Contents

Organisation 4

From the Head of Department 5

Selections from 2006: Education 7
 Teaching glass and glass structures 7

Selections from 2006: Innovation 8
 No need for oil in 2050? 8
 BYG•DTU and large ship diesel engines – A paradox? 9

Selections from 2006: Research 10
 The energy efficient window 10
 Full scale destructive load testing on a bridge in Sweden 11
 Greenlandic permafrost conditions – a geotechnical perspective 12
 Bringing the use of concrete to its fullest potential? 13
 Real estate strategies and building values 14

Publications 15
 Articles, ISI-indexed 15
 Journal papers, peer reviewed 16
 Books 17
 Book chapters 18
 Conference papers, peer reviewed 18
 Reports 24
 PhD theses 25
 MSc theses 26
 BEng theses 28

Key Figures 31
 Staff, education, research finances 31
Organisation

Study Programmes and Programme managers:

- Civil Engineering (MSc). Associate professor Kristian Hertz.
- Civil Engineering (BSc). Associate professor Per Goltermann.
- Architectural Engineering (BEng). Associate professor Kirsten Christensen.
- Civil Engineering (BEng). Associate professor Ole Mærsk-Møller.
- Arctic Technology (BEng). In Greenland, Associate professor Hans Peter Christensen.
 In Denmark, Associate professor Ole Mærsk-Møller.

Department of Civil Engineering hosts the following centres:

- IRS@BYG, The International Research School for Civil Engineering. Professor Stephen Emmitt.
- ARTEK, Arctic Technology Centre. Professor Arne Villumsen.
- C•PROSAM, Centre for Protective Structures and Materials. MSc Civil Engineer Benjamin Riisgaard.

The Advisory Board:

- Executive director Mette Lis Andersen, Københavns Kommunes Bygge- og Teknikforvaltning
- Development director Thomas Heldgaard, Rockwool A/S
- Executive director Peter Lundhus, Femern Bælt A/S - Sund og Bælt Partner A/S
- Executive director Klaus H. Ostenfeld, COWI A/S
- Senior advisor Jørgen Vorsholt, E. Pihl & Søn A/S
From the Head of Department

The Department of Civil Engineering, BYG•DTU, is a university institute within the building and construction sector.

Our mission is education, research, innovation and public sector consultancy. Through our work we contribute to the generation of social and commercial value.

Our vision is to become a leading European Civil Engineering Department and a preferred partner for companies, authorities and institutions in the building and construction sector.

The Department of Civil Engineering was established in 2001 through a merger of a number of smaller departments in order to unite the technical disciplines applied in a building or construction design process. Now six years later, it can be concluded that the merger is successful. However, results do not come of themselves. The Department of Civil Engineering has, since it was established, conducted a series of prioritised development steps for selected areas of initiative. Each step has raised the institute to an international university level within the selected areas:

Organisation
The Department established the organisational and administrative framework and together with our Advisory Board we developed an ambitious new Strategy for the institute. In 2007 all major strategic goals in the Strategy will be reached.

Staff renewal
Focus was on a large generational change: Twenty-three faculty including four full professors plus ten permanent technical staff members were employed. The generation change has established a strong research and technical staff with an internationally reputed research background and with large experience from construction and consultancy for industry and authorities.

National esteem
The institute has established a national position as a favoured partner in research and continued education. The master education programmes in Fire Safety and in Construction Management have consolidated as well sought continuing education programmes. The industry network LavEByg on energy efficient buildings, and the industry network C-Prosam on protective structures and materials, together with an increasing number of industry sponsored research and PhD projects document the growth in collaboration with the national civil engineering community.

Education
Since 2001 the bachelor and MSc programmes in Civil Engineering have been revised. The Department opened the new bachelor programme in Arctic Technology in 2001, and the new bachelor programme in Architectural Engineering in 2002. All education programmes have since 2004 complied with the Bologna declaration. From 2007 the bachelor in engineering (diplomingeniør) programmes will follow the CDIO (Conceive, Design, Implement and Operate) system of education developed by MIT, KTH, DTU and a number of other technical universities. From 2007 all MSc programmes will be taught in English.

Priority areas
Alongside with the development in relation to organisation, staff, national position and education the Department has increased the quality of our research, innovation and public sector consultancy. Based on the positive development since 2001, the Department is well prepared to engage in further initiatives in order to raise the international standing of the institute. Thus the priority areas for the coming years will be research, innovation and public sector consultancy at a high international level.
Research
In 2007 our focus on research quality will be enhanced. An international research evaluation conducted by an international panel of experts will establish the basis for improvements in research over the coming years. In the years to come the Department will increase its contribution to the international research organisations such as RILEM (International Union of Laboratories and Experts in Construction Materials, Systems and Structures) and CIB (International Council for Research and Innovation in Building and Construction) and network such as ECTP (European Construction Technology Platform).

Innovation
In 2007 the Department in collaboration with IPU has established an Innovation Centre in Civil Engineering. IPU is a DTU controlled company facilitating industry collaboration. The Innovation Centre will enhance the collaboration with industry and help to increase funding for our research infrastructure.

Public sector consultancy
The university merger in Denmark in 2006 has added Public Sector Consultancy to the University portfolio. The Department is well prepared to take on this new challenge.

I am confident that the Department of Civil Engineering will make its mark on the international research and education scene in the years to come.

Head of Department,
Jacob Steen Møller, PhD
Positive feedback from students and industry alike has made the test course in glass a regular part of the curriculum.

Load carrying structures made from glass give exciting possibilities both architecturally and from an engineering point of view. Glass structures can be very aesthetically pleasing, the transparency can be a significant asset and glass facades can be intelligently designed to allow for a maximum amount of daylight in the building. Though glass has many excellent properties as construction material, it is extremely brittle, the strength in tension is highly influenced by defects, and therefore the tensile strength is somewhat unreliable. Thus the design of structures using glass as structural material presents significant challenges. In particular care must be taken in mounting, fixing and joining glass elements.

Form test course to curriculum
In 2004 the need for consulting engineers with a background in glass and glass structures sparked the establishment of a special course in ‘Glass and Glass Structures’ in collaboration between Birch & Krogboe, Ove Aarup Consulting Engineers and BYG•DTU.

Now the course is a part of the regular teaching curriculum at the Department. The course contains an introduction to the structural use of glass and an overview of architectural aspects on the use of glass in buildings. Since it is essential for the students to be aware of the special properties of glass, production and the microstructure of glass is also dealt with. Glass types relevant in construction are dealt with: laminated glass, toughened glass as well as typical mechanical properties, specifications and safety aspects. Structural design issues include plates, beams, cable supported structures, fins, shells and membranes. Finally, structural connections are considered: adhesive joints as well as bolted connections. Invited lectures on topics such as indoor climate and safety in relation to glass structures are also given.

Student projects
The establishment of the course has initiated a significant amount of Master and Bachelor projects dealing with many of the still unresolved problems related to the use of glass as structural material: the stress distribution and strength in adhesive joints and bolted connections, the long and short term stiffness of laminated glass, reinforced glass beams and analysis of shell structures made entirely from glass – to mention a few.

