993); for concrete and high-quality cement bound granular mix-
tures2, considered here, the horisontal tensile stress or strain at the bottom
of the layer. The number of load repetitions to failure is then calculated based
on one of these measures. The general empirical expression is formulated as

2The term ’cemented material’ is used in this thesis referring to both concrete and
high-quality cement bound granular mixtures.

Department of Civil Engineering - Technical University of Denmark 5



1.1 Background Introduction

a Wöhler type of fatigue relationship, or a so-called S-N curve, i.e.

Nσ = A

[
σb
σt

]B
; Nε = A

[
εb
εt

]B
(1.1)

where σb and εb are the stress and strain at failure and σt and εt are the
stress and strain applied (S), N is the number of load repetitions to failure,
A and B are empirical constants, the latter often referred to as the load dam-
age exponent. To account for changing loading characteristics, i.e. varying
amplitude and number of cycles, the linear damage hypothesis by Palmgren
(1924) and Miner (1945), here referred to as the ’PM-rule’, is typically used.

The different parts in the M-E design procedure entails different types of
weak links in the methodology. The M-E method can be divided into three
main parts, shown in Figure 1.3 (b); the response model, monotonic model
parameters and fatigue relationship.

Response model

The response model applied has to reflect the actual response of the pave-
ment structure. However, this is not always the case as models are often
over-simplified. Typically layered linear elastic theory (Burmister, 1945) or
the method of equivalent thickness (Odemark, 1949) is used to calculate the
pavement response in flexible and composite pavements. In these methods
the materials are idealised as semi-infinite homogeneous layers of material
with linear elastic isotropic properties. Thus, non-linear material behavior
and geometry is neglected. Moreover, layer interaction and contact is typi-
cally limited to unbonded or bonded behavior.

For design of rigid concrete pavements Westergaard’s analytical solutions
for interior, edge and corner loading of infinite or semi-infinite plates have tra-
ditionally been applied (Westergaard, 1926, 1948). Ioannides et al. (1985b)
used the finite element (FE) method to re-evaluate Westergaard’s solutions
and establish their limitations using the special purpose computer program
ILLI-SLAB (Tabatabaie and Barenberg, 1980). With the growth of computer
capabilities the FE method has increased in popularity and several response
analysis tools have been developed for the purpose of concrete pavement
design, see e.g. (NCHRP, 2003). The FE method has also become a stan-
dard feature in FAARFIELD, used for airport pavement design (Kawa et al.,
2007). These models can account for geometry and boundary conditions,
soil-structure interaction to some extent, as well as linear and non-linear
temperature distribution. However, their use do not involve calculation of
pavement performance based on evolving stresses and strains.

6 Department of Civil Engineering - Technical University of Denmark



Introduction 1.1 Background

Monotonic model parameters

For composite pavements both stress-based models (Corté and Goux, 1996;
NCHRP, 2004; Knapton, 2008) and strain-based models (Walker et al., 1977;
Freeme et al., 1982; NAASRA, 1992; Jameson et al., 1992; Knapton and
Meletiou, 1996; Thøgersen et al., 2004; Austroads, 2004) are used for struc-
tural design. For concrete pavements stress-based models are primarily used
(Packard, 1984; NCHRP, 2004; FAA, 2009).

Development of methods for determining εb is a difficult task as experi-
mental research show that the strain becomes uncontrollable at the sudden
strain localisation at failure (Otte, 1978). Thus, εb is typically determined at
a certain load level below the failure load (Litwinowicz and Brandon, 1994;
Gonzalez et al., 2010; Alderson, 2013).

Standard methods for determining σb, or so-called modulus of rupture,
have been developed based on beam tests, see e.g. ASTM (2015, 2016).
However, experimental research (Roesler, 1998; Roesler et al., 2004a, 2005,
2012) has shown that concrete slabs under fatigue loading sustain greater
stress ratios and higher cracking resistance than that predicted by concrete
beam fatigue curves cast with the same material, see Figure 1.4.

100 101 102 103 104 105 106 107
0

0.5

1

1.5

2

2.5

Number of cycles to failure, N

S
tr

es
s
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ti

o,
σ
/σ

b

S-N (Packard and Tayabji, 1985)

S-N (Darter and Barenberg, 1977)

S-N (Roesler, 1998)

Exp. (Vesić and Saxena, 1969)

Exp. (Darter, 1988)

Exp. (Thompson and Barenberg, 1992)

Figure 1.4: S-N design fatigue curves based on beam tests (Packard, 1984;
Darter and Barenberg, 1977) and slab tests (Roesler, 1998) compared to ex-
perimental slabs on grade (concrete slab resting on soil foundation) fatigue
curves (Vesić and Saxena, 1969; Darter, 1988; Thompson and Barenberg,
1992).

This phenomenon has also been observed in plain concrete slabs (Rao,
2005; Cervantes and Roesler, 2009), fiber-reinforced concrete slabs (Beckett,

Department of Civil Engineering - Technical University of Denmark 7



1.1 Background Introduction

1990; Roesler et al., 2004b), and full-scale continuously reinforced concrete
pavement sections (Kohler and Roesler, 2006). To predict the fatigue life of
the concrete slabs more accurately, Roesler and Barenberg (1999) proposed
to use the static flexural strength of the slab instead of the beam flexural
strength.

Fatigue relationship

The fatigue relationship is the weakest component of the M-E method which
generally requires an additional calibration function to match the observed
field performance. The M-E method is heavily dependent on the empiri-
cal input from large-scale pavement tests and the failure criterion selected.
To date only one official authority, the U.S Federal Administration of Avia-
tion (FAA), has been able to establish a consistent test program and design
method for pavement structures subjected to heavy duty loads. These data
can be used to some extent for development of material models for other ap-
plications, although both load levels (lower) and load configurations (more
distributed) as well as pavement systems differ slightly compared to typical
port and industrial pavements.

Rodway and Wardle (1998) applied data from the FAA test facility for de-
velopment of fatigue relationships based on the permanent deformation of the
subgrade foundation and incorporated this in the design software HIPAVE
(Wardle et al., 2006). However, other failure criteria applied to port and in-
dustrial pavement designs are either directly or indirectly related to fatigue
in conventional pavements. Knapton (2008) suggested to use allowable stress
levels found from linear elastic response analysis of catalogue highway pave-
ments (BS, 2001). Thus, fatigue relationships presently available for design
of heavy duty pavements are an inseparable part of their design method.

The methodology proposed introduces a range of further simplifications
and may in some cases lead to inconsistent results. For example it can
be shown, that for composite block pavement systems with cemented base
thickness below 300 mm, the static load is more critical than the cyclic load
for the same load magnitude, see Figure 1.5.

The M-E models currently used in design of heavy duty pavements rely
mainly on the empirical part. This type of model does not distinguish be-
tween crack initiation and crack propagation or elastic and inelastic work,
model parameters are simply regression constants without direct physical
meaning. The PM-rule does not consider sequence effects, i.e. the order of
the loading makes no difference. Moreover, damage accumulation is inde-
pendent on stress level. The method assumes that each single cycle of load
contributes to damage and the total fatigue failure is due to the linear ac-

8 Department of Civil Engineering - Technical University of Denmark



Introduction 1.1 Background
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Figure 1.5: Design chart for heavy duty pavements (Esoil=50 MPa) ac-
cording to Knapton (2008): Cemented base thickness for different load levels
given in Singe Equivalent Wheel Load (SEWL).

cumulation. However, research shows that damage in cemented materials is
not linear (Bache and Vinding, 1990; Ioannides, 1997; Roesler and Barenberg,
1999; Barenberg, 2005) as clearly indicated in Figure 1.4.

Summary

The M-E method deals with a limited number of materials in a restricted
range of design options; each fatigue relationship being restricted by its own
design method. The method is practical and simple because it gives the
user direct analytical expressions, however, such empirically based material
models have only limited capabilities.

M-E models have difficulties in accurately predicting the complex in-
teractions between the loads, cemented material properties, geometry, and
soil-structure interaction, without significant calibration. This can, in some
cases, lead to poor service life prediction, overly conservative designs, or the
elimination of important parameters influencing the response. Data reported
in the literature suggest that predictions of pavement fatigue life using the
PM-rule can approximate reality at best within an order of magnitude and
more commonly within two or even three orders of magnitude (Ioannides,
2005).

In order to improve current methods and move a step towards more gen-
eralised structural design methods for analysis of heavy duty pavements, this
thesis aims at developing a mechanistic approach based on constitutive mod-

Department of Civil Engineering - Technical University of Denmark 9



1.2 Behavior of cemented material Introduction

els, see Figure 1.3 (c). A simple framework for engineering application is
sought; creating a rational link between laboratory tests, design and field ap-
plications. For such a methodology to be widely accepted and implemented
in practice, a set of principles have been established for the present study
inspired by Colasanti and Horvath (2010):

(i) The methodology must be consistent, have a theoretical basis and in-
clude all the main parameters influencing the response in a unified
manner.

(ii) Implementation of models must be simple and straight forward apply-
ing appropriate computer packages or commercially available structural
analysis software.

(iii) There must be sound logic and science for evaluation of the material
and model parameters in the laboratory and in the field. This should
be achievable using standard test methods on a routine basis.

1.2 Behavior of cemented material

Field observations

Assessment of failure in composite pavement is difficult as the cemented layer
is placed below additional surface layers, in highway pavements typically as-
phalt surface, binder and base course. Geometry and construction methods
also influence the mechanisms of failure. Since the 1990’s pre-cracking tech-
niques have typically been applied to allow for movement, e.g. from tem-
perature and moisture changes as well as shrinkage, see e.g. (Colombier and
Marchand, 1993; Shahid and Thom, 1996).

Shahid (1997) stated that once initial shrinkage cracking has developed,
degradation of aggregate interlock joints through shear movement of the
cracked edges finally causes the occurrence of longitudinal cracks in wheel
paths due to the relatively higher flexural stresses. Thøgersen et al. (2004)
found that shrinkage cracking can be completely avoided and Yeo (2008b)
identified both transverse and longitudinal fatigue cracking in post-processing
assessment of damaged composite pavements. Full-scale experiments of ce-
ment bound granular mixture slabs reported in Busch et al. (2006) show
that empirically based models yield unrealistic results considering a load-
ing regime and configuration different from typical truck wheel loads, e.g.
ultimate loading condition.
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Darter and Barenberg (1977) concluded that the highest tensile stresses
in highway concrete pavement occurred at the longitudinal edge of the pave-
ment midway between the transverse joints. The critical failure point in most
highway slabs was at the longitudinal edge, as was seen in the AASHO road
test (HRB, 1962), Bates road test (Older, 1924), and Michigan road test
(Finney and Oehler, 1959). For thin slabs (less than 200 mm) the critical
location was at the transverse joint (HRB, 1962). Condition surveys of pave-
ments without dowels or tied shoulders have shown that longitudinal and
corner cracking occur as frequently as transverse cracking (Mahoney et al.,
1991; Harvey et al., 2000; Roesler et al., 2000). From full-scale experiments
on airport concrete slabs on grade Roesler et al. (2005) found that concrete
slab fatigue curves were not unique and depended on the specific bound-
ary conditions and slab geometry tested. Moreover, it was concluded that
for high stress ratios, the subgrade soil support condition changed progres-
sively, which overshadowed the effect of stress range on concrete slab fatigue
resistance.

Material properties

In the present study normal plain concrete and high quality cement bound
granular mixtures, i.e. a C8/10-material (BS, 2013), commonly applied in
port and industry concrete and composite pavements, are of primary inter-
est. However, whereas concrete mixtures are dense, where aggregates are
completely bonded by the cement paste, as shown in Figure 1.6 (a), ce-
ment bound granular mixtures are less dense and aggregates are bonded by
weaker cement links, as shown in Figure 1.6 (b), resulting in a somewhat
lower strength.

(a) (b)

Figure 1.6: Thin section: (a) normal concrete and (b) cement bound gran-
ular mixture.

Department of Civil Engineering - Technical University of Denmark 11



1.2 Behavior of cemented material Introduction

These materials are composed of the same constituents, as shown in Table
1.1 and Figure 1.7.

Table 1.1: Material mixture and mechanical properties for CBGM C8/10-
material and plain concrete. Typical values.

Material properties CBGM Concrete

Sand (0.1-4 mm) (%) 45 70

Gravel (4-32 mm) (%) 55 30

Maximum stone size, Dmax (mm) 16-32 8-32

Cement content (%) 5.0 15.0

Water-Cement ratio (-) 1.0 0.5

Mechanical and fracture properties

Young’s modulus, E (GPa) 15 30

Poisson’s rato, υ (-) 0.20 0.15

Tensile strength, ft (MPa) 1.0 3.0

Compression strength, fc (MPa) 10 30

Fracture energy, GF (N/mm) 0.035* 0.150
*Note: predicted based on Hilsdorf and Brameshuber (1991)
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Figure 1.7: Grading curves for high quality (envelope ’B’) CBGM-materials
according to BS (2013) (gray) compared to CBGM materials and standard
concrete considered in the present study.
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The quasi-brittle nature of concrete (Kaplan, 1961; Shah and McGarry,
1971; Shah et al., 1995; Bažant, 2002) and cement bound granular mixtures
(Otte, 1978; Balbo, 1997) have been recognised for many years and is usually
characterised by having a tensile load-deformation response as illustrated in
Figure 1.8 (a) with a long post-peak tensile softening response.

(a) (b)

Figure 1.8: (a) Typical tensile load-deformation response for a concrete
specimen; (b) illustration of the fracture process zone around the traction
free crack. From Karihaloo (1995).

For an increasing tensile load the elastic behavior changes to a non-linear
response (A) and the loading results in the formation of micro-cracks. At
some point after the peak, during the tensile softening region (BC) the micro-
cracks coalesce into the formation of a macro-crack. A continued opening will
primarily open the now established macro-crack. For a single crack the crack
evolution is shown in Figure 1.8 (b), relating the micro-cracking and bridging
over the crack as a consequence of e.g. aggregate interlock to the different
crack opening stages (A-D).

Summary

(i) Field observations and large-scale experiments of concrete and compos-
ite pavements indicate that the two primary controlling structural fail-
ure mechanisms are initiation and propagation of cracks due to bending
and the shear interaction of aggregate interlocking joints.

(ii) Both monotonic and fatigue load response curves are influenced by the
non-linear fracture behavior and slab geometry.

(iii) The structural response is highly influenced by soil-structure interac-
tion, especially for high stress ratios, i.e. close to ultimate loading state
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and at the end of fatigue life.

(iv) Based on material composition and characteristics it is deemed reason-
able to treat the differences between concrete and high quality cement
bound granular mixtures as a difference in mechanical material prop-
erties applying the same constitutive model.

1.3 Constitutive crack model

Cohesive zone modeling (CZM) is one of the primary methods to handle
discrete crack propagation in diverse types of materials. This concept was
introduced by Barenblatt (1959) and Dugdale (1960) in order to address the
stress singularity at crack tips. In these models, all non-linearities take place
in a cohesive zone ahead of the main crack tip, which is associated with the
physical fracture process zone lp of the material, see Figure 1.8 (b).

The first non-linear fracture mechanics model for cemented quasi-brittle
materials is named the fictitious crack model (FCM) developed by Hillerborg
et al. (1976). The fictitious crack model relies upon the smooth crack closure
eliminating the energy dissipation at the crack tip. The term fictitious is used
to underline the fact that ahead of the real, stress free crack, an artificial crack
is supposed to be present and to transfer certain stresses causing the smooth
crack closure. The fictitious crack model was first introduced in design of
concrete pavements by Bache and Vinding (1990).

Initiation and propagation of cracks is assumed to take place in pure open-
ing (Mode I ), perpendicular to the largest principal stress. In the fictitious
crack model the tensile load-deformation response for concrete displayed in
Figure 1.8 is divided into a linear elastic part and a tensile softening part, as
shown in Figure 1.9.

The fictitious crack model assumes that the traction stress is purely a
material property, independent of specimen geometry and size. The linear
elastic part is characterised by the Young’s Modulus, Ec, and the tensile
strength ft. The softening part is described through ft, the fracture energy
GF , and the critical crack opening wc. GF is the area under the softening
curve whereas wc corresponds to the crack opening at the end of the fictitious
crack where the crack becomes stress free (point D in Figure 1.8). The
softening response is often described through a bi-linear, power or exponential
relation where ft and GF are usually kept constant between the relations and
wc varies.

Several researchers have argued that the shape of the softening curve
significantly affects structural response, particularly local failure behavior
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Figure 1.9: Splitting of the the stress-deformation curve into (a) pre-peak
elastic stress-strain relationship and (b) post-peak softening curve or stress-
crack opening relationship. (c) defines a simplified linear softening as pro-
posed by Hillerborg et al. (1976). GF is the total fracture energy needed to
produce a stress free crack.

(Petersson, 1981; Gustafsson et al., 1985; Roelfstra and Wittmann, 1986; Al-
varedo and Torrent, 1987). Consequently, numerous different curve shapes
have been proposed, see e.g. Shah et al. (1995). However, for the fracture
analysis of slab on grade pavement structures, applying a simple linear soft-
ening curve does not influence the response significantly while significantly
reducing the computation time (Gaedicke and Roesler, 2009; Aure and Ioan-
nides, 2012).

The constitutive relation between crack opening and the normal stresses
across the crack is well described through the fictitious crack model and
related models. However, to get a complete and thorough description of the
structural consequences of cracking in concrete structures, more advanced
mixed-mode models have been proposed in the literature (Carol et al., 1997;
Högberg, 2006; Nielsen et al., 2010; Jacobsen, 2012; Jacobsen et al., 2013).
The mixed-mode models take into account the combination of crack-opening
and crack-sliding (Mode II ) after initiation of cracks. Thus, more complex
cracking behavior, e.g. shear cracking, can be described with such a model.

Fatigue cracking is one of the major structural damage types and consid-
ered to be the primary mode of failure in pavements as described in Section
1.1. The cyclic behavior of cemented materials has mainly been studied sub-
jected to fatigue loading in direct tensile, flexural or indirect tensile loading,
see e.g. Cornelissen (1984). These types of experiments have typically been
used to establish the before mentioned fatigue relationships and provide some
information about the number of cycles to failure and the damage develop-
ment. However, these tests do not distinguish between crack initiation and
crack propagation period or elastic and inelastic work.
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Slowik et al. (1996) stated that damage mainly occurs in the micro-
cracked zone present at the tip of a crack. Moreover, the authors showed
that peaks in the loading history enlarged the fracture process zone and ac-
celerate fatigue crack propagation. This observation confirm the importance
of studying cemented material beahvior after crack initiation and damage
that occurs in the fracture process zone, i.e. deterioration of the aggregate
bridging stress during cyclic loading. Thus, experimental results from de-
formation controlled uni-axial testing are required in order to distinguish
between the different phenomena and phases occurring during fatigue crack
growth.

wc w
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(a) (b)

Figure 1.10: Cyclic behavior of concrete: (a) monotonic cohesive law
(dashed black), unloading (gray solid) and reloading (black solid). (b) Unload-
ing and reloading loops according to the continuous function model proposed
by Hordijk (1991).

Deterioration of aggregate bridging stress on plain concrete under cyclic
uni-axial tension was investigated experimentally by Gylltoft (1983), Gopalarat-
nam and Shah (1985), Reinhardt et al. (1986), Hordijk (1991), Plizzari et al.
(1997) and Kessler-Kramer et al. (2001). Zhang et al. (1999, 2000) performed
similar experiments on plain and fiber reinforced concrete. This work resulted
in several analytical stress-based models for low-cyclic analysis (Yankelevsky
and Reinhardt, 1987; Plizzari et al., 1997), including the continuous function
model proposed by Hordijk (1991), shown in Figure 1.10. Zhang et al. (2001)
developed an empirical fatigue law based on experiments reported in Hordijk
(1992).

Elias and Le (2012) applied the cyclic cohesive zone model proposed by
Nguyen et al. (2001) to simulate the tension regime in Mode I crack growth
in quasi-brittle structures under compressive fatigue. In such cyclic cohesive
models, irreversible damage accumulation is controlled by an explicit damage
evolution equation where an endurance limit can be incorporated (Nguyen
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et al., 2001; Yang et al., 2001; Roe and Siegmund, 2003; Xu and Yuan, 2009;
Roth et al., 2014). While in monotonic cohesive zone models the damage
state is uniquely defined by the maximum separation attained during the
loading history, cyclic cohesive zone models need a more general damage
variable. In the literature, stiffness-type (Nguyen et al., 2001), separation
type (Yang et al., 2001) and micro-mechanical motivated damage variables
(Roe and Siegmund, 2003) are suggested. For visualisation purpose, Ortiz
and Pandolfi (1999) proposed an energy based conversion of a separation-type
damage variable into the range between zero and one.

Summary

(i) Several constitutive crack models for concrete materials have been pro-
posed in the literature, primarily focusing on the monotonic softening
behavior of the material.

(ii) For pavement slab on grade structures the softening curve does not
influence the response significantly.

(iii) Few unified mechanical cyclic crack models for cemented materials have
been published in the literature; models typically suitable only to low-
cyclic loading or are based on empirical methods with limited capabil-
ities.

(iv) There is a need for general models - linking the different crack behav-
ior, i.e. monotonic, low-cycle and fatigue, enabling the possibility for
analysis of complex arbitrary load cases.

(v) An energy based approach for damage evolution in cyclic cohesive zone
models seems promising for numerical analysis of fatigue crack growth
phenomena.

1.4 Numerical methods for crack modeling

The establishment of a detailed computational model can be divided into a
number of steps, as shown in Figure 1.11. First, there is the realisation of
the need for a model, here triggered by the observations presented in Section
1.1 and 1.2. From the experimental knowledge the constitutive behavior may
then be sought explained through a suitable theory as discussed in Section
1.3.

Dependent on the character of the problem to be modeled, a suitable
numerical tool may be developed before the constitutive relation can be used
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Figure 1.11: The process of developing a detailed computational model for
structural analysis with relation to experiments, theoretical framework and
numerical tools.

to model the structural behavior. On the other hand, the available numerical
tools may also dictate the framework in which the constitutive model is
formulated. Often the numerical tool is established in relation to the FE
method, also selected for the present study, due to its capability of solving a
wide variety of engineering problems and as it is currently one of few widely
accepted numerical tools used by design engineers.

The heterogeneous nature of cemented material shown in Figure 1.8 can
be modeled at the micro-scale, but in terms of computational resources a
micro-scale model, modeling aggregates, mortar and interlayer, is very de-
manding with regard to computational power. In the modeling of real size
structures, it is therefore advantageous to use a macro-scale model where
the cemented material can be considered as homogeneous and for instance
include the micro-cracking effects in the larger cracks through the consti-
tutive description. Typically, at the structural scale, the cemented mate-
rial is considered as a homogeneous material and the softening law depicted
in Figure 1.9 (c) does not distinguish if the bridging stress originates from
micro-cracking, in pure cement paste, aggregates debonding, crack branching
or other effects; the softening law describes its averaged resulting actions on
the current material scale only.

Not only will the heterogeneous nature of the cemented material exhibit
softening behavior in tension locally, but also on a structural level concrete
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and composite pavements will exhibit softening, or so-called snap-back type
of load-displacement response. This type of localised fracture behaviour can
be described numerically with different classes of constitutive models, e.g.,
those proposed by Jirásek (2001) as; (i) strong discontinuity models, (ii) weak
discontinuity models, and (iii) continuum models. The first model considers
a crack as a geometrical discontinuity, whereas the latter two approaches
imagine a cracked solid to be a continuum.

Discontinuity models

The discontinuity models, e.g. the fictitious crack model, embedded elements
with strong discontinuities and the extended finite elements (XFEM), incor-
porate jumps in displacements across a discontinuity surface corresponding
to the crack.

The cohesive zone models have typically been used with FE modeling
in conjunction with interface elements (Needleman, 1987; Tvergaard and
Hutchinson, 1992; Camacho and Ortiz, 1996). Here cohesive elements are
defined at the edges (interface) in a pre-determined path between standard
finite elements to initiate cracks and propagate them following the deforma-
tion process. Methods inserting interface elements once the bulk material
reaches the cohesive strength of the material have, also been used in the
literature (Camacho and Ortiz, 1996; Oliver, 1996). However, the computa-
tional cost and data structure management for these models have currently
restricted their application to more simple problems.

Other methods have also been used to describe fracture growth without
a pre-determined path such as the embedded formulations, see e.g. Jirásek
(2000). With embedded crack models, strain or displacement discontinuities
are embedded into standard finite elements. In the extended finite element
method proposed by Belytschko and Black (1999) and Moës et al. (1999) an
enrichment of the elemental basis functions allows the displacement field to
be decomposed into a continuous and a discontinuous part. The discontinu-
ous part can then represent a discontinuity like a crack in a discrete manner
where the direction of the crack and the crack propagation are independent
of the element mesh. With the use of the extended finite element method
cohesive opening-mode cracking in concrete has been considered by e.g. As-
ferg et al. (2007) and mixed-mode cracking by Mougaard et al. (2010). The
extended finite element method seems to be an effective tool for modeling
concrete structures, however, the elemental enrichment results in extremely
complex and demanding data structure management. To overcome this prob-
lem Olesen and Poulsen (2013) proposed to use an alternative formulation of
the embedded element with an discrete crack, taking advantage of the direct
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formulations developed within XFEM.

For fracture analysis of concrete pavements cohesive interface elements
have primarily been used with some very encouraging results, considering
both plain concrete (Ioannides et al., 2006; Gaedicke and Roesler, 2009;
Gaedicke et al., 2012; Aure and Ioannides, 2012; Evangelista et al., 2013;
Aure and Ioannides, 2015b) and fiber reinforced concrete (Meda et al., 2004;
Sorelli et al., 2006; Belletti et al., 2008). In these models the fracture process,
built-in traction separation based cohesive elements was inserted along the
anticipated fracture plane in the concrete slabs in the orthogonal directions
as per Meda et al., see Figure 1.12.

q q
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Subgrade

w

a0 ft

σ (w)
Cohesive
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Figure 1.12: Sketch of cohesive zone model implemented in pavement struc-
ture: (a) plan overview of orthogonal fracture planes for interior and edge
loading. (b) cross section of block pavement structure showing the cohesive
zone. (c) the fictitious crack model, where a0 is the crack tip, lp is the frac-
ture process zone (FPZ), ft is the tensile strength, w, is the stress free crack
opening and σ (w) the cohesive softening law.

Moreover, cohesive zone modeling seems like an attractive method to
describe the fracture behavior of cement bound granular mixtures, see e.g.
Liu and Wang (2008); Zaman et al. (2009); Yeo et al. (2012).

Continuum models

Models with localisation bands bounded by weak discontinuities can be con-
sidered as simple regularisations of models with strong discontinuities, e.g.
the smeared crack model. In smeared crack models (Rashid, 1968; Bažant
and Oh, 1983; De Borst and Nauta, 1985) the cracking in a given material
point is the result of the micro-cracking and macro-cracking in a given vol-
ume surrounding the point. The smeared approach is often used in relation
to the crack band model (Bažant and Oh, 1983). The smeared models tend
to show some mesh dependencies and the smeared manner makes it difficult
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to interpret the actual crack width and the exact location of a macro-crack
in an element.

Instead of splitting the constitutive law into elastic and inelastic parts,
one could use a law that directly links the stress to the total strain, which
is the case for continuum models. Subsequently several models have been
developed to describe the complicated fracture process in quasi-brittle mate-
rials, e.g. by coupling damage and plasticity (Mazars, 1986; Lubliner et al.,
1989; Maekawa et al., 1993; Lee and Fenves, 1998; Nguyen, 2005; Grassl et al.,
2013). However, these models suffer another drawback; as their implementa-
tion is complex, they often poses numerical challenges, are computationally
expensive and generally require a large number of model parameters. More-
over, special laboratory tests are often needed to determine model parame-
ters, making them less attractive for routine design purposes.

A simplified method combining the advantages of discontinuous approach,
avoiding many numerical problems such as mesh dependency, combined with
the continuum approach was proposed by Olesen and Poulsen (2012) using
a cohesive hinge. In this method the underlying description is based on the
formation of discrete cracks, i.e. according to Ulfkjær et al. (1995); Olesen
(2001b), whereas the constitutive behavior of the hinge is smeared (smooth).

Summary

(i) Cemented materials exhibit softening behavior in tension on both the
local and the structural level. No reinforcement is present to signifi-
cantly increase the ductility and preventing a sudden collapse of pave-
ment slabs, thus stable numerical methods are required.

(ii) The discontinuous crack models have the advantage that they are rel-
atively simple and numerically stable. However, to avoid heavy data
structure management, their simplicity rely on the fact that interface
elements are inserted in finite element models a-priori.

(iii) Continuum models are able to capture the changes in stresses and
stiffness during progressive cracking. However, their implementation
is complex, they often poses numerical challenges, they are generally
computationally expensive and require a large number of model param-
eters.

(iv) Although unproven to analysis of pavement structures, or complex
structures in general, the finite element hinge model seems like a promis-
ing method. This method combines some of the advantages of the
discontinuous and the continuum approach.
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1.5 Soil-structure interaction model

It is evident from the literature reviewed in Section 1.1 and 1.2, that the soil
foundation properties are among one of the main parameters influencing the
response of concrete and composite pavement systems. It is an important
consideration to account for the ductility exhibited by concrete in rigid pave-
ment design, but this property is not exclusively a material property, because
it is affected considerably by the entire structural system as well (Bache and
Vinding, 1990). Thus, the interaction between soil and structure should be
evaluated as part of the process in the development of a mechanical model
for engineering design purposes.

In geotechnical engineering a large proportion of research activity has
been devoted to the development of stress-strain-time relationships for soils
which exhibit non-linear and irreversible processes using continuum mechan-
ics, see e.g. Puzrin (2012). These generalised constitutive models have been
successfully applied to the examination of fundamental phenomena encoun-
tered under test conditions. However, such models are typically very com-
plex and require a large number of model parameters. Further, taking into
account the variety of soils and soil conditions encountered in engineering
design, their applicability to soil-structure interaction problems represent
difficulties (Selvadurai, 1979).

In order to reduce the complexity and size of numerical models, ide-
alisation of the soil behavior is necessary, e.g. by employing the classical
theories of elasticity and plasticity. For routine design purposes in pavement
and geotechnical engineering Winkler’s idealisation (Winkler, 1868) has been
used almost exclusively (Horvath, 2002). However, care should be taken in
application of such a model as it essentially suffers from a complete lack of
continuity in the supporting medium, see Figure 1.13 (a).

qq

z, w

(a) (b)

Figure 1.13: Response of (a) Winkler foundation model, consisting of in-
dependent springs, versus (b) elastic continuum model.

It is common experience, in the case of soil media, that surface deflections
will occur not only immediately under the loaded region but also within cer-
tain limited zones outside the loaded region, see Figure 1.13 (b). In attempts
to account for this continuous behavior, soil media have often been idealised
as three-dimensional continuous elastic solids or elastic continua. The first
continuum representation of soil media stems from the work of Boussinesq
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(1885), who analysed the problem of a semi-infinite homogeneous isotropic
linear elastic solid subjected to concentrated force which acts normal to the
plane. The basic Boussinesq solution can be used to obtain the response func-
tion for the three dimensional elastic soil medium. Boussinesq solution can be
simplified to the two-dimensional case by making use of Flamant’s problem
for a line load acting on the surface of a half-space, see e.g. Timoshenko et al.
(1970). Such isotropic elastic continuum models can be employed effectively
in the analytical treatment of soil-structure interaction problems.

The deficiency of the Winkler model in depicting the continuous behavior
of real soil masses and the mathematical complexities of the elastic continuum
has led to the development of many other simple soil response models. These
models possess some of the characteristic features of continuous elastic solids,
however, they represent the upper boundary of the soil-structure interface
and are primarily intended for modeling of the response of soil media and
not of the response of an element within the soil medium. This class of
mathematical models has an additional constant parameter and hence, the
models are called two-parameter foundation models.
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Figure 1.14: (a) Mechanical spring model with elastic layer capable of pure
shear deformation proposed by Pasternak (1954). (b) Simplified elastic con-
tinuum model proposed by Vlasov and Leontev (1960).

The development of two-parameter models has been approached along
two distinct lines. The first proceeds from the discontinuous Winkler model
and eliminates its discontinuous behavior by providing mechanical interaction
between the individual spring elements, see Figure 1.14 (a). The second
approach starts from the elastic continuum model and introduces constraints
or simplifying assumptions with respect to the distribution of displacements
and stresses, see Figure 1.14 (b).

Two-parameter models for design of concrete pavement systems have
been studied by Ioannides et al. (1985a) and Khazanovich and Ioannides
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(1993), followed by implementation of such models in several special pur-
pose FE-tools for rigid pavement design (NCHRP, 2003). Moreover, two-
parameter models have been used to study complex phenomena occurring
in rigid pavements, such as slab-curling (Khazanovich and Ioannides, 1994;
Khazanovich, 2003; Zokaei-Ashtiani et al., 2015) and layer contact prob-
lems (Zokaei-Ashtiani et al., 2014). Lin and Folias (1975) studied the influ-
ence of the two foundation parameters on a finite surface crack and Jones
(1978) developed expressions for incorporating the effect of the foundation
properties on the transverse shear stresses of the cracked face. Ramsamooj
(1993) extended these type of models to include the influence from moving
vehicle loads, but only recently, effective numerical tools for stress fields in
cracked layered elastic pavement systems have been developed, see Chabot
et al. (2005) and Nasser and Chabot (2015). However, the influence of two-
parameter models, or soil-idealisation techniques in general, for analysis of
crack propagation and crack growth, has drawn little attention.

Summary

(i) Application of generalised continuum models to solve soil-structure in-
teraction problems are difficult taking into account the variety of soils
and soil conditions as well as complex material behaviour in an efficient
manner.

(ii) Mechanical two-parameter foundation models have been effectively em-
ployed in analysis of soil-structure interaction problems in pavement
and foundation design.

(iii) Two-parameter models represent the upper boundary of the soil-structure
interface and are primarily intended for modeling of the response of soil
media and not the response of an element within the soil medium.

(iv) Although two-parameter models may be extended to account for non-
linear behavior of the soil they are not capable of describing yielding
which accompanies the formation of slip-lines.

(v) The influence of using two-parameter models, or soil-idealisation tech-
niques in general, for analysis of slab fracture, has drawn little atten-
tion.
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1.6 Objectives of the thesis

As discussed in the introductory part of this Chapter, the use of M-E ap-
proaches for design of heavy duty pavements, and pavement structures in
general, has limited capabilities. The M-E method cannot account for sig-
nificant factors influencing the response, e.g. describing the interactions be-
tween loads, material properties, geometry and soil-structure interactions in
a unified manner.

In order to move a step towards a more generalised structural design
method for analysis of heavy duty pavements, this study aims at developing
a mechanistic approach based on constitutive models. This allows for ge-
ometry, non-linear cemented material behavior and interactions with other
material layers. Thus, the performance are evaluated as a part of the solution
procedure using appropriate numerical methods.

Objective 1

In the M-E method fatigue and monotonic behavior, i.e. ultimate loading
state, is badly linked, making a complete structural analysis of heavy duty
pavements a difficult task. Moreover, the influence from multi-dimensional
geometry, soil-structure interaction and other boundary conditions are often
neglected. Thus, the first objective of this thesis is to

(i) develop a simple framework for numerical simulation of a cement bound
granular base layer in composite block pavement systems subjected to
monotonic loading.

This model is used to demonstrate the applicability of a cohesive zone
model to describe the fracture behavior in cement bound granular materials
in composite pavements.

Objective 2

Numerical analysis of the fracture behavior in real-scale concrete and com-
posite pavement systems is complex and does often possess numerical issues,
such as instability problems and aborted simulations. Moreover, the soil-
structure interaction models applied are often too complex or over-simplified.
Thus, the second objective of this thesis is to

(ii) introduce a simple methodology and numerical tool which significantly
reduce the complexity in pavement analysis of cemented material frac-
ture.
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This model is used to evaluate and demonstrate the use of a cohesive
cracked-hinge model for pavement applications, as well as study the influence
from different mechanical soil-structure interaction models on the fracture
behavior of cemented one-way slabs on grade.

Objective 3

Whereas several constitutive models have been developed for low-cyclic dam-
age of cemented materials, few published models create the required link be-
tween low-cyclic and high-cyclic damage. Moreover, the models developed
are typically used to simulate one type of test or one simplified problem.
Thus, all the different components in Figure 1.11 are seldom addressed in
relation to each other. This often results in complex models with limited
capabilities in context of design for engineering applications. Thus, the third
and final objective of this thesis is to

(iii) extend the framework developed to account for unloading of cracks,
cyclic loading, and fatigue damage of the cemented material.

These models are used to evaluate standard fracture tests reported in the
literature, e.g. simply supported beam tests and beams resting on soil.
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1.7 Outline of the thesis

This thesis consists of two main parts; Introduction and Summary (Part I)
and the Appended Papers (Part II). The different chapters in Part I and the
papers in Part II overlap. Each chapter presents a brief overview of the work
carried out with the main research findings detailed in the papers. The work
is concluded in Chapter 6.

To give the reader an overview of where the different subjects are detailed,
the organisation of the thesis is given in Table 1.2. The column to the right
indicate which subjects are covered in which paper.

Table 1.2: Organisation of thesis.

Chapter Subject Paper

1 Introduction

Modeling framework

2 Concrete block pavement model

Detailed analysis of the 3-D cohesive model Paper I

The cohesive cracked-hinge model Paper II

3 User-built finite element code

3-D cracked-hinge model

Evaluation of soil-structure interaction models

4 One-way slab resting on elastic continuum Paper II

Evaluation of methodology

Development of the fiber cracked-hinge model Paper III

5 Low-cyclic tensile damage model Paper III

Energy based fatigue model

6 Conclusion

A Appendices
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Chapter 2

3-D cohesive finite element
model

2.1 Introduction

Concrete block paving is in many regions the preferred surfacing material
in container terminals because it combines the benefits of the durability of
concrete with the flexibility of asphalt. Typically, the block pavers are ap-
plied over a stiff cemented base layer to resist the heavy static loads from
containers, see Figure 2.1.
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20 t

20 t

20 t

20 t

20 t20 t

20 t

20 t

20 t

(a) (b)

Cemented base

Figure 2.1: Sketch of pavement systems showing some typical axle loads and
container loads (t = ton): (a) Heavy duty composite concrete block pavement
and (b) Typical highway asphalt pavement.
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The inability of presently available design methods to realistically capture
the monotonic behavior of pavement structures, i.e. ultimate loading state,
makes a complete structural analysis of heavy duty pavements a difficult
task. Moreover, the influence from geometry, soil-structure interaction and
other boundary conditions are often neglected. To increase the versatility
and improve existing methods, this chapter presents a 3-D cohesive finite
element model for numerical analysis of the fracture behaviour of cement
bound granular mixture in composite concrete block pavement systems.