The research challenge has also been taken up, and at this point in time two PhD students are working with glass research projects related to bolted connections in toughened glass and analysis of faceted shell structures.

Preparing for the future
No doubt glass structures will play a significant role in the future, and much development in both technology and design tools is expected for instance in new innovative multi-functional, intelligent facades with daylight regulating, insulation and load carrying capabilities combined. Educating students with a solid competence in glass is the best way to ensure that both the research and innovation capabilities at DTU as well as in the industry are in place to meet these future challenges.
Industry and science working together to reduce the energy demand from our biggest energy consumer - our buildings

LavEByg is a state-supported “Network on Integrated Low Energy Solutions in Buildings”, a network of knowledge institutions and professionals in the building industry. BYG•DTU is the project leader with professor in building energy Svend Svendsen in front. The main partners are: ICIEE, SBi, AAU and Teknologisk Institut.

The aim of LavEByg is to ensure that the great potential for energy savings (60-80% over the next 40 years) is achieved - both in connection with new buildings and with energy renovation of existing buildings. Through stimulation of research and development of the necessary technologies, the network tries to realize the vision of low-energy buildings with a good indoor climate, but without the need for fossil fuels.

Energy use from our buildings

The energy use in our buildings is about 40% of the total energy use in EU. Most of the energy is used for low temperature heating of rooms and domestic hot water but electricity is used for lighting, air conditioning, ventilation and other building services as well as all electrical equipment.

A sustainable development with no use of fossil fuels in the energy system may be realised by use of an economically optimised combination of extensive energy savings and use of renewable energy. The potential for energy savings in the building sector is very large and the technology for renewable energy supply of the buildings with heating and electricity is available.

The realisation of the energy savings in buildings is in focus in the EU Energy policy and especially in the EU Energy Performance of Buildings Directive (EPBD). Due to this directive a revolution is taking place in the way energy requirements are formulated in national building codes of EU.

How to save energy

With the implementation of the EPBD the focus has shifted from design of individual HVAC systems to integrated design of integrated building concepts, which allow for optimal use of natural or passive energy strategies (daylighting, natural ventilation, passive cooling, etc.) as well as integration of renewable energy supply. Thus, there is a need for integrated overall solutions regarding energy savings and energy supply.

Extensive energy savings and use of renewable energy can create an overall energy solution without fossil fuels. The basis for such a solution is to have new and existing buildings built or reno-

Integration of roof/ceiling construction and ventilation duct system in a low-energy house. A special rafter-solution makes it possible to install the ventilation ducts in the lower warm part of the ceiling construction instead of in the unheated attic (i.e. minimal heat loss).

Highly insulated and airtight low-energy house in Kolding (Seest). The house has a mechanical ventilation system with high efficient heat recovery.

Can it happen?

Extensive energy savings and use of renewable energy is now the general long term policy and strategy worldwide, and it is also the recommended path by the United Nations stated in the 2007 report on Buildings and Climate Change. But there is a great need to support the development of integrated low energy solutions for an optimal realization of low-energy buildings. This development is carried out in Denmark in the framework of LavEByg.

Secretary leader Henrik M. Tommerup,
Secretariat for LavEBYG
www.lavebyg.dk
The engines can be treated like any steel structures and at BYG•DTU we have the large equipment to handle the size.

BYG•DTU has for a period of almost 20 years been involved in a series of quite large Nordic research projects on fatigue in welded steel structures. These projects have had strong industry participation and financing by leading Nordic companies and Universities. All projects have had a considerable economical support from Nordic Innovation Center (Nordisk Industrifond).

BYG•DTU and MAN B&W
The last two projects have involved a close cooperation between the two Danish participants, MAN B&W Diesel and BYG•DTU. And the main topic for these investigations has been fatigue life of large ship diesel engines.

FROM AN IMMEDIATE CONSIDERATION IT SEEMS ILOGICAL THAT RESEARCH ON FATIGUE IN DIESEL ENGINES IS CARRIED OUT AT BYG•DTU. HOWEVER, THESE ENGINES ARE CARRIED OUT WITH THE MAIN PARTS AS LARGE WELDED STEEL STRUCTURES, AND WITH A TOTAL HEIGHT AS FOR A 4-STOREY BUILDING. AND WHEN STUDYING THE FUNDAMENTAL PROBLEMS IN CONNECTION WITH FATIGUE IN WELDED STEEL STRUCTURES, IT APPEARS THAT THE PHYSICAL AND MATHEMATICAL BASIS FOR FATIGUE CRACK INITIATION AND CRACK PROPAGATION IS INDEPENDENT OF THE TYPE OF STRUCTURE. THUS, THE RESULTS WHICH ARE OBTAINED IN STUDIES OF FATIGUE IN WELDED STEEL STRUCTURES IN DIESEL ENGINES, SHIPS OR AUTOMOBILES MAY AS WELL BE USED FOR MORE traditional civil engineering steel structures, as e.g. bridges, offshore structures or wind turbine towers.

Grinding the weld toes
BYG•DTU has carried out studies of the possibility for improvement of the fatigue life of welded steel structures by treatment of the weld toes by grinding. The results obtained showed that a considerable increase in fatigue life may be obtained by grinding the weld toes. If grinding is used, it will normally be carried out according to international recommendations. However, in this project an alternative type of grinding and its effect on the fatigue life was studied. The fatigue tests carried out demonstrated that the alternative type of grinding had at least as good fatigue life as the internationally recommended. And the advantage of the alternative type of grinding is that it saves about 30% of the machining time, which for these large structures has a considerable economical impact. In welded steel structures, a stress relieving by post-weld heat treatment is in some cases carried out to increase the fatigue life. The purpose is to remove harmful tensile residual stresses due to the welding. This has also traditionally been done for the welded structures for diesel engines, and with the large components in question this is a costly process. However, theoretical determination of the residual stresses indicated that favourable compressive residual stresses from the welding would develop at the critical areas with respect to fatigue crack initiation for the actual structures. The fatigue tests demonstrated this to be the case, since the as-welded test specimens were found to have significantly higher fatigue strength than the stress relieved specimens. Thus, a costly stress relieving could be avoided and at the same time a longer fatigue life was obtained.

The academic bonus
As well as having provided BYG•DTU income via BYG•innovation, which facilitates testing in the large laboratory a lot of academic rewards have been harvested as well. A strong network and very successful cooperation has been built up during these almost 20 years between leading Nordic industry companies and the involved universities. This is planned to continue in the years to come. The work has also fostered a large number of publications e.g. the latest project, Q-FAB, has resulted in totally more than 70 publications. Within Q-FAB, 8 international publications have been worked out in the MAN B&W Diesel/BYG•DTU project over the last 4 years.
Imagine windows which will contribute positively to the energy balance of your home in the heating season, provide your rooms with more light, and which require less maintenance.