2.2 Modeling framework

Model idealisations

Analysis of a three-layered composite pavement structure is considered; con-
crete block pavers, cement bound granular mixture and subgrade soil, see
Figure 2.2. In order to obtain models that are efficient for routine design
purposes in a satisfying way, a certain amount of idealisation is applied in
the FE model.

Blocks

Bedding sand
Cemented base

Foundation

Figure 2.2: Sketch of simplified 3-D composite block pavement system con-
sidered in the present study.

The pavement structure is modeled as slabs on grade for evaluation of
interior, edge and corner loading, assuming that the slabs are intact before
monotonically loaded. Square slabs of 2.5×2.5 m2 to 4.5×4.5 m2, dimensions
commonly applied in port and industrial pavements, are considered. The
interaction between the cemented slab and concrete block pavement surface
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and soil is treated using different numerical strategies, e.g. FE sub-models
and simplified mechanical models described in the subsequent sections.

A simple Winkler’s idealisation for describing the soil-structure interac-
tion is suggested. However, this method has limited capabilities, and to ad-
equately capture the influence of the soil properties on experimental curves
as demonstrated in Section 2.4, the FE model has been extended to account
for the stress distribution in a linear elastic continuum using elastic solid
elements. Moreover, the continuum model is extended to account for elasto-
plastic behavior applying a Mohr-Coulomb yield criterion, see e.g. Puzrin
(2012). In the subsequent sections these three types of idealised soil-structure
interaction models are referred to as the ’Winkler’, ’Elastic’ and ’Plastic’
model, respectively.

Cohesive zone modeling

Failure mechanism

The limited capabilities of empirical and M-E methods has led to introduc-
tion of others, e.g. the yield-line theory, typically used for design of reinforced
concrete slabs on grade (Johansen, 1955; Losberg, 1961, 1978; Baumann and
Weisgerber, 1983) and steel fiber reinforced concrete slabs on grade (Silfwer-
brand et al., 2000; Silfwerbrand, 2001; Meda, 2003). As load is applied to
a concrete slab, certain sections experience bending moments equal to the
plastic moment capacity of the section. Increasing the applied load results
in plastifying more sections and eventually, through a number of yield lines,
a collapse mechanism is formed. Plastic analysis by the yield-line considers
large, plastic rotations occurring along lines where reinforcement has yielded.

The yield-line theory is applied for design evaluation of ultimate load ca-
pacity. Moreover, yield-line mechanisms can be used to predict the expected
fracture pattern in slabs on grade and used in conjunction with discrete crack
models within the FE method, i.e. cohesive zone modeling. Cohesive zone
modeling has been extended to practical problems for concrete pavement
structures or so-called slab on grade structures, applying cohesive interface
elements, with some very encouraging results as mentioned in Section 1.4.

Meda (2003) compared a cohesive zone model with the yield-line theory
and Westergaard’s solution, for determining the ultimate loading-carrying
capacity of concrete slabs on grade subjected to an interior point load, see
Figure 2.3 (a).

From Figure 2.3 (a) it is observed that Westergaard’s solution yields
overly conservative designs, as it was reported that the cohesive zone model
predicted the peak-loads of experimental curves with a 10% margin. It is

Department of Civil Engineering - Technical University of Denmark 31



2.2 Modeling framework 3-D cohesive finite element model

5 · 10−2 0.1 0.15 0.2
0

100

200

300

400

Winkler stiffness, k (MPa/mm)

P
ea

k
-l

o
ad

(k
N

)
Westergaard

Yield-line

CZM

(a)

Sc

S

(b)

Figure 2.3: Slabs on grade under interior loading: (a) Comparison between
different methods to determine ultimate load capacity of slab (4 × 4 × 0.2
m3) for varying soil stiffness k (Meda, 2003). (b) experimental crack pattern
(Sorelli et al., 2006) and fracture plane (solid gray) and axes of rotation
(dashed gray) assumed in the yield-line method (Meda, 2003). Parameters S
is the surface area (white tiled) and Sc is the cracked plane (gray tiled).

also noted that the increased stiffness of the structure from the support does
not have any significant influence on the peak-load in Westergaard’s solution.
The difference between the yield-line method and the cohesive zone model
is relatively constant around app. 1.5, indicating that the yield-line method
gives a reasonable prediction of the ultimate load-carrying capacity, with a
safe solution (Meda, 2003).

For the monotonic load case, considered here, the development of cracks
is imagined to occur in a similar fashion as the yield-line mechanisms in the
form of a straight separation band where the location is known in advance,
i.e. considering Mode I fracture during crack propagation. For the fracture
process, built-in traction separation based cohesive contact surfaces are in-
serted along the anticipated fracture plane in the cemented base layer (slab)
in the orthogonal directions as, shown in Figure 2.3 (b). This is deemed a
reasonable model at the edge and interior of the cemented base layer, since
the fracture plane is anticipated in the direction of the maximum stress. This
is also backed up by experimental results reported by Sorelli et al. (2006),
see Figure 2.3 (b).

Finite element description

For description of the fracture process the cohesive contact model, based on
the fictitious crack model depicted in Figure 1.9 (c), in ABAQUS is selected
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to save computational time; enabling the use of symmetry conditions and
application of a coarser mesh for the cohesive zone. Moreover, as shown in
Figure 2.4, the cohesive contact model is found to adequately describe the
load-displacement response of slabs on grade reported by Aure and Ioannides
(2012).
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Figure 2.4: Comparison of load-displacement curves for interior loading
of a rectangular concrete slab on grade (3× 6× 0.15 m3), applying different
modelling techniques in ABAQUS: cohesive contact (linear softening) and co-
hesive interface element (bi-linear softening) reported in Aure and Ioannides
(2012), with element size of 8 × 15 mm2 to 8 × 65 mm2 and 3.5 × 3.5 mm2

for the cohesive zone, respectively.

Based on the contribution to the variation in internal work, δΩ, from
the slab (elastic bulk material), the foundation, the cohesive zone and the
potential work of external forces, δW , from point and surface loads, the
principle of virtual work for the system in ABAQUS can be established

∫

V

δεTσ + δuTkudV +

∫

Sc

δwT tdSc =

∫

S

δuTfdS +
∑

i

δuTi pi (2.1)

where V is the structural volume, S is the surface area, Sc is the cracked
plane, δε, δu, δw is the strain, displacement and crack-opening displace-
ment variations, respectively, k is the elastic stiffness of the foundation, f is
the surface traction vector, pi is a concentrated (nodal) load and δui is the
associated (nodal) displacement variation. S and Sc is shown in Figure 2.3
(b).
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The constitutive law for cohesive contact in ABAQUS (2013) is described
in terms of contact stress and separation, i.e. tn = F/A and wn respectively,
where F is the contact force and A is the current area at each contact point.
Moreover, for cohesive surfaces the cohesive constraint is enforced at each
slave node and not at material point. The traction stress vector, t, consists
of three components: tn, ts, and tt, which represent the normal and the two
shear tractions respectively. The corresponding separations are denoted by:
wn, ws, and wt. The elastic behavior can then be written as




tn

ts

tt


 =




Knn Kns Knt

Ksn Kss Kst

Ktn Kts Ktt







wn

ws

wt


 = Kw (2.2)

where K is the nominal stiffness, also referred to as the penalty stiffness. In
this study uncoupled traction is assumed, and thus the off-diagonal terms in
the equation above are zero.

Following the onset of the crack and for as long as the strength of the
cohesive zone exceeds that of the intact material, damage evolves based on
the scalar stiffness degradation variable, η, defined as:

η = 1− t(w)

t̄n
(2.3)

where t(w) is the contact stress for separation w along the softening curve,
t̄n is the contact stress that would have corresponded to w had the pre-crack
stiffness endured.

Validation of the cohesive model

In order to verify the cohesive contact model, numerical analysis of a notched
concrete beam under three point loading is carried out and compared to
experimental and numerical results reported in Roesler et al. (2007) applying
a bilinear softening law, see Figure 2.5 (a). Material and model parameters
applied in the analysis is shown in Table 2.1.

Moreover, the model is tested to verify the functionality of the cohesive
contact model to simulate the fracture behaviour of cement bound granular
mixture beams under four point loading, see Figure 2.5 (b). Material and
model parameters applied in the analysis is shown in Table 2.2.

From comparison of load-crack mouth opening displacement curves shown
in Figure 2.5 (a), it can be observed that a good agreement with experimental
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Table 2.1: Concrete beam geometry, average material properties and model
parameters used in the numerical study of TPB tests carried out by Roesler
et al. (2007)

Roesler et al. (2007) This study

Mesh size cohesive zone (mm) 2 2

Geometry (mm3) 700× 150× 80 700× 150× 80

Beam span (mm) 600 600

Element type(s) CSP4 / UEL CSP4

Young’s modulus, E (MPa) 32,040 32,040

Poisson’s ratio, υ (-) 0.15 0.15

Penalty stiffness, Knn (MPa) 8,430,000 32,040

Tensile strength, ft (MPa) 4.15 4.15

Fracture energy, GF (N/mm) 0.164 0.164

Table 2.2: CBGM beam geometry, average material properties and model
parameters used in the numerical study of FPB tests carried out by Yeo
(2008a).

Geometry E υ ft fc Dmax GF

(mm3) (MPa) (-) (MPa) (MPa) (mm) (N/mm)

300× 100× 100 12,760 0.2 1.0 7.3 20 0.028

and numerical results reported in the literature can be obtained with the bi-
linear contact softening law in ABAQUS. The difference in pre-peak behavior
observed is related to the difference in penalty stiffness applied. Increasing
penalty stiffness would reduce this difference. However, very high levels of
penalty stiffness results in ill-conditioned stiffness matrix and thus slow con-
vergence and aborted simulations with the contact model applied. It is also
found from the load-displacement curves in Figure 2.5 (b), that adequately
good fit is obtained between experimental and numerical results for cement
bound granular mixture beams under four point loading.
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Figure 2.5: Comparison of results on simply supported beams: (a) Experi-
mental and numerical study of plain concrete reported in Roesler et al. (2007)
and the proposed cohesive contact model. (b) Experimental study of cement
bound granular mixture material reported in Yeo (2008a) and the proposed
cohesive contact model.

2.3 Concrete block pavement model

The FE method has an ability of treating discontinuities like cracks and joints
in a rational way and has been employed for structural analysis of various
types of pavements. For block pavements, several models have been proposed
(Molenaar et al., 1984; Huben et al., 1984; Nishizawa et al., 1984; Nejad,
2003). Followed by a series of special purpose FE design tools for block pave-
ment design (Huurman, 1994, 1996; Nishizawa, 2003; Moghadas Nejad and
Shadravan, 2010; Gunatilake and Mampearachchi, 2014). However, describ-
ing the geometry and interaction between concrete block pavers, jointing and
bedding sand is demanding with regard to computational power. Moreover,
the model geometry is complex resulting in time-consuming pre-processing of
models. Thus, in the present study a simplified method is suggested for the
description of concrete block pavers, placing unit displacements over an ap-
proximated area, i.e. the area of blocks in contact with the container corner
casting (container footing), see Figure 2.6.

This is deemed to be a reasonable approach as the properties and thick-
ness of the concrete block pavers do hardly influence the overall response and
bearing capacity of the pavement structure (Huurman et al., 1992). More-
over, the loading from static loads, e.g. container corner castings, produce
a close to rigid body movement of the stiff concrete block pavers over the
soft layer of bedding sand, which is unable to absorb any significant bending
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(a) (b)

CBP &
jointing sand
layer

Bedding
layer

CBGM
layer

Figure 2.6: Surface displacements for the FE sub-model: (a) ’Complex’
model considering both block, jointing- and bedding sand and (b) ’simplified’
idealised model considering bedding layer only.

moments (Molenaar et al., 1984). The methodology proposed is validated
creating two FE sub-models:

(i) Figure 2.6 (a): ’Complex’ FE sub-model representing the realistic pave-
ment structure, considering concrete blocks, jointing- and bedding sand,
including frictional contact between materials, subjected to a rigid load
from container castings.

(ii) Figure 2.6 (b): ’Simplified’ FE sub-model, considering an equivalent
distributed load, i.e. the area of blocks in contact with the container
corner casting, on top of the bedding layer.

The complex FE sub-model is first validated against experimental and
numerical results reported in Gunatilake and Mampearachchi (2014), ap-
plying the same material properties and geometry, to ensure satisfactory
performance of the model. Then, this model is modified, exchanging the un-
bound granular base with a cemented bound granular mixture, for numerical
evaluation of the different idealisation techniques (i) and (ii) above.
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Figure 2.7: Comparative study evaluating the responses of a ’complex’ and
a ’simplified’ CBP pavement: (a) normalised vertical stresses on top of the
cemented base. (b) normalised maximum principal stress at the bottom of the
cemented base. Normalised stress: normalised with regard to maximum value
obtained in the ’complex’ FE-sub model. Normalised distance: normalised
with regard to the total width of the model.

It is observed from Figure 2.7 that adequately good results can be ob-
tained with the simplified model for the response in the underlying cemented
layer. Further simplification, omitting the bedding layer, is also possible.
However, such simplification will affect the load-displacement response due
to the relatively soft bedding layer compared to the cemented base.

2.4 Large-scale experiments

Numerical analysis of cement bound granular mixture slabs, shown in Fig-
ure 2.8, separated by aggregate interlock-or construction joints, on subgrade
soil of 1.0 m clayey gravel material, is conducted in order to validate the
methodology implemented, modeling the composite pavement as a slab on
grade structure. The data was collected during the European Commission
thematic network project ECO-serve (Busch et al., 2006) and was partly ini-
tiated in the attempt to evaluate the before mentioned M-E models. Detailed
description of experimental data and the FE-model can be found in Paper
I. Material parameters applied is shown in Table 2.3.
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Table 2.3: Material properties used in numerical studies of large-scale ex-
periments.

Material
E υ ft GF k cy ϕ

(MPa) (-) (MPa) (N/mm) (MPa/mm) (MPa) (◦)

CBGM 12,300 0.2 0.96 0.037 - - -

’Winkler’ - - - - 0.045 - -

’Elastic’ 350 0.35 - - - - -

’Plastic’ 350 0.35 - - - 0.005 25-35

The success in the application of M-E models was modest at best, as no or
little damage was recorded during each load cycle. To reduce the test time,
the load was increased from typical equivalent standard axle load (ESAL) of
50-60 kN (per wheel) to 150 kN. However, to record damage development, the
load was finally increased to 250 kN, which is likely to have caused excessive
cracking in the cement bound granular mixture1 and local yielding of the
subgrade soil foundation below the plate load, correlating badly with the
M-E models calibrated for highway pavement design.

5m

2.
5m

y

x

Outer position

Agg. interlock

Inner position

Cons. joint

(a) (b)

Figure 2.8: Layout of slabs, showing outer and inner loading position: (a)
supports (x-axis:concrete wall, y-axis:steel wall) and the placing of displace-
ment sensors. (b) picture of test set-up, showing the load configuration and
the displacement sensors placed on top of a 35 mm thin asphalt plate.

From comparison between numerical and experimental load-displacement
curves at a distance of 235 mm and 450 mm from the load centre, shown in

1Data recorded during and after tests were not adequate for evaluation of the fracture
behavior of the cemented material.
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Figure 2.9, it can be observed that a relatively good agreement is obtained
between experimental and numerical results up to the peak-load for all three
models. The peak-load is app. 157, 133 and 162 kN for the ’Elastic’, ’Win-
kler’ and ’Plastic’ models, respectively. The experimental result shows a
pronounced post-peak decrease in stiffness at a load level of app. 150 kN,
probably due to local yielding of the subgrade soil. This behaviour can only
be captured by the ’Plastic’ model. Moreover, it is found that modeling the
subgrade soil with elastic solid continuum elements results in a more realistic
prediction of the peak-load compared to the ’Winkler’ model. The influence
of soil model type on local crack behaviour can be seen in Figure 2.10.
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Figure 2.9: Comparison of experimental (five point average) load-
displacement response obtained from data reported in Busch et al. (2006)
and numerical results for the three selected soil models ’Winkler’, ’Elastic’
and ’Plastic’ using a angle of internal friction of 30◦ for the latter model:
(a) distance of 235 mm and (b) 450 mm from load centre, respectively.

From the load versus crack mouth opening displacement (CMOD) curve
in Figure 2.10, it can be observed that cracks in both directions are initiated
at load point 1. Damage of the cohesive crack then progresses towards the
edges of the slab. At load level point 2, nodes at the bottom of the slab in
length direction, i.e. along the y-axis in Figure 2.8 (a), has exceeded the final
(zero stress) displacement. The cohesive zone then progress upwards until
the ’snap’ at load level point 3, resulting in the kink on the load-displacement
curve in Figure 2.10. The crack in the width, i.e. along the x-axis in Figure
2.8 (a), remains stable in the width direction as shown in Figure 2.10 (b).
Unloading on the load-displacement curve is prevented by the high stiffness
of the subgrade soil and the geometry of the slab. At load level point 4, all
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nodes in the length direction (y-axis) have exceeded the final displacement.
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Figure 2.10: Presentation of numerical results for the ’Winkler’ (gray)
and ’Plastic’ (black) soil model: (a) load line displacement (LLD). (b) load-
CMOD curve for cohesive crack at the bottom of the slab under the load centre
in the length and width direction.

The numerical results shown in Figure 2.10 can explain some of the ob-
servations made during the experimental investigations which couldn’t be
described by the M-E models. The most obvious observation is that the
crack along the length (y-axis) has fully propagated at the applied load of
app. 150 kN (load level point 3), indicating why no damage was recorded
during experiments with repeated loads at this load level. Then, the response
is controlled by further crack propagation along the width (x-axis) and the
soil behavior. Moreover, it is observed that cracking is initiated at load level 1
of app. 50 kN, the same load magnitude as an equivalent standard axle load,
although the pavement studied was designed to carry app. 10,000 passes of
loads 2-3 times this magnitude. This also highlights one of the disadvantages
of applying a strain-based fatigue model, as this model allows designs where
the applied stress is much higher than the stress at failure.

2.5 Influence of load position

To evaluate the influences from interaction with adjacent slabs and the load
position, numerical studies of two full slabs on grade structures is carried
out. The influence of load position is evaluated at the interior and edge of
the slab, see Figure 2.11 (a); assuming two orthogonal fracture planes.
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Figure 2.11: (a) Sketch of cemented slab with pre-determined cohesive
zones for interior loading (black tiled) and edge loading (dark gray). (b)
Sketch of the rough crack model (Bažant and Gambarova, 1980) within the
composite pavement system.

The average strength properties for the cement bound granular mixture
selected are shown in Table 2.4. The subgrade is idealised as linear elastic
with a spring stiffness of 0.06 MPa/mm.

Table 2.4: CBGM slab geometry, average material properties and model
parameters used in the numerical study.

Geometry E υ ft fc Dmax GF

(mm3) (MPa) (-) (MPa) (MPa) (mm) (N/mm)

3000× 3000× 300 15,000 0.2 0.80 8.0 32 0.0225

To allow for movement, i.e. from temperature and moisture changes as
well as shrinkage, saw cutting or other techniques is used to induce a full
crack between slabs. This also ensures a high load transfer efficiency (LTEδ)
between aggregate interlock joints. The mechanics of aggregate interlock
between slabs, shown in Figure 2.11 (b), is a complex phenomenon that
depends on several parameters, including aggregate size and distribution,
compressive strength, friction between the aggregate particle and the cement
paste, crack-opening, and crack-sliding. The influence of variation in normal
and shear stiffness of joints is evaluated for an initial crack width, w, of 0.4 to
2.0 mm, simulated by application of idealised bilinear springs. Theory, model
assumptions and material parameters for aggregate interlock behaviour used
in numerical studies are described in Paper I.

As expected, Figure 2.12 (a) shows that the load supported by the slab
is higher under interior than under edge loading, with peak loads of 156 and
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Figure 2.12: Evaluation of influence from load position and aggregate in-
terlock joints: (a) load-displacement curve for the two load cases. (b) load-
displacement curve with variation in initial joint opening for edge loading.
(c) normalised peak-load (β) versus LTEδ.

106, respectively, considering no load transfer between adjacent slabs. It is
also found that the post-peak behaviour, in the case of interior and edge
loading, is more or less similar.

The initial crack width has little influence on the peak-load and peak-
load displacement for interior load whereas a pronounced increase in stiffness
and peak-load can be found for edge loading, see Figure 2.12 (b). Plotting
the normalised peak-load (β) versus LTEδ, assuming a linear relationship
between w and LTEδ (Davids and Mahoney, 1999), it can be found that
β decrease linearly with increasing w as shown in Figure 2.12 (c). Similar
trends have also been reported in numerical studies of slabs on grade reported
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in Aure and Ioannides (2015b).

2.6 Summary of sensitivity studies

To investigate the influences of geometry and important material properties
on the model response a sensitivity study is carried out for a single slab
subjected to uniformly distributed load with radius of 150 mm. Symmetry
conditions are applied, modelling one slab crack. Cohesive zones are inserted
with a 45◦ angle between the symmetry-lines and in an arch close to the
centre. The arch cohesive zone is inserted to avoid convergence problems at
the boundary. Detailed description of the FE-model can be found in Paper
I.

In linear elastic design of pavement structures, the layer thickness is in-
creased for increasing load levels, to ensure a relatively constant stress level
in the subgrade soil, avoiding any plastic deformation, as shown in Figure
1.5. This approach can be questioned based on the results presented herein;
as it is observed in Figure 2.13 (a) that the allowable load levels in presently
available guidelines is twice the magnitude compared to the peakloads found
in the present study. The thickness of the cemented base layer has significant
influence on the peak-load, but little influence on the post-peak response of
the structure. After full crack propagation, the behavior of the system should
be similar to a corner loading case. However, due to the relatively short slabs
created by the cracks, the effect of bending is small. Thus, the influence of
thickness is small.

The stiffness and peak-load of the structure increases with increasing
thickness up to unloading on the load-displacement curve. Then the struc-
tural response is mainly affected by the slab dimension. Moreover, Figure
2.13 (b) shows that increasing subgrade soil stiffness results in higher peak-
load, post-peak and pre-peak stiffness. The difference in peak-load is app.
20% for the variation in soil stiffness evaluated, assuming that slabs are con-
structed on a 150 mm thick high quality sub-base material over subgrade soil
of varying quality (corresponding to a california bearing ratio (CBR) 5-20).

The two main material parameters influencing the fracture process of
the quasi-brittle material is the tensile strength and the fracture energy.
However, as shown in Figure 2.14 (a), the influence of tensile strength is
small, both with regard to peak-load and pre- and post-peak response. This
can be explained by the fact that cracking is initiated at a displacement of
app. 0.2 mm. Then, the response is primarily controlled by the fracture
energy, as shown in Figure 2.14 (b).

44 Department of Civil Engineering - Technical University of Denmark



3-D cohesive finite element model 2.7 Concluding remarks

0 0.5 1 1.5 2 2.5
0

50

100

150

200

LLD (mm)

L
oa

d
,

P
(k

N
)

0.15×3×3

0.20×3×3

0.25×3×3

0.30×3×3

0.35×3×3

(a)

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

LLD (mm)

L
o
ad

,
P

(k
N

)

0.20×4×4

0.25×4×4

0.30×4×4

0.35×4×4

0.40×4×4

(b)

0 0.5 1 1.5 2 2.5
0

50

100

150

200

LLD (mm)

L
oa

d
,

P
(k

N
)

0.020 MPa/mm

0.035 MPa/mm

0.045 MPa/mm

0.080 MPa/mm

(c)

Figure 2.13: Load-displacement response: (a) Slab thickness varying from
150-350 mm keeping length/width constant for a 3 × 3 m2 slab. (b) Slab
thickness varying from 200-400 mm keeping length/width constant for a 4×4
m2 slab. (c) Subgrade soil stiffness varying from 0.02 to 0.08 MPa/mm.

2.7 Concluding remarks

The presented FE model adequately describes the response of both simple
fracture tests, as well as real-scale structures, indicating that the model is
feasible for evaluation of composite block pavement systems in the ultimate
loading state. Although encouraging results are obtained with the presented
model, several aspects have been identified, which need further attention in
order to develop the methodology for practical use:

(i) A high degree of pre-processing is necessary for the development of 3-D
models in commercial FE codes, describing material types, geometries
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Figure 2.14: Load-displacement response: (a) Tensile strength varying from
0.8 to 1.2 MPa keeping fracture energy constant. (b) Fracture energy varying
from 0.0175 to 0.045 N/mm keeping tensile strength constant.

and layer interactions. This part of the analysis is time-consuming and
expensive.

(ii) Although the model presented is significantly optimised compared to
other models reported in the literature, the model is still demanding
with regard to computational power when taking into consideration
the relatively simple pavement systems studied. Moreover, it is well-
known that numerical analysis of fracture in such large 3-D FE models
often poses numerical issues, such as instability problems and aborted
simulations, e.g due to a high penalty stiffness.

(iii) From the results obtained, it can be shown that the soil properties
highly influence the fracture behavior and the structural response of
concrete and composite structures. This topic has received little atten-
tion in the literature and typically Winklers idealisation of the soil is
applied without addressing the effect on the fracture behavior. Thus,
further evaluation of soil-structure interaction models and model pa-
rameter estimation is necessary to develop realistic soil models appli-
cable to analysis on a routine basis.

(iv) The presented model can be used within the M-E method for evaluation
of fatigue, i.e. determining the modulus of rupture of cemented slabs for
input in fatigue relationships, as discussed in Section 1.1. This would
result in an improvement of existing methods. However, to obtain a
full mechanistic and consistent approach the cohesive model should be
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extended, thus accounting for more complex constitutive behavior, e.g.
considering cyclic crack behavior.

(v) Experimental results for fracture testing of cement bound granular mix-
tures and composite pavements structures are limited. Thus, more test-
ing is necessary to evaluate the fracture behaviour of cement bound
granular mixtures.

This chapter show that 3-D cohesive zone modeling is an attractive method
to handle fracture in composite pavements. However, further extension of
the model to describe cyclic crack behavior of the cemented material would
increase the complexity of the problem and the need for data storage ca-
pacity extensively. Considering the large size of the model compared to the
relatively simple problem studied, extending this model will result in very
demanding models with regard to computational power and time. Thus, this
study will in the following chapters, focus on developing alternative numer-
ical tools and methods, in order to create efficient mechanistic models for
engineering design purposes.
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Chapter 3

Cohesive cracked-hinge model

3.1 Introduction

Investigating crack propagation in beam and slab on grade structures sub-
jected to mechanical loads is a highly complex matter. This type of analysis
often requires large and computationally expensive models, which are ap-
plicable to relatively simple design problems as described in Chapter 2. To
reduce the complexity of the models and to create a simple and robust mod-
elling framework for engineering application this chapter presents a non-linear
cracked-hinge model.

The cracked-hinge model is based on the fracture mechanics concepts of
the fictitious crack model (Hillerborg et al., 1976). The hinge model for
modelling the crack propagation due to pure bending in a concrete beam
without reinforcement was first presented by Ulfkjær et al. (1995). This hinge
was successfully applied in the modelling of pure concrete beams in three
point bending considering the development of only one crack. Olesen (2001b)
expanded the hinge model by applying a bi-linear softening curve to allow for
the incorporation of the effects of fibers on concrete fracture. Furthermore,
this modified hinge model allowed for the existence of a sectional normal
force. This last feature is crucial for the ability of the hinge to model a
number of situations such as the wedge splitting test (Walter et al., 2005)
and the split cylinder test (Olesen et al., 2006).

The numerical hinge may be incorporated into a plane beam element
for two-dimensional analysis, in a consistent and straightforward manner, as
demonstrated by Olesen and Poulsen (2012). The effective stiffness concept
is applied allowing for the formation of multiple cracks along the beam axis,
which is an essential feature of both plain and reinforced concrete beams
before exhibiting localised rotations. The effective stiffness which is a func-
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tion of the state of deformation is treated as a constitutive relationship. This
particular feature is practical and elegant as it requires no a-priori knowledge
of the crack pattern.

3.2 The mechanics of the hinge model

The basic assumption of the hinge model is the fact, that the presence of
a crack only affects the overall stress and strain field of a structure locally.
The discontinuity created by the crack is expected to vanish outside a certain
width. Under constant moment, e.g. the part of the beam between the
loading points in Figure 3.1 (a), the beam sections at the midpoints between
the cracks will, due to the periodicity of the cracks, remain plane during
deformation of the beam. The width s between two such sections embracing
one crack defines a hinge element. For the beam area outside the loaded
points, the moment distribution is not constant. Such phenomena can be
handled with appropriate numerical tools, i.e. the FE method, as exemplified
in Figure 3.1 (b).

s s

c c

cpi cpi+1ipi ipi+1

P/2 P/2

Hinge

(a) (b)

Figure 3.1: Sketch of hinge model implemented in a simply supported beam
under four point loading: (a) overview of beam structure, (b) underlying
discrete formulation of cracks at constitutive points, cp, and smeared con-
stitutive behavior obtained from interpolation between constitutive points at
integration points, ip.

The hinge width s is a fundamental calibration parameter of the model,
and it was suggested in Ulfkjær et al. (1995) to use a hinge width half the
height of the beam, also adopted in the present study. Thus, the flexural
deformation of the beam is concentrated and the propagation of a crack can
be modelled as a hinge whereas the rest of the beam can be treated as elastic
bulk material.
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The uni-axial tensile behaviour of the concrete is modeled according to
the fictitious crack model. The linear elastic pre-crack state is described by
the elastic modulus, Ec. The uni-axial tensile strength is denoted ft and the
corresponding strain εct. The stress-crack opening relationship or so-called
softening law is for simplicity here given as a linear curve

σ (w) = ft + aw for 0 ≤ w ≤ wc (3.1)

where a is the negative gradient on the softening curve, w is the crack opening
and wc is the final zero-stress crack opening. The fracture energy, GF , is given
by the area under the softening curve, resulting in wc = −ft/a.

The hinge model provides the relationship between the state of deforma-
tion of the hinge and the sectional forces (N ,M). The state of deformation is
described by the mean normal strain of the beam axis and the mean curvature
of the hinge, (ε̄0,κ̄).
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u (y)
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h
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y3

σ1
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σ3

∆y

s
2

s
2 (1 + εc)

s+ 2u

σ

w

s
2

s
2 (1 + εc)

σ

(a) (b) (c) (d)

Phase I Phase II

Figure 3.2: Hinge model: a) beam segment with constant sectional forces
and deformation of cracked beam segment. b) and c) hinge stress distribution
after initiation of cracking at the two different Phases I and II, respectively.
(d) material strip in uni-axial tension: loaded state beyond peak-load showing
crack deformations (Olesen and Poulsen, 2012).

The hinge solution is based on the assumption that the hinge may be
seen as consisting of independent infinitesimal layers of cemented material.
The tensile behaviour of this layer may be established by considering a strip
of material in uni-axial tension as shown in Figure 3.2 (d). The elongation
of the strip located at y can be expressed in terms of the mean normal strain

ε̄ (y) =
2u(y)

s
=

2u0(y)

s
+

2ϕ

s
y ≡ ε̄0 + κ̄y (3.2)

where ε̄0 is the mean normal strain at the beam axis, and κ̄ the mean cur-
vature of the hinge. Utilising (3.2), the depth coordinates of characteristic
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points of the stress distribution, yi, with respect to the midsection of the
hinge may be determined. Assuming that the hinge has been deformed to a
state where a crack has formed and penetrated a distance c into the hinge.
The position of the crack tip is denoted by y2 = h/2 − c, and is given as
follows

σ2 = ft ⇒ (ε̄0 + κ̄y2)Ec ⇒ y2 =
εct − ε̄0

κ̄
(3.3)

In the cracked state, 0 < w ≤ wc (Phase I ), the crack opening and the
corresponding stress in the strip is given as

σc = σw ⇒ σc = ft + aw

s+ 2u = s(1 + εc) + w ⇒ sε̄(y) = sεc + w

}
⇒
{
wI = sEcε̄(y)−ft

Ec+as

σI3 = Ec
ft+asε̄(y)
Ec+as

(3.4)

It is noted that the denominator in (3.4) defines a critical length scrit of the
strip

0 < Ec + as ⇒ s < scrit = −Ec
a

= 2
EcGF

f 2
t

(3.5)

In the cracked state, wc ≤ w (Phase II ), the crack is stress free, leading to
the simple solution for the strip

w = s(1 + ε̄(y))− s
σc = 0

}
⇒
{
wII = sε̄(y)

σII3 = 0
(3.6)

From (3.4) and (3.6) the state of stress and crack opening in the cracked part
of the hinge can be established. The cohesive stresses extend from y = y2 to
y = y3, depicted in Figure 3.2 (b) and (c); y2 is given by (3.3) and

y3 = min

(
h

2
, − 1

κ̄

(
ft
as

+ ε0

))
(3.7)

Here the transition between Phase I and II for y3 can be obtained by inserting
the condition σ3 (y3) = 0 in (3.4).

Finally, the sectional forces with respect to y = 0 may then be calculated
from integration over the hinge height.

N(ε̄0, κ̄) = t

h/2∫

−h/2

σc dy (3.8a)
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M(ε̄0, κ̄) = t

h/2∫

−h/2

σcy dy (3.8b)

Moment-curvature response, as well as normal strain, ε0, crack-opening
displacement, δCOD, and crack-length, c, can now be obtained for different
hinge geometries and cemented material properties, applying the analytical
hinge, as exemplified in Figure 3.3.
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Figure 3.3: Analytical hinge model: (a) Normalised curvature-moment re-
sponse for varying hinge heights h=0.1-0.3 m. (b) normalised variation in
normal strain, crack-opening displacement and crack-length for h=0.3 m.
Mechanical properties: Ec=30 GPa, ft=3.0 MPa, GF=150 N/m (linear soft-
ening).

Here, the simplified computational scheme, shown in Algorithm 1, have
been employed.

It is obvious from Algorithm 1 that increasing or decreasing hinge rotation
is modeled by the same equilibrium path. Thus, the hinge model in the
present chapter does not have a unique unloading branch that models the
closure of a previously opened crack.

Further, the analytical hinge may be implemented in simply supported
beam structures applying conventional beam-theory, as shown in Figure 3.4.

The displacement at midspan position of the beam is the sum of elastic
deformation of the hinge and deformation due to the crack. The elastic
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Algorithm 1 Computational scheme for N and M : Hyperelastic

if ε̄ < εct
Phase 0

else
Phase I
if ε̄ > − ft

as

Phase II
end

end

Hinge
s

P
2

P
2

L
x

a0

CMOD

Hinge

s

H
d

P

(a) (b)

Figure 3.4: Analytical hinge implemented into elastic beam showing the
definition of parameters: (a) Beam with a notch loaded in three-point bending.
(b) Beam loaded in four-point bending.

displacement at midspan is given as

wel3P =
PL3

48EI
(3.9a)

wel4P =
Px

48EI

[
3L2 − 4x2

]
(3.9b)

where wel3P and wel4P is the elastic displacement for a beam under three
and four point loading, respectively, L is the length of the beam and x is
the position of the load in four point bending, i.e, x = L/3 for a beam
loaded at third point positions. Introducing the non-dimensional midspan
displacement δ = 2w

L
θ
ϕ

, moment µ = 6
fth2t

M and rotation θ = hEc
sft
ϕ the

expressions can be rewritten as

δel = f
L

s
µ (θ) (3.10)

where f is a factor dependent on the loading configuration, i.e. f = 1/3 and
f = 23/54 for the three and four point beam in (3.9a) and (3.9b), respectively.
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The normalised deformation due to the crack only, θcr, is found by sub-
tracting the normalised elastic deformation, θel, from the total rotation of the
hinge, θ (Olesen, 2001b). The normalised elastic rotation of the hinge is given
by θel = µ (θ). Now, since the normalised displacement due to hinge rotation
is equal to the normalised hinge rotation θ, the normalised displacement due
to the crack δcr is given by

δcr = θcr = θ − µ (θ) (3.11)

The total midspan displacement can now be found from

δ = δel + δcr = θ +

(
f
L

s
− 1

)
µ (θ) (3.12)

The load is related to the normalised moment through

P3P (θ) =
2

3

fth
2t

L
µ (θ) (3.13a)

P4P (θ) =
fth

2t

L
µ (θ) (3.13b)

where P3P and P4P is the load for the three and four point beam shown in
Figure 3.4 (a) and (b), respectively.

3.3 Implementation of hinge into beam ele-

ment

The proposed numerical hinge is implemented following standard finite el-
ement beam theory and procedures for building elements with non-linear
material behaviour, see e.g. Cook et al. (2007). The expressions for the
element stiffness matrix and equivalent nodal loads are based on the cubic
displacement function.

For the present study a plane three-node beam element is chosen as shown
in Figure 3.5. This element is capable of modeling quadratic variations of
the axial displacements and cubic variations of the transverse displacements.
The choice of element ensures that both generalised strains are interpolated
linearly as opposed to a typical two-node beam element where constant nor-
mal strain is assumed.

The vector of generalised displacements of the beam, u, holds the axial
displacements u1(x1) and the transverse displacements u2(x2). The interpo-
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Figure 3.5: Plane beam element: (a) Constitutive points (cpi) are located at
endpoints, integration points (ipi) at Gauss points. (b) Beam element axial
shape functions and node numbers.

lation of u in the element is given by

u =


u1

u2


 = Nv (3.14)

where N is the displacement interpolation matrix and v is the element dof
vector, i.e.

v = [v1,1 v2,1 ϕ1,2 v1,2 v2,2 ϕ2,2 v1,3]T (3.15)

where the latter subscript notation symbolises the element node number
according to Figure 3.5 (b).

The interpolation functions are standard polynomial expressions. The
vector of generalised strains, ε, holds the linearised axial strain, ε0, and the
linearised curvature, κ. The interpolation of ε in the element is given by

ε =



ε0

κ


 =




du1

dx

d2u2

dx2


 = Bv (3.16)

where B is the strain interpolation matrix. The vector of generalised stresses,
σ , holds the sectional normal force N and the sectional moment M . In the
element, σ may be established applying (3.8a) and (3.8b), and we may write

σ = σ (ε) =



N (ε)

M (ε)


 (3.17)
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Based on the contribution to the variation in internal work δΩ, from the
beam and the potential work of external forces δW from point and surface
loads, the principle of virtual work for the system can be established

∫

V

δεTσdV =

∫

S

δuTfdS +
∑

i

δuTi pi (3.18)

where V is the structural volume, S is the surface area, δε and δu is the strain
and displacement variations, respectively, f is the surface traction vector, pi
is a concentrated (nodal) load and δui is the associated (nodal) displacement
variation. The desired stiffness matrices can now be established from (3.18).

The displacement interpolation matrix is given as

N =




2s2 − 3s+ 1 0

0 2s3 − 3s2 + 1

0 (s3 − 2s2 + s)Le

2s2 − s 0

0 −2s3 + 3s2

0 (s3 − s2)Le

−4s2 + 4s 0




T

(3.19)

where s = x/Le is the normalised element length and Le the actual element
length.

The strain distribution matrix is given as

B =
1

L2
e




(4s− 3)Le 0

0 12s− 6

0 (6s− 4)Le

(4s− 1)Le 0

0 −12s+ 6

0 (6s− 2)Le

(−8s+ 4)Le 0




T

(3.20)
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The transformation matrix is given as

T =




e1 e2 0 0 0 0 0

−e2 e1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 e1 e2 0 0

0 0 0 −e2 e1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1




(3.21)

where e is the unit vector describing the direction of the beam in the 2-D
space.

The internal nodal force, q, is given by the expression

q =

Le∫

0

BTσdx (3.22)

The contribution from the beam-element to the tangential stiffness matrix,
kt, is given by the expression

kt =

Le∫

0

BTDtBdx (3.23)

The hinge tangent stiffness matrix, Dt, is defined through




dN

dM


 = Dt




dε̄0

dκ̄


 , where Dt =



∂N
∂ε̄0

∂N
∂κ̄

∂M
∂ε̄0

∂M
∂κ̄


 (3.24)

For the linear elastic phase, Phase 0, the hinge tangent stiffness matrix Dt

is given as

D0
t =


htEc 0

0 1
12
th3Ec


 (3.25)
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The constituents of (5.22) are obtained from the sectional forces N and M
as given in (3.8a) and (3.8b), respectively, utilising the following relations for
the relevant part of the integral corresponding to 0 < w ≤ wc

∂σc
∂ε̄0

= Ec
as

Ec + as
;

∂σc
∂κ̄

= Ec
as

Ec + as
y (3.26)

Here the parameters α = as
Ec+as

and Ecc = Ecα is introduced, where the
latter represents the reduced stiffness of the cracked part of the hinge. The
full hinge tangent stiffness matrix for Phase I and II can then be established

dN = t

h/2−c∫

−h/2

Ec (dε̄0 + dκ̄y) dy + t

h/2∫

h/2−c

Ecc (dε̄0 + dκ̄y) dy

= Dt (1, 1) dε̄0 +Dt (1, 2) dκ̄

dM = t

h/2−c∫

−h/2

yEc (dε̄0 + dκ̄y) dy + t

h/2∫

h/2−c

yEcc (dε̄0 + dκ̄y) dy

= Dt (2, 1) dε̄0 +Dt (2, 2) dκ̄

(3.27)

which by solving the differential equation yields

Dt(1, 1) =Ect ((y2 − y1) + (y3 − y2)α)

Dt(1, 2) =Ect

(
1

2
(y2 − y1) (y1 + y2) +

1

2
(y3 − y2) (y2 + y3)α

)

Dt(2, 1) =Dt(1, 2)

Dt(2, 2) =Ect

(
1

3
(y2 − y1)

(
y2

1 + y2
2 + y1y2

)

+
1

3
(y3 − y2)

(
y2

2 + y2
3 + y2y3

)
α

)

DI,II
t =


Dt(1, 1) Dt(1, 2)

Dt(2, 1) Dt(2, 2)




(3.28)

3.4 User-built finite element code

The hinge model is implemented in a user-built FE code using the numer-
ical computing package MATLAB. Basic elements and support functions is

Department of Civil Engineering - Technical University of Denmark 59



3.4 User-built finite element code Cohesive cracked-hinge model

provided by the ’BYG-FEM’ software1. A simple schematic overview of the
model code is shown in Figure 3.6.

Main

initiate system

build Kt

mN-R solver

build Q

update system

calc. N and M

calculate Dep

build R

linear solver

Figure 3.6: Schematic roadmap of user built FE code

The schematic in Figure 3.6 can be explained briefly as follows:

(i) Geometry and material parameters are used as input in ’Main’. Then,
necessary elements, storage matrices and parameters are initiated in
’initiate system’.

(ii) The non-linear analysis then starts it’s loop (going downwards) building
the global tangent stiffness matrix in ’build K’ by collecting all element
contributions kt given in Equation (3.23). The global load vector in is
then established in ’build R’.

(iii) These matrices is then used to calculate the first linear step, i.e. Equa-
tion (3.31), in the ’linear solver’ after imposing boundary conditions.

(iv) Then, via the non-linear ’mN-R solver’, the load step ∆f is used to cal-
culate the global internal force vector in ’build Q’ collecting all element
contributions q given in Equation (3.22)

(v) This requires an update of the system, calculating the updated sectional
forces in ’calc. N and M ’ given in Equation (3.8a) and (3.8b)

1The ’BYG-FEM’ is a FE program developed at the Section for Structural Engineering
at Technical University of Denmark.
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(vi) The material tangent stiffness matrix can be established from ’calculate
Dep’ given in Equation (3.25) and (3.28), which in turn is used to
calculate the updated global tangent stiffness matrix in ’build K’

This section describes the governing finite element equations, whereas
subsequent chapters mainly deal with the development of the constitutive
material behavior, i.e. point (v) and (vi) in the list above. These constitutive
models require additional computational schemes similar to Algorithm 1,
which will be detailed in each chapter. Detailed coding of special purpose
support functions and elements are not reported as part this thesis.

Solution strategies

The step-size of the global load-adding loop can be controlled in several ways.
Ideally, a solution method should be able to trace the entire pre and post-
critical static load path of a structure, which may include both softening and
stiffening behaviour, the presence of load and displacement limit points and
the possible bifurcation of the path. However, in materials that exhibit snap-
back type of load-displacement and particularly when a significant strain
softening is introduced into the constitutive law tracing of the snap back
may encounter numerous difficulties (Crisfield, 1983).

Due to the sudden snap-back or snap-through phenomena at failure a
conventional Newton-Raphson (N-R) is selected to increase the efficiency of
numerical simulations. In order to capture the softening behavior of the
cemented material a solver with direct displacement control is implemented
in addition to the standard load-controlled solver.

The global behavior of a structure or specimen can be obtained by solving
the discretised equations of equilibrium that can be written as

q(v) = f (3.29)

where q(v) is the internal force vector, v is the vector collecting the nodal
displacements of all nodes and f is the external force vector collecting the
load acting on the structure, assuming that the external force vector is in-
dependent on the nodal displacements. In the case of linear elasticity, the
internal force vector can be directly expressed as

q(v) = Kv (3.30)
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where K is the global stiffness matrix of the model. Substituting (3.30) to
(3.29) the global response of the model can be directly computed as

v = K−1f (3.31)

For a non-linear material response, the internal force vector becomes a non-
linear function of the nodal displacements, v. Moreover, the global stiffness
matrix, K, becomes a function of the nodal displacements in (3.31) resulting
in the following expression

v = K−1(v)f (3.32)

This type of non-linear equation cannot be solved directly and therefore the
concept of linearisation is applied.

Linearisation

Suppose that q (v̄) is the vector of internal forces generated by nodal dis-
placements v̄. The internal forces in the vicinity of v̄ can be expanded into
Taylor series leading to

q(v̄ + ∆v) = q(v̄) +
∂q

∂v

∣∣∣∣
v=v̄

∆v + ... (3.33)

For small displacement increments, ∆v, the non-linear terms represented by
dots can be neglected and we obtain a linear approximation of the internal
forces.

q(v̄ + ∆v) ≈ q(v̄) + K(v̄)∆v (3.34)

where K(v̄) is the global tangent stiffness matrix.
Having defined the linearised relationships, an incremental-iterative solu-

tion can be formulated to solve (3.32).

Load control

Usually, the external load is applied in several incremental steps and in every
step, the structural response is computed from the equilibrium equations in
(3.29). In the Newton-Raphson method the stiffness from the current state
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is used to calculate the deformation for the next load step, fn = fn−1 +∆fn,
by solving the linear system

∆fn = Kn−1∆vn (3.35)

where vn = vn−1 + ∆vn. The error is reduced by using the residual forces to
calculate a new change in deformation by solving the linear system

rn = Kn−1∆vn (3.36)

where rn = ∆fn−∆qn. Such iterative correction, shown in Algorithm 2, can
be repeated until the equations of equilibrium is satisfied with a sufficient
accuracy.

Algorithm 2 N-R load control

Load steps n = 1, 2,.., nmax
fn = fn−1 + ∆fn
vn = vn−1

Iterations i = 1, 2,.., imax
Kn = K (vn)
rn = fn − q (vn)
∆vn = K−1

n−1rn
vn = vn + ∆vn

Stop iteration when δE1

∆E0
< ε

End of load steps

Direct displacement control

In direct displacement control the nodal displacements, v, can be divided
into two parts v = [vk,vu]

T ; vu corresponds to the internal dof’s which are
unknown and vk collects dof’s with prescribed values. Accordingly, the vector
of internal and external forces can be divided into q = [q(vk),q(vu)]

T and f =
[fu,fu]

T , respectively. The external forces, fk, are prescribed and external
forces, fu, collect reactions at nodes with the prescribed nodal displacements,
vk. The system is solved in incremental steps and can be written as


K11 K12

K21 K22




∆vk

∆vu


 =


∆fu

∆fk


 (3.37)
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where Kij are blocks of the global tangent stiffness matrix

K =
∂q

∂v
=



∂q1

∂v1

∂q1

∂v2

∂q2

∂v1

∂q2

∂v2


 (3.38)

The unknown displacements ∆vu can be found by solving

∆vu = K−1
22 (∆fk −K21∆vk) (3.39)

The external forces associated with the known displacements can then be
calculated as

∆fu = K11∆vk + K12∆vu (3.40)

Similarly to (3.36) the tangent stiffness matrix is updated and the resid-
ual force vector can be calculated. The iterative procedure is described in
Algorithm 3.

Algorithm 3 N-R displacement control

Calculate: K
Displacement steps n = 1, 2,.., nmax
vn = vn−1 and fn = fn−1

Iterations i = 1, 2,.., imax
∆vu = K−1

22 (∆fk −K21∆vk)
∆fu = K11∆vk + K12∆vu
Kn = K (vn−1 + ∆vn)
rn = K∆vn −∆fn

Stop iteration when δE1

∆E0
< ε

vn = vn−1 + ∆vn and fn = fn−1 + ∆fn
End of displacement steps

In the present study the energy norm ratio δE1/∆E0 is applied as con-
vergence criteria, i.e.

δE1

∆E0

=
1
2
∆f∆v
1
2
r∆v

(3.41)

The error tolerance, ε, applied is 10-4.
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3.5 Numerical analysis of beam fracture tests

A numerical analysis of a simply supported beam under three point loading
is carried out to demonstrate the performance of the proposed element type.
The load-displacement response of the cracked-hinge beam is plotted for a
conventional two-node element, see e.g. (Cook et al., 2007), and the proposed
three-node element, for different mesh densities, nel, and compared to the
analytical hinge model described in Section 3.2.
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Figure 3.7: Convergence test and comparison between FE hinge and an-
alytical model for a beam loaded in three-point bending. Beam dimensions
(L/h/t): 0.8 × 0.1 × 0.1 m3. Hinge width: s = h/2. Mechanical properties:
Ec=20 GPa, ft=3.0 MPa, GF=100 N/m (linear softening).

It is observed from Figure 3.7 that satisfactory convergence for the spe-
cific fracture test is obtained with nel=16 for the three-node element, whereas
min. nel=32 is required for the conventional two-node element. This differ-
ence in performance can be explained by the coupling in the diagonal of
the stiffness matrix, i.e. D(1, 2) and D(2, 1) in (3.28). For the two-node
element, these two parts will have different normal strain variation. This,
further results in slow convergence and aborted simulations. Results for the
analytical hinge is obtained by utilising (3.9)-(3.13). It is also found that
the displacement controlled solver sufficiently describes both pre and post-
peak behaviour, whereas the potential snap-back load-displacement response
is ignored.

The functionality of the cracked-hinge beam model with a simple linear
softening law can further be tested by comparing the proposed hinge model
with experimental and numerical results for cement bound granular mixture
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beam loaded in three-point bending presented in Chapter 2, shown in Figure
2.5 (b).
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Figure 3.8: Comparison between the proposed hinge and experimental and
numerical results reported in Chapter 2: (a) Load-displacement response (b)
numerical Load-CMOD response. Beam geometry (L/h/t): 300 × 100 ×
100 mm3. Element size 9.375 mm. Load positions: L/3, 2L/3. Mechanical
properties: Ec=12.76 GPa, ν=0.2, ft=1.0 MPa, GF=28.0 N/m.

It is observed from Figure 3.8 that there is good agreement between the
proposed hinge model and experimental and numerical results reported in
the literature. The difference between numerical models are mainly related
to the pre-peak behavior; whereas the hinge model behaves perfectly elastic
up to initiation of cracking (load level of app. 3.5 kN), the cohesive zone
model incorporates a small error in crack-opening displacements related to
the penalty stiffness, see (2.2). This error is best exemplified in Figure 3.8
(b), observing that the crack-opening in the cohesive zone model evolves from
the beginning of the analysis and thus resulting in a more flexible behavior
of the beam. Increasing penalty stiffness reduce this error, however, very
high levels of penalty stiffness result in ill-conditioned stiffness matrix and
thus slow convergence and aborted simulations. This problem is avoided
applying the finite element hinge, resulting in a more robust model and stable
simulations.
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3.6 Implementation of hinge into plate ele-

ment

In the subsequent chapters the development and use of the cracked-hinge
model will be demonstrated considering two-dimensional problems. Two-
dimensional models can be used in special design cases and simple studies.
However, pavement fracture is a three-dimensional problem which is affected
by geometry, as discussed in Chapter 2. Thus, this section outline a direction
for further development of the proposed hinge model, i.e. including three-
dimensional analysis, presenting a simplified method implementing the hinge
model into a plate element.

The concept outlined here is based on the work by Jensen (2016) who used
a numerical plate-hinge to investigate the fracture behavior of reinforced
concrete slabs, shown in Figure 3.9, using the smeared crack stress-strain
relationship proposed by Rots (1988).

SL

SL

(a) (b)

Figure 3.9: Simply supported reinforced concrete slab subjected to plate
loads (circular gray areas) reported in Bach and Graf (1915). (b) 3-D visu-
alisation of crack direction and height in the constitutive points for a quarter
slab in deformed state (load level, P=320 kN) applying the plate-hinge pro-
posed by Jensen (2016).

In the methodology suggested by Jensen (2016), the following assump-
tions are introduced:

(i) Plane stress conditions.

(ii) When the first principal stress exceeds the tensile strength the first
crack initiates.
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(iii) The crack is initiated in a direction perpendicular to the direction of
the first principle stress.

(iv) The crack direction is fixed after initiation.

(v) If the second principle stress exceeds the tensile strength a second crack
develop perpendicular to the first crack.

(vi) Full and no shear stiffness during Phase I and Phase II, respectively.

(vii) No coupling between crack-opening (Mode I ) and crack sliding (Mode
II ).

(viii) Reinforcement is assumed to only carry normal stresses.

In general three-dimensional problems, stresses can develop in any direc-
tion and thus the crack can develop in any direction, as shown for a layer dz
in Figure 3.10.
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Figure 3.10: (a) Overview of three-dimensional plate. (b) Inelastic cracking
strain in element layer dz.

The cemented material can behave as described in Section 3.2 in each
direction. After initiation of a crack in the hinge layer dz in one direction,
the direction of the second crack is fixed perpendicular to the first crack if
the second principle stress exceeds the tensile strength. Then, the orthogonal
cracks develop according to Figure 3.11. The hinge model was implemented
in a triangular ’LDPNP’ plate element with 6 nodes. In this element, the
corner nodes have three degrees of freedom and the nodes along the sides
have one degree of freedom, see Jensen (2016).

To validate the plate-hinge model a simply supported reinforced one-way
concrete slab under four point loading is considered and compared to the
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Figure 3.11: Cracked phases in hinge layer dz from initiation of two or-
thogonal cracks to two stress free-cracks.

beam-hinge model presented in Section 3.3 and experimental results reported
in Bach and Graf (1915). The results are shown in Figure 3.12.
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Figure 3.12: Load-displacement response of simply supported one-way slab
subjected to four point loading: comparison between experimental results re-
ported in Bach and Graf (1915), the proposed beam-hinge model and the
plate-hinge model. In the latter model a beam stress-strain relation∗ and the
stress-strain relation proposed by Rots (1988)∗∗ is shown.

It is observed from Figure 3.12 that adequately good fit is obtained be-
tween the numerical hinge models and experimental results. It is also ob-
served that the peak-load comply well with the yield-line theory. The plate-
hinge acts slightly stiffer compared to experimental results and the beam-
hinge model. Jensen (2016) concluded that this effect could be due to the
multi-axial effect on the stress-strain relation. However, this phenomena
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was not investigated further. The plate-hinge model yields exactly the same
results as the beam-hinge model if the same stress-strain relation is applied.

(a) (b)

Figure 3.13: Simply supported reinforced concrete slab subjected to plate
loads reported in Bach and Graf (1915): (a) Experimental crack-pattern
(visual). (b) Predicted crack-pattern and crack-direction plate-hinge model
(Jensen, 2016).

Furthermore, the plate-hinge model is used to simulate the fracture be-
havior of a simply supported reinforced two-way concrete slab and compared
to experimental results reported in Bach and Graf (1915). Although the
plate-hinge acts slightly stiffer compared to experimental results, shown in
Figure 3.12, a realistic overall crack-pattern can be predicted with the plate-
hinge model, as shown in Figure 3.13.

The study carried out by Jensen (2016) shows that the proposed hinge
may be implemented into a plate element for three-dimensional analysis with
some encouraging results. However, considering the importance of providing
a realistic description of soil-structure interaction and cyclic crack behavior in
pavement analysis, this study will focus these two latter topics in subsequent
chapters. It is then envisaged that the models developed can be implemented
into a plate element for analysis of more realistic pavement systems.
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Chapter 4

Cracked-hinge beam on soil

4.1 Introduction

For analysis of fracture in slabs on grade, the interaction between structure
and foundation are commonly idealised as independent linear elastic springs
or so-called Winklers foundation. The Winkler model is simple and prac-
tical to solve many engineering problems, however, care should be taken in
application of such a model, as it essentially suffers from a complete lack of
continuity in the supporting medium. Moreover, another fundamental prob-
lem with the use of this model is to determine the stiffness of the elastic
springs used to replace the soil. The problem becomes two-fold since the
numerical value of the Winkler stiffness not only depends on the nature of
the soil foundation, but also on the dimensions of the slab and the loaded
area.

The deficiency of the Winkler model in depicting the continuous behav-
ior of real soil masses has led to the development of many other simple soil
response models. These models possess some of the characteristic features
of continuous elastic solids (Kerr, 1964; Hetenyi, 1966). This class of math-
ematical models have an additional constant parameter and hence, they are
called two-parameter foundation models.

This chapter presents a short review of two-parameter models reported in
the literature and evaluate their applicability for FE implementation and use
in engineering design. Moreover, this chapter presents a cohesive cracked-
hinge beam resting on a two parameter foundation for analysis of fracture
in one-way slabs on grade supported by an elastic medium, see Figure 4.1.
The numerical hinge may be incorporated into a plane beam element in a
consistent and straightforward manner as demonstrated in Chapter 3. The
two-parameter spring foundation model is implemented in beam interpolation
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Figure 4.1: Hinge model implemented in one-way slab on grade structure:
(a) sketch of slab and yield lines according to conventional yield-line theory
(Baumann and Weisgerber, 1983), where t is the out of plane slab thickness,
r is the minimum distance between potential yield-lines and ϕ is the angle of
localised crack rotations and (b) deformation of unloaded, cracking and fully
cracked slab showing cracks (solid line) and hinges (dotted line).

functions creating a consistent and simple tool for use in non-linear analysis
of slab on grade structures.

4.2 Soil-structure interaction models

The Winkler model

In the Winkler model, the soil foundation properties are idealised as inde-
pendent springs on a rigid base neglecting the shear stiffness of the soil, as
shown in Figure 1.13 (a). The Winkler model is simply a mathematical
statement that the subgrade reaction, qi, and normal displacement, wi, at
some arbitrary point i are linearly related according to the following simple
relationship:

qi = kiwi (4.1)

where ki is defined as the Winkler ’coefficient of subgrade reaction’ at point
i. ki has the dimensions of force per length cubed although it is often more
usefully visualised as force per length (dimensions of an axial-spring constant)
per unit area supported by that imaginary spring.
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Two-parameter models

Mechanical models

Mechanical two-parameter models have been proposed in the literature, where
interaction between the spring elements is provided by either elastic mem-
branes (Filonenko-Borodich, 1940), elastic layers capable of pure shear defor-
mation (Pasternak, 1954; Kerr, 1965; Loof, 1965) or elastic beams (Hetényi,
1946). Basically, the models proposed by Filonenko-Borodich, Pasternak and
Loof are mathematically equivalent and differ only in the definition of their
parameters (Zhaohua and Cook, 1983). These two-parameters models define
the surface displacement w(x, y) of the foundation in the vertical z-direction
due to a pressure q(x, y) given as

q(x, y) = kw(x, y)− k1∇2w(x, y) (4.2)

where

∇2 =
∂2

∂x2
+

∂2

∂y2
(4.3)

is the Laplace’s differential operator in Cartesian coordinates, k is the Win-
kler stiffness and k1 is the second parameter. The Pasternak model is depicted
in Figure 1.14 (a).

For two-dimensional problems (4.2) reduces to

q(x) = kw(x)− k1
d2

dx2
w(x) (4.4)

It can also be shown that (4.4) is a possible mechanical model for the ’gen-
eralised foundation model’. In this formulation it is assumed, in addition to
the Winkler model where at each point the pressure q is proportional to the
deflection w, that also the moment is proportional to the angle of rotation θ
(Kerr, 1964; Zhaohua and Cook, 1983).

Hetényi (1946) proposed an elastic plate as interconnection, replacing the
latter term in (4.2) with D∇4w(x, y), where D is the flexural rigidity of the
plate. Totsky (1981) suggested a multi-layered system consisting of a series
of alternating plate elements and springs.
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Continuum approach

Vlasov and Leontev (1960) proposed a simplified continuum approach to the
formulation of the soil model based on a variational method depicted in Fig-
ure 1.14 (b). By imposing certain restrictions upon the possible distribution
of displacements in an elastic layer to an appropriate mode shape, ψ(z), a
soil response function of similar character to (4.2) can be obtained.

In the case of plane strain in the xz-plane, the state of strain in the
foundation layer is assumed to be such that the displacement components
are

u(x, z) = 0 ; w(x, z) = w(x)ψ(z) (4.5)

where ψ(z) is a function describing the variation of displacement w in the
z-direction. Both linear and exponential variations have been proposed

ψ(z) = 1− z

H
; ψ(z) =

sinh [γ (H − z) /L]

sinh [γH/L]
(4.6)

where H is the depth of the foundation layer, and L and γ are constants. The
details of the general variational method of analysis together with solutions
to many practical problems are given in Vlasov (1966).

Applying the stress-strain relations for plane strain conditions and the
principle of virtual work the response function is given as

q(x) = kw(x)− 2t
d2

dx2
w(x) (4.7)

with the parameter k and 2t

k =
E

(1− ν2)

H∫

0

(
dψ

dz

)2

dz ; 2t =
E

2 (1 + ν)

H∫

0

(ψ)2 dz (4.8)

where E = Es
(1−ν2

s )
is the Young’s modulus, and ν = νs

(1−νs) is the Poisson’s
ratio of the soil foundation for plain strain conditions.

Reissner (1958, 1967) pioneered a straightforward application of the sim-
plified continuum concept assuming a foundation layer in which all in plane
stresses are negligibly small; σx = σy = τxy = 0, and the horisontal displace-
ments at the top and bottom surfaces of the foundation are zero. The gov-
erning equation of the Reissner simplified continuum model for an isotropic,
homogeneous linear-elastic continuum of finite thickness H is

q(x, y)− GH2

12E
∇2q(x, y) =

E

H
w(x, y)− GH

H
∇2w(x, y) (4.9)

74 Department of Civil Engineering - Technical University of Denmark



Cracked-hinge beam on soil 4.2 Soil-structure interaction models

where E is the Young’s modulus, ν is the Poisson’s ratio and G is the shear
modulus of the soil.

The model proposed by Reissner and the Modified Pasternak model pro-
posed by Kerr (1965) are mathematically equivalent as approximations for
an elastic continuum. The governing equation for the Modified Pasternak
model for two-dimensional problems is given as

p(x)− Gp

ku + kl

d2

dx2
p(x) =

ku · kl
ku + kl

w(x)− Gp · ku
ku + kl

d2

dx2
w(x) (4.10)

where ku = 4E/H is the upper spring stiffness, kl = 4E/3H is the lower
spring stiffness and Gp = 4GH/9 is the stiffness of the shear layer. The
equivalent stiffness keq of the two springs acting in series is equal to

keq =
1

1
ku

+ 1
kl

=
1

H
4E

+ 3H
4E

=
1

4H
4E

=
E

H
(4.11)

Interpretation of foundation model parameters

The disadvantage with the mechanical two-parameter models is that it is
difficult to interpret exactly what soil material properties or characteristics
are reflected in the various mechanical elements. This is especially true for
the plate in the Hetényi model and the tensioned membrane in the Filonenko-
Borodich model as there is no behavioral pattern of actual soil materials that
can be related intuitively to either of these.

The Vlasov model is based upon a solid theoretical analysis and explicit
formulations of the two parameters can be obtained from an approximation
of elastic analysis. Assuming a simple linear variation of ψ(z) the model
parameters from (4.8) are given as

k =
E

H (1− ν2)
; t =

EH

12 (1 + ν)
(4.12)

For relatively deep soil media where the normal stresses are likely to vary
with depth, it is possible to use a non-linear variation of ψ(z) including
an additional parameter γ. However, experimental evidence for γ is almost
nonexistent and thus another level analysis is needed to determine the model
parameters.

Jones and Xenophontos (1977) established a relationship between the
parameter γ and the displacement characteristics. Subsequently, Vallabhan
and Das (1988) proposed a methodology to determine the parameter γ as
a function of the characteristic of the beam and the foundation, using an
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iterative procedure, referred to as the ’Modified Vlasov model’. Since γ is
not known a-priori, the solution technique for parameters evaluation is an
iterative process which depends upon the value of the parameter γ, see e.g.
Vallabhan and Das (1988, 1991); Turhan (1992)

Due to the mode shape function introduced and the additional analysis
steps the physical interpretation of the Vlasov model parameters becomes un-
clear. Another derivation is given by Ting (1973) considering the Pasternak
model and (4.6), resulting in the following expressions

k =

H∫

0

E

(1− ν2)

[
dψ

dz

]2

dz ; Gp =

H∫

0

E

2 (1 + ν)
[ψ]2 dz (4.13)

These expressions for k and Gp are equivalent to (4.8). Moreover they are
also valid of inhomogeneous elastic layers.

Finite element implementation

There are reasons for the extensive use of the Winkler’s idealisation in routine
practice. The most significant, practical reason is that it allows the subgrade
reaction, q, to be eliminated as a variable in the problem solution. This
allows easy implementation in structural analysis software (Horvath, 2002).

Similarly, implementation of mechanical spring models given in (4.4) and
(4.7) is straightforward. This can be visualised considering a simple beam
element resting on four discrete springs, as shown in Figure 4.2 (a).

x, u

z, w
q2

k2k1 k3 k4

k12 k23 k34
w1 w4w2 w3

q3
q4q1

q2 q3

q2

k2k1 k3 k4

w1 w4w2 w3

q3
q4q1

q2 q3

(a) (b)

Figure 4.2: Principal 1-D spring foundation models: (a) two-parameter
model showing four Winkler springs k1 − k4 interconnected by shear springs
k12 − k34 and subjected to external loading from a single beam element, rep-
resenting the structure. (b) Winkler model showing four springs k1 − k4,
whereof two are inactive (gray) as no load is applied at these points.

The springs are only affecting the structure in the vertical direction. Ev-
ery spring is attached to two nodes, but since the lower nodes are fixed, those
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nodes can be removed from the equations. The stiffness matrix for the simple
1-D spring model is given as




q1

q2

q3

q4




=







k1 0 0 0

0 k2 0 0

0 0 k3 0

0 0 0 k4




+




k12 −k12 0 0

−k12 k12 + k23 −k23 0

0 −k23 k23 + k34 −k34

0 0 k34 −k34










w1

w2

w3

w4




(4.14)

As a special case the two-parameter model reduces to the Winkler model for
k12 − k34 = 0. The stiffness matrix for the simple four node system then
yields




q1

q2

q3

q4




=




k1 0 0 0

0 k2 0 0

0 0 k3 0

0 0 0 k4







w1

w2

w3

w4




(4.15)

where q1 and q4 and thus w1 and w4 are zero, as these points are outside the
loaded region, i.e. no nodes ’outside’ the beam geometry are added to the
system of equations.

The Reissner model and the Modified Pasternak model given in (4.9) and
(4.10), respectively, are less attractive with regard to FE implementation.
This is because the incompressible shear layer cannot be modeled with stan-
dard finite elements. However, as mentioned in Section 4.2, the tensioned
membrane is mechanically equivalent to an undeformed incompressible shear
layer. Consequently, Horvath and Colasanti (2011) proposed the following
formulation for implementation in FE software

(i) Upper layer of linear springs of uniform stiffness 4E/H.

(ii) Plate element with zero flexural stiffness, D, to approximate a mem-
brane under a constant tensile force per unit width, T = 4GH/9,
around all of it’s sides.

(iii) Lower layer of linear springs of uniform stiffness 4E/3H.
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In addition, it is necessary to use a non-linear analysis to obtain the
proper behavior of the membrane (plate) under tension. The model pro-
posed by Horvath and Colasanti (2011) is also referred to as the ’hybrid
foundation model’. A more direct approach for implementing this class of
multi-layered spring systems was proposed by Khazanovich and Ioannides
(1994) who implemented the Totsky-model in the commercial FE software
ISLAB20001.

Summary

The mechanical and simplified continuum approach for idealisation of soil-
structure interaction possesses both advantages as well as disadvantages:

(i) Structural elements in the mechanical models are easy to implement
in practice. However, interpretation of how soil foundation material
properties and characteristics are reflected in the various elements in
such models can be difficult.

(ii) In the Vlasov model a mode shape function is used to define how ver-
tical displacements vary as a function of depth. The model has a con-
sistent format, however, calibration of the model requires additional
parameters and analytical sophistication. This introduces another level
of approximation and judgement into the solution process.

(iii) In contrast to the mechanical approach the soil parameters are straight-
forward to specify for the Reissner elastic continuum model, but imple-
menting such a model is problematic (Horvath and Colasanti, 2011).
The format of this model is less intuitive compared to mechanical spring
models. Moreover, complexity is added to the implementation proce-
dure using ’pseudo-elements’ and additional analysis steps.

Several recent efforts have been made to implement mechanical models
that are more sound and logic than the Winkler model. However, no foun-
dation model has yet replaced the Winkler model and achieved a reasonably
widespread level of acceptance among design engineers (Horvath, 2002; Co-
lasanti and Horvath, 2010). In this aspect, the Winkler foundation with
shear interaction is mechanically a logical extension of the Winkler model
and analytically the next higher approximation (Kerr, 1965). This model
offers an attractive alternative to the elastic solid continuum by providing a
degree of shear interaction between adjacent soil elements while it remains

1ISLAB 2000 - an extension and improvement of the ILLI-SLAB and ILSL2
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relatively simple to analyse (Ioannides, 2006). Moreover, implementation of
such a model in commercial FE codes is straightforward using discrete spring
elements as shown in (4.14) and Figure 4.2 (a).

4.3 Two-parameter coupled spring model

The mechanics of the two-parameter model

The coupling between two Winkler springs is modeled with a second spring
transmitting a shear force T per unit width as shown in Figure 4.3. This
force is associated with the difference in vertical displacements w between
the elements. Only the two-dimensional problem is considered here.

T T + dT

q (x)

kw (x)

x, u

z, w

dx

q

k

k1

(a) (b)

Figure 4.3: Mechanical model of two-parameter spring foundation, where k
is the Winkler stiffness and k1 is the second parameter stiffness.

A simple assumption is, that the shear force is proportional to the dif-
ference in displacements between two consecutive elements and therefore to
the first derivative of the displacement, where k1 is the second parameter.
From the equilibrium of an element the differential equation governing the
deflections of the soil surface is given in (4.4). Introducing the terms α2 = k1

k

and β = 1
α

, the general solution yields

w =
q

k
+ C1e

−βx + C2e
βx (4.16)

First, investigating the case of a point load, the homogeneous equation reads

−w′′ + β2w = 0 (4.17)

with the general solution

w = C1e
−βx + C2e

βx (4.18)
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In the solution for large positive values of x the term with the coefficient C1

represents the decreasing displacement due to the influence of the load. The
term with C2 does the same for large negative values of x. The solution for
positive x can be found, inserting the boundary condition w → 0 for x→∞
in (4.18), i.e.

w(x→∞) : C1e
−βx → 0 ∧ C2e

βx →∞⇒ C2 = 0 (4.19a)

For areas carrying no load the solution for positive x is

w = C1e
−βx (4.20)

P

w0

x

x
dξξ

aa

q

(a) (b)

Figure 4.4: Sketch of elastic isotropic continuum foundation subjected to
(a) a point load P and (b) a distributed load q.

In the case of a point load P , as shown in Figure 4.4 (a), the spring
resistance under the load is an order of magnitude smaller than the load. All
the bearing capacity must therefore be provided by the adjacent material.
The difference in shear force to the right due to the point load in x = 0
must therefore be equal to half the magnitude of the point load, giving the
relations

∆T = −P
2

(4.21a)

∆T = k1∆w′ = ∆T = k1w
′(0) (4.21b)

w′(0) = −βC1e
−β·0 = −βC1 (4.21c)

Combining (4.21a), (4.21b) and (4.21c) the coefficient C1 can be found

−P
2

= −k1βC1 → C1 =
P

2k1β
(4.22)
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Applying the term α2 = k1

k
(4.22) can be rewritten as

C1 =
P

2α2k 1
α

=
P

2αk
(4.23)

giving the full expression for the displacement for positive x

w(x) =
P

2kα
e−βx (4.24)

In the case of a uniform load over a strip l = 2a, as shown in Figure 4.4 (b),
the solution can be obtained by integration of the point load over the loaded
strip. Inserting α = 1

β
the differential equation can be written as:

w =
βqdξ

2k
e−β(l+x) for ξ ≥ l and w =

βqdξ

2k
e−β(l−x) for ξ ≤ l (4.25)

Integration over the loaded strip then gives

wξ≤l =

ξ=x∫

ξ=−a

w (x− ξ) dξ +

ξ=a∫

ξ=x

w (ξ − x) dξ

=
βq

2k




x∫

−a

e−β(x−ξ)dξ +

a∫

x

e−β(ξ−x)dξ




=
βq

2k

[(
− 1

β
e−β(x−ξ)

)x

−a
+

(
− 1

β
e−β(ξ−x)

)a

x

]

(4.26a)

wξ≥l =

ξ=a∫

ξ=−a

w (x− ξ) dξ

=
βq

2k




a∫

−a

e−β(x−ξ)dξ




=
βq

2k

[(
− 1

β
e−β(x−ξ)

)a

−a

]

(4.26b)
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which yields the expressions

w(x) =
q

2k

[
2− e−β(x+a) − e−β(a−x)

]
for x ≤ |a| (4.27a)

w(x) = − q

2k

[
e−β(x+a) − e−β(a−x)

]
for x ≥ |a| (4.27b)

the condition x ≤ |a| and x ≥ |a| symbolises if the displacement is calculated
inside or outside the loaded area, respectively.

Expressions for points of interest can then be established, i.e. the dis-
placement at the center, the displacement at the edge and the curvature at
the centre of the loaded area

w(0) =
q

k

[
1− e−βa

]
(4.28a)

w(a) =
q

2k

[
1− e−2βa

]
(4.28b)

w′′(0) =
β2q

k

[
e−βa

]
(4.28c)

Foundation model parameters

In order to obtain the necessary foundation model parameters, this study
presents a simple methodology, combining the two-parameter model pre-
sented in the section above and the elastic continuum theory. The problem
of the elastic stress field within a semi-infinite medium loaded by an infinitely
long edge perpendicular to the plane delimiting the loaded medium has been
solved by Flamant (1892) using Boussinesq’s solution (Timoshenko et al.,
1970). The surface displacement in the vertical direction can be written as

wx =
2P

πE
ln

(
d

|x|

)
− (1− ν)P

πE
(4.29)

where P is the point load, E = Es
(1−ν2

s )
is the Young’s modulus, and ν = νs

(1−νs)
is the Poisson’s ratio of the soil foundation, |x| is the numerical value of x
(distance from the loaded point) and d is a rigid body constant found from
assuming zero vertical displacements at a distance x = d.
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Using the superposition technique (4.29) can be integrated to obtain ex-
pressions for the surface displacements for a uniformly distributed load given
as

w(x) = − 2q

πE

[
(x− a) ln

(
d

|a− x|

)
+ (−a− x) ln

(
d

|x+ a|

)

+a (ν − 1)] for x ≤ |a|
(4.30a)

w(x) = − 2q

πE

[
(x− a) ln

(
− d

a− x

)
+ (−a− x) ln

(
d

|x+ a|

)

+a (ν − 1)] for x ≥ |a|
(4.30b)

Expressions for points of interest can then be established, i.e. the displace-
ment at the center, the displacement at the edge and the curvature at the
centre of the loaded area

w0 =
2qa

πE

[
2 ln

(
d

|a|

)
+ (1− ν)

]
(4.31a)

wa =
2qa

πE

[
2 ln

(
d

|2a|

)
+ (1− ν)

]
(4.31b)

w′′0 = − 4q

πEa
(4.31c)

In the present study, the response of the slab and the influence of model
parameters on crack initiation and propagation are of primary interest. In
this aspect the vertical displacements and the curvature of the foundation
are important features due to localisation of cracks and the increasing soil
stresses near the crack front during progressive cracking. Thus, combining
these measures for calibration at different positions below the slab is found
to give the most accurate prediction of the model parameters.