The windows in a building are not just responsible for letting out most of the heat they also bring in energy through sunlight. Energy-wise, the challenge is to have the windows gain more energy from the sunlight than they lose through the glass and joints. In the summertime, this is easy because of the high temperatures and the many hours of sunlight. The real challenge lies in making a window that gives a positive result in the months where you normally will have to pay for heating up the building.

What are the principles?

Research projects funded by Villum Kann Rasmussen Fonden have, in combination with student projects, provided the window design, which can match the above specifications. The window consists of three single layers of glass glued together in a profile of glass-fibre reinforced polyester, which makes it strong, easy to maintain and well insulated. Three sheets of glass with hard low emittance coatings towards the air gap reduce the heat loss of the glazed part of the window to a minimum. The air in the cavities of the glazings is kept dry by an externally placed container with desiccant that can be regenerated. The window fitting is attached directly to the wall with a 3 mm frame sheet. Overall, the profile of the window has been reduced from 10 cm to only 2 cm to provide a better field of view from inside the building and to let in more light. This increased amount of light entering the building also means a substantial increase in solar energy compared to a traditional window.

Future challenges

There are still a lot of challenges left for having a product fit for the consumer market. The design of the windows may cause superheating in the summer time, however calculations made by BYG•DTU suggest ventilation during the night and outer shading for the south-facing windows as a possible solution. The research continues in cooperation with Fiberline A/S, a leading company in the production of fibre-glass reinforced polyester profiles.

The energy savings in a 180m2 house

<table>
<thead>
<tr>
<th>Window type</th>
<th>Glazing</th>
<th>Glass area of Window</th>
<th>Net energy contribution</th>
<th>Annual energy use of building</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional</td>
<td>2-layer glazing unit</td>
<td>73 %</td>
<td>-47 kWh/m²</td>
<td>87 kWh/m²</td>
</tr>
<tr>
<td>Slim alu/wood</td>
<td>2-layer glazing unit</td>
<td>82 %</td>
<td>-39 kWh/m²</td>
<td>85 kWh/m²</td>
</tr>
<tr>
<td>Passive house</td>
<td>3-layer glazing unit</td>
<td>66 %</td>
<td>-4 kWh/m²</td>
<td>74 kWh/m²</td>
</tr>
<tr>
<td>BYG•DTU</td>
<td>3 single panes</td>
<td>94 %</td>
<td>15 kWh/m²</td>
<td>69 kWh/m²</td>
</tr>
</tbody>
</table>

The new energy demands BR-95 lists that the energy use per m² heated room space must be no more than 82 kWh/m² per year. BYG•DTU’s window design provides the house with a positive net energy gain, which proves that the use of better windows makes it easy to bring your living space up to these demands and even to the 25% increase in the demands expected in 2010.
Full scale destructive load testing on a bridge in Sweden

BYG•DTU in collaboration with the Swedish rail authorities Banverket and the European founded project Sustainable Bridges seeks to bring more clarity around the shear problem and the shear capacity of existing concrete bridges.

In the early days, structures were designed by trial and error. This method gave eventually a structure, which succeeded in carrying the loads, but the high risk of a failure at some point of the building process was obviously the drawback. The development has led to generally accepted design criteria which, if properly used, should prevent failure. The failure is evaluated for different modes, i.e. shear and bending, and no failure should have occurred at the design load. The shear capacity is especially hard to determine due to analytical difficulties, and the shear failure is at the same time not desired as it is generally very brittle.

Strengthening

To be able to prevent a traditional bending failure and obtain a shear failure the bridge needed to be strengthened in flexure. The method chosen was Near Surface Mounted Reinforcement (NSMR) rectangular carbon fibre bars that was bonded with an epoxy adhesive in pre-sawed grooves in the concrete cover in the soffit of the bridge beams. The size of the grooves was 15 x 15 mm.

The strengthening design is based on calculations regarding the bridge’s original capacity, which was estimated to approximately 7 MN for the actual placement of the load. To obtain a shear failure, the bridge needed to be loaded up to approximately 10-11 MN. The strengthening design provided an additional flexural capacity of 4 MN, i.e approximately a 40 % increase in flexure. The additional 4 MN corresponded to 18 CFRP rods, 9 per beam, with a length of 10.0 m. The rods chosen were provided by Sto Scandinavia AB with the brand name Sto FRP Bar M10C. These rods consisted of a high quality carbon fibre with the modulus of elasticity of 250 GPa and a strain at failure of approximately 11 ‰.

The tests

The performance of the strengthening system and the effects of it were analyzed by monitoring these four quantities: temperature, strain distribution, deflection and load. The strain distribution was established by applying strain gauges both on the compressed concrete, tensile steel reinforcement and the CFRP rod. In addition strain was also monitored by FOS (Fibre Optic Sensors).

The bridge was loaded during two occasions, one time before and after it was strengthened.

The result

The first test ended at about 2 MN, at which the cracking load of the slab was reached. For the second test the bridge was loaded up to failure and at almost 12 MN the bridge failed and the load went back to zero.

At failure the CFRP rod reached a strain of approximately 8000 microstrain before the bridge failed in shear. The bending capacity was consequently enough to force the desired failure mode to occur. The utilization of the strengthening material was fairly high, around 70%. A “fishbone-pattern” was formed around the slot, indicating that the concrete surrounding the sawed slot was taking damage from the transferred shear force. However, no bond problem was noticed during the failure test. The test was considered as very successful.
Permafrost is a section of the subsurface in which the temperature is continually below 0°C year round. Research helps with risk assessments for urban areas with respect to the predicted climatic changes. The much debated global warming effect is expected to cause a 2.8 to 7.8°C rise in the mean annual air temperature in the arctic region over the coming century, according to the fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Such an increase in temperature is expected to cause severe changes in the ground thermal regime and hence cause permafrost degradation. The resulting instability and settlement will severely affect existing roads, airports and buildings as well as large infrastructure projects currently under development.

Permafrost mapping with geophysical methods

Our current research is aimed at describing permafrost conditions in West Greenland and at developing risk assessments for urban areas with respect to the predicted climatic changes. This goal is pursued through geotechnical and geological investigations and establishment of ground temperature monitoring stations. Geophysical measurements have proven to be a valuable tool in this investigation. We are using an integrated approach, where the interpretation of geotechnical boreholes is extended to the surrounding areas by means of geophysical techniques. These are non-invasive surface based measurements that map the physical properties of the subsurface materials. With reference to the borehole information, the mapped distribution of physical properties can be used to establish material types, layer boundaries and whether the material is frozen or unfrozen. Especially a combination of electrical and ground penetrating radar measurements have proven powerful in determining the lateral distribution of frozen sediments and the annual summer thaw depth. Electrical measurements are conducted by injecting a current into the ground using two electrodes at the ground surface, and measuring the resulting difference of potential between two additional electrodes. By combining a number of measurements with different electrode geometries, the resistivity structure of the subsurface can be obtained through a mathematical inversion procedure. As most of the current is conducted through the pore water in the sediments, the effect of frozen ground will be an increased resistivity compared to similar unfrozen material.