Based on the equations above the two-parameter model can now be cali-
brated analytically; first, the theoretical displacements and curvature at the
centre and displacements at the edge of the distributed load can be found
from (4.31a)-(4.31c) and inserted in the relevant simplified expressions, i.e.
(4.28a)-(4.28c). A simple procedure is adopted here keeping one parameter

constant, e.g. k1 → kw0
1 = k

w′′0
1 . The equation is then solved iteratively for k

until kw0 = kw
′′
0 .

In order to evaluate the influence of the different calibration methods a
uniformly distributed load q with load strip length a of 1.0 m, is applied
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Table 4.1: Calibrated foundation model parameters k and k1 showing the
coefficient of determination, R2, comparing the three two-parameter models
to the analytical model.

Method Critera k (N/mm2) k1 (N) R2 (x ≤ 10 m) R2 (x ≤ 1.0 m)

1. w0 & w′′0 0.0076 6.33 · 10 7 0.976 0.999

2. w0 & wa 0.0104 3.95 · 10 7 0.928 1.000

3. w′′0 & wa 0.0086 6.18 · 10 7 0.978 0.992

Vlasov - 0.0064 1.54 · 10 8 0.941 0.996

Reissner - 0.0046 4.12 · 10 8 - -
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Figure 4.5: (a) Comparison of analytical and two-parameter foundation
model for the three different calibration techniques (b) influence of load strip
length a on model parameters k and k1 for a distributed load (normalised with
respect to maximum value obtained in interval 0-5 m). Uniformly distributed
load: q=25,000 N/m. Soil properties: Es=100 MPa, νs=0.35, t=1 m and
d=25 m.

directly on the soil surface. The resulting calibrated foundation model pa-
rameters can be found in Table 4.1.

Comparing the vertical surface displacements for the three different two-
parameter models to the analytical model, shown in Figure 4.5 (a) and Table
4.1, it is observed that Calibration Method no. 1 gives a good overall fit.
Method no. 2 gives the closest prediction of the surface displacements in the
loaded region, i.e. x ≤ 1.0 m, whereas method no. 3 yields realistic results
far from the loaded region. It is also observed from in Figure 4.5 (b) that
increasing the load strip length results in a decreased k, stabilising at app.
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a=1-2 m. Whereas k1 increases with increasing load strip length, stabilising
at app. a=4-5 m.
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Implementation of two-parameter model

The hinge model presented in Chapter 3 is extended to pavement applications
by implementing the proposed two-parameter foundation model into a beam
element for analysis of one way slabs on grade. Based on the contribution
to the variation in internal work δΩ from the beam and the two-parameter
foundation, and the potential work of external forces δW from point and
surface loads, the principle of virtual work for the system can be established

∫

V

δεTσ + δuTku+ δθTk1θdV =

∫

S

δuTfdS +
∑

i

δuTi pi (4.32)

where V is the structural volume, S is the surface area, δu and δθ are the
displacement and rotational variations, respectively, f is the surface traction
vector, pi is a concentrated (nodal) load and δui is the associated (nodal)
displacement variation. The contribution from the second parameter spring
is here given on a general form considering k1 as a rotational stiffness.

The beam element and two-parameter foundation contribution to the
internal nodal force, q, is then given by the expression

q =

Le∫

0

BTσdx+

Le∫

0

NTkINdxve +

Le∫

0

GTk1Gdxve (4.33)

where Le is the length of the element and ve is the global degrees of free-
dom (dof) element displacements. The displacement interpolation matrix
and the strain distribution matrix N and B are given in (3.19) and (3.20),
respectively.

The matrix I = [ 0 0
0 1 ] is used to omit axial terms in N. Including axial

terms in (4.33) would be equivalent to introducing a frictional contact in the
system, the constitutive behavior of which should be controlled by another
parameter, e.g. describing the frictional behavior, see Section 4.6.
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The second-parameter matrix, G = N′I is given as

G =




0 0

0 (−6s+ 6s2) /Le

0 1− 4s+ 3s2

0 0

0 (6s− 6s2) /Le

0 −2s+ 3s2

0 0




T

(4.34)

where s = x/Le is the normalised element length, Le
The beam-element and two-parameter foundation contribution to the tan-

gential stiffness matrix, kt, is given by the expression

kt =

Le∫

0

BTDtBdx+

Le∫

0

NTkINdx+

Le∫

0

GTk1Gdx (4.35)

4.4 Numerical simulation of one-way slabs on

grade

Single finite slab

In order to evaluate the hinge slab model and to investigate the influence of
different modeling techniques for soil-structure interactions in concrete and
composite pavement systems a model representing the full continuum model
is developed, hereafter referred to as the ’CZM slab’ model. FE models and
mechanical properties used in analysis is described in Paper II. Consider
a single slab of cement bound granular mixture with standard dimensions
(L/h) of 4×0.4 m2, resting on a soil foundation and loaded by a concentrated
force at midspan position. The numerical models are shown in Figure 4.6.

The fracture behavior of the slab is evaluated by plotting the load-crack
mouth opening and load-crack length curve for the different model types,
shown in Figure 4.7 and 4.8, respectively. To visualise the influence of the
second parameter and to compare the two modeling techniques, the response
for both the hinge slab and CZM slab resting on a Winkler foundation is
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L/2
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(b)

Figure 4.6: Sketch of FE models: (a) CZM slab model and (b) hinge slab
model.

shown for reference. Moreover, an empirically calibrated Winkler model,
used in design of airfield concrete pavements (FAA, 2009), is shown. Standard
mechanical properties are given in Paper II.
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Figure 4.7: Comparing the structural response and fracture behaviour of
the hinge slab versus the CZM slab model: load-CMOD curve (normalised
with respect to maximum CMOD obtained for the CZM slab model).

It can be observed from Figure 4.7 and 4.8 that a reasonably good agree-
ment between the hinge and CZM slab model can be obtained. Both models
reflect the influence of the continuity in the soil comparing the two foun-
dation types. By applying an empirical transfer function for converting the
elastic soil properties to an equivalent ’apparent’ Winkler stiffness a closer
prediction of the first peak-load can be obtained. However, the post-peak
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response resembles that of the analytical Winkler foundation type due to the
lack of continuity between springs.
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Figure 4.8: Comparing the structural response and fracture behaviour of the
hinge slab versus the CZM slab model: load-crack length curve (normalised
with respect to slab height). Where the crack length in the CZM slab model
is taken as the progressive depth of damage initiation in the cohesive zone.

The difference in first peak-load and peak-load displacement is app. ± 1%
for the two model types. The two-parameter slab hinge model slightly over-
estimates the post-peak residual stiffness compared to the CZM slab model.
Close to perfect fit is obtained between the two modeling techniques applying
only a Winkler foundation as the supporting medium. It is also observed that
the load level at unloading is higher for the hinge slab model compared to
the CZM slab model. This tendency is observed for both foundation model
types, and can partly be regarded as an effect of the difference in modeling
technique. However, this difference is also related to the foundation type and
contact behavior applied.
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Infinite slab

In order to demonstrate the applicability of the numerical hinge to predict a
realistic crack pattern an infinite slab (h=0.4 m) resting on Winkler’s foun-
dation (k=0.0233 MPa/mm) and loaded by a concentrated force at midspan
position is considered. Slab displacements and internal forces decline rel-
atively fast to zero as the distance from the load increases. Accordingly,
a finite slab of 10 m (nel=100) may replace the infinite beam. Standard
material properties for the cemented material can be found in Paper II.

The numerical results are compared to the yield-line theory following
the methodology proposed by Baumann and Weisgerber (1983) depicted on
Figure 4.1 (a). The deformation of the slab during loading, i.e. before first
peak, before second peak and after the second peak, is shown in Figure 4.9
(a). Load-displacement curves for the three models are plotted in Figure 4.9
(b).
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Figure 4.9: Comparison between modeling techniques for infinite slab: (a)
Deformation of the slab during loading: before first peak, after first peak and
after second peak. (b) CZM slab (solid line), hinge slab model (dashed line)
and the yield-line method (dotted line) reported in Baumann and Weisgerber
(1983).

It is observed from Figure 4.9 (b) that the first peak in the CZM slab
model and the hinge slab model is app. 73 and 71 kN, respectively. Moreover,
it is observed that the kink point on the yield-line curve is app. 45 kN,
complying well with the results reported by Meda (2003), see Figure 2.3 (a).
Moreover, it is found that the distance between yield-lines r=2.534 m in
the yield line method is approximately equal to the distance, d, from the
negative peak moments to the crack at midspan in the hinge slab model at
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crack-initiation (load level 1), shown in Figure 4.10 (a). Then, according to
the CZM slab and hinge slab model the load continues to increase as the
crack propagates before reaching the ultimate moment capacity of app. 33.3
kNm (load level 2), shown in Figure 4.10 (b).
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Figure 4.10: Predicting distance between cracks showing the moment in
the hinge slab model at four different phases: (a) crack initiation, (b) first
peak, (c) second peak and (d) after full crack propagation of top-down cracks,
also visualising the distance between cracks equivalent to r in the yield line
method.

The crack at midspan then unloads, before the load continues to increase,
resulting in two top-down cracks initiating app. ± 1.5 m from the midspan
position. Then, these cracks grow rapidly to the negative ultimate moment
capacity of app. -33.3 kNm (load level 3), shown in Figure 4.10 (c), resulting
in the second peak on the load-displacement curve. Finally, the post-peak
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residual stiffness of the structure is reached (load level 4) with the moment
distribution shown in Figure 4.10 (d).

The distance between cohesive zones in the CZM slab model is set to 1.5
m based on simulations with the hinge slab model. This results in a good
fit between the two methods as shown in 4.9 (b). The response of the two
methods is identical up to the second peak of the CZM slab model. Then,
the load in the hinge slab model continues to increase due to the stiffness and
stress redistribution in the hinge slab. The second peak in the two models is
app. 105 and 115 kN, respectively. This difference in modeling technique is
not as dominant under the concentrated load as cracks localise to one crack
below the loaded point, whereas top-down cracks at a distance d is smeared
over a larger area.

The present example highlights the practical use of the proposed model;
as the hinge slab is able to predict the stress redistribution and stiffness
during crack development. This results in a precise prediction of the crack-
opening and the distance between cracks that finally localise and propagate
through the thickness of the slab.

4.5 Evaluation of methodology

The two-parameter model possess some of the characteristic features of con-
tinuous elastic solids, as it is a simplification which cannot capture all com-
plexities. Special care should be taken when selecting a representative load
strip length a for the calibration of model parameters.
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Figure 4.11: Vertical soil pressure of elastic solid under cemented slabs
with slenderness ratio λs=5 and 10 before and after unloading.
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This is exemplified by plotting the vertical soil pressure below cemented
slabs with different slenderness ratios (length/thickness ratio), as shown in
Figure 4.11. It is observed from Figure 4.11 that the pressure will initially
be distributed over the total slab length. As cracking is initiated and cracks
propagate, there will only be minor changes in the overall vertical pressure
profile, ignoring minor stress intensities below cracks. However, after unload-
ing, the vertical soil pressure changes significantly and stresses will localise
around the open cracks, in this case at the midspan position. Moreover, a
variation in vertical pressure, and especially the vertical reaction pressure
along slab edges, is expected when comparing different slab sizes. The soil
pressure under short thick slabs will resemble the stress distribution under a
stiff plate, whereas the vertical reaction pressure along slab edges for larger
size and slender slabs will be small.

In order to capture both pre- and post-peak vertical pressure distributions
in the two-parameter model considering typical slab lengths and thickness’s
of app. 2.0-5.0 m and 0.15-0.45 m, respectively, a fixed load strip length a
of 1.0 m for calibration of foundation model parameters is applied for the
present problem.

Comparison of calibration methods

The three calibration methods proposed is evaluated in the view of load
displacement behavior, as shown in the example in Figure 4.12. It is seen
that all three methods adequately describe the overall structural behavior.
Plotting the difference in peak-load and peak-load displacement between the
hinge slab and the CZM slab, as shown in Figure 4.13, it is found that the
method no. 1 and 3 fits well with a difference of app. ±2 % compared to the
CZM slab model for λs ≥10. Adequately good fit is also obtained for λs=7.5
(app. 5-10%). However, less consistent results are obtained for method no.
2. Moreover, for λs ≤10, an increasing difference between models is observed
for decreasing λs (maximum 26 %).

For slabs with λs < 10, the slab partially acts as a stiff plate and the
influence from the adjacent soil increases. Thus, the effect of the second pa-
rameter becomes more significant resulting in increasing differences between
method no. 2 compared to the other two methods, as this method only
considers compatibility of vertical displacements in the two points.

From Figure 4.5 (b) it is evident that the second parameter is sensitive to
the vertical pressure below the slab for the standard slab sizes studied, and
that the second parameter cannot be predicted to the same level of accuracy
as the Winkler stiffness. It is found that this effect results in a difference
in vertical pressure along slab edges between the two model types, which
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Figure 4.12: Evaluating calibration methods and comparing load-
displacement responses for a hinge slab resting on a two-parameter foun-
dation and a CZM slab resting on elastic solid foundation: load-displacement
curves for λs=5 and λs=10.
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Figure 4.13: Evaluating calibration method and comparing load-
displacement response of a hinge slab resting on a two-parameter foundation
and a CZM slab resting on elastic solid foundation: difference in normalised
peak-load, β, and peak-load displacement, ζ, between the hinge slab and CZM
slab model.

again results in a premature collapse for short stiff slabs (λ=5) observed in
Figure 4.12. Moreover, a somewhat higher residual stiffness after unloading
is observed.
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Vlasov model parameters

The methodology for estimating model parameters as proposed in Section 4.3
does not give a direct physical interpretation of how soil foundation material
properties and characteristics are reflected in the various elements. However,
as mentioned in Section 4.2, the two parameters can be obtained from an
approximation of elastic analysis using the Vlasov model, i.e. (4.8).

In order for this format to be simple and straightforward linear variation
of ψ(z) is considered, eliminating the parameter γ. Thus, model parameters
can be evaluated in similar fashion to the proposed methodology, e.g. by
comparing the vertical surface displacements to the analytical continuum
model.
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Figure 4.14: Evaluation of the Vlasov model: (a) Coefficient of determi-
nation R2 for the Vlasov model and the proposed method compared to the
analytical model. (b) vertical surface displacements for the Vlasov model
(dotted) and the analytical model (solid) for varying strip length a between
0.15 and 2.5 m.

It is observed from Figure 4.14 (a) that the Vlasov model results in a
good overall fit compared to the analytical model. However, by plotting the
vertical displacement profile for different load strip lengths, relatively large
differences is observed in the peak region, see Figure 4.14 (b). Best fit is
obtained for a load strip length of app. 1.0 m, giving k=0.0064 N/mm2 and
k1=1.54·107 N. These parameters are selected for further analysis.

The influence of using the Vlasov model compared to the proposed method-
ology in structural analysis is visualised in Figure 4.15.

It is observed from Figure 4.15 that the Vlasov model overestimates the
stiffness of the soil by applying a linear mode shape function. Although
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Figure 4.15: Comparing the structural response of the hinge slab versus the
CZM slab model using the proposed calibration method and the Vlasov model
with a linear mode shape function.

vertical displacements can be predicted within a 1% difference compared to
the continuum model, the difference in curvature at midspan position, i.e.
below the crack front, is app. 50% for the specific case. This highlights
the influence of the soil response near the crack front and the need for ana-
lytical calibration techniques in order for two-parameter models to perform
adequately well.

4.6 Non-linear behavior of soil

In the proposed engineering model the non-linear soil behavior is restricted to
a simple Winkler spring model. This model was suggested by Gaedicke and
Roesler (2009) and is used to simulate experimental results for beams resting
on soil, as described in Paper III. A schematic overview of the constitutive
spring behavior is shown in Figure 4.16.

This idealised spring foundation model consists of independent vertical
springs with a spring stiffness coefficient, kn, similar to a conventional Win-
kler model. The constitutive behavior of the vertical spring is modified
to allow for separation between the beam and soil, i.e. for positive verti-
cal displacements (tensionless spring). Moreover, the horisontal spring is
implemented in the model, representing the frictional contact between soil
and beam structure. The horisontal spring is modeled with a stiffness of
kt = kn/10 and a constant slip limit of ut=0.5 mm.
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Figure 4.16: Constitutive behavior of Winkler spring foundation applied in
Gaedicke and Roesler (2009).

The constitutive behavior shown in Figure 4.16 can be implemented in
including an update of the system during equilibrium iterations as shown in
the modified Algorithm 4.

Algorithm 4 N-R displacement control (modified)

Calculate: K
Displacement steps n = 1, 2,.., nmax
vn = vn−1 and fn = fn−1

Iterations i = 1, 2,.., imax
∆vu = K−1

22 (∆fk −K21∆vk)
∆fu = K11∆vk + K12∆vu
if slip or slab rising

Update ∆fk
end
Kn = K (vn−1 + ∆vn)
rn = K∆vn −∆fn

Stop iteration when δE1

∆E0
< ε

vn = vn−1 + ∆vn and fn = fn−1 + ∆fn
End of displacement steps

The internal nodal force and the tangential stiffness matrix is then given
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by

q =

Le∫

0

BTσdx+

Le∫

0

NT


kn 0

0 kt


Ndxve (4.36a)

kt =

Le∫

0

BTDtBdx+

Le∫

0

NT


kn 0

0 kt


Ndx (4.36b)

In Paper I both an elasto-plastic Mohr-Coulomb model and a Coulomb
friction model was used to describe the complex soil-structure interaction
observed in the experiments. The latter model can be implemented follow-
ing the methodology above. However, implementation of elasto-plastic soil
behavior for slab fracture using mechanical two-parameter models is a topic
that requires a great deal more study.
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Figure 4.17: (a) Modified Pasternak model. (b) Elastic-perfectly plastic
response of shear layer (N = shear force, N0 = yield limit of N , dw2/dx=
shear strain).

Rhines (1969) proposed a Pasternak type of model, see Figure 4.17 (a),
where the interconnecting shear layer is capable of sustaining finite shearing
stress applying a elasto-plastic shear stress-strain relationship, shown in Fig-
ure 4.17 (b). Using this particular model, Rhines investigated the distribution
of contact stresses below a rigid foundation structure which is subjected to
symmetric load. The results indicate that including such yielding charac-
teristics, can capture the change in the magnitude and the distribution of
contact stresses, that are developed at the soil-structure interface.

The model proposed by Rhines describes a relatively simple case. Includ-
ing the slab as well as the slab fracture into this model would significantly
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increase the complexity of the problem, as both elastic properties and yielding
characteristics of the foundation change during progressive cracking. Inspi-
ration for further development of more advanced mechanical soil-interaction
models could be found in methods for calculating bearing capacity of soils
for design of shallow foundations, see e.g. Terzaghi (1943); Meyerhof (1963);
Hansen (1970). Such failure types may be applicable to the present for pre-
dicting the yield limit of the soil as long as the slab behaves elastically.
However, after onset of cracking the problem becomes more complex. Thus,
methodologies should be extended to capture relevant failure types. More-
over, adaptive two-parameter models must be developed in order capture
changing support characteristics.
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Chapter 5

Cyclic fiber hinge model

5.1 Introduction

Concrete and composite pavement systems are subjected to cyclic loading
from moving vehicles. This type of loading results in initiation of bending
cracks in the quasi-brittle cemented material. Subsequently, these cracks
propagate leading to failure of the pavement structure, see Figure 5.1.

Vehicle load

n = 1

n >> 1

(a)

(b)

(c)

Figure 5.1: (a) Sketch of fatigue crack development in a simple concrete
pavement system. (b) Intact block of cement bound granular mixture cut from
field before trafficking (Thøgersen et al., 2004). (c) Cracks in cement bound
granular mixture after app. 300,000 passes (Yeo, 2008b).

Constitutive models have been developed for low-cyclic damage of ce-
mented materials. However, the developed models are typically used to sim-
ulate one type of test or one simplified problem. Thus, all the different
components in Figure 1.11 are seldom addressed in relation to each other.
This often results in complex models with limited capabilities. Moreover,
only few published models, create the required link between low-cyclic and
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high-cyclic fatigue damage, i.e. relate the development of new fracture pro-
cess zone to damage in the existing fracture process zone, see Figure 5.2 (a)
and (b), respectively.

n + 1

n + 1
n

n ft

ft

Traction free crack

Equivalent crack

Fictitious crack

Fracture process zone

Undamaged

(b)

(a)

Figure 5.2: Stress distribution under cyclic loading according to Slowik
et al. (1996): (a) development of new fracture process zone and (b) fatigue
damage in existing fracture process zone.

In order to create a simple and robust modeling framework for engineering
application, this chapter presents a multilayer hinge model, hereafter referred
to as the ’fiber hinge’ model. At the lowest level, a fiber of cemented material
including a crack is considered and a stress-mean strain relationship is estab-
lished. At the intermediate level a hinge element, which is a finite part of the
beam, consisting of layered strips of cemented material is considered and a
relationship between the generalised sectional forces and strains established.
At the highest level the hinge model is applied as a constitutive model in a
non-linear beam element as presented in Chapter 3. This particular format
enables a straightforward implementation of different types of stress-crack
opening relationships and unloading and reloading schemes.

Further, the fiber hinge is extended to account for the cyclic crack behav-
ior of inner loops below the monotonic curve, i.e. fatigue crack growth after
crack initiation. Deterioration during cyclic loading is incorporated in the
model applying an energy based approach. The presented model accounts
for the material behavior in all the cracked phases, linking the development
of the fracture process zone and damage of the existing fracture process zone
to the monotonic material characteristics in a rational manner.
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5.2 The mechanics of the fiber hinge model

The uni-axial tensile behaviour of the concrete is modeled according to the
fictitious crack model. To make the proposed model as versatile as possible,
a multi-linear softening law is selected

σ (w) = bi − aiw





b1 − a1w for 0 ≤ w ≤ w1

b2 − a2w for w1 ≤ w ≤ w2

b3 − a3w for w2 ≤ w ≤ w3

...

0 for wi > wc

(5.1)

where w is the crack opening, wc is the final zero-stress displacement, ai is
the slope and bi the intersection of the tangent line segment and the abscissa
for a given point on the softening curve as shown in Figure 5.3.

w

σ

b1

b2

w1 w2 w3 wc

b3
b4

a1

a2

a3
a4

Figure 5.3: Definition of parameters ai, bi and wi for the softening law se-
lected: multi-linear idealisation (black dashed) of exponential softening curve
(gray solid) using four linear line segments.

The total fracture energy GF given by the area under the softening curve
is

GF =

wc∫

0

σ (w) dw =
1

2

n∑

i=1

[(2bi − ai (wi−1 + wi)) (wi − wi−1)] (5.2)

where n is the number of lines on the softening curve.
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For semi-analytical hinge models published in the literature, see e.g. Ole-
sen (2001a,b); Zhang et al. (2001); Iyengar et al. (2002); Brake and Chatti
(2013), sectional forces are calculated over the full beam-hinge segment (in-
tegration in blocks) for a given stress crack-opening relationship. A similar
approach was used in the finite element implementation of the cracked-hinge
in Chapter 3. This type of model is simple and numerically robust, however,
if one wishes to study unloading and reloading of cracks as well as more com-
plex material behaviour, e.g. damage and fatigue, this particular formulation
becomes cumbersome. Following the basic idea of the ’multilayer model’ by
Hordijk (1991), this study presents a general hinge model consisting of fibers
of cemented material, as shown in Figure 5.4.
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Figure 5.4: Fiber hinge model: (a) Beam segment with constant sectional
forces and deformation of cracked beam segment. (b) Hinge stress distribution
after initiation of cracking showing the individual fibers (n=24, whereof 4 are
stress free). (c) Material fiber in uni-axial tension: loaded state beyond peak-
load showing crack deformations. (d) Geometrical definition of one hinge
strip (interpolation of stresses between two fibers).

The tensile behaviour of the hinge may be established by considering a
fiber of material in uni-axial tension similarly to (3.2). The expression for
crack opening and the corresponding stress in the fiber is modified to account
for the multi-linear softening response, exchanging ft with bi in (3.4), i.e.

σc = σw ⇒ σc = bi + aiw

s+ 2u = s(1 + εc) + w ⇒ sε̄(yi) = sεc + w

}
⇒
{
wi = sEcε̄(yi)−bi

Ec−ais
σi = Ec

bi−aisε̄(yi)
Ec−ais

(5.3)

where the notation i is used for a discretised fiber.

In the cracked state, wc ≤ w, the crack is stress free, leading to the simple
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solution for the fiber

w = s(1 + ε̄(yi))− s
σc = 0

}
⇒
{
wi = sε̄(yi)

σi = 0
(5.4)

The hinge is divided in n + 1 number of fibers with the strip height ∆h
between fibers, shown in Figure 5.4 (b). The position (top-down) of each
fiber with respect to y = 0 can be calculated as yi = −h/2 + ∆h · (i − 1).
The normal force contribution from each strip between two fibers is given by

Ni =
1

2
(σi + σi+1) ∆ht (5.5)

The eccentricity of the normal force for each strip is found from trapezoidal
calculation and is given by

ei =
1

3

σi + 2σi+1

σi + σi+1

∆h+ yi (5.6)

The moment contribution for each strip then yields

Mi = Ni · ei (5.7)

The sectional forces with respect to y = 0 is then a sum of the contribution
from all, n, strips and may be calculated from

N(ε̄0, κ̄) = t

h/2∫

−h/2

σc dy =
n∑

i=1

Ni (5.8a)

M(ε̄0, κ̄) = t

h/2∫

−h/2

σcy dy =
n∑

i=1

Mi (5.8b)

Convergence of the hinge is evaluated plotting the normalised error in mo-
ment β between the original hinge model (Ulfkjær et al., 1995) and the
proposed hinge considering a simple linear softening law for different hinge
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Figure 5.5: Number of hinge fibers, n: 2-100 (element size, elsz: 0.01-0.002
m) versus the average normalised difference in moment β.
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Figure 5.6: Typical moment-curvature response. Hinge dimensions (h/t):
0.20 × 0.10 m2. Material properties: Ec=30 GPa, ft=3.5 MPa GF=150
N/m and wc=0.1 mm (linear softening).

mesh densities, n: 2-100, shown in Figure 5.5 (a). It is observed that suf-
ficient accuracy can be obtained with 30 fibers, however, little is gained by
increasing the number of fibers from 10 to 30.

In the analysis presented in Figure 5.5 the error in normalised moment is
taken as the average difference in moment between the analytical hinge model
in Ulfkjær et al. (1995) and the proposed fiber hinge at peak (κ=0.003 m-1),
at the transition point between softening and stress free hinge (κ=0.0066
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m-1) and at the lower part of the descending branch (κ=0.01 m-1). This is
exemplified in the typical moment-curvature obtained shown in Figure 5.6.

5.3 Tensile damage model

In order to realistically capture the influence from unloading of a previously
open crack, as well as the stiffness reduction for structures subjected to re-
peated loads, a low-cyclic damage plasticity model for the fiber in tension is
implemented. A simple format is proposed, defining a fixed negative inter-
secting point σku on the abscissa towards which unloading takes place after
initiation of cracking. The geometrical meaning of strain components for the
damage-plasticity model is shown in Figure 5.7.

Ec

E±
s

ε̄ct

ft

σ

ε̄

ε̄pl η
(
ε̄− ε̄pl

)

σk
u

ε̄ult

σur

ε̄ur

Figure 5.7: Geometrical meaning of strain components for the damage-
plasticity model. The inelastic cracking strain ε̄cr is composed of the re-
versible η(ε̄− ε̄pl) and irreversible ε̄pl parts. The dashed line represent elastic
unloading with the initial stiffness whereas grey lines represent the reduced
stiffness and unloading towards point σku.

From Figure 5.7 it is evident that the unloading stiffness and plastic strain
component can be defined as

E±s =
σur − σku
ε̄ur

(5.9a)
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ε̄pl = − σku
E±s

(5.9b)

where E±s is the unloading- and reloading stiffness and σur and ε̄ur is the
maximum cracking stress and strain upon unloading and reloading, respec-
tively. The format above is found to comply well with experimental data
for concrete materials as well as more advanced concrete damage plasticity
model formats, see e.g. Maekawa et al. (1993); Lee and Fenves (1998); Grassl
et al. (2013). Accordingly, a conventional 1-D damage-plastic stress strain
law can be formulated

σ = (1− η)Ec
(
ε̄− ε̄pl

)
(5.10)

where the damage parameter is given as

η = 1− E±s
Ec

(5.11)

The crack width w can be found from

w =

{
sε̄− sσur

Ec
0 < w ≤ wc

sε̄ wc < w
(5.12)
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A modified computational scheme is developed in order to determine
the fiber hinge sectional forces N and M , accounting for the unloading and
reloading response described by the damage-plasticity model, see Algorithm
5

Algorithm 5 Computational scheme for N and M : Damage
State parameters: ε̄, ε̄ur
if ε̄ < εct (Monotonic loading)

Phase 0 : η=0 and ε̄pl=0
else

Phase I : η and ε̄pl from (5.11) and (5.9b), respectively
if ε̄ > − ft

as

Phase II : η=1 and ε̄pl=ε̄
end

end
σ from (5.10)
if ε̄ > 0 & ε̄ < ε̄ur

if εur < εct (Unloading & Reloading)
Phase 0 : η=0 and ε̄pl=0

else
Phase I : η and ε̄pl from (5.11) and (5.9b), respectively
if ε̄ur > − ft

as

Phase II : η=1 and ε̄pl=ε̄
end

end
σ from (5.10)

end

From Algorithm 5 it is observed that the maximum strain ε̄ur experi-
enced during cyclic loading and the current strain ε̄ are the only parameters
needed to determine whether a fiber is monotonically loaded, unloading or
reloading. Thus, if the current strain is larger than the maximum strain
from the previous load cycle, the current maximum strain is updated, i.e. if
ε̄j > ε̄1−j

ur → ε̄jur = ε̄j .
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Numerical analysis of a plain concrete beam under four point loading
with a shallow notch is carried out to verify the functionality of the proposed
damage model. The beam hinge load-displacement response is plotted and
compared to experimental and numerical results reported in Hordijk (1991),
shown in Figure 5.8. The displacement at midspan position of the beam-
hinge is obtained by utilising (3.9)-(3.13).
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Fiber hinge + elastic beam (s = H)

Figure 5.8: Load-displacement response of four point bending beam sub-
jected to cyclic loading Hordijk (1991); Beam geometry (L/h/t): 450 × 100
× 50 mm3, notch depth, a0=10 mm and s=50 mm. Relevant model param-
eters are: Ec=38 GPa, ft=3.0 MPa, GF=125 N/m, c1=3.00, c2=6.93 and
wc=5.14 ·GF/ft and σku = −0.4ft (exponential softening).

It is observed from the load-displacement curve in Figure 5.8 that there
is good agreement between the proposed fiber hinge model and the exper-
imental results. It is also found that the monotonic behavior of the hinge
comply well with finite element simulations reported in Hordijk (1991) us-
ing a discrete crack model and the commercial computer package DIANA.
The peak-load is somewhat higher compared to results reported in Hordijk
(1991). One explanation for this difference could be the influence from the
notch, which is not being captured by the hinge model when using a con-
stant s = H/2. It is also found that increasing the hinge width results in
decreasing peak-loads, as shown in the calibrated curve (solid gray) in Figure
5.8.

The low-cyclic damage model presented in this section accounts for dam-
age from the development of the fracture process zone, see Figure 5.2 (a).
However, for pavement structures the loading is typically significantly lower
than the flexural bearing capacity of the structure. This means that a large
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proportion of the cemented material deterioration is caused by damage of
the existing fracture process zone, i.e. fatigue crack growth, see Figure 5.2
(b). In order to capture this type of material deterioration an extension of
the model is required.

5.4 Fatigue model

Theoretical framework

The fatigue crack growth process in cemented materials can be divided in
different phases. In the present study a simple and general format is sought
with regard to the fatigue life prediction after crack initiation. This means
that at some point the maximum load Pmax is larger or at some point has
been larger than the first crack load Pct, where a crack in the cemented
material was initiated.

Cyclic cohesive zone models provide the capability to simulate fatigue
crack growth as discussed in Section 1.4. Ortiz and Pandolfi (1999) proposed
an energy based approach for damage of the cyclic cohesive model. In this
model, damage is defined as the ratio between the cohesive potential evalu-
ated for the maximum attained separation and the fracture energy. However,
this damage is not limited to the damage locus but rather distributed in the
whole softening region, including the reversible branch (Roth et al., 2014).

In the present study the damage state after arbitrary loading is associ-
ated with a monotonic loading process that leads to the same damage state.
A simple unloading and reloading scheme is applied, ensuring a consistent
format where the fiber response is uniquely linked to the monotonic failure
envelope and monotonic damage. Deterioration of the fracture energy is con-
trolled by the accumulated inelastic work carried out during fatigue loading.
The total fatigue loading process is visualised in Figure 5.9.

The initial residual fracture energy at the point where a cracked fiber
enters the fatigue phase is given as, see Figure 5.9 (a).

Ginit
fat = GF − Edis

mon = Erev + Eres (5.13)

where Edis
mon is the dissipated energy from monotonic loading, and Erev and

Eres are the reversible and residual energy upon the first fatigue load cycle,
respectively. Assuming a linear softening law and secant unloading (towards
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Figure 5.9: Energy considerations used for description of fatigue behavior
of hinge fibers: (a) Monotonic damage at start of fatigue analysis. (b) Fa-
tigue damage during cyclic loading. (c) Schematic overview of fatigue loading
scheme under displacement control.

origin) these measures can be found from the following simple expressions

Erev =
1

2
σuwu (5.14a)

Edis
mon =

wu∫

0

σ (w) dw − Erev =
1

2
ftwu (5.14b)

Eres =

wc∫

wu

σ (w) dw =
1

2
σu (wc − wu) (5.14c)

where wu is the crack-opening upon unloading, σu is the stress upon unload-
ing and wc is the final zero-stress displacement.

The damage evolution is then given by the initial residual fracture energy
Ginit
fat upon fatigue loading and the accumulated inelastic work

∑
W cr. A

simple linear and exponential relationship are proposed, i.e.

Gres
F = Ginit

fat − kfat
∑

W cr , Gres
F = Ginit

fat · e−kfat
∑
W cr

(5.15)

where kfat is the fatigue damage parameter.
In order to determine the the fatigue damage an arbitrary load case is

considered, see Figure 5.10. After unloading from point M on the mono-
tonic curve, the fiber enters fatigue loading. Considering a fiber in point
C, the inelastic work W cr from the loading process A-B-C is added to the
accumulated work upon reloading.
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Figure 5.10: Sketch of arbitrary load case: unloading with constant damage
(towards origin) and reloading with damage evolution (towards σf).

The inelastic work for a load increment j is found from trapezoidal cal-
culation

W cr
j = (wj − wj−1)

[
σj + σj−1

2

]
(5.16)

Reloading from point C then takes place towards a fixed point on the mono-
tonic failure envelope (wf ,σf ), for a linear softening law, given as

σjf =
2Gj

F

wc
(5.17a)

wjf =
σjf − ft
ai

(5.17b)

where ai is the slope of the softening curve at the point where the fatigue
reloading curve and the monotonic curve intersects. The monotonic damage
parameter ηj can be established from

ηj = 1−
σjf

Ecε̄
j
f

, where ε̄jf =
ε̄j

Ec
+
wjf
s

(5.18)

where ε̄f is the strain at the failure envelope.
The formulation proposed in (5.17a) ensures that damage is restricted to

the monotonic failure envelope. For a fiber that fails in fatigue this means

Department of Civil Engineering - Technical University of Denmark 113



5.4 Fatigue model Cyclic fiber hinge model

that the evolving damage contribution from the final reloading cycle is ne-
glected. However, in general this error will be small as typically several load
cycles, each with a low damage contribution, are considered in fatigue.

The incremental stiffness during fatigue loading is determined depending
on whether the cohesive surface opens or closes, i.e.

σ̇ =

{
E−s ˙̄ε for ˙̄ε < 0

E+
s

˙̄ε for ˙̄ε > 0
(5.19)

where E−s and E+
s are the unloading and reloading stiffnesses, respectively,

given by

E−s =
σu
ε̄u

(5.20a)

E+
s =

σf − σr
ε̄f − ε̄r

(5.20b)

where σu and σr are the stress upon unloading and reloading, respectively,
and ε̄u and ε̄r is the strain upon unloading and reloading, respectively.

The stress during during unloading and reloading is then given as

σ =

{
E−s ε̄ for ˙̄ε < 0

E+
s (ε̄− ε̄r) + σr for ˙̄ε > 0

(5.21)

Uni-axial fiber response

The proposed methodology is tested and compared to uni-axial fatigue test
results of plain concrete, reported in Hordijk (1991). The inelastic work
in each cycle of the experiment is calculated as the sum of the area under
the unloading and reloading curve, as shown in Figure 5.11 (a) and (b),
respectively. Whereas the proposed model simplifies to Figure 5.11 (c).

Figure 5.12 (a) shows an overview of the fatigue hysteresis loops n=[144,
3024, 9068, 12240, 12763, 12822]. The resulting inelastic work calculated
with the two different methods is presented in Figure 5.12 (b).