Not only natural water flow and global warming may cause permafrost thawing. Similar effects may occur below buildings that are not properly insulated or by the changes in albedo and insulation properties of the topsoil and vegetation induced by the construction of roads or airstrips. In regions with high ground ice content, this will lead to instability and settlement of the subsurface. Thus, the knowledge of permafrost conditions is of utmost importance in the planning of construction projects in the arctic.
Bringing the use of concrete to its fullest potential?

One way is through microstructure manipulation. Research has brought us further down the road in the understanding of how this may be done.

The microstructure of concrete is of paramount importance for almost all performance aspects of the material. Therefore, the ability to model both initial and hydrated microstructure is a key to the subsequent understanding and prediction of many macroscopic properties of the material. Correct modelling of the initial microstructure requires knowledge of, among others, the forces acting on and between the constituent particles. In the hydrated state, the pore structure of a cement-based material is often assessed experimentally. However, assessment is always based on a number of assumptions and simplifications. In the project, theoretical and experimental investigations of the effect of inter-particle forces on the consolidation behaviour of fresh cement-based materials have been carried out. Furthermore, the basis for interpretation of results obtained through an experimental method for pore structure characterization is assessed.

Three forces apply

The three main inter-particle forces acting in the studied systems, the van der Waals force, the electrostatic force, and the steric force were theoretically evaluated, and changes in inter-particle forces were experimentally quantified. The changes were induced by the addition of different so-called superplasticizers. Superplasticizers are polymers that today are commonly used in concrete production to obtain a material with specific flow properties. The applied superplasticizers change the steric inter-particle force by adsorbing onto the cement particle. This helps prevent the particles from agglomerating, thus enabling them to rearrange during consolidation and form a dense network with a given packing density. The experiments verified, that changes in superplasticizer structure were reflected by changes in the obtained packing density and thus the inter-particle force.

Low temperature experiments

Assessment of the pore structure in a hardened cement-based material may be carried out experimentally, e.g. by the Low Temperature Calorimetry (LTC) equipment at BYG•DTU. The principle of LTC is based on that the freezing of liquid is an exothermic process and that at subfreezing temperatures a solid meniscus exists, whose curvature lowers the free energy of the pore liquid and induces a freezing point depression. When performing LTC heat flow to and from a saturated porous material is measured while cooling and heating is carefully controlled. The amount of ice formed or melted at a given temperature can be calculated from the heat flow curves. This information may be used to estimate threshold pore sizes or the pore size distribution in cement-based materials.

When performing LTC, heat flow to and from a saturated porous material is measured while cooling and heating is carefully controlled. The amount of ice formed or melted at a given temperature can be calculated from the heat flow curves. This information may be used to estimate threshold pore sizes or the pore size distribution in the material.

PhD Ane Mette Kjeldsen, Section for Construction Materials
www.byg.dtu.dk/english/cm
Developing theories of Facilities Management with studies of DR’s building history during the last 80 years.

Facilities Management (FM) is a new discipline and has recently been included in BYG•DTU’s research agenda. To understand how FM has originated, this research project has focused on the historical development of the roles as building client and building operator, and how these functions within the last 10-20 years have emerged into an integrated FM function together with various building related service functions. To understand the relations between building client and building operator, some theories, that connect the process of developing new buildings with the life cycle process of buildings in use, have been implemented and developed. These theories concerns real estate strategies and values of buildings.

Studying DR

The empirical basis of the project has been a longitudinal case study of the buildings of DR (Danish Broadcasting Corporation) during the corporation’s 80 years history as a public service broadcaster of radio and television in Denmark. The researcher had personal experience from 14 years of employment in DR. The personal knowledge has been supplemented by literature and archive studies, interviews among former building managers in DR and consultants for DR, and a questionnaire survey about DR’s buildings among present and former managers in DR.

Real estate strategies and building values

In relation to real estate strategies seven periods can be identified during DR’s history with different strategies, and these have generally changed between an incremental strategy and a value based strategy. Only a period in the 1970’s can be characterized by a standardization strategy, and this followed the appointment of the first professional building client internally in DR. Each of the three periods with a value based strategy included the start of major new headquarters: Radiohuset, TV-Byen and DR Byen.

A questionnaire survey shows that ‘value as built’ is given considerably higher priority than ‘value over time’. It also shows that building managers give higher priority to ‘use value’ than general managers. They however give higher priority to cultural value than building managers. This has important consequences for the way building managers communicate with top management about building investments, and how building consultants communicate with their clients.

DR’s buildings is a combination of cultural important and technical complex buildings. The value aspects have had high priority in all building projects and in most cases there have been a good balance between cultural and use value. Cost and time have been given very little priority and this gives some background for understanding the present problems with cost overrun in the construction of DR Byen.

Associate professor Per Anker Jensen, Section for Planning and Management of Building Processes

www.byg.dtu.dk/english/pmbp
Articles
- ISI-indexed

Christensen, Iben Verneugren; Pedersen, Anne Juul; Ottosen, Lisbeth M.; Ribeiro,Alexandr

Dammann,Sven; Elle, Morten

Engbæk, Jakob; Schiøtz, Jakob; Dahl-Madsen, Bjarke; Horch, Sebastian

Guang,Ye; Lura, Pietro; van Breugel,K

Hertz, Kristian Dahl

Ingeman-Nielsen, Thomas; Baumgartner, François

Ingeman-Nielsen, Thomas; Baumgartner, François

Jensen, Ole Mejlbø; Lura, Pietro

Jensen, Pernille Erland; Ottosen, Lisbeth M.; Ferreira,Célia; Villumsen, Arne

Jensen, Pernille Erland; Ottosen, Lisbeth M.; Pedersen, Anne Juul

Jensen,Find Molhoff; Falzon,B.G.; Ankersen,J.; Stang, Henrik

Kepp,Rikke; Struve,Anke; Christiansen,Christian; Lund-Hansen,Lars; Christensen, Mistle; Morten Holtegaard; Vang,Torben

Larsson,Bengt; Sundqvist,Jan; Emmitt, Stephen

Lura, Pietro; Bentz,D.P.; Lange,D.A.; Kovler,K.; Bentur,A.; van Breugel,K

Meyer, Niels I

Nordin,H.; Täljsten, Björn

Nørgaard, Jørgen

Nyström, Gunvor Marie; Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

Olesen, John Forbes; Østergaard, Lennart; Stang, Henrik
Ottoeen, Lisbeth M.; Lepkova, Katarina; Kubal, Martin

Ottoeen, Lisbeth M.; Lima, Ana Teresa; Pedersen, Anne Juul; Ribeiro, Alexandra B.
Electrodialytic extraction of Cu, Pb and Cl from municipal solid waste incineration fly ash suspended in water In: Journal of Chemical Technology and Biotechnology, vol: 81 (4), pp. 553-559 (2006).Wiley

Pedersen, Anne Juul; Ottoeen, Lisbeth M.

Rojo, Adrian; Hansen, Henrik K.; Ottoeen, Lisbeth M.

Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

Thygesen, Lisbeth Garbrecht; Bilde-Sørensen, Jørgen; Hoffmeyer, Preben

Tommerup, Henrik M.; Svendsen, Svend

Walter, Rasmus; Østergaard, Lennart; Olsen, John Forbes; Stang, Henrik

Emmitt, Stephen

Enochsson, O.; Lundqvist, J.; Täljsten, Björn; Rusinowski, Piotr; Olofsson, T

Koch, Christian; Buser, Martine

Koverdysnvit, Vit; Korsgaard, Vagn; Rode, Carsten

Löfgren, Ingemar; Olsen, John Forbes; Flansbjer, Mathias

Ottosen, Lisbeth M.; Arevalo, Eduard; Stichnothe, Heinz; Calmano, Wolfgang

Ottosen, Lisbeth M.; Jensen, Pernille Erland; Battisti, Achille De

Ottosen, Lisbeth M.; Villumsen, Arne
Books

Emmitt, Stephen; Gorse, Christopher
Barry’s Advanced Construction of Buildings.

Emmitt, Stephen; Olie, John; Schmid, Peter
Principles of Architectural Detailing

Foged, Niels Nielsen; Schuppener, Bernd; Powell, John; Escario Urbarri, Ventura; Frank, Roger; Smits, Maarten; Melzer, Klaus; Magnan, Jean Pierre; Bohac, Jan
Eurocode 7 Geotechnical design - Part 2: Ground investigation and testing : EN 1997-2 CEN/TC 250 BSI. - BSI : CEN/TC 250, 2006 (pp. 192)

Jensen, Ole Mejlhede; Geiker, Mette Rica; Stang, Henrik

Jensen, Ole Mejlhede; Lura, Pietro; Kovler, Konstantin

Jensen, Per Anker

Jensen, Pernille Erland; Ottosen, Lisbeth M.; Felland, Anne-Lene; Villumsen, Arne
The Greenlandic Environment : Pollution and Solutions. - Lyngby : Department of Civil Engineering, technical University of Denmark, 2006 (pp. 105)

Li, Victor; Fischer, Gregor

Ovesen, Niels Krebs; Fuglsang, Leif D; Bagge, Gunnar

Quintiere, James

Sacks, R.; Bertelsen, Sven

Scheublin, Frits; Pronk, Arno; Prins, Matthijs; Emmitt, Stephen; den Otter, Ad

Täljsten, Björn; Carolin, A

Täljsten, Björn; Hejl, A.; James, G

Täljsten, Björn; Sand, B.; Rusinowski, Piotr
Shear and Peeling Stresses at the End of Concrete Beams Strengthened with CFRP Laminates In: ASCE (2006).

Nørgaard, Jørgen; Christensen, Bente Lis

Roels, Staf; Janssen, Hans

Roels, Staf; Janssen, Hans
Book chapters

Bagge, Gunnar

Goltermann, Per

Teknisn Ståbi i Letbetonkonstruktion In: Teknisn Ståbi 20 udg Nytt Teknik forlag, 2006

Jensen, Hans Thorkild

Krogsbøll, Anette Susanne; Hansen, Bent

Conference papers - Peer Reviewed

Andersen, Elsa; Furbo, Simon

Andersen, Elsa; Furbo, Simon

Andersson, Niclas; Andersson, Pernille

Asferg, Jesper L.; Poulsen, Peter Noe; Nielsen, Leif Otto

Modeling of Crack Propagation in Concrete Applying the XFEM Presented at: EURO-C 2006 Computational Modelling of Concrete Structures. Mayrhofen, Austria, 2006 In: Proceedings of EURO-C 2006 Computational Modelling of Concrete Structures

Asstrup, Thomas; Damkilde, Lars

Asstrup, Thomas; Jønstrup, Claus; Kristensen, Kasper; Olesen, John Forbes; Hoffmeyer, Preben

Bergström, M.; Täljsten, Björn

Bergström, M.; Täljsten, Björn

Structural Health Monitoring of degrading concrete beams in a laboratory environment Presented at: Third International Conference on FRP Composites in Civil Engineering (CICE’06). Miami, Florida, 2006 In: Proc. 3rd Int. Conf. on FRP Composites in Civil Engineering (CICE’06), pp. 335-338-Miami, 2006
Geiker, Mette Rica; Behm, Anja; Kjeldsen, Ane Mette

Geiker, Mette Rica; Nielsen, Erik Pram

Golsermann, Per

Hansen, Thomas

Hansen, Thomas

Hejll, A.; Täljsten, Björn; Carolin, C.

Hens, Hugo; Carmeliet, Jan; Roels, Staff.
Janssen, Hans

Ingeman-Nielsen, Thomas

Ingeman-Nielsen, Thomas

Janssen, Hans; Carmeliet, Jan

Janssen, Hans; Carmeliet, Jan

Jensen, Ole Mejllhe

Jensen, Ole Mejllhe

Jensen, Per Anker

Jensen, Per Anker

Jensen, Per Anker

Jensen, Pernille Erland; Ottosen, Lisbeth M.; Allard, Bert
Jensen, Pernille Erlend; Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne
Electrodiaylic Remediation of Municipal Solid Waste Incineration Fly Ash from Nuuk Incineration Plant

Koch, Christian; Alsdorf, Morten; Sander, Dag
Coaching at the Building Site – A Feasibility Study

Koch, Christian; Buhl, Henrik
Facilitating project organised knowledge work –do clients drive organisational change in consulting engineering?

Koch, Christian; Haugen, Tore
Can the Skipper Ride the Storm? : The State as ICT-Client in Danish Construction

Koch, Christian; Larsen, Casper Schultz
Quality in Construction - A Supply Chain Perspective

Koch, Christian; Simonsen, Rolf
Operations Strategy and –Innovation? -A Contractor Implementing Lean

Koch, Christian; Vogelius, Peter
Evaluation of Web and PDA-based Quality Assurance on a Building Site

Krogsbøll, Anette Susanne; Fuglsang, Leif D
Physical and numerical modelling of earth pressure on anchored sheet pile walls in sand

Lura, Pietro; Durand, Felix; Jensen, Ole Mejlhede
Autogenous strain of cement pastes with superabsorbent polymers

Lura, Pietro; Durand, Felix; Loukili, Ahmed; Kovler, Konstantin; Jensen, Ole Mejlhede
Strength of cement pastes and mortars with superabsorbent polymers

Lura, Pietro; Jensen, Ole Mejlhede
Measuring techniques for autogenous strain of cement paste
Lara, Pietro; Mazzotta, G.; Rajabi, F.; Weiss, W.J.
Evaporation, settlement, temperature evolution, and development of plastic shrinkage cracks in mortars with shrinkage-reducing admixtures
Presented at: ConcreteLife’06, 2006 In: Int. RILEM-JCI Seminar on Concrete Durability and Service Life Planning (ConcreteLife’06), pp. 203-213. Ein-Bokek, Israel, 2006

Moller, Per; Geiker, Mette Rica
The virtual classroom

Mortensen, Lone Hedegaard; Rode, Carsten; Peuhkuri, Raut Hannele
Effect of airflow velocity on moisture exchange at surfaces of building materials

New CHBDC Design Provisions for Fibre Reinforced Structures

Nielsen, Susanne Balslev; Jensen, Jesper Ole; Hoffmann, Birgitte; Elle, Morten
Practical Implementation of Sustainable Urban Management Tools

Norling, Casper Roland; Rode, Carsten; Svendsen, Svend; Kragb, Jesper; Reimann, Gregers Peter
A low-energy building under arctic conditions -- a case study

Ortossen, Lisbeth M.; Pedersen, Anne Juul

Peuhkuri, Ruut Hannele; Rode, Carsten;
Moisture buffer value: A comprehensive analysis of essential parameters

Rode, Carsten; Peuhkuri, Raut Hannele;
The Concept of Moisture Buffer Value of Building Materials and its Application in Building Design

Rode, Carsten; Peuhkuri, Raut Hannele;
Woloszyn, Monika
Simulation Tests in Whole Building Heat and Moisture Transfer

Roels, Stef; Jansen, Hans; Carmeliet, Jan; de Wit, Martin
Hygric buffering capacities of uncoated and coated gypsum board

Rusinowski, Piotr; Enocsson, O.; Taljsten, Björn
Numerical analysis of two-way concrete slabs with openings strengthened with CFRP
Pease, Bradley Justin; Geiker, Mette Rica; Weiss, Jason; Stang, Henrik
Results of Questionnaire on the Effect of Cracks on Durability of Reinforced Concrete Structures.
Lyngby, Denmark: DTU, 2006 (pp. 5)

Pedersen, Anne Juul

Pedersen, Elsebet Frydendal

Rode, Carsten; Borchersen, Egil; Fan, Jianhua; Furbo, Simon; Kragh, Jesper
Lavenerghuset i Sisimiut: Notat om aktiviteter udført som led i KVUG-projekt: Indlejring af erfaringer fra lavenerghus i Sisimiut. BYG DTU, 2006 In: Sagsrapport SR 06-13

Rode, Carsten; Borchersen, Egil; Fan, Jianhua; Furbo, Simon; Kragh, Jesper

Rode, Carsten; Peuhkuri, Ruut Hannele; Time, Berit; Svennberg, Kaisa; Ojanen, Tuomo
Moisture Buffer Value of Building Materials

Sandberg, Bo; Odgaard, Gunde;
Lubanski, Nikolaj; Bonke, Sten; Pedersen, Elsebet Frydendal
Free mobility and EU’s enlargement: Migration of the construction workers after May 2004 ISBN: 87-7877-144-7 In: BYG Rapport R-081

Tommerup, Henrik M.; Nørgaard, Jørgen
Elbehovet til cirkulationspumper i én- og tofamiliehuse, nu og i fremtiden BYG DTU, 2006 (pp. 45) ISBN: 87-7877-206-4

Täljsten, Björn; Carolin, C.
Undersökning av friktionsförband.-. 16ed. -Luleå: Luleå Tekniska Universitet, 2006 (pp. 84)

Villumsen, Arne
Lavenerghuset i Sisimiut: Statusrapport nr. 6, September 2006. BYG DTU: Sanaartornermik Ilinniarfi k og DTU, 2006 (pp. 4)

Vogelius, Peter

Xu, Xibin
Test and theoretical research of prestressed concrete berthing piles ISBN: 87-7877-210-9 In: BYG Rapport R-139

PhD theses

Ingeman-Nielsen, Thomas
Geophysical Techniques applied to permafrost investigations in Greenland, 2006 (pp. 179)

Jensen, Pernille Erland
Application of Microbial Products to Promote Electrodialytic Remediation of Heavy Metal Contaminated Soil, 2006 (pp. 150) ISBN: 87-7877-193-5

Jørgensen, Bo
Integrating Lean Design and Lean Construction: Processes and methods, 2006 (pp. 286)

Emmitt, Stephen
Walter, Rasmus
FRC-Steel Composite Bridge Deck: A Multi-Scale Modeling Approach, 2006

Xu, Xibin
Test and Theoretical Research of Prestressed Concrete Berthing Piles, 2006 (pp. 113)
MSc theses

Alsdorf, Morten
Coaching in the construction
Koch, Christian, Toben Klitgaard

Andersen, Christoffer, Peter Lund Christensen
Feasibility study – post-tensioning of concrete structures with CFRP tendons
Georgakis, Christos

Andersen, Signe Bondo
OPP in Healthcare
Koch, Christian

Bak, Christian, Alan Øskan
The plastic tension field method for steel girders
Poulsen, Peter Noe, Jesper Garth

Bak-Kristensen, Kirstine Laurine
Load modelling on large bridges
Goltermann, Per, Leif Otto Nielsen

Banghøj, Klaus, Thomas Brink Laursen
Vibration control of symmetrical or near-symmetrical structures
Georgakis, Christos

Barrau, Xavier
Seismic performance of base-isolated rail bridges
Georgakis, Christos

Benito, Sergio De Lucas
Design a low energy office building in Spain
Svendsen, Svend

Bertelsen, Troels E.K., Johan S. Mathiesen
Industriel construction
Jensen, Per Anker

Biskopstø, Regin Kongsbak,
Feasibility of carbon-fibre cables on long-span cable-stayed
Georgakis, Christos, Bonke, Sten

Brix, Susanne, Ditte Alm
Non Destructive Testing of Building Materials – with Special Focus on Natural Stones in Outdoor Exposure
Hansen, Kurt Kielsgaard, Beng Grelk, Ramboll

Brolund, Axel D.
Modelling of ignition and flame spread phenomena in thin and thick materials
Sørensen, Lars Schøtt

Burgos, Christian Gomez
Design of facades and ventilation systems for energy efficient office buildings
Svendsen, Svend, Peter Weitzmann, Toke Rammer Nielsen

Carlquist, Anneli E.L.
Impact of heating system design on the performance of a solar combsystem
Furbo, Simon, Alexander Thürl

Chrillesen, Casper, Ulrich Jørgensen
Development of Carlsberg area in Valby
Hoffmann, Birgitte, Morten Elle

Christensen, Jesper Høgendal
Product development of low energy houses
Svendsen, Svend

Christiansen, Michael Gould, Jesper Esmann
Emborg
Shear failure of fire exposed concrete beams
Olesen, John Forbes

Conejos, Marta del Val
Strain rate properties for cement based composites
Stang, Henrik, Benjamin Riisgaard

Czuba, Dennes John, Tim Andersen
Change Management
Koch, Christian

Elverdam, Peter, Kira Hvam
Redesign of one-family House
Jensen, Per Anker

Fazlic, Nidzara
Anchoring in lightweight concrete elements
Goltermann, Per

Fritt-Rasmussen, Janne
Oil Pollution in the Arctic
Villumsen, Arne

Hansen, Casper Roland
Indoor climate in Greenlandic homes
Rode, Carsten

Hansen, Jesper Holm
Galloping induced vibrations
Georgakis, Christos

Henriksen, Kåre
Special report on progressive collapse
Kjærbye, Per Oluf

Howe-Rasmussen, Helle
Non Destructive Testing of Building Materials – with Special Focus on Natural Stones in Outdoor Exposure
Hansen, Kurt Kielsgaard, Beng Grelk, Ramboll

Ingolfsson, Einar Thórd
Pedestrian induced vibrations of line like structures
Georgakis, Christos, Jeppe Jønson

Jacobsen, Thomas Krag, Jacob Clemmensen
OPP i brobyggeri
Koch, Christian

Jakobsen, Annette H.W.
Implementation of the vision: Copenhagen as a creative city
Nielsen, Susanne B.