From Figure 5.12 (b) it is observed that the proposed model resembles
the trend of the experiments, however, the model overestimates the inelas-
tic work. A good fit can be obtained using a more realistic unloading and
reloading scheme, i.e. unloading towards a negative point on the abscissa as
proposed in Section 5.3. For simplicity only unloading towards origin (σku=0)
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Figure 5.11: Calculating inelastic work (gray solid area): (a) Work under
unloading path (black solid) and (b) work under reloading path (black dashed).
(c) Idealisation applied in the fiber hinge model.
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Figure 5.12: (a) Fatigue cracking hysteresis loops reported in Hordijk
(1991) (elastic deformation subtracted). (b) Accumulated inelastic work ver-
sus residual fracture energy. Specimen geometry (L/h/t): 150 × 50 × 50
mm3, notch depth, a0=0 mm and s=35 mm. Mechanical properties: Ec=38
GPa, ft=3.0 MPa, GF=125 N/m, wc=5.14 ·GF/ft.

is considered here. However, the implemented model is general which makes
it suitable to consider more complex unloading and reloading schemes, as
well as bi-linear or multi-linear softening curves.

From Figure 5.12 (a) it is observed that during the first app. 3000 load
cycles, the inelastic response is small as the applied stress is below the tensile
strength. Moreover, the reported tests includes a compression phase with
closing of the cracks, which may influence the fatigue behavior. Plizzari
et al. (1997) investigated the behavior of cracked plain concrete cylinders in
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direct tension. In these tests only the cracked phase was considered and they
are therefore suitable for comparison with the proposed fatigue model, see
example in Figure 5.13.
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Figure 5.13: The proposed fatigue model (gray) for 1-5081 cycles com-
pared to fatigue cracking hysteresis loops at the start (n=1), intermediate
and end of fatigue analysis (n=5081) reported in Plizzari et al. (1997).
kfat=0.3·10-3 (linear damage). Specimen geometry (L/d): 210 × 80 × 50
mm3, notch depth, a0=4 mm and s=35 mm. Mechanical properties:fc=42.1
MPa, ft=4.25 MPa, GF=151 N/m, wc=0.341 mm.

From Figure 5.13 it is observed that adequately good fit is obtained de-
scribing the deterioration of a single hinge fiber. In the three experiments
evaluated the fatigue damage parameter kfat is predicted to 4.10 · 10-3, 1.75 ·
10-3 and 0.3·10-3 for failure after 344, 645 and 5081 load cycles, respectively.

Analytical hinge response

In order to implement the fatigue model a number of modifications of Algo-
rithm 5 is required, as the crack behavior is dependent on whether a crack
opens or closes. The modified computational scheme for the fiber hinge sec-
tional forces N and M is shown in Algorithm 6.
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Algorithm 6 Computational scheme for N and M : Fatigue

State parameters:
∑
W cr, Ginit

fat ,G
res
F , σu, σr, σf , ε̄u, ε̄r, ε̄f , ˙̄ε

if ε̄ < εct (Monotonic loading)
Phase 0

else
Phase I
if ε̄ > − ft

as

Phase II
end

end
if ε̄ > 0 & ˙̄ε < 0 & ε̄ < ε̄u (Unloading)

if εu < εct
Phase 0

else
Phase I : E−s from (5.20a) and σ from (5.21)
if ε̄ > − ft

as

Phase II
end

end
end
if ε̄ > 0 & ˙̄ε > 0 & ε̄ < ε̄f (Reloading)

if εf < εct
Phase 0

else
Phase I : E+

s from (5.20b) and σ from (5.21)
if ε̄f > − ft

as

Phase II
end

end
end
if σu < 0 or σf < 0

σ = 0
end

From Algorithm 6 it is observed that several state parameters are needed
to determine the fiber behavior. These parameters are mainly used to control
whether a fiber has entered fatigue loading, is unloading, reloading or have
failed in fatigue and then enters fatigue loading again, requiring a new initial
fracture energy Ginit

fat .
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The functionality of the proposed fatigue model is tested on a single hinge
subjected to 25 cycles (n=25) with hinge rotations between ϕ=0.004-0.001
(m-1), as shown in Figure 5.14 (a) and (b) for a linear and exponential damage
relationship, respectively.
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Figure 5.14: Fatigue behavior of hinge: (a) Linear damage relationship
(kfat=0.25). (b) Exponential damage relationship (kfat=0.0025). Hinge di-
mensions (h/t): 0.20 × 0.10 m2. Material properties: Ec=30 GPa, ft=3.5
MPa, GF=150 N/m and wc=0.1 mm (linear softening).
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Figure 5.15: Behavior of hinge fibers during fatigue (linear damage): (a)
Bottom fiber (black) and upper quarter fiber (gray). (b) Close-up of upper
quarter fiber going through different phases during fatigue loading of hinge.

From Figure 5.15 (a) it is observed that the bottom fiber enters the fatigue
phase after the first monotonic load step. As fibers on the lower part of the
hinge deteriorate, new fibers in the upper part of the hinge are activated, see
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Figure 5.15 (b). The hinge fiber on the upper quarter of the hinge is first in
compression, then in linear elastic tension, before entering a short stage of
low-cyclic damage and finally fatigue loading. This behavior highlights the
importance of a consistent fatigue damage format for numerical simulations,
accounting for all the different cracked phases in a unified manner.

5.5 Fiber hinge tangent stiffness matrix

The fiber hinge is implemented as described in Section 3.3. The hinge model
presented here first determines the constitutive state and stiffness of each
individual fiber. Integration over the strip height between fibers is then
performed and the sum of all contributions is included in the tangent stiffness
matrix. The hinge tangent stiffness matrix, Dt is defined through



dN

dM


 = Dt



dε̄0

dκ̄


 , Dt =

n∑

i=1



∂Ni
∂ε̄0

∂Ni
∂κ̄

∂Mi

∂ε̄0

∂Mi

∂κ̄


 (5.22)

Monotonic loading of the hinge results in constant positive stiffness of fibers
in the linear elastic state. Fibers in the cracked state and cracked stress-
free state result in negative and zero stiffness contributions, respectively.
The constituents of (5.22) are obtained from (5.8a) and (5.8b) utilising the
following relations for the relevant part of the integral corresponding to 0 <
w ≤ wc

∂σc
∂ε̄0

= Ec
ais

Ec + ais
,

∂σc
∂κ̄

= Ec
ais

Ec + ais
yi (5.23)

Here the parameters αi = ais
Ec+ais

and Ei
cc = Ecαi are introduced, where

the first is the monotonic damage parameter and the latter symbolises the
reduced stiffness of the cracked fiber. The parameter ai is the slope at a
given point on the softening curve, see Figure 5.3. The stiffness contribution
from one fiber in the three different phases; elastic, softening and stress-free
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is given by (5.24a), (5.24b) and (5.24c), respectively

delt =


 Ect Ecty

Ecty Ecty
2


 ε̄ ≤ ε̄ect (5.24a)

dcrt =


 Ecct Eccty

Eccty Eccty
2


 ε̄ect < ε̄ ≤ ε̄ult (5.24b)

d0
t =


0 0

0 0


 ε̄ > ε̄ult (5.24c)

The stiffness contribution from a fiber in the linear elastic state will not
change whereas a fiber in the softening state changes from a negative to a
positive stiffness. For a fiber during unloading and reloading tensile damage
of the fiber is introduced

durt = (1− η) delt for ε̄ct < ε̄ < ε̄f (5.25)

where η is dependent on whether the crack opens or closes, i.e.

η =

{
1− E−s

Ec
for ˙̄ε < 0

1− E+
s

Ec
for ˙̄ε > 0

(5.26)
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The full tangent stiffness matrix for loading, unloading and reloading
can now be established by interpolation between each fiber and integration
over the strip height, fiber and integration over the strip height, i.e. Dt =∫ h/2
−h/2 dt dy, as shown below

dNi =




yi+1∫

yi

1

2

(
di11 + di+1

12

)
dy


 dε̄0 +




yi+1∫

yi

1

2

(
di12 + di+1

12

)
dy


 dκ̄

=

(
1

2

(
di11 + di+1

11

)
(yi+1 − yi)

)
dε̄0

+

(
1

2

(
di12 + di+1

12

)
(yi+1 − yi)

1

2
(yi + yi+1)

)
dκ̄

= di11 dε̄0 + di12 dκ̄

=
∂Ni

∂ε̄0

dε̄0 +
∂Ni

∂κ̄
dκ̄

(5.27a)

dMi =




yi+1∫

yi

1

2

(
di21 + di+1

21

)
dy


 dε̄0 +




yi+1∫

yi

1

2

(
di22 + di+1

22

)
dy


 dκ̄

=

(
1

2

(
di21 + di+1

21

)
(yi+1 − yi)

1

2
(yi + yi+1)

)
dε̄0

+

(
1

2

(
di22 + di+1

22

)
(yi+1 − yi)

1

3

(
y2
i + y2

i+1 + yiyi+1

))
dκ̄

= di21 dε̄0 + di22 dκ̄

=
∂Mi

∂ε̄0

dε̄0 +
∂Mi

∂κ̄
dκ̄

(5.27b)

where yi and yi+1 are the position of each fiber depicted on Figure 5.4 and

d11, d12, d21 and d22 is defined in (5.24) as dt =
[
d11 y d12

y d21 y2 d22

]
.
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The implemented hinge is validated by plotting the moment-curvature
behavior for a single FEM fiber hinge versus the analytical fiber hinge for
low-cyclic loading and fatigue loading, shown in Figure 5.16 (a) and (b),
respectively.
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Figure 5.16: Implementation of hinge into beam element: comparison be-
tween analytical and finite element hinge model: (a) low-cyclic loading and
(b) fatigue loading. Hinge dimensions (h/t): 0.20 × 0.10 m2. Material prop-
erties: Ec=30 GPa, ft=3.5 MPa, GF=150 N/m and wc=0.1 mm (linear
softening), kfat=0.25 (linear).

It is observed from Figure 5.16 (a) that exact fit is obtained between
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the fiber hinge and the analytical model considering two types of unloading
schemes. Exact fit is also observed for fatigue loading in Figure 5.16 (b). The
two transition points between the phases; elastic-softening (crack initiation)
and softening-stress free (bottom fiber stress free) are shown for reference.

5.6 Numerical examples

Low-cyclic damage of simply supported beam

The functionality of the proposed FEM fiber hinge to simulate the low-cycle
fracture behavior of a three point bending beam is demonstrated by plotting
the load-crack mouth opening displacement versus experimental and numer-
ical results reported in Gaedicke and Roesler (2009) shown in Figure 5.17.
Model geometry and material properties are given in Paper III.
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Figure 5.17: Load-crack mouth opening displacement response of three
point beam: FEM hinge versus experimental and numerical results reported
in Gaedicke and Roesler (2009).

It is observed from the load-CMOD curve in Figure 5.17 (a) that there
is good agreement between the FEM hinge model and experimental results.
The model simulates both pre-peak, softening and unloading reloading re-
sponse adequately well. The difference in peak-load and peak-load displace-
ment is app. 10% and 5% respectively, which is within the expected scatter.
It is also found, that the monotonic behavior of the proposed hinge complies
well with finite element simulations using a discrete cohesive zone model and
the commercial computer package ABAQUS, as reported in Gaedicke and
Roesler (2009).
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Low-cyclic damage of beam on soil

The functionality of the proposed FEM fiber hinge to simulate the low-cyclic
fracture behavior of a beam resting on soil is demonstrated, applying the
Winkler soil foundation model suggested in Section 4.6. The numerical hinge
is compared to experimental and numerical results, reported in Gaedicke
and Roesler (2009), by plotting the load-crack mouth opening displacement
shown in Figure 5.18. Model geometry and material properties are given in
Paper III.
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Figure 5.18: Load-crack mouth opening displacement response of beam
on soil: FEM hinge versus experimental and numerical results reported in
Gaedicke and Roesler (2009).

It is observed from the load-CMOD curve in Figure 5.18 that the FEM
hinge model captures the overall characteristic response of the beam on soil
on the descending branch. However, the peak-load and load level in general,
as well as the peak-displacement are overestimated. The difference in peak-
load varies between 15-50% compared to the experimental curves. A similar
trend is also found in the numerical analysis reported in Gaedicke and Roesler
(2009). Thus, the FEM hinge comply well with the numerical results from
applying a discrete cohesive zone model.

The difference between experimental and numerical results indicate, that
the soil model applied in simulations, does not reflect the stress distribu-
tion below the beam and/or other boundary conditions in the test set-up
very well. The stiff pre-peak response and lower peak load in experiments
indicate, that the continuity and shear stiffness of the soil influences the re-
sponse significantly. For cohesive soils, considered in this experiment, this
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influence will theoretically result in a large vertical reaction pressure along
beam edges. Moreover, it is observed that the unloading and reloading stiff-
ness in the FEM hinge deteriorates faster than the experimental curves. This
effect, is not observed in analysis of the simply supported beam, see Figure
5.17, and further indicates an influence from the continuity in soil, which
is not reflected in the numerical models presented. In order to obtain a
more realistic response of the soil the use of a two-parameter spring model
is discussed in Paper III.

Fatigue damage of simply supported beam

The fatigue model is validated with the results of three point bending beam
fatigue tests of plain concrete notched beams, as reported in Toumi et al.
(1998); Toumi and Bascoul (2002). Static tests were carried out to obtain
an average peak-load, Pu, of 860 ± 60 N. Fatigue tests were then carried out
with a maximum load Pmax cycled between 0.7Pu and 0.98Pu with a constant
lower load limit, Pmin, of 0.23Pu. Beam geometry, material properties and
model parameters used are given in Table 5.1.

Table 5.1: Geometry and mechanical properties for beams used in experi-
mental studies Toumi and Bascoul (2002).

Geometry Unit Toumi and Bascoul

Length, L (m) 0.32

Height, H (m) 0.08

Thickness, t (m) 0.05

Notch depth, a0 (m) 0.04

Mechanical- and fracture properties

Young’s modulus, E (GPa) 31.6

Tensile strength, ft (MPa) 5.2

Fracture energy, GF (N/m) 34.2

Hinge model and damage parameters

Number of fibers, n (-) 200

Hinge width, s = H/2 (m) 0.04

Number of elements, nel (-) 6

Fatigue damage parameter, kfat (-) 4.6 ·10-3

In lack of experimental data, the fatigue damage parameter kfat is cali-
brated to obtain failure at n=140 load cycles, found from experiments for a
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load level of 0.98Pu. This value is then used for fatigue simulations of the
beam subjected to load levels of 0.97Pu and 0.93Pu without further calibra-
tion.

Convergence of the model is evaluated in view of load-displacement be-
havior of the beam, plotting the peak-load displacement for different beam
mesh densities, nel: 2-12, shown in Figure 5.19 (a). It is observed, that
sufficient accuracy, can be obtained with 6 elements, resulting in an element
size of 0.0533 m, chosen in the following analysis. Typical load-displacement
behavior is plotted in Figure 5.19 (b).
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Figure 5.19: Convergence test: (a) Number of beam elements, nel:2-10
(element size, elsz: 0.032-0.16 m) versus peak-load displacement (normalised
with regard to the analytical hinge solution) (b) Load-displacement behavior
for different mesh densities compared to the analytical hinge solution.

From Figure 5.19 (b) it is observed that the peak-load Pu predicted with
the hinge model is app. 900 N. This agrees reasonably well with the average
peak load of 860 ± 60 N that was obtained by Toumi et al. (1998). The
functionality of the proposed numerical hinge for simulation the fatigue frac-
ture behavior of a three point beam is demonstrated by plotting crack length
versus the number of load cycles with the experimental results, as shown in
Figure 5.20.
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Figure 5.20: FEM hinge versus experimental and model curves reported in
Toumi and Bascoul (2002): Crack length versus number of load cycles.

It is observed from Figure 5.20 (a) that the FEM hinge model is able
to capture the crack growth development during fatigue loading. Moreover,
some characteristic features of the model are shown, i.e.:

(i) The initial crack length increase with increasing Pmax.

(ii) The crack growth rate increase with increasing Pmax.

(iii) The fatigue life increase for decreasing Pmax.

It is also observed that the numerical crack growth curves for 0.93Pu re-
semble the experimental, and that all three models are able to give a close
prediction of the number of load repetitions to failure, without further cali-
bration, as shown in Figure 5.21 (a).

From the load-crack mouth opening displacement curve in Figure 5.21
(b) it is observed, that the FEM hinge performs satisfactory, as the point of
crack initiation, unloading and failure comply with the analytical monotonic
curve.

In the analysis presented above, the fatigue damage parameter kfat is
calibrated to comply with one of the fatigue tests of experimental beams. An
overview of the calibrated kfat based on the experiments reported in Toumi
and Bascoul (2002) and Plizzari et al. (1997), compared to the mechanical
properties of the concrete is show in Table 5.2.

From Table 5.2 it is observed, that the damage parameter is predicted
within approximately one order of magnitude for the different experiments
considered. It is also observed, that both maximum aggregate size Dmax and
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Figure 5.21: (a) FEM hinge versus experimental and model curves reported
in Toumi and Bascoul (2002): Crack length versus number of load cycles
comparing numerical. (b) Close-up of load-crack mouth opening displacement
curve for the FEM hinge model plotting the first and last load cycle during
fatigue loading versus the monotonic response.

Table 5.2: Comparison of fracture properties and fatigue damage parameter
predicted in the present study. NC: Normal concrete. MC: Micro-concrete.

Test Material
kfat Dmax fc ft GF Ec

(10-3) (mm) (MPa) (MPa) (N/m) (GPa)

Uni-axial NC 0.3-4.1 15.0 42.1 2.41-4.25 151.0 -

Beam MC 4.6 2.5 56.9 4.20 34.2 31.6

fracture energy GF are lower for the micro-concrete mixture compared to the
normal concrete, resulting in an increased damage parameter. This indicates
that the proposed framework has the ability to capture main mechanical
properties without further calibration.

The results obtained in this section give rise to further parametric studies.
However, experimental validation of the fatigue damage parameter kfat is dif-
ficult. The experimental data presented in this section are some of very few
studies reported in the literature suitable for evaluation of cyclic cemented
material behavior at constitutive level. In order to further evaluate the pro-
posed method, or fatigue crack growth phenomena in general, more extensive
fracture testing are required. These experiments should be carried out with a
controlled test set-up, making it possible to distinguish between the different
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cracked phases. Such tests could then be used to determine the influence from
material properties, mechanical properties, test set-up (e.g. load-amplitude
and frequency), geometry (e.g. size dependence and notch depth), as well as
model parameters (e.g. hinge width). Moreover, the proposed model should
be implemented in more realistic pavement structures to evaluate the influ-
ence of structural components on the fatigue crack response, i.e soil-structure
interaction, load configuration and aggregate interlock behavior.
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Chapter 6

Conclusions and
Recommendations

This thesis presents a rational approach to pavement analysis based on me-
chanical models. A simple framework for engineering application is sought;
creating a rational link between laboratory tests, design and field applica-
tions. The models developed and the results obtained are related to different
aspects in structural design of heavy duty pavements; from a directly appli-
cable real-scale pavement model to a local crack model that can account for
crack propagation during cyclic loading. The objectives of the thesis were
the following:

(i) Develop a simple framework for numerical simulation of a cement bound
granular base layer in composite block pavement systems subjected to
monotonic loading.

(ii) Introduce a simple methodology and numerical tool which significantly
reduce the complexity in pavement analysis of cemented material frac-
ture.

(iii) Extend the framework and methodology developed to account for un-
loading of cracks, cyclic loading, and fatigue damage of the cemented
material.

This chapter summarises the main research findings and conclusions. The
conclusions are subdivided in three categories, i.e. Real-scale model, En-
gineering model and Cyclic crack model, linking the results obtained
to the objectives (i), (ii) and (iii), respectively. Finally, the research out-
lined in this study provides a basis for recommendations applicable either to
designers today or for improvement of future research.
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6.1 Conclusions

Real-scale model

Presently available design methods for heavy duty pavements have prob-
lems linking fatigue and monotonic behavior. Moreover, the influence from
multi-dimensional geometry, soil-structure interaction and other boundary
conditions are often neglected. In order to improve the current methods and
move towards more generalised structural design methods for heavy duty
pavements a cohesive zone model is proposed as presented in Chapter 2 and
Paper I.

To evaluate the applicability of the cohesive zone model for the descrip-
tion of fracture in composite block pavement systems, a real-scale 3-D finite
element model was developed assuming that the development of cracks oc-
cur in a similar fashion as the yield line mechanisms, i.e. considering Mode I
fracture during crack propagation. Numerical analysis of four point bending
beam tests and a large-scale experiment of a cement bound granular mixture
slab on grade show that the cohesive zone model adequately describe the
structural response. Numerical analysis of slabs revealed the importance of
incorporating realistic subgrade soil behaviour in mechanical models. Most
important are the shear stiffness of the soil and the plastic yield limit, as
these two parameters have significantly influence on the prediction of peak-
load and post-peak response, respectively. The friction between layers was
found to have little influence on the overall structural response and pre-crack
behavior, but significant influence on local soil response after the onset of
yielding during progressive cracking.

The influence of slab thickness and dimensions proved to be important
parameters. The peak-load is highly influenced by the thickness, whereas the
slab dimensions proved to be a main controlling parameter of the post-peak
response of the structure. Moreover, it can be concluded that the fracture
process is more affected by the fracture energy than the tensile strength.
The peak-loads found in the sensitivity study are significantly lower than
the allowable load levels given in available guidelines for composite block
pavements. This indicates that fracture cannot be avoided in this type of
pavement system. Thus, accounting for the non-linear behavior of the ce-
mented material is an overriding consideration in pavement design of concrete
and composite pavements structures.

Studying the influence of loading the slab at different positions, the model
showed that cracking is initiated at an early stage, and that the structural
response is affected by aggregate interlock behaviour. This effect is primarily
important to the response of structures subjected to edge loading. Moreover,
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it is found that the peak-load decrease linearly with an increase in initial crack
width.

In the real-scale model presented, the capabilities within ABAQUS are
utilised using the cohesive contact model to save computational time; en-
abling the use of symmetry conditions and application of a coarser mesh for
the cohesive zone. However, considering the large size of the model com-
pared to the relatively simple problem studied, an extension of this model
will result in very demanding models with regard to computational power and
time. Moreover, the cohesive zone model incorporates a small error in crack-
opening displacements related to the penalty stiffness. Increasing penalty
stiffness reduce this error, however, very high levels of penalty stiffness result
in ill-conditioned stiffness matrix and thus convergence issues. Thus, a more
simple and robust framework, using alternative numerical tools and methods,
are preferred for engineering design purpose.

Engineering model

In order to develop a simplified and general concept for non-linear analysis of
slab on grade structures, a cohesive cracked-hinge model aimed at the analy-
sis of bending fracture of the cemented material was developed as presented
in Chapter 3, 4 and Paper II.

The hinge model was evaluated by comparing numerical and experimental
results for a four point bending beam showing good performance. Moreover,
it was found that the hinge response comply well with the results obtained
applying a cohesive zone model as described in the real-scale model. How-
ever, whereas the hinge model behaves perfectly elastic up to initiation of
cracking, the cohesive zone model incorporates a small error in crack-opening
displacements related to the penalty stiffness. This problem is avoided ap-
plying the finite element hinge, resulting in a more robust model and stable
simulations.

The cracked-hinge model was extended to pavement applications, imple-
menting a two-parameter foundation model into a beam element, making
the model applicable to simulate fracture in one-way slabs supported by a
semi-infinite elastic medium. Moreover, a simple method for estimating foun-
dation model parameters was proposed. This part is important because it
describes a simplified methodology for simulating fracture in slab on grade
structures linking all necessary analysis steps in a rational and consistent
manner.

The engineering model proposed showed that good agreement can be ob-
tained, not only for simply supported beams, but also for structural and frac-
ture behavior of slab on grade structures when comparing the hinge model
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with the more conventional cohesive zone model. The two-parameter foun-
dation model and the calibration methodology proposed is an efficient tool
which realistically captures the response of the elastic medium below the
slab. The calibration methodology is consistent and model parameters are
determined on a rational basis. The methodology for estimating model pa-
rameters proposed do not give a direct physical interpretation of how soil
foundation material properties and characteristics are reflected in the various
elements. However, considering fracture of the slab, the proposed method-
ology performs significantly better than alternative methods, where model
parameters are obtained from an approximation of elastic analysis.

The adaptive hinge proved to adequately predict the distance between
cracks at ultimate load capacity, when compared to the yield-line theory.
Moreover, peak-loads and structural responses complied well with other re-
sults reported in the literature. The beam-hinge model is able to predict the
stress redistribution and stiffness during crack development. This results in a
precise prediction of the crack-opening and the distance between cracks that
localise and propagate through the beam depth.

A sensitivity analysis showed that the engineering model produce the
same trends as the real-scale model. The slab thickness and soil stiffness
again proved to be important parameters. The peak-load is highly influenced
by the thickness of the slab, whereas the soil stiffness proved to be a main
controlling parameter of both pre- and post-peak response of the structure.
Furthermore, it can be concluded that the fracture process is more affected
by the fracture energy than by the tensile strength.

In the engineering model used to study the soil-structure interaction mod-
els, increasing or decreasing the hinge rotation is modeled by the same equi-
librium path. In case of a single one-way slab resting on a soil foundation
and loaded by a concentrated force at midspan position the cracks developing
outside midspan position are small (<1%) and do not influence the solution
in the monotonic load case. However, as a general concept this hinge is not
especially attractive, considering heavy duty pavements subjected to cyclic
arbitrary loading conditions, where different phases of cracking occur at dif-
ferent positions in the structure simultaneously. Thus, development of a
unified constitutive model that can account for these type of phenomena is
preferred.

Cyclic crack model

In order to develop a general and mechanistic modeling framework for non-
linear analysis of low-cycle and fatigue damage phenomena in cemented ma-
terials, the cracked-hinge model is extended to account for unloading of a
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previously open crack and evolving damage of the hinge when subjected to
cyclic loading as presented in Chapter 5 and Paper III.

Implementation of the hinge into a beam element is relatively straightfor-
ward and the contribution to the tangent stiffness matrix from each fiber can
be established following a general format, creating a versatile tool, allowing
for different types of softening laws and damage formats considering both
low-cyclic and high-cyclic loading. The implemented FE model was verified
against the analytical model showing good performance. The implemented
damage-plasticity format sufficiently captured the response of experimen-
tal cyclic uni-axial tensile tests of plain concrete. The developed analytical
hinge model showed satisfying performance compared to integration over the
full hinge segment. A good fit was obtained using a relatively coarse dis-
cretisation of 10 to 30 fibers. Further, this model was successfully used in
conjunction with elastic beam theory, describing the structural behavior of
experimental beams under four point loading.

A simple energy based approach for damage evolution during fatigue load-
ing was proposed, requiring only a single model parameter additional to the
monotonic parameters. The selected format is general and consistent and
ensures that damage during fatigue loading is restricted to the monotonic
failure envelope, i.e. the damage state after arbitrary loading is associated
with a monotonic loading process that leads to the same damage state. When
comparing the proposed model format with experimental results of plain con-
crete subjected to uni-axial tension fatigue loading, a good fit is obtained de-
scribing the deterioration of the single hinge fibers. However, experimental
validation of the fatigue damage parameter kfat is difficult due to the lack of
sufficient experimental data.

The proposed FEM hinge model adequately describe the cyclic response
of a plain concrete beam under three point loading. It was also found that
the proposed hinge model comply well with other numerical results published
in the literature using the same model parameters in a cohesive zone model.
Simulation of a beam resting on soil foundation show that the hinge model
captures the main structural response. The hinge model resting on a Winkler
foundation does not describe the pre-peak behavior observed in experiments
adequately well, and therefore indicates that the soil model and the boundary
conditions applied does not comply with the test set-up. To overcome the
deficiency of the Winkler model, a two-parameter model was applied, showing
good performance in the pre-peak phase.

The FEM hinge adequately describe the fatigue crack growth of plain con-
crete beams under three point loading. Main characteristic features, such as
initial crack length and fatigue crack growth rate, can be simulated with the
FEM hinge model. Moreover, it was found that the energy based methodol-
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ogy applied is able to capture the influence of varying load amplitude, as a
close prediction of the number of cycles to failure could be obtained.

6.2 Practical applications

The models developed in this study provide some practical recommendations
for pavement designers to either increase the reliability built into the design
concept or reduce construction cost from optimised designs. The most im-
portant recommendations are summarised below:

(i) In linear elastic analysis of heavy duty composite pavement structures,
the layer thickness is normally increased for increasing load levels, to
ensure a relatively constant stress level in the subgrade soil, avoiding
any plastic deformation. This approach can be questioned as the al-
lowable load levels in presently available guidelines are twice the mag-
nitude compared to the peak-loads of the slabs found in the present
study. The full slab model shows that cracking is initiated at an early
stage, and that the structural response in addition to the non-linear
response of the cemented material is affected by the subgrade soil stiff-
ness, aggregate interlock behavior, and loading condition. These effects
should be addressed in design of heavy duty concrete and composite
pavements subjected to static loading by application of appropriate
methods, e.g. cohesive zone modeling or the yield-line method. For
concrete pavements it will also be relevant to evaluate climatic effects,
e.g. by including the influence from slab-curling as proposed by Aure
and Ioannides (2015a).

(ii) Gaedicke et al. (2012) proposed to use a 3-D cohesive zone model to
calculate the static flexural strength of concrete slabs on grade for input
in M-E models. Similarly, the 3-D cohesive zone model presented in
this study could be used in conjunction with appropriate stress-based
fatigue laws for cement bound granular mixture materials, defining the
stress ratio as the quotient between the applied tensile stress in the ce-
mented layer and its monotonic strength, as proposed by Roesler and
Barenberg (1999). This will result in a more consistent and rational
approach within the M-E method, however, the influence on the evolv-
ing performance and structural response for cyclic loading will remain
hidden in the empirical fatigue relationship. Moreover, such modifica-
tion of existing fatigue relationships cannot be done without large-scale
experimental validation.
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(iii) From the results obtained in this study it is evident that the soil stiff-
ness significantly influences the response and it should therefore be
considered in the design evaluation. This is not always the case as a
conservatively low Young’s modulus of the soil foundation often is ap-
plied in heavy duty pavement design. Moreover, localisation of cracks
results in increasing soil stresses near the crack front during progres-
sive cracking. Thus, a failure criterion for the supporting layers and
soil foundation should be included in the analysis in order to make a
complete rational design analysis. In the present study an idealised
elasto-plastic Mohr-Coulomb model was successfully applied in numer-
ical analysis of slabs from experiments.

(iv) The FE method has the capability of solving a wide variety of engi-
neering problems and it is currently the most widespread numerical tool
used for routine design. However, there is a tendency in the industry
that increasing software and hardware capabilities result in increas-
ingly more complex and detailed models. Thus, models developed are
often overcomplicated and oversized compared to the problem at hand.
Engineering judgement should be used when selecting analysis tool. El-
ement types and solver techniques should be carefully chosen and rel-
evant model idealisation applied in order to reduce the computational
time and increase the stability of the simulations. In the real-scale
model the capabilities within a commercial software is utilised. How-
ever, to significantly boost this process new element types and methods
are needed as exemplified in the engineering model.

(v) Application of mechanical models for numerical analysis require ma-
terial parameters based on tests of actual physical properties in the
laboratory or from tests where relevant mechanical parameters can be
extracted. Based on the results presented in this study it is obvious
that for concrete and composite pavements testing of the cemented
material fracture properties in the tensile regime is of primary interest.
However, this is not the case today as concrete and cement bound gran-
ular mixtures used in paving and construction are typically classified
based on their compression strength. The compressions strength is a
relevant material property, however, classification of cemented mate-
rials cannot be based solely on this measure to describe their tensile
behavior. Thus, in view of the present study, it is recommended to
incorporate material properties in design standards and specifications
which are relevant to the loading regime they are exposed to in the
field.
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6.3 Recommendations for future research

The research outlined in this study constitutes the initial development of a
mechanistic based structural analysis procedure. However, there are many
aspects of future research that can be built upon the work done. A few
recommendations of this research are addressed as follows:

(i) Novel use of alternative numerical methods and tools was demonstrated
in the present study extending the hinge model proposed by Olesen
and Poulsen (2012) to pavement applications. Future research should
focus on developing optimised numerical tools for application in design.
This should include aggregate interlock and soil-structure interaction
models capable of describing the non-linear phenomena highlighted in
the present study, also considering their cyclic behavior.

(ii) The elastic two-parameter model presented does, by definition, not
take into account any elastic-plastic or irreversible behavior of the soil
medium. Such behavior may be incorporated in two-parameter models
by introducing a yield limit for the springs. Including the slab as well as
slab fracture into such model will significantly increase the complexity
of the problem as both elastic properties and yielding characteristics
of the foundation change during progressive cracking. New method-
ologies should be extended to capture relevant failure types, e.g. by
incorporating adaptive methods in two-parameter models.

(iii) The engineering model presented is applicable to two-dimensional prob-
lems, which can be used in special design cases, for sensitivity analysis,
and simple studies. In order to make the proposed methodology ap-
plicable to three-dimensional analysis the cyclic hinge and mechanical
soil-structure interaction models presented in this study can be incorpo-
rated into a plate element. This will further require a reformulation of
the two-parameter foundation model to the axisymmetric case, see e.g
Loof (1965). The foundation model parameters can then be calibrated
applying Boussinesqs solution following the methodology proposed in
the present study.

(iv) The development of new constitutive models such as the cyclic crack
model proposed in this study, give rise to new parametric studies and
sensitivity analysis. Experimental validation of the parameter kfat is
difficult at the present time due to lack of adequate data. Assuming
that the proposed damage format is sufficient, extended parametric
studies of experiments published in the literature can be used to obtain
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realistic values for kfat. Further, evaluation of the model parameter s
(hinge width) should be conducted accounting for the influence from
soil-structure interaction.

(v) In the present study only deterioration of the cemented material sub-
jected to mechanical loads was considered. However, also environmen-
tal effects, e.g. moisture and temperature, has significant influence on
the stress condition in rigid pavements. Extending the methodology to
incorporate these effects is possible, as a first step e.g. by including the
strain contribution from linear temperature expansion. Further, crack-
ing, warping and curling of slabs may lead to de-bonding of layers. For
this purpose new elements, e.g. spring elements could be developed.

(vi) The cyclic cracked-hinge model presented in this study is appropriate
for further development and practical use. However, experimental data
available in the literature are in most cases not adequate to describe the
cyclic behaviour of materials at a constitutive level. In order to develop
a complete mechanistic approach for design of heavy duty pavements,
extensive experimental programs are needed, making it possible to ver-
ify and refine constitutive models. For cement bound granular mixture
materials and other relevant cement stabilised materials, one must start
with simple mechanical tests such as uni-axial tensile tests (or tensile
split tests) and fracture energy tests. Then, the cyclic behavior of
cemented materials should be addressed, e.g. uni-axial and beam frac-
ture fatigue tests using a controlled test set-up, making it possible to
distinguish between the different crack phases. Further, these method-
ologies should be transferred to the field and full-scale testing making
it possible to link model, lab and field results.

(vii) Finally, for such a methodology to be implemented in practice a safety
format for design should be developed. Within the pavement engi-
neering field, standards typically reflect local experience and tradition,
often without any specific requirements to model parameters used in
the structural design. Model codes form the basis of standards and
guidelines within structural engineering and a more rational approach
to pavement analysis would increase the motivation to implement such
harmonised and consistent formats.
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h i g h l i g h t s

� Cohesive models adequately describe the fracture behaviour of cement bound granular mixtures.
� Structural- and local crack response of slabs are highly influenced by the subgrade soil.
� The post-peak response is mainly controlled by slab dimensions and subgrade soil.
� The fracture process is more affected by the fracture energy than the tensile strength.
� Aggregate interlock behaviour has significant influence on the structural response.
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a b s t r a c t

The problem of stiffness degradation in composite pavement systems from localised fracture damage in
the quasibrittle cement bound granular mixture are today taken into account only by empirical formulas.
These formulas deals with a limited number of materials in a restricted range of design options and
would yield unrealistic results in ultimate loading conditions. Cohesive modelling is one of the primary
methods to handle localised damage in quasi-brittle materials, e.g., concrete, describing the potential
crack in a discrete manner. To increase the versatility of existing methods this paper presents a numerical
analysis of the fracture behaviour of cement bound granular mixtures in composite concrete block
pavement systems applying a cohesive model. The functionality of the proposed model is compared to
experimental investigations of beam bending tests. The pavement is modelled as a slab on grade and
parameters influencing the response such as geometry, material parameters and loading position are
studied and compared to experimental results. It is found that a cohesive model is suitable for the
description of the fracture behaviour of cement bound granular mixtures. Moreover, it can be shown that
adequately good prediction of the structural response of composite pavements is obtained for monotonic
loading without significant computational cost, making the model applicable for engineering design
purpose. It is envisaged that the methodology implemented in this study can be extended and thereby
contribute to the ongoing development of rational failure criteria that can replace the empirical formulas
currently used in pavement engineering.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Ports- and industries require special types of pavements to
resist the heavy static loads from containers. To reduce the risk
of rutting and settlements over time, concrete block pavement
systems are typically applied over a stiff cemented base layer,
i.e., cement bound granular mixture (CBGM). The structural design
of such composite pavements are based on empirical formulas

which converts the response analysis into a measure of
performance, commonly referred to as the Mechanistic–Empirical
(M–E) method, first introduced in pavement engineering by
Kerkhoven and Dormon [1].

Degradation of the cemented base in composite pavements is
mainly controlled by initiation and propagation of longitudinal
cracks in wheel paths. Moreover, traffic induces further degrada-
tion of aggregate interlock joints through shear movement of the
cracked edges [2]. Closely spaced transverse cracks in the cemen-
ted base have also been reported in post-processing of damaged
composite pavements [3,4]. Despite the fact that cement bound

http://dx.doi.org/10.1016/j.conbuildmat.2015.10.052
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granular mixtures are quasi-brittle materials, which degradation is
controlled by tensile damage of slabs and shear damage of aggre-
gate interlock joints, both highly nonlinear phenomena, elastic cal-
culations are most commonly applied to determine the response
[5–11]. The M–E method does not distinguish between crack initi-
ation and crack propagation or elastic and inelastic work, model
parameters are simply regression constants without direct physi-
cal meaning. This type of model deals with a limited number of
materials in a restricted range of design options; each transfer
function being restricted by its own design method, typically cali-
brated for highway traffic and specific local materials- and climatic
conditions. Moreover, experimental studies [12] show that such
empirically based model yields unrealistic results considering
loading regime- or configuration different from typical truck wheel
loads, e.g., ultimate loading condition.

In the present study a simple framework for engineering appli-
cation is sought; creating a rational link between laboratory,
design and field applications. For the monotonic load case, consid-
ered here, the mechanism of cracks is imagined to occur in a sim-
ilar fashion to yield line mechanisms considering Mode I (opening
mode) fracture in the form of a straight separation band where the
location is known in advance. In this aspect, the concept of the fic-
titious crack model [13] stand out as particular attractive; as the
model is straightforward in implementation and requires only
few model parameters, which can be defined from standardised
laboratory tests.

Production of cement boundmixtures from high quality crushed
aggregates results in high stiffness and strength properties, i.e., 1/3
of those for normal plain concrete. Not only will such materials
exhibit softening behaviour in tension, after the onset of cracking,
but also on structural level the composite pavements will often
exhibit softening, or so-called snap-back type of load–displacement
response, due to the relatively low stiffness of supporting layers.
This type of localised fracture behaviour can be described numeri-
cally with different classes of constitutive models, e.g., those pro-
posed by Jirasek [14] as; (i) strong discontinuity models, (ii) weak
discontinuity models, and (iii) continuum models. The first model
a crack as a geometrical discontinuity, whereas the latter two
approaches imagine a cracked solid to be a continuum.

The discontinuity models, e.g., the fictitious crack model,
embedded elements with strong discontinuities [15] and the
extended finite elements [16], incorporates jumps in displacements
across a discontinuity surface corresponding to the crack. Models
with localisation bands bounded by weak discontinuities can be
considered as simple regularizations of models with strong discon-
tinuities, e.g. the smeared crack model [17]. Instead of splitting the
constitutive law into elastic and inelastic parts, one could use a law
that directly links the stress to the total strain, as is the case for con-
tinuummodels. Subsequently several models have been developed
to describe the complicated fracture process in quasi-brittle mate-
rials, e.g., by coupling damage and plasticity [18–20].

Application of modern fracture mechanics to the field of pave-
ment engineering began in the late 1960s and early 1970s, study-
ing mainly asphalt concrete mixtures, adopting the principles of
linear elastic fracture mechanics [21–25]. Subsequently, efforts to
obtain a better understanding of fracture in asphalt concrete mate-
rials primarily followed an experimental approach [26–29]. Jenq
and Perng [30] developed a cohesive zone model based on the prin-
ciples of the fictitious crack model for asphalt mixtures and used
this model to simulate low-temperature fracture of asphalt overlay
on old concrete pavement structures [31] followed by extensive
application- and development of cohesive zone models for
simulating fracture in asphalt concrete mixtures [32–39].

Cohesive zone models and the principles of the fictitious crack
model has also been extended to more practical problems for
concrete pavement structures, following an extensive review of

fracture mechanics applications in pavement engineering [40]. At
first, a standalone computer program was coded and applied to
simply supported beams [41]. Subsequently, nonlinear spring ele-
ments were adopted in commercial software for concrete beams
and slabs on grade subjected to mechanical loads [42]. Roesler
et al. [43] created user elements based on the fictitious crack
model, and implemented them locally in commercial software to
simulate crack propagation in concrete beam specimens and in
fibre reinforced concrete materials [44,45]. Although these ele-
ments were two-dimensional, responses obtained were compared
with experimental measurements and adequately good agreement
was reported. Subsequently several independent investigations of
crack propagation in beams and slabs on grade subjected to
mechanical loads was carried out, with some very encouraging
results [46–49]. Gaedicke and Roesler [46] found that the linear
softening model applied to slabs was able to reasonably predict
the flexural load capacity of the experimental slabs while signifi-
cantly reducing the computation time. Aure and Ioannides [48]
found, that for slabs on grade structures, the type of softening
curve, cohesive zone width and mesh does not influence the
response significantly.

This paper presents a numerical study of a three-layered com-
posite pavement applying a simplified cohesive model in ABAQUS
[50], including also the effects from aggregate interlock behaviour.
Idealisation is applied, modelling the pavement as a slab on grade
structure, neglecting the effect from the concrete block surface,
resulting in computationally fast finite element (FE) models suit-
able for engineering applications. Numerical analysis of experi-
mental results are presented, giving new valuable information on
the behaviour of composite pavements which cannot be captured
by the M–E method. Parameters influencing the response such as
geometry, material parameters and loading position is then stud-
ied creating a solid basis for further application of cohesive models
in analysis composite pavement systems.

2. Methodology

2.1. Model idealisations

Analysis of a three-layered composite pavement structure is
considered; concrete block pavers (CBP), cement bound granular
mixture (CBGM) and subgrade soil. For the fracture process,
built-in traction separation based cohesive contact surfaces are
inserted along the anticipated fracture plane in the cemented base
layer (slab) in the orthogonal directions as per Meda et al. [51].
This is deemed a reasonable model at the edge- and interior of
the cemented base layer, since the fracture plane is anticipated
in the direction of the maximum stress.

The response of the composite concrete block pavement struc-
ture is mainly controlled by the cemented base layer and the sub-
grade soil. The properties and thickness of the concrete block
pavers does hardly influence the overall response and bearing
capacity of the pavement structure [52], since the loading from
container castings produce a close to rigid body movement of the
stiff concrete block pavers over the soft layer of bedding sand,
which is unable to absorb any significant bending moments [53].

Thus, for the present study the response from concrete block
pavers is simulated using a simplified approach, placing unit dis-
placements over an approximated area, i.e., the area of blocks in
contact with the container casting. Four single slabs on grade mod-
els is developed for evaluation of interior (full- and simplified
model, applying symmetry conditions), edge and corner loading,
assuming that the slabs are intact before monotonically loaded.
Square slabs of 2.5 � 2.5 m2 to 4.5 � 4.5 m2, dimensions commonly
applied in ports- and industrial pavements, is considered.
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In this study, commercial general purpose FE program
ABAQUS/Standard�, version 6.13-1 is employed in the analysis of
beams- and slab on grade structures, whose geometry and material
properties are shown in Table 1 and Table 2. Foundation material
properties are given in Table 3.

2.2. Constitutive laws and materials

2.2.1. Cohesive crack and cemented material behaviour
In the present study cement bound granular mixtures with rel-

atively high strength, i.e., a C8=10-material [54], commonly applied
in port- and industry composite pavements, is considered. Such
materials have similar characteristics as normal plain concrete,
however, whereas concrete are dense mixtures, where aggregates
are completely bonded by the cement paste, as shown in Fig. 1
(a). Cement bound granular mixtures are less dense and aggregates
are bonded by weaker cement links, as shown in Fig. 1(b), resulting
in somewhat lower strength and more brittle behaviour.

Overview of geometry and cement bound granular material
mixture properties for beams- and slabs used in the numerical
studies are shown in Table 1. Grading curves for materials investi-
gated in numerical analysis of experimental results in Sections 3.1
and 3.2 are shown in Fig. 2.

Liu and Wang [55] applied a cohesive zone model to investigate
Mode I crack propagation of cement stabilized crushed stone in the
indirect tension test (IDT) following a micro-mechanical approach
using embedded elements. Heymsfield et al. [56] developed a
damage model for stabilized soil layers subjected to cyclic aircraft

Table 1
Geometry, material mixture- and mechanical properties for beams- and slabs used in numerical studies.

Chapter Experiments Sensitivity studies

3 4 5

Geometry Unit Beam Sabs on grade

Length (m) 0.40 5.00 2.50–4.50 3.00
Width (m) 0.10 1.25 2.50–4.50 3.00
Thickness (m) 0.10 0.18 0.15–0.40 0.30

Material properties
Material type Siltstone Gravel – –
Maximum stone size, Dmax (mm) 20 32 – –
Cement type GP CEM I 42,5 R – –
Cement content (%) 4.0 4.4 – –
Maximum dry density, MDD (kg/m3) 2070 2184 – –
Optimum moisture content, OMC (%) 8.0 5.8 – –
Curing age (days) 56 28 – –

Mechanical- and fracture properties
Young’s modulus, E (MPa) 12,760 12,300 15,000 15,000
Poisson’s ratio, t (–) 0.20 0.20 0.20 0.20
Tensile strength, f t (MPa) 1.00 0.96 0.60–1.20 0.80
Compression strength, f c (MPa) 7.30 6.70 8.00 8.00
Fracture energy, GF (N/mm) 0.028 0.037 0.018–0.045 0.025

Table 2
Aggregate interlock behaviour used in numerical studies.

Chapter Experiments Sensitivity
studies

3 4 5

Aggregate interlock Unit Beam Sabs on grade

Initial crack width, w (mm) – 2.00 – 0.40–2.00
Load Transfer Efficiency,

LTEd
(%) – 50 – 50–90

Normal stiffness, Knn (MPa/mm) – 0.45 – 0.45
Initial tangential stiffness,

Ktt

(MPa/mm) – 0.65 – 0.65–3.00

Critical shear displacement
(slip)

(mm) – 2.00 – 0.58–2.00

Table 3
Foundation material properties used in numerical studies.

Chapter Experiments Sensitivity studies

3 4 5

Material properties Unit Beam Sabs on grade

Material type – Clayey gravel – –
Maximum stone size, Dmax (mm) – 80 – –
Maximum Dry Density, MDD (kg/m3) – 2034 – –
Optimum Moisture Content, OMC (%) – 7.4 – –
Degree of compaction (%) – 95–97 – –

Mechanical properties – ‘Winkler’ ‘Elastic’ ‘Plastic’
Young’s modulus, E (MPa) – – 350a 350a – –
Modulus of subgrade reaction, k0 (MPa/mm) – 0.045 – – 0.02–0.08 0.06
Poisson’s ratio, t (–) – – 0.35 0.35 – –
Cohesion yield stress, cy (MPa) – – – 0.005 – –
Angle of internal friction, / (�) – – – 25–35b – –
Layer friction coefficient, l (–) – – 0–1.0 0–1.0 – –

a Back-calculated Young’s modulus of 313–368 MPa found from plate load test (PLT) measurments [12].
b Expected interval of angle of internal friction for ‘soil fill’ to ‘good selected subgrade’ [65].
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loading. Zhong et al. [57] developed a unified permanent deforma-
tion model to simulate the permanent deformation behaviour of
cement bound granular materials in flexible pavements. However,
the literature contains little information on the fracture behaviour
of cemented base materials with high strength properties for appli-
cation in realistic composite pavement systems.

In lack of experimental data and based on the findings of other
independent researchers, e.g., Gaedicke and Roesler [46] and Aure
and Ioannides [48], the fictitious crack model with a simple linear
traction–separation law (softening curve), as shown in Fig. 3(c), is
chosen for the present study. Moreover, the fracture energy
applied in the present study is predicted based on the approach
suggested by Hilsdorf and Brameshuber [58], assuming that code

standards for normal concrete also apply to cement bound
granular mixtures.

The cohesive contact model in ABAQUS is selected to save
computational time; enabling the use of symmetry conditions
and application of a coarser mesh for the cohesive zone. Moreover,
as shown in Fig. 4, the cohesive contact model in ABAQUS is found
to adequately describe the load–displacement response of slabs on
grade reported by other independent researchers.

2.2.2. Aggregate interlock behaviour
The mechanics of aggregate interlock between slabs, shown

in Fig. 5, is a complex phenomenon that depends on several
parameters, including aggregate size and distribution, compressive

Fig. 1. Thin section of normal concrete (a) and cement bound granular mixture (b), showing how aggregates in the cement bound granular mixture is connected by cement
links surrounded by more porous areas with loosely packed sand held by relatively little paste.
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Fig. 2. Grading curves for high quality (envelope ‘B’) CBGMmaterials according to [54] (grey) compared to CBGMmaterials used in experiments of (a) 4-point bending beam-
and (b) slabs on grade tests in Section 3.1 and 3.2, respectively.

Fig. 3. Sketch of pavement structure (a) the fictitious crack model (b), where a0 is the crack tip, lp is the fracture process zone (FPZ), f t is the tensile strength, wc , is the stress-
free crack opening and rðwÞ the cohesive softening law and typical softening curves for concrete (c).
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strength, friction between the aggregate particle and the cement
paste, crack opening, and crack interface sliding.

According to Bazant and Gambarova [59], the normal and shear
stresses at a cracked concrete interface, in a two-dimensional

plane, are functions of the normal and shear displacements of
the interface, as follows:

tn ¼ f nðdn; dtÞ ð1aÞ

tt ¼ f tðdn; dtÞ ð1bÞ
where tn is the normal stress, tt is the tangential shear stress, dn and
dt are the normal and shear displacements respectively, and f n and
f t are functions to be described. Differentiation of Eq. 1a and 1b
results in:

dtn
dtt

� �
¼

@f n
@dn

@f n
@dt

@f t
@dn

@f t
@dt

" #
¼ ddn

ddt

� �
¼ Knn Knt

Ktn Ktt

� �
ddn
ddt

� �
ð2Þ

where Knn ¼ @f n=@dn; Knt ¼ @f n=@dt; Ktn ¼ @f t=@dn; Ktt ¼ @f t=@dt ,
are crack stiffness coefficients that can be determined once the
functions f n and f t are established. If the variation of functions f n
and f t is nonlinear with respect to dn and dt , the crack stiffness coef-
ficients may be sensitive to stress level of the cracked interface, and
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Fig. 5. Sketch of the rough crack model [59] within the composite pavement system.
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Fig. 6. Linear idealisation of the modified rough crack model (Gambarova [60] shown for a C8=10-material, maximum aggregate size, Dmax , of 32 mm and initial crack width,w,
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therefore, will change as the load is applied. This behaviour is iden-
tified as nonlinear aggregate interlock mechanism. Several constitu-
tive models for nonlinear aggregate interlock behaviour (crack
dilatancy) have been proposed in the literature, e.g., the rough crack
model [59,60], the aggregate interlock relation [61], the two-phase
model [62] and the contact density model [63].

In lack of adequate experimental data the modified rough crack
model [60], incorporating both influence of aggregate size and

compression strength, is used as basis to determine the stiffness
coefficients of springs as seen in Fig. 6. Linear normal stiffness with
no dependence on initial crack width is assumed. Material param-
eters for aggregate interlock behaviour used in numerical studies
are shown in Table 2.

2.2.3. Subgrade material behaviour
In the present study the subgrade has been idealised as linear

elastic using independent springs or a so-called Winkler’s founda-
tion model [64]. However, to exemplify the deficiencies of this
model and to evaluate full bearing capacity of the structure, elastic
solid continuum elements, including a Mohr–Coulomb yield crite-
rion [50], is applied in the numerical analysis of experiments in
Section 3.2. Overview of subgrade material properties used in the
numerical studies are shown in Table 3. Grading curve for the sub-
grade material investigated in numerical analysis of experimental
results in Section 3.2 is shown in Fig. 7.

2.3. Solution technique

In materials that exhibit snap-back type of load–displacement
curves, arc-length based solvers are often recommended. Accord-
ingly ABAQUS implements the so-called modified Riks algorithm
[67] used in the present study. Based on preliminary convergence
and sensitivity studies solution technique and standard model
parameters selected for the present study can be seen in Table 4.

3. Comparison with experimental results

3.1. Numerical analysis of four point bending tests with cement bound
granular mixture

Numerical analysis of four-point bending (FPB) beam tests is
carried out to verify the functionality of the cohesive contact model
to simulate the fracture behaviour of cement bound granular mix-
ture with crushed quartzite siltstone aggregates. Five CBGM-beams
was cut from field slabs and tested under monotonic load, with a
distance of 0.10 m between load points, in a comprehensive study
of CBGM-materials conducted by Austroads [68]. Geometry and
material properties is shown in Table 1.

The beam is modelled with 2-D plain stress elements (CPE4) in
ABAQUS. A total of 840 elements are used to represent the
elastic material, separated by pre-determined contact surfaces,

Table 4
Solution technique and standard model parameters applied in the present study.

Solver Model parameters

Technique arc-
length

Cohesive zone width,
T0 (mm)

0.01

Initial increment 0.006 Viscous damping
factor, l (–)

1� 10�5

Maximum
increment size

0.03 Bulk elements
(elastic)

CPE4 (2-D)/C3D8
(3-D)

Minimum
increment size

1� 10�9 Interface elements SPRING1/elastic
foundation
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Fig. 9. Layout of slabs, showing outer- and inner loading position, supports (x-axis: concrete wall, y-axis: steel wall) and the placing of displacement sensors (a) and picture of
test set-up (b), showing the load configuration and the displacement sensors placed on top of a 35 mm thin asphalt plate.
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representing the cohesive zone (5 mm size elements), in the verti-
cal plane at the mid-beam position.

From the comparison between experimental and numerical
results, shown in Fig. 8, it can be observed that good agreement is
obtained applying the cohesive model for simulation of the load–
displacement response of the four-point bending beams.
Relatively few data-points were obtained on the post-peak failure
curve as no horizontal clip-gage control was applied during testing.
The results show that a linear softening law is suitable to the
description of fracture in cement bound granular mixtures. It is also
found that the fracture energy of the cement bound granular

mixture can be predicted without further calibration, based on
simple scaling with regard to compressive strength, e.g., GF;CBGM ¼
f c;CBGM=f c;PCC � GF;PCC, or code standards for concrete materials.

3.2. Numerical analysis of large scale slab on grade structure

Numerical analysis of cement bound granular mixture slabs,
shown in Fig. 9, separated by aggregate interlock-or construction
joints, on subgrade soil of 1.0 m clayey gravel material, is
conducted in order to validate the methodology implemented,
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Fig. 10. Presentation of experimental data: average peak–loads and peak–load displacements measured during experiments at a distance of 235 mm from the load centre (a),
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Fig. 11. Sketch of FE model (a), showing the load- and rubber plate, asphalt surface, and CBGM slab, and mesh and pre-determined cohesive zone in the slab orthogonal
planes (b).
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modelling the composite pavement as a slab on grade structure.
The pavement was constructed on a concrete floor supported by
a steel-or concrete wall in the indoor test facility STEND in Poland.

The data was collected during the European Commission thematic
network project ECO-serve [12,69,70] and was partly initiated in
the attempt to evaluate the before mentioned M–E models.
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The success in the application of M–E models was modest at
best, as no or little damage was recorded during each load cycle
as shown in Fig. 10(a). To reduce the test time, the load was
increased from typical equivalent standard axle load (ESAL) of
50–60 kN (per wheel) to 150 kN. However, to record damage
development, the load was finally increased to 250 kN, which
caused excessive cracking in the cement bound granular mixture
and local yielding of the subgrade soil foundation below the plate
load, correlating badly with the M–E models calibrated for high-
way pavement design. The experimental load displacement curves
for the the two load series are shown in Fig. 10(c) and (d) for
displacements measured at a distance of 235 and 450 mm from
the loaded centre, respectively.

From Fig. 10 it can be observed that the load–displacement
curves extracted from the two load series, for the inner slab
(N = 1 and N = 10,001) and the outer slab (N = 1 and N = 5001), fol-
low each other closely up to the load level of app. 150 kN. Then, the
inner slab shows a pronounced drop in stiffness. Similar drop in
stiffness is also indicated for the outer slab, but at a higher load
level of app. 225 kN. The most likely explanation for this difference
in structural response, can be found in the natural variation in sub-
grade soil properties and it’s shear strength, which is highly influ-
enced by the angle of internal friction, and the different number of
load cycles between load steps which can have caused a different

damage state of the subgrade soil, slabs and aggregate interlock
joints.

The load, asphalt surface and slab geometry, shown in Fig. 11(a),
is modelled with solid 3-D elements (C3D8 and C3D6) in ABAQUS.
A total of 51,155 elements are used to represent the elastic mate-
rial, shown in Fig. 11(b), separated by pre-determined cohesive
contact surfaces, representing the cohesive zone (average 10 mm
size elements), in the vertical plane in orthogonal directions. The
average strength properties of the cemented material were
determined from specimens extracted from slabs, shown in Table 1.
The cohesive model is evaluated applying three different subgrade
models with mechanical material properties as shown in Table 3.

From comparison between numerical and experimental load–
displacement curves at a distance of 235 mm and 450 mm from
the load centre, shown in Fig. 12(a) and (b), it can be observed that
relatively good agreement is obtained between experimental and
numerical results up to the peak–load for all three models. The
peak–load is app. 157, 133 and 162 kN for the ‘Elastic’, ‘Winkler’
and ‘Plastic’ model, respectively. The experimental result shows a
pronounced post-peak decrease in stiffness at a load level of app.
150 kN, probably due to local plastic yielding of the subgrade soil.
This behaviour can only be captured by the ‘Plastic’ model. More-
over, it is found that modelling the subgrade soil with elastic solid
continuum elements result in a more realistic prediction of the
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Fig. 14. Comparison between averaged experimental- and numerical results for the ‘Plastic’ model: (a) and (b) influence of angle of internal friction (/ = 25–35�) and friction
coefficient (l = 0–1.0) between the cemented slab and subgrade soil layer on the load–displacement curves at a distance of 235 mm from load centre, (c) influence friction
coefficient on maximum principal plastic strains and (d) plastic strain distribution in the peak–region at the top and bottom of the subgrade soil layer at the maximum load
level of 250 kN.
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peak–load compared to the ‘Winkler’ model as this model essen-
tially suffers from a complete lack of continuity in the supporting
medium, neglecting the shear stiffness of the subgrade soil. The
influence of subgrade soil model type on local crack behaviour
can be seen in Fig. 13.

From the load versus crack mouth opening displacement
(CMOD) curve in Fig. 13, it can be observed that cracks in both
directions are initiated at load point 1, damage of the cohesive
crack then progress toward the edges of the slab. At load level
point 2, nodes at the bottom of the slab in length direction (short-
est direction) have exceeded the final (zero traction) displacement.
The cohesive zone then progress upwards until the ‘snap’ at load
level point 3, resulting in the kink on the load–displacement curve
in Fig. 13(a) and (b), whereas the crack in the width remains stable
in the width direction as shown in Fig. 13(b) and (c). Unloading on
the load–displacement curve is prevented by the high stiffness of
the subgrade soil and the geometry of the slab. At load level point
4, all nodes in the length direction have exceeded the final dis-
placement, as shown in 13(c).

The numerical results shown in Fig. 13 can explain some of the
observations made during the experimental investigations which

Cohesive zones 

¼ slab 

Fig. 15. Sketch of model applied in the sensitivity study.
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Fig. 17. Influence of slab dimensions from 2.5 � 2.5 m2 to 4.5 � 4.5 m2, keeping thickness constant (250 mm); normalised peak–load (b), peak–load displacement (n) and
post-peak gradient (l) versus normalised slab dimension (a) and load–displacement curves (b).
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could not be described by the M–E models. The most obvious
observation is that the crack along the length (shortest direction)
has fully propagated at the applied load of 150 kN (load level point

3), explaining why no damage was recorded during experiments
with repeated loads at this load level. Then, the response is
controlled by further crack propagation along the width and the
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subgrade soil behaviour. Moreover, it is observed that cracking is
initiated at load level 1 of 50 kN, the same load magnitude as a
equivalent standard axle loads.

From Fig. 14(a) it is observed that the angle of internal friction
has significant influence on the load–displacement response. How-
ever, a relatively good fit between averaged experimental- and
numerical results can be found for all models in the expected
interval. It is also found, that the friction between layers has little
influence on the overall structural response, but significant influ-
ence on local subgrade soil response, as shown in Fig. 14(b) and
(c), respectively. Increasing friction between layers results increas-
ing maximum plastic strains and strain localisation at the subgrade
soil surface below the loaded plate. Whereas no friction, gives lar-
ger distribution of strains, increasing towards the bottom of the
layer as shown in Fig. 14(d).

4. Sensitivity studies

4.1. Model idealisations

To investigate the influences of geometry and important mate-
rial properties on the model response a sensitivity study is carried
out for interior loading of a single slab. The slab geometry is
modelled with solid 3-D elements (C3D8I and C3D6) in ABAQUS.
Symmetry conditions are applied, modelling one slab crack.

Cohesive zones are inserted with a 45� angle between the
symmetry-lines and in an arch close to the centre.

This methodology result in somewhat lower ultimate load bear-
ing capacity of the structure, as a circular disc is considered, with
an reduction in area of 20% compared to the 1/4 slab. However,
it is found from preliminary analysis that the structure sketched
in Fig. 15 adequately predicts the responses of a full slab. The arch
cohesive zone is inserted to avoid convergence problems at the
boundary. The energy used to create the arch crack is small and
can be neglected. The subgrade is idealised as linear elastic.

4.2. Effect of cemented base thickness, slab dimensions and subgrade
stiffness

In linear elastic analysis of pavement structures, the layer thick-
ness is increased for increasing load levels, to ensure a relatively
constant stress level in the subgrade soil, avoiding any plastic
deformation. This approach can be questioned based on the results
presented herein; as it is observed in Fig. 16 that the allowable load
levels in presently available guidelines [11] is twice the magnitude
compared to the peak–loads found in the present study. As
expected, the thickness of the cemented base layer has significant
influence on the peak–load, but little influence on the post-peak
response of the structure. It is also observed that the slab dimen-
sions has influence on the normalised peak–load relationship
curve.
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The stiffness- and peak–load of the structure increase with
increasing thickness up to unloading. Then the structural response
is mainly influenced by the slab dimension, shown in Fig. 17, and
the stiffness of the subgrade soil.

It is observed from Fig. 17 that the peak–load and peak–load
displacement increases with increasing slab dimensions before
unloading occur. It is also found that there is a significant effect
from bending; with a steep increasing post-peak stiffness for
increasing slab dimensions.

As expected, Fig. 18 shows that increasing stiffness of the sub-
grade results in increasing peak–load, post-peak and pre-peak stiff-
ness. The difference in peak–load is 20% for the variation in
subgrade stiffness evaluated, assuming that slabs is constructed
on a 150 mm thick high quality sub-base material over subgrade
soil of varying quality (california bearing ratio 5–20).

4.3. Effect of tensile strength and fracture energy

The softening curve depicted in Fig. 3(c) makes it obvious that
the two main material parameters influencing the fracture process
of the quasi-brittle material is tensile strength and fracture energy.
However, as shown in Fig. 14(a), the influence of tensile strength is
small, both with regard to peak–load and pre- and post-peak
response. This can be explained by the fact that cracking is initiated
at a displacement of 0.2 mm. Where after the response is primarily
controlled by fracture energy, as shown in Fig. 19(b). It is found,
that as the fracture energy decreases the material becomes more
brittle. This is shown by plotting the normalised peak–load (b)
and peak–load displacement (n) against the dimensionless param-
eter, (B), defined by Bache and Vinding [71] as:

B ¼ h
lch

¼ f th
EGF

ð3Þ

where lch is the characteristic length of the material, first introduced
by Hillerborg [72], E is elastic stiffness, and h is the slab thickness.

It is also observed from Fig. 19(c) that b is inversely propor-
tional to B, and that it may be postulated that a unique relationship
exists that would allow one to determine the peak load for a par-
ticular value of B, given the corresponding peak load for different
brittleness number [48].

5. Influence of aggregate interlock behaviour and load position

To extend the analysis to more realistic pavement systems,
evaluating the influences from interaction with adjacent slabs
and the load position, numerical studies of three full
(3 � 3 � 0.3 m3) slabs on grade structures is carried out. The load
position influence is evaluated at the interior, edge and corner of
the slab; assuming two orthogonal, one length and one diagonal
fracture plane in each case respectively.

The influence of variation in normal- and shear stiffness of
joints is evaluated for an initial crack width,w, of 0.4–2.0 mm, sim-
ulated by application of idealised bilinear springs as shown in
Table 2. The average strength properties for the cement bound
granular mixture selected are shown in Table 1. The subgrade is
idealised as linear elastic.

As expected, Fig. 20(a) shows that the load supported by the
slab is higher under interior than under edge- and corner loading,
with peak loads of 156, 106 and 109 kN respectively, considering
no load transfer between adjacent slabs. It is also found that that
the post-peak behaviour, in the case of interior- and edge loading,
are more or less similar.

The initial crack width has little influence on the peak–load and
peak–load displacement for interior load, whereas a pronounced

increase in stiffness and peak–load can be found for edge- and
corner load, shown in Fig. 20(b) and (c). Plotting the normalised
peak–load (b) versus LTEd, assuming that a linear relationship exist
between w and LTEd [73], it can be found that b decrease linearly
with increasing w as shown in Fig. 20(d). Similar trends has also
been reported in numerical studies of slabs on grade by other
researchers [74].

6. Conclusion

The use of a cohesive model for simulating the fracture in the
cement bound granular mixtures in composite block pavement
systems has been investigated by studying the main parameters
that affect the responses of the pavement structure.

Comparison of numerical and experimental results for four
point bending beam tests show that good agreement is obtained
with the cohesive model. It is found that the cohesive model ade-
quately describe the structural response of slabs on grade struc-
tures and that aggregate interlock behaviour can be realistically
incorporated in models by idealised bilinear springs. However,
tests results are limited and more testing is necessary to evaluate
the fracture behaviour of cement bound granular mixtures, e.g.,
fracture energy and shear interaction.

Moreover, the numerical analysis of slabs on grade experiments
reveal the importance of incorporating realistic subgrade soil beha-
viour in models. Most importantly, the shear stiffness of the soil
and the plastic yield limit, as these two parameters have signifi-
cantly influence on the prediction of peak–load and post-peak
response, respectively.

The influence of slab thickness-and dimensions proved to be
important parameters. The peak–load is highly influenced by
thickness, whereas slab dimensions proved to be a main control-
ling parameter of the post-peak response of the structure. Further-
more, it can be concluded that the fracture process is more affected
by the fracture energy than the tensile strength.

The peak–loads found in the present study are significantly
lower than allowable load levels given in available guidelines
for composite block pavements. To extend the analysis to full
evaluation of structural bearing capacity, one could include a
failure criteria of the subgrade soil as shown in Section 3.2. It
would then be feasible with the methodology presented, to eval-
uate the critical load case, e.g., also including the influence of
temperature loads (shrinkage).

The full slab model shows that cracking is initiated at an early
stage, and that the structural response is affected by aggregate
interlock behaviour. This effect is primarily important to the
response of structures subjected edge- and corner loading. More-
over, it is found that the peak–load decrease linearly with increase
in initial crack width.

In the present study idealised FE composite block pavement
structures is developed with application of a cohesive model to
describe the fracture behaviour of the cement bound granular
mixture. Computationally fast models are obtained, with a
minimum of elements, applying the cohesive contact model in
ABAQUS. Furthermore, numerical instabilities are avoided, not
compromising the penalty stiffness. It is found that the idealised
FE models developed adequately describe the structural response
of composite block pavements subjected to heavy static loads,
showing their applicability for engineering design purpose. It is
envisaged that the methodology implemented can be extended
to more complex and realistic problems, e.g., including also a
cyclic formulation of the cohesive zone and aggregate interlock
behaviour, for development of more rational failure criteria in
pavement engineering in the future.
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ABSTRACT
Numerical analysis of slab on grade structures subjected to mechanical loads is a complex matter often
requiring computationally expensive models. In order to develop a simplified and general concept for
non-linear analysis of slab on grade structures, this paper presents a cohesive cracked-hinge model aimed
at the analysis of the bending fracture of the cemented material. The model is based on the fracture
mechanics concepts of the fictitious crack model with a linear stress–crack opening relationship. Moreover,
the paper presents a two-parameter spring foundationmodel applied to realistically capture the continuity
in the supporting medium. The functionality of the proposed model is compared to numerical analysis
with application of the more conventional cohesive zone model. The results obtained show that the
methodology is a attractive and powerful one well-suited for practical use and further development.
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1. Introduction

Numerical analysis of fracture in concrete and composite pave-
ment systems, or so-called slab on grade structures, is a highly
complex matter. This type of analysis often requires large and
computationally expensive models applicable to relatively
simple design problems. Moreover, concrete and composite
pavement systems typically exhibit softening load–displacement
post-peak behaviour in bending on bothmaterial and structural
levels. This often results in convergence issues and aborted
simulations making complex non-linear analysis less attractive
for design engineering purposes. In order to create a simple
and robust modelling framework for engineering application,
this paper presents a non-linear cracked-hinge model based on
the fracture mechanics concepts of the fictitious crack model
(Hillerborg et al. 1976). The hinge model for modelling the
crack propagation due to pure bending in a concrete beam
without reinforcement was first presented by Ulfkjær et al.
(1995). This hinge was successfully applied in the modelling
of pure concrete beams in three-point bending considering the
development of only one crack. Olesen (2001b) expanded the
hinge model by applying a bi-linear softening curve to allow for
the incorporation of the effects of fibres on concrete fracture.
Further, this modified hinge model allowed for the existence
of a sectional normal force. This last feature is crucial for the
ability of the hinge to model a number of situations such as the
wedge splitting test (Walter et al. 2005) and the split cylinder test
(Olesen et al. 2006). Subsequently, this type of semi-analytical
hingemodels haveprimarily been applied for analysis of fracture
in reinforced concrete beams (Olesen 2001a, Kwak and Kim
2002, 2010, Buratti et al. 2011, Carpinteri and Corrado 2011,
Castel et al. 2011, Visintin et al. 2012). Murthy et al. (2013)
used a hinge model to evaluate bi-linear softening diagrams of
plain concrete corresponding to their size-independent fracture
energy and Wardeh and Ghorbel (2015) used a hinge model to
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study the effect of frost action on fracture properties and strain
softening behaviour.

The principles of the fictitious crack model have been ex-
tended to practical problems for concrete and composite pave-
ment structures applying cohesive interface elements or contact
formulations, with some very encouraging results (Meda et al.
2004, Ioannides et al. 2006, Gaedicke and Roesler 2009, Aure
and Ioannides 2012, 2015, Gaedicke et al. 2012, Evangelista et al.
2013, Skar and Poulsen 2015). Gaedicke and Roesler (2009) and
Gaedicke et al. (2012), who published one of the few simulations
with experimental results, used the interface element with tabu-
lar traction–displacement relation featured byABAQUS (2013).
The authors reported lack of convergence, instability problems,
snap-backs and aborted simulations upon local unloading and
reloading paths. Aure and Ioannides (2012) presented reduced
finite element (FE) models compared to Gaedicke et al. and
found that for slabs on grade structures, the type of soften-
ing curve, cohesive zone width and mesh do not influence
the response significantly. Evangelista et al. (2013) developed
a user-built cohesive element based on a damage mechanics
framework resulting inmore robust cohesive elements. Skar and
Poulsen (2015) used the cohesive surface model in ABAQUS
and applied a relatively coarse mesh for the cohesive zone. This
resulted in computationally efficient models for analysis of the
composite pavement systems studied. However, although there
are successful examples of optimisation with regard to model
size and robustness, all methods published deal with relatively
large FE models compared to the complexity of the pavement
system studied.

Another issue is the idealisation of soil foundation properties
often applied in analysis of slab on grade structures. The inter-
action between structure and foundation and soil foundation
properties is commonly idealised as independent linear elastic
springs or so-called Winklers foundation (Winkler 1868). The
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Winkler model is simple and practical to many engineering
problems; however, care should be taken in application of such
model as it essentially suffers from a complete lack of continuity
in the supporting medium. Moreover, another fundamental
problem with the use of this model is to determine the stiffness
of elastic springs used to replace the soil. The problem becomes
twofold since the numerical value of the Winkler stiffness (or
modulus of subgrade reaction) not only depends on the nature
of the soil foundation, but also on the dimensions of the slab
and the loaded area.

Traditionally, the way to overcome the deficiency ofWinkler
models is to introduce an interaction between the independent
springs, e.g. interconnections such as flexural elements, shear
layers and deformed, pre-tensioned membranes (Kerr 1964,
Hetenyi 1966). This class of mathematical models has another
constant parameter which characterises the interaction implied
between springs and hence called two-parameter foundation
models. However, interpretation of how soil foundation mate-
rial properties and characteristics are reflected in the various
elements in the mechanical foundation models can be difficult;
thus, evaluation on a rational, theoretical basis is cumbersome.

The semi-analytical hinge models reported in the literature
are effective for studying the behaviour of simple fracture tests
or problems where the crack path is known a priori. However,
for studying more complex problems, a numerical formulation
of the hinge is more convenient. Thus, this study presents a
FE cohesive cracked-hinge beam resting on a two-parameter
foundation for analysis of fracture in one-way slabs on grade
supported by an elasticmedium.At the lowest level, we consider
a strip of cemented material including a crack and establish a
stress–mean strain relationship. At the intermediate level, we
consider a hinge element which is a finite part of the beam
consisting of layered strips of cemented material, and establish
a relationship between generalised sectional forces and strains.
At the highest level, we apply the hinge model as a constitutive
model in a non-linear beam element as proposed by Olesen and
Poulsen (2012).

The effective stiffness concept is applied allowing formation
ofmultiple cracks along the slab axiswhich is an essential feature
of both plain and reinforced concrete slabs before exhibiting
localised rotations. The effective stiffness which is a function of
the state of deformation is treated as a constitutive relationship.
Although the underlying description of the hinge is based on the
formation of discrete cracks, the constitutive behaviour of the
hinge is smeared (smooth). This particular feature is practical
and effective as it requires no a priori knowledge of the crack
pattern.

We show how the cracked-hinge model can be extended to
pavement applications, implementing a two-parameter foun-
dation model into beam elements. Moreover, a simple method
for estimating foundation model parameters is proposed. This
part is important because it describes a simplified methodology
for simulating fracture in slabs on grade structures linking all
necessary analysis steps in a rational and consistent manner.

The objective of the work presented is to develop a general
and consistent framework based on a mechanistic approach for
design of concrete and composite pavements. In this paper, we
focus on establishing a simple model for two-dimensional anal-
ysis, assuming a continuum representation of the soil medium.

The general and consistent format selected makes the model
suited for further developments, taking into account more
complex material behaviour, soil response and cyclic loading
conditions Skar et al. (2017).