Jansson, Jacob
Assessment of concrete bridge decks affected by alkali silica reactions
Geiker, Mette, Kirsten Eriksen, Ramboll

Jensen, Gitte Dorthea, Jens Hansen Petersen
Digital construction
Koch, Christian

Jensen, Sara Ahle
Corrosion of reinforcement, identification of corrosion products
Geiker, Mette

Jessen, Jens Christian
Mixed mode fracture of concrete structures
Poulsen, Peter Noe

Johnsen, Nicolai L.
Management and labour cultures
Bonke, Sten, Elsebet F. Pedersen

Jørgensen, Ditte Marie
Natural ventilation with cooling and heat recovering
Svendsen, Svend, Peter Weitzmann

Jørgensen, Ditte Marie
Use of IESVE-program for natural ventilation(Forprojekt)
Svendsen, Svend, Peter Weitzmann
Jørgensen, Kasper C., Jonas H. Christoffersen
Modelling of the Alfred P. Murrah building bombing
Poulsen, Peter Noe, Benjamin Riisgaard, Per grove Thomsen, IMM

Jørgensen, Natalie A., Rebecca S. Bjerre
Refurbishment – alternative methods with steelbuilding system
Engelmark, Jesper, Henning Agerskov

Jürgensen, Thorsten, Morten H. Christiansen
Strengthening of concrete beams in shear with CFRP grids
Täljsten, Björn, Peter Noe Poulsen

Kinnberg, Andreas K., Rikke Bille
Fire exposed carbon fiber reinforcement
Hertz, Kristian

Kisbye, Henrik
Barriers and possibilities for dissemination of solar heat
Elle, Morten

Knorrenborg, Anders
Discrete cohesive cracks in concrete structures
Nielsen, Leif Otto

Krag, Anja
Rural areas in Denmark – with focus on Lolland-Falster
Elle, Morten

Lind, Claus
Building structures for supermarket
Agerskov, Henning

Thorsteinsson, Ingimundur, Jökull Pálmar Jónsson
Load-bearing walls of light weight concrete with combined loading
Goltermann, Per

Lyse, Carsten, Kenneth Hedenskog Borbjerggaard
Statically and cyclically loaded monopiles in soft clay
Hededal, Ole, Caspar Thrane Leth

Maburi, Susi, Dennis C. Pedersen
Analysis of a quasi-brick structure
Jönsson, Jeppe, Leif Otto Nielsen

Madsen, Morten Werner
Construction management and performance in Thailand

Mikkelsen, Kristian K.
Systems for bracing of load-carrying structures
Poulsen, Peter Noe, Jesper Garth

Mortensen, Katrine Olesen
Floating Windmill Foundations
Hededal, Ole, Harry Bingham, MEK, and Helge Gravesen, Carlbro

Mougaard, Jens Falkenskov
Analysis of cracked concrete structures using partial cracked XFEM elements
Poulsen, Peter Noe, Leif Otto Nielsen

Mouritsen, Ragnar Karbech
Moisture conditions and indoor climate in arctic dwellings
Rode, Carsten

Nielsen, Christian T.
Prefab Roof Units
Kjærbye, Per Olaf, Arne Egerup

Nielsen, Kenneth Kevin
Smooth particle hydrodynamic modelling of fiber reinforced concrete subjected to blast load
Georgakis, Christos

Nielsen, Rasmus Dahl
Dream House Production
Koch, Christian

Olsen, Peter K., Torbjørn Ærenlund
Integrated district heating systems for low energy houses
Svendsen, Svend

Pade, Eilig
Parameter study based on jointed limestone – with focus on tunnel structures in the "Øresund" region.
Foged, Niels, Ole Hededal

Qaddoura, Hala H.
Tuborg Havnepark
Kjærbye, Per, Dr. Kuldeep Virdi, external

Reynisson, Stefan
Strengthening of concrete beam with CFRP
Täljsten, Björn, Peter Noe Poulsen, Fedja Arifovic

Ruggiero, Caterina, Laura Huntington Villemoes
Ecotoxicology in Denmark and Greenland
Villumsen, Arne, Ingrid Dahlöf, DMU

Schwarz, Frank, Daniel Egg Lyng Justesen
Structural Design and Modelling of High Rise Buildings
Kjærbye, Per Olaf, Dr. Kuldeep Virdi, England

Segaard, Christine, Morten de la Motte
Corrosion Monitoring of Concrete Structures – Evaluation of Methods
Geiker, Mette R., Per Goltermann

Uyar, Birol
Structural use of glass
Olesen, John Forbes, Henrik Stang

Westegaard, Dorte M.
Bypass east of Nykøbing Falster
Brock, Niels

Yurokov, Dimitar Nikolaev
Rock Mechanical Modelling with Reservoir Applications done by PLAXIS
Hededal, Ole, Niels Foged
BEng theses

Bach, Karina Skovborg F., Kamilla Due
Risk Management
Andersson, Niclas, Niels Falck, SKANSKA

Beenfeldt, Maria, Ivan Blom
The Implementation of the Digital Building at Contractors
Jensen, Per Anker

Birkholm, Jeanette, Inooraq Brandt
Permafrost foundations in Thule
Foged, Niels and Sisimiut Kommune

Christensen, Lars K., Jon Petersen
Reused material in cold asphalt – the road of the future?
Stang, Henrik, Jan Jansen, ekstern

Duckert, Gitte
Methods for Determination of the Energy Performance of Dwelling with floor Heating
Weitzmann, Peter

Dzankovic, Elijan
Building Services
Jensen, Hans Thorhild, Børge Howald Petersen

Feddersen, Jesper
Reduction of Defects in Building Production
Bonke, Sten, Knud Christensen

Flyvholm, Jonas Langer, Kasper Stoger
Nachman
Buildingsmodelling According to “Sketch for 3D Workmethods” as Part of the Digital Foundation, DDB
Vestergaard, Flemming

Froberg, Iben Lyck
Moisture Distribution in an Exterior Wood Wall Construction
Hansen, Kurt Kielsgaard, Preben Hoffmeyer

Gad, Rune
Engineering Design of Alterations in apartment Block
Kjaerbye, Per, Arne Egerup

Gottlieb, Sara Wisbech, Rasmus Tofte
Klinkvort
Bubyan Sea Port Roads
Bagge, Gunnar, Niels Holck