2. Methodology

2.1. Themechanics of the cracked-hingemodel

The basic assumption of the hinge model is the fact that the
presence of a crack influences the overall stress and strain field
of a structure only locally. The discontinuity created by the crack
is expected to vanish outside a certain width. Under constant
moment, e.g. between the loaded points in Figure 1(a), the beam
sections at the midpoints between the cracks will, due to the
periodicity of the cracks, remain plane during deformation of
the beam. Thewidth s between two such sections embracing one
crack defines a hinge element, as shown in Figure 1(b). For the
beam area outside the loaded points, the moment distribution
is no longer constant. Such phenomena can be handled with
appropriate numerical tools, i.e. the FE method, as exemplified
for a single-beam element in Figure 1(b).

The hinge width s is a fundamental calibration parameter
of the model, and it was suggested in Ulfkjær et al. (1995) to
use a hinge width half the height of the beam, also adopted in
the present study. Thus, the flexural deformation of the beam
is concentrated and the propagation of a crack can be modelled
as a hinge, whereas the rest of the beam can be treated as elastic
bulk material.

The uni-axial tensile behaviour of the concrete is modelled
according to the fictitious crack model by Hillerborg et al.
(1976). The linear elastic pre-crack state is described by the
elastic modulus, Ec . The uni-axial tensile strength is denoted by
ft and the corresponding strain by εct . For the fracture analy-
sis of concrete slab on grade pavement structures, the stress–
crack opening relationship, or so-called softening law, does
not influence the response significantly (Gaedicke and Roesler
2009, Aure and Ioannides 2012). Thus, in the present study, the
softening law is given as a linear curve

σ
(
w

) = ft + aw (1)

where a is the negative slope on the softening curve and w is
the crack opening. The fracture energy, GF , is given by the area
under the softening curve, resulting in a final zero-stress crack
opening wc = −ft/a.

The hinge model provides the relationship between the state
of deformation of the hinge and the sectional forces (N ,M). The
state of deformation is described by the mean normal strain of
the beam axis and the mean curvature of the hinge, (ε̄0, κ̄).

The hinge solution is based on the assumption that the hinge
may be seen as consisting of independent infinitesimal layers of
cemented material. The tensile behaviour of this layer may be
establishedby considering a strip ofmaterial in uni-axial tension
as shown in Figure 2(d). The elongation of the strip located at y
can be expressed in terms of the mean normal strain

ε̄
(
y
) = 2u(y)

s
= 2u0(y)

s
+ 2ϕ

s
y ≡ ε̄0 + κ̄y (2)
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(a) (b)

Figure 1. Sketch of hinge model implemented in a simply supported beam in four point bending: (a) overview of beam structure, (b) underlying discrete formulation of
cracks at constitutive points, cp, and smeared constitutive behaviour obtained from interpolation between constitutive points at integration points, ip.

(a) (b) (c)

(d)

Figure 2. Hinge model: (a) beam segment with constant sectional forces and deformation of cracked beam segment, (b) and (c) hinge stress distribution after initiation
of cracking at the two different Phases I and II, respectively. The distances y1 to y3 are used to perform integration in blocks shown in Appendix 2, (d) material strip in
uni-axial tension: loaded state beyond peak load showing crack deformations.

where ε̄0 is the mean normal strain at the beam axis, and κ̄

the mean curvature of the hinge. Utilising (2), the depth coor-
dinates of characteristic points of the stress distribution at the
midsection of the hinge may be determined.

Assume that the hinge has been deformed to a state where
a crack has formed and penetrated a distance c into the hinge.
The position of the crack tip is denoted by y2 = h/2 − c, and is
given as follows

σ2 = ft ⇒ (
ε̄0 + κ̄y2

)
Ec ⇒ y2 = εct − ε̄0

κ̄
(3)

In the cracked state, 0 < w ≤ wc (Phase I), the crack opening
and the corresponding stress in the strip is given as

σc = σw ⇒ σc = ft + aw
s + 2u = s(1 + εc) + w ⇒ sε̄(y) = sεc + w

}

⇒
{
wI = s Ec ε̄(y)−ft

Ec+as
σ I
3 = Ec

ft−asε̄(y)
Ec−as

(4)

In the cracked state, wc ≤ w (Phase II), the crack is stress
free, leading to the simple solution for the strip

w = s(1 + ε̄(y)) − s
σc = 0

}
⇒

{
wII = sε̄(y)
σ II
3 = 0

(5)

From (4) and (5), the state of stress and crack opening in
the cracked part of the hinge can be established. The cohesive
stresses extend from y = y2 to y = y3, depicted in Figure 2(b)
and (c); y2 is given by (3) and

y3 = min
(
h
2
, − 1

κ̄

(
ft
as

+ ε0

))
(6)

Finally, the sectional forces with respect to y = 0 may then
be calculated from integration over the hinge height

N(ε̄0, κ̄) = t

h/2∫
−h/2

σcdy (7a)

M(ε̄0, κ̄) = t

h/2∫
−h/2

σcydy (7b)

Contribution from a reinforcement bar can be included by
adding the term Asσs and Asσsys, in (7a) and (7b), respectively.
Where As is the area, σs is the stress in the steel and ys is the
position of the rebar.

2.2. Foundationmodel and calibration

2.2.1. Themechanics of the two-parameter foundation
model
The development of two-parameter models has been
approached along two distinct lines. The first type proceeds
from the discontinuous Winkler model and eliminates its dis-
continuous behaviour by providing mechanical interaction be-
tween the spring elements by either elastic membranes
(Filonenko-Borodich 1940), elastic beams (Hetényi 1946) or
elastic layers capable of pure shear deformation (Pasternak1954,
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(a)

(b)

Figure 3. Mechanical model of two-parameter spring foundation, where k is the
Winkler stiffness and γ is the second parameter stiffness.

Kerr 1964). The second approach starts from the elastic con-
tinuum model and simplifying assumptions with respect to
the distribution of displacements and stresses, see e.g. Reissner
(1958), Vlasov (1966).

The influence of using two-parameter models in design of
rigid pavement slab on grade structures has been studied by
e.g. Ioannides et al. (1985) and Khazanovich and Ioannides
(1993), following implementation of such models in several
special purpose FE tools for rigid pavement design (NCHRP
2003). Moreover, two-parameter models have been used to
study complex phenomena occurring in rigid pavements, such
as slab-curling (Khazanovich and Ioannides 1994, Khazanovich
2003, Zokaei-Ashtiani et al. 2015) and layer contact problems
(Zokaei-Ashtiani et al. 2014). However, the influence of using
two-parameter models, or soil idealisation techniques in gen-
eral, for analysis of slab fracture has drawn little attention.

Several recent efforts have beenmade to implementmechan-
ical models more sound and logic than the Winkler model.
However, no foundation model has yet replaced the Winkler
model and achieved a reasonably widespread level of acceptance
among design engineers (Horvath 2002, Colasanti and Hor-
vath 2010). In this aspect, the Winkler foundation with shear
interaction is mechanically a logical extension of the Winkler
model and analytically the next higher approximation (Kerr
1965). This model offers an attractive alternative to the elastic
solid continuum by providing a degree of shear interaction
between adjacent soil elements while remaining relatively sim-
ple to analyse (Ioannides 2006). Moreover, implementation of
such a model in commercial FE codes is straightforward using
discrete spring elements.

The two-parameter foundationmodel presentedhere is com-
posed of coupled spring elements similar to the methodology
proposed by (Loof 1965). The coupling between two springs
to ground is modelled as second a spring transmitting a shear
force T per unit width, as shown in Figure 3(a). This force
is associated with the difference in vertical displacements w
between the springs.

A simple assumption is that the shear force is proportional
to the difference in displacements between two consecutive ele-
ments and therefore to the first derivative of the displacement,
where γ is the second parameter and equivalent to the shear
constant Gp in the Pasternak model. From the equilibrium
of an element, shown in Figure 3(b), the differential equation
governing the deflections of the soil surface is established as

q(x) = kw(x) − dT
dx

⇒ q(x) = kw(x) − γ
d2

dx2
w(x) (8)

where the Winkler stiffness is k = k0t, k0 is the modulus of
subgrade reaction and t is the plane strain thickness of the
model.

First, the case of a point load P is investigated, shown in
Figure 4(a). Introducing the terms α2 = γ /k and β = 1/α, the
homogeneous solution yields

w(x) = C1e−βx + C2eβx (9)

In the solution for large positive values of x in (9), the term
with the coefficient C1 represents the decreasing displacement
due to the influence of the load. The solution for positive x can
be found, inserting the boundary condition w → 0 for x → ∞
in (9), i.e. w(x → ∞) : C1e−βx → 0 and C2eβx → ∞ ⇒
C2 = 0. The constant C1 can now be found, assuming that the
difference in shear force to the right due to the point load in
x = 0 is equal to half the magnitude of the point load, giving
the relations: 	T = P/2, 	T = γ	w′ = 	T = γw′(0) and
w′(0) = −βC1e−β·0 = −βC1. Combining these relations and
applying the term α2 = γ /k, the solution for a point load is
given as

wP(x) = P
2kα

e−βx (10)

Using the superposition technique, (10) can be integrated to
obtain expressions for the surface displacements for a uniformly
distributed load shown in Figure 4(b), given as

wq(x) = q
2k

[
2 − e−β

(
x+a

)
− e−β

(
a−x

)]
for x ≤ |a| (11a)

wq(x) = − q
2k

[
e−β

(
x+a

)
− e−β

(
a−x

)]
for x ≥ |a| (11b)

where x ≤ |a| and x ≥ |a| symbolise if the displacement is
calculated inside or outside the loaded area, respectively.

2.2.2. Calibration of spring parameters
In order to obtain the necessary foundation model param-
eters, this study presents a simple methodology, combining
the two-parameter model presented in Section 2.2.1, and the
elastic continuum theory. The problem of the elastic stress field
within a semi-infinite medium loaded by a point load has been
solved by Flamant (1892) using Boussinesq’s solution
(Timoshenko and Goodier 1951). The surface displacement in
the vertical direction can be written as

wP(x) = 2P
πE

ln
(

d
|x|

)
−

(
1 − ν

)
P

πE
(12)

where P is the point load, E = Es(
1−ν2s

) and ν = νs(
1−νs

) are the
Young’s modulus and Poisson’s ratio of the soil foundation,
respectively, |x| is the numerical value of x (distance from the
loaded point) and d is a rigid body constant found from assum-
ing zero vertical displacements at a distance x = d.
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(a) (b)

Figure 4. Sketch of elastic isotropic continuum foundation subjected to (a) a point load P and (b) a distributed load q.

Using the superposition technique, (12) can be integrated to
obtain expressions for the surface displacements for a uniformly
distributed load, given as

wq(x) = − 2q
πE

[(
x − a

)
ln

(
d

|a − x|
)

+ (−a − x
)
ln

(
d

|x + a|
)

+ a
(
ν − 1

)]
for x ≤ |a| (13a)

wq(x) = − 2q
πE

[(
x − a

)
ln

(
− d
a − x

)
+ (−a − x

)
ln

(
d

|x + a|
)

+ a
(
ν − 1

)]
for x ≥ |a| (13b)

where x ≤ |a| and x ≥ |a| symbolise if the displacement is
calculated inside or outside the loaded area, respectively.

In thepresent study, the responseof the slab and the influence
ofmodel parameters on the crack initiation and propagation are
of primary interest. In this aspect, the vertical displacements and
the curvature of the foundation are important features due to
localisation of cracks and the increasing soil stresses near the
crack front during progressive cracking.

In order to realistically capture the response of an elastic con-
tinuum, it is here proposed to calibrate the model analytically,
combining these measures at different positions below the slab,
i.e. the vertical displacement at the centre of the loaded area
w(0), the vertical displacement at the edge of the loaded area
w(a) and the curvature at the centre of the loaded area w′′(0).
Thus, the continuummodel and the two-parametermodel yield
the exact same result at these positions for each measure. Two-
and-two measures are combined, resulting in three different
analytical calibration methods. The relevant expressions for
the two model types, i.e. w(0), w(a) and w′′(0), are given in
Appendices A.1 and A.2.

Table 1. Calibrated foundation model parameters k and γ .

Method Criteria k (N/mm2) γ (N) R2 (x ≤ 10m) R2 (x ≤ 1.0m)

1 w0 &w′′
0 0.0076 6.33 · 107 0.976 0.999

2 w0 &wa 0.0104 3.95 · 107 0.928 1.000
3 w′′

0 &wa 0.0086 6.18 · 107 0.978 0.992

The two-parameter model can now be calibrated; first, the
theoretical displacements and curvature at the centre and dis-
placements at the edge of the distributed load can be found
from (A2a)–(A2c) and inserted in the relevant expressions for
the two-parametermodel, i.e. (A1a)–(A2c). A simple procedure
is adopted here keeping one parameter constant, e.g. for cali-
bration method no. 1, we have γ → γw0 = γw′′

0
. The equation is

then solved iteratively for k until kw0 = kw′′
0
.

In order to evaluate the influence of the different calibration
methods, a uniformly distributed load over a strip length l of
2.0 m is applied directly on the soil surface comparing the
two-parameter model and the elastic continuum model. Due
to symmetry conditions, only half the loaded strip a = l/2
is considered here. The resulting calibrated foundation model
parameters can be found in Table 1.

Comparing the surface displacements for the continuum
model and the three different two-parameter models, shown in
Figure 5(a) and Table 1, it is observed that Calibration Method
no. 1 gives a good overall fit. Method no. 2 gives the closest
prediction of the surface displacements in the loaded region,
i.e. x ≤ 1.0m, whereas method no. 3 yields realistic results
far from the loaded region. It is also observed from Figure
5(b) that increasing the load strip length results in a decreased

(a)
(b)

Figure 5. (a) Comparison of analytical and two-parameter foundation model for the three different calibration techniques (b) influence of half load strip length a on
model parameters k and γ for a distributed load (normalised with respect to maximum value obtained in interval 0–5 m). Uniformly distributed load: q = 25, 000 N/m.
Soil properties: Es = 100MPa, νs = 0.35, t = 1 m and d = 25 m.
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Figure 6. Plane beam element: Constitutive points (cpi ) are located at endpoints,
integration points (ipi ) at Gauss points (i = 1, 4) ± 0.861136312 and (i = 2, 3) ±
0.339981044 (6th order polynomial function).

k, stabilising at app. a = 1 − 2m, whereas γ increases with
increasing load strip length, stabilising at app. a = 4 − 5m.

2.3. Implementation of hinge and foundationmodel into
beam element

Thehinge and two-parametermodel are implemented following
standard FE beam theory and procedures for building elements
with non-linear material behaviour, see e.g. Cook et al. (2007).
The expressions for the element stiffness matrix and equivalent
nodal loads are based on the cubic displacement function and
for direct incorporation of the foundation model. Thus, full
contact is assumed between the beam and the foundation.

For the present study, a plane three-node beam element
is chosen as shown in Figure 6. This element is capable of
modelling quadratic variations of the axial displacements and
cubic variations of the transverse displacements. The choice of
element ensures that both generalised strains are interpolated
linearly as opposed to a typical two-node beam element where
constant normal strain is assumed.

The vector of generalised displacements of the beam, u, holds
the axial displacements u1(x1) and the transverse displacements
u2(x2). The interpolation of u in the element is given by

u =
[
u1
u2

]
= Nv (14)

where N is the displacement interpolation matrix and v is the
element dof vector. The interpolation functions are standard
polynomial expressions. The vector of generalised strains, ε,
holds the linearised axial strain ε0 and the linearised curvature
κ . The interpolation of ε in the element is given by

ε =
[
ε0
κ

]
=

[ du1
dx
d2u2
dx2

]
= Bv (15)

where B is the strain interpolation matrix. The vector of gener-
alised stresses, σ , holds the sectional normal force N and the
sectional moment M. In the element, σ may be established
applying (7a) and (7b) as

σ = σ
(
ε
) =

[
N

(
ε
)

M
(
ε
)] (16)

Based on the contribution to the variation in internal work
δ, from the beam and the two-parameter foundation, and
the potential work of external forces δW from point and sur-
face loads, the principle of virtual work for the system can be
established

∫
V

δεTσ+δuTku+δθTγ θdV =
∫
S

δuT f dS+
∑
i

δuT
i pi (17)

where V is the structural volume, S is the surface area, δu and
δθ are the displacement and rotational variations, respectively,
f is the surface traction vector, pi is a concentrated (nodal) load
and δui is the associated (nodal) displacement variation. The
contribution of the second parameter spring is here given on a
general form considering γ as a rotational stiffness.

The beam element and two-parameter foundation contri-
bution to the internal nodal force, q, are then given by the
expression

q =
Le∫
0

BTσdx +
Le∫
0

NTkINvedx +
Le∫
0

GTγ IGvedx (18)

where Le is the length of the element and ve is the global dof

element displacements. The matrix I =
[
0 0
0 1

]
is used to omit

axial terms in interpolation matrix N and G. The latter is given
as G = N′.

The beam element and two-parameter foundation contri-
bution to the tangential stiffness matrix, kt , are given by the
expression

kt =
Le∫
0

BTDtBdx +
Le∫
0

NTkINdx +
Le∫
0

GTγ IGdx (19)

The hinge tangent stiffness matrix,Dt , is defined through

[
dN
dM

]
= Dt

[
dε̄0
dκ̄

]
, whereDt =

[
∂N
∂ε̄0

∂N
∂κ̄

∂M
∂ε̄0

∂M
∂κ̄

]
(20)

Full derivation of the hinge tangent stiffness matrix, Dt , can
be found in Appendix 2.

The hinge model is implemented in a user-built FE code
using the numerical computing package MATLAB. The func-
tionality of the proposed hinge is tested for a simply supported
beamunder four point loadings and comparedwith experimen-
tal and numerical studies on cement-bound granular mixtures
reported in Yeo (2008) and Skar and Poulsen (2015). Com-
parison of experimental and numerical results is evaluated in
the view of load–displacement and load–crack mouth opening
displacement (CMOD) behaviours, shown in Figure 7(a) and
(b), respectively. The load–displacement response is given as
the displacement under the loaded point, or so-called load line
displacement (LLD).

It is observed from Figure 7 that there is good agreement
between the proposed hinge model and experimental and nu-
merical results reported in the literature. The difference between
numerical models, i.e. the cohesive zone model (CZM) and the
cracked-hinge model (FE hinge), is mainly related to the pre-
peak behaviour. Whereas the hinge model behaves perfectly
elastic up to initiation of cracking (load level of app. 3.5 kN), the
CZM incorporates a small error in crack-opening displacements
related to the penalty stiffness. This error is best exemplified
in Figure 7(b), observing that the crack-opening in the CZM
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(a) (b)

Figure 7. Comparison between the proposed hinge and experimental and numerical results reported in Yeo (2008) and Skar and Poulsen (2015), respectively: (a)
Load–displacement response (b) numerical Load–CMOD response. Beam geometry (L/h/t): 300 × 100 × 100mm3. Element size 9.375 mm. Load positions: L/3, 2L/3.
Mechanical properties: Ec = 12, 760 MPa, ν = 0.2, ft = 1.0MPa, GF = 0.028 N/mm.

(a)
(b)

Figure 8. (a) Overview ofmodel geometry and boundary conditions for the standard cemented slab on elastic solid foundation in ABAQUS (‘CZM slab’ model). (b) close-up
of the slab region showing the cohesive zone mesh.

Table 2. Material properties for single cement-bound granular mixture slab on
elastic foundation.

Material Ec /Es (MPa) ν (-) ft (MPa) GF (N/mm) k (N/mm2) γ (N) d (m)

CBGM 15,000 0.20 0.80 0.035 – – –
Soil 100 0.35 – – 0.0076 6.33 · 107 25

evolves from the beginning of the analysis and thus resulting
in a more flexible behaviour of the beam. Increasing penalty
stiffness reduces this error; however, very high levels of penalty
stiffness result in ill-conditioned stiffness matrix and thus slow
convergence and abort simulations. This problem is avoided
applying the finite element hinge, resulting in a more robust
model and stable simulations.

2.4. Continuummodel, solution technique and numerical
characteristics

2.4.1. CZM resting on elastic medium
In order to evaluate the hinge slab model and to investigate
the influence of different modelling techniques for slab–soil
interaction in concrete and composite pavement systems, a
model representing the full continuum model is developed. A
simplified two-layer model is considered: a single slab, with
standard dimensions (L/h) of 4 × 0.4m2, constructed over soil

Table 3. Solution technique and standardmodel parameters applied in the present
study.

Solver Model parameters

Technique N-R Cohesive zone width, T0 (mm) 0.01
Initial increment 0.001 Viscous damping parameter,μ (-) 1 × 10−5

Maximum increment size 0.01 Bulk elements (elastic) CPE4 (2-D)
Minimum increment size 1 × 10−9 Cohesive zone mesh (mm) 10

foundation with rigid body constraint, d = 25m, representing
the semi-infinite elastic medium, as shown in the sketch in
Figure 8(a). The slab is in subsequent sections referred to as
the ‘CZM slab’.

The CZM slab is modelled with 2D plain strain elements
(CPE4) in ABAQUS. A total of 1400 elements are used to rep-
resent the elastic material, separated by predetermined contact
surfaces, representing the cohesive zone (10 mm size elements),
in the vertical plane at themid-beamposition. The subgrade soil
is modelled with a total of 6000 elements (CPE4). A close-up of
themesh in the slab region is shown in Figure 8(b) and standard
mechanical properties are given in Table 2.

2.4.2. Solution technique and numerical characteristics
To increase the efficiency of numerical simulations, a conven-
tional Newton–Raphson (N-R) method is implemented
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(a) (b)

Figure 9. (a) Overview of model geometry and boundary conditions for the standard cemented slab on elastic solid foundation in ABAQUS (‘CZM slab’ model). (b) Model
geometry, boundary conditions for the proposed cracked-hinge model resting on two-parameter foundation (‘hinge slab’ model).

(a) (b)

Figure 10. Convergence test: (a) Number of beam elements, nel: 2-128 (element size, elsz: 0.5-0.015625) vs. the normalised first peak load η and peak load displacements
ζ applying foundation parameters for calibration method no. 1. (b) Load–displacement response.

extended to handle displacement control, see e.g. Batoz and
Dhatt (1979). The solver implemented sufficiently describes
both pre- and post-peak behaviour, whereas the potential snap-
back load–displacement response is ignored.

Similarly the N–R method is selected for the purpose of
analysis in ABAQUS. Based on preliminary convergence and
sensitivity studies, solution technique and standard model pa-
rameters selected for the present study are listed in Table 3.

3. Numerical model of a single hinge slab

3.1. Model geometry and analysis results

Consider a single hinge slab, shown in Figure 9, consisting
of cement-bound granular mixture with standard dimensions
(L/h) of 4 × 0.4m2 supported by a two-parameter foundation,
representing the semi-infinite elastic medium, and loaded by
a concentrated force at mid-span position. The soil adjacent
to the slab can be modelled by extending the beam elements
outside the slab to the length d, assigning a bending stiffness
EI close to zero. Alternatively, an equivalent spring can be
implemented at slab ends, representing the soil adjacent to the
slab, i.e. keqedge = k · α. Standard mechanical properties given in
Table 2 are applied.

Convergence test of the model is evaluated plotting the nor-
malised peak load η and peak load displacements ζ for different
beam mesh densities, nel : 2 − 128, shown in Figure 10. It
is observed that sufficient accuracy can be obtained with 64
elements; however, little is gained by increasing the number
of elements from 32 to 64. Element size of 0.1 m (nel = 40)
is selected in subsequent analysis. Typical load–displacement
response is shown in Figure 10(b).

In order to evaluate the fracture behaviour of the hinge slab
model, the load–crack mouth opening and load–crack length
curve are plotted, shown in Figure 11(a) and (b), respectively.
To visualise the influence of the second parameter and to com-
pare the two modelling techniques, the response for both hinge
and CZM slab resting on a Winkler foundation is shown for
reference. Standard mechanical properties given in Table 2 are
applied.

It is observed from Figure 11(a) and (b) that reasonably good
agreement between the hinge and CZM slab models can be
obtained. Both models reflect the influence of the continuity
in the soil comparing the two foundation types. It can also be
shown that a closer prediction of the first peak load can be
obtained applying an empirical transfer function for converting
the elastic soil properties to an apparent Winkler stiffness k∗
(FAA 2009). However, the post-peak response resembles that
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(a)

(b)

Figure 11. Comparing the structural response and fracture behaviour of the hinge
slab vs. the CZM slab model in ABAQUS; (a) load–CMOD curve and (b) load–
crack length curve, where the crack length in the CZM slab model is taken as the
progressive depth of damage initiation in the cohesive zone.

of the analytical Winkler foundation type due to the lack of
continuity between springs.

The difference in first peak load and peak load displace-
ment is app. ±1% for the two model types. The two-parameter
slab hinge model slightly overestimates the post-peak residual
stiffness compared to the CZM slab model. Close to perfect
fit is obtained between the two modelling techniques applying
only a Winkler foundation as the supporting medium. It is also
observed that the load level at unloading is higher for the hinge
slab model compared to the CZM slab model. This tendency
is observed for both foundation model types, and can partly be
regarded as an effect of the difference in modelling technique.
However, this difference is also related to the foundation type
and the contact behaviour applied. Thiswill be further discussed
in the section below.

3.2. Comparison of numerical modelling techniques

A fundamental difference in themethodology between theCZM
slabmodel and the hingemodel is that the CZM slabmodel only
considers one discrete crack at mid-span position, whereas the
effective stiffness concept adopted in the hinge model allows for
multiple cracks along the beam. For the specific case, a cracked
zone of app. 1.0 m at the centre of the slab has initiated and
opened at first peak load, shown in Figure 12(a). Then, the
crack at mid-span progresses rapidly, causing the neighbouring
cracks to close.

Moreover, in the hinge model presented, increasing or de-
creasing the hinge rotation is modelled by the same equilibrium
path. Thus, the hinge model does not have a unique unloading
branch that models the closure of a previously opened crack.

The cracks outside mid-span position are small (<1%) and do
not influence the solution in the specific cases studied here.

A more significant influence on the model response can be
found by studying the different soil models. Although the two-
parameter model possess some of the characteristic features of
continuous elastic solids, it is a simplification which cannot
capture all complexities. Special care should be taken when
selecting a representative load strip length for calibration of
model parameters. This is exemplified plotting the vertical soil
pressure below cemented slabs with different slenderness ratios
(length/thickness ratio), shown in Figure 13.

The pressure will initially be distributed over the total slab
length, as observed from Figure 13. As cracking is initiated and
cracks propagate, there will be onlyminor changes in the overall
vertical pressure profile, ignoring minor stress intensities below
cracks. After crack propagation to a certain depth, the structure
becomes unstable, resulting in unloading on the load–CMOD
curve, see Figure 12(b). This further results in a significant
change in the vertical soil pressure and stresses localise around
the open cracks, in this case at themid-span position.Moreover,
a variation in vertical pressure, and especially the vertical reac-
tion pressure along slab edges comparing different slab sizes, is
expected. The soil pressure under short thick slabs will resemble
the stress distribution under a stiff plate, whereas the vertical
reaction pressure along slab edges for larger size and slender
slabs will be small.

In order to capture both pre- and post-peak vertical pressure
distributions in the two-parameter model considering typical
slab lengths and thicknesses of app. 2.0-5.0 m and 0.15-0.45 m,
respectively, a fixed load strip length of 1.0 m is applied for cal-
ibration of foundation model parameters and is recommended
for the present problem.

The theoretical pressure distribution between the slab and
the supporting elastic medium tends towards infinity at the
perimeter; this off course, cannot occur in real soils. However,
for cohesive soils, the actual stress distribution will resemble the
theoretical distribution. For granular soils, stresses at the edges
will be small because the bearing capacity at the surface of an
unconfined granular material is small. In order to capture this
behaviour, the methodology proposed could be extended using
a ‘Modified Pasternakmodel’ consisting of two layers of vertical
springs as proposed by Kerr (1964) allowing the slab to ‘sink’
into the supporting layer.

4. Sensitivity studies

4.1. Effect of slab thickness and soil stiffness

In linear elastic analysis of pavement structures, the slab or layer
thickness is increased for increasing design loads, to ensure both
a relatively constant stress level in the soil foundation, avoiding
any plastic deformation. However, as observed in Figure 14,
this assumption is only valid as long as cracks are small as the
thickness of the cemented slab has significant influence on the
peak load, but little influence on the post-peak response of the
structure.

The stiffness and peak load of the structure increase with
increasing thickness up to unloading. Then, the structural re-
sponse is mainly influenced by the stiffness of the soil founda-
tion, as shown in Figure 15.
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(a) (b)

Figure 12. Development of crack width in slab for point of interest for the two-parameter model; (a) deformation of slab and crack lengths at points of interest and (b)
points of interest plotted on the normalised load–CMOD and load–crack length curve.

Figure 13. Vertical soil pressure of elastic solid under cemented slabs with
slenderness ratio λs = 5 and 10 before and after development of a single open
crack below the loaded point, i.e. before ‘first peak’ and after ‘unloading’ in Figure
12(b).

As expected, increasing stiffness of the soil results in in-
creasing peak load and post-peak stiffness, as shown in Figure
15. It can also be concluded that the soil stiffness has a more
significant influence on the peak load than the thickness of
slabs. The influence of slab size is found to be small as only
crack propagation in one direction is considered here.

4.2. Effect of tensile strength and fracture energy

Considering a simple linear softening law, it is obvious that the
two main material parameters influencing the fracture process
of the quasi-brittle material are the tensile strength and the frac-
ture energy. Both tensile strength and fracture energy influence
the peak load and peak load displacement, as shown in Figure
16(a) and (b), respectively.

It should be noted that the influence of tensile strength
will be reduced compared to the fracture energy in three-
dimensional simulations, as the out-of-plane crack propaga-
tion significantly influences the load–displacement response

Figure 14. Influence of slab thickness on the load–displacement response.
Thickness varying from 150 to 450 mm keeping length constant (3 m).

Figure 15. Influence of soil stiffness on the load–displacement response. Young’s
modulus Es varying from 25 to 300 MPa.
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(a) (b)

Figure 16. Influence of fracture properties on the load–displacement response: (a) tensile strength ft varying from 0.6 to 1.2 MPa and (b) fracture energy GF varying from
0.015 N/mm to 0.055 N/mm.

(a) (b)

Figure 17. Influence of load configuration and position on load–displacement response: (a) typical load configurations, e.g. rigid and uniformly distributed loads with
varying load strip length a and (b) slab loaded at edge, mid-span and intermediate positions.

(a) (b)

Figure 18. Comparison betweenmodelling techniques for infinite slab: (a) Deformation of the slab during loading: before first peak, after first peak and after second peak.
(b) CZM slab (solid line), hinge slab models (dashed line) and the yield-line method (dotted line) reported in Baumann and Weisgerber (1983).
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(a)

(c) (d)

(b)

Figure 19. Predicting distance between cracks showing the moment in the hinge slab model at four different phases: (a) crack initiation, (b) first peak, (c) second peak
and (d) after full crack propagation of top-down cracks, also visualising the distance between cracks equivalent to r in the yield-line method.

(Gaedicke and Roesler 2009, Aure and Ioannides 2012, Skar
and Poulsen 2015).

4.3. Effect of load configuration and position

Realistic concrete and composite pavement systems are sub-
jected to different loading conditions. In order to demonstrate
the applicability of the proposed method to evaluate different
load cases, the load–displacement response for typical load con-
figurations and positions is plotted, shown in Figure 17.

It is observed from Figure 17(a) that increasing load strip
length results in increasing peak load, as expected. For the rigid
plate load, modelled as two point loads at each end of the loaded
strip, one crack develops at each edge. However, for the two-
dimensional problem considered here, this has little influence
on the structural response compared to a uniformly distributed
load. From Figure 17(b), it is observed that the peak load in-
creases for increasing distance frommid-span position, whereas
the stiffness decreases. Loading at mid-span and intermediate
positions results in one crack opening and progressing after the
first peak, whereas no cracks develop in case of edge loading.

5. Structural example

In order to demonstrate the applicability of the numerical hinge
to predict a realistic crack pattern, an infinite slab (h = 0.4m)

resting on Winklers foundation (k = 0.0233MPa/mm) and
loaded by a concentrated force at mid-span position is consid-
ered. Slab displacements and internal forces decline relatively
fast to zero as the distance from the load increases. Accordingly,
a finite slab of 10 m (nel = 100) may be replacing the infinite
beam. Standard material properties for the cemented material
given in Table 2 are applied.

The numerical results are compared to the yield-line
theory following the methodology proposed by Baumann and
Weisgerber (1983). The deformation of the slab during loading,
i.e. before first peak, before second peak and after the second
peak, is shown in Figure 18(a). Load–displacement curves for
the three models are plotted in Figure 18(b).

It is observed from Figure 18(b) that the first peak in the
CZM slab model and the hinge slab model is app. 73 and 71 kN,
respectively. Moreover, it is observed that the kink point on the
yield-line curve is app. 45 kN, complying well with the results
reported byMeda (2003).Moreover, it is found that the distance
between yield-lines r = 2.534m in the yield-line method is
approximately equal to the distance, b, from the negative peak
moments to the crack at mid-span in the hinge slab model at
crack initiation (load level 1), shown in Figure 19(a). Then,
according to the CZM slab and hinge slab models, the load
continues to increase as the crack propagates before reaching
the ultimate moment capacity of app. 33.3 kNm (load level 2),
shown in Figure 19(b).
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The crack at mid-span then unloads, before the load con-
tinues to increase, resulting in two top-down cracks initiating
app. ±1.5 m from the mid-span position. Then, these cracks
grow rapidly to the negative ultimate moment capacity of app.
−33.3 kNm (load level 3), shown in Figure 19(c), resulting in the
second peak on the load–displacement curve. Finally, the post-
peak residual stiffness of the structure is reached (load level 4)
with the moment distribution shown in Figure 19(d).

The distance between cohesive zones in the CZM slab model
is set to 1.5 m based on simulations with the hinge slab model.
This results in a good fit between the two methods as shown in
Figure 18 (b). The responses of the two methods are identical
up to the second peak of the CZM slab model. Then, the load in
the hinge slab model continues to increase due to the stiffness
and stress redistribution in the hinge slab. The second peak in
the models occurs at app. 105 and 115 kN, respectively. The
difference in response between models is small up to first peak
as cracks localise to one crack below the loaded point. Then, top-
down cracks at a distance b develop; however, these are smeared
over a larger area, resulting in evolving stress redistribution in
the slab during crack propagation. This phenomena cannot be
captured by the CZM slab model. Thus, a lower second peak
load is predicted with the CZM slab model. Increasing the
length between cohesive zones in the CZM model would result
in increasing second-peak and post-peak stiffness.

The present example highlights the practical use of themodel
Proposed: the hinge slab being able to predict the stress redis-
tribution and stiffness during crack development. This results
in a precise prediction of the crack-opening and the distance
between cracks that finally localise and propagate through the
thickness of the slab.

6. Conclusion

The use of a cohesive cracked-hinge model for simulating the
fracture in one-way slab on grade structures has been investi-
gated showing good performance.

Comparing numerical and experimental results for four
point bending beam tests show that good agreement is obtained
with the hinge model. It is also found that good agreement is
obtained for both structural and fracture behaviours of slab on
grade structures, comparing the hinge model with the more
conventional cohesive zone model. The adaptive hinge proved
to adequately predict the distance between cracks compared to
the yield-line theory. Moreover, peak loads and structural re-
sponse comply well with other results reported in the literature.
The hingemodel has the advantage that it is numerically robust,
resulting in fast simulations and few convergence issues.

It can be shown that the two-parameter foundation model
and the calibration methodology proposed are efficient tools
which realistically capture the response of the elastic medium
below the slab. The calibration methodology is consistent and
model parameters are determined on a rational basis.Moreover,
the foundation model applied is applicable for implementation
in commercial codes applying discrete spring elements and/or
connectors, making the methodology an attractive alternative
for design engineers.

Slab thickness and soil stiffness proved to be important pa-
rameters. The peak load is highly influenced by thickness of the

slab, whereas the soil stiffness proved to be a main controlling
parameter of both pre- and post-peak response of the structure.
Furthermore, it can be concluded that the fracture process is
more affected by the fracture energy than by the tensile strength.

The present paper demonstrates the use of a cohesive crack-
hinge model resting on a two-parameter foundation to describe
the fracture behaviour of cemented slab on grade structures.
Although a simplified two-dimensional problem is investigated
here, the results obtained are encouraging, showing that the
methodology is applicable for practical use. Moreover, a general
and consistent format is applied making the methodology well
suited for further development.
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Appendix 1. Expressions for calibration of
two-parameter model

A.1. Two-parametermodel

Expressions for points of interest for the two-parametermodel can be found
from (11b), i.e.

w(0) = q
k

[
1 − e−βa] (A1a)

w(a) = q
2k

[
1 − e−2βa] (A1b)

w′′(0) = β2q
k

[
e−βa] (A1c)

where w(0) is the vertical displacement at the centre of the loaded area,
w(a) is the vertical displacement at the edge of the loaded area and w′′(0)
is the curvature at the centre of the loaded area.

A.2. Elastic continuummodel

Expressions for points of interest for the continuum model can be found
from (13b), i.e.

w(0) = 2qa
πE

[
2 ln

(
d
|a|

)
+ (

1 − ν
)]

(A2a)

w(a) = 2qa
πE

[
2 ln

(
d

|2a|
)

+ (
1 − ν

)]
(A2b)

w′′(0) = − 4q
πEa

(A2c)
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where w(0) is the vertical displacement at the centre of the loaded area,
w(a) is the vertical displacement at the edge of the loaded area and w′′(0)
is the curvature at the centre of the loaded area.

Appendix 2. Derivation of hinge tangent stiffness
matrix

For the linear elastic Phase 0, the hinge tangent stiffness matrix is given as

D0
t =

[
htEc 0
0 1

12 th
3Ec

]
(B1)

The constituents of the hinge tangent stiffness matrix in (20) are ob-
tained from the sectional forces N andM in (7a) and (7b), respectively.

Utilising the following relations for the relevant part of the integral
corresponding to 0 < w ≤ wc yields

∂σc

∂ε̄0
= Ec

as
Ec + as

,
∂σc

∂κ̄
= Ec

as
Ec + as

y (B2)

Here, the parameters α = as
Ec+as and Ecc = Ecα are introduced, where

the latter represents the reduced stiffness of the cracked part of the hinge.
The full hinge tangent stiffness matrix for Phases I and II can then be
established

dN = t

h/2−c∫
−h/2

Ec
(
dε̄0 + dκ̄y

)
dy + t

h/2∫
h/2−c

Ecc
(
dε̄0 + dκ̄y

)
dy

= Dt
(
1, 1

)
dε̄0 + Dt

(
1, 2

)
dκ̄

dM = t

h/2−c∫
−h/2

yEc
(
dε̄0 + dκ̄y

)
dy + t

h/2∫
h/2−c

yEcc
(
dε̄0 + dκ̄y

)
dy

= Dt
(
2, 1

)
dε̄0 + Dt

(
2, 2

)
dκ̄ (B3)

which by solving the integral yields

Dt(1, 1) = Ect
((
y2 − y1

) + (
y3 − y2

)
α
)

(B4a)

Dt(1, 2) = Ect
(
1
2

(
y2 − y1

) (
y1 + y2

) + 1
2

(
y3 − y2

) (
y2 + y3

)
α

)
(B4b)

Dt(2, 1) = Dt(1, 2) (B4c)

Dt(2, 2) = Ect
(
1
3

(
y2 − y1

) (
y21 + y22 + y1y2

)
(B4d)

+1
3

(
y3 − y2

) (
y22 + y23 + y2y3

)
α

)
(B4e)

DI ,II
t =

[
Dt(1, 1) Dt(1, 2)
Dt(2, 1) Dt(2, 2)

]
(B4f )

where y1, y2 and y3 are the distances depicted on Figure 2.
Contribution from a reinforcement rebar can alternatively be included

in the beam hinge tangent stiffness matrix as

DI ,II
t =

[
Dt(1, 1) + EsAs Dt(1, 2) + EsAsys
Dt(2, 1) + EsAsys Dt(2, 2) + EsAsy2s

]
(B5)

where As is the area of the rebar, Es the Young’s modulus of the steel and
ys is the position of the rebar.
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a b s t r a c t

The need for mechanistic constitutive models to evaluate the complex interaction between
concrete crack propagation, geometry and soil foundation in concrete- and composite
pavement systems has been recognized. Several models developed are either too complex
or designed to solve relatively simple problems, e.g. limited to one type of load configura-
tion or test set-up. In order to develop a general and mechanistic modeling framework for
non-linear analysis of low-cycle damage in cemented materials, this paper presents a
cracked-hinge model aimed at the analysis of the bending fracture of the cemented mate-
rial. The model is based on the fracture mechanics concepts of the fictitious crack model.
The proposed hinge is described in a general and consistent format, allowing for any type
of stress-crack opening relationship and unloading- reloading formulation. The functional-
ity of the proposed hinge model is compared to numerical- and experimental results. The
proposed hinge shows good performance and seems promising for the description of low-
cycle fracture behavior in cemented materials.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Concrete- and composite pavement systems are subjected to cyclic loading from vehicles resulting in initiation of bending
cracks in the quasi-brittle cemented material. Subsequently, these cracks propagate leading to failure of the pavement struc-
ture. The structural design of such pavements is primarily based on empirical formulas which convert the elastic response
analysis into a measure of performance [1–3], referred to as the Mechanistic-Empirical (M-E) method. However, such a
method cannot account for significant factors influencing the response, e.g. describing the interaction between loads, mate-
rial properties, geometry and soil foundation in a unified manner.

The limitations of the M-E method and the growth in computer capabilities have resulted in an increasing development of
more rational models for pavement analysis during the past decades. That work began in the early 1990s, studying mainly
asphalt concrete mixtures in flexible pavements [4–6], reflective cracking in asphalt overlays [7] and permanent deformation
of unboundmaterials [8–10]. These models are typically based on a mechanistic approach using appropriate numerical tools,
e.g. the finite element (FE) method. This allows for geometry, inhomogeneities, anisotropy, and nonlinear material properties
of all pavement layers to be considered.

Numerical analysis of crack propagation in concrete- and composite pavement systems have primarily carried out apply-
ing cohesive zone modeling [11–15]. Gaedicke and Roesler [16,17] applied a cohesive zone model for studying fracture in

http://dx.doi.org/10.1016/j.engfracmech.2017.01.016
0013-7944/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: asch@cowi.dk (A. Skar).

Engineering Fracture Mechanics 175 (2017) 324–338

Contents lists available at ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier .com/locate /engfracmech



Nomenclature

ai slope of tangent line segment on softening curve
a0 depth of notch
bi intersection of the tangent line segment on softening curve and the abscissa
B strain interpolation matrix
c1 softening curve model parameters
c2 softening curve model parameters
CMOD measured crack mouth opening displacement
cp constitutive point
c crack-length
d distance from beam face to measurment point
Dt hinge tangent stiffness matrix
ei lever arm of hinge fiber
Ec Young’s modulus of cemented material
Ed damaged unloading- reloading stiffness of hinge fiber
f t uni-axial tensile strength of cemented material
GF fracture energy
h hinge height
H beam height
ip interpolation point
k1 softening curve model parameters
kh horisontal spring stiffness
kt beam element tangent stiffness matrix
kv vertical spring stiffness
L beam length
Le beam element length
M moment force
N normal force
N displacement interpolation matrix
n number of fibers
P load
q beam element internal nodal force
s hinge width
t hinge thickness
u elongation of hinge fiber
v element dof vector
w crack-opening
wc zero-stress displacement
wk1 softening curve model parameters
ai monotonic damage parameter
d total midspan displacement of beam
dcr cracking beam midspan deformation of hinge
dg geometrical amplification
del elastic beam midspan deformation of hinge
de elastic deformation of specimen
dCOD the opening due to the presence of the crack
�e0 mean normal strain at beam axis
�e mean normal strain of hinge fiber
ect strain at crack initiation
�epl mean plastic strain component
�ecr inelastic cracking strain component
g tensile cyclic damage parameter
�eult zero-stress strain
�eunl strain during unloading- and reloading
c shear coupling spring coefficient
�j mean curvature of the hinge
l normalized moment
rk
u negative intersecting point on abscissa

rur normal cohesive stress during unloading- and reloading of hinge fiber
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beams resting on soil. The cohesive zone model stand out as particularly attractive for studying beams- and slabs on grade
under monotonic loading, where the fracture plane can be anticipated a priori, i.e. orthogonal cracks in the direction of max-
imum principal stress. Although the results published show good performance, relatively large finite element models are
applied compared to the complexity of the pavement system studied. Moreover, some authors reported lack of convergence,
instability problems and aborted simulations [16,13,14].

In order to create a simple and robust modeling framework for engineering application, this paper presents a non-linear
hinge model based on the fracture mechanics concepts of the fictitious crack model by Hillerborg et al. [18]. The hinge model
for modeling the crack propagation due to pure bending in a concrete beam without reinforcement was first presented by
Ulfkjaer et al. [19]. This hinge was successfully applied in the modeling of pure concrete beams in three-point bending con-
sidering the development of only one crack. Olesen [20] expanded the hinge model by applying a bi-linear softening curve to
allow for the incorporation of the effects of fibers on concrete fracture. Further, this modified hinge model allowed for the
existence of a sectional normal force. This last feature is crucial for the ability of the hinge to model a number of situations
such as the wedge splitting test [21] and the split cylinder test [22]. Olesen and Poulsen [23] implemented a numerical hinge
for investigation of the fracture behavior of reinforced concrete beams applying the effective stiffness concept, allowing for
the formation of multiple cracks along the beam axis.

The basic idea of the hinge has also been used for studying cyclic fatigue of plain concrete beams [24–26], as well as rein-
forced and fiber-reinforced concrete beams [27–30]. Maitra et al. [31] applied the influence method [32] in conjunction with
the stress-degradation law proposed by Zhang et al. [25] to simulate fatigue crack length propagation in plain concrete pave-
ments. However, these models suffer from another drawback: they are limited to one type of test or structural problem
where the crack path is known a priori.

This paper presents a simple multi-scale damage model for simulation of low-cyclic damage of cemented beam struc-
tures. At the lowest level, a fiber of cemented material including a crack is considered, and a stress-mean strain relationship
is established. At the intermediate level, a hinge element, which is a finite part of the beam, consisting of fibers in layered
strips of cemented material is considered, and a relationship between the generalized sectional forces and strains estab-
lished. At the highest level, the hinge model is applied as a constitutive model in a non-linear beam element. Although
the underlying description of the hinge is based on the formation of discrete cracks, the constitutive behavior of the hinge
is smeared (smooth). This particular feature is practical and effective as no a priori knowledge of the crack pattern is
required. Moreover, the hinge formulation makes it straightforward to implement different types of stress-crack opening
relationships and unloading- reloading schemes.

2. The mechanics of the cracked-hinge model

The basic assumption of the hinge model is the fact that the presence of a crack influences the overall stress and strain
field of a structure only locally. The discontinuity created by the crack is expected to vanish outside a certain width. Under
constant moment, e.g. between the loaded points in Fig. 1(a), the beam sections at the midpoints between the cracks will,

Fig. 1. Sketch of hinge model implemented in simply supported beam under four point loading: (a) overview of beam structure and (b) underlying discrete
formulation of cracks at constitutive points, cp, and smeared constitutive behavior obtained from interpolation between constitutive points at integration
points, ip.

r normal cohesive stress
h normalized hinge rotation
u hinge rotation
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due to the periodicity of the cracks, remain plane during deformation of the beam. The width s between two such sections
embracing one crack defines a hinge element, as shown in Fig. 1(b). For the beam area outside the loaded points, the moment
distribution is no longer constant. Such phenomena be handled with appropriate numerical tools, i.e., the finite element (FE)
method, as exemplified for a single beam element in Fig. 1(b).

The hinge width s is a fundamental calibration parameter of the model, and it was suggested in [19] to use a hinge width
half the height of the beam, also adopted in the present study. Thus, the flexural deformation of the beam is concentrated and
the propagation of a crack can be modeled as a hinge whereas the rest of the beam can be treated as elastic bulk material.

The uni-axial tensile behavior of the cemented material is modeled according to the fictitious crack model by Hillerborg
et al. [18]. The linear elastic pre-crack state is described by the elastic modulus, Ec. The uni-axial tensile strength is denoted
by f t and the corresponding strain by ect . To make the proposed model as versatile as possible, a multi-linear stress-crack
opening relationship, or so-called softening law is selected

r wð Þ ¼ bi � aiw

b1 � a1w 0 6 w 6 w1

b2 � a2w w1 6 w 6 w2

b3 � a3w w2 6 w 6 w3

. . .

0 wi > wc

8>>>>>><
>>>>>>:

ð1Þ

where w is the crack opening, wc is the final zero-stress displacement, ai is the slope and bi the intersection of the tangent
line segment and the abscissa for a given point on softening curve as shown in Fig. 2.

The total fracture energy GF given by the area under the softening curve is

GF ¼
Z wc

0
r wð Þdw ¼ 1

2

Xn

i¼1

2bi � ai wi�1 þwið Þð Þ wi �wi�1ð Þ½ � ð2Þ

where n is the number of lines on the softening curve.
For the semi-analytical hinge models published in the literature, see e.g. [20,25,33,26], sectional forces are calculated over

the full beam-hinge segment (integration in blocks) for a given stress crack-opening relationship. A similar approach was
used in the finite element implementation of the cracked-hinge reported by Olesen and Poulsen [23]. This type of model
is simple and numerically robust. However, such formulation becomes cumbersome if one wish to study unloading- and
reloading of cracks as well as more complex material behavior, e.g. damage and fatigue. Following the basic idea of the ’mul-
tilayer model’ by Hordijk [24], this study presents a general hinge model consisting of fibers of cemented material shown in
Fig. 3.

The tensile behavior of the hinge may be established by considering a fiber of material in uni-axial tension as shown in
Fig. 3(c). The elongation of the fiber located at y can be expressed in terms of the mean normal strain

�e yð Þ ¼ 2uðyÞ
s

¼ 2u0ðyÞ
s

þ 2u
s

y � �e0 þ �jy ð3Þ

where �e0 is the mean normal strain at the beam axis, and �j the mean curvature of the hinge. In the cracked state, 0 < w 6 wc ,
the crack opening and the corresponding stress in the strip is given as

rc ¼ rw ) rc ¼ bi þ aiw

sþ 2u ¼ sð1þ ecÞ þw ) s�eðyÞ ¼ sec þw

�
)

wi ¼ s Ec�eðyÞ�bi
Ecþais

ri ¼ Ec
bi�ais�eðyÞ
Ec�ais

8<
: ð4Þ

Fig. 2. Definition of parameters ai; bi and wi for softening law selected: multi-linear idealization (black dashed) of exponential softening curve (gray solid)
using four linear line segments.
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In the cracked state, wc 6 w, the crack is stress free, leading to the simple solution for the strip

w ¼ sð1þ �eðyÞÞ � s

rc ¼ 0

�
) wi ¼ s�eðyÞ

ri ¼ 0

�
ð5Þ

The hinge is divided in, nþ 1, number of fibers with the strip height Dh between fibers, shown in Fig. 3(b). The position (top-
down) of each fiber with respect to y ¼ 0 can be calculated as yi ¼ �h=2þ Dh � ði� 1Þ. The normal force contribution from
each strip between two fibers is given by

Ni ¼ 1
2
ri þ riþ1ð ÞDht ð6Þ

The eccentricity of the normal force for each strip is found from trapezoidal calculation and is given by

ei ¼ 1
3
ri þ 2riþ1

ri þ riþ1
Dhþ yi ð7Þ

The moment contribution for each strip then yields

Mi ¼ Ni � ei ð8Þ
The sectional forces with respect to y ¼ 0 is then a sum of the contribution from all, n, strips and may be calculated from

Nð�e0; �jÞ ¼ t
Z h=2

�h=2
rcdy ¼

Xn

i¼1

Ni ð9aÞ

Mð�e0; �jÞ ¼ t
Z h=2

�h=2
rcydy ¼

Xn

i¼1

Mi ð9bÞ

Convergence of the hinge is evaluated plotting the normalized error in moment b between the original hinge model [19] and
the proposed hinge, considering a simple linear softening law for different hinge mesh densities, n: 2–100, shown in Fig. 4(b).
It is observed that sufficient accuracy can be obtained with 30 fibers, however, little is gained by increasing the number of
fibers from 10 to 30. Typical moment-curvature response is shown in Fig. 4(a).

In the analysis presented in Fig. 4 the error in normalized moment is taken as the average difference in moment between
the analytical hinge model in [19] and the proposed fiber hinge; at peak (j = 0.003 m�1), on the descending branch
(j = 0.0065 m�1) and at the transition point between softening and stress free bottom fiber (j = 0.01 m�1).

3. Tensile damage model for cemented material

In order to realistically capture the influence from unloading of a previously open crack, as well as the stiffness reduction
for structures subjected to repeated loads, a low-cyclic damage plasticity model for the fiber in tension is implemented. A
simple format is proposed, defining a fixed negative intersecting point rk

u on the abscissa towards which unloading takes
place after initiation of cracking. The geometrical meaning of the strain components for the damage-plasticity model are
shown in Fig. 5.

From Fig. 5 it is evident that the unloading stiffness and plastic strain component can be defined as

Fig. 3. Fiber hinge model: (a) Beam segment with constant sectional forces and deformation of cracked beam segment. (b) Hinge stress distribution after
initiation of cracking showing the individual fibers (n = 24, whereof 4 stress free). (c) Material fiber in uni-axial tension: loaded state beyond peak-load
showing crack deformations. (d) Geometrical definition of one hinge strip (interpolation of stresses between two fibers).
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Fig. 4. (a) Typical moment-curvature response. (b) Number of hinge fibers, n: 2–100 (element size, elsz: 0.01–0.002 m) versus the average normalized
difference in moment b. Hinge dimensions (h/t): 0.20 � 0.10 m2. Material properties: Ec ¼ 30 GPa, f t ¼ 3:5 MPa GF ¼ 150 N/m and wc ¼ 0:1 mm (linear
softening).

Fig. 5. Geometrical meaning of strain components for the damage-plasticity model. The inelastic cracking strain �ecr is composed of the reversible gð�e� �eplÞ
and irreversible �epl parts. The dashed line represent elastic unloading with the initial stiffness whereas gray lines represent the reduced stiffness and
unloading towards point rk

u .
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E�
s ¼ rur � rk

u
�eur

ð10aÞ

�epl ¼ �rk
u

E�
s

ð10bÞ

where E�
s is the unloading- and reloading stiffness and rur and �eur is the maximum cracking stress and strain upon unloading

and reloading, respectively. The format above is found to comply well with experimental data for concrete materials as well
as more advanced concrete damage plasticity model formats, see e.g. [34–36]. Accordingly, a conventional 1-D damage-
plastic stress strain law can be formulated

r ¼ 1� gð ÞEc �e� �epl
� � ð11Þ

where the damage parameter is given as

g ¼ 1� E�
s

Ec
ð12Þ

The crack width w can be found from

w ¼ s�e� s rur
Ec

) s�ecr 0 < w 6 wc

s�e wc < w

�
ð13Þ

where the inelastic strain is given as �ecr ¼ �epl þ g �e� �epl
� �

.
The constitutive behavior of a single hinge-fiber is tested plotting the stress-crack opening curve for one hinge fiber sub-

jected to cyclic loading versus experimental results of plain concrete in uni-axial tension reported in Reinhardt et al. [37],
shown in Fig. 6.

It is observed from Fig. 6 that good fit is obtained between the hinge-fiber behavior and experimental results. More
detailed studies of the applicability of the semi-analytical cracked-hinge model can be found in [38].

4. Implementation of hinge into beam element

The proposed fiber hinge, in subsequent chapters referred to as the ‘FEM hinge’, is implemented in a user-built finite ele-
ment code following standard finite element beam theory and procedures for building elements with non-linear material
behavior, see e.g. [39]. The expressions for the element stiffness matrix and equivalent nodal loads is based on the cubic dis-
placement function.

For the present study a plane three-node beam element is chosen as shown in Fig. 7. This element is capable of modelling
quadratic variations of the axial displacements and cubic variations of the transverse displacements. The choice of element
ensures that both generalized strains are interpolated linearly as opposed to a typical two-node beam element where con-
stant normal strain is assumed.

The vector of generalized strains, e, holds the linearized axial strain e0 and the linearized curvature j. The interpolation of
e in the element is given by

e ¼ e0
j

� �
¼

du1
dx

d2u2
dx2

2
4

3
5 ¼ Bv ð14Þ

where B is the strain interpolation matrix. The vector of generalized stresses, r , holds the sectional normal force N and the

sectional moment M and may be established applying (9a) and (9b), i.e. r ¼ r eð Þ ¼ N eð Þ
M eð Þ

� �
.

The hinge model presented here first determine the constitutive state and stiffness of each individual fiber. Integration
over the strip height between fibers is then performed and the sum of all contributions is included in the tangent stiffness
matrix. The hinge tangent stiffness matrix, Dt is defined through

dN

dM

� �
¼ Dt

d�e0
d�j

� �
; Dt ¼

Xn
i¼1

@Ni
@�e0

@Ni
@�j

@Mi
@�e0

@Mi
@�j

" #
ð15Þ

Monotonic loading of the hinge results in constant positive stiffness of fibers in linear elastic state. Fibers in the cracked state
along the softening branch and cracked stress-free state result in negative and zero stiffness contributions, respectively. The
constituents of (15) are obtained from (9a) and (9b) utilizing the following relations for the relevant part of the integral cor-
responding to 0 < w 6 wc

@rc

@�e0
¼ Ec

ais
Ec þ ais

;
@rc

@�j
¼ Ec

ais
Ec þ ais

y ð16Þ
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Here the parameters ai ¼ ais
Ecþais

and Ei
cc ¼ Ecai are introduced, where the latter symbolises the reduced stiffness of the cracked

fiber. ai is the slope at a given point on the softening curve, see Fig. 2. The stiffness contribution from one fiber in the three
different phases; elastic, softening and stress-free is given by (17a)–(17c), respectively

Del
t ¼ Ect Ecty

Ecty Ecty2

� �
�e 6 �eect ð17aÞ

Dcr
t ¼ Ecct Eccty

Eccty Eccty2

� �
�eect < �e 6 �eult ð17bÞ

D0
t ¼ 0 0

0 0

� �
�e > �eult ð17cÞ

In the case of unloading- and reloading, a fiber in linear elastic state will not change whereas a fiber along the softening
branch change from a negative to a positive stiffness contribution. Moreover, the tensile damage parameter is introduced, i.e.

Du
t ¼ 1� gð ÞDel

t for �ect < �eunl < �eult ð18Þ
The full tangent stiffness matrix for loading, unloading and reloading can now be established by interpolation between each
fiber and integration over the strip height as given in Appendix A.1. The internal nodal force and the contribution from the
beam-element to the tangential stiffness matrix can then be found from standard finite element beam theory.

The implemented hinge is validated by plotting the moment-curvature behavior for a single FEM hinge versus the ana-
lytical hinge. It can be observed from Fig. 8 that exact fit is obtained between the FEM hinge and analytical model considering
two types of unloading schemes. Fast convergence, within 1–2 iterations, is obtained for this simple model applying a fixed
increment of Dh = 0.225 mm�1. The two transition points between the phases; elastic-softening (crack initiation) and
softening-stress free (bottom fiber stress free) are shown for reference.

5. Structural examples

5.1. Finite element model

The performance of the proposed hinge model is further evaluated by structural analysis of two fracture tests on plain
concrete. First, a conventional notched beam under three point loading is considered, shown in Fig. 9(a). Second, a notched

Fig. 6. Constitutive behavior of hinge-strip in uni-axial tension; stress-crack opening displacement compared to experimental results reported by Reinhardt
et al. [37]. Relevant material parameters are; Ec = 39.27 GPa, f t ¼ 3:2, GF ¼ 99:7 N/m, c1 ¼ 3; c2 ¼ 6:93, wc ¼ 5:14GF=f t ¼ 0:16 mm, s = 0.25 m and
rk

u ¼ �0:4f t (exponential softening).

Fig. 7. Plane beam element: Constitutive points (cpi) are located at endpoints, integration points (ipi) at Gauss points � ffiffiffiffiffiffiffiffi
1=3

p
.
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Fig. 8. Implementation of hinge into beam element: comparison between analytical and finite element hinge model. Hinge dimensions (h/t):
0.20 � 0.10 m2. Material properties: Ec = 30 GPa, f t = 3.5 MPa, GF = 150 N/m and wc = 0.1 mm (linear softening).

Fig. 9. Model geometry and boundary conditions of finite element model used in the present study: (a) simply supported beam and (b) soil supported
beam.

Table 1
Geometry and mechanical properties for beams used in numerical studies.

Unit Three-point Soil

Geometry
Length, L (m) 0.60 0.80
Height, H (m) 0.15 0.15
Thickness, t (m) 0.08 0.08
Notch depth, a0 (m) 0.05 0.05

Mechanical- and fracture properties
Young’s modulus, E (MPa) 32,040 32,040
Poisson’s rato, t (–) 0.15 0.15
Tensile strength, f t (MPa) 4.15 4.15
Fracture energy, GF (N/mm) 0.164 0.164

Soil properties
Vertical spring, kv (MPa/mm) – 0.1560
Horisontal spring, kh (MPa/mm) – 0.0156

Cohesive model parameters
Softening type (–) Bilinear Bilinear
Stress ratio at kink point, k1 (–) 0.25 0.25
Displacement at kink point, wk1 (mm) 0.0204 0.0204
Final zero displacement, wc (mm) 0.234 0.234

Hinge model and numerical parameters
Number of fibers, n (–) 30 30
Number of elements, nel (–) 8 10
Unloading point, rk

u
(MPa) �0.4f t �0.4f t

Increment size, Ddc (mm) 1 � 10�2 1 � 10�2

Error tolerance, � (–) 1 � 10�4 1 � 10�4
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beam resting on clay soil subjected to a concentrated load at midspan position is considered, shown in Fig. 9(b). Beam geom-
etry, material properties and model parameters used in the analysis are given in Table 1. Overview of model geometry and
boundary conditions is shown in Fig. 1.

To simulate the softening response of beam structures and to compare experimental- and numerical unloading and
reloading curves, a conventional Newton-Raphson (N-R) solver is implemented with direct displacement control, see e.g.
[40]. In the present study the energy norm ratio dE1=DE0 is applied as a measure in the convergence criterion.

5.2. Three-point beam

Convergence of the FEM hinge model is evaluated plotting the load displacement behavior of a three point-beam, see
Fig. 9(a), for different beam mesh densities, nel: 2–14, shown in Fig. 10. It is observed that sufficient accuracy for peak-
load and peak-load displacement can be obtained with only 2 elements. However, on the softening branch, a minimum of
8 elements are needed to resemble the softening response of the analytical model. To obtain satisfactory convergence a min-
imum of 10 elements are needed, resulting in an element size of 0.06 m, selected in subsequent analysis. In the analytical
model, implementing the hinge into an elastic beam as suggested by Olesen [20], only one hinge is considered. This explains
the slightly stiffer behavior compared to the finite element hinge.

The functionality of the proposed numerical hinge to simulate the low-cycle fracture behavior of a three-point beam is
demonstrated by plotting the load-crack mouth opening displacement versus experimental and numerical results reported
in [16], see Fig. 11(a) and (b), respectively.

It is observed from the load-CMOD curve in Fig. 11(a) that there is good agreement between the FEM hinge model and the
experimental results. The hinge model resemble both pre-peak, softening and unloading- reloading response adequately
well. The difference in peak-load and peak-load displacement is app. 10% and 5% respectively, which is within the expected
scatter. It is also found that the monotonic behavior of the proposed hinge comply well with finite element simulations using
a discrete cohesive zone model and the commercial computer package ABAQUS reported in [16], see Fig. 11(b).

The difference between the FEM hinge and the cohesive zone model is mainly related to the pre-peak behavior. Whereas
the hinge model behaves perfectly elastic up to initiation of cracking, the cohesive zone model incorporates a small error in
crack-opening displacements related to the penalty stiffness. Increasing penalty stiffness reduce this error, however, very
high levels of penalty stiffness result in ill-conditioned stiffness matrix and thus slow convergence and aborted simulations.
This problem is avoided applying the proposed hinge, resulting in a more robust model and stable simulations.

5.3. Beam resting on soil foundation

The beam resting on soil foundation is modeled using a simple spring soil model suggested by Gaedicke and Roesler [16].
The idealized spring foundation model consists of independent vertical springs with a spring stiffness coefficient, kv , similar
to a conventional Winkler model. The constitutive behavior of the vertical spring is modified to allow for separation between
the beam and soil, i.e. for positive vertical displacements (tensionless spring). Moreover, the horisontal spring is imple-
mented in the model, representing the frictional contact between soil and beam structure. The horisontal spring is modeled
with a stiffness of kh ¼ kv=10 and a constant slip limit of uh = 0.5 mm. A schematic overview of the spring constitutive behav-
ior is shown in Fig. 12. Implementation of the Winkler foundation model into beam elements is described in Appendix A.2.

The functionality of the proposed numerical hinge to simulate the low-cylic fracture behavior of a beam resting on soil is
demonstrated by plotting the load-crack mouth opening displacement versus experimental- and numerical results reported
in [16], see Fig. 13(a) and (b), respectively.
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Fig. 10. Convergence test of simply supported showing typical load line displacement (LLD) response for different mesh densities nel: 2–14 of the FEM
hinge compared to the analytical model considering one crack only.
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It is observed from the load-CMOD curve in Fig. 13(a) that the FEM hinge model captures the overall characteristic
response of the beam on soil on the descending branch. However, the peak-load and load level in general, as well as the
peak-displacement is overestimated. The difference in peak-load varies between 15 and 50% compared to experimental
curves. Similar trend is also found in numerical analysis reported in [16]. Thus, the FEM hinge comply well with the numer-
ical results applying a discrete cohesive zone model as shown in Fig. 13(b). In the example presented, the convergence rate is
relatively fast, and below 10 iterations, during unloading and reloading. The convergence rate during monotonic post-peak
loading is somewhat slower. This is can be explained by the sudden change in stiffness at peak and at the point where the
reloading curve enters the monotonic curve.
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Fig. 11. Load-crack mouth opening displacement response of a three-point beam: (a) FEM hinge versus experimental curves plotting 4 of 19 load cycles
carried out in experiment. (b) FEM hinge and analytical hinge versus a discrete cohesive zone model.

Fig. 12. Constitutive behavior of Winkler spring foundation applied in [16].

334 A. Skar et al. / Engineering Fracture Mechanics 175 (2017) 324–338



The difference between experimental and numerical results indicate that the soil model applied in simulations does not
reflect the stress distribution below the beam and/or other boundary conditions in the test set-up very well. The stiff pre-
peak response and lower peak load in experiments indicate that the continuity and shear stiffness of the soil influence
the response significantly. For cohesive soils, considered here, this influence will theoretically result in a large vertical reac-
tion pressure along beam edges.

In order to obtain a more realistic response of the soil a generalized two-parameter spring model, see e.g. [41,38], is
implemented in beam elements as shown in Appendix A.2. The two-parameter model introduce an interaction between
independent springs through a shear coupling spring, c. A simple approach is applied here to demonstrate the applicability
of the two-parameter model keeping the Winkler stiffness constant and then adjusting the second parameter to match the
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Fig. 13. Load-crack mouth opening displacement response of beam on soil: (a) FEM hinge versus experimental curves plotting 4 of 18 load cycles carried
out in experiment. (b) FEM hinge versus a discrete cohesive zone model.
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Fig. 14. Comparison between experimental results (gray dashed), numerical results applying a Winkler model (black solid) and numerical results applying
a calibrated two-parameter model (gray solid): Load-crack mouth opening displacement response of three point beam on soil.
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pre-peak behavior of experimental beams, resulting in c ¼ 1:75 � 106 N. The soil adjacent to the beam is modeled using an
additional spring force, i.e., keqe ¼ kv

ffiffiffiffiffiffiffiffiffiffi
c=kv

p
.

It is observed from Fig. 14 that the peak-load and peak-load displacement can be predicted adequately well applying a
two-parameter model. However, on the post-peak branch, the continuity created by the second parameter spring, result
in a high residual stiffness of the structure. At this stage the shallow clay soil layer is likely to exhibit severe plastic yielding
due to the stress concentration at the crack front. To obtain a realistic response for the total load-CMOD curve, it would be
necessary apply more advanced foundation models, e.g. by extending the two-parameter to account for plastic yielding.

6. Conclusion

The use of a cohesive cracked-hinge model for simulating low-cyclic damage of cemented beam structures has been
investigated showing good performance. Implementation of the hinge into a beam element is relatively straightforward
and the contribution to the tangent stiffness matrix from each fiber is established following a general format, creating a ver-
satile tool, allowing for different types of softening laws and damage formats.

The analytical hinge model developed shows satisfying performance compared to integration over the full hinge segment.
Good fit is obtained using a relatively coarse discretisation of 10–30 fibers. Moreover, it is found that the analytical damage-
plasticity format implemented sufficiently captures the response of experimental cyclic uni-axial tensile tests.

The results obtained show that the proposed numerical hinge model adequately describe the cyclic response of a plain
concrete beam under three point loading. It is also found that the proposed hinge comply well with other numerical results
published in the literature, applying a cohesive zone model using the same cohesive model parameters.

Simulation of beams resting on soil foundation show that the hinge model captures the main structural response of
experimental beams. The hinge model resting on Winkler foundation does not describe the pre-peak behavior observed
in experiments adequately well, indicating that the soil model and the boundary conditions applied does not comply with
the test set-up. This highlights the influence from soil-structure interaction on the structural response of beams on soil. To
overcome the deficiency of the Winkler model, an interaction between independent springs is introduced, using a two-
parameter spring model, showing good performance.

The present paper demonstrates the implementation and application of a general cohesive crack-hinge model to describe
the fracture behavior of cemented beam structures. The results obtained is encouraging and show that the methodology is
well suited for practical use.
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Appendix A

A.1. Derivation of hinge tangent stiffness matrix

Interpolation between hinge fibers and integration over the strip height is given as

dNi ¼ t
Z yiþ1

yi

1
2

Di 1;1ð Þ þ Diþ1 1;1ð Þð Þdyþ
Z yiþ1

yi

1
2

Di 1;2ð Þ þ Diþ1 1;2ð Þð Þdy

¼ 1
2

Di 1;1ð Þ þ Diþ1 1;1ð Þð Þ yiþ1 � yi
� �

þ 1
2

Di 1;2ð Þ þ Diþ1 1;2ð Þð Þ yiþ1 � yi
� �1

2
yi þ yiþ1

� �
¼ Di 1;1ð Þd�e0 þ Di 1;2ð Þd�j

¼ @Ni

@�e0
þ @Ni

@�j

ðA:1aÞ

dMi ¼ t
Z yiþ1

yi

1
2

Di 2;1ð Þ þ Diþ1 2;1ð Þð Þdyþ
Z yiþ1

yi

1
2

Di 2;2ð Þ þ Diþ1 2;2ð Þð Þdy

¼ 1
2

Di 2;1ð Þ þ Diþ1 2;1ð Þð Þ yiþ1 � yi
� �1

2
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� �
þ 1
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Di 2;1ð Þ þ Diþ1 2;1ð Þð Þ yiþ1 � yi
� �1

3
y2i þ y2iþ1 þ yiyiþ1

� �
¼ Di 2;1ð Þd�e0 þ Di 2;2ð Þd�j
¼ @Mi

@�e0
þ @Mi

@�j

ðA:1bÞ
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where yi and yiþ1 are the position of each fiber depicted on Fig. 3. The sum of all contributions is included in the tangent
stiffness matrix similar to (15), i.e.

Dt ¼
Xn
i¼1

@Ni
@�e0

@Ni
@�j

@Mi
@�e0

@Mi
@�j

" #
ðA:2Þ

A.2. Implementation of foundation models

Based on the contribution to the variation in internal work dX, from the beam and the two-parameter foundation, and the
potential work of external forces dW from point- and surface loads, the principle of virtual work for the system can be
establishedZ

V
deTrþ duTkuþ dhTchdV ¼

Z
S
duT fdSþ

X
i

duT
i pi ðA:3Þ

where V is the structural volume, S is the surface area, du and dh is the displacement and rotational variations, respectively, f
is the surface traction vector, pi is a concentrated (nodal) load and dui is the associated (nodal) displacement variation. The
contribution of the second parameter spring is here given on a general form considering c as a rotational stiffness. In case of a
Winkler foundation type this latter term is omitted.

The beam-element and two-parameter foundation contribution to the internal nodal force, q, is then given by the
expression

q ¼
Z Le

0
BTrdxþ

Z Le

0
NT kh 0

0 kv

� �
Nvedxþ

Z Le

0
GTcIGvedx ðA:4Þ

where Le is the length of the element, ve is the global dof element displacements, B is the strain interpolation matrix and N is
the displacement interpolation matrix.

The beam-element and two-parameter foundation contribution to the tangential stiffness matrix, kt , is given by the
expression

kt ¼
Z Le

0
BTDtBdxþ

Z Le

0
NT kh 0

0 kv

� �
Ndxþ

Z Le

0
GTcIGdx ðA:5Þ

The matrix I ¼ 0 0
0 1

� �
is used to omit the axial terms in the second parameter interpolation matrix G. Where G is given as

G ¼ N0.
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Cemented materials in heavy duty pavement systems are subjected to complex 
loading conditions which cannot be treated by existing analytical-empirical met-
hods. For description of the fracture behavior of the cemented material, this the-
sis presents a general mechanistic framework for engineering applications. 
The models presented includes the most significant parameters that influences 
the structural response, i.e. soil-structure interaction and cyclic damage of the ce-
mented material. The obtained results shows that the methodology is attractive 
and well-suited for further developments and practical use, enabling a full me-
chanistic analysis of concrete and composite pavement structures, something 
which is not possible today. 

Asmus Skar

PhD Thesis

Department of Civil Engineering
2017

DTU Civil Engineering Report R-364  

Deterioration Models for Cement 
Bound Materials in Structural 
Design and Evaluation of Heavy 
Duty Pavements  

A rational approach to pavement analysis  

DTU Civil Engineering  

Technical University of Denmark  

Brovej, Bygning 118 

2800 Kongens Lyngby 

www.byg.dtu.dk 

ISBN 9788778779991 

ISSN 1601-2917 

D
eterioration M

odels for Cem
ent Bound M

aterials in H
eavy D

uty Pavem
ents 

A
sm

us Skar 


	Forside
	PhD Thesis - revised - Asmus Skar - 08042017
	I Introduction and Summary
	Introduction
	Background
	Behavior of cemented material
	Constitutive crack model
	Numerical methods for crack modeling
	Soil-structure interaction model
	Objectives of the thesis
	Outline of the thesis

	3-D cohesive finite element model
	Introduction
	Modeling framework
	Concrete block pavement model
	Large-scale experiments
	Influence of load position
	Summary of sensitivity studies
	Concluding remarks

	Cohesive cracked-hinge model
	Introduction
	The mechanics of the hinge model
	Implementation of hinge into beam element
	User-built finite element code
	Numerical analysis of beam fracture tests
	Implementation of hinge into plate element

	Cracked-hinge beam on soil
	Introduction
	Soil-structure interaction models
	Two-parameter coupled spring model
	Numerical simulation of one-way slabs on grade
	Evaluation of methodology
	Non-linear behavior of soil

	Cyclic fiber hinge model
	Introduction
	The mechanics of the fiber hinge model
	Tensile damage model
	Fatigue model
	Fiber hinge tangent stiffness matrix
	Numerical examples

	Conclusions and Recommendations
	Conclusions
	Practical applications
	Recommendations for future research

	Bibliography

	II Appended Papers
	 Paper I ''3-D cohesive finite element model for application in structural analysis of heavy duty composite pavements'', A. Skar & P.N. Poulsen. Published in: Construction & Building Materials, 2015 
	 Paper II ''Cohesive cracked-hinge model for simulation of fracture in one-way slabs on grade'', A. Skar & P.N. Poulsen & J.F. Olesen. Published in: International Journal of Pavement Engineering, 2017 
	 Paper III ''General cracked-hinge model for simulation of low-cycle damage in cemented beams on soil'', A. Skar & P.N. Poulsen & J.F. Olesen. Published in: Engineering Fracture Mechanics, 2017 


	Bagside