Hansen, Anja J., Mette Thyregod
Examination of Tension Connection with Selected Angle Brackets from SIMPSON Strong-Tie
Traberg, Soren

Hansen, Sarah Heiberg, Irene Wilner Bergholt
School of the Future
Kjaerbye, Per, Lotte Bjerregaard Jensen

Hansen, Stine Steensby, Signe Raymond Arnkliit
New Housing in Lithuania
Kjaerbye, Per, Morren Toft Jensen

Hemmingssen, Rene H., Johnny Larsen
Timber Houses with Several Floors
Kjaerbye, Per

Henriksen, Maria
Roof Structures with long Spans
Kjaerbye, Per

Holm, Mette
The Aesthetic Appearance of Concrete Surfaces
Geiker, Mette

Jensen, Dennis P. Sønderby, Niels Duvander
Method for efficient design of optimized of low energy office building.
Svendsen, Svend

Jessen, Mette Højgaard, Ida Lysbech Madsen
Ventilation of Office Building with Respect to Energy
Nielsen, Toke Rammer

Johnsen, Eva Ehlig, Ulrik Pedersen
Design of New Energy efficient Window
Svendsen, Svend

Jonsso, Eva Maria
Asbest Renovation
Engelmark, Jesper, Sten Bonke

Jorgensen, Anette G.
Partnering in Construction
Bonke, Sten

Jorgensen, Micahael, Martin Veas Nielsen
Upgrading an Existing Building with regard to Energy and Function
Nielsen, Toke Rammer

Karlsen, Ina S. Hertz
The Workplace of the Future
Koch, Christian, Anders Munck

Krogsgaard, Helle, Niels Jakob Magnussen
Structural Alteration of Existing Building for Alternative Use
Olesen, John Forbes, Carsten
Munk Plum, Anders Munck

Krogsgaard, Helle, Niels Jakob Magnussen
Structural Alteration of Existing Building for Alternative Use
Olesen, John Forbes, Carsten
Munk Plum, Anders Munck

Lahiri, Said, Edita Talic
Bridge and Steel Joint Exposed to Artic Climate
Stang, Henrik, Christos Georgakis

Larsen, Askir Selch
Handing-over Procedure
Andersson, Niclas, Knud Christensen

Larsen, Michael R., Fatma Yalcin
Design of Timber Based House
Kjaerbye, Per

Lauridsen, Kim Guldberg, Martin Sanderhoff
Analysis of Composit Beam
Poulsen, Peter Noe, Jesper Gath

Lauridsen, Sune Tang, Mikkel Christiansen
Bracing Systems for Buildings
Kjaerbye, Per, Niels Holck, MEK

Lind, Peter, Marek Dusan Calov
Design of an 8-storeys House Building
Kjaerbye, Per

Lund, Mikkel Vristsen, Martin Gerstrom
Multistory House in Solid Wood
Traberg, Soren

Lojmand, Trine, Anne Sofie Overgaard
Tile, Leca etc. Utilized in Greenlandic Building Industry
Vilumsen, Arne

Lovschal, Anders
The Workplace of the Future
Koch, Christian, Anders Munck

Marcher, Jens C.A., Mikkel H. Cordtz
Usability of Key Performance Indicators in the Construction Industry
Koch, Christian
Staff

As of December 31 2006

<table>
<thead>
<tr>
<th>Category</th>
<th>2006</th>
<th>2005</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professor</td>
<td>7</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>Associate Professor</td>
<td>46</td>
<td>38</td>
<td>44</td>
</tr>
<tr>
<td>Assistant Professor</td>
<td>10</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Other VIP</td>
<td>9</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>PhD students</td>
<td>37</td>
<td>44</td>
<td>40</td>
</tr>
<tr>
<td>Total</td>
<td>109</td>
<td>112</td>
<td>114</td>
</tr>
<tr>
<td>Technical and Administrative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Academic</td>
<td>11</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Clerical</td>
<td>13</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Technician</td>
<td>18</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Other TAP</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>50</td>
<td>48</td>
</tr>
<tr>
<td>Total department staff</td>
<td>156</td>
<td>162</td>
<td>162</td>
</tr>
</tbody>
</table>

Education

<table>
<thead>
<tr>
<th>Category</th>
<th>2006</th>
<th>2005</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>STÅ1 – total</td>
<td>483</td>
<td>508</td>
<td>519</td>
</tr>
<tr>
<td>Projects (students)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSc (civil)</td>
<td>85</td>
<td>92</td>
<td>74</td>
</tr>
<tr>
<td>PMP/BSc (midterm)</td>
<td>31</td>
<td>36</td>
<td>56</td>
</tr>
<tr>
<td>BEng (diplom)</td>
<td>130</td>
<td>62</td>
<td>82</td>
</tr>
<tr>
<td>Admission (students)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS (Building Technology)</td>
<td>62</td>
<td>72</td>
<td>60</td>
</tr>
<tr>
<td>BEng (Architectural Engineering)</td>
<td>50</td>
<td>52</td>
<td>42</td>
</tr>
<tr>
<td>BEng (Civil Engineering) - summer</td>
<td>75</td>
<td>63</td>
<td>58</td>
</tr>
<tr>
<td>BEng (Civil Engineering) - winter</td>
<td>38</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>BEng (Arctic Technology)</td>
<td>8</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>

Research

<table>
<thead>
<tr>
<th>Category</th>
<th>2006</th>
<th>2005</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refereed papers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
<td>61</td>
<td>63</td>
</tr>
<tr>
<td>Of these in ISI</td>
<td>30</td>
<td>43</td>
<td>37</td>
</tr>
<tr>
<td>PhD theses</td>
<td>5</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Doctoral theses</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Finances

Finances in 1,000 DKK

<table>
<thead>
<tr>
<th>Category</th>
<th>2006</th>
<th>2005</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTU-grant</td>
<td>56,656</td>
<td>53,184</td>
<td>52,523</td>
</tr>
<tr>
<td>External revenue</td>
<td>31,033</td>
<td>30,862</td>
<td>28,563</td>
</tr>
<tr>
<td>Total</td>
<td>87,689</td>
<td>84,046</td>
<td>81,094</td>
</tr>
<tr>
<td>Expenditures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wages</td>
<td>63,021</td>
<td>62,725</td>
<td>62,917</td>
</tr>
<tr>
<td>Other expenses</td>
<td>26,420</td>
<td>19,628</td>
<td>16,445</td>
</tr>
<tr>
<td>Total</td>
<td>89,441</td>
<td>82,353</td>
<td>79,362</td>
</tr>
<tr>
<td>Result</td>
<td>-1,757</td>
<td>1,693</td>
<td>1,732</td>
</tr>
<tr>
<td>Available amount</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January 1</td>
<td>7,957</td>
<td>6,264</td>
<td>4,532</td>
</tr>
<tr>
<td>December 31</td>
<td>6,200</td>
<td>7,957</td>
<td>6,264</td>
</tr>
</tbody>
</table>

1 STÅ is one student annual work (1 STÅ=60 points/student)